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We first briefly review some multivariate statistical models such as Principal

Component Analysis (PCA), Factor Analysis (FA), and Probabilistic PCA (PPCA).

Alternatively, we approach PCA from the least-squares point of view. We introduce

a Random Effect Factor Model I (REFM1), which expresses the observed vectors

up to random errors as a linear combination of a relatively small number of axis

directions in a new coordinate system with random effect coefficients. Then, we

characterize the maximum likelihood estimators (MLE) under REFM1 by a profile

likelihood method, that is, by maximizing the likelihood over mean and variance

parameters θ1 first with the coordinate direction parameters component θ2 fixed,

we have a restricted MLE â, B̂, σ̂2 in terms of the factor directions, and substitut-

ing the estimates θ̂1(θ2) into the likelihood, finally maximizing the profile likelihood

over the factor directions θ2. We show that the maximizer of the profile likeli-

hood function lp(θ2) over the factor directions combined with the restricted MLE

for other parameters when the factor directions are fixed is the joint MLE of the



likelihood function. Some asymptotic properties of the MLE such as consistency

and asymptotic normal distribution are established.

In order to analyze the multivariate data from s groups (s > 1), we briefly

review the Common Principal Components (CPC) model. Other Random Effect

Factor Models are introduced. The model REFM2 assumes all s groups have a

common factor space but differing mean and variance parameters for factor loadings

and error terms, and REFM3 is a new model which has not only a common factor

space but also an additional individual space belonging to each group only. We

discuss the identifiability of parameters, and again use the profile likelihood method

to find the MLE.

We develop an EM algorithm to compute the MLE for REFM1, and indicate

extensions of the algorithm to REFM2 and REFM3. The performance of the al-

gorithm on simulated data is described. Quasi-Newton methods are also used to

calculate the MLE of the profile likelihood lp(θ2) and they yield the same results as

the EM algorithm. Finally, we apply the EM algorithm for REFM1 estimation to a

real data set on ultrasound cross-sectional images of the tongue during speech.
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Chapter 1

Introduction
1.1 Background

Much of this research was motivated by the analysis of real data from NIH Project

Grant R01 DC 01758, a research project on ultrasound imaging of human tongue

during speech, with Dr. Maureen Stone as principal investigator. The primary prob-

lem we face is how to construct a statistical model for the coronal tongue contours,

two-dimensional cross-sectional curves representing the surface of the tongue during

speech. These curves, recorded in discretized form as large vectors, are very noisy,

high dimensional and lacking in fixed landmarks.

Our clear mathematical goal is to find a reduced data representation of p-

dimensional random curves preserving shapes and the relationships among curves,

subjects, and sounds. One initial approach focused on building a smooth model.

We explored many methods and models such as curve estimates, spline smooth-

ing, functional data analysis, projection pursuit, nonparametric regression, wavelet

analysis, and Principal Component Analysis. In the early studies of this thesis, we

have adapted the work done by Silverman (1996), Wahba (1990) and Ramsay, and

considered an underlying nonparametric smooth model:

yi = f(xi) + εi, i = 1, 2, . . . , n, (1.1)

where ε = (ε1, ε2, . . . , εn)t ∼ Nn(0, σ2In) and f is some smooth function. If

f is unknown, but a fixed function, then we can estimate the smooth curve f by
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minimizing a penalized sum of squares. If the smooth function f is a stochastic

process, then we can predict the value of f(x) by a minimum variance unbiased

linear (MVUL) predictor.

The tongue data are heavily cross-classified, by multiple subjects, multiple

sessions and multiple sounds, and thus falls unavoidably into multiple groups. Very

little work has been done on formal likelihood-based methodology for Principal

Components (PC) or factor models falling into several groups. Our study is derived

from Flury (1984, 1988). He claims that his Common Principal Components is the

first multivariate model which is especially designed for data with multiple subjects.

He also claims that his book offers a little bit of everything for the multivariate

statistician: elaborate mathematics, interesting applications, and challenging com-

putational problems. Flury’s work on numerical methods was particularly extensive.

Unfortunately, Flury was killed in a tragic accident on July 6, 1999 when he was

hit by a falling boulder while hiking in the Dolomite Mountains near Trento, Italy.

Since then, the work on Common Principal Components has not progressed.

Flury’s work on Common Principal Components is highly motivating for this

thesis. Of particular interest are his multivariate models, regarded as factor models,

because Principal Components and Factor Analysis are highly related. After many

exploratory studies on multivariate statistical models, we discovered the Random

Effect Factor Model, which is well suited for a multiple subject data set. Before

we introduce the Random Effect Factor Model, we briefly review some multivariate

statistical models such as Principal Component Analysis (PCA), Factor Analysis

(FA), and Probabilistic PCA (PPCA) in the following sections of this chapter.
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1.2 Principal Component Analysis

1.2.1 Introduction

Principal Component Analysis (PCA) (Jolliffe 1986) is a classical well established

multivariate technique for data dimensionality reduction. A chapter on the subject

along with the analyses of covariance and correlation structures may be found in

numerous textbooks on multivariate analysis. The most common derivation of PCA

is in terms of a standardized linear projection which maximizes the variance in the

projected space (Hotelling 1933). The mathematical treatment of PCA is based on

characteristic roots and vectors of positive definite symmetric matrices. PCA is a

one-group method (Flury 1988), and it is somewhat surprising that no generaliza-

tions to the case of several groups have appeared in the statistical literature until

recently. There are many PCA applications, which include data compression, image

processing, visualization, exploratory data analysis, pattern recognition, and time

series prediction.

Principal Component Analysis (PCA) can be looked at from three different

points of view (Flury 1988):

1. It is a method of transforming correlated variables into uncorrelated ones.

2. It is a method for finding linear combinations with relatively large or

relatively small variability.

3. It is a tool for data reduction.
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1.2.2 Definition

Suppose the random vector Y of p components has the covariance matrix Σ.

Without loss of generality, we assume for simplicity that the mean of Y is 0; other-

wise we would subtract from it (an estimate based on data of) the constant mean

E(Y ). Actually, in doing Principal Component Analysis, we are interested only in

variances and covariances. Moreover, in developing the ideas and algebra here, the

actual distribution of Y is irrelevant except for the covariance matrix. If Y has a

normal distribution, then more meaning can be given to the principal components.

Let c be a p-component unit vector, that is, a vector with ctc = 1. The

main operation of PCA is to find c ∈ Rp which maximizes the variance of ctY ,

i.e.,

c = arg max Var(ctY ). (1.2)

Let

f(c, λ) = Var(ctY )− λ(ctc− 1) = ctΣc− λ(ctc− 1), (1.3)

where λ is a constant Lagrange multiplier. A vector c maximizing f(c, λ) must

satisfy the following equation:

∇cf(c, λ) = 2Σc− 2λc = 0. (1.4)

That is,

Σc = λc (1.5)

which means that λ is an eigenvalue of Σ and c is a corresponding eigenvector
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of Σ. Indeed, λ must be the largest eigenvalue, λmax, since

max
c: ctc=1

Var(ctY ) = max
c: ctc=1

ctΣc = max
c: ctc=1

λctc = max
ctc=1

λ ≡ λmax. (1.6)

Let c1 be the eigenvector of Σ corresponding to λmax. Then ct1Y is called

the first principal component. Now let us find a normalized linear combination ctY

with maximum variance among all linear combinations of components of Y which

are uncorrelated with the first principal component. Lack of correlation means that

0 = E(ctY Y tc1) = ct Σ c1 = λmax c
tc1, (1.7)

or equivalently, ctc1 = 0. We now want to maximize

f(c, λ, µ) = ct Σ c − λ (ctc− 1)− 2µctc1, (1.8)

subject to the unit-norm and orthogonality constraints, where λ and µ are

Lagrange multipliers. The vector of partial derivatives is

∇cf(c, λ, µ) = 2Σc − 2λc − 2µc1, (1.9)

which we set equal to 0. After multiplying on the left by ct1, we obtain

0 = 2ct1 Σ c − 2λ ct1c − 2µct1c = −2µ. (1.10)

Therefore, µ = 0, and c and λ must satisfy (1.9). Let λ2 be the maximum

eigenvalue λ, other than λ1. Then there is a vector c satisfying

(Σ− λ2Ip)c = 0 , ctc = 1 , ctc1 = 0. (1.11)

Call this vector c2 and the corresponding inner product ct2y, the second principal

component .
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Similarly, we can find the kth principal component ctkY (for k ≤ p) by

solving maxct
k
ck=1, ck⊥ci, i=1,2,...,k−1 Var(ctkY ), that is,

max
ck
{ctkΣck − λctkck − 2

k−1∑
i=1

µic
t
kΣci},

where ctiY, i = 1, 2, . . . , k − 1 are the first k − 1 principal components. In general,

principal component analysis finds a new coordinate system for multivariate data

such that the projection of Y on the first coordinate has maximal variance, projec-

tion on the second coordinate has maximal variance subject to being orthogonal to

the first, etc.

In practice, we can use the sample variance, S = (n−1)−1 ∑n
i=1 (yi−ȳ)(yi−ȳ)t

to estimate Σ, where ȳ = n−1 ∑n
i=1 yi. After finding the eigenvalues and corre-

sponding eigenvectors of S and sorting them in order of decreasing magnitude of

eigenvalue, the first few eigenvectors are retained as the first few principal compo-

nent directions.

1.2.3 Least-squares interpretation

Alternatively, we can approach our problem from the least-squares or geometric

point of view. For a multivariate data set {yi, i = 1, 2, . . . , n}, the restated problem

is to find a unit vector v ∈ Rp minimizing the sum of squared distances between

yi and their projections on v, i = 1, 2, . . . , n, that is, minvtv=1 n
−1∑n

i=1 ‖yi −

(yi, v)v‖2. Now we can write down the Lagrange multiplier objective function,

f(v, λ) =
1

n

n∑
i=1

‖yi − (yi, v)v‖2 + λ(vtv − 1)

6



=
1

n

n∑
i=1

(yi − (yi, v)v)
t (yi − (yi, v)v) + λ(vtv − 1)

=
1

n

n∑
i=1

(yt
iyi − (yi, v)v

tyi) + λ(vtv − 1)

=
1

n

n∑
i=1

‖yi‖2 − vtCyyv + λ(vtv − 1), (1.12)

where Cyy = n−1∑n
i=1 yiy

t
i . Set ∇vf(v, λ) = 0. Then

0 = ∇vf(v, λ) = −2Cyyv + 2λv, (1.13)

which implies that Cyyv = λv. Since n−1∑n
i=1 ‖yi‖2 is a data-dependent constant,

not depending upon v, the minimum of n−1∑n
i=1 (‖yi‖2− (yi, v)

2) corresponds to

the maximum of n−1∑n
i=1 (yi, v)

2. Then v is interpreted as the direction in which

yi, i = 1, 2, . . . , p, has maximum variation. Thus vty is an alternative definition

for the first principal component, and we call vtyi, i = 1, 2, . . . , n the loadings for

v.

Remark: The principal component directions vi defined in this subsection are

exactly the same as those of the previous subsection if and only if all of the vectors

yi are orthogonal to the vector of all 1’s; that is, if and only if ȳ = 0. 2

Denoting the v just defined by v1, we can find v2 by minimizing the sum over

i = 1, 2, . . . , n of the distances between yi and their projections on v2, subject to

the constraints ‖ v2‖2 = 1, v2⊥v1. That is, we find minvt
2v2=1, vt

2v1=0 n
−1∑n

i=1 ‖yi−

(yi, v2)v2‖2. Then v2 is the eigenvector of Cyy corresponding to the second largest

eigenvalue, and vt
2y is the second alternative principal component, with loadings

vt
2yi, i = 1, 2, . . . , n. Similarly, we can obtain the third, fourth, and higher alterna-

tive principal components. This sequence of optimizations yields unique solutions
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when the eigenvalues of Cyy are distinct.

Next consider the problem of minimizing, simultaneously with respect to two

orthonormal vectors u, v, the sum of squared distances between yi, i = 1, 2, . . . , n

and their projections on the span of u, v. That is,

min
utu=1, vtv=1, u⊥v

1

n

n∑
i=1

‖yi − (yi, u)u− (yi, v)v‖2. (1.14)

The result is the sum of the two largest eigenvalues of Cyy = n−1∑n
i=1 yiy

t
i . The

resulting vectors u, v are not unique, even in the case where all eigenvalues are

distinct, but the space which they span is unique. Thus all solutions are of the form

u = α1v1 + β1v2 v = α2v1 + β2v2, (1.15)

where v1 and v2 are eigenvectors of Cyy corresponding to the two largest

eigenvalues of Cyy, α2
i + β2

i = 1, i = 1, 2, and α1α2 + β1β2 = 0.

As was mentioned above, the two approaches to constructing principal com-

ponents will coincide if and only if ȳ = 0. The sample covariance matrix S is

constructed from centered data vectors, that is, the residuals of these vectors from

their average ȳ, while the sum Cyy of exterior products in the second approach

is defined without subtracting the average vector and perserves the original shape

of the data in applications where the vectors yi are interpreted as curves. If these

vectors yi are replaced by yi − ȳ, i = 1, 2, . . . , n, which generally distorts their

shape if the vectors represent curves, then Cyy and S differ only by a constant

multiple, and the unit eigenvectors defined by the two approaches are obviously

identical.
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If there exists q such that Var(y, vq) is much larger than Var(y, vk), k =

q+ 1, . . . , p, then we can treat the term
∑p

k=q+1 (yi, vk)vk as an error term, which

contains high frequency noise. If one wishes to select the number q of principal

components, the following criterion can be used to determine the number q of

principal components to retain in describing data yi, i = 1, 2, . . . , n:

∑q
i=1 λi∑p
i=1 λi

≥ 1− α or
λq+1∑p
i=1 λi

≤ β, (1.16)

for suitably defined constants α, β, usually, .05, .01 respectively.

The q principal components of the observed vector yi are given by the vector

xi = πt
1(yi− ȳ), where π1 = (c1, c2, . . . , cq). The variables xi are uncorrelated such

that the covariance matrix n−1∑n
i=1 xix

t
i is diagonal with elements λi. A comple-

mentary property of PCA, and the most closely related to the original discussions of

Pearson (1901) is that, of all orthogonal linear projections xi = πt
1(yi−ȳ), the princi-

pal component projection minimizes the squared reconstruction error
∑n

i=1 ‖yi−ŷi‖2,

where the optimal linear reconstruction of yi is given by ŷi = π1xi + ȳ.

However, a notable feature of these definitions of PCA is the absence of an

associated probability model for the observed data. This will limit the ability to

derive PCA within an inferential statistical framework. Also, PCA restricts itself to

a linear setting, where high-order statistical information is discarded. Probabilistic

Principal Component Analysis (PPCA), proposed by Tipping and Bishop (1999),

overcomes the first mentioned disadvantage by using a special factor analysis model.

9



1.3 Factor Analysis

1.3.1 Introduction

The origin of factor analysis is generally attributed to Charles Spearman (1904).

His outstanding work in developing a psychological theory involving a single general

factor and a number of specific factors goes back to 1904 when his paper “General

intelligence, objectively determined and measured” was published in the American

Journal of Psychology. He is regarded as the father of factor analysis because he

devoted the remaining forty years of his life to the development of factor analysis

(Harman 1976). Perhaps a more crucial study of the statistical aspects is the paper

by Karl Pearson (1901), in which he establishes “the method of principal axes”.

Our least-squares interpretation from section 1.2.3 is an extension of the original

discussions of Pearson.

Factor analysis is a branch of multivariate analysis that is generally under-

stood to refer to a set of closely related models intended for exploring or establishing

correlational structures amongst the observed random variables. The method was

developed primarily to provide a mathematical model for the explanation of psycho-

logical theories concerning human ability and behavior. It was originally used for

the analysis of scores in mental tests. However, the methods are useful in a much

wider range of situations.

Applications of factor analysis in fields other than psychology have become

very popular since 1950, along with the development of the computer. These fields

include such varied disciplines as meteorology, medicine, political science, taxon-
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omy, archaeology, economics, and sociology. Factor analysis is used as a tool in the

empirical sciences. In order to analyze observed data, one approach is to provide

a statistical model, to explain the underlying behavior of the data. Some simple

examples include: (1) a linear regression for the prediction of school success from

three entrance exams; (2) a mathematical curve, such as the normal distribution

or one from the Pearson family of curves, for the study of an observed frequency

distribution; (3) a chi-square test of significance for the independence of such clas-

sifications as “treated or not treated with a certain serum”; (4) the least-squares

interpretation from section 1.2.3 is the mathematical motivation, which extends the

original ideas from Pearson (1901).

1.3.2 Model definition

Let the observable vector Y be written as

Y = Wf + µ+ ε, (1.17)

where Y, µ, and ε are column vectors of p components, f is a column vector of

q (q < p) components, and W is a p× q matrix with nonrandom constant elements.

We assume that ε is distributed independently of f and with mean Eε = 0 and

covariance matrix E(εεt) = Ψ which is diagonal. The p × q matrix W relates the

two sets of variables, while the parameter vector µ permits the model to have non-

zero mean. The vector f will be treated alternatively as a random vector and as a

vector of parameters that varies from observation to observation. The elements of

W are called factor loadings, and the elements of f are called common factors.

11



Remark: In principle, the model with random factors is appropriate when different

samples consist of different individuals; the nonrandom factor model is more suitable

when the specific individuals involved and not just the structure are of interest. 2

Conventionally, we let f ∼ Nq(0, Iq), which means the factors are uncorre-

lated. Let W tW be diagonal; that is, let W have orthogonal columns. If the error ε

is multivariate normal, the equation (1.17) leads to a corresponding normal distri-

bution for the observations Y ∼ Np(µ, Σ), where Σ = WW t + Ψ. If y1, y2, . . . , yn

are a set of n observations of Y , the likelihood for this sample is

L = (2π)−
np
2 |Σ|−

n
2 exp{−1

2

n∑
i=1

(yi − µ)tΣ−1(yi − µ)}. (1.18)

The model parameters µ, W , and Ψ can be determined by maximum likelihood

estimation whenever they are functionally determined by (µ, Σ). First we find that

the maximum likelihood estimator of the mean µ is

µ̂ = y =
1

n

n∑
1

yi. (1.19)

Secondly, before we find the other parameters W and Ψ, we add the restrictions

(Anderson 1984 and Basilevsky 1994) that

Γ = W tΨ−1W (1.20)

is diagonal. If the diagonal elements of Γ are ordered and different (γ11 > γ22 > . . . >

γqq), then W is uniquely determined. When Ψ = σ2Ip, the model Σ = WW t + σ2Ip

is identifiable. Next, we maximize the logarithm of (1.18) with µ replaced by µ̂; this

is called the logarithm of the “concentrated likelihood”; that is

−1

2
np log(2π)− n

2
log |Σ| − n

2
tr(SΣ−1) (1.21)
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where S = n−1∑n
i=1(yi − y)⊗2. Usually, there is no closed-form analytic solution

for W and Ψ, except in special cases, such as Ψ = σ2Ip. Then W and Ψ can be

obtained by an iterative procedure.

1.3.3 Factor analysis and PCA

By constraining the error covariance Ψ to be a diagonal matrix whose elements ψi are

usually estimated from the data, the key assumption for the factor analysis model

is that the observed variables Yi are conditionally independent when the common

factors f are given. These common factors are intended to explain the correlations

between observation variables while εi represents variability unique to a particular

Yi. This is where factor analysis fundamentally differs from standard PCA, which

effectively treats covariance and variance identically (Tipping 1999).

Because of the distinction made between variance and covariance in the stan-

dard factor analysis model, the subspace defined by the maximum likelihood esti-

mates of the columns of W will generally not correspond to the principal subspace

of the observed data. However, certain links between the two methods have been

established, such as the connection for the special case of an isotropic error model,

where the residual variances Ψ = σ2 are constrained to be equal.

The approach was used in the early Young-Whittle factor analysis model

(Young 1940), where the residual variance σ2 was assumed known; that is, the

model likelihood was a function of W alone. In that case, maximum likelihood esti-

mation is equivalent to a least-squares method, and a principal component solution

appears in a straightforward manner. Also, the common factors f were considered
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as parameters to be estimated rather than random variables. However, a stochastic

treatment of f recovers a similar result, that the p − q smallest eigenvalues of the

sample covariance S are equal to σ2. It is simple to show that both W and σ2

are determined analytically through eigen-decomposition of the sample covariance

matrix S, without making use of iteration (Anderson 1963 and Basilevsky 1994).

1.4 Probabilistic PCA

Probabilistic PCA (PPCA) is an extension of traditional PCA, proposed by Roweis

(1997), Tipping and Bishop (1999). The goal is to define a proper probability model

for PCA. Note that in traditional PCA, we project all data from p-dimensional space

to a principal subspace, which is spanned by the q principal axes. The components

of data “outside” the principal subspace are simply discarded. In PPCA, however,

these components are assumed to be i.i.d. Gaussian white noise.

The original p-dimensional observed data vector yi, i = 1, 2, . . . , n, can be

described in terms of a lower q-dimensional data xi (q < p) and a noise term

yi = Axi + ε, (1.22)

where A is a p× q loading matrix (q < p) and ε is multivariate i.i.d. Gaussian with

a diagonal covariance matrix σ2Ip. This model is also called a latent variable model:

the latent variable xi is related to a p-dimensional observation yi. The distribution

of the latent variable also Gaussian, and conventionally specified as xi ∼ Nq(0, Iq).

The marginal distribution for the observed data vector y is obtained by integrating

14



out the latent variable and is also Gaussian:

yi ∼ Np(0, Σ), (1.23)

where the observation covariance is specified by Σ = AAt + σ2Ip. From the defini-

tion of PPCA, W is intuitively found as in the original PCA, and σ2 is found by

calculating the average of the variances in the discarded directions:

σ̂2 =
1

p− q

p∑
i=q+1

λi. (1.24)

The probabilistic PCA can be utilized as a general Gaussian density model.

The benefit of doing so is that the maximum likelihood estimates for the parameters

associated with the covariance matrix can be computed from the sample principal

components. Tipping and Bishop (1999) show that MLEs of A and σ2 are given by

the following:

AML = Uq(Λq − σ2Iq)
1
2R, (1.25)

and

σ2
ML =

1

p− q

p∑
j=q+1

λj =
1

p− q
[tr(Σ)− tr(Λq)], (1.26)

where Uq = (u1, u2, . . . , uq) and Γq = Diag(λ1, λ2, . . . , λq) contain the top q

eigenvectors and eigenvalues of Σ, respectively, and R is any orthogonal matrix with

the typical choice being R = Iq. Alternatively, using a Gaussian prior (zero mean

and unit standard deviation) over the latent variables xi, we find the latent variable

formulation leads naturally to an iterative and computationally efficient expectation-

maximization (EM) algorithm by treating the latent variables as ‘missing’ data.

Furthermore, the probability model also can be easily extended to mixture models,
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by introducing a mean µk for each model k and re-estimating p(yi|k), and the

prior probabilities for each model, p(k), in each step of the EM algorithm. Bishop

has also proposed Bayesian methods to automatically determine m, the number of

dimensions to retain.

The probabilistic formulation of PCA from a Gaussian latent variable model

is closely related to statistical factor analysis. But we note that an important

distinction results from the use of the isotropic noise covariance σ2Ip; that is, PPCA

is covariant by rotation of the original data axes, as is the standard PCA, while factor

analysis is covariant under component-wise rescaling. Another point of contrast

is that in factor analysis, neither of the factors found by a two-factor model is

necessarily the same as that found by a single-factor model. In probabilistic PCA,

we see above that the principal axes may be found incrementally.

1.5 Overview of the Thesis

In Chapter 2, we give a detailed discussion of Random Effect Factor Model I

(REFM1). We first introduce this new model based on a homogeneous group of

observed random vectors and discuss the identifiability of all parameters θ. The

likelihood method is implemented in two steps, first by assuming that part of the

parameter vector, θ2, is fixed, where θ2 parameterizes the factor directions. The

restricted MLE, θ̂1, for the other unknown parameter components is a unique con-

tinuous function of the factor directions θ2. Next, the profile likelihood is introduced.

Also, we discuss the asymptotic behaviors of the likelihood function and the profile

likelihood function. We prove that there is a unique local maximum of the asymp-
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totic profile likelihood, leading to the conclusion that the MLE is a locally consistent

estimator. We discuss the calculus maximization and the Hessian matrix of the like-

lihood. We prove the combination of the restricted MLE and MLE of the profile

likelihood is the joint MLE based on the original likelihood. Finally, we establish

the asymptotic normal distribution of the MLE.

In Chapter 3, we discuss how to analyze the multivariate data from s groups.

First, we review the relationship among covariance matrices Σ1, . . ., Σs, and the

common principal component (CPC) model. Next, we extend the REFM1 model

from a single group to multiple groups. Then we introduce two new models, REFM2

and REFM3, to fit s groups of multivariate data. The REFM2 model assumes all

s groups have a common factor space but differing mean and variance parameters

for factor loadings and error terms, and REFM3 is a model which has not only a

common factor space for all s groups but also an additional individual factor space

belonging to each group. We discuss the identifiability of parameters and use the

profile likelihood method to obtain the MLE.

In Chapter 4, we introduce the Newton-Raphson method and the EM algo-

rithm, develop an EM algorithm to compute the MLE for REFM1, and extend

the algorithm to REFM2. The performance of the algorithms on simulated data

is described. The Quasi-Newton methods are also used to calculate the maximum

likelihood estimation of the profile likelihood function lp(θ2) and are shown to give

results for REFM1 that agree with the EM algorithm.

In Chapter 5, we introduce a real dataset of ultrasound cross-sectional images

of the human tongue during speech. We apply the EM algorithm directly to the
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final, preprocessed tongue data set. For computational efficiency, we choose a lower

dimensional principal subspace and apply the EM algorithm to the data set projected

to that subspace. We compare the numerical results of the EM algorithm on REFM1

with results of previous analysis of the data.

In Chapter 6, we summarize the results from this research, and discuss future

work.
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Chapter 2

Random Effect Factor Model I
2.1 The Model

2.1.1 Introduction

Our motivating data set of two-dimensional coronal tongue contours, which we will

discuss in greater detail in Chapter 5, is very high dimensional, very noisy, with a

high degree of cross-classification. With so many dimensions, it will be difficult to

see any pattern in its inter-relationships. In fact, our ability to visualize relationships

is limited to two or three dimensions, which places us under extraordinary pressure

to reduce the dimensionality of the data in a manner which preserves as much of

the structure as possible. Our objective is first to condense the many measured

variables into a much smaller number with as little loss of information as possible,

and secondly to build a model using the reduced dimensional data to represent a

true two-dimensional tongue surface.

In mathematical language, we observe p-dimensional random vectors with p

a relatively large number, and we want to find a small number, q, of orthonormal

vectors whose linear combinations provide a good fit with high probability to the

observed vectors. Our first model will partition the observed vector Y into two parts:

an unobserved systematic part and an unobserved error part. The components of the

error vector are considered uncorrelated or independent, while the systematic part

is taken to be a linear combination of a relatively small number of axis directions in
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a new q-dimensional coordinate system. The subspace spanned by these coordinate

directions is called the factor space. In terms of this factor space, any observation,

a point in p dimensional space, will be projected to a point in the q dimensional

factor subspace. If the coordinates of this projection are considered parameters,

then unfortunately the number of parameters goes up in proportion to the sample

size, and this creates problems with the behavior of maximum likelihood estimators

(Neyman and Scott 1948). However, there are circumstances in which such methods

are relatively simple, and can be made to yield estimates of the parameters which are

virtually the same as those derived from a random effect model. “They thus have a

certain practical interest but in spite of a voluminous and often polemical literature

they are, from our standpoint, outside the mainstream of theoretical development”

(Bartholomew 1987). Thus, we introduce the random effect model here to reduce

the number of parameters.

2.1.2 Definition of the Model

Random Effect Factor Model 1 (REFM1). Assume that the observable random

vector Y can be written as

Y =
q∑

k=1

ckPk + ε , (2.1)

where Y , the nonrandom orthonormal coordinate directions Pk, k = 1, 2, . . . , q,

and ε lie in Rp. Assume that the random effects ck ∼ N (ak, b
2
k), 1 ≤ k ≤ q, and

the error ε ∼ Np(0, σ
2 Ip) are independent.

Later on, we refer to this model as REFM1. Now, we calculate the mean and
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variance of random vector Y under the model:

E(Y ) =
q∑

k=1

akPk = π1a (2.2)

and

Var(Y ) =
q∑

k=1

b2kP
⊗2
k + σ2Ip = π1B1π

t
1 + σ2Ip (2.3)

where

π1 = (P1, P2, ..., Pq) (2.4)

is a p× q matrix with orthonormal column vectors, and

at = (a1, a2, ..., aq) (2.5)

is a q dimensional mean vector. In terms of π1, we define the factor space V1 ≡

col(π1) = span{P1, P2, ..., Pq}, and

B1 = Diag(b21, b
2
2 . . . b

2
q) (2.6)

is a q × q matrix with diagonal elements b21, b
2
2 . . . b

2
q and zeros elsewhere. Based

on the model assumption, Y follows a normal distribution with mean µy = π1a and

covariance matrix Σy = π1B1π
t
1 + σ2Ip.

If there are n independent observations with the distribution of Y , say, y1,

. . ., yn, our data model under REFM1 is

yi =
q∑

k=1

cikPk + εi , i = 1, 2, ..., n (2.7)

where random effects cik ∼ N (ak, b
2
k), 1 ≤ k ≤ q, are independent, ε1, ε2, . . . , εn

are i.i.d. with εi ∼ Np(0, σ
2Ip), the series {εi} and {cik} are independent, and
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P1, P2, ..., Pk are orthonormal. Thus,

yi ∼ Np(µy,Σy), (2.8)

where 
Σy = π1B1π

t
1 + σ2Ip

µy = π1a

(2.9)

If we could regard the unknown parameter as µy and Σy with only the re-

striction that Σy is a nonsingular covariance matrix, then the maximum likelihood

estimates of µy and Σy would be the sample mean ȳ = n−1∑n
i=1 yi, and (n − 1)/n

times the sample variance Sy, or n−1∑n
i=1(yi − ȳ)⊗2. Also, ȳ and Sy would be

sufficient statistics for the parameters µy and Σy. Under REFM1, the mean pa-

rameter µy and covariance parameter Σy can be expressed in terms of π1, a, B1, and

σ2 through equation (2.9). Now, let us define the parameter space for REFM1.

Let θ = (a, b2, σ2, π1), where b2 ≡ Diag(B1). We define the parameter space

as Θ = {θ : −∞ < ak < +∞, 0 < b2k < +∞, 0 < σ2 < +∞, πt
1π1 = Iq for 1 ≤

k ≤ q, }. Thus, Θ is a subset of Rq × (R+)q+1 × (Rp)q. The true value θ will be

denoted by θ0. We first need to show that our parameter θ is identifiable from the

observed data in REFM1.

2.1.3 Identifiability

A parameter θ for a family of distributions pθ, θ ∈ Θ, is said to be identifiable if

distinct values of θ correspond to distinct distribution; that is, θ is identifiable if

θ 6= θ
′
implies pθ 6= pθ′ . The mean µ and covariance matrix Σy determine pθ when

pθ is a family of multivariate normal distributions.
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Given a mean µy and a covariance matrix Σy and a number q of factors, we

ask whether there exist a, b2, π1, and σ2 to satisfy (2.9), and if so, whether they

are unique, and what is the relationship. First, let us count how many equations

in (2.9) we have, how many parameters in REFM1, and what is the relationship

between them. There are q equations regarding µy, and p(p+1)
2

equations regarding

Σy since the covariance matrix Σy is a symmetric matrix. Hence, the total number

of equations is q + p(p+1)
2

. There are q, q, 1, and (pq− q(q+1)
2

) parameter dimensions

for a,B1, σ
2, and π1, respectively. Thus, the total of number of parameters under

REFM1 is 2q + 1 + pq− q(q+1)
2

. Subtracting the number of parameters from number

of equations and simplifying, we have

(#of equations)− (#of parameters) =
1

2
(p− q + 2)(p− q − 1). (2.10)

Since p > q, the above expression indicates that the dimension of Θ is less than that

of the unrestricted multivariate normal model.

The factor space, V1 = col(π1) is also a subspace of V ≡ Rp. We define V2

as the orthogonal complement space of V1 in V, that is, V1
⊕
V2 = V , with V2 a

(p − q) dimensional space. Let {Pi, i = q + 1, q + 2, . . . , p} be any orthonormal

basis for V2, that is, ‖Pi‖2 = 1, for i > q , and P t
i Pj = 0, for i, j > q and i 6= j.

Note that, utv = 0 if u ∈ V1 and v ∈ V2.

The covariance matrix Σy is positive definite with rank p, and has all positive

eigenvalues. Multiplying both sides of equation (2.9) by Pi, we have

ΣyPi =


(b2i + σ2)Pi for i ≤ q,

σ2Pi for i > q.

(2.11)
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Thus, all of P1, P2, ..., Pq, Pq+1, ..., Pp are eigenvectors of the covariance matrix

Σy corresponding to eigenvalues b21 + σ2, b22 + σ2, ..., b2q + σ2, σ2, ..., σ2. If we sort

the eigenvalues from the biggest to the smallest, and assume the condition:

b21 > b22 > ... > b2q, (2.12)

then we can uniquely determine the eigenvalues. Thus, we can uniquely determine

the sequence {b2k, k = 1, 2, . . . , q}, the orthonormal eigenvectors P1, P2, ..., Pq, and

σ2. This really means that, subject to (2.12), the consistently estimable multivariate-

normal parameters µy,Σy uniquely determine B1, π1, and σ2. Then, in terms of the

mean µy of random vector Y, the unique π1 determines a unique a because we can

solve for a from equation (2.9); that is,

a = (π1
tπ1)

−1π1
tµy = π1

tµy. (2.13)

When q = 1, the condition (2.12) is vacuous. Since yi are i.i.d.,

ȳ =
1

n

n∑
i=1

yi
a.s.−→ E(Y ) = aP1, (2.14)

by the Strong Law of Large Numbers (SLLN). That is,

Pr

{
1

n

n∑
i=1

yi = aP1

}
= 1. (2.15)

Hence, P1 is determined if a 6= 0, since E(Y ) and P1 are in the same or reverse

direction, and P1 is a unit vector. In any case, a = ‖E(Y )‖ is determined, and P1 is

the unique eigenvector associated with the maximal eigenvalue of Σy. Then b2 and

σ2 are determined from the system of equations (2.11).

24



2.1.4 Relationship with other multivariate models

The identifiability condition (2.12) for the REFM1 will be mentioned again in later

sections and chapters. It is the key assumption in proving the existence of a local

unique maximum for the asymptotic profile likelihood and the consistency of that

estimate. Here we want to emphasize that the identifiability condition (2.12) guar-

antees that V1 is a principal subspace and that {Pi, 1 ≤ i ≤ q} are principal axes.

Thus, the REFM1 model includes what Principal Component Analysis covers.

We have the parameters (a, b2, σ2, π1) where πt
1π1 = Iq in REFM1, and (W, σ2),

where W has orthogonal columns in the Factor Analysis model. When a = 0,

REFM1 becomes a factor analysis model. The matrix W (equivalent to π1) only

appears in the covariance structure through the factor loadings of the Factor Anal-

ysis model, while π1 appears in both the mean and variance in REFM1. This is

the key difference between REFM1 and the FA model. REFM1 models the mean

parameter, and FA model does not. Specifically, when we apply the EM algorithm

for both models in data simulation, FA struggles to converge, and REFM1 easily

finds the maximum point because π1 is constrained more by the data in REFM1

compared to the FA model.

The PPCA is a special case of FA model with µ = 0 and error σ2Ip. This makes

PPCA a closer model to REFM1, compared to PCA and FA models. The REFM1

model still has the advantage in numerical computation because the parameter π1

is shared by mean and variance.
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2.2 Maximum Likelihood Estimates for REFM1

2.2.1 Simplifying the probability density function

In this section, we will find the maximum likelihood estimators for the parameters

a, b2, σ2, and π1 under REFM1 when the observations are normally distributed,

that is, when the factor scores and errors are normal,

Y ∼ Np(π1a, π1B1π
t
1 + σ2Ip) (2.16)

where π1, a, and B1 satisfy (2.4) - (2.6).

We start with the probability density function of Y under REFM1:

f(y) =
exp{−1

2
(y − π1a)

t(π1B1π1
t + σ2Ip)

−1(y − π1a)}
(2π)p/2|π1B1π1

t + σ2Ip|1/2
. (2.17)

Here |A| means the determinant of the matrix A.

We are interested in estimating the parameters a, b2, σ2, P1, P2, . . . , Pq.

The number of free parameters in a, b2, σ2, and π1 are q, q, 1, and pq− q(q+1)
2

, since

π1 has orthonormal columns. Since π1B1π
t
1 is a p × p matrix with rank q, we can

write by the definition of B1 and π1

π1B1π1
t =

q∑
k=1

b2kPkP
t
k =

p∑
k=1

b2kPkP
t
k = πBπt, (2.18)

where

π = (P1, ..., Pq, Pq+1, ..., Pp) (2.19)

and B is the p× p diagonal matrix with b2k ≡ 0 for k > q:

B = Diag(b21, . . . , b
2
q, b

2
q+1, . . . , b

2
p). (2.20)
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Now, we rewrite and simplify the probability density of the random vector Y :

f(y) = (2π)−
p
2 |πBπt + σ2ππt|−

1
2 exp{−1

2
(y − π1a)

t(πBπt + σ2ππt)−1(y − π1a)}

= (2π)−
p
2 |π(B + σ2Ip)π

t|−
1
2 exp{−1

2
(y − π1a)

t[π(B + σ2Ip)π
t]−1(y − π1a)}

= (2π)−
p
2 |B + σ2Ip|−

1
2 exp{−1

2
(y − π1a)

t · π(B + σ2Ip)
−1πt(y − π1a)}

= (2π)−
p
2

[ q∏
k=1

(b2k + σ2)−
1
2

]
(σ2)−

p−q
2

· exp{−1

2
[πt(y − π1a)]

t(B + σ2Ip)
−1πt(y − π1a)}

= (2π)−
p
2 (σ2)−

p−q
2

[ q∏
k=1

(b2k + σ2)−
1
2 ] · exp{−1

2
[πt(y − π1a)

]t

Diag

(
1

b21 + σ2
, . . . ,

1

b2q + σ2
, σ−2, . . . , σ−2

)
[πt(y − π1a)]}. (2.21)

Since

P t
k(y − π1a) = P t

ky − P t
kπ1a =


P t

ky − ak if k ≤ q

P t
ky if k > q

(2.22)

it follows that

πt(y − π1a) =



P t
1(y − π1a)

...

P t
q (y − π1a)

P t
q+1(y − π1a)

...

P t
p(y − π1a)



=



P t
1y − a1

...

P t
qy − aq

P t
q+1y

...

P t
py



. (2.23)

Finally, we have simplified our probability density function to:

f(y) = (2π)−
p
2 (σ2)−

p−q
2

[ q∏
k=1

(b2k + σ2)−
1
2

]

· exp

−1

2

q∑
k=1

1

b2k + σ2
(P t

ky − ak)
2 − 1

2σ2

p∑
k=q+1

(P t
ky)

2

 . (2.24)
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The Maximum Likelihood Estimate of θ is defined as that value θ̂ of θ which

maximizes the probability density; hence the Maximum Likelihood Estimate of g(θ)

is g(θ̂).

2.2.2 Likelihood function and ML equations

If y1, ..., yn are a sample of n independent observations on Y , the joint probability

density function f(y1, θ) · · · f(yn, θ), evaluated at y = (y1, . . . , yn), and considered

as a function of θ, is called the likelihood function. Under REFM1, the likelihood

function for this sample {yi, i = 1, 2, ..., n} is

L(θ) =
n∏

i=1

f(yi, θ)

= (2π)−
np
2 (σ2)−

n(p−q)
2

q∏
k=1

(bk
2 + σ2)−

n
2

· exp{−1

2

n∑
i=1

q∑
k=1

1

bk
2 + σ2

(P t
kyi − ak)

2 − 1

2σ2

n∑
i=1

p∑
k=q+1

(P t
kyi)

2} (2.25)

The maximum likelihood estimates of θ are values θ̂ of θ which maximize the

likelihood function L(θ), or equivalently, the logarithm of the likelihood function

(since the logarithm function is strictly increasing). The log likelihood is denoted

l(θ) ≡ log(L(θ))

= −np
2

log(2π)− n(p− q)

2
log(σ2)− n

2

q∑
k=1

log(b2k + σ2)

−1

2

n∑
i=1

q∑
k=1

1

b2k + σ2
(P t

kyi − ak)
2 − 1

2σ2

n∑
i=1

p∑
k=q+1

(P t
kyi)

2 (2.26)

In order to maximize the log-likelihood function, we first calculate the partial

derivative of l(θ) with regard to ak for 1 ≤ k ≤ q,

∂l(θ)

∂ak

=
n∑

i=1

1

b2k + σ2
(P t

kyi − ak) (2.27)
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Setting this expression equal to 0 yields the first q likelihood equations,

n∑
i=1

(P t
kyi − âk) = 0 (2.28)

For π1 = (P1, P2, ..., Pq) assumed fixed, we can solve these equations for ak as a

function of π1. That is,

âk =
1

n

n∑
i=1

P t
kyi = P t

k(
1

n

n∑
i=1

yi) = P t
kȳ, (2.29)

where ȳ = n−1∑n
i=1 yi. Furthermore, we have

â =



â1

â2

...

âq


=



P t
1 ȳ

P t
2 ȳ

...

P t
q ȳ


= πt

1ȳ. (2.30)

Remark: There is an alternative way to obtain the same estimation result. From

(2.9), a is in one-to-one correspondence with the mean µy for given π1, and is not

related to the variance Σy; and the maximum likelihood estimator of the mean

parameter µy is µ̂y = ȳ = n−1∑n
k=1 yi. We have a restricted maximum likelihood

estimator â for fixed (known) π1 through the following equations:

ȳ = µ̂y = π1â =⇒ â = πt
1ȳ. 2

Similarly, we can differentiate l(θ) with respect to b2k for all k ≤ q:

∂l(θ)

∂b2k
= −n

2

1

b2k + σ2
+

1

2

n∑
i=1

1

(b2k + σ2)2
(P t

kyi − ak)
2 (2.31)

Setting these expressions equal to 0, we have another system of q likelihood equation,

b̂2k + σ̂2 =
1

n

n∑
i=1

(P t
kyi − âk)

2 (2.32)

29



Again for fixed P1, P2, . . . , Pq, we can solve for b2k + σ2, k ≤ q, using (2.29):

b̂2k + σ̂2 =
1

n

n∑
i=1

(P t
kyi − Pkȳ)

2

=
1

n

n∑
i=1

[P t
k(yi − ȳ)]2

=
1

n

n∑
i=1

P t
k(yi − ȳ)(yi − ȳ)tPk

= P t
k

1

n

n∑
i=1

(yi − ȳ)⊗2Pk

= P t
kSPk, (2.33)

where S = n−1∑n
i=1(yi− ȳ)⊗2 is (n−1)/n times the sample variance of the random

vector Y . The derivative of l(θ) with respect to σ2 is

∂l(θ)

∂σ2
= −n(p− q)

2

1

σ2
− n

2

q∑
k=1

1

b2k + σ2
+

1

2

n∑
i=1

q∑
k=1

1

(b2k + σ2)2
(P t

kyi − ak)
2

+
1

2

1

(σ2)2

n∑
i=1

p∑
k=q+1

(P t
kyi)

2 (2.34)

Setting this expression equal to 0 yields another likelihood equation,

−n(p− q)

2σ̂2
+

1

2σ̂4

n∑
i=1

p∑
k=q+1

(P t
kyi)

2 − n

2

q∑
k=1

1

b̂2k + σ̂2

+
1

2

n∑
i=1

q∑
k=1

(
1

b̂2k + σ̂2
)2(P t

kyi − âk)
2 = 0. (2.35)

After substituting equation (2.32) in equation (2.35), we can simplify the equation

(2.35) to

−n(p− q)

2

1

σ̂2
+

1

2

1

(σ̂2)2

n∑
i=1

p∑
k=q+1

(P t
kyi)

2 = 0. (2.36)

We can solve for σ̂2 as a function of P1, P2, ..., Pq,

σ̂2 =
1

n(p− q)

n∑
i=1

p∑
k=q+1

P t
kyiy

t
iPk

=
1

p− q

p∑
k=q+1

P t
kCyyPk, (2.37)
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where Cyy = n−1∑n
i=1 yiy

t
i is the sample second moment of the random vector Y .

There is a standard relationship between sample mean, sample variance and

sample second moment, which we demonstrate in the following.

Lemma 1 If y1, ..., yn are a set of n observations on Y , with ȳ ≡ n−1∑n
i=1 yi,

S ≡ n−1∑n
i=1(yi − ȳ)⊗2, and Cyy ≡ n−1∑n

i=1 y
⊗2
i , then

Cyy = S + ȳ⊗2 (2.38)

Proof.

S =
1

n

n∑
i=1

(yi − ȳ)(yt
i − ȳt)

=
1

n

n∑
i=1

(yiy
t
i − ȳyt

i − yiȳ
t + ȳȳt)

=
1

n

n∑
i=1

(yiy
t
i)− ȳ

1

n

n∑
i=1

yt
i − (

1

n

n∑
i=1

yi)ȳ
t + ȳ⊗2)

= Cyy − ȳ⊗2 − ȳ⊗2 + ȳ⊗2

= Cyy − ȳ⊗2. 2

2

2.2.3 The profile log-likelihood

So far, we have the restricted maximum likelihood estimates â, B̂1, and σ̂2 in terms

of fixed (assumed known) common factors P1, P2, . . . , Pq under REFM1. The es-

timators â, B̂1, and σ̂2 are functions of π1, the sample mean ȳ, and the sample

second moment Cyy. The idea of the profile likelihood is similar to the concen-

trated likelihood from Anderson (1984). We represent the parameter space as

31



the Cartesian product of two component subspaces and optimize the likelihood on

one subspace first with the other parameter component fixed. Thus, we can work

on the overall maximum in two separate steps. This can be done for the general

log-likelihood case.

Let l(θ) be the logarithm of the likelihood function on the parameter space Θ.

We can decompose Θ into two subspaces Θ1 and Θ2, with Θ = Θ1×Θ2. Assume that

θ2 ∈ Θ2 is given, and that there exists a unique maximum likelihood estimate θ̂1(θ2).

Denote θ̂1(θ2) = h(θ2) for fixed data, where h is a well-defined smooth function of

θ2 (and the data). Then, we call l(θ̂1(θ2), θ2) the profile log-likelihood.

For our case, we let θ1 = (a, b2, σ2), and θ2 = (P1, P2, ..., Pq). The parameter

space Θ1 is {(a, b2, σ2) ∈ Rq × (R+)q × R+ : for 1 ≤ k ≤ q, b2k > 0, σ2 > 0}, and

Θ2 is {θ2 ∈ M : θt
2θ2 = Iq}, where M is the set of real p × q matrices. Rewrite

expression (2.37) as

σ̂2 =
1

p− q

p∑
i=q+1

tr(P t
kCyyPk)

=
1

p− q
tr((

p∑
i=q+1

PkP
t
k)Cyy)

=
1

p− q
{tr(Cyy)− tr(π1π

t
1Cyy)}, (2.39)

and rewrite the expression (2.33) as

b̂
2

= Diag(πt
1Sπ1)− σ̂21q. (2.40)

Here 1q means a q-dimensional column vector where all elements are 1, that is,

1q = (1, 1, . . . , 1)t, and Diag(A) denotes the column vector of diagonal elements of

a matrix; that is, if A = (ai,j) is a q × q matrix, then Diag(A) = (a11, a22, . . . , aqq)
t.
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Under REFM1, we can exhibit the function θ̂1(θ2) ≡ h(θ2) explicitly from the

equations (2.30), (2.40), and (2.39) as follows:

θ̂1(π1) =



â

b̂
2

σ̂2


=



πt
1ȳ

Diag(πt
1Sπ1)− σ̂21q

1
p−q
{tr(Cyy)− tr(π1π

t
1Cyy)}.


(2.41)

The restricted joint maximum likelihood estimate θ̂1(θ2) is a function of θ2, ȳ, and

Cyy. Next, we will replace θ1 in expression (2.26) by θ̂1(θ2). Hence, the profile

likelihood function lp(θ2) = l(θ̂1(θ2), θ2) is a function of θ2, ȳ, and Cyy alone.

Remark: There is a close relationship among the factor space V1 = span{P1, P2,

. . . , Pq}, the parameter space Θ2 = {θ2 ∈ M : θt
2θ2 = Iq}, and the p × q matrix

π1 = (P1, P2, . . . , Pq). By combining all q coordinate directions in V1 into a p × q

matrix π1, we have an element of Θ2. For any given element θ2 ∈ Θ2, the q column

vectors of θ2 are q coordinate directions in V1. For any matrix π1 with orthogonal

columns, the q column vectors of π1 are also q coordinate directions in V1, and

π1 ∈ Θ2. Hence, the notations θ2 and π1 are interchangeable.

In a mathematical notation, our approach is as follows:

sup
θ∈Θ

l(θ) = sup
θ2∈Θ2

{max
θ1∈Θ1

l(θ|θ2)}

= sup
θ2∈Θ2

l(θ̂1(θ2), θ2)

= sup
θ2∈Θ2

lp(θ2; ȳ, Cyy) (2.42)

An evaluation of the left hand side of equation (2.42) is the standard problem

of maximum likelihood estimation. The right hand side of the equation (2.42) is
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evaluated in our profile likelihood approach. The following Lemma will show that

a sufficient condition for the equation (2.42) to hold is that a unique maximum

likelihood estimate θ̂1(θ2) exists when θ2 is given.

Lemma 2 Let l(θ) be a continuous log-likelihood function and θ = (θ1, θ2). If there

exists a unique continuous function θ̂1(θ2) such that

max
θ1∈Θ1

l(θ1; θ2) = l(θ̂1(θ2); θ2) ≡ lp(θ2), (2.43)

then we have

sup
θ∈Θ

l(θ) = sup
θ2∈Θ2

lp(θ2). (2.44)

Furthermore, if lp(θ2) is continuous, and Θ2 is compact, then the right hand side of

equation (2.44) is a maximum, that is,

sup
θ2∈Θ2

lp(θ2) = max
θ2∈Θ2

lp(θ2). (2.45)

Proof. Let supθ∈Θ l(θ) = l∗. By the definition of the supremum, there exists a

sequence θm = (θ1m, θ2m) such that l(θm) → l∗ as m→∞. But

l(θ1m, θ2m) ≤ l(θ̂1(θ2m), θ2m) = lp(θ2m) ≤ l∗ (2.46)

Hence, lp(θ2m) → l∗ as m→∞, that is,

sup
θ∈Θ

l(θ) = sup
θ2∈Θ2

lp(θ2). (2.47)

If lp(θ2) is continuous, and Θ2 is compact, then by the extreme value theorem, there

exists a θ̂2 such that

max
θ2∈Θ2

lp(θ2) = lp(θ̂2). (2.48)
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Since

lp(θ̂2) ≤ sup
θ2∈Θ2

lp(θ2) = l∗ ≤ max
θ2∈Θ2

lp(θ2) = lp(θ̂2), (2.49)

therefore,

sup
θ2∈Θ2

lp(θ2) = max
θ2∈Θ2

lp(θ2). (2.50)

2

Under REFM1 and the assumption of a given set of common factors P1, P2,

. . . , Pq, the restricted maximum likelihood estimate θ̂1(θ2) = (â, b̂
2
, σ̂2) is the

unique solution of the likelihood equations given by the closed form equation (2.41).

This means that the profile log-likelihood can be used to find the maximum likeli-

hood estimates as long as we can find the maximum of the profile likelihood. Now,

let us simplify the profile likelihood l(θ̂1(θ2), θ2) after substitution of θ̂1(θ2) into

expression (2.26):

lp(θ2) = −np
2

log(2π)− n(p− q)

2
log(

1

p− q

p∑
k=q+1

P t
kCyyPk)

−n
2

q∑
k=1

log(P t
kSPk)−

1

2

n∑
i=1

q∑
k=1

1

P t
kSPk

(P t
kyi − P t

kȳ)
2

−1

2

1

(p− q)−1
∑p

k=q+1(P
t
kCyyPk)

n∑
i=1

p∑
k=q+1

(P t
kyi)

2

= −np
2

log(2π) +
n(p− q)

2
log(p− q)− n(p− q)

2
log(

p∑
k=q+1

P t
kCyyPk)

−n
2

q∑
k=1

log(P t
kSPk)−

1

2

q∑
k=1

1

P t
kSPk

n∑
i=1

P t
k(yi − ȳ)⊗2Pk

−p− q

2

1∑p
k=q+1(P

t
kCyyPk)

p∑
k=q+1

(P t
k

n∑
i=1

y⊗2
i Pk)

= −np
2

log(2π) +
n(p− q)

2
log(p− q)− n(p− q)

2
log(

p∑
k=q+1

P t
kCyyPk)

−n
2

q∑
k=1

log(P t
kSPk)−

1

2

q∑
k=1

1

P t
kSPk

nP t
kSPk
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−p− q

2

1∑p
k=q+1 P

t
kCyyPk

p∑
k=q+1

(P t
knCyyPk)

= −np
2

log(2π) +
n(p− q)

2
log(p− q)− n(p− q)

2
log(

p∑
k=q+1

P t
kCyyPk)

−n
2

q∑
k=1

log(P t
kSPk)−

nq

2
− n(p− q)

2

=
n

2
{C − (p− q) log(

p∑
k=q+1

P t
kCyyPk)−

q∑
k=1

log(P t
kSPk)} (2.51)

where C = −p log(2π) + (p− q) log(p− q)− p. Since the maximizer of lp(θ2) is the

same as the maximizer of (2/n)lp(θ2), we can multiply both sides of equation(2.51)

by 2/n, and find

2

n
lp(θ2) = C − (p− q) log(

p∑
k=q+1

P t
kCyyPk)−

q∑
k=1

log(P t
kSPk) (2.52)

Since

πtCyyπ = (P1, P2, ..., Pp)
tCyy(P1, P2, ..., Pp),

=



P t
1CyyP1 P t

1CyyP2 ... P t
1CyyPq

P t
2CyyP1 P t

2CyyP2 ... P t
2CyyPq

... ... ... ...

P t
qCyyP1 P t

qCyyP2 ... P t
qCyyPq


, (2.53)

we have

tr(πtCyyπ) = P t
1CyyP1 + P t

2CyyP2 + ...+ P t
pCyyPp

=
q∑

k=1

P t
kCyyPk +

p∑
k=q+1

P t
kCyyPk. (2.54)

Then, since tr(πtCyyπ) = tr(Cyyππ
t) = tr(Cyy),

p∑
k=q+1

P t
kCyyPk = tr(Cyy)−

q∑
k=1

P t
kCyyPk (2.55)
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Therefore, the simplified expression for profile log-likelihood is

2

n
lp(θ2) = C − (p− q) log[tr(Cyy)− tr(π1π

t
1Cyy)]−

q∑
k=1

log(P t
kSPk). (2.56)

According to Lemma 2, the maximum of the profile likelihood function exists,

that is,

sup
θ2∈Θ2

lp(θ2) = max
θ2∈Θ2

lp(θ2) (2.57)

Observe that lp(θ2) given by (2.56) is a continuous function and Θ2 = {θ2 ∈ M :

θt
2θ2 = Iq} is a bounded closed set in (Rp)q. The profile likelihood does not have a

closed-form analytic solution for P1, P2, ..., Pq, which is not unusual for multivariate

analysis problems. We will consider numerical procedures to compute the maximum

likelihood estimates in a later chapter.

2.3 Asymptotic Properties of Estimates

2.3.1 Asymptotic profile likelihood function

In the previous section we have shown that there exists a maximum likelihood

estimate θ̂ = (θ̂1, θ̂2) under REFM1. We will further investigate some asymptotic

properties of θ̂ such as consistency and asymptotic distribution. First, let us rewrite

the log-likelihood function from (2.26) multiplied by 2
n
, as follows:

ln(θ) =
2

n
l(θ)

= −p log(2π)− (p− q) log(σ2)−
q∑

k=1

log(b2k + σ2)

− 1

σ2

p∑
k=q+1

P t
kCyyPk −

q∑
k=1

1

b2k + σ2
[P t

kSPk + (P t
kȳ − ak)

2] (2.58)

= ln(θ, ȳ, S).
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Remark: From l(θ) = n
2
ln(θ, ȳ, S), we have seen that the maximum likelihood

estimate, θ̂, is a function of sufficient statistics, which was also guaranteed by the

factorization criterion. 2

Let θ0 = (a0, b
2
0, σ

2
0, π10) denote the true parameter value in Θ. When n→∞,

under REFM1 the sample mean ȳ, sample covariance matrix S, and sample second

moment matrix Cyy converge almost surely to EY, V ar(Y ), and EY ⊗2, respectively,

by the Strong Law of Large Numbers (SLLN). That is, we have

ȳ
a.s.−→ EY = π10a0, (2.59)

S =
1

n

n∑
i=1

(yi − ȳ)⊗2 a.s.−→ V ar(Y ) = π10B10π
t
10 + σ2

0Ip, (2.60)

and

Cyy =
1

n

n∑
i=1

y⊗2
i

a.s.−→ EY ⊗2 = V ar(Y ) + (EY )⊗2,

= π10B10π
t
10 + σ2

0Ip + (π10a0)
⊗2. (2.61)

The limiting form of the normalized log-likelihood function is

g(θ; θ0) = lim
n→∞

ln(θ)

= −p log(2π)− (p− q) log(σ2)−
q∑

k=1

log(b2k + σ2)

−
q∑

k=1

1

b2k + σ2
[P t

kπ10B10π
t
10Pk + σ2

0 + (P t
kπ10a0 − ak)

2]

− 1

σ2

p∑
k=q+1

(P t
kπ10B10π

t
10Pk + σ2

0 + P t
kπ10a0a

t
0π

t
10Pk). (2.62)

We next maximize the limiting form of the log-likelihood function (2.62) over θ1 =

(a, b2, σ2) for fixed P1, P2, . . . , Pq. Assume that θ2 is given, that is, we know the

coordinate directions of the factor space V1: P1, P2, . . . , Pq. By steps similar to
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those shown above in (2.27), (2.31), and (2.34), we solve the likelihood equations:

∇θ1g((θ1, θ2); (θ10, θ20)) = 0, and get θ̃1 as a function of θ2, θ10, and θ20. For any

k ≤ q, we find θ̃1 = (ã, b̃
2
, σ̃2) as a function of θ2 = π1, defined by

ãk = P t
kπ10a0

σ̃2 = 1
p−q

∑p
k=q+1[P

t
kπ10(B10 + a0a

t
0)π

t
10Pk + σ2

0]

b̃2k = P t
kπ10B10π

t
10Pk + σ2

0 − σ̃2.

(2.63)

Substituting θ̃1(θ2) for θ1 , the asymptotic profile likelihood function is

gp(θ2; θ0) = g((θ̃1(θ2), θ2); (θ10, θ20))

= −p log(2π)−
q∑

k=1

log(P t
kπ10B10π

t
10Pk + σ2

0)

−(p− q) log{ 1

p− q

p∑
k=q+1

[P t
kπ10(B10 + a0a0

t)πt
10Pk] + σ2

0}

−
q∑

k=1

1

P t
kπ10B10πt

10Pk + σ2
0

(P t
kπ10B10π

t
10Pk + σ2

0)

− p− q∑p
k=q+1[P

t
kπ10(B10 + a0a

t
0)π

t
10Pk + σ2

0]

×
p∑

k=q+1

[P t
kπ10(B10 + a0a

t
0)π

t
10Pk + σ2

0]

= −p log(2π) + (p− q) log(p− q)− q − (p− q)

−(p− q) log{
p∑

k=q+1

[P t
kπ10(B10 + a0a

t
0)π

t
10Pk] + (p− q)σ2

0}

−
q∑

k=1

log(P t
kπ10B10π

t
10Pk + σ2

0)

= C − (p− q) log{
p∑

k=q+1

[P t
kπ10(B10 + a0a

t
0)π

t
10Pk] + (p− q)σ2

0}

−
q∑

k=1

log(P t
kπ10B10π

t
10Pk + σ2

0), (2.64)

where the constant C = −p log(2π) + (p− q) log(p− q)− p.

If we first apply the Strong Law of Large Numbers to the log-likelihood function
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l(θ) under REFM1, and then maximize θ1 in the limiting form of normalized log-

likelihood function for fixed P1, P2, . . . , Pq, then the resulting expression (2.64) is the

asymptotic profile likelihood function. Alternatively, assuming that θ2 = π1 is given,

we have a restricted maximum likelihood estimate θ̂1(θ2),and can apply the Strong

Law of Large Numbers to the profile likelihood function lp(θ2). The following Lemma

shows that these two approaches have the same result, that is, maximization over

θ1 and the Strong Law of Large Numbers are interchangeable:

lim
n→∞

2

n
lp(θ2) = sup

θ1∈Θ1

{ lim
n→∞

ln(θ1; θ2)} (2.65)

Lemma 3 Under REFM1, and when n→∞, ȳ, Cyy, and S satisfy (2.59), (2.60),

and (2.61). Let lp(θ2, ȳ, S) be the profile likelihood function, and let θ̃1(θ2) maximize

the restricted asymptotic likelihood for fixed θ2. That is,

g(θ̃1(θ2), θ2; θ0) = sup
θ1∈Θ1

{ lim
n→∞

ln(θ1; θ2)} (2.66)

Then, when n→∞,

2

n
lp(θ2)

a.s.−→ g(θ̃1(θ2), θ2, θ0). (2.67)

To prove the Lemma, we apply the Strong Law of Large Numbers under

REFM1, using expressions (2.59), (2.60), and (2.61). When n goes to ∞, we have

P t
kSPk

a.s.−→ P t
k(π10B10π

t
10 + σ2

0Ip)Pk

= P t
kπ10B10π

t
10Pk + σ2

0, (2.68)
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tr(Cyy)
a.s.−→ tr(π10B10π

t
10 + σ2

0Ip + (π10a0)
⊗2)

= tr(π10B10π
t
10) + pσ2

0 + tr(π10a0a
t
0π

t
10)

= tr(B10π
t
10π10) + pσ2

0 + tr(a0a
t
0π

t
10π10)

= tr(B10) + pσ2
0 + tr(a0a

t
0)

=
q∑

i=1

b2i0 + pσ2
0 + tr(at

0a0)

=
q∑

i=1

b2i0 + pσ2
0 +

q∑
i=1

a2
i0

=
q∑

i=1

(a2
i0 + b2i0) + pσ2

0, (2.69)

and

P t
kCyyPk

a.s.−→ P t
k(π10B10π

t
10 + σ2

0Ip + (π10a0)
⊗2)Pk

= P t
kπ10B10π

t
10Pk + σ2

0 + P t
kπ10a0a

t
0π

t
10Pk

= P t
kπ10(B10 + a0a

t
0)π10Pk + σ2

0. (2.70)

After substituting (2.68), (2.69), and (2.70) into the profile likelihood function (2.51),

and simplifying the expression (2.56), we immediately have the expression (2.64).

This completes the proof. 2

Our next objective is to prove that there exists a unique local maximum for

the asymptotic profile log-likelihood function gp(θ2, θ0). The unique local maximum

means that there exists a point θ∗2 ∈ Θ2 and a sufficiently small neighborhood N

of θ∗2 such that gp(θ
∗
2, θ0) > gp(θ2, θ0), where θ2 is any given point in N . Let

{Pi0 : i = 1, 2, . . . , q} be the true orthonormal factor directions, and let π10 =

(P10, P20, . . . , Pq0) be the corresponding p×q matrix. We will change our variables

from π1 to a matrix T by mapping: π1 −→ T = πt
1π10. The entries tij : 1 ≤ i, j ≤ q
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of T are inner products of the columns Pi of π1 and the jth direction Pj0 of the true

factor space V10 = span{P10, P20, . . . , Pq0}, that is, tij ≡ P t
i Pj0, for all 1 ≤ i, j ≤ q.

Obviously, for given i and j, the value of tij must be between -1 and +1, that is,

−1 ≤ tij ≤ 1. Now

q∑
k=1

t2ki =
q∑

k=1

(tij)
2

=
q∑

k=1

P t
i0(PkP

t
k)Pi0

= P t
i0(Ip −

p∑
k=q+1

(PkP
t
k))Pi0

= 1−
p∑

k=q+1

(tki)
2

≤ 1, (2.71)

and the equality holds if and only if col(π1) = span{P10, P20, . . . , Pq0}. Similarly, we

can show that
∑q

i=1 t
2
ki ≤ 1. Thus, (t2ki)q×q, is a doubly substochastic matrix since

the sum of elements in each row and column is less than or equal to 1.

Remark: When q = p, the factor space V1 is the space V = Rp. Thus,
∑q

i=1 PiP
t
i =

∑q
i=1 Pi0P

t
i0 = Iq. Therefore,

∑q
k=1 t

2
ki = 1, and

∑q
i=1 t

2
ki = 1. The matrix (t2ki)q×q, is

a doubly stochastic matrix in this case. 2

We see that the parameter θ2 enters expression (2.64) only through θt
2θ20.

Hence we can write the asymptotic profile log-likelihood function gp(θ2; θ10, θ20) as

g̃p(θ
t
2θ20, θ10). After changing the variables, the asymptotic profile log-likelihood

function g̃p(T, θ10) by (2.64) is

g̃p(T, θ10) = lim
n→∞

2

n
lp(θ2)
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= C − (p− q) log[
q∑

i=1

(a2
i0 + b2i0) + (p− q)σ2

0 −
q∑

k=1

q∑
i=1

b2i0t
2
ki

−
q∑

k=1

(
q∑

i=1

ai0tki)
2]−

q∑
k=1

log(
q∑

i=1

b2i0t
2
ki + σ2

0), (2.72)

since

P t
kπ10B10π

t
10Pk = (tk1, tk2, ..., tkq)B10



tk1

tk2

...

tkq


=

q∑
i=1

b2i0t
2
ki, (2.73)

and

p∑
k=q+1

P t
k[π10(B10 + a0a

t
0)π

t
10]Pk

= tr[π10(B10 + a0a
t
0)π

t
10]−

q∑
k=1

P t
k[π10(B10 + a0a

t
0)π

t
10]Pk

= tr[(B10 + a0a
t
0)π

t
10π10]−

q∑
k=1

P t
kπ10B10π

t
10Pk

−
q∑

k=1

P t
kπ10a0a

t
0π

t
10Pk

= tr(B10) + tr(a0a
t
0)−

q∑
k=1

q∑
i=1

b2i0t
2
ki −

q∑
k=1

(a0
tπt

10Pk)
2

=
q∑

i=1

(a2
i0 + b2i0)−

q∑
k=1

q∑
i=1

b2i0t
2
ki −

q∑
k=1

(
q∑

i=1

ai0tki)
2. (2.74)

2.3.2 Special case q=1

Before we prove that in general there exists a locally unique maximum of the asymp-

totic profile log-likelihood function g̃p(T, θ10), we explore gp(T, θ10) in the special case

when q=1. Now, T is just a scalar variable t11. The asymptotic profile log-likelihood
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function is, from (2.72)

g̃p(T, θ10) = −p log(2π) + (p− q) log(p− q)− p− log(b210t
2
11 + σ2

0)

−(p− 1) log{(a2
10 + b210) + (p− 1)σ2

0 − b210t
2
11 − a2

10t
2
11}

= −p log(2π) + (p− q) log(p− q)− p− log(b210t
2
11 + σ2

0)

−(p− 1) log{(a2
10 + b210)(1− t211) + (p− 1)σ2

0}. (2.75)

Lemma 4 Let the asymptotic profile log-likelihood function g̃p(s) ≡ C − log(b210s+

σ2
0)− (p− 1) log{(a2

10 + b210)(1− s) + (p− 1)σ2
0}, 0 ≤ s ≤ 1. The point s = 1 is the

unique maximizer of g̃p(s).

Proof: Taking the derivative of g̃p(s) with respective to s, and simplifying the

expression, we have

dg̃p(s)

ds
= − b210

b210s+ σ2
0

− (p− 1)
−(a2

10 + b210)

(a2
10 + b210)(1− s) + (p− 1)σ2

0

=
p(a2

10 + b210)b
2
10s+ (p− 1)a2

10σ
2
0 − b210(a

2
10 + b210)

(b210s+ σ2
0)[(a

2
10 + b210)(1− s) + (p− 1)σ2

0]
. (2.76)

Setting the above expression equal to 0 yields

p(a2
10 + b210)b

2
10s = b210(a

2
10 + b210)− (p− 1)a2

10σ
2
0. (2.77)

The root of this equation is

ŝ =
b210(a

2
10 + b210)− (p− 1)a2

10σ
2
0

p(a2
10 + b210)b

2
10

=
1

p
− (p− 1)a2

10σ
2
0

p(a2
10 + b210)b

2
10

. (2.78)

Clearly, ŝ ≤ 1
p
. If ŝ < 0, then dg̃p(s)/ds > 0 for all 0 ≤ s ≤ 1. This means that the

asymptotic profile log-likelihood function g̃p(s) is strictly increasing over s ∈ [0, 1].

Hence, the maximum of g̃p(s) will be on the boundary, at s = 1.
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If ŝ ∈ [0, 1], then ŝ ≤ 1
p

from (2.78) , with equality holding only if a10 = 0.

Normally, p is a large number, thus ŝ is close to 0 rather than to 1. If a10 6= 0, that

is, ŝ < 1
p
, we can check the sign of the first derivative of g̃p(s) at the point s = 1

p
as

follows:

dg̃p(s)

ds
|s= 1

p
=

(p− 1)a2
10σ

2
0

2(b210
1
p

+ σ2
0)[(a

2
10 + b210)(1− 1

p
) + (p− 1)σ2

0]
> 0. (2.79)

The asymptotic profile log-likelihood function g̃p(s) is a linear combination of two

logarithm functions. It is a smooth function. Also, it has only one extreme point

because of the unique solution from the first derivative equation. Hence, the sign of

dg̃p(s)/ds is the same for any point s with s > ŝ. The expression (2.79) indicates

that dg̃p(s)/ds > 0 if s > ŝ, that is, g̃p(s) is strictly increasing if s > ŝ. The extreme

point ŝ minimizes the asymptotic profile log-likelihood function g̃p(s). Hence, the

maximum point of g̃p(s) must occur at the boundary, either s = 1 or s = 0. At

s = 0, g̃p(0) = − log σ2
0 − (p − 1) log(a2

10 + b210 + (p − 1)σ2
0), and at s = 1, g̃p(1) =

− log (b210 + σ2
0 − (p− 1) log((p− 1)σ2

0). Then

g̃p(1)− g̃p(0) = (p− 1) log

(
1 +

a2
10 + b210

(p− 1)σ2
0

)
− log(1 +

b210
σ2

0

).

Let x = b210/σ
2
10. Then since p ≥ 2,

g̃p(1)− g̃p(0) =
∫ p−1

1

∂

∂α

{
α log(1 +

x

α
)
}
dα

=
∫ p−1

1

{
− log(1− x

x+ α
)− x

x+ α

}
dα

> 0.

Thus, we have g̃p(1) > g̃p(0), that is, g̃p(s) has its maximum value when s = 1.
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If a10 = 0, the extreme point ŝ of g̃p(s) is 1/p. Again, we check the sign of the

first derivative of g̃p(s) at a point to the right of ŝ, that is, at s = 1. Since

dg̃p(s)

ds
|s=1 =

(p− 1)[a2
10b

2
10 + σ2

0(a
2
10 + b210)

2(b210
1
p

+ σ2
0)[(a

2
10 + b210)(1− 1

p
) + (p− 1)σ2

0]
> 0. (2.80)

We can again conclude that the extreme point ŝ is the minimum, and the maximum

of g̃p(s) occurs when s = 1. This completes the proof of the Lemma. 2

By Lemma 4, in this special case, q = 1, the asymptotic profile likelihood

under REFM1 has not only a unique local maximum when P1 = P10 (π1 = π10) but

also a global maximum. This Lemma also suggests that the maximum may occur

at Pk = Pk0, k = 1, 2, . . . , q, in the general case.

2.3.3 Unique local maximum of asymptotic profile log-likelihood

In order to show that the maximum likelihood estimate θ̂ is a consistent estimate

of the true parameter θ0 under REFM1, we will first prove that there exists a

unique local maximum of g̃p(T, θ10). Define T = {T = (tki)q×q :
∑q

k=1 t
2
ki ≤ 1

and
∑q

i=1 t
2
ki ≤ 1}. The existence of a unique local maximum means there exists a

T ∗ ∈ T with g̃p(T
∗) > g̃p(T ), where T ∈ T is any point sufficiently near T ∗, but

not T ∗. The following Lemma proves that the identity matrix Iq is a unique local

maximum point of the asymptotic profile log-likelihood function g̃p(T, θ10).

Lemma 5 Let g̃p(T, θ10) in the expression (2.72) be the asymptotic profile log-

likelihood function under REFM1 with tij = P t
i Pj0, for all 1 ≤ i, j ≤ q. The

identity matrix Iq is a unique local maximizer in T of g̃p(T, θ10).
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Proof: Let T ∈ T be any point sufficiently near the identity matrix Iq, so that with

ξij ≡ t2ij − δij,maxi,j |ξij| ≤ c for a small constant c to be chosen below. We need to

show

g̃p(Iq, θ10)− g̃p(T, θ10) > 0. (2.81)

We have ξij close to zero, positive when i 6= j, and negative when i = j. Now

we write g̃p(T, θ10) from the expression (2.72) at points Iq, T :

g̃p(Iq, θ10) = C −
q∑

k=1

log
(
b2k0 + σ2

0

)
− (p− q) log[(p− q)σ2

0] (2.82)

and

g̃p(T, θ10) = C −
q∑

k=1

log

( q∑
i=1

b2i0t
2
ki + σ2

0

)
− (p− q) log{

q∑
i=1

(a2
i0 + b2i0)

+(p− q)σ2
0 −

q∑
k=1

q∑
i=1

b2i0t
2
ki −

q∑
k=1

(
q∑

i=1

ai0tki)
2}. (2.83)

The next four steps will simplify expressions (2.82) and (2.83).

Step (I): Applying the inequality | log(1 + x)− x| ≤ x2 valid for all |x| < 1, we have

log(
q∑

i=1

b2i0t
2
ki + σ2

0) = log(b2k0 + σ2
0 +

q∑
i=1

b2i0ξki)

= log(b2k0 + σ2
0) +

∑q
i=1 b

2
i0ξki

b2k0 + σ2
0

+ α1 max
k,i

|ξki|2/c2

for some number α1 ∈ (−1, 1), whenever maxk,i |ξki| ≤ c ≤ (σ2
0 +mink b

2
k0)/

∑q
i=1 b

2
i0.

Step (II): By the Cauchy-Schwarz inequality, for T ∈ T,

q∑
k=1

( q∑
i=1

ai0tki

)2

=
q∑

k=1

q∑
i=1

q∑
j=1

ai0tkiaj0tkj

≤
q∑

i=1

q∑
j=1

(
q∑

k=1

t2ki

q∑
k=1

t2kj)
1
2ai0aj0

=

( q∑
i=1

ai0(
q∑

k=1

t2ki)
1
2

)2
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≤
q∑

i=1

a2
i0

q∑
k=1

t2ki

≤
q∑

i=1

a2
i0

Therefore

q∑
i=1

a2
i0 ≥

q∑
k=1

(
q∑

i=1

ai0tki)
2. (2.84)

Step (III): Since y = log(x) is an increasing function on x, by the result in step (II),

we have

log{
q∑

i=1

(a2
i0 + b2i0) + (p− q)σ2

0 −
q∑

k=1

q∑
i=1

b2i0t
2
ki −

q∑
k=1

(
q∑

i=1

ai0tki)
2}

= log{
q∑

i=1

b2i0 + (p− q)σ2
0 −

q∑
k=1

q∑
i=1

b2i0t
2
ki +

q∑
i=1

a2
i0 −

q∑
k=1

(
q∑

i=1

ai0tki)
2}

≥ log{
q∑

i=1

b2i0 + (p− q)σ2
0 −

q∑
k=1

q∑
i=1

b2i0t
2
ki}. (2.85)

Step (IV): Again, applying the result | log(1 + x)− x| ≤ x2 when |x| < 1, we have

log{
q∑

i=1

b2i0 + (p− q)σ2
0 −

q∑
k=1

q∑
i=1

b2i0t
2
ki}

= log{(p− q)σ2
0 +

q∑
i=1

q∑
k=1

b2i0ξki}

= log[(p− q)σ2
0] +

∑q
i=1

∑q
k=1 b

2
i0ξki

(p− q)σ2
0

+ α2 max
k,i

|ξki|2/c2

for some number α2 ∈ (−1, 1), whenever maxk,i |ξki| ≤ c ≤ p−q
q
σ2

0/
∑q

i=1 b
2
i0.

Combining steps (I), (II), (III), and (IV), the left-hand side of expression (2.81)

becomes, for maxk,i |ξki| ≤ c ≤ min(1, p−q
q

)σ2
0/
∑n

i=1 b
2
i0,

g̃p(Iq, θ10)− g̃p(T, θ10)

= −(p− q) log[(p− q)σ2
0]−

q∑
k=1

log(b2k0 + σ2
0)
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+
q∑

k=1

{
log (b2k0 + σ2

0) +

∑q
i=1 b

2
i0ξki

b2k0 + σ2
0

− α1 max
k,i

|ξki

c
|2
}

+(p− q) log

{ q∑
i=1

b2i0 + (p− q)σ2
0 −

q∑
k=1

q∑
i=1

b2i0t
2
ki +

q∑
i=1

a2
i0 −

q∑
k=1

(
q∑

i=1

ai0tki)
2

}

≥ −(p− q) log[(p− q)σ2
0] +

q∑
k=1

∑q
i=1 b

2
i0ξki

b2k0 + σ2
0

+(p− q) log{(p− q)σ2
0 −

q∑
k=1

q∑
i=1

b2i0ξki} − α1qmax
k,i

|ξki

c
|2

= −(p− q) log[(p− q)σ2
0] +

q∑
k=1

∑q
i=1 b

2
i0ξki

b2k0 + σ2
0

+(p− q) log[(p− q)σ2
0]− (p− q)

∑q
i=1

∑q
k=1 b

2
i0ξki

(p− q)σ2
0

+(α2(p− q)− qα1) max
k,i

|ξki

c
|2

=
q∑

k=1

q∑
i=1

[
1

b2k0 + σ2
0

− 1

σ2
0

]b2i0ξki + (α2(p− q)− qα1) max
k,i

|ξki

c
|2

= − 1

σ2
0

q∑
k=1

q∑
i=1

b2k0b
2
i0

b2k0 + σ2
0

ξki + (α2(p− q)− qα1) max
k,i

|ξki

c
|2. (2.86)

Define J1 =
∑q

k=1

∑q
i=1

b2k0b2i0
b2
k0

+σ2
0
ξki. Recall the identifiability condition of ordered

{b2i0}
q
i=1. If we can show that J1 < 0 for all sufficiently small c and 0 < maxk,i |ξki| ≤

c, then we will have established (2.81). Rewrite J1 as follows:

J1 =
q∑

k=1

q∑
i=1

b2k0b
2
i0

b2k0 + σ2
0

(t2ki − δki) (2.87)

=
q∑

k=1

q∑
i=1

b2k0b
2
i0

b2k0 + σ2
0

(P t
kPi0)

2 −
q∑

k=1

b4k0

b2k0 + σ2
0

.

Consider now some special cases in expression (2.87). If bi0 = b, i =

1, 2, ..., q, then we have

J1 =
q∑

i=1

q∑
k=1

b2b2

b2 + σ2
0

P t
i0PkP

t
kPi0 −

q∑
k=1

b4

b2 + σ2
0

=
b4

b2 + σ2
0

{
q∑

i=1

P t
i0(

q∑
k=1

PkP
t
k)Pi0 − q}

=
b4

b2 + σ2
0

{
q∑

i=1

P t
i0[Ip −

p∑
k=q+1

PkP
t
k]Pi0 − q}
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=
b4

b2 + σ2
0

{
q∑

i=1

1−
q∑

i=1

P t
i0(

p∑
k=q+1

PkP
t
k)Pi0 − q}

= − b4

b2 + σ2
0

·
q∑

i=1

p∑
k=q+1

(P t
kPi0)

2

≤ 0 (2.88)

In this case, g̃p(Iq, θ10)− g̃p(T, θ10) ≥ 0 for all T, and g̃p(·, θ10) has a maximum

point at Iq. The equality holds only if V1 = span{P10, P20, . . . , Pq0}. We use another

Lemma to show the expression (2.87) is negative more generally.

Lemma 6 For all sequences {b2i0, i = 1, 2, ..., q : b210 > b220 > . . . > b2q0 > 0}, and

σ2
0 > 0, the expression J1 defined in (2.87) is negative, that is,

q∑
i=1

q∑
k=1

b2k0b
2
i0

b2k0 + σ2
0

(tki)
2 <

q∑
k=1

b4k0

b2k0 + σ2
0

. (2.89)

Proof. Let b2(q+1)0 = ... = b2p0 = 0. The expression (2.89) will not change if we

replace q with p. So it is actually the same to prove (2.89) with q = p, where

without loss of generality
∑q

i=1 t
2
ki = 1 for all k, and

∑q
i=1 t

2
ki = 1 for all i. This

relationship implies that T = (tij)q×q is an orthogonal matrix, which is the same

thing as saying that the matrix C with entries Cij = t2ij is a doubly stochastic

matrix. Let us start at J1 equal to the left-hand side of (2.89) minus the right-hand

side of (2.89):

J1 =
q∑

k=1

q∑
i=1

(
1− σ2

0

b2k0 + σ2
0

)
b2i0(tki)

2 −
q∑

k=1

[
b2k0 − σ2

0 +
σ4

0

b2k0 + σ2
0

]

=
q∑

k=1

q∑
i=1

b2i0(tki)
2 − σ2

0

q∑
k=1

q∑
i=1

b2i0 + σ2
0 − σ2

0

b2k0 + σ2
0

t2ki
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−
q∑

k=1

b2k0 + qσ2
0 − σ4

0

q∑
k=1

1

b2k0 + σ2
0

=
q∑

k=1

q∑
i=1

b2i0(tki)
2 − σ2

0

q∑
k=1

q∑
i=1

b2i0 + σ2
0

b2k0 + σ2
0

t2ki

+σ4
0

q∑
k=1

q∑
i=1

(tki)
2

b2k0 + σ2
0

−
q∑

k=1

q∑
i=1

b2i0δki + qσ2
0 − σ4

0

q∑
k=1

1

b2k0 + σ2
0

= σ2
0

(
q −

q∑
k=1

q∑
i=1

b2i0 + σ2
0

b2k0 + σ2
0

t2ki

)

−
q∑

k=1

q∑
i=1

(
b2i0 +

σ4
0

b2k0 + σ2
0

)
(δki − t2ki). (2.90)

Using the fact that q =
∑q

k=1 1 =
∑q

k=1

∑q
i=1 δki, we can further simplify:

J1 = σ2
0(

q∑
k=1

q∑
i=1

δki −
q∑

k=1

q∑
i=1

b2i0 + σ2
0

b2k0 + σ2
0

t2ki)

−
q∑

k=1

q∑
i=1

(b2i0 +
σ4

0

b2k0 + σ2
0

)(δki − t2ki)

= σ2
0

q∑
k=1

q∑
i=1

b2i0 + σ2
0

b2k0 + σ2
0

(δki − t2ki)

−
q∑

k=1

σ4
0

b2k0 + σ2
0

q∑
i=1

(δki − t2ki)−
q∑

i=1

b2i0

q∑
k=1

(δki − t2ki)

= σ2
0(q −

q∑
k=1

q∑
i=1

b2i0 + σ2
0

b2k0 + σ2
0

t2ki) (2.91)

where in last line of (2.91) we have used
∑

i t
2
ki = 1, and

∑
k t

2
ki = 1 (valid when

q = p). Therefore, the expression (2.89) holds if

q∑
k=1

q∑
i=1

b2i0 + σ2
0

b2k0 + σ2
0

t2ki > q. (2.92)

Define wi = b2i0 + σ2
0. Obviously, wi > 0 for all 1 ≤ i ≤ q. The next Lemma

will prove inequality (2.92) with q = p, and complete all Lemmas. The proof of

Lemma 7 is based on a decomposition into closed irreducible classes of a Markov

chain. First, we need to eliminate the possibility of transient states. Luckily, the

doubly stochastic matrix guarantees there are no transient states.
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Remark: Finite state Markov chains with doubly stochastic transition matrices

have no transient states.

Proof: Let P be the transition probability matrix with finite state space S =

{1, 2, . . . , a}. If P is doubly stochastic, then P n is also a doubly stochastic matrix

for all n > 1. If there exists any transient state, say j, then pn
ij → 0 as n → ∞

for all i ∈ S (Karlin and Taylor 1975, Theorem 7.1, p72). Since
∑a

i=1 p
n
ij = 1, then

1 =
∑a

i=1 p
n
ij → 0. This is a contradiction. Therefore, there are no transient states.

2

Lemma 7 Suppose that C is any doubly stochastic matrix, which could therefore

serve as the transition matrix for a Markov chain. The states S = {1, . . . , q}

for such a Markov chain can be partitioned uniquely into closed irreducible classes

S1, . . . , Sr of states (with Sj ∩ Sk = ∅ for j 6= k, and ∪r
j=1 Sj = S). Then

inf
w1, ..., wq>0

q∑
k=1

q∑
i=1

wi

wk

Cki = q (2.93)

and the infimum is attained precisely for the set of w ≡ (w1, . . . , wq) ∈ (R+)q

such that wi = wk whenever i, k ∈ Sa for some value a.

Proof. Since

q∑
k=1

q∑
i=1

wi

wk

Cki =
r∑

a=1

∑
k∈Sa

∑
i∈Sa

wi

wk

Cki (2.94)

by definition of the decomposition of the states of a finite Markov chain into closed

irreducible classes, there is no loss of generality in restricting attention to the tran-

sition submatrices of C corresponding to single closed classes, or equivalently in

assuming that C itself is irreducible.
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Next, since the double summation G(w) =
∑

k,i (wi/wk)Cki is unaffected by

replacing wi with wi/
∑q

k=1wk, we can restrict attention, without loss of generality,

to probability vectors w in the bounded (but not closed) region ∆ ≡ {w : wi >

0,
∑

iwi = 1}. Moreover, it is easily verified that G(w) approaches +∞ as w

approaches the boundary of ∆, or equivalently, as at least one component of w

approaches 0. Thus, for small ε > 0, the continuous function G restricted to the

compact region {w ∈ ∆ : miniwi ≥ ε} has no minimizing values located on the

boundary, but must have at least one minimizing value.

Note that if C = Iq, then

q∑
k=1

q∑
i=1

wi

wk

Cki =
q∑

k=1

q∑
i=1

wi

wk

δki =
q∑

k=1

wk

wk

= q. (2.95)

In this case, (2.93) holds with equality for all w ∈ (R+)q. Taking the first derivative

with respect to wj, j = 1, ..., q, we have

∂G(w)

∂wj

=
q∑

k=1

(
1

wk

Ckj −
wk

w2
j

Cjk). (2.96)

Setting ∂G(w)/∂wj = 0 for all j, we have

q∑
k=1

1

wk

Ckj =
q∑

k=1

wk

w2
j

Cjk, j = 1, 2, ..., q. (2.97)

Multiplying both sides of (2.97) by wj, leads to

q∑
k=1

wj

wk

Ckj =
q∑

k=1

wk

wj

Cjk (2.98)

If wj is the smallest of all of the w’s, then

q∑
k=1

wj

wk

Ckj ≤
q∑

k=1

1 · Ckj = 1, (2.99)
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and

q∑
k=1

wk

wj

Cjk ≥
q∑

k=1

1 · Cjk = 1 (2.100)

Then the left hand side of (2.98) is less than the right hand side of (2.98) unless wj =

wk for all (j, k) such that Cjk > 0. Thus, the irreducibility of C and the calculations

already performed say that the unique point w ∈ ∆ where ∇wG(w) = 0 is the

point w = (1/q, 1/q, . . . , 1/q). This point must be the unique minimizer on ∆ of

G, as was to be shown. 2

Remark: In case the matrix C can be taken symmetric, C is a doubly stochastic

matrix, and the doubly stochastic matrix guarantees there are no transient states,

in the Markov chain of Lemma 7. The proof could be made much simpler. Indeed,

by the Cauchy-Schwarz inequality, whether or not C is symmetric,

q2 =

( q∑
i=1

q∑
k=1

Cik

)2

≤
( q∑

i=1

q∑
k=1

wk

wi

Cik

) ( q∑
i=1

q∑
k=1

wi

wk

Cik

)
(2.101)

with equality if and only if the doubly-indexed arrays (wi/wk : Cik > 0) and

(wk/wi : Cik > 0) are proportional, and (using the irreducibility of the Markov

chain with transition matrix C) this happens if and only if w = (1/q, 1/q,

. . . , 1/q). Moreover, when C is symmetric, the right-hand side of (2.101) is

precisely G(w)2. In the case of symmetric C, this short argument is the complete

proof. 2

Next, in the setting of Lemma 6, we apply Lemma 7 with q replaced by p, to

the matrix C : Cki = t2ki (now, doubly stochastic), with wi = b2i0 + σ2
0, and b2i0 ≡ 0

for q + 1 ≤ i ≤ p , b210 > b220 > . . . > b2q0 > 0. First, we use the fact that the
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minimizer is at wi ≡ w to conclude (2.92) with ≥. Now, if T 6= Iq, but T ≈ Iq, then

there exists a closed irreducible class of C, Cki ≡ t2ki, which contains a non-singleton

set of states including at one state i of {1, 2, . . . , q}. If j ∈ {1, 2, . . . , q}\{i} is the

other state, then b2i0 6= b2j0, and wi 6= wj. By Lemma 7, this implies strict inequality

in (2.92). This completes the proof of Lemma 5, that is, the asymptotic profile

log-likelihood function g̃p(T, θ10) has a unique local maximizer T̂ = Iq; equivalently,

gp(θ2; θ10, θ20) attains a locally unique maximum when Pi = Pi0 for i = 1, 2, . . . , q.

2

2.3.4 Consistent estimator

The idea to prove the consistent estimator of the parameter comes from the article

by Andersen and Gill (1982). We restate their result as follows.

Lemma 8 (Andersen and Gill 1982, Corollary II.2., p1116) Let E be an open subset

of Rp and let F1, F2, . . . be a sequence of random functions on E such that ∀x ∈

E,Fn(x)
P→ f(x) as n → ∞ where f is some real function on E. Suppose f has a

unique maximum at x̂ ∈ E. Let X̂n maximize Fn. Then X̂n
P→ x̂ as n→∞.

The profile likelihood lp ≡ Fn is a random concave function (for large n)

of parameter θ2 = x based on a data sample of size n, since 2n−1 ∇⊗2
θ2
lp(θ2)

a.s→

∇⊗2
θ2
gp(θ2; θ0) uniformly in a small neighborhood of θ20 as n→∞, and ∇⊗2

θ2
gp(θ2; θ0)

is negative definite (refer forward to section 2.4.1). And the asymptotic profile

likelihood gp = f is a nonrandom function. Here E must be the local neighborhood

in Θ2 on which the maximum is unique. Now, from the existence of a unique local
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maximizer of the asymptotic profile likelihood function we have proved and Lemma

8, we have θ̂2 → θ20. That is, θ̂2 is a consistent estimator of θ20. The next Lemma will

show that there exists a unique maximizer of the asymptotic log-likelihood function

under REFM1. Again, we have θ̂ → θ0. That is, θ̂ is a consistent estimator of θ0.

Lemma 9 Let g(θ; θ0) be the limiting form of the log-likelihood function in the ex-

pression (2.62), and let gp(θ2; θ0) the asymptotic profile likelihood function in the

expression (2.64). If gp(θ2; θ0) has a locally unique maximum, then g(θ; θ0) also has

a locally unique maximum.

Proof: From equations (2.63), we can see that θ̃1(θ2, θ10, θ20) is a unique maximizer

for g(θ1, θ2; θ10, θ20). Lemma 5 shows that the asymptotic profile likelihood function

gp(θ2; θ0) has a locally unique maximum at θ2 = θ20, and g(θ̃1(θ2), θ2; θ10, θ20) =

gp(θ2; θ10, θ20). Also, we can verify that θ̃1(θ20) = θ10 holds by substituting θ20 into

the right hand side of equations (2.63). Therefore, we have

g(θ; θ0) = g(θ1, θ2; θ10, θ20)

≤ max
θ1∈Θ1

g(θ1, θ2; θ10, θ20)

= g(θ̃1(θ2), θ2; θ10, θ20)

= gp(θ2; θ10, θ20)

≤ gp(θ20; θ10, θ20)

= g(θ10, θ20; θ10, θ20)

= g(θ0; θ0). (2.102)
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The equality holds only if θ = θ0. We conclude that g(θ; θ0) also has a unique local

maximum at θ = θ0. 2

2.4 Calculus Maximization

2.4.1 Calculus maximization

The profile likelihood method allowed us to reduce the parameter dimension by

working on the two separate subspaces of parameters when we deal with high di-

mensional problems. So far, we have proved there exists a maximizer θ̂2 for the pro-

file log-likelihood function lp(θ2, ȳ, Cyy), and the maximum value of lp(θ2, ȳ, Cyy)

is the same as the maximum of log-likelihood function l(θ). Moreover, in the fol-

lowing Theorem we establish that the combination of the maximizer θ̂2 and the

restricted maximum likelihood estimate θ̂1(θ2) provides the calculus maximum of

log-likelihood function l(θ). As in most multivariate analysis problems, the profile

log-likelihood does not have a closed-form analytic solution for P1, P2, ..., Pq. That

is, the profile log-likelihood equations can not be solved directly. We will look at

a numerical procedure to compute the maximum likelihood estimates iteratively.

There are various iterative procedures for finding a maximum of the likelihood func-

tion, including the steepest descent method, the Newton-Raphson method, and the

EM (expectation-maximization) algorithm. First, let us define what is meant by a

calculus maximum.

Definition 1 Let l(θ) be a smooth function with continuous second derivatives. If

∇θl(θ) = 0 when θ = θ̂, and the Hessian matrix ∇⊗2
θ l(θ)|θ=θ̂ is negative definite,
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then we call θ̂ a calculus maximum of l(θ).

Theorem 1 Let θ1 ∈ Ra, θ2 ∈ Rb, and let l(θ1, θ2) be a function with continuous

second partial derivatives. Assume that ∇θ1l(θ̂1(θ2), θ2) = 0, where θ̂1(θ2) is con-

tinuously differentiable, and the Hessian matrix ∇⊗2
θ1
l(θ̂1(θ2), θ2) is negative definite.

Also assume that Dθ2l(θ̂1(θ̂2), θ̂2) = 0, and the Hessian matrix D⊗2
θ2
l(θ̂1(θ̂2), θ̂2) is a

negative definite matrix, where Dθ2 denotes total differentiation with respect to θ2.

Then the point (θ̂1(θ̂2), θ̂2) is a calculus maximum of the function l(θ1, θ2).

Proof: Write the Hessian matrix of l(θ̂1, θ̂2) :

H = ∇⊗2
θ l(θ̂1, θ̂2) =

 H11 H12

H21 H22

 . (2.103)

Then H is a symmetric matrix, and H t
21 = H12, H

t
11 = H11, and H t

22 = H22. By

hypothesis ∇θ1l(θ̂1(θ2), θ2) = 0, and taking the total derivative in this equation with

respect to θ2, we have

∇θ2∇t
θ1
l(θ̂1(θ2), θ2) +∇θ2(θ̂

t
1(θ2))

t∇⊗2
θ1
l(θ̂1(θ2), θ2) = 0. (2.104)

Letting θ2 = θ̂2, we can re-write (2.104) as

H21 +∇θ2 θ̂
t
1(θ2)H11 = 0. (2.105)

Thus,

∇θ2 θ̂
t
1(θ2) = −H21H

−1
11 . (2.106)

Let h(θ2) = l(θ̂1(θ2), θ2), and take the first order derivative with respect to θ2,

∇θ2h(θ2) = Dθ2l(θ̂1(θ2), θ2). (2.107)
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When θ2 = θ̂2, (2.107) yields ∇θ2h(θ2) = 0. Taking the derivative of ∇θ2h(θ2) with

respect to θ2, we have the following equations,

∇⊗2
θ2
h(θ2) = ∇θ2 θ̂

t
1(θ2) · ∇θ1∇t

θ2
l(θ̂1(θ2), θ2) +∇⊗2

θ2
l(θ̂1(θ2), θ2) (2.108)

Replace θ2 with θ̂2 in (2.108), also using (2.106), to obtain

∇⊗2
θ2
h(θ̂2) = ∇θ2 θ̂

t
1(θ̂2)H12 +H22

= −H21H
−1
11 H12 +H22 (2.109)

To prove that H is negative definite, we need to show that for any given

v =
(

v1

v2

)
, vtHv < 0. Now, for given any v, we have

vtHv = (vt
1 v

t
2)

 H11 H12

H21 H22


 v1

v2


= vt

1H11v1 + vt
2(H22 −H21H

−1
11 H12)v2

+2vt
1H12v2 + vt

2H21H
−1
11 H12v2

= (H12v2 +H11v1)
tH−1

11 (H12v2 +H11v2)

+vt
2{H22 −H21H

−1
11 H12}v2. (2.110)

Since the Hessian matrix ∇⊗2
θ1
l(θ̂1(θ2), θ2) is assumed negative definite, so is

∇⊗2
θ1
l(θ̂1(θ̂2), θ̂2), that is, H11 is negative definite. Thus, H−1

11 is a negative definite

matrix, that is, for any given u ∈ Ra, utH−1
11 u < 0. Also, by hypothesis ∇⊗2

θ2
h(θ2)

is a negative definite matrix, that is, −H21H11H12 + H22 is negative definite from

equation (2.109), so that for any given v ∈ Rb, vt(−H21H
−1
11 H12 + H22)v < 0.

Therefore, vtHv < 0, that is, H is negative definite, and l(θ1, θ2) has a calculus

maximum at (θ̂1(θ̂2), θ̂2). 2
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From (2.41), we have shown that the restricted maximum likelihood estimate

θ̂1(θ2) is a smooth function of π1, the sample mean ȳ, and the sample variance

S under the assumption that the common factor directions P1, P2, . . . , Pq are

given. From Lemma 2, we know there is a maximizer θ̂2 of the profile log-likelihood

function lp(θ2). In order to conclude that θ̂ = (θ̂1(θ̂2), θ̂2) is the calculus maximum

likelihood estimate of l(θ) from Theorem 1, we must verify the following conditions:

1. The Hessian matrix ∇⊗2
θ1
l(θ)|θ1=θ̂1(θ2) is negative definite.

2. The Hessian matrix ∇⊗2
θ2
lp(θ2)|θ2=θ̂2

is negative definite.

First, we verify 1. From the expression (2.27), by taking the derivative of ∂l(θ)/∂ak

with respect to ai, b
2
i and σ2, respectively. For 1 ≤ i ≤ q, we have

∂l2(θ)

∂ai∂ak

= − n

b2k + σ2
δik, (2.111)

∂l2(θ)

∂b2i∂ak

=

(
− n

(b2k + σ2)2
(P t

kȳ − ak)

)
δik (2.112)

and

∂l2(θ)

∂σ2∂ak

= − n

(b2k + σ2)2
(P t

kȳ − ak). (2.113)

From expression (2.31), we take the derivative of ∂l(θ)/∂b2k with respect to ai, b
2
i

and σ2, respectively, for 1 ≤ i ≤ q, yielding (2.112) along with

∂l2(θ)

∂b2i∂b
2
k

=

(
n

2

1

(b2k + σ2)2
− 1

(b2k + σ2)3

n∑
i=1

(P t
kyi − ak)

2

)
δik (2.114)

and

∂l2(θ)

∂σ2∂b2k
=
n

2

1

(b2k + σ2)2
− 1

(b2k + σ2)3

n∑
i=1

(P t
kyi − ak)

2. (2.115)
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From expression (2.34), we take the derivative of ∂l(θ)/∂σ2 with respect to ai, b
2
i

and σ2, respectively, yielding (2.113), (2.115), and

∂l2(θ)

∂σ2∂σ2
=

n(p− q)

2

1

(σ2)2
−

q∑
k=1

1

(b2k + σ2)3

n∑
i=1

(P t
kyi − ak)

2

+
n

2

q∑
k=1

1

(b2k + σ2)2
− 1

(σ2)3

n∑
i=1

p∑
k=q+1

(P t
kyi)

2. (2.116)

By substituting (2.29), (2.33), and (2.37) into all elements in the second order

derivative matrix H11, and simplifying, the Hessian matrix becomes

∇⊗2
θ1
l(θ)|θ1=θ̂1(θ2) =



h11 0 0

0 h22 h23

0 h32 h33


, (2.117)

where h11 = ∇⊗2
a l(θ)|θ1=θ̂1(θ2) = Diag{ − n

P t
1SP1

, − n
P t

2SP2
, . . . , − n

P t
qSPq

}, h22 =

∇⊗2
b2
l(θ)|θ1=θ̂1(θ2) = Diag{ − n

2(P t
1SP1)2

, − n
2(P t

2SP2)2
, . . . , − n

2(P t
qSPq)2

}, h32 =( −

n
2(P t

1SP1)2
, − n

2(P t
2SP2)2

, . . . , − n
2(P t

qSPq)2
), h23 = ht

32, and h33 = ∇⊗2
σ2 l(θ)|θ1=θ̂1(θ2) =

−n
2

∑q
k=1

1
(P t

k
SPk)2

− n(p−q)3

2(
∑p

k=q+1
P t

k
CyyPk)2

.

It is easy to prove that −∇⊗2
θ1
l(θ)|θ1=θ̂1(θ2) is positive definite by checking

the positivity of all leading minor determinants of −∇⊗2
θ1
l(θ)|θ1=θ̂1(θ2). Hence, we

conclude that the Hessian matrix ∇⊗2
θ1
l(θ)|θ1=θ̂1(θ2) is a negative definite matrix,

by noting that (2.117) is equivalent by row- and column- operations to the di-

agonal matrix with h23 and h32 replaced by 0, and with h33 replaced by h∗33 =

−n(p− q)3/(2(
∑p

k=q+1 P
t
kCyyPk)

2). 2

The Hessian matrix ∇⊗2
θ2
lp(θ2)|θ2=θ̂2

is too complicated to derive analytically

because the p × q orthonormal matrix θ2 contains only pq − q(q+1)
2

functionally

independent parameters. We try to prove that ∇⊗2
θ2
lp(θ2)|θ2=θ̂2

is negative definite
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without computing all first and second order derivatives of the profile likelihood

function lp(θ2). The idea here is to find a strictly concave quadratic function, which

bounds g̃p(T, θ10) from above on a small neighborhood of θ20, that is,

g̃p(Iq, θ10)− g̃p(T, θ10) ≥ γ‖Iq − T‖2, (2.118)

where θ2 lies in a small neighborhood of θ20 in M, and T ≡ θt
2θ20, with γ > 0.

Lemma 10 Let g̃p(T, θ10) from (2.72) be the asymptotic profile log-likelihood func-

tion. If T 6= Iq, but T lies in a sufficiently small neighborhood of Iq with respect to

the matrix norm ‖M‖ = (
∑

i

∑
j M

2
ij)

1
2 , then we have

g̃p(Iq, θ10)− g̃p(T, θ10) ≥ γ‖Iq − T‖2, (2.119)

where γ is a positive number.

Proof: From (2.86), we have for ξki ≡ t2ki − δki satisfying maxk,i |ξk,i| ≤ c ≤

p−q
q
σ2

0/
∑q

i=1 b
2
i0,

g̃p(Iq, θ10)− g̃p(T, θ10) ≥ −
1

σ2
0

q∑
k=1

q∑
i=1

b2k0b
2
i0

b2k0 + σ2
0

(t2ki − δki) + ρα3 max
k,i

∣∣∣∣∣ξki

c

∣∣∣∣∣
2

, (2.120)

where α3 is some number in (−1, 1). Define J as equal to the first term in the right

hand side of (2.120), that is ,

J = − 1

σ2
0

q∑
k=1

q∑
i=1

b2k0b
2
i0

b2k0 + σ2
0

(t2ki − δki). (2.121)

By Lemma 6, J1 < 0. Since J = −J1/σ
2
0, we have J > 0. Now, rewrite J in terms

of ξki:,

J = − 1

σ2
0

q∑
k=1

q∑
i=1

b2k0b
2
i0

b2k0 + σ2
0

ξki,
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that is, J is a linear combination of {ξki, 1 ≤ i, k ≤ q}. Dividing both sides of

(2.120) by
∑q

k=1

∑q
i=1 |ξki|, we have

g̃p(Iq, θ10)− g̃p(T, θ10)∑q
k=1

∑q
i=1 |ξki|

≥ J∑q
k=1

∑q
i=1 |ξki|

+
c
′
maxk,i |ξki|2∑q

k=1

∑q
i=1 |ξki|

. (2.122)

As maxk,i |ξki| → 0, the second term on the right hand of (2.122) goes to zero

since the numerator is quadratic in ξ = (ξki) while the denominator is linear. Since

J/
∑q

k=1

∑q
i=1 |ξki| is continuous on the surface of a small ξ ball and strictly positive,

we conclude that there exists γ > 0 and a sufficiently small positive number c such

that for all ξki satisfying max |ξk,i| ≤ c,

J/
q∑

k=1

q∑
i=1

|ξki| ≥ γ

Therefore, (2.120) becomes

g̃p(Iq, θ10)− g̃p(T, θ10) ≥ γ
q∑

k=1

q∑
i=1

|ξki|. (2.123)

Using the fact
√

1 + ξki − 1 ≤ |ξki| when |ξki| is sufficiently small, we find

‖T − I‖2 =
q∑

k=1

q∑
i=1

{t2kj(1− δki) + (tki − 1)2δki}

=
q∑

k=1

q∑
i=1

{|ξki|(1− δki) + (
√

1 + ξki − 1)2δki}

≤
q∑

k=1

q∑
i=1

{|ξki|(1− δki) + |ξki|2δki}

≤
q∑

k=1

q∑
i=1

|ξki|, (2.124)

for small maxk,i |ξk,i|. Combining (2.123) and (2.124), we have

g̃p(Iq, θ10)− g̃p(T, θ10) ≥ γ‖Iq − T‖2

where γ is a positive number. 2
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The Θ2 can be smoothly coordinatized (locally, near Iq) with pq − q(q + 1)/2

unconstrained real parameters and Lemma 10 shows that gp(θ2 ; θ0) is bounded

above by a strictly concave quadratic function of these parameters. Therefore, the

Hessian matrix ∇⊗2
θ2
gp(θ2 ; θ0) is negative definite. Moreover, Ip(θ̂2) is positive

definite.

2.4.2 Asymptotic distributions of the estimators

We now develop the asymptotic distribution theory for the maximum likelihood

estimates θ̂ = (θ̂1(θ̂2), θ̂2), θ̂2, and θ̂1(θ2) under REFM1. Let θ∗2 is a b-dimensional

unconstrained parameter of θ2, where b = pq−q(q+1)/2 since there are pq−q(q+1)/2

functionally independent elements in θ2. Thus, the overall unconstrained parameter

θ∗ = (θ1, θ
∗
2). We express that θ̂∗ is the maximum likelihood estimate of l(θ∗) and

θ∗0 is the true parameter of θ∗.

From Lemma 10, we can conclude that the Hessian matrix ∇⊗2
θ2
gp(θ2 ; θ0) is

negative definite since gp(θ2 ; θ0) is bounded above by a strictly concave quadratic

function of these parameters . Thus the Hessian matrix ∇⊗2
θ2
gp(θ2 ; θ0) is nega-

tive definite and the information matrix I(θ2) = −∇⊗2
θ2
gp(θ2 ; θ0)|θ2=θ20 is positive

negative. Also, I(θ∗) is positive definite when the information matrix expressed in

terms of free unconstrained real parameters. From Section 2.3.4, θ̂∗ is the locally

unique maximum likelihood estimate of the likelihood function l(θ∗) and θ̂∗
P→ θ∗0

as n → ∞. Now we can apply finite dimensional MLE theory since the regularity

conditions are clearly satisfied here. Therefore,
√
n(θ̂∗ − θ∗0) has the limiting dis-

tribution Ns(0, Σ), where s = 2q + 1 + pq − q(q + 1)/2 (Lehmann 1991, Theorem
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4.1, and Cox & Hinkley 1974, Section 9.2). The covariance matrix of the limiting

distribution of
√
n(θ̂∗ − θ∗0) is given by the inverse of the Fisher information matrix

(Cox & Hinkley 1974), that is, Σ = −
(
∇⊗2

θ∗ gp(θ
∗ ; θ∗0)

)−1
|θ=θ∗0

and

Σ =

 Σ1 Σ12

Σ21 Σ2

 , (2.125)

where Σ21 = Σt
12. But, Σ is very complicated to derive. The unknown parameters are

replaced by their consistent estimators when we compute MLE’s and their standard

errors from data.

The asymptotic normal distribution of θ̂∗ is equivalent to the joint asymptotic

normality of θ̂1 and θ̂∗2 . Then the marginal distribution also is a normal distribu-

tion. That is,
√
n(θ̂1 − θ̂10) has the limiting normal distribution Na(0, Σ1) where

a = 2q+1, Σ1 = −(H11−H12H
−1
22 H21)

−1, and
√
n(θ̂∗2− θ̂∗20) has the limiting normal

distribution Nb(0, Σ2) where b = pq − q(q + 1)/2, Σ2 = −(H22 − H21H
−1
11 H12)

−1,

where H11 = ∇⊗2
θ1
g(θ∗ ; θ0)|θ1(θ∗2)=θ10 , H22 = ∇⊗2

θ∗2
gp(θ

∗
2 ; θ0)|θ̂∗2=θ∗20

and H12 =

∇θ1∇t
θ∗2
gp(θ̃1(θ

∗
2) ; θ∗0)|θ∗2=θ∗20

.
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Chapter 3

Other Random Effect Factor Models
3.1 Common Principal Components

3.1.1 Relationships among several covariance matrices

Before we discuss the generalization of Random Effect Factor Model (REFM) to

several groups, we first introduce Flury 1984 generalization of principal component

analysis (PCA) to s groups, called common principal component analysis (CPCA).

In section 1.2, we have seen that the most important parameter to find in Principal

Components (PCA) is the covariance matrix: Principal Components allow a simpli-

fied description of the covariance and correlation structures. So, we now investigate

some basic ideas of relationship among covariance matrices Σ1, Σ2, . . . , Σs of di-

mension p × p, assuming that all the covariance matrices Σi for different groups i

are positive definite. By the eigen-decomposition (or singular value decomposition)

theorem, for any group i, V ar(Yi) = Σi ≡ β(i)Λiβ
(i)t with β(i) a p × p orthonormal

matrix and diagonal Λi.

Case 1: All Σi are equal.

This is the previous one-group case. All repeated observations are from a

single distribution. Then, the principal components can be found from the pooled

data as in Chapter 2. The number of variance parameters is p(p+ 1)/2 in this case,

which decreases to pq − q(q − 1)/2 when q principal components are used.
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Case 2: Proportionality of all Σi, that is,

Σi = ρiΣ1, i = 2, . . . , s (3.1)

for some positive constants ρ1, ρ2, . . . , ρs.

This model is called the proportional model. It is also an offshoot of the CPC

model, by imposing the constraints on Λi ≡ Diag(λi1, λi2, . . . , λip) that

λij = ρiλ1j, i = 2, . . . , s; j = 1, 2, . . . , p. (3.2)

For simplicity we omit the first index of diagonal elements of Λ1, that is, we let

Λ = Λ1 = Diag(λ1, . . . , λp) (3.3)

and the constraints in (3.2) are λij = ρiλj. The number of parameters is p(p+ 1)/2

for Σ1 plus (s−1) for these ρi. There are pq−q(q−1)/2+s−1 number of parameters

when we use q principal components.

Case 3: The CPC model

Σi = βΛiβ
t, i = 1, 2, . . . , s, (3.4)

where β is an orthonormal p× p matrix not depending on i, and

Λi = Diag(λi1, . . . , λip). (3.5)

The number of parameters in this case is p(p−1)/2 (for the orthonormal matrix

β) plus sp (for the diagonal matrices Λi). The CPC model can also be written as

Σi = λi1β1β
t
1 + λi2β2β

t
2 + . . .+ λipβpβ

t
p i = 1, 2, . . . , s, (3.6)
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where the βj are the columns of β.

The representation (3.6) of the Σi suggests a further modification, which has

mainly been motivated by practical examples. Frequently in applications of prin-

cipal component analysis the investigator is interested primarily in the first few

components and discards the others. Similarly, we may wish to estimate only q

common principal components, the remaining p − q ones being possibly different

from group to group. An appropriate model could be defined as follows.

Case 4: The partial CPC model. For a fixed positive integer q < p− 1, let

Σi = λi1β1β
t
1 + . . .+ λiqβqβ

t
q

+λ
(i)
i,q+1β

(i)
q+1β

(i)t
q+1 + . . .+ λipβ

(i)
p β(i)t

p , i = 1, 2, . . . , s (3.7)

where β1, β2, . . . , βq are the common eigenvectors of all Σi and β
(i)
q+1, . . . , β

(i)
p may be

specific to each covariance matrix Σi.

Assume that the first q common eigenvectors of all Σi are ordered, and labeled

1 to q. If we let

β(i) = (β1, . . . , βq, β
(i)
q+1, . . . , β

(i)
p ) (3.8)

then (3.7) can also be written as

Σi = β(i)Λiβ
(i)t, (3.9)

but (3.7) exhibits the basic idea underlying the partial CPC model more clearly.

Remark: By the orthogonality of all β(i), the model with q = p − 1 common

components implies the ordinary CPC model of Case 3. There is not just one
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partial CPC model, but a family of models, some of which are nested hierarchically.

2

The number of parameters in the partial CPC model is as follows: sp pa-

rameters for the diagonal matrices Λi, pq − q(q + 1)/2 parameters for the common

eigenvectors β1 to βq, and s(p− q)(p− q − 1)/2 parameters for the specific vectors

β
(i)
q+1 to β(i)

p . (To see this, note that there are p − (q + 1), p − (q + 2), . . . , p − p

parameters for β
(i)
q+1, β

(i)
q+2, . . . , β(i)

p , respectively, so that the total number of pa-

rameters defining β
(i)
q+1 to β(i)

p is
∑p−q−1

k=1 k = (p− q − 1)(p− q)/2 ). Thus, the total

number of parameters is p(p− 1)/2 + sp+ (s− 1)(p− q)(p− q − 1)/2.

As stated above, if we set q = p − 1 or q = p, the partial CPC model is the

ordinary CPC model. The other extreme case, q = 0, leads to Case 5.

Case 5: Σ1, . . . ,Σs are arbitrary positive definite covariance matrices.

Here there is no assumed relationship amongst the s groups. Then we have to

analyze them separately. There are p(p+ 1)/2 parameters for each of Σi. The total

number of parameters is sp(p+ 1)/2

3.1.2 Maximum Likelihood Estimation

Common principal component analysis (CPCA) is a generalization of principal com-

ponent analysis (PCA) to s groups. The key assumption is that the p×p covariance

matrices Σ1, . . . ,Σs of s populations can be diagonalized by the same orthogonal

transformation, that is, there exists an orthogonal matrix β such that

Hc : βtΣiβ = Λi(diagonal) (i = 1, 2, . . . , s) (3.10)
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holds. We call Hc the hypothesis of common principal components (CPC). In the

one sample case s = 1, CPC reduces to ordinary Principal Components (PC).

We assume that all CPC are well defined, that is, for each j, 1 ≤ j ≤ p, there

is at least one population i in which the eigenvalues λij are simple. This assumption

can identify all βj. Moreover, βj will identify all λi′j for i′ 6= i. Thus, all parameters

are identifiable.

Let Si, i = 1, 2, . . . , s, be the sample covariance matrices from a sample of size

ni in group i, so that (ni − 1)Si has the Wishart distribution Wp(ni − 1, Σi) of a

symmetric p × p matrix with ni − 1 degrees of freedom and parameter matrix Σi.

The joint likelihood function of Σ1,Σ2, . . . ,Σs given S1, S2, . . . , Ss is

L(Σ1,Σ2, . . . ,Σs) = C ·
s∏

i=1

exp{−1

2
tr(Σ−1

i Si)} · |Σi|
ni
2 , (3.11)

where the factor C does not depend on the parameters. Introducing Lagrange

multipliers ρj for the p constraints βt
jβj = 1 and ρhj for the p(p − 1)/2 constraints

βt
hβj = 0 (h 6= j), maximizing likelihood is equivalent to minimizing the function

g(β,Λ1, . . . ,Λs) = −2 logL+ 2 logC −
p∑

j=1

ρj(β
t
jβj − 1)− 2

p∑
h=1

p∑
j=h+1

ρhjβ
t
hβj

=
s∑

i=1

ni[log |Σi|+ tr(Σ−1
i Si)]−

p∑
j=1

ρj(β
t
jβj − 1)

−2
p∑

j=1

j−1∑
h=1

ρhjβ
t
hβj

=
s∑

i=1

ni

p∑
j=1

(log λij +
βt

jSiβj

λij

)−
p∑

j=1

ρj(β
t
jβj − 1)

−2
p∑

j=1

j−1∑
h=1

ρhjβ
t
hβj. (3.12)

Taking partial derivatives with respect to the λim and setting them equal to zero
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yields

λim = βt
mSiβm, i = 1, 2, . . . , s; m = 1, 2, . . . , p. (3.13)

Next take partial derivatives with respect to βj and set them equal to zero. Multi-

plying on the left by βt
m (j 6= m), substituting (3.13), and solving for ρj, ρhj, then

yields the system of equations

βt
m(

s∑
i=1

ni
λim − λij

λimλij

Si)βj = 0, m, j = 1, 2, . . . , p; m 6= j. (3.14)

This is the basic system of equations in CPC analysis. It has to be solved under the

orthonormality constraints

βt
mβj = δmj. (3.15)

and using (3.13). The FG Algorithm has been proposed by Flury and Gautschi

(1986) to numerically solve the equations (3.14) and (3.13) with constraints (3.15).

The FG algorithm is viewed as a generalization of the Jacobi algorithm, the oldest

known method (1846) for diagonalizing symmetric matrices. An iterative process

to reduce off-diagonal elements to zero leads to the classical Jacobi iteration algo-

rithm. From the numerical analyst’s point of view, PCA consists mainly of the

diagonalization of a single symmetric matrix, and CPC consists of the simultaneous

diagonalization of groups of symmetric matrices.

3.1.3 Asymptotic distribution of MLE

We now develop the asymptotic distribution theory for the maximum likelihood

estimates β̂ and Λ̂ under the CPC model. By the theory of maximum likelihood
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estimation, the joint asymptotic distribution of the parameter estimates for uncon-

strained real parameters is multivariate normal, and the covariance matrix being

given by the inverse of the Fisher information matrix. The log-likelihood function

of the s samples, up to an additive constant, is given by

−1

2

s∑
i=1

ni[
p∑

j=1

(log λij + βt
jSiβj/λij]. (3.16)

Assume that βj are well defined, i.e., for each pair j 6= l there is at least one i,

1 ≤ i ≤ s, such that λij 6= λil. Let λt
(i) = (λi1, . . . , λip), d = p(p − 1)/2, and

denote by β∗ a vector composed of d functionally independent elements of β. Let

n = n1 + n2 + . . .+ nk, and ri = ni/n, i = 1, 2, . . . , s. Then the information matrix

is  Λ nGt

nG nA

 , (3.17)

where A and G are not yet determined, and Λ is

Λ =



1
2
nr1Λ

−2
1 0 . . . 0

0 1
2
nr2Λ

−2
2 . . . 0

. . . . . . . . . . . .

0 0 . . . 1
2
nrsΛ

−2
s


. (3.18)

Since λ̂ij = β̂t
jSiβ̂j and β̂j is a consistent estimate of βj, we can use the

asymptotic (mini ni →∞) normality of niSi (Muirhead 1982) to get the asymptotic

distribution of λ̂ij as

√
ni(λ̂ij − λij) ∼ N(0, 2λ2

ij). (3.19)

Furthermore, the vectors
√
ni(λ̂(i) − λ(i)) and

√
nh(λ̂(h) − λ(h)) (h 6= i) are asymp-

totically independent since the Si are independent.
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From (3.17) the joint asymptotic covariance matrix of the k vectors
√
n(λ̂(i)−

λ(i)) is

Vλ = (Λ−GtA−1G)−1. (3.20)

We already know that Vλ must be diagonal, and the diagonal elements of Vλ are

( 2
r1
λ2

11,
2
r2
λ2

12, . . . ,
2
rs
λ2

kp). Since, at the maximum of the likelihood, the matrix A

is positive definite, it follows that G = 0, and the λ̂ij are therefore asymptotically

independent of β̂ (Flury 1988).

3.2 Random Effect Factor Model II

3.2.1 Model and Identifiability

Random Effect Factor Model II (REFM2). Assume that the observable ran-

dom vector Yi from the i’th group, i = 1, 2, . . . , s, can be written as

Yi =
q∑

k=1

cikPk + εi, (3.21)

where {Pk, k = 1, 2, . . . , q} are nonrandom orthonormal coordinate directions,

the random effects cik ∼ N(aik, b
2
ik), 1 ≤ k ≤ q, the errors εi ∼ Np(0, σ

2
i Ip), and the

sequences {cik, k ≤ q} and {εi} are jointly independent. The mean and variance of

random vector Yi under REFM2 are

E(Yi) =
q∑

k=1

aikPk = π1ai (3.22)

and

Var(Yi) =
q∑

k=1

b2ikP
⊗2
k + σ2

i Ip = π1Biπ
t
1 + σ2

i Ip (3.23)
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where π1 = (P1, P2, . . . , Pq) is a p×q matrix with orthonormal column vectors, at
i =

(ai1, ai2, . . . , aiq) is a q dimensional mean vector from the i’th group in the common

factor space V1 = col(π1) = span(P1, P2, . . . , Pq), and Bi = Diag(b2i1, b
2
i2 . . . b

2
iq) is

a q × q matrix with diagonal elements b2i1, b
2
i2 . . . b

2
iq and zeros elsewhere. Based on

the model assumption, the random vector Yi from the i’th group follows a normal

distribution with mean µi = π1ai and covariance matrix Σi = π1Biπ
t
1 + σ2

i Ip. That

is,

Yi ∼ Np(π1ai, π1Biπ
t
1 + σ2

i Ip). (3.24)

If there are ni observations from i’th group Yi, i = 1, 2, . . . , s, say, yi1, yi2,

. . ., yini
, our data model under REFM2 is

yij =
q∑

k=1

cijkPk + εij , i = 1, 2, . . . , s; j = 1, 2, . . . , ni, (3.25)

where the random effects cijk ∼ N (aik, b
2
ik), 1 ≤ k ≤ q, are independent, the

errors {εij} are i.i.d. with εij ∼ Np(0, σ
2
i Ip), the series {εij} and the series {cijk} are

independent, and P1, P2, . . . , Pk are orthonormal. Thus,

yij ∼ Np(µi,Σi), (3.26)

where 
Σi = π1Biπ

t
1 + σ2

i Ip

µi = π1ai.

(3.27)

Let θ = (a1, a2, . . . , as, Diag(B1), Diag(B2), . . . , Diag(Bs), σ
2
1, σ

2
2, . . . , σ

2
s ,

P1, P2, . . . , Ps). We define the parameter space as Θ = {θ : b2ik > 0, σ2
i > 0, πt

1π1 =

Iq for 1 ≤ i ≤ s, and 1 ≤ k ≤ q}. For any fixed group i, the parameters are

ai, Bi, σ
2
i , and π1. Since all groups share the parameter π1 ∈ M, we call π1 the
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common factor matrix, and the space spanned by the columns of π1 the common

factor space. Decompose Θ into two subspaces Θ1 and Θ2, with Θ = Θ1 × Θ2,

and Θ2 = {θ2 ∈ M : θt
2θ2 = Iq} . Then, the parameter space Θ1 can be further

decomposed into s subspaces Θ11,Θ12, . . . ,Θ1s, with Θ1 = Θ11×Θ12×. . .×Θ1s, where

Θ1i = {(ai, Bi, σ
2
i ) : b2ik > 0, σ2

i > 0, i = 1, 2, . . . , s; k = 1, 2, . . . , q} = Rq×Rq
+×R+.

Now, we can write out the parameter space for each group, say i, as Θ1i×Θ2. There

are (2q + 1) parameters for θ1i ∈ Θ1i. Then the total number of the parameters

in θ1 = (θ11, θ12, . . . , θ1s) ∈ Θ1 is s(2q + 1). Also, there are (pq − q(q + 1)/2)

parameters for θ2 = π1. Thus, the total of number of parameters under REFM2 is

2qs+s+pq−q(q+1)/2. From section 2.1.3, we know there are q+p(p+1)/2 equations

from each group, thus the total numbers of equations in (3.27) are s(q+p(p+1)/2).

The relationship between the numbers of equations and the numbers of parameters

is

(#of equations)− (#of parameters)

= s(q +
p(p+ 1)

2
)− {(2q + 1)s+ pq − q(q + 1)

2
}

=
s

2
(p− q + 2)(p− q − 1) + (s− 1)(pq − q(q + 1)

2
). (3.28)

Since p > q and s > 1, the above expression indicates that there are many more

components in µi,Σi, 1 ≤ i ≤ s than parameters in REFM2.

Now, let us discuss the identifiability of all parameters. As we already men-

tioned, in REFM2 all groups share the common factor space, which is spanned by

the columns of π1. So it is important to identify π1. Conventionally, we could choose
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one group, say i = 1, and use the REFM1 result from section 2.1.3 that

b211 > b212 > . . . > b21q, (3.29)

is a sufficient condition for us to identify all parameters a1, B1, σ
2
1, and π1 in the

first group. Since

ΣiPk =


(b2ik + σ2

i )Pk for k ≤ q,

σ2
i Pi for k > q.

i = 2, 3, . . . , s (3.30)

we can identify b2ik and σ2
i . Since µi = π1ai, i = 2, 3, . . . , s, we can identify ai as

well. Therefore, the condition (3.29) is sufficient to identify all parameters under

REFM2. More generally, a condition for identifiability of all parameters under

REFM2 is that there is a specified group i in which

b2i1 > b2i2 > . . . > b2iq. (3.31)

3.2.2 Maximum Likelihood Estimates for REFM2

The probability density function of Yi, i = 1, 2, . . . , s, under REFM2 is

f(yi) =
exp{−1

2
(yi − π1ai)

t(π1Biπ1
t + σ2

i Ip)
−1(yi − π1ai)}

(2π)p/2|π1Biπ1
t + σ2

i Ip|1/2
. (3.32)

We are interested in estimating the parameters a1, a2, . . . , as, B1, B2, . . . , Bs,

σ2
1, σ

2
2, . . . , σ

2
s , P1, P2, . . . , Pq. Let B∗i be the p× p diagonal matrix with b2ik ≡ 0

for k > q,

B∗i = Diag(b2i1, b
2
i2, . . . , b

2
iq, b

2
i,q+1, . . . , b

2
i,p); (3.33)

that is,

B∗i =

 Bi 0

0 0

 . (3.34)
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Under REFM2, the log likelihood function for the sample {yij, i = 1, 2, . . .,

s; j = 1, 2, . . . , ni} is

l(θ) ≡ logL(θ)

=
s∑

i=1

ni∑
j=1

log f(yij)

=
s∑

i=1

ni∑
j=1

{−p
2

log(2π)− 1

2

q∑
k=1

log(b2ik + σ2
i )−

1

2

p∑
k=q+1

log(σ2
i )

−1

2
(yij − π1ai)

t(πtB∗i π + σ2
i Ip)

−1(yij − π1ai)}

= −p
2
(

s∑
i=1

ni) log(2π)− 1

2

s∑
i=1

q∑
k=1

ni log(b2ik + σ2
i )

−1

2

s∑
i=1

p∑
k=q+1

ni log(σ2
i )−

1

2

s∑
i=1

ni∑
j=1

q∑
k=1

1

b2ik + σ2
i

(P t
kyij − aik)

2

−1

2

s∑
i=1

ni∑
j=1

p∑
k=q+1

1

σ2
i

(P t
kyij)

2. (3.35)

For π1 = (P1, P2, . . . , Pq) assumed fixed, we take partial derivatives with regard

to aik, b
2
ik, σ

2
i , respectively. Setting all first order derivatives equal to zero and

simplifying all equations as in Chapter 2, we have

âik = 1
ni

∑ni
j=1 P

t
kyij = P t

kȳi

σ̂2
i = 1

ni(p−q)

∑ni
j=1

∑p
q=k+1(P

t
kyij)

2 = 1
p−q

∑p
k=q+1 P

t
kCiiPk

b̂2ik = P t
kSiPk − σ̂2

i

(3.36)

where ȳi = 1
ni

∑ni
j=1 yij, Cii = 1

ni

∑ni
j=1 yijy

t
ij, and Si = 1

ni

∑ni
j=1(yij − ȳi)

⊗2.

Therefore, the restricted maximum likelihood estimator θ̂1(θ2) is (θ̂11 (θ2),

θ̂12(θ2), . . . , θ̂1s(θ2)), given by

θ̂1i(θ2) =



âi = πt
1ȳi

B̂i = Diag{Diag(πt
1Siπ1)} − σ̂2

i Iq

σ̂2
i = 1

p−q
{tr(Cii)− tr(π1π

t
1Cii)}.

(3.37)

77



Remark: σ2
i = σ2 is a special case in REFM2. In this case, we completely ignore

the differences in error distributions among the s groups since the variations for

these error terms are much smaller than these in the common factor space. In this

case, we have similarly the restricted maximum likelihood estimator in each group

i, when π1 is given:

θ̂1i(θ2) =



âi = πt
1ȳi

B̂i = Diag{Diag(πt
1Siπ1)} − σ̂2Iq

σ̂2 = 1
s(p−q)

∑s
i=1{tr(Cii)− tr(π1π

t
1Cii}.

(3.38)

2

For simplicity we assume that all ni are equal, that is, ni = n, i = 1, 2, . . . , s.

The profile likelihood function under REFM2 is

lp(θ2) = l(θ̂1(θ2), θ2)

=
n

2
{C −

s∑
i=1

q∑
k=1

log(P t
kSiPk)

−(p− q)
s∑

i=1

log(tr(Cii)−
q∑

k=1

P t
kCiiPk)} (3.39)

where C = −sp log(2π)− ps+ (p− q) log(p− q).

So far, we have the restricted maximum likelihood estimators â1, â2, . . ., âs,

B̂1, B̂2, . . . , B̂s, and σ̂2
1, σ̂

2
2, . . . , σ̂

2
s in terms of fixed (assumed known) common

factors P1, P2, . . . , Pq under REFM2. The restricted MLE’s are functions of π1,

the sample mean ȳi in each group, and the sample covariance matrix Si in each

group.

By Lemma 2 in Chapter 2, the maximum likelihood estimator θ̂2 based on the
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profile likelihood exists, and

sup
θ∈Θ

l(θ) = max
θ2∈Θ2

lp(θ2) (3.40)

since the profile log-likelihood function in equation (3.39) is continuous from Θ2 into

R, and Θ2 = {θ2 ∈ M : θt
2θ2 = Iq} is a closed set in the space M of p × q. As

in Chapter 2, the profile likelihood does not have a closed-form analytic maximizer

for P1, P2, . . . , Pq. The Quasi-Newton method will be applied to solve for π1.

3.3 Random Effect Factor Model III

3.3.1 Model and Identifiability

Random Effect Factor Model III (REFM3). Assume that the observable

random vector Yi from i’th group, i = 1, 2, . . . , s, can be written as

Yi =
q∑

k=1

cikPk +
r∑

k=q+1

cikP
(i)
k + εi, (3.41)

where the errors εi ∼ Np(0, σ
2
i Ip); the random effects cik ∼ N(aik, b

2
ik), 1 ≤ i ≤

s, 1 ≤ k ≤ q; and the series {cik, k ≤ r} and the series {εi} are independent;

{Pk, k = 1, 2, . . . , q} are nonrandom orthonormal coordinate directions, as are

{P (i)
k , k = q + 1, . . . , r} for each group i; and P

(i)
k ⊥ Pk′ , k = q + 1, . . . , r, k′ =

1, . . . , q, for all i;
∑r

k=q+1 cikP
(i)
k ∼ Np(0, Σi), and rank(Σi) = r − q. The mean and

variance of the random vector Yi under REFM3 are

E(Yi) =
q∑

k=1

aikPk = π1ai (3.42)

and

Var(Yi) =
q∑

k=1

b2ikP
⊗2
k + Σi + σ2

i Ip = π1Biπ
t
1 + Σi + σ2

i Ip (3.43)
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where π1 = (P1, P2, . . . , Pq) is a p × q matrix with orthonormal column vectors,

at
i = (ai1, ai2, . . . , aiq) is a q dimensional mean vector from the i’th group, and

Bi = Diag(b2i1, b
2
i2 . . . b

2
iq) is a q × q matrix with diagonal elements b2i1, b

2
i2 . . . b

2
iq

and zeros elsewhere. Based on the model assumption, the random vector Yi from

i’th group follows a normal distribution with mean µi = π1ai and covariance matrix

Ai = π1Biπ
t
1 + Σi + σ2

i Ip. That is,

Yi ∼ Np(π1ai, π1Biπ
t
1 + Σi + σ2

i Ip). (3.44)

Define V1 = span{P1, P2, . . . , Pq}, and V2i = span{ col(Σi) }. Assume

that ∩s
i=1V2i = φ, and let Wi = V1 ⊕ V2i, so that ∩s

i=1Wi = V1. The model pa-

rameters under REFM3 are a1, a2, . . . , as, B1, B2, . . . , Bs, σ2
1, σ

2
2, . . . , σ2

s ,

Σ1, Σ2, . . . , Σs, and π1. Now, the question is whether there exist ai, B
2
i , σ

2
i , Σi,

and π1 to satisfy (3.42) and (3.43) when mean µi and covariance matrix Ai are

given. If the answer is yes, then the next question is whether they are unique.

Let us first count the numbers of parameters, and of equations to solve for these

parameters. We note that the difference between REFM2 and REFM3 is the

extra parameters Σi. Thus, we can use the results from REFM2. For the fixed

group i, Σi has 1
2
(r − q)(2p + 1 − r − q) parameters. (To see this, note that:

Σi = β(i)Λiβ
(i)t with β(i)tβ(i) = Ir−q, where β(i) is a p × (r − q) matrix and Λi

is a diagonal matrix. Since any column of βi is orthogonal to any column of

π1, we count the number of parameters for column 1 to column (r − q) of Σi as

p−1−q, p−1−(q+1), . . . , p−1−(r−1), respectively. Thus, the total number of

parameters for Σi is (r−q)+(p−1)−q+(p−1)−(q+1)+. . .+(p−1)−(r−1) = (r−q)+
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(p−1)(r−q)+(r−q)(q+r−1)/2 = (r−q)(2p−r−q+1)/2 ). Thus, the total number of

parameters under REFM3 is 2qs+s+pq−q(q+1)/2+(s/2)(r−q)(2p+1−r−q). From

Section 3.2.1, the total number of equations in (3.42) and (3.43) is s(q+p(p+1)/2).

The relationship between the number of equations and the number of parameters is

(#of equations)− (#of parameters)

=
s

2
(p− q + 2)(p− q − 1) + (s− 1)(pq − q(q + 1)

2
)− s

2
(r − q)(2p+ 1− r − q)

=
s

2
(p− r + 2)(p− r − 1) + (s− 1)(pq − q(q + 1)

2
). (3.45)

Since p > r and s > 1, the above expression indicates that there are more equations

than parameters in REFM3.

Let Σi =
∑r

k=q+1 d
2
ikP

(i)
k P

(i)t
k , where d2

ik = V ar(cik), k = q + 1, . . . , r, i =

1, 2, . . . , s, and let {uik, k = r + 1, . . . , p} be an arbitrary orthonormal basis in

V3i ≡ W⊥
i . Then

Ip =
q∑

k=1

PkP
t
k +

r∑
k=q+1

P
(i)
k P

(i)t
k +

p∑
k=r+1

uiku
t
ik. (3.46)

Thus,

Ai = π1Biπ
t
1 + Σi + σ2

i Ip

=
q∑

k=1

(b2ik + σ2
i )P

⊗2
k +

r∑
k=q+1

(d2
ik + σ2

i )P
(i)⊗2
k +

p∑
k=r+1

σ2
i u
⊗2
ik (3.47)

The p×p covariance matrix Ai has p eigenvectors and eigenvalues, and among them

there will be p− r smallest eigenvalues, and p− r eigenvectors corresponding to the

(p − r) smallest eigenvalues. This means that all σ2
i are identifiable, and the error

space V3i is determined. So is the complement of V3i; that is, Wi is determined.
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Hence, V1 is determined since V1 = ∩s
i=1Wi. Moreover, the projection from V to

V1 , that is, π1π
t
1, is determined. Let Yi = αi + βi, where αi = (π1π

t
1)Yi, and

βi = (Ip−π1π
t
1)Yi. Since αt

iβi = yt
i(π1π

t
1)(Ip−π1π

t
1)yi = 0, the vectors αi and βi are

orthogonal. Now, we project the observed random vector into two orthogonal spaces

V1 and V2i ⊕ V3i = V ⊥1 . The probability laws of both αi and βi are determined. Let

us write down the mean and covariance matrix for αi and βi, respectively.

E(αi) = E{(π1π
t
1)Yi} = (π1π

t
1)π1ai = π1ai, (3.48)

and

V ar(αi) = V ar{(π1π
t
1)yi} = (π1π

t
1)(π1Biπ

t
1 + Σi + σ2

i Ip)(π1π
t
1)

= π1Biπ
t
1 + σ2

i π1π
t
1. (3.49)

Thus,

αi ∼ Np(π1ai, π1Biπ
t
1 + σ2

i π1π
t
1). (3.50)

Also,

E(βi) = E{Ip − π1π
t
1)Yi} = (Ip − π1π

t
1)π1ai = 0, (3.51)

and

Var(βi) = Var{(Ip − π1π
t
1)Yi}

= (Ip − π1π
t
1)(π1Biπ

t
1 + Σi + σ2

i )(Ip − π1π
t
1)

= Σi + σ2(Ip − π1π
t
1) (3.52)

Thus ,

βi ∼ Np(0,Σ
i + σ2

i (Ip − π1π
t
1)). (3.53)
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Now, we try to identify ai, Bi, π1, and Σi from the mean and covariance

matrix of {αi}, and covariance matrix of {βi}. The law of the random vector αi

only depends on the parameters ai, Bi, π1, and does not depend on Σi. Thus

αi follows REFM2. We can directly use the results from REFM2. That is, the

sufficient condition for identification is that there exists a known group, say i, such

that

b2i1 > b2i2 > . . . > b2iq. (3.54)

Therefore, we are able under (3.54) to identify π1, ai, and Bi for i = 1, 2, . . . , s.

Since the covariance matrix of {βi} is determined, then also Σi is determined since

π1 is already determined. Therefore, the condition (3.54) implies identifiability for

all parameters under REFM3.

3.3.2 Maximum Likelihood Estimates for REFM3

For group i from 1 to s, we have

Yi ∼ Np(π1ai, π1Biπ
t
1 + Σi + σ2

i Ip). (3.55)

The probability density function of Yi, i = 1, 2, . . . , s, under REFM3 is

f(yi) =
exp{−1

2
(yi − π1ai)

t(π1Biπ1
t + Σi + σ2

i Ip)
−1(yi − π1ai)}

(2π)p/2|π1Biπ1
t + Σi + σ2

i Ip|1/2
. (3.56)

Let {yij, i = 1, 2, . . . , s; j = 1, 2, . . . , n} be n observations from each group.

Under REFM3, the log likelihood function is

l(θ) ≡ logL(θ)

= log
s∏

i=1

n∏
j=1

f(yij)
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=
s∑

i=1

n∑
j=1

log f(yij). (3.57)

Recall for fixed π1 that Yi = αi + βi, i = 1, 2, . . . , s, with αi⊥βi, and log f(yi) =

log f(αi) + log f(βi). Now, the log-likelihood can be written in terms of the log-

likelihood of αi and βi, that is,

l(θ) =
s∑

i=1

n∑
j=1

(log f(αi) + log f(βi))

= lα(θ) + lβ(θ). (3.58)

After projection, we seperate the parameters as well. Only some of the parameters

ai, Bi, σ
2
i , π1 are related to α; also, Bi and σ2

i only appear together in the form

b2ik + σ2
i . Next, only parameters Σi, σ2

i , and π1 depend on β. Again, we use the

profile likelihood method by first assuming that π1 is given. Then, we take partial

derivatives with regard to aik, b
2
ik, σ

2
i , respectively. We have the following equations:

∂l(θ)

∂aik

=
∂lα(θ)

∂aik

∂l(θ)

∂b2ik
=

∂lα(θ)

∂b2ik
∂l(θ)

∂σ2
i

=
∂lα(θ)

∂σ2
i

+
∂lβ(θ)

∂σ2
i

.

Since ai and b2ik enter only lα(θ) but not lβ(θ), we will find equations for ai and b2ik

first. Since αi ∼ Np(π1ai, π1Biπ
t
1 + σ2

i π1π
t
1), and rank of (π1Biπ

t
1 + σ2

i π1π
t
1) = q < p,

so αi has a degenerate normal distribution. Let α∗i = πt
1αi, so that α∗i ∼ Nq(ai, Bi +

σ2
1Iq). The log-likelihood function of α∗i is given, up to a constant not depending on

parameters, by

lα∗(θ) =
s∑

i=1

n∑
j=1

{
−1

2

q∑
k=1

log(b2ik + σ2
i )−

1

2
(α∗i − ai)

t(Bi + σ2
i Iq)

−1(α∗i − ai)

}
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=
s∑

i=1

n∑
j=1

q∑
k=1

{
−1

2
log(b2ik + σ2

i )−
1

2(b2ik + σ2
i )

(P t
kyij − aik)

2

}
.

Take partial derivatives of lα∗(θ) with respect to aik for 1 ≤ i ≤ s, 1 ≤ k ≤ q:

∂lα∗(θ)

∂aik

=
n∑

j=1

−1

2(b2ik + σ2
i )

(−2)(P t
kyij − aik). (3.59)

Next take derivatives of lα∗(θ) with respect to b2ik for 1 ≤ i ≤ s, 1 ≤ k ≤ q:

∂lα∗(θ)

∂b2ik
=

n∑
j=1

(− 1

2(b2ik + σ2
i )

+
1

2(b2ik + σ2
i )

(P t
kyij − aik)

2).

Setting these derivatives to zero and simplifying , we have
âik = 1

n

∑n
j=1 P

t
kyij = P t

kȳi

b̂2ik + σ̂2
i = P t

kSiPk

(3.60)

where ȳi = n−1∑n
j=1 yij, and Si = n−1∑n

j=1(yij − ȳi)
⊗2.

Now, we derive the restricted MLE of σ2
i and Σi from lβ(θ). We know β ∼

Np(0,Σ
i +σ2

i (Ip−π1π
t
1)). Since the rank of Σi +σ2

i (Ip−π1π
t
1) is (p− q) < p, thus β

also has a degenerate normal distribution. Let β∗i = πt
2βi, where the columns of π2

are any fixed orthonormal basis of V ⊥1 . Hence β∗i ∼ Np−q(0, π2Σ
iπt

2 + σ2
i Ip−q). Let

Σi = ΛiΛ
t
i, where Λi = (di,q+1P

(i)
q+1, . . . , di,rP

(i)
r ). Thus,

π2Σ
iπt

2 + σ2
i Ip−q = πt

2ΛiΛ
t
iπ2 + σ2

i Ip−q

= WiW
t
i + σ2

i Ip−q (3.61)

where Wi = πt
2Λi. The following two Theorems will find the restricted MLE σ̂2

i and

Σ̂i in the general case.

Theorem 2 If zj
iid∼ Na(0,WW t + σ2Ia), j = 1, 2, . . . , n, where Λ has b (b < a)

orthogonal columns, and σ2 and W are unknown parameters, then the maximum
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likelihood estimators of σ2 and W are

σ̂2
ML =

1

a− b

a∑
k=b+1

λk (3.62)

and

ŴML = Ub(Λb − σ̂2
MLIb)

1
2 (3.63)

where the b column vectors in the a× b matrix Ub are the principal (b largest eigen-

value) eigenvectors of n−1∑n
j=1 z

⊗2
j , with corresponding eigenvalues λ1, . . . , λb as

diagonal entries in the b× b diagonal matrix Λb.

Proof: See Appendix A in Tipping and Bishop (1999). 2

Remark: The parameter σ̂2
ML has a clear interpretation as the variance lost in

the projection onto the principal subspace, averaged over these lost dimensions.

This result echoes the proposal of PPCA by Roweis (1997) and Tipping and Bishop

(1999), that is, to recover these directions “outside” the principal subspace as i.i.d.

Gaussian noise. 2

Theorem 3 If yj
iid∼ Np(0, LL

t + σ2πV ), j = 1, 2, . . . , n, where V is a known

subspace of Rp, dim(V ) = a, πV is a projection from Rp to V , and L has orthogonal

columns with col(L) ⊂ V , then the maximum likelihood estimator of σ2 is the average

of a− b smallest nonzero eigenvalues of n−1∑n
j=1 y

⊗2
j , and the maximum likelihood

estimator of L is

L̂ML = U∗b · (Λ∗b − σ̂2
MLIb)

1
2 (3.64)

where the b column vectors in the p× b matrix U∗b are the principal eigenvectors of

n−1∑n
j=1 y

⊗2
j , with corresponding eigenvalues λ∗1, . . . , λ

∗
b as diagonal entries in the
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b× b diagonal matrix Λ∗b .

Proof: Let v1, v2, . . . , va be an orthonormal basis of V ⊂ Rp. Observe that {vi, 1 ≤

i ≤ a} are known since V is known. Let M = (v1 | v2 | . . . | va) be a p × a

transformation matrix. Then the projection πV onto V is MM t. Since col(L) ⊂ V ,

πV L = L.

Define zj ≡M tyj. Then zj ∼ Na(0,M
tLLtM+σ2Ia). Next, define W = M tL.

Note that W tW = LtMM tL = LtL. Now apply Theorem 2 to find σ̂2
ML and ŴML.

Since MW = MM tL = L, it follows that L̂ML = MŴML.

Claim: The vector ui is an eigenvector of n−1∑n
j=1 z

⊗2
j = Czz if and only if u∗ =

Mui is an eigenvector of n−1∑n
j+1 y

⊗2
j = Cyy.

(⇒) Recall yi ∼ Np(0, LL
t + σ2πV ). For any x ∈ Rp with x ∈ V ⊥, xtyi ∼ N(0, 0)

since xtL = 0 and πV x = 0. Thus, yj ∈ V and πVCyy = Cyy. Since Czzui = λiui,

multiply M on the left on both sides of this equation. We have

MCzzui = λiMui. (3.65)

Also, Czz = n−1∑n
j=1 Z

⊗2
j = n−1∑n

j+1M
tyiy

t
iM = M tCyyM . Thus

CyyMui = MM tCyyMui = MCzzui = λiMui.

(⇐) Since CyyMui = λiMui, multiply M t on the left in both sides of the equation.

We have M tCyyMui = λiui; that is, Czzui = λiui. 2

Applying Theorem 3, to obtain the restricted MLE σ̂2 as the average of the

smallest (p− r) nonzero eigenvalues of n−1∑n
j=1 β

⊗2
ij = (Ip − π1π

t
1)Ci,yy(Ip − π1π

t
1).

That is, σ̂2
i = (p−r)−1∑p−q

k=r−q+1 λi,k, where Ci,yy = n−1∑n
j=1 y

⊗2
ij , and the restricted
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MLE of Σi is

Σ̂i = Λ̂iΛ̂
t
i = Ui,(r−q)(Λi,(r−q) − σ̂2

i I(r−q))U t
i,(r−q) (3.66)

where the (r − q) column vectors in the p × (r − q) matrix Ui,(r−q) are the prin-

cipal eigenvectors of (Ip − π1π
t
1)Ci,yy(Ip − π1π

t
1), with corresponding eigenvalues

λi,1, . . . , λi,(r−q) in the (r− q)× (r− q) diagonal matrix Λi,(r−q). Now, we can solve

for b̂2ik from (3.60):

b̂2ik = P t
kSiPk − σ̂2

i . (3.67)

Therefore, the restricted maximum likelihood estimators b̂2ik, when the factor direc-

tions are given, are

θ̂1i(θ2) =



âi = πt
1ȳi

B̂i = Diag{Diag(πt
1Siπ1)} − σ̂2

i Iq

σ̂2
i = 1

p−r

∑p−q
k=r−q+1 λi,k

Σi = Ui,r−q(Λi,r−q − σ̂iIr−q) ∪t
i,r−q .

(3.68)

The profile likelihood function under REFM3 is

lp(θ2) = l(θ̂1(θ2), θ2)

=
n

2
{ C −

s∑
i=1

q∑
k=1

log(P t
kSiPk)

−
s∑

i=1

r−q∑
k=1

log(λik)− (p− r)
s∑

i=1

log(
p−q∑

k=r−q+1

λij) } (3.69)

where C = −sp log(2π)− ps+ (p− r) log(p− r).

Applying Lemma 2 in Chapter 2, the maximum likelihood estimator θ̂2 of the

profile likelihood exists, and

sup
θ∈Θ

l(θ) = max
θ2∈Θ2

lp(θ2) (3.70)
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Chapter 4

Computational Method
4.1 EM Algorithm

4.1.1 Introduction

In 1977, Dempster, Laird, and Rubin (1997) first gave a general formulation of the

EM algorithm, consisting of the expectation step (E-step) and the maximization

step (M-step) in their general forms, for deriving maximum likelihood estimates

from incomplete data. They also identified some theoretical properties of the EM

algorithm and illustrated a wide range of applications in various statistical models.

Since then, many papers have been published over the past 27 years, developing

new methodologies using the EM algorithm in almost all fields in which statistical

analysis is required, including engineering, medical science, sociology, and business

administration. According to a survey conducted by Meng and Pedlow (1992), at

least 1700 papers involving the EM algorithm exist on more than 1000 subjects.

Moreover, Meng (1997) pointed out that more than 1000 papers were published in

approximately 300 journals just in 1991 alone. Statistical journals only accounted

for 15%. In July 2003, the Institute for Scientific Information released an updated

list of the researchers with the most citations between January 1993 and April

2003. Donald B. Rubin has been ranked as the sixth most Cited researcher in the

category of mathematics (AMSTAT News, Issue 317), with a total of 792 citations,

largely because of his significant contributions on EM algorithm. These facts clearly
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indicate that the EM algorithm has already become a very popular tool for statistical

analysis based on the maximum likelihood estimation. From the citation point of

view, more researchers use the EM algorithm now as a numerical method over those

who use the Newton-Raphson method or other methods.

The EM algorithm has received tremendous attention and further extension.

When people talk about the EM algorithm, they always mention two major ad-

vantages: simplicity and stability. Most multivariate methods require computation

of either the inverse of matrices or the extraction of eigenvectors and eigenvalues,

but EM often does not. The Newton-Raphson method and the EM algorithm have

been programmed as the main numerical methods for performing the maximum

likelihood estimation based on multidimensional data including missing values. The

log-likelihood function is complicated, but it can be maximized using standard op-

timization routines. McHugh (1956, 1958) illustrated how this might be done using

the standard Newton-Raphson technique. However, as with many other latent vari-

able models, an easier method which enables larger problems to be tackled is offered

by the EM algorithm [39]. Some experiments on the same data were conducted in

the past to compare the two methods in terms of the numbers of iterations and cen-

tral processing unit (CPU) time required to reach convergence. The results showed

that the EM algorithm was able to determine a convergent value in all cases, while

the application of the Newton-Raphson method failed to achieve convergence in

most cases. This is why the EM algorithm is considered stable. As a numerically

stable method, it avoids overshooting or undershooting a maximizer of likelihood.
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In addition, the results indicated that when the methods both converged to the

same maximum likelihood solution, the EM algorithm was faster in terms of the

CPU time taken to reach convergence although fewer iterations were required by

the Newton-Raphson method. The CPU time required per iteration was overwhelm-

ingly shorter for the EM algorithm. The EM algorithm is generally said to suffer

from slow convergence, but in practice this causes no major problems. In fact, the

simplicity of the EM algorithm seems to be much more attractive, considering the

relatively high operating efficiency from formulating the likelihood to deriving and

programming an algorithm. Many improved versions of the EM algorithm, aimed

at accelerating convergence, have been proposed since DLR (1977). However, they

failed to gain wide acceptance because they eliminated some aspects of the simplicity

and the stability of the original EM algorithm.

The applications of the EM algorithm are broad because of its flexibility in

interpreting the incompleteness of data, and the high extensibility of the applica-

tion model. However, if the problem becomes complex, simple calculations in the

Expectation Step (E-step) and Maximization Step (M-step) in the EM algorithm

will not work well. Simulations from the model may be needed in the E-step, or a

Newton-type iterative algorithm may have to be included in the M-step. In practice,

the convergence time is a measure of the algorithm’s success. A significant num-

ber of publications have been written about the acceleration of the EM algorithm.

In the 1990s, many papers on the systematization of these extensions to the EM

algorithm were explored. Rubin (1991) explains four typical algorithms based on
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simulation (Multiple Imputation, Data Augmentation Algorithm, Gibbs Sampler,

and Sampling/Importance Resampling Algorithm) in a unified manner based on an

extended EM framework with a random number mechanism. On the M-step side,

Meng and Rubin (1993) introduced the ECM algorithm. A year later, Liu and Rubin

(1994) invented the ECME algorithm. The AECM was published by Meng and Dyk

in 1997. Their work on the accelerated EM does not eliminate the simplicity and

stability of the original EM algorithm. Therefore, many applications directly use

the ECM and ECME algorithms. The first book on EM algorithm was published by

McLachlan and Krishnan (1997) which covers recent topics relating to them as well.

Today, the EM algorithm is a familiar statistical tool for solving real life problems

in diverse fields of application.

4.1.2 Newton-Raphson method

Since the properties of the EM algorithm are contrasted with those of Newton-

type methods, which are the main alternatives for the computation of Maximum

Likelihood Estimates, we now give a brief review of the Newton-Raphson method.

In numerical analysis, there are various techniques for finding zeros of a specified

function, including the Newton-Raphson method, quasi-Newton methods, and mod-

ified Newton methods. In a statistical framework, the modified Newton methods

include the scoring algorithm of Fisher and its modified version using the empirical

information matrix in place of the expected information matrix.

First of all, we recall some notation from the section on maximum likelihood
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and ML equations in Chapter 2. We have L(θ) as our likelihood function for θ and

the observed data Y . Under regularity conditions, we can take the first and second

order partial derivatives of the log likelihood function, l(θ) = log(L(θ)), with respect

to the elements of parameters θ. We have

S(Y, θ) =
∂log(L(θ))

∂θ
, (4.1)

and

I(Y, θ) = −∂
2log(L(θ))

∂θ∂θt
. (4.2)

The function S(Y, θ) is the gradient vector of the log likelihood function, and is

called the score statistic, when θ is a null-hypothesis value. Finally, the Fisher

information matrix I(θ) is given by

I(θ) = Eθ{S(Y, θ)St(Y, θ)}

= −Eθ{I(Y, θ)}. (4.3)

The Newton-Raphson method is the best known procedure for finding the

roots of an equation. Now, we attempt to apply the Newton-Raphson method for

solving the likelihood equation

S(Y, θ) = 0. (4.4)

Using a linear Taylor series expansion on the current parameter θ(k) for θ, we have

S(Y, θ) ≈ S(Y, θ(k))− I(Y, θ(k))(θ − θ(k)). (4.5)

A new parameter θ(k+1) can be obtained when we set the right-hand side of equation

(4.5) equal to zero. Hence

θ(k+1) = θ(k) + I−1(Y, θ(k))S(Y, θ(k)). (4.6)
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If the log likelihood function l(θ) is concave, then the sequence of iterates {θ(k)} will

converge to the maximum likelihood estimate θ̂MLE. This only takes one step if the

log likelihood function l(θ) is a quadratic function of θ. When the log likelihood

function l(θ) is not concave, the Newton-Raphson method will not be guaranteed to

converge from an arbitrary starting value. Under reasonable assumptions on L(θ)

and a sufficiently accurate starting value, the sequence of iterates {θ(k)} generated

by the Newton-Raphson method has local quadratic convergence to a solution θ∗ of

our likelihood equation (4.4). The solution θ∗ is the maximum likelihood estimate.

That is, given a norm ‖.‖, there is a constant c such that if θ0 is sufficiently close

to θ∗, then for k = 0, 1, 2, . . .

‖θ(k+1) − θ∗‖ ≤ c‖θ(k) − θ∗‖2. (4.7)

The biggest advantage of the Newton-Raphson method is its extremely fast

quadratic convergence. Since the Newton-Raphson method requires computing the

Fisher information matrix I(y, θ(k)) at each iteration k, it immediately provides an

estimate of the covariance matrix at its limiting value θ∗, through the inverse of the

observed Fisher information matrix I(Y, θ∗). Also, the Hessian matrix is the same as

the negative of the observed Fisher information matrix I(Y, θ(k)). On the other hand,

the computation of each iteration will create some serious problems in applications

when the dimension of data becomes large, because it requires calculating the d× d

information matrix I(Y, θ(k)) at each iteration k, where d = dim(θ). Thus, the

computation required for an iteration of the Newton-Raphson method is likely to

take longer and longer when the parameter dimension d increases. Furthermore, the
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Newton-Raphson method in its basic form (4.6) requires an impractically accurate

initial value for θ for some problems in order that the sequence of iterates {θ(k)}

converge to a solution of (4.6). The Newton-Raphson method has a tendency to

head toward the local minimum as often as it heads toward a local maximum.

A method is called a Quasi-Newton method if the solution of (4.6) takes the

form

θ(k+1) = θ(k) − A−1S(Y, θ), (4.8)

where A is used as an approximation to the Hessian matrix of l(θ). The advantage

of the Quasi-Newton methods is that they may avoid the explicit evaluation of the

Hessian matrix of the log likelihood function at each iteration.

4.1.3 EM algorithm

The EM algorithm is a method for solving incomplete data problems iteratively

based on a complete data framework. The idea is simple. Assume that Y is a

p-dimensional random vector corresponding to the observed data, having the prob-

ability density function f(y, θ), where θ is a vector of unknown parameters within

the parameter space Θ. Let Z denote the random vector containing the missing

data portion, and let X = (Y, Z) denote the vector containing both the observed

and missing data, called the complete data. Denote by fX(x, θ) the probability

density function of X.

Let lX(θ) = log fX(X, θ), which is the log likelihood function based on the

complete data, and l(θ) = log f(Y, θ), which is the log likelihood function based
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on the incomplete data. The goal of the EM algorithm is to find the maximum

likelihood estimate of θ, which is the parameter point achieving the maximum of

l(θ).

The EM algorithm indirectly approaches the problem of maximizing the log

likelihood l(θ) based on the incomplete data by proceeding iteratively in terms of

the log likelihood based on the complete data, lX(θ). Because lX(θ) is unobservable,

it is replaced by its conditional expectation given the observation and temporary

values of parameters:

θ(k+1) = arg max
θ∈Θ

E(lX(θ)|Y, θ(k)) (4.9)

Equation (4.9) can be divided into the E-step and the M-step as follows:

E-step: Calculate the conditional expectation of complete data log likelihood given

the observation Y and the k′th temporary value of parameter θ(k):

Q(θ, θ(k)) = E(lX(θ)|Y, θ(k)) (4.10)

M-step: Find θ(k+1) to maximize Q(θ, θ(k)) regarded as a function of θ with θ(k)

fixed:

Q(θ(k+1), θ(k)) ≥ Q(θ, θ(k)) (4.11)

for all θ ∈ Θ.

The E-step and M-step are alternated repeatedly and stop according to the

smallness of changes in (θ(k+1) − θ(k)). Dempster, Laird and Rubin (1977) demon-

strated that the incomplete data likelihood function l(θ) is not decreased in each
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EM iteration process, that is,

l(θ(k+1)) ≥ l(θ(k)) (4.12)

for k = 0, 1, 2, . . .. Hence, convergence of l(θ(k)) values must be obtained if they are

bounded above. This aspect is useful in debugging programs for the EM algorithm.

A GEM algorithm replaces the M-step in the EM algorithm with a step to

find θ(k+1) which satisfies the following formula:

Q(θ(k+1), θ(k)) ≥ Q(θ(k), θ(k)) (4.13)

This indicates that it is not always necessary to find the maximum of the Q-function

in the M-step, and that it is sufficient to find θ(k+1) updating it to a larger value.

The likelihood L(θ) is not decreased after a GEM iteration, and so a GEM sequence

of likelihood values must converge if bounded above. Therefore, in cases where

maximization within the M-step is sought by using the Newton-Raphson method,

etc., in M-step, it is possible to stop after just one iteration. Lange (1995) advocated

this method as a gradient algorithm.

4.2 REFM1 and EM Algorithm

4.2.1 REFM1

The Random Effect Factor Model 1 (REFM1) is

yi =
q∑

k=1

cikPk + εi (i = 1, 2, . . . , n),

= π1ci + εi
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where all assumptions regarding to yi, ci, πi, and εi are specified in Chapter 2. Let

X be the complete data, which includes observation vectors Yi and unobservable

vectors cii = 1, 2, · · · , n. That is, X = (Y, c). Thus, the complete data X becomes a

(p+ q)-dimensional vector. It is assumed that X1, X2, . . . , Xn are independently

and identically distributed, and that ci are independently and identically normally

distributed with mean a and covariance matrix B1; that is,

ci ∼ Nq(a,B1), (4.14)

where a = (a1, a2, . . . , aq)
t, and B1 = Diag(b21, b

2
2 . . . b

2
q). The vectors ci are

independent of the errors εi, which are assumed to be independently and identically

distributed as Np(0, σ
2 Ip). Given the unobservable random effect ci, the conditional

probability distribution over yi is given by

yi|ci ∼ Np(π1ci, σ
2 Ip). (4.15)

Unconditionally, {yi} is independently and identically distributed with

yi ∼ Np(π1a, π1B1π
t
1 + σ2Ip). (4.16)

Since the probability density function of the complete data X can be written as

f(x) = f(y|c)f(c) with

f(y|c) = (2π)−p/2|σ2Ip|−1/2 exp{−1

2
(y − π1c)

t(σ2Ip)
−1(y − π1c)}

= (2π)−p/2(σ2)−p/2 exp{− 1

2σ2
‖y − π1c‖2}, (4.17)

and

f(c) = (2π)−q/2|B1|−1/2 exp{−1

2
(c− a)tB−1

1 (c− a)}, (4.18)
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then

f(x) = (2π)−
p+q
2 (σ2)−

p
2 (

q∏
k=1

b2k)
− 1

2 exp{− 1

2σ2
‖y−π1c‖2−1

2
(c−a)tB−1

1 (c−a)}. (4.19)

The complete data log likelihood function is

lX(θ) = log
n∏

i=1

f(xi),

= −n(p+ q)

2
log(2π)− np

2
log σ2 − n

2

q∑
k=1

log b2k

− 1

2σ2

n∑
i=1

‖yi − π1ci‖2 − 1

2

n∑
i=1

(ci − a)tB−1
1 (ci − a). (4.20)

Here, our parameters are θ = (a,Diag(B1), σ
2, π1). We can express

n∑
i=1

‖yi − π1ci‖2 =
n∑

i=1

(yi − π1ci)
t(yi − π1ci),

=
n∑

i=1

(yt
iyi − yt

iπ1ci − ctiπ
t
1yi + ctiπ

t
1π1ci),

=
n∑

i=1

{tr(yiy
t
i)− 2tr(yic

t
iπ

t
1) + tr(ctici)},

= n tr(Cyy)− 2n tr(Cycπ
t
1) + n tr(Ccc), (4.21)

where Cyy = n−1∑n
i=1 yiy

t
i , Cyc = n−1∑n

i=1 yic
t
i, and Ccc = n−1∑n

i=1 cic
t
i, and also

n∑
i=1

(ci − a)tB−1
1 (ci − a) =

n∑
i=1

{ctiB−1
1 ci + atB−1

1 a− 2atB−1
1 ci},

= n tr(CccB
−1
1 )− 2natB−1

1 c̄+ natB−1
1 a, (4.22)

where c̄ = n−1∑n
i=1 ci. After substituting (4.21) and (4.22) into the complete data

log likelihood function (4.20), we immediately find

lX(θ) = −n(p+ q)

2
log(2π)− np

2
log σ2 − n

2

q∑
k=1

log b2k −
n

2σ2
tr(Cyy)

+
n

σ2
tr(Cycπ

t
1)

− n

2σ2
tr(Ccc)−

n

2
tr(CccB

−1
1 ) + natB−1

1 c̄− n

2
atB−1

1 a. (4.23)
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Thus, lX(θ) for θ = (a, B1, σ
2, π1), belongs to an exponential family, and the

sufficient statistics are c̄, Cyy, Cyc, and Ccc.

Before we can calculate the E-step, we must find out what is the distribution of

unobservable c given the observed data Y and current parameter θ = θ(k). We know

c ∼ Nq(a, B1), and Y ∼ Np(π1a, π1B1π
t
1 +σ2Ip), but Y and c are not independent.

Their relationship is through the REFM1. By their joint normality, there must

exist a q × p transformation matrix D such that c − DY is uncorrelated with Y .

Thus, the matrix D must satisfy the equation:

0 = E(c−DY − E(c−DY ))(Y − EY )t

= E(c− a−D(Y − π1a))(Y − π1a)
t

= E(c− a)(π1c+ ε− π1a)
t −DE(Y − π1a)(Y − π1a)

t

= E(c− a)(c− a)tπt
1 + E(c− a)εt −DV ar{Y }

= B1π
t
1 −D(π1B1π

t
1 + σ2Ip). (4.24)

It is easy to solve this matrix equation for D as a function of θ, that is,

D = B1π
t
1(π1B1π

t
1 + σ2Ip)

−1. (4.25)

Remark: In practice, we prefer to calculate a lower dimensional q×q matrix instead

of a higher dimensional p × p matrix, by applying Woodbury’s Identity (Rubin &

Thayer, 1982, page 72):

(τ 2 + βtRβ)−1 = τ−2 − (τ−2βt)(R−1 + βτ−2βt)−1(βτ−2) (4.26)

When R = B1, τ
2 = σ2Ip, and β = πt, we have the following equation:

(π1B1π
t
1 + σ2Ip)

−1 =
1

σ2
Ip −

(
1

σ2

)2

π1

(
B−1

1 +
1

σ2
Iq

)−1

πt
1. (4.27)
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We will apply Woodbury’s Identity (4.27) in a later section. 2

The expectation of unobservable c given the observed data Y is

E(c|Y ) = E(c−DY +DY |Y )

= E(c−DY |Y ) + E(DY |Y )

= E(c−DY ) +DY

= a−Dπ1a+DY

= a+D(Y − π1a), (4.28)

and since the relationship between c and Y is from our REFM1, we can calculate

the covariance between c and Dy as follows:

Cov (c, DY ) = Cov(c−DY +DY, DY )

= Cov(c−DY, DY ) + Cov(DY, DY )

= V ar(DY )

= DV ar(Y )Dt. (4.29)

The conditional covariance of unobservable c given observed data Y is

V ar(c|Y ) = V ar(c−DY +DY |Y )

= V ar(c−DY |Y ) + V ar(DY |Y )

= V ar(c−DY )

= V ar(c) +DV ar(Y )Dt − 2Cov(c,DY )

= B1 −DV ar(Y )Dt

= B1 −Dπ1B1
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= (Iq −Dπ1)B1. (4.30)

Therefore, given observed the Yi, the conditional probability distribution of ci

is specified by

ci|Yi ∼ Nq(a+D(y − π1a), (Iq −Dπ1)B1) (4.31)

where D = B1π
t
1(π1B1π

t
1 + σ2Ip)

−1.

4.2.2 E-Step

Now, we calculate the conditional expectation of the complete data log likelihood

function, lX(θ), given the observation Y and the k’th temporary values of the pa-

rameter θ = θ(k):

Q(θ, θ(k)) = E(lX(θ)|Y, θ(k)),

= −n(p+ q)

2
log(2π)− np

2
log σ2 − n

2

q∑
k=1

log b2k

− n

2σ2
tr(C∗yy) +

n

σ2
tr(C∗ycπ

t
1)−

n

2σ2
tr(C∗cc)

−n
2

tr(C∗ccB
−1
1 ) + natB−1

1 c̄∗ − n

2
atB−1

1 a, (4.32)

where c̄∗ = E( c̄| Y, θ(k)), C∗yy = E( Cyy| Y, θ(k)), C∗yc = E( Cyc| Y, θ(k)), and

C∗cc = E( Ccc| Y, θ(k)). Given the current parameter θ(k) and observed data Y , we

have the transformation matrix

D(k) = B
(k)
1 (π

(k)
1 )t(π

(k)
1 B

(k)
1 (π

(k)
1 )t + (σ2)(k)Ip)

−1. (4.33)

We calculate the conditional expectation of the sufficient statistics as follows:

C∗yy = Cyy, (4.34)
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c̄∗ =
1

n

n∑
i=1

E( ci| Y, θ(k))

=
1

n

n∑
i=1

{a(k) +D(k)(yi − π
(k)
1 a(k))}

= a(k) +D(k)(ȳ − π
(k)
1 a(k)), (4.35)

where ȳ = n−1∑n
i=1 yi,

C∗yc =
1

n

n∑
i=1

yiE(cti|Y, θ(k))

=
1

n

n∑
i=1

yi(a
(k) +D(k)(yi − π

(k)
1 a(k)))t

= ȳ(a(k))t +
1

n

n∑
i=1

yiy
t
i(D

(k))t − 1

n

n∑
i=1

yi(a
(k))t(π

(k)
1 )t(D(k))t

= ȳ(a(k))t(Iq − (π
(k)
1 )t(D(k))t) + Cyy(D

(k))t, (4.36)

and

C∗cc =
1

n

n∑
i=1

E(cic
t
i|Y, θ(k))

=
1

n

n∑
i=1

{V ar(ci|Y, θ(k)) + E(ci|y, θ(k))Et(ci|y, θ(k))}

= (Iq −D(k)π
(k)
1 )B

(k)
1 +

1

n

n∑
i=1

(a(k) +D(k)(yi − π
(k)
1 a(k)))(a(k) +D(k)(yi − π

(k)
1 a(k)))t

= (Iq −D(k)π
(k)
1 )B

(k)
1

+
1

n

n∑
i=1

((Iq −D(k)π
(k)
1 )a(k) +D(k)yi)((a

(k))t(Iq −D(k)π
(k)
1 )t + yt

i(D
(k))t)

= (Iq −D(k)π
(k)
1 )a(k)(a(k))t(Iq −D(k)π

(k)
1 )t +D(k)ȳ(a(k))t(Iq −D(k)π

(k)
1 )t

+(Iq −D(k)π
(k)
1 )(B

(k)
1 + a(k)ȳt(D(k))t) +D(k)Cyy(D

(k))t. (4.37)

We consider the E-step of the (k + 1)’th iteration of the EM algorithm, where θ(k)

denotes the value of θ after the k′th EM iteration.
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4.2.3 M-Step

After we finish calculating the conditional expectation of the complete data log

likelihood function, we implement an M-step, which maximizes Q(θ, θ(k)), that is,

maximizes the equation (4.32) with respect to θ. There are four parameters in θ

within our Q-function: a, B1, σ
2, and π1. We will work on a first, and take the

partial derivative of Q(θ, θ(k)) with regard to a,

∂Q(θ, θ(k))

∂a
= nB−1

1 c̄∗ − n

2
· 2B−1

1 a. (4.38)

Setting the expressions equal to 0, we can solve for our first parameter a,

â = c̄∗. (4.39)

Secondly, for fixed k, k = 1, 2, . . . , q, take the partial derivative of Q(θ, θ(k)) with

respect to b2k,

∂Q(θ, θ(k))

∂b2k
= −n

2

1

b2k
− n

2
C∗cc,kk ·

(
− 1

b4k

)
− n

akc̄
∗
k

b4k
− n

2

(
−a

2
k

b4k

)
. (4.40)

since 

tr(C∗ccB
−1
1 ) =

∑q
k=1C

∗
cc,kk/b

2
k

atB−1
1 c̄∗ =

∑q
k=1 akc̄

∗
k/b

2
k

atB−1
1 a =

∑q
k=1 a

2
k/b

2
k

(4.41)

where ak and c̄∗k are the k’th elements of the q dimensional vectors a and c̄, and b2k

and C∗cc,kk are the k’th elements on the diagonal of q× q matrix B1 and C∗cc. Setting

the expressions (4.40) equal to zero, we have

b̂2k = C∗cc,kk + â2
k − 2âkc̄

∗
k,

= C∗cc,kk − â2
k. (4.42)
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Therefore, the second parameter B1 is estimated by

B̂1 = Diag(C∗cc)− Diag(âât). (4.43)

The third parameter σ2 is a scalar variable. Take the partial derivative of

Q(θ, θ(k)) with regard to σ2 to find

∂Q(θ, θ(k))

∂σ2
= −np

2

1

σ2
+
n

2
(

1

σ2
)2 · tr(C∗yy)− n(

1

σ2
)2 · tr(C∗ycπ

t
1)

+
n

2
(

1

σ2
)2 · tr(C∗cc). (4.44)

Setting (4.44) equal to zero, we have

σ̂2 =
1

p
(tr(C∗yy) + tr(C∗cc)− 2 · tr(C∗yc · π̂t

1)) (4.45)

From equation (4.45), we see that σ̂2 is a function of π̂1. Thus, we must find

an estimate of π1. Then we can obtain the estimate of σ2. We use the following

Lemmas to obtain the estimate of π1.

Lemma 11 Assume that q > 1 and λk ≥ 0, k = 1, 2, . . . , q, and that {vk : 1 ≤

k ≤ q} is an orthonormal set of vectors. Then, the unique maximizer of tr(PΛ
1
2M)

over the class M of q × q matrices with the property MM t = Iq is M = P t. That

is,

max
M :MMt=Iq

tr(PΛ
1
2M) =

q∑
k=1

√
λk, (4.46)

where P = (v1, v2, ..., vq) is a p× q matrix with columns vi, and Λ =

Diag(λ1, λ2, . . . , λq).

Proof. Define vectors Mk, 1 ≤ k ≤ q, as the row vectors of M . Then

tr(PΛ
1
2M) = tr(MPΛ

1
2 )
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=
q∑

k=1

√
λkMkvk. (4.47)

Since both vk and Mk are unit vectors, apply the Cauchy-Schwartz inequality to

find

Mkvk ≤ ‖vk‖2 · ‖Mk‖2 = 1 (4.48)

with equality if and only if Mk = vt
k, k = 1, 2, . . . , q. Therefore, the maximum of

tr(PΛ
1
2M) over M ∈M is M = P t. The unique maximum of tr(PΛ

1
2M) is

max
M :MMt=Iq

tr(PΛ
1
2M) = tr(PΛ

1
2P t)

= tr(Λ
1
2 )

=
q∑

k=1

√
λk. 2

Lemma 12 Given q > 1, let {λk : 1 ≤ k ≤ q} be the eigenvalues of a q × q full

rank symmetric matrix Z and let {vk : 1 ≤ k ≤ q} be the orthonormal eigenvectors

corresponding to eigenvalues {λk : 1 ≤ k ≤ q}. Then the maximum over q × q

matrices W of tr(WZ) subject to the constraint W tZW = Iq is

W = PΛ−1/2P t, (4.49)

where P = (v1, v2, . . . , vq), and Λ = Diag(λ1, λ2, . . . , λq).

Proof. By the spectral decomposition theorem,

Z =
q∑

k=1

λkvkv
t
k = PΛP t. (4.50)

Define W0 = (v1/λ
1/2
1 , v2/λ

1/2
2 , . . . , vq/λ

1/2
q ) = PΛ−1/2. Then, using P tP = Iq we

have

W t
0ZW0 = (PΛ−1/2)tPΛP tPΛ−1/2 = Iq. (4.51)
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If W = W0M , where M is any q× q orthogonal matrix, then the constraint function

of W is

W tZW = (W0M)tZW0M = M t(W t
0ZW0)M = M tM = Iq, (4.52)

and

tr(WZ) = tr(W0MZ) = tr(ZW0M). (4.53)

Note that (4.52) also shows that the only matrices W = W0M satisfying the con-

straint are those with orthogonal matrices M . Now, our problem transfers from

finding the maximum of tr(WZ) with W tZW = Iq to finding the maximum of

tr(ZW0M) with MM t = Iq. Since

ZW0M = PΛP tPΛ−1/2M = PΛ1/2M, (4.54)

we can apply Lemma 11: M = P t uniquely attains the maximum of tr(PΛ1/2M)

subject to M tM = Iq. Thus,

W = W0M = PΛ−1/2P t. 2

Lemma 13 Let A be a p × q matrix with orthonormal columns, i.e., AtA = Iq,

where q ≤ p. Let B be a p× q matrix with rank q and, let V1 = col(B) be the column

space of B, where V1 ⊂ Rp. Then

(1) There exists a maximum for tr(AtB).

(2) Let Â be the maximizer of tr(AtB), that is,

max
A

tr(AtB) = tr(ÂtB). (4.55)

Then the space V̂1 spanned by the columns of Â is V1, that is,

V̂1 = V1. (4.56)
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(3) When q=1, A = B/‖B‖ is the maximizer of tr(AtB).

(4) When q > 1, the maximizer over A of tr(AtB) subject to the constraint AtA = Iq

is

Â = BPΛ−1/2P t, (4.57)

where P = (v1, v2, . . . , vq), and Λ = Diag(λ1, λ2, . . . , λq), λk and vk are

eigenvalues and eigenvectors of BtB.

Proof.

(1) Let A1, A2, . . . , Aq be the q column vectors of A, that is, A = (A1, A2, . . . , Aq),

and let B1, B2, . . . , Bq be the q column vectors of B. For 1 ≤ k ≤ q, we apply the

Cauchy-Schwarz inequality

At
kBk ≤ ‖Ak‖‖Bk‖ ≤

‖Ak‖2 + ‖Bk‖2

2
=

1 + ‖Bk‖2

2
. (4.58)

Also,

tr(AtB) =
q∑

k=1

At
kBk

≤
q∑

k=1

1 + ‖Bk‖2

2
. (4.59)

Since tr(AtB) is a continuous function of A1, A2, . . . , Aq and has an upper bound,

and the set of matrices {Ai : i = 1, 2, . . . , q} with orthonormal columns is compact,

there must exist a maximum.

(2) Since the rank of B is q, the columns of B are linearly independent,

V1 = span{B1, B2, . . . , Bq}, (4.60)
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and V1 is a q dimensional space. To maximize tr(AtB) subject to the constraint

AtA = Iq, we can apply the Lagrange multiplier method,

L =
q∑

k=1

At
kBk +

q∑
k=1

λk(A
t
kAk − 1) +

q∑
j=1

q∑
k=1,k 6=j

λjk(A
t
jAk) (4.61)

where (λjk)q×q is a symmetric matrix of unknowns with λk ≡ λkk. For 1 ≤ k ≤ q,

we take the gradient of the Lagrange function L with respect to Ak, then set ∇Ak
L

to zero. We have the following equation:

Bk + 2λ̂kÂk + 2
q∑

j=1,j 6=k

λ̂jkÂj = 0. (4.62)

Multiply by Ât
i on both sides of (4.62) to obtain

Ât
iBk + 2λ̂kδik + 2

q∑
j=1,j 6=k

λ̂jkδij = 0. (4.63)

If i = k, the equation (4.63) implies

λ̂k = −1

2
Ât

kBk. (4.64)

For i 6= k, the equation (4.63) implies

λ̂ik = −1

2
Ât

iBk. (4.65)

Substitute equations (4.64) and (4.65) into equation (4.62), to find for all k

Bk − ÂkÂ
t
kBk −

q∑
j=1,j 6=k

ÂjÂ
t
jBk = 0

⇒ (Ip − ÂkÂ
t
k −

q∑
j=1,j 6=k

ÂjÂ
t
j)Bk = 0

⇒ (Ip − ÂÂt)Bk = 0

⇒ (Ip − ÂÂt)B = 0 (4.66)
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Thus,

span{Â1, Â2, . . . , Âq} = span{B1, B2, . . . , Bq}, (4.67)

that is,

V̂1 = V1. (4.68)

(3) When q = 1, A and B are p-dimensional vectors, and tr(AtB) = AtB. The

maximum of AtB is achieved if only if A and B are in the same direction. Also, A

is a unit vector. Therefore,

A = B/‖B‖. (4.69)

(4) When q > 1, since V̂1 = V1, then there exists a q × q matrix W such that

Â = BW . Hence,

ÂtÂ = W tBtBW = W tZW = Iq,

where Z = BtB, and

tr(ÂtB) = tr(W tBtB) = tr(W tZ).

The problem of maximizing tr(ÂtB) subject to the constraint ÂtÂ = Iq is equivalent

to the problem of maximizing tr(W tZ) with constraint W tZW = Iq. Applying

Lemma 12, we have

W = PΛ−1/2P t.

Thus,

Â = BPΛ−1/2P t. 2
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Now, we return to the M-step, and maximize theQ-function (4.32) with respect

to the parameter π1. There is only one term in the Q-function which involves π1,

which is the term tr(C∗ycπ
t
1). In order to maximize the Q-function, we only need

maximize tr(C∗ycπ
t
1) subject to the constraint πt

1π1 = Iq. We apply Lemma 13. The

constrained maximum of π1 is

π̂1 =


C∗yc/‖C∗yc‖ for q = 1,

C∗ycPΛ−1/2P t for q > 1.

(4.70)

where Λ is a diagonal matrix of eigenvalues of the q × q matrix Z = (C∗yc)
tC∗yc, and

the column vectors of P are eigenvectors corresponding to these eigenvalues.

Before we finish the M-step, we need to verify that the estimates of all pa-

rameters a, B1, σ
2, and π1 are jointly maximizing the Q-function. First, for fixed

a, B1, σ
2, the Q-function achieves its maximum with respect to π1 when π1 = π̂1

because of the Lagrange multiplier method and Cauchy-Schwartz inequality. Sec-

ondly, if B1, σ
2, and π1 are given, the Q-function is a quadratic function of a with a

negative second order coefficient. Thus, the Q-function attains the maximum value

when a = â. Third, we rewrite the Q-function when a, B1, and π1 are given as

Q(σ2) = c(a, B1, π1)−
np

2
log σ2 − 1

2σ2
c1, (4.71)

where c1 = E{∑n
i=1 ‖yi−πci‖2|Y, θ(k)} > 0. Since σ2 > 0, we evaluate the boundary

values when σ2 → 0+ or σ2 → +∞. When σ2 → +∞, 1/σ2 → 0 and log(σ2) → +∞.

From the expression (4.71), Q(σ2) → −∞. When σ2 → 0+, 1/σ2 → +∞ and
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log(σ2) → −∞. Since

lim
σ2→0+

log σ2

1/σ2
= lim

σ2→0+
(−σ2) = 0, (4.72)

that is, 1/σ2 goes to +∞ much faster than log σ2 goes to −∞ when σ2 → 0+.

Therefore we have Q(σ2) → −∞ since c1 > 0. Noting that the Q-function is −∞

at both boundary points, we conclude that the continuous Q-function reaches its

maximum when σ2 = σ̂2 from (4.45). Similarly, the Q-function of b2k for 1 ≤ k ≤ q

takes its maximum value when b̂2k = C∗cc,kk−a2
k because Q(b2k) → −∞ when b2k → 0+

or b2k → +∞. Now, we have demonstrated that all parameters have jointly achieved

the maximum of the Q-function. Thus, we have completed the M-step.

4.3 Results of Estimation on Simulated Data

4.3.1 Simplifying the EM algorithm

In order to speed up the computation process, we simplify the EM algorithm by

avoiding loops, reducing the high dimensional matrix computation, and simplifying

the inverse matrix. After examining all formulas, there are three places we can

simplify. Since

C∗yy = Cyy =
1

n

n∑
i=1

yiy
t
i , (4.73)

and since matrix multiplication is much faster than a loop with n index values,

especially when n is large, we rewrite C∗yy = n−1Y Y t, where Y is a p × n data

matrix.

The q×p matrix D appears everywhere in the EM algorithm. In order to com-

pute D, we have to invert a p× p matrix. Specifically, in our intended data applica-
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tion (the tongue dataset discussed in Chapter 5), p is extremely large. Woodbury’s

Identity helps us to avoid calculating a high dimensional inverse matrix. Instead, we

need only to calculate a much lower dimensional q × q inverse matrix. By applying

Woodbury’s Identity and substituting equation (4.27) into the expression (4.25) for

D, we find

D = B1π
t
1(π1B1π

t
1 + σ2Ip)

−1

= B1π
t
1{

1

σ2
Ip − (

1

σ2
)2π1(B

−1
1 +

1

σ2
Iq)

−1πt
1}

=
1

σ2
B1π

t
1 − (

1

σ2
)2B1(B

−1
1 +

1

σ2
Iq)

−1πt
1

=
1

σ2
B1{Iq −

1

σ2
(B−1

1 +
1

σ2
Iq)

−1}πt
1

=
1

σ2
B1{Iq − (Iq + σ2B−1

1 )−1}πt
1. (4.74)

Define G as a q × q matrix, according to the equation:

G =
1

σ2
B1{Iq − (Iq + σ2B−1

1 )−1}. (4.75)

Clearly G is a diagonal and symmetric matrix, which is very simple and fast to

compute. The two inverse operations in G are both occurring on q × q diagonal

matrices. Then D = Gπt
1 from equation (4.74), which is the form we use in our

S-plus calculation.

We calculate the likelihood function l(θ) as a check in our EM Algorithm Splus

function because Dempster, Laird, and Rubin (1977) showed that the incomplete-

data likelihood function l(θ) is not decreased in each EM iteration process, that is,

l(θ(k+1)) ≥ l(θ(k)) for k = 0, 1, 2, . . .. Under REFM1, the likelihood function l(θ) is

l(θ) = −np
2

log(2π)− 2 log(|Σ|)− 1

2

n∑
i=1

(yi − π1a)
tΣ−1(yi − π1a), (4.76)
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where Σ = π1B1π
t
1 + σ2Ip. We can simplify l(θ) by rewriting

n∑
i=1

(yi − π1a)
tΣ−1(yi − π1a)

= tr(Y t
1 Σ−1Y1)

= tr(Y1Y
t
1 Σ−1), (4.77)

where Y1 is the p× n matrix whose column vectors are yi − π1a.

4.3.2 Splus function for MLE in REFM1

We have written two Splus functions, EM1 and EM2, for the cases of q = 1 and

q > 1. The Splus functions implement the E-step, M-step, and likelihood calculation

in each EM iteration. Each function uses as inputs a data matrix Y , starting points

for all parameters and a number of iterations, and outputs the parameter estimates

and likelihood values. Given the data set Y , we calculate the sample mean ȳ, the

sample variance Sy, and sample second moments Cyy before we start the iteration.

E-step: To calculate Q(θ, θ(k)), the conditional expectation of the complete data log

likelihood function, given the observation Y and the k′th iteration parameter θ(k),

we only need to calculate these conditional sufficient statistics: c̄∗, C∗yy, C
∗
yc, C

∗
cc. All

conditional sufficient statistics depend on the matrix D = Gπt
1. We find

c̄∗ = a+D(ȳ − π1a)

= a+Gπt
1(ȳ − π1a)

= (Iq −G)a+Gπt
1ȳ; (4.78)

C∗yc = ȳat(Iq − πt
1D

t) + CyyD
t
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= ȳat(Iq − πt
1π1G) + Cyyπ1G

= ȳat(Iq −G) + Cyyπ1G; (4.79)

and

C∗cc = (Iq −Dπ1)aa
t(Iq −Dπ1)

t +Dȳat(Iq −Dπ1)
t

+(Iq −Dπ1)(B1 + aȳtDt) +DCyyD
t

= (Iq −G)aat(Iq −G) +Gπt
1ȳa

t(Iq −G)

+(Iq −G)(B1 + aȳtπ1G) +Gπt
1Cyyπ1G. (4.80)

The equations (4.75), (4.78), (4.79), and (4.80) complete our E-step computation.

Specifically, when q = 1, the parameter θ is a, b2, σ2, and P , the equations for the

E-step are as follows:

G = b2

b2+σ2

c∗ = (1−G)a+GP tȳ

C∗yc = a(1−G)ȳ +GCyyP

C∗cc = a2(1−G)2 + (1−G)(b2 + 2aGP tȳ) +G2P tCyyP.

(4.81)

M-step: To maximize the function Q(θ, θ(k)), we have taken first order partial

derivatives with respect to a,B1, and σ2. Since there is an orthonormality constraint

on π1, we apply the Lagrange multiplier method to maximize over π1. We separate

the problem into two cases, with q = 1 and q > 1, in the M-step. When q = 1, the
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M-step is as follows: 

a = c̄∗

b2 = C∗cc − c̄∗2

P1 = C∗yc/‖Cyc‖

σ2 = 1
p
(tr(C∗yy) + C∗cc − 2‖C∗yc‖).

(4.82)

In the case q > 1, the M-step includes the equations (4.39), (4.43), (4.70), and

(4.45).

Likelihood function: Computing the likelihood does not affect the numerical

results of the maximization in applying the EM algorithm. But, since the incomplete

data likelihood is a nondecreasing function of iterations, we can use the value of

likelihood as an aid to debugging the EM programs. Thus, we add the computation

of likelihood inside the EM iterative procedure. Because the purpose of computing

likelihood is checking monotonicity, we can drop the large constant term in the

likelihood function, which relates to n. In the Splus function, we calculate likelihood

in four steps: 

d = π1a

Σ = π1Diag(b
2)π1 + σ2Ip

D = Y1Y
t
1

l = −n
2
log|Σ| − 1

2
tr(DΣ−1).

(4.83)

4.3.3 Computational results on simulated data

In this section, we implement these Splus functions on simulated data. First, we

choose the size indices (p, q) of data , the size n of the sample, and the parameters
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θ0 = (a, b2, σ2, π1). Since Y ∼ Np(π1a, π1B1π
t
1 + σ2Ip), we can use the Splus

command “rmvnorm” to randomly generate the sample data.

We choose initially q = 1, along with p = 3, which determine the parameter

dimension. In this case, the number of parameters is 5. Next, we choose the sample

size n = 100 for the case of small sample size and n = 1000 for the case of large

sample size. We are interested in a = 0 because REFM1 then becomes a standard

Factor Analysis Model. Also, we choose b2 = 1, σ2 = 1, and P = (1, 0, 0)t. Now,

we simulate two data sets with the same parameters, but different sample sizes.

Using the true parameters as the starting points, we apply EM1, which is a

Splus function to perform the EM algorithm when q = 1. Referring to Table 4.1, we

can see, in the case of small sample size, the estimates â = −.042, b̂2 = 1.016, σ̂2 =

.885 and P̂ = (.991, − .136, .003)t. These numbers are close to the true parameters.

Consider the iteration stopping criterion according to

|θ(k+1) − θ(k)| < 10−3.

In table 4.1, we record the iteration number k at which each component first shows

a change smaller than 10−3. Most of these iteration numbers are less than 10.

Obviously, most of the estimates and the numbers of iterations are better in the

large sample case (n = 1000).

We tested different starting points for the sample size of n = 100, choosing as

a first set of starting parameters: a = 1, b2 = 2, σ2 = 2, P = (1, 0, 0)t, and as a

second set: a = 3, b2 = 4, σ2 = 5, P = (1, 1, 1)t. In both cases, the EM estimates

for all parameters converge to the same values displayed in Table 4.1, taking only a
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few more iterations to achieve the maximum.

Next, we select another two sets of starting parameters for the sample size

n = 1000, the first being (a = 1, b2 = 2, σ2 = 2, P = (1, 0, 0)t), and the second

(a = 2, b2 = 3, σ2 = 4, P = (1, 1, 1)t). We have all parameters again converging

to the same value as Table 4.1, also taking a few more iterations to achieve the

maximum. This behavior recalls the conclusion of Lemma 4 from the section 2.3.2,

that P̂ = P0 is not only the local but also the global maximum of g̃p(·; θ10).

For the next data set, we select p = 10 and q = 3. This is a very large

parameter size with a total of 31 (3+3+1+9+8+7=31) free parameters to be esti-

mated. Again, we simulate two data sets with n = 100 and n = 1000. Here the

true parameters θ0 were chosen to be a = (1, 1, 1)t, b2 = (3, 2, 1)t, σ2 = 1, P1 =

(1, 0, . . . , 0)t, P2 = (0, 1, 0, . . . , 0)t, and P3 = (0, 0, 1, 0, . . . , 0)t. The data

are random samples from a multivariate normal distribution. Now, both data sets

should be considered as small samples in view of the 31 parameters.

a=0 b2=1 σ2=1 P1=1 P2=0 P3=0

n=100 -.04245 1.01643 .88472 .99074 -0.13573 .00347

#iteration 7 12 6 5 8 7

n=1000 -.00144 1.05643 1.00972 .99823 -.00795 .05887

#iteration 4 11 3 1 3 7

Table 4.1: Results of the EM Algorithm when q=1, where the estimator value is

taken at iteration step = 100, and # iteration represents the number of the iteration

step which first shows a change smaller than 10−3.

118



Using the true parameters as starting points, we apply the Splus function for

the case q > 1. The results are in Tables 4.2 and 4.3. Some of the estimates converge

to values rather far from the true parameters. The largest iteration number is 22

in the sample of size n = 100, and the largest iteration number is 63 in the dataset

of size 1000. This may indicate that the sample size increasing from n = 100 to

n = 1000 is not sufficient to ensure large sample behavior, because of the large

parameter dimension. The overall parameter estimation with n = 1000 still looks

better than with n = 100. However, the improvement in results for the two sample

sizes between Tables 4.2 and 4.3 is still smaller than the difference shown in Table

4.1. Because of the high parameter dimension, we still consider the Splus function

of the EM2 algorithm to be working well.

In order to test the convergence from the different starting points, we set two

different starting points for the sample size n = 100 and n = 1000, respectively. We

had slight differences among the resulting parameter estimates, but the worst differ-

ence is around 10−4. Considering the large dimension of parameters, small sample

size, moderate number (100) of iterations, we do not think these small differences

are a serious problem. When we increase the number of iteration to 2000, the dif-

ferences vanish. This means that all 4 tests are ending at the same convergence

points. In the next section, we verify these results from the EM algorithm by using

a Quasi-Newton method, and calculate component-wise standard errors.

It takes different numbers of iterations to reach the convergence criterion for

each component of parameter θ, as we have seen from Tables 4.2 and 4.3. Sometimes,

we need to measure the overall performance of the parameter, not based on the
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n=100 a1=1 a2=1 a2=1 b21=3 b22=2 b23=1 σ2=1

.84388 .77687 1.06085 4.61825 1.79705 .72465 .97555

#iter 21 14 19 11 6 22 5

P11=1 P12=0 P13=0 P14=0 P15=0 P16=0 P17=0

.97696 .01643 -.12962 .01749 -.06218 -.08372 .01509

#iter 8 10 18 8 8 8 8

P18=0 P19=0 P1,10=0 P21 = 0 P22 = 1 P23 = 0 P24 = 0

-.03481 -.11487 -.05152 .01077 .97129 .05658 .067059

#iter 8 8 8 7 7 13 7

P25 = 0 P26 = 0 P27 = 0 P28 = 0 P29 = 0 P2,10 = 0 P31 = 0

.00760 .18088 -.09511 -.41432 -.01577 .07063 .15349

#iter 7 7 7 7 7 7 18

P32 = 0 P33 = 1 P34 = 0 P35 = 0 P36 = 0 P37 = 0 P38 = 0

-.07432 .97524 -.01472 .03903 .08838 .00721 -.04173

#iter 13 7 8 6 9 6 6

P39 = 0 P3,10 = 0

.09184 .00666

#iter 12 6

Table 4.2: Result of EM Algorithm 2 for sample size 100, where the estimator

value is taken at iteration step = 100, and # iteration represents the number of the

iteration step which first shows a change smaller than 10−3.
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n=1000 a1=1 a2=1 a2=1 b21=3 b22=2 b23=1 σ2=1

1.08347 1.04866 .85460 3.08448 1.78886 .98409 .98074

#iter 22 29 63 7 9 4 3

P11=1 P12=0 P13=0 P14=0 P15=0 P16=0 P17=0

.99784 .01828 .041186 -.01232 -.01456 .00277 -.03565

#iter 1 2 13 3 3 3 4

P18=0 P19=0 P1,10=0 P21 = 0 P22 = 1 P23 = 0 P24 = 0

-.00306 .01791 .0175 -.02357 .992023 .1153 -.00380

#iter 2 3 3 2 1 21 4

P25 = 0 P26 = 0 P27 = 0 P28 = 0 P29 = 0 P2,10 = 0 P31 = 0

-.3509 -01574 -.01346 .01205 -.00431 -.01392 -.03560

#iter 5 3 4 4 2 3 13

P32 = 0 P33 = 1 P34 = 0 P35 = 0 P36 = 0 P37 = 0 P38 = 0

-.11220 .98807 .03432 .06083 -.00472 .05211 -.04708

#iter 52 3 5 6 2 5 5

P39 = 0 P3,10 = 0

-.00601 .00143

#iter 3 2

Table 4.3: Result of EM Algorithm 2 for sample size 1000, where the estimator

value is taken at iteration step = 100, and # iteration represents the number of the

iteration step which first shows a change smaller than 10−3.
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individual component. We introduce a value R to measure the difference between

iteration steps, as follows:

R(k) =
√

(θ
(k+1)
i − θ

(k)
i )/d.

Later on, a similar measure of distance is also used to measure the difference between

two vectors describing tongue curves.

Case 1 Case 2 Case 3 Case 4

R(100) 8.250191e-15 8.317894e-14 2.471331e-07 1.691174e-05

R(2000) x x 2.395897e-16 7.527503e-16

Table 4.4: R-Value in 4 different cases: Case 1: p=3, q=1, n=100. Case 2: p=3,

q=1, n=1000. Case 3: p=10, q=3, n=100. Case 4: p=10, q=3, n=1000.

When the number of EM iterations is 100, in all q = 1 cases the results are

good enough to claim convergence. In all q = 3 cases, convergence has not yet been

achieved. But, when we we increase number of iterations to 2000, we do achieve

convergence.

4.3.4 Quasi-Newton methods on the profile likelihood

If the likelihood function has a unique local maximum, then the maximum likelihood

estimators should be the same regardless of the different numerical approaches.

Thus, we use Quasi-Newton methods on the profile likelihood to verify the results

we got from the EM algorithm on the simulated data.

There is a Splus function, “nlmin”, which finds a local minimum of a non-

linear function using a general Quasi-Newton method optimizer for an input Splus
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function, Based on “nlmin”, we wrote another Splus function for case q = 1, whose

input is a data set, a starting point, a few control parameters, and whose output

is the MLE θ̂2, the maximized value of the profile log-likelihood, and the restricted

MLE θ̂1(θ̂2). When we apply this function to the two simulated data sets in the

case p = 3 and q = 1, we have exactly the same value θ̂2 as we found in the EM

algorithm , and the profile likelihood from the Quasi-Newton method is equal to

the likelihood from the EM algorithm. This result echoes Lemma 2 in Chapter 2.

Also, the value θ̂1(θ̂2) from Quasi-Newton methods is the same as that from the EM

algorithm. The total numbers of iteration steps needed to converge is 5 for sample

size n = 100, and 4 for sample size n = 1000 (with respect to overall convergence

criterion). This number is less than the 12 and 11 iterations, respectively, needed

when applying the EM algorithm. But it takes EM a short time to finish compared

to the Quasi-Newton method. This agrees with the same claim made by Watanabe

and Yamaguchi (2003).

To see how good the estimation is, we have to check the standard error of θ̂i,

which is given by

SE(θ̂i) ≈ (I−1(θ̂))
1
2
ii (i = 1, 2, . . . , d),

where (A)ij means the element in the i’th row and j’th column of a matrix A. Let us

discuss the case q = 1 first. Since ‖P‖ = 1, that is, P 2
1 +P 2

2 +P 2
3 = 1, we can write

P3 =
√

1− P 2
1 − P 2

2 (just choosing a single sign). Then, the likelihood function l(θ)

is a function l(a, b2, σ2, P1, P2) of the parameter θ∗ = (a, b2, σ2, P1, P2). We

can calculate the 5 × 5 Hessian matrix ∇⊗2
θ∗ l(θ

∗). According to Cox and Hinkley
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(1974), the asymptotic covariance matrix of the MLE θ̂∗ is equal to the inverse of

the expected information matrix I(θ∗), which can be approximated by I(θ̂∗).

Let I(θ̂∗) = (−∇⊗2
θ∗ l(θ

∗)|θ∗=θ̂∗)
−1, where θ̂∗ = (â, b̂2, σ̂2, P̂1, P̂2)

t. Thus, the

standard error is

SE(θ̂∗i ) ≈
√
I(θ̂∗).

a=0 b2=1 σ2=1 P1=1 P2=0

n=10000 .00141 .02998 .01007 .00319 .00009

n=5000 .02033 .04183 .01390 .01253 .00020

n=3000 .02605 .0554 .01801 .010667 .00044

Table 4.5: Standard Error

We calculate the Hessian matrix by taking the first order and second order

partial derivatives with respect to a, b2, σ2, P1, P2. We implement a Splus function

to compute the standard error including all derivatives we just calculated. Table

4.5 displays the calculated standard errors for different large sample size of the

individual parameter components.

For the case q > 1, there will be more parameters and more constraints. For

example, in the case q = 3 and p = 10, there are 31 free parameters, and 6 con-

straints on π1 = θ2 as an element of the space M of 10 × 3 matrices. The idea to

obtain the standard error of θ is the same as above. But since π1 = (P1, P2, P3)

has 6 constraints, we remove them by solving 6 constraint equations. Entries

(π1)1,10, (π1)2,9, (π1)2,10, (π1)3,8, (π1)3,9, (π1)3,10 can then be written as functions of
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the other entries, but the expressions are complicated. Moreover, the analytical cal-

culation of the Hessian matrix will be a nightmare. The inverse of a 31×31 Hessian

matrix may also cause problems. Thus, the numerical calculation of standard errors

in cases as large as p = 10, q = 3, will be deferred to future work.

4.4 REFM2 and EM algorithm

In this section, the Random Effect Factor Model II (REFM2) is

yij =
q∑

k=1

cijkPk + εij (i = 1, 2, . . . , s; j = 1, 2, . . . , n),

= π1cij + εij. (4.84)

where yij is a p-dimensional random observation vector, the random effect cij is a q-

dimensional unobservable random vector, and π1 = (P1, P2, ..., Pq) with πt
1π1 = Iq.

Let X be the complete data, which includes the random observation vector yij and

the random unobservable vector cij, that is, xij = (yij, cij). Thus, the complete

data X becomes a (p+ q)-dimensional vector. We have

cij ∼ Nq(ai, Bi), (4.85)

where ai = (ai1, ai2, . . . , aiq)
t, and Bi = Diag(b2i1, b

2
i2 . . . b

2
iq). The conditional

probability distribution over yij, when the unobservable random effects cij are given,

is

yij|cij ∼ Np(π1cij, σ
2
i Ip). (4.86)

Unconditionally, for any fixed group i, {yij} is independently and identically dis-

tributed with

yij ∼ Np(π1ai, π1Biπ
t
1 + σ2

i Ip). (4.87)
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Then, the complete-data log likelihood function is

lX(θ) = log(
s∏

i=1

n∏
j=1

f(xij)),

= −sn(p+ q)

2
log(2π)− np

2

s∑
i=1

log σ2
i −

n

2

s∑
i=1

q∑
k=1

log b2ik

−n
2

s∑
i=1

1

σ2
i

tr(Ci,yy) + n
s∑

i=1

1

σ2
i

tr(Ci,ycπ
t
1)−

n

2

s∑
i=1

1

σ2
i

tr(Ci,cc)

−n
2

s∑
i=1

tr(Ci,ccB
−1
i ) + n

s∑
i=1

at
iB

−1
i c̄i −

n

2

s∑
i=1

at
iB

−1
i ai (4.88)

where c̄i = n−1∑n
j=1 cij, Ci,yy = n−1∑n

j=1 y
⊗2
ij , Ci,yc = n−1∑n

j=1 yijc
t
ij, and Ci,cc =

n−1∑n
j=1 c

⊗2
ij . Thus, lX(θ) for θ = (ai, Bi, σ

2
i , π1), belongs to an exponential family,

and the sufficient statistics are c̄i, Ci,yy, Ci,yc, and Ci,cc.

We can obtain the q×p transformation matrix Di by the a procedure similar to

that in the previous section 4.2.1 under the condition that cij−Diyij is uncorrelated

with yij. This leads to

Di = Biπ
t
1(π1Biπ

t
1 + σ2

i Ip)
−1. (4.89)

The expectation of the unobservable cij given the observed data yij is

E(cij|Y ) = ai +Di(yij − π1ai), (4.90)

and the conditional covariance of unobservable cij given observed data yij is

V ar(cij|Y ) = (Iq −Diπ1)Bi. (4.91)

Therefore, the conditional probability distribution over cij, when the random ob-

servable vectors yij are given, is given by

cij|Y ∼ Nq(ai +Di(yij − π1ai), (Iq −Diπ1)Bi) (4.92)
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where Di = Biπ
t
1(π1Biπ

t
1 + σ2

i Ip)
−1.

E-Step: We calculate the conditional expectation of the complete data log like-

lihood function, lX(θ), given the observation Y and the k’th temporary values of

parameter θ = θ(k):

Q(θ, θ(k)) = E(lX(θ)|Y, θ(k)),

= −sn(p+ q)

2
log(2π)− np

2

s∑
i=1

log σ2
i −

n

2

s∑
i=1

q∑
k=1

log b2ik

−n
2

s∑
i=1

1

σ2
i

tr(C∗i,yy) + n
s∑

i=1

1

σ2
i

tr(C∗i,ycπ
t
1)−

n

2

s∑
i=1

1

σ2
i

tr(C∗i,cc)

−n
2

s∑
i=1

tr(C∗i,ccB
−1
i ) + n

s∑
i=1

at
iB

−1
i c̄∗i −

n

2

s∑
i=1

at
iB

−1
i ai (4.93)

where c̄∗i = E( c̄i| Y, θ(k)), C∗i,yy = E( Ci,yy| Y, θ(k)), C∗i,yc = E( Ci,yc| Y, θ(k)), and

C∗i,cc = E( Ci,cc| Y, θ(k)). Given the current parameter θ(k) and observed data Y, we

have the transformation matrix

D
(k)
i = B

(k)
i (π

(k)
1 )t(π

(k)
1 B

(k)
i (π

(k)
1 )t + (σ2

i )
(k)Ip)

−1, (4.94)

and also calculate the conditional expectation of these sufficient statistics as follows:

C∗i,yy = Ci,yy, (4.95)

c̄∗i = a
(k)
i +D

(k)
i (ȳi − π

(k)
1 a

(k)
i ), (4.96)

where ȳi = n−1∑n
j=1 yij,

C∗i,yc = ȳi(a
(k)
i )t(Iq − (π

(k)
1 )t(D

(k)
i )t) + Ci,yy(D

(k)
i )t, (4.97)

and

C∗i,cc = (Iq −D
(k)
i π

(k)
1 )a

(k)
i (a

(k)
i )t(Iq −D

(k)
i π

(k)
1 )t +D

(k)
i ȳi(a

(k)
i )t(Iq −D

(k)
i π

(k)
1 )t

+(Iq −D
(k)
i π

(k)
1 )(B

(k)
i + a

(k)
i ȳt

i(D
(k)
i )t) +D

(k)
i Ci,yy(D

(k)
i )t. (4.98)
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These equations give the E-step of the (k + 1)’th iteration of the EM algorithm,

where θ(k) denotes the value of θ after the k’th EM iteration.

M-Step: After we calculate the conditional expectation of the complete data log

likelihood function, we perform the M-step, which maximizes Q(θ, θ(k)), that is,

maximizes equation (4.93). There are parameters ai, Bi, σ
2
i , and π1 in our Q-

function. We find ai, Bi, and σ2
i by taking the partial derivative of Q(θ, θ(k)) with

regard to ai, Bi, and σ2
i , respectively. Setting them equal to 0, and simplifying all

equations, we have

âi = c̄∗i . (4.99)

and

B̂i = Diag(C∗i,cc)− Diag(âiâi
t) (4.100)

Since M-step estimation of σ2
i involves π1, we first find σ̂2

i as a function of π̂1.

Thus, we must find an estimate of π1 in terms of (σ2
1, σ

2
2, . . . , σ

2
s) by maximizing

max
π1

s∑
i=1

1

σ2
i

tr(C∗i,ycπ
t
1) = max

π1
tr(

s∑
i=1

1

σ2
i

πt
1). (4.101)

From Lemma 13, we obtain π̂1 as a function of (σ2
1, . . . , σ

2
s). After substituting âi,

B̂i, and π̂1 into the Q-function, this ‘profile’ Q-function only depends on (σ2
1, . . . , σ

2
s).

We will use a Newton-Raphson method to obtain the numerical value of all σ2
i in

each M-step iteration.
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Chapter 5

2-D Coronal Tongue Data
5.1 Data Set

The tongue is the major contributor to vocal tract shape and the resulting speech

signal, and is also an unusual structure in the human body because the internal

musculature of the tongue provides support as both a skeletal bone and muscle,

while the organ itself maintains a constant volume. A change in one dimension

will result in change in at least one other dimension. Theoretically speaking, the

tongue has an infinity of degrees of freedom. The statistical model, although not

directly representative of the underlying muscles, will be used initially to reduce the

complexity of vocal tract and tongue surface behavior through some simple features,

such as openness and shape. The shapes captured by the statistical model should

be explicable by what the underlying muscles can produce.

The methodology of data collection includes a Head And Transducer Support

(HATS) [35] system designed to hold the subject’s head and the transducer steady in

a fixed position. The coronal tongue images were extracted from digitized ultrasound

images recorded on a VCR, using the µ-Tongue software package [37] during natural

speech. The cross-sectional tongue surface was recorded and measured for six sub-

jects (3 Caucasian females, 2 African-American males, 1 Hispanic male), three dif-

ferent sessions and twenty-two different sounds (two consonants and eleven vowels)

by ultrasound, VCR and the µ-Tongue software package in the Vocal Tract Visual-
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ization Laboratory of M. Stone in Baltimore. Each subject speaks each sound five

times successively at each session. Thus we obtained a total of 22×5×3×6 = 1980

cross-sectional tongue images. Each curve image is represented by 120 pairs (x, y),

and different curves do not necessarily have the same x values. Let (xabcdi, yabcdi),

for a = 1, 2, . . . , 6, b = 1, 2, 3, c = 1, 2, . . . , 22, d = 1, . . . , 5, i = 1, . . . 120, be

our raw data set, where a indexes subject, b indexes session, c indexes sound,

d indexes replications within session, and i indexes lateral location on the image

curves.

The ultrasound measuring system is set differently for different subjects and

sessions, which results in arbitrary shifts in the x and y coordinates. Furthermore,

the coronal tongue width varies across subjects and sounds, even for the same speech

sound, session, and speaker. Pre-processing strategies were introduced by Slud et

al. (2002), involving translation in the x and y directions, extension (padding) or

truncation within session, and subtracting constants by sound, session, and speaker.

Hence, the final data set on a common (x, y) coordinate system based upon five

replicated measurements in three sessions for each of six subjects, is

(xi, yabcd,i), (5.1)

where subject is indexed by a = 1, 2, . . . , 6, session by b = 1, 2, 3, sound by

c = 1, 2, . . . , 22, replication by d = 1, 2, 3, 4, 5, and observations (points) along

the image curve by i = 1, 2, . . . , 101. We have a total of 6 × 3 × 22 × 5 = 1980

cross-sectional tongue images available to analyze.
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Figure 5.1: Percent of variance in the i’th PC from the Tongue data.

5.2 Data Analysis Using EM Algorithm

First, we ran a Principal Component Analysis on the final Tongue data Y , a 1980×

101 matrix, obtained by pre-processing Plan 5 of Slud et al. (2002) combining all

pre-processing steps. The percentage of variance (in order) accounted for by the

successive PC’s are: 57.4%, 18.6%, 16.1%, 5.1%, 1.9%, .6%, and .2% (see Figure

5.1). The first six components capture over 99% of variation. Therefore we decide

to reduce the data by projecting onto only the first 6 PCs. The principal space is

V = span{PC1, PC2, . . . , PC6}. We use PC1 and PC2 as a basis with which to

compare the estimated directions which we will later find in the factor space by the

EM algorithm.

We directly apply the EM algorithm for REFM1 with q = 1, a = 1, b2 =

1, σ2 = 1, P = (1, 0, . . . , 0) on the final Tongue data. We find the estimated
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Figure 5.2: Tongue Data: PC1 vs. the first basis factor directions from the EM

algorithm with different approaches (six curves total).

direction P at the 100th iteration step in factor space is almost the same as the

PC1 of Slud et al. (2002). The accuracy R(100) is 4.46e-14, and the difference

between PC1 and P is 1.82e-4 (R value). Next, we directly apply the EM algorithm

for REFM1 using q = 2 on the same data with starting points: a = (1, 1), b2 =

(3, 1), σ2 = 1, P1 = (1, 0, . . . , 0), and P2 = (0, 1, 0, . . . , 0). First, we iterate 100

times. The accuracy for the EM algorithm is R(100) = 2.36e− 4. We estimate two

basis directions P1 and P2 which are completely different from the first two Principal

Components. When we increase the number of iteration from 100 to 1000, P1 and

P2 move toward PC1 and PC2, respectively. But, the change in parameter estimates

from one iteration to the next does not increase since R(1000) = 2.40e− 4. We will

further investigate P1 and P2 convergence of estimate in the future.

Since the dimension of the Tongue data is high, p = 101, and also the first six
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PCs dominate the total variance, we project the Tongue data on the principal space

V by Y ∗ = Y π1 where π1 = (PC1, PC2, . . . , PC6) is a 101 × 6 matrix. That

is, we project the 1980 × 101 matrix orthogonally to a 1980 × 6 matrix. Now, the

projected data consist of 1980 observations on 6 dimensions. It is much easier to

estimate all parameters in the case p = 6 by the EM algorithm. We implement two

Splus functions on the projected data set by choosing q = 1 and q = 2, respectively.

When we iterate 100 times, the single iteration index R of change is 1.16e-14 and

2.73e-5, respectively. We obtain P ∗ as the single (q = 1) 6-dimensional estimated

basis vector, P ∗1 as the first basis direction in case q = 2, and P ∗2 as the second

basis direction in case q = 2. Now, we transform back P ∗, P ∗1 , and P ∗2 to R101 by

P ∗∗ = π1P
∗, P ∗∗1 = π1P

∗
1 , and P ∗∗2 = π1P

∗
2 . The operator projecting to the residuals

from the mapping and transform is I101 − π1π
t
1. Then P ∗∗, P ∗∗1 , and P ∗∗2 are 101

dimensional vectors. The difference (root mean-square component-wise difference)

between P ∗∗ and PC1 is 4.08e-3; the difference between P ∗∗1 and PC1 is 2.76e-2; and

the difference between P ∗∗2 and PC2 is 1.57e-4.

Using P ∗∗1 and P ∗∗2 as starting points to rerun REFM1 with q=2, we find

R(100) = 3.54e − 5, and the estimate vectors P
(2)
1 and P

(2)
2 are close to PC1 and

PC2 with root mean-square component-wise difference 1.01e-2 and 5.50e-4.

We see from the simulated data and the Tongue data that REFM1 with q = 1

converges quickly to a global maximizer of log-likelihood. Then we can apply the

same model again on data projected to the orthocomplement of the basis direction

already found. Let Y ∗∗∗ = Y (I101−PP t). Then REFM1 with q = 1 applied to Y ∗∗∗,

yields the estimated (q = 1) basis direction P ∗∗∗. We compare P ∗∗∗ to PC2. The
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Figure 5.3: Tongue Data: PC2 vs. the second basis factor directions from the EM

algorithm with different approaches (five curves total).

difference between them is 5.16e-5. To summarize, we make two plots, respectively

of PC1, P ∗∗, P ∗∗1 , P, P1, and P
(2)
1 (Figure 5.2), and of PC2, P ∗∗2 , P2, P

(2)
2 , and P ∗∗∗

(Figure 5.3). All basis directions from the EM algorithm for REFM1 coincide with

PC1 and PC2 to high accuracy except P1 and P2.

Our real data example shows that REFM1 can estimate the principal space

about as well as PCA does. Besides that, REFM1 has other nice properties on

other parameters. Moreover, REFM1 could be used to simulate artificial data, but

PCA could not.

Remark: As an alternative computational method, we could first project P1 and

P2 onto the Principal space V by P1 π1 and P2 π1. Using them as starting points

to run the EM algorithm in REFM1 with q = 2, the two estimate basis directions

at the 100th iteration are almost the same as P ∗1 and P ∗2 . 2
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Chapter 6

Summary
We introduced a new model, Random Effect Factor Model I (REFM1), and found

a sufficient condition to identify all parameters. We characterize the maximum

likelihood estimators (MLE’s) under REFM1 by a profile likelihood method. That

is, we maximize the likelihood first with respect to θ1 = (a, B, σ2), with the other

parameter component θ2 fixed, find closed-form restricted MLE’s â, B̂, σ̂2 in terms

of the factor directions. We then substitute â, B̂, σ̂2 into the likelihood, and finally

maximize the profile likelihood with respect to the factor directions. We prove that

there exists a unique local maximum of the profile likelihood . In the special case

when q = 1, the maximum is the global maximum. Also, we show that the restricted

MLE and MLE from the profile likelihood are consistent. We show that the Hessian

matrix for θ1 is negative definite and also prove without calculating the derivatives

that the Hessian matrix for θ2 is negative definite. From that, we conclude the

positive definiteness of the Fisher Information matrix in terms of free parameters.

This ensures that the asymptotic properties of the MLE such as asymptotic normal

distribution hold. Finally, we show that the maximizer of the profile likelihood

function lp(θ2) over the factor directions, combined with the restricted MLE for

other parameters, is the joint MLE of the likelihood function.

We extend our new model to multivariate data from s groups (s > 1). We

further introduce two more new models. REFM2 is a model which assumes all s
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groups have a common factor space but differing mean and variance parameters

for factor loadings and error terms, and REFM3 is a model which has not only

a common factor space but also an additional individual space belonging to each

group only. We find sufficient conditions to identify all parameters, and give the

closed-form expressions for the restricted MLE’s θ̂1.

We find the EM algorithm formula for REFM1 to compute MLE and also

a slightly less explicit EM algorithm formula in REFM2. The performance of the

algorithm on simulated data for REFM1 is described. Quasi-Newton methods are

also used to calculate the MLE of the profile likelihood lp(θ2) and yield the same

results as the EM algorithm. Finally, we apply the EM algorithm for REFM1

estimation to a real data set on ultrasound cross-sectional images of the tongue

during speech.

In the next phase of work, we will focus on the following three areas: com-

putational, theoretical and applications. In the computational area, we will explore

methods to calculate standard errors for all models, implement Quasi-Newton meth-

ods using Splus to find MLE for the case q > 1, and extend the EM algorithm to

our models REFM2 and REFM3. In further theoretical work, we will establish con-

sistency and MLE asymptotic normality in REFM2 and REFM3. We have applied

our model to a real tongue dataset. The question we often ask is “Where else can

we apply our models?”.
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