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Introducing squeezed states of light into interferometers can increase the phase 

sensitivity of the device beyond the standard quantum limit (SQL). We discuss an 

SU(1,1) interferometer, where nonlinear optical elements replace the beam 

splitters in a Mach-Zehnder interferometer. A two-mode squeezed state of light is 

generated inside of such an interferometer. We talk about the phase sensitivities 

of an SU(1,1) interferometer with different detection schemes and their 

improvement over the SQL. We also discuss the concept of an optimal detection 

scheme for phase measurement in an interferometer. We describe a modification 



of the SU(1,1) interferometer which reduces the experimental complexities while 

giving the same phase sensitivity. We call the design a truncated SU(1,1) 

interferometer. We show our experimental results of 4 dB improvement in phase 

sensitivity over the SQL using a truncated SU(1,1) interferometer. We also 

compare the theoretical sensitivities of vacuum-seeded configurations of a 

conventional and a truncated SU(1,1) interferometer, and show our experimental 

results for the phase sensitivity of the truncated version. We explain the 

dependence of phase sensitivity on the measurement of squeezing. We talk about 

the methods to improve the measurement of squeezing in a 4-wave mixing 

experiment, and our efforts in implementing them. Finally, we mention our progress 

in measuring a big phase shift using an adaptive algorithm in the truncated SU(1,1) 

interferometer, and discuss the technicalities involved in big phase measurements.   
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Overview 

Precision phase measurement has applications in a wide variety of areas including 

gravitational wave detection and biological imaging [1, 2]. Interferometers are 

devices used for phase measurements of an electromagnetic field. Phase 

measurements could be of two types. One is a measurement of a small phase 

disturbance around an otherwise fixed phase of light in an interferometer. The 

process is known as phase sensing. The other phase measurement process 

involves measuring a big unknown phase shift. 

Historically, the Mach-Zehnder interferometer has been widely used for phase 

sensing. A classical Mach-Zehnder interferometer uses a coherent state of light. 

The sensitivity of a classical Mach-Zehnder interferometer provides a standard for 

phase sensitivity, known as the standard quantum limit (SQL). The phase 

sensitivity of an interferometer can be increased over the SQL using quantum 

mechanical states of light such as squeezed states [3, 4, 5] and photon number 

states [6, 7]. We refer to the phase sensitivity over the SQL as the phase 

super-sensitivity. Yurke et al. [8] suggested generating a squeezed state of light 

inside an interferometer instead of injecting it as an input to show phase 

super-sensitivity. The generation of squeezed states requires a nonlinear optical 

medium, hence the interferometer suggested by Yurke et al. is a nonlinear 

interferometer. Yurke et al. call this interferometer an SU(1,1) interferometer. The 

operation of an SU(1,1) interferometer can be described solely by transformations 

of the Lie algebra generators of the SU(1,1) group, hence the name SU(1,1) 
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interferometer. Similarly, a Mach-Zehnder interferometer is also known as an 

SU(2) interferometer as its working can be explained using the rotation of the 

angular momentum operators, which are the generators in the SU(2) group. We 

describe more on the naming in Chapter 3 and Appendix B. Recently, people have 

demonstrated an application of SU(1,1) interferometer in detection loss tolerant 

interferometry [9]. 

Experimentally, an SU(1,1) interferometer is scarcely explored. In 2014, Hudelist 

et al. [10] showed phase super-sensitivity. But their experiment did not show a 

direct signal to noise ratio measurement or direct measurement of the phase 

uncertainty. Very recently in 2017 and 2018, some groups have shown certain 

super-sensitive phase measurements with a few configurations of an SU(1,1) 

interferometer [9, 11]. In this thesis, we build on some of the existing theoretical 

work on SU(1,1) interferometers [8, 12, 13]. We analyze the sensitivity of different 

detection schemes in an SU(1,1) interferometer and determine the optimal 

detection scheme for an SU(1,1) interferometer. We suggest a variation on an 

SU(1,1) interferometer and show its phase super-sensitivity that matches the 

phase sensitivity of a traditional SU(1,1) interferometer. We call our variation a 

truncated SU(1,1) interferometer. The truncated version of an SU(1,1) 

interferometer greatly simplifies the experimental design by removing one of the 

two nonlinear devices present in an SU(1,1) interferometer; we explain this in 

Chapter 3. We also built an experimental setup for a truncated SU(1,1) 

interferometer and showed its phase super-sensitive behavior by demonstrating 

≈4dB improvement in signal to noise ratio over the SQL.   
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Another kind of phase measurement process is a measurement of an unknown big 

phase shift, also known as adaptive phase measurement. Here instead of sensing 

a small phase variation around an otherwise fixed phase of light, one tries to 

measure a big phase shift in the light. In this limit, the approximation sin(θ) ≈ θ, 

where θ is the unknown phase shift, breaks down. An unknown phase is placed in 

one of the arms of an interferometer, and the phase is tracked with a controllable 

phase device in the other arm of the interferometer. The process requires adaptive 

algorithms to determine the phase applied to the controllable phase device in the 

interferometer, hence the name adaptive phase measurement. Here again, the 

use of quantum resources has provided a reduction in phase measurement error 

over the SQL [14, 15, 16]. Improvement in adaptive phase measurement has been 

shown with the use of a single-mode squeezed state [15, 16] and with the use of 

photon number states, though with post selection of data [17]. As per our 

understanding, no work in this area has been performed with the use of a two-

mode squeezed state. In our work, we try to perform a big AC phase (~10 KHz 

bandwidth) measurement with our truncated SU(1,1) interferometer. We report the 

progress of our experimental setup and show some preliminary measurements in 

our setup.  

Since an SU(1,1) interferometer generates a two-mode squeezed state for 

achieving phase super-sensitivity, we start our discussion with the introduction of 

squeezed states of light in Chapter 1. We describe the phase space representation 

of a squeezed state. We talk about the quadrature operators and discuss 

squeezing in these operators. We also provide a description for our four-wave 
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mixing experimental setup which we use to generate our two-mode squeezed 

state.  

In Chapter 2, we discuss the measurement of quadrature operators with homodyne 

detectors. We describe homodyne detection and talk about various parameters 

involved in performing an accurate quadrature measurement. We also discuss 

various techniques we used to improve the measurement of squeezing in our 

experimental setup. 

In Chapter 3, we describe an SU(1,1) interferometer in two different configurations 

namely a coherent seeded and a vacuum seeded configuration. We theoretically 

discuss the phase sensitivities of different detection schemes and provide optimal 

detection schemes in both the configurations. We theoretically analyze the 

truncated SU(1,1) interferometer and present experimental data on the phase 

sensitivities of the truncated SU(1,1) interferometer in both the coherent seeded 

and the vacuum-seeded configurations.  

Finally, we mention our progress in performing an adaptive phase measurement 

with our truncated SU(1,1) interferometer. We discuss the concept of an adaptive 

phase measurement in greater detail. We provide the details of the experiment we 

have built for performing such a phase measurement and show some preliminary 

data.  
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1 Introduction 

1.1 QUANTUM MECHANICAL LIGHT 

We will start with the quantum mechanical representation of light, where we define 

the light using the annihilation (a) and the creation (a†) operators, which are 

complex conjugates of each other. We can define light using many 

representations, in this document we will mostly concern ourselves with the 

quadrature representation of light. For our purposes, the quadrature operators are 

very useful in phase measurement applications which we describe in Chapter 3 

and 4. We can describe light using two orthogonal and non-commuting quadrature 

operators namely the amplitude and the phase quadratures [18]. 

Xamp =
a + a†

2
(1. 1) 

and 

Xphase =
a − a†

2i
(1. 2) 

We can represent a general quadrature operator in the phase space using the 

below equation 

X =
aeiϕ+a†e−iϕ

2
. (1. 3)   

We can get a classical analogy by replacing the annihilation operator with the 

complex electric field and creation operator with the complex conjugate of the field. 
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The sine and the cosine terms of the electric field form a pair of orthogonal 

quadratures in classical wave optics. 

For a bosonic system like light, the operators a and a† are non-commuting with the 

commutator value given by [a, a†] = 1. The non-commuting property of the 

operators a and a† can be written in terms of the amplitude and the phase 

quadrature operators, whose commutator is given by 

[Xamp, Xphase] =
i

2
. (1. 4) 

The Heisenberg relation for the uncertainty in the measurement of the two 

operators as a consequence of their non-commuting property 

Δ2Xamp ∗ Δ2Xphase ≥
1

4
(1. 5) 

There are certain states of photons which satisfy the equality of the Heisenberg 

relation. Coherent beams and quadrature squeezed light are a few examples of 

them. We will discuss these in detail. 

Before describing specific quantum states of light, we begin with a very helpful 

graphic description of the electro-magnetic (EM) field in phase space using the 

quadrature operators. Figure 1.1 shows the phase space representation of 

different beams. The stick in each plot represents the amplitude of the light, and 

the angle ϕ denotes the phase of the light. The direction along the line represents 

the amplitude quadrature (Xamp) of the light and the direction perpendicular to it 

presents the phase quadrature (Xphase). 
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1.2 SQUEEZED LIGHT 

Before launching ourselves into the squeezed light description, we briefly introduce 

the coherent beam. As mentioned earlier, a coherent beam satisfies the 

Heisenberg uncertainty relation, such that the product equals ¼. Another important 

property of the coherent beam is that the noise of the two orthogonal quadratures 

operators are equal, with each being ½. Figure 1.1 (a) shows the phase space 

representation of a coherent beam, with the size of the ball being the same for the 

measurement operators along any direction [18] [19]. 

Like a coherent state, a squeezed state of light also satisfies the equality of the 

Heisenberg relation, i.e., the product of variance in two orthogonal quadratures 

equals 1/4. But unlike a coherent state, the variances in the orthogonal quadrature 

operators of a squeezed state are different, i.e., one of the quadratures becomes 

less noisy than the coherent beam noise at the expense of the other acquiring 

more noise. For a squeezed state, we can use this notation to represent the 

quadrature noise values:  

Δ2Xanti−sq = e2r 

Δ2Xsq = e−2r, (1. 6) 

where the parameter r defines the ellipticity of the noise ellipse in the Figure 1.1 

(b) and (c). Xanti−sq represents the anti-squeezed quadrature, and Xsq, the 

squeezed quadrature of the light. The quadrature along the stick in Figure 1.1 is 

the amplitude quadrature and the one perpendicular to it is the phase quadrature. 

Figure 1.1 (c) shows a phase squeezed state of light.  
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(a) coherent state of light. 

 

(b) squeezing in arbitrary quadrature. 

 

(c) phase quadrature squeezed state of light. 

Figure 1.1: (a) Phase space representation of a coherent beam, and of squeezed light ((b) and 

(c)) with squeezing in different quadrature operators.  

So far, we talked about the relationship between the amplitude and the phase 

quadrature of a single beam. But there could be states where a normalized 

combination of the quadrature operators of two or more beams shows a reduction 

in noise below the noise of a coherent beam, referred to as the shot noise limit 

(SNL). In this thesis, we will analyze a specific kind of beam known as a two-mode 

squeezed state. We call the two modes of the light, the probe, and the conjugate.  
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Figure 1.2: Phase space representation of joint quadrature noise of a two-mode squeezed state of 

light. 

Figure 1.2 shows a phase space representation of a specific two-mode squeezed 

state. In our lab, we generate a two-mode squeezed state, which shows squeezing 

in the phase sum and the amplitude difference quadratures of the probe and the 

conjugate beams, and hence anti-squeezing in the phase difference and amplitude 

sum quadratures. The phase sum quadrature can be written as 

X =
Xphase

p
+ Xphase

c

√2
(1. 7) 

We can write other joint operators in a similar way as in equation (1.7). Next, we 

will proceed to the generation of the squeezed states of light, especially the two-

mode squeezed light used in our experiments.  

1.3 GENERATION OF TWO-MODE SQUEEZED LIGHT 

There are multiple ways to produce a quadrature squeezed light beam. One very 

widely used method is the use of a 2nd order nonlinearity (χ(2)) in a birefringent 
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material (for example Lithium niobite, periodically poled KTiOPO4 crystal) inside a 

cavity. The device thus formed is known as an optical parametric oscillator (OPO). 

There is a significant amount of literature on the topic [20, 21, 22]. In this thesis, 

we will consider another source of squeezed light namely four-wave mixing (4WM). 

In our lab, we use a 4WM process in hot rubidium-85 (85Rb) vapor, where we utilize 

the χ(3) nonlinearity in the system [23, 24, 25]. In the process, as shown in 

Figure 1.3, we send a strong pump beam (≈795 nm) through a hot 85Rb vapor cell, 

along with this we pass another beam 3 GHz down-shifted from the pump beam 

at an angle of ≈1o with the pump beam. Using the χ(3) nonlinearity, the medium 

amplifies the seed probe to give an output probe beam and, in the process, 

produces a conjugate beam (3 GHz upshifted from the pump beam) at an angle of 

≈1o with the pump beam (and ≈2o with the probe beam). The angles are a result of 

the momentum and energy conservation process. The momentum and the energy 

conservation relationships for the pump, probe, and the conjugate photons are 

given by  

2k⃗ pump = k⃗ probe + k⃗ conjugate, (1. 8) 

2ωpump = ωprobe + ωconjugate. (1. 9) 

The 1o angle is due to the differing refractive indices of the probe, conjugate, and 

the pump beams which otherwise would result in collinear beams. 
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Figure 1.3: Experimental setup for producing a two-mode squeezed state of light. 

 

Figure 1.4: Energy level diagram of the Rb-85 atom, showing the process of 4WM to produce the 

twin beams. 

Before moving further, we briefly describe the quantum mechanical process. See 

the references mentioned earlier for descriptive explanations [26, 23]. Figure 1.4 

shows the energy level diagram of 85Rb with the D1 transition line at 795 nm. We 

detune the pump beam almost 700 MHz blue to the D1 transition line, the process 

drives the transitions F=2 → F’ and F=3 → F’’, leading to the generation of the 

probe (3 GHz downshifted from the pump) and the conjugate (3 GHz upshifted 

from the pump).  
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The emission of a probe photon always accompanies the generation of a conjugate 

photon, and hence we call the pair twin beams. The photon pair is entangled in the 

quadrature space, giving quantum mechanical correlations. These quantum 

correlations provide sub-shot-noise fluctuations in the joint phase sum and the 

amplitude difference quadratures of the two beams. The reduction in quadrature 

noise below the SNL is the basis of the name of “two-mode squeezed” light. We 

will discuss more properties of the twin beams in the next section. 

1.4 PROPERTIES OF LIGHT IN OUR EXPERIMENTAL SETUP 

The probe and the conjugate produced in our experimental setup form a pair of 

two-mode squeezed light beams. Individually, these beams have bigger variances 

in quadrature space than a coherent beam. If the process of 4WM in Figure 1.3 is 

vacuum seeded, the two beams are thermal in nature and if the process is seeded 

with a coherent seed beam, the probe and the conjugate are displaced thermal 

beams, individually. Figure 1.5 shows the quadrature picture of the probe beam, 

generated with a seeded 4WM process, and its comparison with a coherent beam. 

In our setup, the excess noise of the probe (and the conjugate) beam over coherent 

beam noise depends on the gain of the 4WM process and increases with it. For a 

typical gain of 3 in our 4WM process, the excess noise is ≈7 dB, i.e., the probe 

beam noise is more than four times that of the coherent beam. The relationship 

between the excess probe (or the conjugate) noise over the quadrature noise of a 

coherent beam is given by  

Δ2Xprobe = −1 + 2G. (1. 10) 
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a 

 

b 

Figure 1.5: Phase space representation of the (a) probe beam and (b) probe beam (orange) and 

a coherent state (green).  

 

Figure 1.6: Phase space representation of joint quadratures of the probe and the conjugate 

beams (orange) and the SNL (green). 

Having described the individual beam noise, we now discuss the joint quadrature 

measurement of the twin beams. In our 4WM process, the joint phase sum 
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quadrature has lower noise than the SNL, whereas the joint phase difference 

quadrature is the anti-squeezed one (Figure 1.6).  

Having discussed squeezed states of light, their generation, and the uncertainties 

involved in the quadrature operator measurements, we now move on to the 

measurement of the squeezing in the quadrature noise. 

1.5 MEASUREMENT OF A QUADRATURE OF LIGHT 

The direct detection of light measures its power and does not give any phase 

information. To measure the light quadratures, we need phase as well as 

amplitude information. One method to do this uses homodyne detection. In a 

homodyne detector, the signal beam (whose quadrature we want to measure) 

overlaps with a strong local oscillator (LO), of the same frequency and spatial 

mode, on a 50:50 beam splitter (Figure 1.7). The outputs of the beam splitter are 

detected on two photo-diodes, and the resulting photocurrents are subtracted. The 

output is a quadrature term of the signal beam amplified by the amplitude of the 

local oscillator [18, 19, 20, 27]. We represent a signal beam with the annihilation 

and the creation operators ae−iθ and a†eiθ, where θ is the phase of the field. We 

define the LO field classically with |αLO|eiθLO, where |αLO| is the amplitude of the 

field and θLO is the phase. The output of the homodyne detector is given by  

X = |αLO|
ae−i(θ−θLO) + a†ei(θ−θLO)

√2
, (1. 11) 

where 
ae−i(θ−θLO)+a†ei(θ−θLO)

√2
 is a generalized quadrature of the signal beam. |αLO| 

acts as a scalar amplification factor in the output. 
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Figure 1.7: Homodyne detector for quadrature measurement. a and a† are the annihilation and the 

creation operators of the signal beam. |αLO| is the amplitude of the LO beam. θ and θLO are the 

phases of the signal beam and the LO respectively. 
ae−i(θ−θLO)+a†ei(θ−θLO)

√2
 represents a generalized 

quadrature of the signal beam. The output of the homodyne detector is given by X. 

The assumptions of a strong LO with the same spatial profile as the signal beam 

and the balance of the 50:50 splitter are important for accurately determining the 

quadrature term. Otherwise, the system will introduce loss or excess noise from 

extra terms in the output. We study the effect of these parameters later. 

In our system, we have a two-mode squeezed state, and we care about the joint 

quadrature measurement instead of just a single beam quadrature. As seen 

earlier, the joint quadrature is just a linear combination of the quadratures of the 

twin beams. Hence, to measure it, we perform homodyne detection on each beam 

and then add (with or without an additional phase shift on each homodyne signal) 

the two output currents (Figure 1.8) [28, 26].  
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Figure 1.8: Joint homodyne detection setup for two-mode squeezed light. 

For our system (assuming no optical loss), we can express the joint quadrature 

noise using the gain of the 4WM process and quadrature phases of the homodyne 

detectors on the probe and the conjugate as: 

Δ2X = −1 + 2G + 2√G(G − 1) cos(θprobe + θconjugate) , (1. 12) 

where θprobe and θconjugate are the phase differences between the probe beam and 

its LO and likewise for the conjugate beam, respectively. We derive the above 

equation in Appendix B.  

Figure 1.9(a) shows the theoretical simulation of the quadrature noise of lossless 

two-mode squeezed state of light as a function of probe beam quadrature phase, 

based on equation (1.11). While in Figure 1.9(b) we put our experimental data of 

squeezing. We see that the anti-squeezing and squeezing measurements do not 

have equal magnitudes. This is due to the presence of optical loss or the addition 

of excess noise from the experimental setup or from the generation process itself 

which we discuss in a later chapter. But, for the sake of this discussion, we can 
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see the phase dependence of noise in the theoretical simulation and the 

experiment as well. 

 

Figure 1.9a 

 

Figure 1.9b 

Figure 1.9: (a) Theoretical simulation of the joint quadrature noise for a lossless two-mode 

squeezed state, (b) experimental observation of quadrature noise in our setup. The x-axis is time, 

and the phase changes irregularly due to experimental fluctuations. The data was taken by letting 

the phase of the beam freely run.  

Having discussed the basic ingredients of squeezing and its measurement, we 

now discuss the factors affecting the measurement of squeezing, both in general 

and specific to our experimental setup.  
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2 Factors affecting the measurement of the squeezing of 

the noise 

In this chapter, we examine the factors affecting the measurement of squeezing 

and some of the technical improvements made to the experimental 4WM setup. 

Some of the main contributors affecting the squeezing measurement are the 

optical loss in the system and the imperfections in the detection system. 

2.1 OPTICAL LOSS IN THE SYSTEM 

As the probe and the conjugate beams traverse the system and the optical 

elements, they suffer the loss. The optical loss can happen through the process of 

scattering, absorption, or the change in polarization due to reflection or refraction 

through the optics. Loss reduces the correlations between the probe and the 

conjugate photons and hence reduces the measured squeezing. In our system, a 

major optical loss comes from the nonlinear medium itself. The probe beam in our 

system is close to an atomic resonance, as shown in Figure 2.1, falling within the 

doppler width, leading to an excess absorption on the beam.  
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Figure 2.1: Energy level diagram for Rb-85. 

Adding loss on the beams, the noise is given by  

Δ2X = −1 + (G − 1)ηc + (G − 1)ηp + 2√G(G − 1) cos(θp + θc) (2. 1) 

Here ηp and ηc are the transmittances of the probe and the conjugate beams 

respectively. The main effect of loss is to reduce the squeezing in the experiment, 

though it doesn’t cause as much reduction in the anti-squeezing resulting in a 

squeezing plot which is not symmetric around the SNL (Figure 2.2). In this case, 

there is ≈5% extra loss on the probe beam than on the conjugate, this is because 

the probe frequency is closer to the atomic resonance.   
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Figure 2.2: Joint quadrature noise in a lossy medium with the probe and the conjugate beam losses 

as indicated. 

The important characterization here is the behavior of squeezing with the loss in 

the system. Figure 2.3 shows the variation of squeezing as a function of loss on 

the probe beam (the loss on the conjugate beam is 5% less, a typical experimental 

value). We can see reduction of squeezing as the loss in the system increases 

(transmittance decreases). In fact, optical loss is one of the biggest issues that 

limits the measured squeezing.  

 

Figure 2.3: Squeezed quadrature noise as a function of optical loss on the probe beam. 

The other source of loss is the detection loss. Sometimes a photon incident on a 

diode does not trigger an electron-hole pair, leading to the loss of the photon 

without detection. This can happen due to the reflection of the photon from the 

diode or transmission of the photon through the diode. In our experiment, we use 
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a diode with a responsivity ρ ≈0.626 A/W at the wavelength of 795 nm. This 

translates to a detection efficiency of ηDE ≈0.98 at this wavelength. 

In a detector circuit, the current (i) produced in a diode, with a responsivity (ρ), by 

a light field with power (P) is given by:  

i = ρ ∗ P (2. 2) 

The responsivity (ρ) of the diode is related to the detection efficiency (ηDE) of the 

diode by the expression: 

ρ = ηDE ∗ e ∗
λ

h ∗ c
(2. 3) 

where λ is the wavelength of light, c is the speed of light and h is Plank’s constant.  

2.2 IMPERFECTIONS IN HOMODYNE DETECTORS 

As already seen, a homodyne detector gives a signal proportional to the 

quadrature of the signal beam and amplified by the amplitude of the LO. 

Experimentally, there are many things in a homodyne detector that one must 

account for to get an accurate result. We will now discuss those details. 

2.2.1 50:50 beam splitter ratio 

To measure the quadrature noise in our twin beams, we make a homodyne 

detector. As described earlier, in a homodyne detector, we overlap the signal beam 

(whose quadrature we want to measure) with a strong LO with the same frequency 

and spatial mode as the signal beam on a 50:50 beam splitter as shown in 

Figure 2.4. We detect the two beams thus obtained on two photodiodes and 
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subtract their photocurrent to obtain a signal proportional to the quadrature of the 

signal beam [18]. 

 

Figure 2.4: Homodyne detection set up as described in Figure 1.7. 

Ideally, the beam splitter ratio should be 50:50, imperfections in the ratio add 

excess noise to our measurements of the squeezed quadrature. The excess noise 

added to the measurement can be represented by,  

ΔN = 1 + 16δ2 (
Δ2Aprobe LO + Δ2Aconjugate LO

Δ2Xsig
) , (2. 4) 

here Δ2Aprobe LO, Δ2Aconjugate LO, Δ2Xsig, and δ are the amplitude noise of the probe 

LO, the conjugate LO, the squeezed quadrature noise of the signal beam 

compared to the shot noise level (SNL), and the beam splitter imbalance, 

respectively. We derive equation (2.4) in Appendix A. 

In our experiment, we use local oscillators generated using the same 4-wave 

mixing process as the twin beams. The process gives thermal (or at least pseudo-

thermal) statistics to the photons in the LO beams. The thermal beams have higher 

noise compared to a coherent beam (shot noise level), and it depends on the gain 
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of the 4WM process. The amplitude quadrature noise of a thermal beam generated 

using the 4WM process and the 4WM gain (G) are related as,  

ΔXamp
2 = Δ2A = 2G − 1. (2. 5) 

The amplitude noise of the probe and the conjugate LOs, i.e., Δ2Aprobe LO and 

Δ2Aconjugate LO, are the same as their amplitude quadrature noise, i.e., ΔXamp
2 =

Δ2Aprobe LO, and similarly for the conjugate LO. For our typical values of gain, the 

thermal beams have ≈7 dB excess noise over the SNL. Further, we can achieve a 

quadrature noise squeezing of ≈5 dB below the SNL in our setup. The difference 

in the thermal beam noise and the squeezed noise sets the ratio 

(
Δ2Aprobe+Δ2Aconjugate

Δ2Xsig
) in equation (2.4) to be ≈12 dB. We use this ratio to analyze 

the excess noise added to the squeezed quadrature as a function of beam splitter 

imbalance δ. 

 

Figure 2.5: Excess noise in the joint squeezed quadrature as a function of imbalance of the probe 

and the conjugate beams. We used the same imbalance for both homodyne detectors.  
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Figure 2.5 shows that a 4% beam splitter imbalance can add an excess noise of 

≈1.5 dB, while an imbalance of 1% or less does not affect the squeezing 

measurement significantly. As a precautionary note, the above simulation 

assumes 7dB excess noise in LO and nearly 5 dB of expected squeezing on the 

twin beams. If the experimental parameters change significantly, the above 

estimates may not be valid. 

2.2.2 Imbalance in the LO oscillator power of the probe and the conjugate 

To measure the joint quadrature of our twin beams we use individual balanced 

homodyne detectors for both the probe and the conjugate beams, and then we 

take their combination. The output of each homodyne detector is given by ApX(θ)p 

and AcXc(ϕ), where Ap and Ac are the amplitudes of the probe and the conjugate 

LOs, and Xp(θ) and Xc(ϕ) are the corresponding quadrature operators, 

respectively. Adding the photocurrents of the two homodyne detectors, we obtain 

Xj =
ApXp(θ) + AcXc(ϕ)

√2
(2. 6) 

Now it is evident from equation (2.6) that to extract the joint quadrature we need 

Ap = Ac, i.e., the amplitudes of the two LOs should be equal.  

One way to adjust the ratio of Ac and Ap is to use an electronic attenuator instead 

of adjusting the optical powers of the two LOs. We can electronically attenuate the 

homodyne signal with the larger LO power (usually probe homodyne detector in 

our system) to match the two signals.  
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One of the reasons, we study this here is that we produce our local oscillators 

using the same 4WM process used to produce the probe and the conjugate 

beams. To produce the LO, the 4WM process amplifies a weak seed in the probe 

beam path to produce the probe LO and simultaneously produces the conjugate 

LO. Since we seed the probe LO beam, there is always more power in the probe 

LO than the conjugate LO, the difference being equal to the power of the seed 

beam. When the 4WM gain is small, this difference could be significant compared 

to the powers of the LO beams, and thus can affect the measurement of squeezing 

substantially.  

 

a 

 

b 

Figure 2.6: Experimental data showing the variation of squeezing as a function of the difference 

between the powers of the two LOs. 

Figure 2.6 shows the effect of the imbalance in power between the two local 

oscillators on the two-mode squeezing. We adjusted the 
Ac

Ap
 ratio electronically to 

map the fall off in squeezing with imbalance. The data fits very well with theoretical 

estimations using the measured values for 4WM gain, the probe beam and the 

conjugate beam loss. Though one point to note here is that the theoretical plot lies 
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at the extreme end of the data. This is because measuring the squeezing requires 

our homodyne detectors to be locked to measure the phase quadrature of each 

beam. Noise in the locking gives extra fluctuations in the measurement of 

squeezed noise. The theoretical curves include only the gain and the loss 

parameters, but not the fluctuations due to the lock. Thus, the theory curves show 

the maximum possible squeezing at the present experimental conditions.  

2.2.3 Electronic noise of the detector circuit 

We use photodiodes to detect light. A diode produces a photo-current when light 

hits it, later this electric current goes through an electronic circuit which includes 

electrical elements, and then the signal passes through an amplifier, and finally, 

we measure the potential across a load.  

Even with no incident light diodes produce some current. This “dark current” is the 

result of the random generation of electron-hole pairs in the depletion region of 

photodiodes. Another source of noise is the thermal noise of resistors in the 

detector circuit (Johnson noise). Both these noise sources are amplified and 

appear as the electronic noise in our measurement [29].  

Additionally, some measuring devices like oscilloscopes themselves can have a 

bigger electronic noise floor than the photodetectors, adding to the overall noise, 

while RF spectrum analyzers usually have a very low noise floor. The addition of 

the noise from the two sources gives the total electronic noise floor. 

This electronic noise floor adds excess noise to the quadrature noise and hence 

acts to reduce the measured value of squeezing [30]. The relationship between 
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this added measurement noise (Δ2Nele) and the separation of the electronic noise 

floor of the device from the measured signal (sep) is given by:   

Δ2Nele =  10 ∗ Log10 (1 − 10−
sep
10 )  dB. (2. 7) 

Thus, the addition of this excess noise is independent of the 4WM process or the 

etangled beams and depends solely on the separation of the quadrature noise 

from the electronic noise floor. As can be seen in Figure 2.7, for our setup, a 

separation of ≈15 dB from the electronic noise is enough to make its contribution 

negligible. 

 

Figure 2.7: Excess noise added to the quadrature noise versus the separation of the measured 

quadrature noise from the electronic noise floor. 

While one could increase the separation from the electronic noise floor by lowering 

the electronic noise of the detectors or the oscilloscopes, but this is difficult. 

Alternatively, the separation can be increased by increasing the optical powers in 

the two LO beams. The output of the homodyne detector is proportional to the 

amplitude of the LO beam. In our experiment, given the noise floor of the detectors 

and the other electrical circuits involved, ≈1 mW of optical power in both the probe 
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and the conjugate LO beams keeps the squeezed quadrature noise ≈15 dB above 

the electronic noise floor. 

2.2.4 Visibility in the homodyne detectors 

In a homodyne detector, we overlap the signal beam with a strong LO. We want 

the LO to have the same spatial mode as the signal beam to get the best matching. 

But in experiments, it is a difficult task to get identical modes. We mentioned earlier 

that we produce our LO in the same 85Rb cell as the probe and the conjugate under 

very similar conditions. This ensures that the modes of the probe and the conjugate 

are similar to the modes of their LOs allowing us to achieve 98% fringe visibility in 

both of our homodyne detectors. We will see later that this efficiency (98%) limits 

the maximum squeezing in our experiment.  

Homodyne detector visibility is a critical parameter in our experiments. Imperfect 

homodyne detector visibility is equivalent to an optical loss [20], in the same way 

as it is regarded in a Mach-Zehnder interferometer [31]. We can define homodyne 

detector visibility (ν) in terms of an equivalent optical transmission (ηvis) as  

ηvis = ν2. (2. 8) 

This can be incorporated with the loss in the rest of the optical system by the 

equation ηtotal = ηrestηvis, here ηtotal is the total optical transmission in the setup 

and ηrest denotes the transmission unrelated to visibility loss. Visibilities achieved 

in other squeezed light systems range from 0.99 to 0.997 [20, 27, 32, 33], although 

all these visibility values are for OPO systems, where the signal beam and the LO 

are both defined by a cavity. 
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Equation (2.8) holds under the assumption that the signal beam in the homodyne 

detector is a single spatial mode, i.e., the portion of the LO that is not overlapped 

with the signal beam coincides with vacuum only. In optical parametric oscillators 

(OPO), the squeezed light is produced from a cavity, and hence the light is spatially 

single mode, so equation (2.8) holds very well for an OPO system [20, 27, 32].   

Although our 4WM system produces spatially multimode squeezing, i.e., the probe 

and the conjugate beams have multimode spatial structure, a single spatial mode 

on the probe beam is correlated with a specific spatial mode of the conjugate beam 

with no correlations with the other conjugate beam modes. Thus, if the overlap 

between the probe and its LO is not 100%, then the un-overlapped portion of the 

LO may encompass other spatial modes of the probe beam. These other modes 

of the probe will not be correlated with the conjugate modes overlapped with the 

conjugate LO. Moreover, these probe modes are thermal and have higher noise 

than vacuum. This results in excess noise in the quadrature measurement, which 

makes the situation worse than the case of a single mode squeezed beam from 

an OPO. 

Now we analyze the effect of the excess noise due to reduced homodyne detector 

visibility on the squeezing measurement. Figure 2.8 shows how the squeezing in 

a two-mode squeezed state varies with the homodyne detector visibility for the 

case of vacuum coupling and independent thermal beam coupling in the parts of 

LO not overlapped with the probe and the conjugate. Clearly squeezing is lost 

much faster with visibility reduction if the probe and the conjugate beams are 
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surrounded by other thermal modes, i.e., in a multimode source like ours. The 

effect is unique to our experimental setup and not necessarily found in OPOs. 

 

Figure 2.8: Squeezing as a function of loss due to visibility (ν2 = ηvis) for the two-mode squeezed 

light with thermal beam coupling (red) and vacuum coupling (blue) with the parts of the LO not 

overlapped with the probe and the conjugate beams. The plot assumes equal visibility in both the 

probe and the conjugate homodyne detectors.  

We tried to experimentally verify the theory mentioned above. We made an 

experimental setup where we could change the visibility in the probe homodyne 

detector while keeping the conjugate homodyne detector visibility constant. We 

measured the two-mode squeezing as we changed the visibility of the probe 

homodyne detector. In the experiment, we use a mirror with three piezoelectric 

actuators to tilt the mirror in three different directions and hence change the 

visibility of the homodyne detector (Figure 2.9). 
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Figure 2.9: (a) Experimental setup for changing the visibility in a balanced homodyne detector. (b) 

A design of a 3-axis piezoelectric mirror 

Before discussing the data from our experimental setup, we can understand a little 

more about our assumptions here. Earlier, we have said that any part of the LO 

which is not overlapped with the probe, overlaps other thermal modes uncorrelated 

with the conjugate beam. This causes excess noise in a joint quadrature 

measurement, and hence reduces the squeezing. The presence of other thermal 

modes in the probe homodyne detector should not affect the probe quadrature 

noise, as the entirety of the LO still overlaps with thermal modes with the same 

noise. Taking data for just the probe quadrature noise is much easier and less 

prone to experimental instabilities as the noise is independent of the phase in the 

homodyne detector.  

Figure 2.10 shows the probe beam quadrature noise as we change the visibility in 

the detector by displacing the beam along different directions using the three 

piezos. We find that the quadrature noise is reduced as the visibility decreases. 

The orange curve on each plot shows the quadrature noise reduction as we 

change the visibility when assuming that the part of the LO not overlapped with the 
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probe beam couples to vacuum. The orange curves use the same experimental 

parameters (4WM gain, the probe and the conjugate beam losses) as were present 

when taking data. The change in experimental data is much slower than that of the 

orange curve, coupling only the vacuum. We can conclude that the part of the LO 

that doesn’t overlap with the probe beam either overlaps with thermal modes that 

have less noise than the probe mode, or overlaps with a combination of thermal 

and vacuum modes. We understand the assumption about a lesser noise thermal 

mode by discussing our 4WM experimental setup. In our setup the pump beam is 

a Gaussian beam with spatially varying intensity profile. The different spatial parts 

of the pump beam produce distinct gains and hence probe beam modes with 

disparate noises.  

We tried to understand the probe beam noise by obtaining plots where we 

assumed that the part of the LO not overlapped with the probe covers a 

combination of vacuum and a thermal mode with the same noise as the probe 

beam mode. The blue curves in Figure 2.10 are obtained with this assumption. We 

used the same experimental parameters as were kept for experimental data. The 

δ value in each of the figures represents the fraction of the thermal mode in the 

combination of the thermal and vacuum modes, which is almost 0.8, along every 

direction we displaced the beam to change the visibility. 
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Piezo 1: δ = 0.75 

 

Piezo 2: δ = 0.8 

 

Piezo 3: δ = 0.75 

Figure 2.10: Probe beam quadrature noise as a function of visibility2 in the homodyne detector, 

along three different directions of piezo tilt. The dots represent the experimental data points as we 

change the visibility of the probe homodyne detector. The blue curve is a theory fit with a δ fraction 

of the LO not overlapped with the probe beam coupling an independent thermal mode and the rest 

coming from vacuum. The orange part shows theory curve with vacuum coupling in the part of the 

LO separated from the probe beam.    

After observing the probe quadrature noise, we move our attention to the 

squeezing in the joint quadrature. We take the squeezed quadrature noise data by 

changing the visibility of the homodyne detector in the same way mentioned 

earlier. We show our data in Figure 2.11. The left side figures are the absolute 
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noises of the squeezed quadrature taken from a spectrum analyzer 

(Keysight N9320), and the right side shows the squeezing below the shot noise 

level. To put a theory curve on the data, we use the assumption made earlier. We 

consider that the part of the LO not overlapped with the probe beam, because of 

less than unity visibility, covers a combination of vacuum and thermal modes 

uncorrelated to the conjugate beam. We place a theory curve on the absolute 

quadrature noise using the experimental parameters, the value of δ obtained from 

Figure 2.10, and a multiplicative factor to consider the total LO power (we find the 

multiplicative factor through a fitting algorithm). We find the theory fits very well 

with the data. Then we use the experimental parameters and the δ parameter to 

place a curve on the squeezing plots. The plot goes through the extreme end of 

the range of data points. This happens for the same reason mentioned in 

explaining the Figure 2.6. The squeezed quadrature noise is obtained by locking 

the homodyne detectors to measure the joint phase sum quadrature. The locking 

gives an extra error in the measurement and hence a slightly smaller value of the 

squeezing. The theory curves do not incorporate the locking error and hence show 

squeezing associated with the experimental parameters and the value of δ. The 

absolute noise plot, on the other hand, fits perfectly due to the use of the 

multiplicative factor. 
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Piezo 1 

 
 

Piezo 2 

  

Piezo 3 

Figure 2.11: Squeezed quadrature absolute noise (left figures) and squeezing (right) as a function 
of visibility2, changed by piezo displacement in three different directions. The squeezing increases 
as we go up in the plots. The blue plot is a theoretical fit with a fraction (δ) of the LO that doesn’t 
overlap with the probe beam coupling an independent thermal mode and the rest of the portion 
coupling vacuum. For each of the above plots, we estimate the value of the fraction δ using the 
experimental data in Figure 2.10 for the probe homodyne detector noise with the visibility in the 
detector, where we change the visibility by tilting the corresponding piezo electric device in a 3-axis 
piezo electric mirror. The visibility in the conjugate homodyne detector was maintained at 98%, and 
we assumed a coupling of an independent thermal mode in the part of the LO not overlapped with 
the conjugate beam. The orange curves show a theory where we couple vacuum in part of the LOs 
not overlapped with the probe beam and the conjugate beam in the two homodyne detectors. In 
calculating the theory curves, we used the experimentally estimated values of the 4WM gain and 
the optical loss.  
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The plots in Figure 2.10 and Figure 2.11 convincingly show that the loss of visibility 

in our homodyne detectors is far more detrimental to squeezing than it is in OPO 

systems. We simulate squeezing as a function of 4WM gain in Figure 2.12. We 

plot the expected squeezing at visibilities of 98% in both the probe and the 

conjugate homodyne detectors, with a coupling of uncorrelated thermal modes in 

the 2% part of the LO beams not overlapped with the probe and the conjugate 

beams (red curve). The blue curve has a coupling of 80% uncorrelated thermal 

mode and 20% vacuum in both the homodyne detectors, the proportions found in 

Figure 2.10 and Figure 2.11. The green curve considers perfect visibility in both 

the homodyne detectors and shows a monotonous increase in squeezing with the 

4WM gain. Both the red and blue curves show a minimum noise (maximum 

squeezing) and then start to roll off. The maximum squeezing shown by the blue 

plot is very close to the best we have observed in our laboratory, as shown in 

Figure 1.9(b) in Chapter 1. We use a 15% loss on the probe and 10% on the 

conjugate beam while simulating these plots.  

 

Figure 2.12: Squeezing as a function of gain. (Red) At a visibility of 0.98 in both the probe and the 

conjugate homodyne detector and considering only uncorrelated thermal beam coupling in the part 

of the LOs not overlapped with the probe and the conjugate beams. (Blue) Same as the red curve 

but with 80% coupling for the uncorrelated thermal modes and remaining 20% with vacuum modes, 

(Green) At perfect visibility.Here, we have taken the probe and the conjugate beam transmissions 

as: ηp = 0.85 and ηc = 0.9.  
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With due attention to our results, we can say that increasing the squeezing in our 

system requires us to improve the overlap of beams in our homodyne detectors. 

In a later section, we will discuss certain methods we have tried in our laboratory 

to increase the visibility in our detectors.  

2.2.5 Phase noise in homodyne detectors 

Another factor in measuring squeezing is the relative phase noise between the 

signal beam and its LO. We have seen that the different quadratures have different 

noises, which in a homodyne detector means that the relative phase between the 

LO and the signal beam affects the measured noise. If the relative phase in our 

detection is set to measure the squeezed quadrature, the presence of phase 

fluctuations will add excess noise from the anti-squeezed quadrature. If the 

measurement rate is slower than the phase noise, the output will be an average 

noise which is bigger than the squeezed noise and hence less squeezing. 

Many groups performing squeezed light experiments with an OPO have reported 

phase noise in their experiments. Takeno et al. [20] reported a phase noise of ≈3.9o 

in their detector, and they corrected it to ≈1.5o which helped them increase their 

squeezing from 7 dB to 9 dB [20]. Suzukia et al. [33] reported a phase noise of 

3.9o. Vahlbruch et al. [27] have reported a phase of ≈1.7 mrad (=0.1o), where they 

achieved a squeezing of ≈15 dB with their OPO system.  

The effect of phase noise on two-mode squeezing can be derived from equation 

(2.1) and is given by  
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ΔN = (XantSq − XSq) (
Δθp + Δθc

4
) . (2. 9) 

where XantSq and XSq are the noises of the anti-squeezed and the squeezed 

quadratures, and Δθp and Δθc are the phase noises in the probe and the conjugate 

homodyne detectors respectively. Equation (2.9) shows that the effect of phase 

noise rises with the difference between the noises of the squeezed quadrature and 

the anti-squeezed quadrature, which in turn is proportional to the gain and loss in 

the system. For many situations XantSq ≫ XSq, hence we can approximate equation 

(2.9) by  

ΔN = (XantSq) (
Δθp + Δθc

4
) . (2. 10)  

Thus, the excess noise due to the phase fluctuations is mostly dependent on the 

anti-squeezed quadrature. Equation (2.9) can also be re-written in terms of gain 

and loss in the system as  

ΔN = √G(G − 1)ηpηc(Δθp + Δθc), (2. 11) 

where G, ηp, and ηc are the 4WM gain, the probe, and the conjugate beams 

transmissions respectively.  
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a 

 

b 

Figure 2.13: Variation of squeezing of two-mode squeezed light with phase noise, (a) for different 

4WM gains and no optical loss, (b) at gain=4, and different losses on the twin beams with ηc =

ηp + 0.05.  

The effect of phase noise on squeezing (Figure 2.13 (a)) is far greater at high 4WM 

gain (resulting in higher anti-squeezed quadrature noise) than at lower values. At 

a 4WM gain of 4, a typical value in our experiment, we see the effect of phase 

noise with different levels of loss (Figure 2.13 (b)). This loss could be optical loss 

or excess noise addition due to the parameters discussed earlier. From both the 

figures, we see at a squeezing of ≈7 dB, a phase noise of ≈2.30 reduces the 

squeezing by ≈0.5 dB. We will refer to these figures and numbers later when 

comparing the experimental results.  

To see the effect of phase noise in our experiment, we measured the phase 

fluctuations in our homodyne detectors. We made a homodyne detector with a 

probe (obtained from a seeded 4WM process) and overlapped it with a LO. To 

measure the phase noise of the homodyne detector, we lock the detector to the 

phase quadrature of the probe beam. We take the standard deviation of the output 
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of the homodyne detector and divide it by the slope of the signal at the phase 

quadrature, which is equal to the amplitude of the fringe pattern obtained by the 

overlap of the LO and the probe beam shown in Figure 2.14.  

 

a 

 

b 

Figure 2.14: (a) Fringes due to the overlap of the probe beam and its LO, while scanning a piezo 

mirror in the probe homodyne detector. (b) Signal with the homodyne detector locked to measure 

the phase quadrature of the probe beam. 

We took several measurements similar to Figure 2.14 and given the stability of our 

lock we observe a range of phase noise values. Our best results were ≈0.23o, while 

poor locking yielded phase noise of ≈0.4o to ≈0.5o. We observe comparable results 

in the conjugate homodyne detector. Remembering that the joint quadrature noise 

depends on the sum of phases in the probe beam and the conjugate beam 

homodyne detectors (equation (2.1)), we found the sum could vary from 0.5o to 1o 

or a little worse with poor locking. From Figure 2.13 we conclude that even a poor 

lock does not limit our squeezing.  

While many groups have shown [20, 27] that the squeezing in OPO systems is 

limited by the phase noise in the system, this is not the case for our 4WM system. 
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In fact, the other parameters the parameters are more important to our squeezing 

than this one. 

One thing I would like to note here, while calculating the phase noise we did not 

subtract the thermal noise of the probe beam from the noise of the phase 

quadrature signal. That subtraction would have further (slightly) reduced our phase 

noise value, but because of our low phase fluctuations we ignored it. We can 

measure the thermal noise by blocking the seed of the 4WM process and taking 

the homodyne detector output. We can subtract the variance of thermal noise from 

the variance of the phase quadrature signal of the seeded probe to get the exact 

phase noise.  

2.3 HELPFUL TECHNICAL MODIFICATIONS IN THE SETUP 

Having discussed some of the technicalities that affect our squeezing and we now 

present improvements to get better noise squeezing. 

2.3.1 Beam displacement due to piezo motion 

As mentioned earlier, good squeezing requires good visibilities in our homodyne 

detectors. In our homodyne detectors, to control the phase of the light, we use a 

piezo controlled mirror. 
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(a) 

 

(b) 

Figure 2.15: Transverse displacement of the beam as the potential is applied to the three piezo 

actuators, shown in Figure 2.9, (a) individually, (b) potential applied to the three piezo together to 

minimize the orthogonal plane motion.  

In our initial setup, we placed a piezoelectric mirror which had only one piezo 

actuator connected to the center of the mirror. While scanning we found it would 

tilt the beam causing the LO and the signal beam to separate which reduced the 

visibility and hence decreased the measured squeezing. The tilting or steering of 

the beam in transverse direction could happen due to deformations in the piezo 

causing a tilt in the mirror [34]. Despite our best efforts, this mirror driven by a 

single piezoelectric actuator could reduce our visibility from ≈98% to something 

below 93% which is not adequate for our purposes.   

To reduce or eliminate this beam deflection, we used a mirror [34] with three 

piezoelectric actuators and applied potentials to the three of them together to 

minimize the deflection of the beam. Figure 2.15 (a) shows the movement of the 

beam in the cross-sectional plane, ≈1 m from the piezo mirror as we apply a 

potential across each of the piezos individually. We used this data to calibrate the 
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motion of the actuators which allows us to reduce the transverse tilt to ≈30 μrad, 

i.e., ≈30 μm transverse shift at ≈1m from the mirror, over the entire expansion 

length of the piezo actuators (Figure 2.15 (b)). The residual tilt is due to the small 

nonlinearity of the piezo actuators with the applied potential. We found that using 

the three-axis piezoelectric mirror with the correct proportions of potential kept the 

visibility within 1% across the entire range of motion. 

2.3.2 Thermal fluctuations 

We heat the 85Rb cell to ≈120 oC to produce 85Rb vapor inside the cell. The cell is 

insulated except for windows through which the light passes. This causes 

fluctuations in the temperature of the air around the windows and random changes 

in the refractive index of the air. This random variation in the index of refraction 

deflects the beam propagation direction randomly which in turn, varies the visibility 

in the homodyne detectors and hence changes the squeezing with time. 
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a 

 

b 

Figure 2.16: (a) The 85Rb cell. (b) The 85Rb cell with insulation and a temperature stabilizer keeping 

the temperature of the stem of the cell at a constant temperature, cooler than the windows of the 

cell. 

We tried different geometries of insulation and heating in the cell and quantified 

the beam propagation fluctuations in those configurations. Here we present only 

four of those configurations including the one that worked the best. To examine 

the effect of thermal air currents around the cell, we pass a laser through each 

configuration and measure the transverse position of the beam at a distance of 

≈0.5 m from the cells (Figure 2.18). As a baseline, we measured the beam path 

fluctuations in the transverse plane due to other optics in the system. 
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a 

 

b 

 

c 

 

d 

Figure 2.17: Configurations of cell placement in the setup. (a) Cell being heated with a heating coil 

and active cooling of the stem of the cell to keep Rb from getting deposited on the windows. (b) 

The cylindrical cell is insulated from the surrounding. (c) The lateral cell body is insulated from the 

surrounding, and there is no active cooling of the stem. (d) There are empty (with vacuum) cells on 

either side of the Rb cell and heating coil completely covering the air gaps between the cells.  
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Figure 2.18: Experimental setup for measuring the beam propagation fluctuations around the vapor 

cell. 

Table 1 shows the standard deviation of the beam motion. We see that insulation 

significantly reduces the random motion. Also, adding the vacuum cells to insulate 

the 85Rb cell windows reduces the beam motion to the baseline level with no 85Rb 

cell in the beam path. Figure 2.19 shows an example of the motion of the laser on 

a camera after it passes through the hot cell. 

 

Figure 2.19: Random motion of beam in the cross-sectional plane as measured on a camera at 

≈0.5 m from the 85Rb cell. 
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Table 1: Standard deviations (one sigma) of random beam fluctuations along the two transverse 

directions for different configurations of cell wrapping, as shown in Figure 2.17. The uncertainties 

represent the one sigma error in the standard deviation.  

 Temp. (oC) 
Stem 

Temp. (oC) 

ΔX 

(μm) 

ΔY 

(μm) 

No vapor cell  N/A 1.6(0.1) 1.6(0.1) 

Configuration a (with active 

cooling of stem) 
125 68 33.8(2) 24.8(3) 

Configuration b (with active 

cooling of stem and thermal 

insulation) 

120  6.2(0.8) 9(0.6) 

Configuration c (no active 

cooling of stem) 
135 N/A 7.8(0.6) 6(0.6) 

Configuration d (with vacuum 

cells on the ends) 
127 68 2.8(0.6) 2.4(0.4) 

 

We also measured the effect of the cell temperature on the beam fluctuations for 

the configurations b and d in Figure 2.17 and found that the fluctuations increase 

with the temperature as expected (Figure 2.20).  
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a 

 

b 

Figure 2.20: Variation of the random motion of beam in the x − y plane with temperature using cell 

wrapping (a) configuration b from Figure 2.17, and (b) configuration d from Figure 2.17. 

The main takeaway here is that to reduce the random motion in the beams, we 

should insulate every surface of the cell. The vacuum cells of configuration d 

insulate the 85Rb cell windows and hence provide the most beam stability 

compared to the other tested configurations. A downside of the configuration d is 

that it adds extra surfaces to the beam paths and increases optical loss, which 

reduces squeezing. We anti-reflection coat the surfaces to reduce the optical loss, 

to a total of ≈3% excess loss from 4 surfaces after the 85Rb cell. Ultimately, adding 

a vacuum cell to get more stability at the expense of a little less squeezing is a 

tradeoff which depends on the application requirements. Another possibility would 

be to put the cell in a vacuum [35], which would eliminate the surrounding air and 

hence improve stability. 
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2.4 VISIBILITY IMPROVEMENT 

As low visibility reduces our measured squeezing, and our best visibility was ≈98%, 

we saw that our squeezing was limited to less than 5.5 dB. To get better visibility, 

our probe beam (and the conjugate) should match the LO(s), both in phase front 

and in intensity profile. We tried a few approaches to make the beams similar in 

shape. 

2.4.1 Mode shaping of beam with an SLM 

One was to correct the shape of the beam using a spatial light modulator (SLM). 

Our earliest rationale was to disturb as little as possible the initial setup and do the 

beam correction. Correcting the shape of a beam with an SLM involved two 

different things, 1. Wavefront correction, 2. Intensity pattern correction.  

2.4.2 Wavefront shaping of the beam 

To do the beam correction, first we measured the Zernike modes of both the 

interfering beams. Zernike modes describe the various wavefront defects present 

in the beam wavefront using orthogonal mathematical terms. We used a Shack-

Hartmann wavefront sensor to measure the wavefront of light and estimate the 

Zernike coefficients. We did this for both the beams and tried to match the Zernike 

modes of the LO beam to those of the probe beam using an SLM. Much of literature 

exists on similar techniques of wavefront correction [36, 37, 38, 39].  

Before correcting the beam wavefront using an SLM, we first characterized the 

SLM, and then attempted to controllably modify the beam profile in the way we 

desired. The methodology to characterize the phase retardation imparted by the 
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SLM is in Appendix A. Just to put the number here, the total phase retardation 

provided by our SLM was 1.82π, the value is less than the desired value of 2π 

which is required for phase wrapping, i.e., applying a phase greater than 2π in 

multiples of 2π. Since we were correcting only a small amount of phase, we thought 

it was worth trying to use this SLM.  

It is important to calibrate the phase put on the beams via the SLM using our 

wavefront sensor. We characterize the relationship between the Zernike 

coefficients induced by the SLM and the corresponding value given by the 

wavefront sensor. Since different Zernike polynomials are independent of each 

other, we can adjust a Zernike coefficient independently of other modes. We see 

this behavior in Figure 2.21 (a), where a change in ‘vertical trefoil’, a third order 

Zernike polynomial on the SLM, gives a change in the corresponding Zernike 

coefficient on the wavefront sensor. Though, if we look closely, we do find a small 

change in ‘horizontal coma’ and ‘vertical astigmatism,’ which are 3rd and 2nd order 

Zernike polynomials respectively. We attribute this mostly to the low resolution of 

the wavefront sensor and to some error in finding the exact image plane in the 4f 

imaging system due to the imperfections in the lenses. Figure 2.21 (b) shows the 

change in Zernike coefficient value on the wavefront sensor as we put the 

corresponding phase on the SLM. Though the behavior seems very linear, there 

is a small difference between the absolute slope of the 2nd order (three decreasing 

curves) and the 3rd order (four increasing curves) Zernike coefficients, this could 

again be attributed to the low resolution of the wavefront sensor and its 

comparatively smaller sensitivity towards higher order Zernike coefficients. The 
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reduced sensitivity of the wavefront sensor towards higher order Zernike 

coefficients is again shown in Figure 2.21 (c), where we find a slight decrease in 

the absolute slope of two of the 4th order Zernike coefficients compared to the four 

3rd order coefficients.  

Once we have characterized the phase retardation of the SLM, and found the 

relationship between the Zernike polynomial coefficients set on the SLM and those 

measured by the wavefront sensor, we correct the phase on an actual beam. To 

match the phasefronts of the probe and the LO, we reflect the LO off the SLM and 

detect both the LO and the probe beam on the wavefront sensor at the same place. 

The SLM plane forms an image at the wavefront sensor. The imaging allows us to 

feed the difference between the probe and the LO phases on the wavefront sensor 

directly to the SLM. We tried to follow this protocol by making two different setups, 

which we explain. 
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a 

 

b 

 

c 

Figure 2.21: Calibration of the SLM and the wavefront sensor with the Zernike polynomials. (a) 

Coefficients of different Zernike modes measured on the wavefront sensor as we change the phase 

on the SLM by changing the coefficient of the ‘vertical trefoil’ term. (b) Variation of the coefficients 

of 2nd and 3rd Zernike modes observed on the wavefront sensor as we change the phase on the 

SLM by changing the coefficient of the corresponding Zernike mode. The coefficients of the 2nd 

order modes show a monotonic decrease whereas the coefficients of the 3rd order modes increase 

monotonically as we change the coefficients of the modes on the SLM. (c) Same as part (b), but 

for the 3rd and two of the 4th order Zernike modes. The curves display a slightly less sensitivity of 

the wavefront sensor in measuring the 4th order Zernike modes. The less sensitivity is shown by 

the reduced absolute slopes of the curves representing the 4th order modes compared to the curves 

of the 3rd order modes. 
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a 

 

b 

Figure 2.22: Experimental setup for beam shaping with an SLM. (a) The path of the probe beam 

and the LO from the Rb cell to the 50:50 beam splitter are equal, and they are colinear after the 

beam splitter. The 4f imaging system images the beam shape at the SLM to the camera and the 

wavefront sensor. Here the length c is made large, and the focal lengths of the lenses placed for 

the 4f imaging system were 1m. (b) The path of the probe beam from the Rb cell to the 50:50 beam 

splitter is equal to the path traveled by the LO from the Rb cell to the SLM. The 4f imaging system 

images the beam shape at the SLM to the 50:50 beam splitter location. The camera and the 

wavefront sensor are placed right after the beam splitter. 

As our first method of correction, we tried to avoid any distortion to our setup of 

homodyne detection. We made a 4f imaging system as shown in Figure 2.22(a). 

Here we image the SLM plane on the wavefront sensor. We place the two lenses 

of the imaging system after the 50:50 beam splitter where the LO coming from the 

SLM overlaps with the probe beam. The process avoids adding deformation due 

to the lenses and preserves the existing visibility of ≈97% with the probe. We 

measure the difference between the phase fronts of the probe and the LO at the 
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wavefront sensor and then feed the difference back to the SLM. We calculate the 

difference in terms of the Zernike coefficients and then feed them to the SLM. We 

repeat this process a few times until we get a minimum separation between the 

two wavefronts limited by the sensitivity of the system. 

Figure 2.23 (a) shows the difference in the wavefronts of the LO and the probe 

beam as we iterate through successive corrective shapes on the SLM. The blue 

stems show the Zernike coefficient differences between the LO and the probe 

beam without any corrective pattern on the SLM. We must note that the surface of 

the SLM is never flat and introduces deformations of its own. Normally, one can 

correct for these deformations by forming a compensating pattern on the SLM. 

Since in our case, we did not have full 2π phase modulation from the SLM, we 

couldn’t make such a compensating pattern. We kept our beam size much smaller 

than the SLM head and placed the beam near the center of the SLM head to 

reduce the deformation of the beam. In any case, the differences in Figure 2.23 (a) 

fluctuate around 0 as we make successive corrections. This is limited by the 

accuracy of the wavefront sensor. Figure 2.23 (b) shows the Zernike coeffcients of 

the pattern on the SLM, which becomes steady after a few iterations.  
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a 

 

b 

Figure 2.23: (a) Plot showing the difference in the Zernike coefficients of two beams at different 

iterations of the run. The blue stems are the first iteration showing the difference in the wavefronts 

of the two beams without any correction. (b) Stems showing the Zernike coefficient put on the SLM 

at different iterations. The colored stems indicate the iteration number in the adaptive algorithm. 

Despite the convergence in our methodology, we didn’t get much improvement in 

the visibility, and we didn’t cross our threshold of 98 % which we achieve in the lab 

without any phase correction. Though we weren’t sure exactly what stopped us 

from getting an improvement in visibility, we narrowed it down to some possibilities. 

One possibility was the use of the setup Figure 2.22(a) instead of Figure 2.22(b). 

In Figure 2.22(a), we made a 4f imaging system in which the beam splitter was 

placed at the very beginning of the imaging system. In the setup of Figure 2.22 (b), 

we know that the phase of the light is correct at the beam splitter as we provide 

our feedback by taking wavefront data right at that position. This setup too did not 

give us anything beyond 98% visibility, though we, again, were able to converge 

the Zernike coefficients as in Figure 2.23.  
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2.4.3 Intensity profile shaping of beam 

The next possibility of not getting the improvement is due to the intensity pattern 

mismatch. So far, we had only matched the phase front of the beams and not the 

intensity pattern. Now, we will focus on just the intensity pattern modification. We 

used the methodology explained in Bagnoud et al. [40] to perform the intensity 

shaping. Here we use a phase-only SLM to create phase grating which is periodic 

along one direction with a period Λ and amplitude ϕ, as shown in Figure 2.24. The 

grating can be written as a convolution of a train of delta pulses with a rectangular 

function. ⨂ represents the convolution operator.  

E = E0 ∑δ(x − nΛ)

n

⨂rectΛ
2

(x) exp jϕ1, 

and 

E = E0 ∑δ(x − nΛ)

n

⨂rectΛ
2
(x −

Λ

2
) exp jϕ2. 

Here, rectΛ

2

(x) is a rectangular function with width 
Λ

2
, and centered at x = 0. We 

observe the field at the focal point of a lens where it is given by the summation of 

the Fourier transforms of the above fields 

E = E0 sinc (
πΛν

2
) cos (

Δϕ

2
+

ϕΛν

2
) exp (

ϕ1 + ϕ2

2
+

πΛν

2
)∑δ (ν −

n

Λ
)

n

. (2. 12)  

We place a pinhole at the center of the Fourier plane and allow only the central 

mode to pass. The field after the pinhole is given by 
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E = E0 sinc (
πΛν

2
) cos (

Δϕ

2
) exp (

ϕ1 + ϕ2

2
+

πΛν

2
) , (2. 13) 

from which we can see that the amplitude of the field is modulated by the cosine 

term, i.e., cos (
Δϕ

2
). We note that, the methodology described here relies on the 

fact that we are removing the power from our initial state and never adding any 

extra power to it. This adds a constraint that we must start with a bigger beam than 

the final state.  

 

Figure 2.24: Phase grating for intensity modulation. 

One more point we must note is that this method can be used for phase adjustment 

in addition to the intensity profile shaping. The phase adjustment can be performed 

by setting the desired value of 
ϕ1+ϕ2

2
 while maintaining the required value Δϕ for 

intensity profile shaping.  

Though this method provides a way to modulate the phase and the intensity of a 

beam simultaneously and independently, one must understand its limitations. If we 

apply the above scheme using a spatial phase modulator, which produces a phase 

modulation from 0 to a value ϕ, then to get a full amplitude and phase profile 

shaping, the SLM should be able to satisfy the following minimum requirements 

(
Δϕ

2
) ≥

π

2
, 
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π

2
≤

ϕ1 + ϕ2

2
≤

5π

2
. (2. 14) 

Solving the equations, we find that ϕ2|min = 3π, and ϕ1|min = 1.5π. This means 

that ϕmin = 3π, i.e., an SLM should be able to provide a phase modulation of at 

least 3π. 

We used the methodology described above to modulate the intensity of our beam 

and change its shape to the desired form. We obtained some positive results with 

regard to changing the shape of the beam, as shown in Figure 2.25. We shaped 

the LO intensity profile, shown in Figure 2.25 (a) to match the probe beam in 

Figure 2.25 (b). Our results are shown in Figure 2.25 (c, d, and e), where we show 

the final shape of the LO, and the convergences of the beam diameter to the values 

close to those of the probe beam. 
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a 

 

b 

 

c 

 

d 

 

e 

Figure 2.25: (a) The initial intensity pattern of the LO beam. (b) The intensity profile of the probe 

beam, this is the shape we want to match by shaping the LO. (c) The intensity pattern of the LO 

after the shaping of the beam with the method described earlier. (d) The convergence of the beam 

diameter of the LO along the x-direction, the orange curve shows the x-diameter of the probe beam. 

(e) The convergence of the beam diameter of the LO along the y-direction, the orange curve shows 

the y-diameter of the probe beam. 
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a 

 

b 

Figure 2.26: Experimental setups for intensity pattern correction. (a) The path of the probe beam 

and the LO from the Rb cell to the 50:50 beam splitter are equal, and they are colinear after the 

beam splitter. The 4f system images the beam shape at the SLM to the camera. (b) The path of 

the probe beam a’+b’ is equal to the path traveled by the LO from the Rb cell to the SLM, i.e., a+b. 

The 4f system images the beam shape at the SLM to the 50:50 beam splitter location. There is a 

4f system on the probe beam that images the mirror M on the 50:50 beam splitter, this considers 

any residual phase mismatch between the probe and the LO because of the imaging systems. The 

camera is placed right after the beam splitter. 

Having successfully achieved the intensity shaping, we tried to incorporate this into 

our homodyne detector to observe any visibility improvement. We built our 

homodyne detectors using the two designs shown in Figure 2.26, similar to 

Figure 2.22. The first setup maintains the original homodyne detector apparatus 

and introduces the 4f imaging system and a pinhole for intensity shaping after the 

50:50 beam splitter. The second assembly puts the 4f imaging system before 

50:50 beam splitter. We make the 4f imaging system on both the probe and the 

LO to compensate for any residual imperfection from the lens system on both the 

beams. Though we achieved proper intensity shaping with both the beams, we 
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could not achieve a visibility better than 98% with just the intensity shaping with 

either of the setups. 

The third step in shaping the beam was to combine both the intensity profiling and 

the wavefront correction of the beam simultaneously. 

2.4.4 The simultaneous intensity and phase profiling 

We applied both the intensity and the phase pattern correction, but we were not 

successful in increasing the phase visibility of our homodyne detectors. Here we 

will see the possible things that must be tried to improve the beam shaping. We 

show the wavefront difference between the LO and the probe beam in Figure 2.27 

(a), by aligning them such that the phase difference between the two is minimized. 

We also show in Figure 2.27 (b) the intensity pattern of the two beams when we 

minimized the phase difference between the two beams. We see that, at the 

minimum phase difference position, the peaks of the two intensities are not 

aligned. We couldn’t explain this behavior in our beams very well. Though with the 

algorithm presented earlier it is possible to correct any phase and intensity 

aberration, the imperfections present in our SLM (inability to provide 2π phase 

modulation) limit us from performing the phase and intensity modulation to the 

fullest extent. We have already shown that the minimum modulation necessary to 

achieve a full beam shaping with the algorithm is 3π without phase wrapping. When 

we tried to put a phase modulation requiring more than 2π phase shift using our 

SLM, it deformed our beam shape, and hence never gave any improvement in 

visibility.  
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a 

 

b 

Figure 2.27: (a) Wavefront difference between the LO and the probe beam. (b) Intensity pattern of 

the two beams when the wavefront difference between the two beams is minimized. The pattern 

with grid lines is for the LO beam, and the pattern without the grid lines is for the probe beam.  

From our results we think, a better SLM should help get us improvement in beam 

shaping. Moreover, having a better resolution wavefront sensor would also help, 

as we have already seen in Figure 2.21 that the sensitivity of the wavefront sensor 

starts to fall for the 3rd or higher order Zernike polynomials. Also, it would be 

desirable to try more algorithms for matching the beam shapes and phase fronts 

[41, 42, 43]. 
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3 Phase sensing with two-mode squeezed light 

3.1 PHASE SENSING WITH A TRUNCATED SU(1,1) INTERFEROMETER 

In this chapter, we will discuss the application of squeezed light in phase sensing, 

but first we will discuss phase sensing. Phase sensing has significant usage in 

biological applications and gravitational wave detection [2, 1]. Interferometers are 

used for phase sensing purposes. They are characterized by their phase 

sensitivities (Δϕ) defined by the smallest possible phase measurement that can be 

seen with the interferometer. It can also be defined as the uncertainty in a phase 

measurement with the interferometer. The phase sensitivity of an interferometer is 

limited by the number of photons (n) present inside the interferometer in a given 

measurement time interval. For a Mach-Zehnder interferometer, with a coherent 

beam with mean photon number n as input, the sensitivity is given by Δϕ = 1/√n 

[3]. Figure 3.1 (b) shows the fringe pattern and associated noise in the 

measurement. The noise in the fringe pattern causes uncertainty in the phase 

measurement.  

The sensitivity of the interferometers can be improved using quantum states such 

as squeezed states of light [3, 4, 5] and other resources, for instance, Fock states 

[6, 7, 17]. The quantum state is injected into these interferometers for improvement 

in phase sensitivity. Figure 3.1 (c) shows a Mach-Zehnder interferometer with a 

squeezed light input. The fringe pattern of the interferometer is shown in 

Figure 3.1(d), displaying reduced noise in the phase quadrature. The reduced 

noise allows improved phase sensitivity.  
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a 

 

b 

 

c 

 

d 

Figure 3.1: (a) Schematic of a Mach-Zehnder interferometer, (b) the power distribution measured 

at one of the detectors as a function of phase ϕ in a Mach-Zehnder interferometer. (c) A Mach-

Zehnder interferometer with one of its inputs as phase quadrature squeezed light, (d) the fringe 

pattern of a Mach-Zehnder interferometer with the phase quadrature squeezed light input.  

There is another class of interferometers where, instead of injecting squeezed light 

into the interferometer, a squeezed state is prepared inside the interferometer. An 

SU(1,1) interferometer, suggested by Yurke et al. [8] is one such kind of 

interferometer. An SU(1,1) interferometer is formed by replacing the beam splitters 

in a Mach-Zehnder interferometer with two nonlinear media [8], as shown in 

Figure 3.2. We mentioned earlier, the operations of an SU(1,1) interferometer can 

be described by the geometric transformations (rotation and Lorentzian boost) of 
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the operators acting as generators of SU(1,1) group. Hence the name SU(1,1) 

interferometer. See Appendix B for a brief Mathematics of the process.  

The ultimate sensitivity of an interferometer can be quantified by the quantum 

Cramer-Rao bound (QCRB) [44, 45], which is given by Δϕ ≥
1

√ℱQ
, where ℱQ is the 

Fisher information of the state inside the interferometer. Fisher information is a 

measure of the information in a statistical random variable and is used for 

estimating a parameter [46].  Given a quantum state, we can also define an upper 

bound on the Fisher information of an observable. We call this the quantum Fisher 

information (QFI) of the state, ℱQ [47]. The QFI depends only on the quantum state 

present inside the interferometer and the phase on the quantum state, and not on 

the detection scheme. The sensitivity of an interferometer depends on the chosen 

detection scheme as well as the QCRB of the internal quantum state. Given a 

detection scheme (and a measurement) the sensitivity of a device is limited by the 

classical Cramer-Rao bound (CCRB), given by Δϕ ≥
1

√ℱc
, where ℱc is the classical 

Fisher information (CFI). The CFI depends on both the detection scheme and the 

quantum state of the light. For any detection scheme, the CFI is always less than 

or equal to the QFI of the quantum state that is used, i.e., ℱc ≤ ℱQ.  
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a 

 

b 

Figure 3.2: Schematics of an SU(1,1) type interferometer. A coherent state with amplitude α and 

phase ϕo, and a vacuum state |0⟩ are mixed with a strong pump beam in a nonlinear optical (NLO) 

medium to produce a probe and a conjugate beam. The probe and the conjugate together form a 

two-mode squeezed state. A phase shift δϕ is applied to the seeded arm, and the two beams are 

mixed with a pump beam in a nonlinear medium similar to the first one. The output of the 2nd 

nonlinear medium is measured, which is used to estimate δϕ. (a) The output after the 2nd NLO is 

measured with homodyne detection, (b) the output after the second NLO medium is measured 

using direct detection of power. 

Since the above discussion tells us that the chosen detection scheme for an 

interferometer determines whether the phase sensitivity of the device reaches the 
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QCRB, we analyze different detection schemes for an SU(1,1) interferometer. 

Before probing the various detection schemes, we would like to understand the 

QFI of the quantum state present inside the SU(1,1) interferometer.  

For a Gaussian state, the QFI can be calculated just with the information present 

in the covariance matrix of the state [48, 49]. For our experimental setup, we have 

a two-mode squeezed state system as our nonlinear medium in the SU(1,1) 

interferometer, shown in Figure 3.1. The NLO medium has two input modes, one 

of which we seed with a coherent beam with amplitude α and a mean photon 

number of |α|2 ≫ 1, and the other one we leave  empty, i.e., the vacuum mode 

goes through it. Under such situations, the output of the NLO is a two-mode 

squeezed state. For such a state, the QFI is given by equation (3.1) [50].  

ℱQ = 2 cosh2(r) [(2|α|2 + 1) cosh(2r) − 1] (3. 1) 

Here r is related to the gain (G) of the NLO medium by G = cosh2 r. The output of 

the NLO medium is an amplified seed beam known as the probe, and in the other 

port, there is a conjugate beam. In the limit of |α|2 ≫ 1, the mean probe photon 

number is given by G|α|2 and that in the conjugate beam is given by G|α|2 − |α|2. 

The two modes are quantum correlated or form a two-mode squeezed state when 

the gain is greater than 1, i.e., G > 1 or r > 0. The probe beam goes through a 

phase object, which puts a small phase offset on the beam, and then reaches the 

second NLO medium, similar to the first one. The conjugate directly goes to the 

second medium where it mixes with the probe and a strong 
π

2
 phase-shifted pump 

beam. The output in the two modes after the second NLO medium depends on a 
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combination of the phases of the probe, conjugate and the pump beam acquired 

between the two NLO media. The phase combination is given by ϕ = 2ϕpump −

(ϕprobe + ϕconjugate). After the 2nd NLO medium, we measure the output using 

either direct detection or homodyne detection, and determine the phase shift δϕ 

on the probe beam inside the interferometer. The limit of the phase uncertainty can 

be calculated using the QFI in equation (3.1), and the QCRB.  

The phase sensing capacity of a device depends on the QFI of the state that 

senses the phase shift [50, 51]. We can consider the 2nd NLO medium as part of 

the detection system, as shown in Figure 3.3 which simplifies the setup of an 

SU(1,1) interferometer. We analyzed a setup where we could remove the 2nd NLO 

medium and still get the same sensitivity as the original SU(1,1) interferometer. 

We show one such setup in Figure 3.4 and compare the phase sensing capabilities 

of various detection methods below.  

 

Figure 3.3: SU(1,1) interferometer displayed with the 2nd NLO medium as a part of the detection 

scheme. After the 2nd NLO medium, the beams can be measured either through the direct detection 

or using homodyne detectors. 
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Figure 3.4: Truncated SU(1,1) interferometer with the 2nd cell replaced by homodyne detection on 

the probe and the conjugate beams.  

Before analyzing the phase sensitivities of the various detection schemes, we can 

go through a few things about the classical Cramer-Rao bound. For Gaussian 

states (states with a Gaussian distribution in phase space), and Gaussian 

measurements (measurements with Gaussian distribution in outcomes), the CFI is 

given [48]: 

ℱc =
(∂ϕ⟨M⟩)

2

Δ2M
+

2(∂ϕ(ΔM))
2

Δ2M
, (3. 2) 

where ∂ϕ⟨M⟩ is the derivative of the mean of the measurement operator, ∂ϕ(ΔM) 

is the derivative of the standard deviation of the observable, and Δ2M represents 

the error or variance in the measurement. In our setup, we have a two-mode 

squeezed state, which is a Gaussian state. Equation (3.2) is applicable for all the 

Gaussian measurements (like homodyne detection) on our two-mode squeezed 

state of light. Photon number measurement is not a Gaussian measurement and 

hence equation (3.2) is not applicable in this case. The above equation gives a 

method to determine the phase sensitivity of a device using a Gaussian state and 

making a Gaussian measurement.  
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3.2 STANDARD QUANTUM LIMIT 

Before moving to various detection schemes, we define the standard quantum limit 

(SQL) against which we will compare our quantum improvements. We define the 

SQL as the sensitivity of a Mach-Zehnder interferometer with the same number of 

photons going through the phase object as in our device. For a Mach-Zehnder 

interferometer with n photons going through the phase object, the phase sensitivity 

is given by: 

Δϕ =
1

2√n
. (3. 3) 

3.3 DETECTION SCHEMES USING TWO-MODE SQUEEZED LIGHT 

There are two different configurations of an SU(1,1) interferometer, (i) a coherent 

beam seeded interferometer, and (ii) a vacuum seeded interferometer. We will 

discuss different detection schemes in both configurations. 

3.3.1 Seeded interferometry  

We put a coherent seed in the 1st NLO medium, which gives a pair of twin beams. 

The NLO medium amplifies the seed to give a probe beam, and a conjugate beam 

is produced in the process. Together these beams form a two-mode squeezed 

state. We send the probe beam through a phase object giving it a small phase shift 

δϕ. Later, the probe is mixed with the conjugate beam and a pump beam in another 

NLO medium similar to the first medium. The output after the 2nd NLO medium 

depends on the combined phase of the twin beams and the pump, given by Δϕ =

2ϕpump − (ϕprobe + ϕconjugate). We use the output of the 2nd NLO medium to 
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determine the phase shift δϕ on the probe. We can perform number detection on 

either one or both of the beams. Otherwise, we can also perform a joint quadrature 

measurement on the beams to determine the phase. 

Before talking about different measurements, we represent the state of light at 

various points in the interferometer using different annihilation (and creation) 

operators, as shown in Figure 3.5. We derived the analytical expressions for the 

different operators involved in an SU(1,1) interferometer in Heisenberg picture 

using the formalism described in [52, 53]. See Appendix B for more details. We 

used the analytical expressions thus derived in estimating the phase sensitivities 

of different detection methods in an SU(1,1) interferometer. We note here that in 

all the following discussions we keep the gain of the 2nd NLO medium the same as 

the first unless otherwise specified. 

 

Figure 3.5: Schematic of an SU(1,1) interferometer with the operator representation of various 

states of light. 

3.3.1.1 Photon number measurement 

We can measure the total photon number after the 2nd NLO medium to estimate 

the phase. We represent the measurement by MN = af
†af + bf

†bf. The phase 

sensitivity of the detection method can be expressed by [53]:  
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Δ2ϕ =
cosh4(2r) [cosh(8r) sec2 (

ϕ
2) + csc2 (

ϕ
2)] − 8

4|α|2
, (3. 4) 

where r is the squeezing parameter of the NLO, related to the gain of the medium 

by G = cosh2(r), ϕ is the acquired phase inside the interferometer, represented by 

ϕ = 2ϕpump − ϕprobe − ϕconjugate, and |α|2 is the mean photon number in the 

coherent seed. Using equation (3.4), we find that the phase ϕ for minimum 

uncertainty is given by:  

ϕopt = 2 cot−1 [√cosh(8r)
4

] , (3. 5) 

where the optimal sensitivity is 

Δ2ϕopt =
[2 cosh(4r) + √cosh(8r) − 1] cosh4(2r)

2|α|2
. (3. 6) 

We plot equation (3.4), normalized by the seed photon number |α|2, as a function 

of phase ϕ in Figure 3.6. We see the phase sensitivity with the measurement of 

MN optimizes at a certain phase point ϕ. Unfortunately, Figure 3.6 does not show 

any quantum improvement with the measurement of MN. We plot the optimal 

sensitivity of the operator MN with the 4WM gain in Figure 3.7 where we find that 

the optimal sensitivity with MN beats the SQL (solid black line) only with a 4WM 

gain greater ~4.5. Additionally, we also observe that the sensitivity using the total 

photon counting operator, MN, never reaches the QCRB (solid red line) of a two-

mode squeezed state for any 4WM gain. Hence, we can say that the total photon 

number, i.e., MN is a non-optimal measurement for phase sensing in a seeded 

SU(1,1) interferometer. 
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Figure 3.6: Normalized sensitivity of a lossless SU(1,1) interferometer with the phase (ϕ =

2ϕpump − ϕprobe − ϕconjugate) of the interferometer with various detection schemes. The black 

dotted line is the quantum Cramer-Rao bound for the two-mode squeezed state. The solid black 

line represents the SQL. The gray dashed-dotted line shows the sensitivity of the measurement MN 

in equation (3.4), the solid blue curve shows the phase sensitivity for the optimized quadrature 

measurement MQλ. The sensitivity of the photon number measurement in the bf mode, i.e., MNb, is 

given by the orange dashed curve.  

Another detection method is to measure the photon number only in one of the 

output modes. We can measure either the photon numbers in the af or the bf mode. 

Both the outputs individually depend on the phase inside the interferometer. We 

represent the two measurements by MNa = af
†af and MNb = bf

†bf.  

For the detection scheme, MNb, the phase uncertainty in measurements is given 

by  

Δ2ϕNb =
cosh(4r) cosh2(r) sech2(r) sec2 (

ϕ
2
) − 8

4|α|2
. (3. 7) 

As the phase ϕ → 0, the limit of Δ2ϕ reaches a well-defined value given by  

Δ2ϕNb|opt =
cosh2(2r)

|α|2
(3. 8) 



 

74 
 

 

Figure 3.7: Optimal sensitivity as a function of gain for different detection schemes in a lossless 

SU(1,1) interferometer and a lossless truncated SU(1,1) interferometer. The sensitivity is 

normalized to the input seed. The gray dashed curve and the orange dashed curve represent the 

sensitivities of the operators MN and MNb in a full SU(1,1) interferometer. The solid red plot shows 

the sensitivity of a truncated SU(1,1) interferometer and that of a full SU(1,1) interferometer with 

homodyne detection. The black dashed curve represents the QCRB for a two mode squeezed state 

as well as the sensitivity of the optimized operator MQλ in both a truncated and a full SU(1,1) 

interferometer. The λ value that saturates the QCRB in a full SU(1,1) interferometer are different 

from the values that saturate the QCRB in a truncated version. The black solid line corresponds to 

the SQL. 

The value in the equation (3.8) is also the minimum of Δ2ϕNb among all the phase 

points, as shown in Figure 3.6. Figure 3.7 shows that the measurement MNb has 

better sensitivity than the total photon number measurement MN, and has the 

potential to beat the SQL at a comparatively lower 4WM gain. Though we must 

note that the conjugate photon number measurement, like the observable MN, also 

does not saturate the QCRB at any 4WM gain value and hence is not the most 

optimal measurement.  

The above discussion is only for a lossless SU(1,1) interferometer. In the presence 

of loss, the above equations get modified. The important point to note here is that 
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the operating point ϕ → 0, does not remain optimal for phase sensing in a lossy 

interferometer. In fact, in the presence of loss, the phase uncertainty as ϕ → 0 

becomes infinite, i.e., the point is not sensitive to phase. In presence of loss, the 

optimal phase sensing point moves a little away from the ϕ = 0 point and depends 

on the amount of optical loss and the gain of the two NLO media in the 

interferometer. We will discuss the loss in an SU(1,1) interferometer in detail in a 

later section.  

Before ending this discussion, we point out that the phase sensitivity of the probe 

photon number measurement, MNa, does not saturate the QCRB and hence we do 

not discuss it here.  

3.3.1.2 Homodyne detection 

Another detection scheme uses homodyne detection to measure the joint 

quadrature of af and bf modes, where the joint quadrature operator is given by 

MQ = eiθaaf
† + e−iθaaf + eiθbbf

† + e−iθbbf. The phases θa and θb are the LO phases 

of the modes af and bf. We can set the phase θb to measure the phase quadrature 

of the conjugate mode and replace the phase θa with the phase ϕ, defined earlier. 

Under these conditions, the phase uncertainty for an SU(1,1) interferometer with 

the joint quadrature measurement is given by  

Δ2ϕ =
sec2(ϕ) [1 − 2 tanh(r) cos(ϕ) + tanh2(r)]

2|α|2
. (3. 9) 

This phase uncertainty is minimized when ϕ → 0, where the optimal phase 

sensitivity is given by  
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Δ2ϕQ|min =
[tanh(r) − 1]2

2|α|2
. (3. 10) 

Figure 3.6 shows that the minimum uncertainty, given by equation (3.10), is 

obtained when ϕ → 0. Moreover, we can see that the phase sensitivity also 

approaches the QCRB as ϕ → 0. Figure 3.7 shows that the sensitivity of the joint 

quadrature measurement MQ approaches QCRB for most 4WM gain values except 

the very small ones. Thus, we can say that MQ is an optimal measurement for 

phase sensing in an SU(1,1) interferometer for most 4WM gain values.  

As already mentioned, we can consider the 2nd NLO medium in an SU(1,1) 

interferometer as part of our detection scheme. Based on this, we tried to simplify 

the SU(1,1) interferometer setup. We removed the 2nd NLO and replaced 

everything after that with a joint homodyne detector on the two modes, as shown 

in Figure 3.4. We call this configuration the truncated SU(1,1) interferometer. We 

can call our measurement MQ = eiθaaf
† + e−iθaaf + eiθbbf

† + e−iθbbf, here again, the 

parameters θa and θb represent the LO phases for the two modes af and bf. We 

have used the same notation as that for the joint quadrature measurement with a 

conventional SU(1,1) interferometer because of their identical phase sensitivities. 

The phase uncertainty and the optimal sensitivity of a truncated SU(1,1) 

interferometer with the measurement MQ are represented by the same equations 

that describe the sensitivities for a coventional SU(1,1) interferometer with the 

corresponding measurement, i.e., the equations (3.9) and (3.10).  

We note that the sensitivity of an SU(1,1) interferometer and the truncated version 

are the same; they both saturate the QCRB for most 4WM gain values except very 
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small ones. Moreover, they both beat the SQL defined with the same number of 

photons passing through the phase object as in the two interferometers. Based on 

this observation, we built a truncated SU(1,1) interferometer and experimentally 

showed an improvement in phase sensing capacity over the SQL. Before moving 

to the experimental description, we will discuss the effect of losses on the 

sensitivity of a truncated SU(1,1) interferometer.  

3.3.2 Sensitivity in a Lossy truncated SU(1,1) interferometer  

In an experimental setup, there is always some form of optical loss. Therefore, the 

above equations for a lossless system will not be applicable for experimental work. 

We derived the equations for sensitivity including losses on the two modes [50]. 

For simplicity, we assumed equal losses on the two modes generated from the 

NLO medium. The uncertainty in the phase measurement with a lossy truncated 

SU(1,1) interferometer is given by:  

Δ2ϕ =
2η + (1 − 2η) sech2(r) − 2η sin(ϕp) tanh(r)

2η|α|2 sin2(ϕp)
, (3. 11) 

where ϕp is the LO phase of the probe homodyne detector, and we set the 

conjugate LO to measure the phase quadrature of the conjugate beam. η is the 

transmission of the probe and the conjugate mode. η ranges between 0 (total loss) 

and 1 (no loss). Using equation (3.11), we can show that the optimal sensitivity is 

observed when we measure the phase quadrature of the probe beam.  
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3.3.3 Experimental work on a truncated SU(1,1) interferometer 

We built a truncated version of an SU(1,1) interferometer with our 4WM system 

[53]. The schematic of our interferometer is shown in Figure 3.8. We seeded the 

4WM process with a coherent beam of amplitude |α| and phase ϕo. The process 

amplifies the seed to give a probe beam and produces another beam known as 

the conjugate. As discussed in Chapter 1, the twin beams are quantum 

mechanically correlated and form a pair of two-mode squeezed states. We perform 

homodyne detection on both the beams. And measure the joint quadrature of the 

two beams. We put an electro-optic phase modulator (EOM) in the path of the LO 

beam in the homodyne detector on the seeded arm of the setup. The modulator 

serves as a phase object, which modulates the phase of the LO beam at a 

frequency of 1 MHz. We measure the signal and the associated noise using a 

spectrum analyzer.  

 

Figure 3.8: Experimental setup for a truncated SU(1,1) interferometer. 

In each of the homodyne detectors, we overlap the signal (probe or conjugate) 

beam with its LO and subtract one output of the 50:50 beam splitter from the other. 

The process generates a signal dependent on the phase difference between the 

signal and the LO, as shown in Figure 3.9. We split the signal between a DC 
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component (<30 KHz) and an AC component (>30 KHz). We use the DC 

component to lock the homodyne detector to measure the phase quadrature of the 

signal beam. The AC part is used to measure the phase modulation put on by the 

EOM.  

 

Figure 3.9: A schematic of a homodyne detector and the associated interference fringe, as we scan 

the phase difference between the two beams 

We also compare the signal to noise ratio (SNR) of the measurement with the SQL. 

We measure the SQL by turning off the 4WM mixing process by blocking the pump 

beam, and we set the coherent seed equal in power to the probe beam. We show 

our experimental data in Figure 3.10. The solid blue plot shows the signal and 

noise for the phase measurement with the squeezed state of light, and the red plot 

represents corresponding measurements with the coherent beam. We obtained an 

improvement of ≈4dB in SNR over the SQL using the squeezed state. 

We also measured the SNR with squeezed state at different operating points on 

the probe homodyne detector, i.e., by measuring different quadratures of the probe 

beam. Figure 3.11 shows the measured SNR data while we lock the probe 

homodyne detector to measure different quadratures of the probe beam. The solid 
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red line in the plot shows the theoretical fit for the data with the equation (3.11). 

The best fitting parameters were found to be 4WM gain G=3.3 and the loss 

parameter η=0.65. The experimental value for the gain was G=2.7. 

 

Figure 3.10: Measured SNR for the truncated SU(1,1) interferometer (solid blue) and the SQL 

(dotted red). We measured the SQL by blocking the pump beam to the 4WM mixing process and 

making the seed beam equal in power to the probe beam. 

 

Figure 3.11: SNR data (blue dots with an error bar) measured with the squeezed state in our 

truncated SU(1,1) interferometer at different points on the probe homodyne detector fringe, i.e., 

while measuring different quadratures of the probe beam. The uncertainties are standard deviations 

from 10 independent measurements.  
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We also compared our SQL measurement with the theoretical value using the 

experimental parameters. For a sinusoidal phase modulation ϕ(t) =

√2δϕ sin(2πft), the SNR for SQL measurement is given by:  

SNRcoh =
2ηcohρP(δϕ)2

eB
(3. 12) 

where ηcoh is the loss parameter for the coherent beam passing through the phase 

object, ρ is the responsivity of the detector, P is the power of the coherent beam 

going through the phase object, B is the measurement bandwidth, and e is the 

electronic charge. In our experiment, we had an optical power of 400(20) nW. The 

loss on the coherent beam was ≈20%, i.e., η = 0.8. The loss is different from the 

one expected on the squeezed beam, this happens because the loss on the 

squeezed beam incorporates the loss in state preparation. In our experiment, we 

used δϕ = 1.7(0.2) mrad. Using the above mentioned parameters, we find a 

theoretical value of SNRcoh ≈ 22.5 dB. The value matches with our experimental 

observation given the uncertainties in our parameter values. If we remove all the 

losses from the SQL measurement, the SNRcoh will increase by ≈1 dB. This will 

still give an improvement of ≈3dB in SNR using our truncated SU(1,1) 

interferometer setup.  

Summarizing some of the sources of loss and excess noise in our system: 

homodyne detection visibility: ≈98%, the electronic noise separation from the shot 

noise: ≈18 dB, and the detection efficiency of our balanced detectors: ≈98%. 

Although in Anderson et al. [53], we had mentioned 90% detection efficiency, we 

calibrated diodes later and found the detection efficiency to be 98%. The reduced 
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loss could be compensated by the equivalent excess noise from the homodyne 

detector visibilities which we discovered later. 

3.4 OPTIMIZED MEASUREMENTS FOR SATURATING THE QCRB 

As just mentioned a truncated SU(1,1) interferometer saturates the QCRB for a 

two-mode squeezed state, but saturation happens only for large values of the 4WM 

gain (Figure 3.7). Figure 3.12 shows an expanded version of relevant sensitivities 

from Figure 3.7. To saturate the QCRB at small gain values, we try another 

measurement given by MQλ = Xp + λXc [50, 54]. Here Xp and Xc represent the 

phase quadrature of the probe and the conjugate modes, and the parameter λ is 

an attenuation parameter with values between 0 and 1. The operator MQλ adds a 

scaled value of Xc to the probe quadrature Xp. The solid blue line in Figure 3.12 

shows the sensitivity of the measurement MQλ. We see that the sensitivity using 

this measurement saturates the QCRB, shown with the dashed green line. The 

value of λ that allows MQλ to saturate the QCRB depends on the gain and the loss 

in the interferometer. For a lossless truncated SU(1,1) interferometer, the value of 

optimal λ is 

λopt = tanh(2r) , (3. 13) 

where r is the squeezing parameter, related to the 4WM gain G = cosh2(r). 
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Figure 3.12: Theoretical peak sensitivity, multiplied by the amplitude (|α|) of the coherent seed 

beam of the interferometer, achieved by an ideal lossless truncated SU(1,1) interferometer as a 

function of gain in the 4WM process. The solid orange curve shows the phase sensitivity of the 

observable MQ and the solid blue curve represents the phase sensitivity of the observable MQλopt
(as 

defined in the text). The thick dashed green curve indicates the QCRB for the two-mode squeezed 

state. 

We note that we put our phase object in the probe beam and the operator MQλ puts 

an attenuation on the conjugate quadrature. Thus, adjusting the λ does not change 

the signal from the phase object, and only changes the noise in the measurement. 

Hence, to observe the change in SNR as we modify the attenuation, it is sufficient 

to monitor the noise floor of the measurement. We show in Figure 3.13 (a), the 

noise of the measurement MQλ as we change the attenuation λ for a lossless 

truncated SU(1,1) interferometer. We plot the noise values for different 4WM gain. 

We see that the noise minimizes at a value of λ which we call λopt, and the value 

of λopt changes as we change the gain. Figure 3.13 (b) shows the variation of λopt 

as a function of the 4WM gain, at different transmissions of the probe and the 

conjugate. We assume the same losses on each of the twin beams for simplicity. 

We can also note that the value of λopt saturates to 1 as we increase the 4WM 



 

84 
 

gain, but the optical losses delay the saturation to larger gain values. Similar to 

equation (3.13), we can analytically define the optimal value of λ in a lossy 

interferometer.  

λopt =
√ηpηc sinh(2r)

1 − ηc + ηc cosh(2r)
, (3. 14) 

where ηp and ηc are the transmissions of the probe and the conjugate beams.  

 

a 

 

b 

Figure 3.13: (a) Noise of the measurement MQλ as a function of attenuation parameter λ at various 

4WM gains. (b) Variation of λopt as a fucntion of 4WM gain at different losses in the interferometer.   

The enhancement in absolute phase sensitivity also means a relative improvement 

over the SQL. As mentioned earlier, we define the SQL as the phase sensitivity of 

a Mach-Zehnder interferometer (MZI) with the same number of photons going 

through the phase sensing arm of the MZI as the number that go through the phase 

object in our truncated SU(1,1) interferometer. We can measure the SQL in our 

setup by replacing the probe and the conjugate beams with the coherent beams 

having the same number of photons. Just to note, what actually matters here is 

that we send the same number of coherent beam photons only in the probe arm, 



 

85 
 

which has the phase object. The conjugate arm photon number doesn’t matter, as 

the signal from the conjugate homodyne detector is independent of photon 

numbers in the arm. This setup has the same sensitivity as a standard Mach-

Zehnder interferometer.  

Above, we mentioned that while measuring the SQL, it didn’t matter what number 

of coherent beam photons went through the conjugate arm, as the quadrature 

noise of a coherent beam is independent of the mean photon number in the beam. 

We can say that the conjugate arm homodyne detector, while measuring the SQL, 

only adds noise and hence worsens the SNR. If we remove the conjugate arm 

homodyne detector, while measuring the SQL, we will get a better coherent beam 

SNR. We can call this another definition of SQL, but a very stringent one. We can 

refer to this definition of SQL as SQL2. We call the former definition of the SQL, 

where we consider both the homodyne detectors in our measurement of the SQL, 

as SQL1.  

We can relate the SNR improvement over the SQL to the sensitivities of the 

measurements using the formula 

SNRI = −10Log10 (
Δ2ϕtSU

Δ2ϕSQL
) , (3. 15) 

where Δ2ϕtSU and Δ2ϕSQL are the phase uncertainties of the measurement with the 

truncated SU(1,1) interferometer and with the coherent beam. We show in 

Figure 3.14 the improvement in SNR over the SQL1 (right side y-axis) and the 

SQL2 (left y-axis). We change the attenuation of the conjugate homodyne detector, 
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λ, and theoretically compute the SNR improvement over the two definitions of the 

SQL at different 4WM gains. We can see the optimized λ value that maximizes the 

SNR improvement. Additionally, we can also point out that at the gain of ~1.1 the 

SNR doesn’t beat the SQL2 with the measurement of MQ, i.e., λ = 1, but at the 

optimized value of λ, the sensitivity of MQλ operator goes beyond the SQL2.   

 

Figure 3.14: SNR improvement over the SQL1 (right y-axis, red color), and the SQL2 (left side y-

axis), as defined above, for a lossless truncated SU(1,1) interferometer.  

3.4.1 Experimental demonstration 

We made an experiment similar to the one shown in Figure 3.8, but with a 

modification, as shown in Figure 3.15 [54]. We put an electrical attenuation on the 

conjugate homodyne detector output before adding its signal to the probe 

homodyne detector. The process gives a measurement of the operator MQλ = Xp +

λXc. As in the setup of Figure 3.8, we put an electro-optic phase modulator in the 

LO in the probe homodyne detector, which puts a sinusoidal modulation on the 

LO. As mentioned earlier, in this experiment, we put the attenuator on the 

conjugate homodyne detector output and the phase modulator in the probe 

homodyne detector. Thus, we do not affect the signal produced as a result of phase 
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modulation and only affect the noise floor of the measurement when we change 

the attenuation λ. Hence, in this experiment, we observe the noise floor of the 

measurement and do not worry about the signal due to the phase modulator.  

 

Figure 3.15: Experimental setup for the phase measurement with the operator MQλ. We apply an 

electrical attenuation on the output of the conjugate homodyne detector before combining it with 

the output of the probe homodyne detector to get MQλ = Xp + λXc.  

We present our experimental data on the measurement of noise in the operator 

MQλ in Figure 3.16. Figure 3.16 (a) shows the absolute noise of the joint homodyne 

detector which gives an output of |αLO|MQλ, i.e., the joint quadrature operator 

scaled by the amplitude of the LO beams. We fit a theoretical curve through the 

data points. We use the 4WM gain, the optical losses on the two beams and a 

scaling factor as free parameters. We put 3% extra loss on the probe beam due to 

its proximity to the 85Rb transition in the Doppler-broadened medium. We verified 

this extra loss experimentally. The scaling parameter considers the LO power, 

which acts like an electronic gain in the homodyne detector. The red curves in the 

two plots show the theoretical fits. The values of the free parameters we obtain 
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match our experimental values very well within uncertainties. The parameter 

values are provided in the caption of Figure 3.16.  

The plots in Figure 3.16 (b) show the SNR improvement over the two definitions of 

the SQL for the measurements made in Figure 3.16 (a). The right-side axis (red 

color) shows the improvement over the SQL1, the left side (black) represents the 

improvement over the more stringent definition of the SQL, i.e., SQL2. We 

calculate the theoretical curves in these plots using the gain and the losses 

obtained from Figure 3.16 (a). We see that in both the plots the theoretical curves 

pass through the higher end of the experimental data. This happens because we 

take the experimental data by locking our homodyne detectors to measure the 

phase quadrature of each beam. The locking errors present in our system 

degrades our measurement and decreases our improvement over the SQL. The 

theoretical curves consider only the 4WM gain and the optical loss in the 

interferometer and not the locking errors. Hence, the theory curves represent the 

maximum possible improvement for our setup.  
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a 

  

b 

Figure 3.16: Measurements of MQλ. (a) Noise in the measurement of MQλ in our truncated SU(1,1) 

interferometer versus the attenuation parameter λ. (b) Improvement in the SNR as a function of the 

attenuation λ with the measurements MQλ over the SQL1 (SNRISQL1) and the SQL2 (SNRISQL2). The 

left and right side plots have estimated 4WM gains, probe and conjugate transmissions as 

indicated. The gain and the loss values were estimated from the theoretical fit of the data. The fits 

used 3% less transmittance for the probe beam than the conjugate beam, which we measure 

experimentally. 
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Figure 3.17: λopt as a function of the 4WM gain. The points are experimental measurements 

determined from plots like those in Figure 3.16. A theoretical curve is generated using a probe 

beam transmission of 74.5% and a conjugate beam transmission of 77.5%. These values represent 

the typical losses in our system. 

We estimated λopt from the plots in Figure 3.16. We took similar data at other 4WM 

gain values and estimated λopt from those plots. We plot all those λopt values in 

Figure 3.17 against the respective 4WM gain values. We also plot a theoretical 

curve using the typical losses present in our experiment. The theoretical curve fits 

very well with the experimental data, as shown in Figure 3.17.  

3.4.2 𝐌𝐐𝛌 measurements in a full SU(1,1) interferometer 

In the past sections, we have discussed only the truncated SU(1,1) interferometer, 

where we performed optimized measurements of MQλ to saturate the QCRB for 

two-mode squeezed light. We mentioned earlier in the text that the sensitivity of 

the operators MQ is the same for both the full and the truncated versions of the 

SU(1,1) interferometer. The results for the MQ operators in Figure 3.7 and 

Figure 3.12 represent both the truncated and the full SU(1,1) interferometers. 

Similarly, the operator MQλ also represents both the interferometers, where the 

sensitivities of the interferometers saturate the QCRB of the two-mode state at all 
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4WM gains. The only difference here is the value of λ that optimizes the 

measurement. The λ value that saturates the QCRB for the truncated SU(1,1) 

interferometer could be different from the one that is optimal for the full SU(1,1) 

interferometer. 

In the last sections, our discussion has included the interferometers where we seed 

the NLO medium in our interferometer with a coherent seed. In another 

configuration, we can do interferometry with only vacuum seeds in the NLO 

medium of the interferometers. We describe the vacuum seeded interferometry in 

the following section. 

3.5 VACUUM SEEDED CONFIGURATION 

We refer to Figure 3.5 again. We remove the coherent seed in the ao mode and 

replace it with a vacuum seed, as shown in Figure 3.18. The first NLO medium 

produces a two-mode vacuum squeezed state and we send the ai mode through 

a phase object. We mix the ai mode after the phase object and the bi mode directly 

from the 1st NLO medium in another similar NLO medium, with a pump beam. The 

output of the 2nd NLO medium is given by af and bf.  

 

Figure 3.18: Schematic of a vacuum seeded SU(1,1) interferometer with the operator 

representation of various states of light.  
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As in the coherent seeded interferometry, here again, we can have different types 

of detection. We first consider the direct detection of the two modes af and bf. We 

consider the total photon number, MN = af
†af + bf

†bf. We can again use the 

Heisenberg approach, discussed in the Appendix B, to get the analytical 

expressions for the sensitivity of the observable MN, which is given in equation 

(3.16) as a function of operating point ϕ for a lossless SU(1,1) interferometer.  

Δ2ϕ = coth2(2r) sec2 (
ϕ

2
) − 1, (3. 16) 

where all the parameters represent the same physical quantities they represented 

earlier. We can use the equation (3.16) to get the best operating point, where the 

phase uncertainty Δ2ϕ is the smallest. We can see that as the phase ϕ → 0, Δ2ϕ 

reaches a minimum given by 

Δ2ϕmin = cosh2(2r). (3. 17) 

We plot the optimal phase sensitivity with MN, i.e., equation (3.17) in Figure 3.19. 

We find that the phase sensitivity of MN saturates the QCRB for a two-mode 

vacuum squeezed state. Therefore, we can say that the total photon number MN 

is an optimal measurement for a vacuum seeded SU(1,1) interferometer. We must 

remember, unlike here, the total photon number MN (or the photon number 

measurement in mode bf, i.e., MNb) was not an optimal measurement for the 

coherent seeded SU(1,1) interferometer and did not saturate the QCRB for a bright 

two-mode squeezed state.  
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Figure 3.19: Sensitivity of a vacuum seeded interferometer for different detection schemes. The 

solid black line represents the SQL, the dashed orange curve is the sensitivity of the joint 

quadrature measurement, and the gray dashed-dotted curve shows the phase uncertainty of the 

total photon number MN, which also coincides with the QCRB for two-mode vacuum squeezed light. 

As we mentioned in the seeded configuration, in the presence of loss, the ϕ = 0 

point does not show any phase sensitivity. The phase sensitivity maximizes at a 

point away from ϕ = 0, and depends on the gain of the NLO media and the optical 

losses.  

Homodyne detection 

Another detection scheme is joint homodyne detection. Similar to the seeded case, 

we represent it by MQ = eiθaaf
† + e−iθaaf + eiθbbf

† + e−iθbbf. The phases θa and θb 

are the LO phases of the modes af and bf. Without losing generality, we can set 

the phase θa to measure the phase quadrature of the af mode, since ϕ can take 

care of the LO phase in the af mode. The sensitivity of the quadrature 

measurement is given by  

Δ2ϕ =
(∂ϕΔMQ)

2

Δ2MQ
2

(3. 18) 
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here, ΔMQ is the standard deviation in the measurement of the joint quadrature 

operator MQ, and the quantity Δ2MQ
2  is the noise on the noise of the measurement 

MQ [50]. For a Gaussian signal, the fourth moment and the second moment are 

related, and hence the above quantity can be re-written as  

Δ2ϕ =
(∂ϕΔMQ)

2

2(Δ2MQ)
. (3. 19) 

We can use the above equations to analytically calculate the phase uncertainty in 

the measurement of MQ as a function of ϕ given by  

Δ2ϕ =
1

2
csc2(ϕ − θb)[2 cos(ϕ − θb) + tanh(r) + coth(r)]2 . (3. 20) 

We find that as 

ϕ − θb → π − tan−1(csch(2r)) , (3. 21) 

Δ2ϕ optimizes to the minimum uncertainty value given by 

Δ2ϕ = 2 csch2(2r) . (3. 22) 

We plot equation (3.22) in Figure 3.19 as a function of NLO medium gain, where 

we find that the sensitivity of MQ beats the SQL but it doesn’t saturate the QCRB. 

This is in contrast to the coherent seeded interferometry where the joint quadrature 

measurement MQ for most gains (and modified measurement MQλ for all gains) 

saturates the QCRB. We do not plot any theoretical results for MQλ for vacuum 

seeded interferometry, as we found that anything other than λ = 1 just degrades 

the sensitivity. 
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3.5.1 Vacuum seeded truncated SU(1,1) interferometer 

For the vacuum seeded case, like the seeded interferometer, we can remove the 

2nd NLO medium and replace it with two homodyne detctors, one on each mode. 

We can measure the joint quadrature of the two output modes, given by MQ =

eiθaaf
† + e−iθaaf + eiθbbf

† + e−iθbbf. The phases θa and θb are the LO phases of the 

modes af and bf. Again, like the seeded interferometry, MQ operator for the vacuum 

seeded truncated SU(1,1) interferometer has the same sensitivity as that of the 

conventional SU(1,1) interferometer. Equations (3.20), (3.21), and (3.22) are also 

applicable for the measurement of MQ in a truncated SU(1,1) interferometer.  

Although we can see from Figure 3.19 that the joint quadrature measurement is 

not optimal for phase measurement in a truncated or a conventional SU(1,1) 

interferometer, the photon number measurement is not practical for our 

experimental setup.  

3.5.2 Experimental demonstration 

We built a truncated SU(1,1) interferometer similar to the one shown in Figure 3.8, 

but with vacuum seeds in both the input ports, as shown in Figure 3.20. In this 

experiment, we collect data showing the phase dependence of the quadrature 

noise. We can collect the quadrature data from an oscilloscope or get the 

quadrature noise data from a spectrum analyzer. We use equations (3.18) and 

(3.19) to caluculate the phase sensitivity of the measurement using the 

experimental data. Since equation (3.18) is a more intutive definition, and the 

equation (3.19) is a derived equation based on Gaussian measurement properties, 
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we verify the sensitivity of our experiment with both the equations. Equation (3.19) 

gives us the freedon to measure only one quantity to get the phase sensitivty of 

the measurement instead of the two quantities in equation (3.18).  

 

Figure 3.20: Experimental setup for the vacuum seeded truncated SU(1,1) interferometer. 

 

Figure 3.21: Experimental data verifying the agreement of equation (3.18) (blue dots) and equation 

(3.19) (orange dots). Red curve is the theoretical fit for the given measurement.  

We collect the quadrature data with an oscilloscope for different phase shifts in the 

joint homodyne detector. We calculate the noise of the data at various homodyne 

phases. We fit the data to a sinusoidal function of the quadrature phase to get the 

slope of the data with respect to the quadrature phase. We calculate the quantity 

Δ2MQ
2  to get the noise on the quadrature noise, and finally we use the estimated 
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slope and Δ2MQ
2  to get the phase sensitivity at various quadrature phase operating 

points. We show one such estimation in Figure 3.21, where the red dots in the plot 

show the estimation of phase sensitivity using equation (3.18). We also show the 

phase sensitivity calculated using equation (3.19) (blue dots) in Figure 3.21. For 

the calculation with equation (3.19), we fit the quadrature noise to a sinusoidal 

function of the quadrature phase. We estimate the slope of the quadrature noise 

with respect to the phase using the theoretical plot, and finally use the slope and 

the quadrature noise to calculate the phase sensitivity. We find from Figure 3.21, 

that sensitivity estimation using both the equations agree with each other.  

We present the estimation of phase sensitivity of vacuum seeded SU(1,1) 

interferometer using our experimental data in Figure 3.22. Figure 3.22 shows only 

a fraction of the data we have taken at different 4WM gain settings. We can see 

that we are almost 1-2 dB away from the SQL. Depending on the gain and the 

squeezing in the apparatus, we come as close as within 0.5 dB of the SQL. 
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Figure 3.22: Experimental data for the sensitivity of the operator MQ in a truncated SU(1,1) 

interferometer. The upper plots show the phase uncertainty (Δ2ϕ) as a fucntion of the phase ϕ. The 

lower plots show a few points near the best sensitivity point, on the log scale which can be directly 

translated to the SNR. We see from the lower plots, the phase sensitivity of our data is still worse 

than the SQL by ~1-2 dB. This depends on the gain of the 4WM. For a variety of gain values, we 

are away from the SQL by at least 0.5 dB. 

The reasons that we do not beat the SQL are numerous. The most important 

reason is the degree of quantum mechanical squeezing, we will understand more 

of this later. Other reasons include, experimental instability, which we tried to 

remove by bringing in the specially designed Rb vapor cells, and by using 3-axis 

piezo mirrors for better phase locking the homodyne detectors. We dedicated 

significant discussion to them in Chapter 1. Next, we will examine the experimental 

requirements specific to our apparatus to get phase sensitivities beyond the SQL.  
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Since we could not beat the SQL with our vacuum seeded truncated SU(1,1) 

interferometer, we give some necessary conditions to go beyond the SQL. In 

Figure 3.23, we show a theoretical simulation of SNR improvement over the SQL 

using the vacuum seeded truncated SU(1,1) interferometer. The plot demonstrates 

improvement over the SQL at a given 4WM gain and squeezing. In other words, 

we can say that the simulation shows the amount of squeezing required at a given 

gain to beat the SQL. Since squeezing is highly dependent on loss or any excess 

noise in the system, the plots also put an upper bar on loss or excess noise that is 

tolerable for beating the SQL. We can see that at a reasonable gain of ~3, we 

require over 5 dB squeezing to go beyond the SQL, which is a little beyond the 

capacity of our current system.  

 

Figure 3.23: Theoretical plot showing the potential SNR improvement over the SQL with the 4WM 

gain and the squeezing available in our system. The positive contour line means higher SNR than 

the SQL. For a given gain, the squeezing is changed by varying the amount of optical loss on the 

probe and the conjugate beams. In the simulation, we have always kept the probe beam loss 5% 

greater than the conjugate beam loss. 



 

100 
 

We have seen many suggestions on improving the squeezing in our 4WM system 

in Chapter 1. Some of which we have tried after we obtained the above results. 

So far, we have talked about multiple detection schemes in the coherent beam 

seeded and vacuum seeded configurations of the SU(1,1) interferometer. Some of 

the detection schemes were optimal in saturating the QCRB and some were not. 

In Table 2 we provide a summary of the performance of different detection 

schemes in a conventional and a truncated SU(1,1) interferometer. Much of this 

discussion is also available in our publication [50].  

Table 2:  Summary of phase sensitivities for different detection schemes compared to the QCRB.  

SU(1,1) interferometer 

Detection scheme Coherent seeded Vacuum seeded 

MN Suboptimal Saturates QCRB 

MNb Suboptimal Saturates QCRB 

MQ Saturates QCRB for large G Suboptimal 

MQλ Saturates QCRB Suboptimal 

Truncated SU(1,1) interferometer 

MQ Saturates QCRB for large G Suboptimal 

MQλ Saturates QCRB Suboptimal 

 

Before closing the discussions on phase measurement with a full or a truncated 

SU(1,1) interferometer, we would like to give a small description of the usefulness 
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of a conventional SU(1,1) interferometer over a truncated SU(1,1) interferometer. 

A conventional SU(1,1) interferometer is detection loss tolerant [9, 55, 56, 50]. 

We define the internal loss in an SU(1,1) interferometer as the loss on the probe 

and the conjugate in between the NLO media. The external loss means any loss 

on the beams after the 2nd NLO medium. We can compensate for any external loss 

in an SU(1,1) interferometer by increasing the gain of the 2nd NLO medium. We 

show in Figure 3.24, the variation of the normalized phase sensitivity of an SU(1,1) 

interferometer as a function of the 2nd NLO medium gain. We use the total photon 

number operator MN for the phase sensitivity calculations. We see that increasing 

the gain of the 2nd NLO medium decreases the phase uncertainty. We can also 

find that if the external loss is high, it takes a larger 2nd NLO medium gain to 

compensate for the loss.  

 

Figure 3.24: Sensitivity versus gain of NLO 2 for intensity detection, MN, of the conventional SU(1,1) 

interferometer, optimized over ϕ. NLO 1 has a gain of 2 and there is no internal loss. The blue 

circles, yellow squares, green diamonds, and orange triangles represent external transmissions of 

0.5, 0.75, 0.9, and 0.99, respectively.  

Manceau et al. [9] have recently performed an experiment demonstrating the 

robustness to detection loss in a vacuum seeded SU(1,1) interferometer built using 
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a χ2 nonlinear medium for the generation and mixing of quantum states. They used 

the total photon number operator MN as their detection scheme. In our system, we 

can perform a similar experiment using a joint homodyne detector.  

We must note one point before proceeding further, the 2nd NLO medium gain does 

not compensate for any internal loss in the interferometer. Increasing the gain of 

the 2nd NLO medium will not improve the sensitivity degraded by internal loss.  
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4 Quantum phase tracking 

In the previous chapter, we discussed phase measurement with squeezed state of 

light. We talked about measuring a small phase fluctuation around a fixed or known 

phase. The process is known as phase sensing. In such a situation, the system 

can be linearized about a fixed phase, and we can think only about improving the 

signal to noise ratio of the measurement [57, 31].  

In another kind of measurement, we measure a completely unknown phase. Unlike 

the previous experiment, we do not have a known locked phase around which we 

measure the small phase modulation. Contrary to phase sensing, where a system 

can be linearized around a fixed phase [57, 31], here the measurement requires 

non-trivial adaptive algorithms to perform the unknown phase estimation [58, 59, 

60, 61, 62, 63, 64, 65]. There is some experimental work to beat the SQL in an 

unknown phase measurement in a homodyne detector [14, 15, 66, 16] and with 

photon number detection, though with post-selection of data [67]. Recently, there 

has been some work, where the phase measurement has been performed within 

4% of the Heisenberg limit using adaptive techniques [68].  

Adaptive algorithms can be used for various kinds of phase measurement. 

Figure 4.1 shows a schematic of an experiment for the measurement of an 

unknown phase. Here, an unknown phase (large or small) is applied in one arm of 

the interferometer. The unknown phase could be large or small, DC [67, 16]  or AC 

[15, 64, 65] in nature. The process here is to put a controllable phase device in the 

other arm of the interferometer. The output of the interferometer depends on the 

difference between the unknown phase and the controllable phase. The output is 
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used to apply feedback on the controllable phase to track the unknown phase. The 

feedback is provided such that the output stays at the most phase sensitive point 

on the interferometer fringe.   

 

Figure 4.1: Schematic for a measurement of an unknown phase in an interferometer. An unknown 

phase is placed in one of the arms of the interferometer. A controllable phase is put in the other 

arm. The output of the interferometer depends on the phase difference between the unknown 

phase and the controllable phase. The output passes through a processor which sends feedback 

to the controllable phase to track the unknown phase. 

In this work, our goal is to track an unknown AC phase, which has the form of a 

stochastic waveform, with an accuracy better than the SQL. We do phase tracking 

using our truncated SU(1,1) interferometer with a two-mode squeezed state, as 

discussed in Chapter 3. We build homodyne detectors for each mode, i.e., the 

probe and the conjugate. We put a phase noise on the probe beam and try to track 

the noise using the probe LO beam. We put a stochastic waveform in our 

experiment [15, 65, 66, 69], given by 

ϕ = √κ∫ e−λ(t−s)
t

−∞

dV(s), (4. 1) 
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where dV(s) is a classical Weiner process, λ is the bandwidth of the stochastic 

waveform, and κ defines the amplitude of the waveform, and is of the order of 

unity. We can take a time derivative of the above equation to get  

ϕ̇(t) = −λϕ(t) + √κdV(t), (4. 2) 

where ϕ̇(t) is the time derivative of ϕ(t). Equation (4.2) is a more useful form for 

the present work.  

 

Figure 4.2: Schematic of phase tracking setup. 

In our experiment, as shown in Figure 4.2, we place a phase modulator in the 

probe beam path and one in the path of the probe LO. We put a stochastic phase 

waveform on the probe beam phase modulator and track the waveform using the 

controllable phase modulator in the LO beam path. We take the joint homodyne 

detector signal and pass it through a Kalman filter, which generates a feedback 

signal for the phase modulator in the LO beam path. We describe the Kalman filter 

in Appendix C. We have mentioned in the previous chapter that our truncated 

interferometer behaves in the most sensitive way when we measure the joint 

phase sum quadratures of the probe and the conjugate beams, i.e., the phase 
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quadrature of each of the beams (and sum them). Hence, in our interferometer, 

we lock the phase of the conjugate beam homodyne detector to measure its phase 

quadrature. In the probe beam homodyne detector, we apply a feedback from the 

Kalman filter to the phase modulator on the LO beam. The feedback tries to change 

the phase of the LO beam such that we come close to measuring the phase 

quadrature of the probe beam.  

If we can track the phase of the probe beam properly with the LO using the 

feedback algorithm, then the output current of the joint homodyne detector can be 

written as [64, 15] 

I(t)dt = 2|α|(ϕ(t) − ϕf(t))dt + √RsqdW(t), (4. 3) 

Rsq = σf
2e2rasq + (1 − σf

2)e−2rsq . (4. 4) 

Here, σf
2 is the phase variance (or error) of tracking process, given by σf

2 =

⟨ϕ(t) − ϕf(t)⟩
2, ϕf(t) is the feedback on the phase modulator in the LO path.  Rsq 

represents the noise of the joint homodyne detector as a result of the error in phase 

tracking, where e2rasq and e−2rsq are the noises of the anti-squeezed and the 

squeezed quadratures respectively. 
dW(t)

dt
 corresponds to a Gaussian white noise. 

We have used different parameters rasq and rsq for the anti-squeezed and the 

squeezed noise, respectively, to consider optical loss or excess noise in the 

system causing a difference in the values of the two parameters.   

We can use equations (4.2) and (4.3) with a Kalman filter to obtain an optimized 

feedback response ϕf(t) [64, 15]. A Kalman filter is considered the minimum mean 
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squared error estimator given the state equations of the form in equations (4.2) 

and (4.3) [64, 15, 70]. We describe the Kalman filter in Appendix C. 

In a feedback loop, the analytical expression for steady state error is given by [64, 

15], 

σf
2 =

λRsq

4|α|2
(√1 +

4κ|α|2

λ2R̅sq

− 1) . (4. 5) 

The steady-state feedback signal is given by  

ϕf(t) = Γ∫ I(s)e−λ(t−s)ds
t

−∞

, (4. 6) 

where Γ, known as the Kalman gain, is shown in equation (4.7),  

Γ = −λ + √λ2 +
4κ|α|2

R̅ sq
. (4. 7) 

We present in Figure 4.3 some theoretical simulations of the system using the 

phase tracking algorithm. We provide the algorithm in Appendix C. Figure 4.3 (a) 

shows a simulation of the feedback phase (blue) applied to the LO in response to 

the original stochastic phase (orange) applied on the probe beam. The plots show 

the working of the tracking algorithm on the simulated data of the homodyne 

detector and the stochastic waveform.  



 

108 
 

 

a 

 

b 

Figure 4.3: (a) A sample simulation of the system, the orange curve is the simulated stochastic 

phase put on the phase modulator in the probe beam path, and the blue plot is the estimated 

feedback on the phase modulator in the LO beam path. (b) Variation of the phase error between 

the applied phase on the probe beam and the feedback on the LO beam as a function of measured 

squeezing in the system. The three curves show three different losses η on each of the beam. The 

lowermost curve is for a lossless system, and the uppermost curve represents a system with 75% 

transmission on each of the beams. 

Figure 4.3 (b) presents the variation of the phase noise with the measured 

squeezing. Squeezing along the x-axis is increased by increasing the 4WM gain, 

whereas the three different curves represent the three different losses on the twin 

beams. The lower most plot represents no loss whereas the uppermost plot has 

the largest optical loss. The curves represent the results from the analytical 

equation (4.5). The points on the curves are the numerical analysis of simulated 

data obtained for the homodyne detectors and the stochastic waveform. The black 

plot shows the standard quantum limit obtained by replacing the probe and the 

conjugate beams with the coherent beams of the same power. We define the SQL 

in terms of the number of photons passing through the phase object placed in the 

probe beam arm. We see an improvement over the SQL in the tracking error. One 
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important point to note here is that the peak phase error achieves a minimum as a 

function of squeezing and further increase in the squeezing raises the error. This 

happens because the phase error of the tracking mixes the anti-squeezed noise 

with the squeezed noise in the homodyne detector signal. The process works to 

give an optimal squeezing for a minimum phase error [15]. 

In the next section, we discuss our efforts to implement the experiment and 

describe our progress so far.  

4.1 EXPERIMENTAL SETUP 

In our experimental setup, shown in Figure 4.4, we have a 4WM process that 

amplifies a seed beam to produce a probe and a conjugate beam. We perform a 

joint homodyne detection on the probe and the conjugate beams as part of our 

truncated SU(1,1) interferometer. In the probe beam homodyne detector, the probe 

beam and the LO both go through electro-optic phase modulators in their paths. 

We put a stochastic waveform on the electro-optic phase modulator (EOM) in the 

path of the probe beam using a function generator. The output of the joint 

homodyne detector goes through a Proportional-Integral-Differential (PID) filter to 

produce feedback which we put on the EOM in the path of the LO beam. 

Meanwhile, we lock the phase of the conjugate beam homodyne detector to 

measure the phase quadrature of the conjugate beam.   

We also lock the probe homodyne detector using a 3-axis piezo-electric mirror to 

measure the phase quadrature of the probe beam. This lock is made at near dc 

frequencies, i.e., DC to less than 300 Hz. This is made to make sure we suppress 
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all the low frequency environmental noise. The bandwidth of this low frequency 

lock is much less than the bandwidth of the stochastic waveform (10 KHz) that we 

put on the EOM in the path of the probe beam.  

 

Figure 4.4: Schematic of an experimental setup. A 4WM process amplifies a seed beam to give a 

probe beam and produces a conjugate beam. The seed probe beam comes from a fiber phase 

modulator, which produces a single side-band at 1 MHz on the seed probe beam. We perform a 

joint homodyne detection on the probe and the conjugate beams. In the probe homodyne detector, 

the probe and the LO both go through electro-optic modulators placed in their respective paths. We 

put a stochastic waveform on the probe beam phase modulator using a function generator, and we 

provide a feedback signal on the phase modulator in the path of the LO beam. Meanwhile, the 

conjugate beam homodyne detector is locked to measure the conjugate beam phase quadrature.  

To perform the phase tracking experiment, we put a single sideband on the seed 

of the 4WM process with a 1 MHz frequency shift from the carrier. We use this 

sideband frequency for the signal in the joint homodyne detector for the phase 

tracking. We use the carrier for DC locking of the probe beam homodyne detector. 

Since the sidebands are 1MHz shifted from the carrier, we electronically 

demodulate the output of the joint homodyne quadrature at 1 MHz before sending 

the output to a low pass filter which generates feedback for the EOM in the path of 
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the LO beam. We generate a sideband at 1 MHz because we can achieve decent 

quadrature squeezing at that frequency.  

 

 

a 

 

b 

 

c 

Figure 4.5:(a) Phase pattern put on the fiber phase modulator for single sideband generation at 

1MHz. (b) Theoretical power (Fourier) spectrum of the light field after applying the phase pattern in 

part (a). (c) Experimental data showing the power spectrum of light from the fiber phase modulator 

modulated with the phase pattern shown in part (a). The power in the sideband at -1 MHz is 

suppressed by more than 25 dB. We provide the experimental setup for measuring the phase 

sideband spectrum in Appendix C. 
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To generate a single sideband, we put the seed through a fiber phase modulator 

and apply the waveform shown in Figure 4.5 (a). We show the power spectrum of 

our light in Figure 4.5 (c), the spectrum matches very well with the theoretical 

expectation shown in Figure 4.5 (b). The phase pattern in Figure 4.5 (a) is a 

superposition of sawtooth phase patterns with different frequencies (multiples of 1 

MHz). Recently, we have been able to use more sophisticated algorithms to obtain 

phase patterns which give us better control of the ratio of the powers in different 

sidebands. 

Another important task is to measure the power of light in the 1 MHz sideband. We 

use heterodyne detection for this purpose. We provide a derivation of the relation 

between the measured optical power to the observed signal to noise ratio (SNR) 

of the heterodyne detector in Appendix C. Figure 4.6 shows a sample 

measurement of ~750 fW (femto watt) optical power with a heterodyne detector. 

Based on the theoretical simulations using our typical experimental parameter 

(4WM gain and the optical loss) values, we would like to use a sideband power of 

~500 fW to experimentally observe the effect of excessive squeezing, shown in 

Figure 4.3 (b), while beating the SQL.  
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Figure 4.6: Sample heterodyne detector measurement. The SNR represents a power measurement 

of ~750 femto-watt. The error bar length of ~1.14 dB represents an uncertainty of ~53 fW on either 

side of the mean, i.e., 750 ± 53 fW.  

4.2 CURRENT STATUS OF THE EXPERIMENT 

We have been able to produce a single sideband on a carrier frequency. We are 

using this frequency to perform the phase tracking experiment. We obtained some 

results in the experiment regarding tracking the phase of the probe beam with the 

LO, but we haven't observed anything better than the SQL yet.  

Moreover, as mentioned earlier, we used a PID filter instead of the Kalman filter in 

our experiment. We are also implementing a design of Kalman filter, theoretically 

which would give a better tracking result over a PID filter.  We have finished the 

software design of the Kalman filter and are trying to implement its hardware on a 

circuit board.  

Our next goals are to observe the results of tracking using a PID filter and then 

replace the PID filter with our design of the Kalman filter to track the phase of the 

probe beam. The aim here is to reduce the phase tracking error below the SQL.    
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5 Conclusion 

In this thesis, we studied the generation of a two-mode squeezed state of light in 

hot 85Rb vapor. We discussed the measurement of squeezing using a homodyne 

detector. We analyzed various parameters that affect the measurement of 

squeezing, especially optical losses, and additions of excess noise from various 

sources. We saw the effects of the imbalance in the transmittance and the 

reflectance of the 50:50 beam splitter in a homodyne detector, the excess noise 

due to the electronic noise of the detectors, and the phase noise between the probe 

and the conjugate beams and their respective LOs. Unlike the OPO system, we 

ruled out the phase noise as a limiting factor in measuring higher squeezing in our 

setup.   

We studied the addition of destructive excess noise due to imperfect visibility in 

our homodyne detectors causing coupling of independent thermal modes into the 

measurement. We concluded, based on our experimental data and theoretical 

analysis, that the loss of visibility in our homodyne detectors is the main source for 

limiting the squeezing measured in our experiments. We tried to improve the 

visibility by mode shaping the LO beams to match the probe and the conjugate. 

We successfully implemented the independent matching of the phase and the 

intensity profile of the probe LO with the probe beam using an SLM. Our technique 

hasn’t worked for matching the phase and the intensity profile simultaneously. We 

showed the imperfection of our SLM, i.e., less than 2π achievable phase 

modulation, as a cause. Moreover, we also suggested the use of a higher 

resolution wavefront sensor in performing wavefront matching. We pointed to more 
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sophisticated algorithms to correct the phase and the intensity profile 

simultaneously, which should be used with a better SLM. 

We also made some technical improvements in our setup by introducing 3-axis 

piezoelectric mirrors and by reducing the effect of thermal air currents. The 

techniques helped us to improve the phase locking of the homodyne detectors and 

to stabilize the measurement of squeezing.  

In Chapter 3, we discussed the use of a two-mode squeezed state in 

interferometry. We explained an SU(1,1) interferometer and the various detection 

schemes that can saturate the Quantum Cramer Rao bound (QCRB), and hence 

can theoretically reach the maximum phase sensitivity achievable with a two-mode 

squeezed state. We suggested a modification in the design of an SU(1,1) 

interferometer, and we called it a truncated SU(1,1) interferometer. We showed 

theoretically that the truncated version could achieve the same phase sensitivity 

as that of a conventional SU(1,1) interferometer, and hence saturate the QCRB for 

the two-mode squeezed state. We performed an experiment and showed a ~4 dB 

SNR improvement over the SQL in phase measurement.  

We also showed theoretically that the homodyne detections in both the seeded 

SU(1,1) interferometer and the truncated version saturate the QCRB 

asymptotically, but not at small 4WM gain values. We suggested a modification in 

the measurement by introducing a gain factor on the conjugate homodyne detector 

before combining with the probe homodyne detector output. Theoretically, the 

scheme was successful in saturating the QCRB at all 4WM gain values. Also, we 
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experimentally showed an improvement in the SNR measurement with our 

truncated SU(1,1) interferometer using this scheme. 

We also implemented a truncated SU(1,1) interferometer with vacuum seed in both 

the input ports of our 4WM source. We performed an experiment to measure phase 

sensitivity with vacuum squeezed light. Experimentally, we are still ~1 dB away 

from the SQL. This happens because the homodyne detection is not an optimal 

measurement for phase sensing with a two-mode vacuum squeezed state which 

we showed theoretically. With theoretical simulations using our experimental 

parameters, we estimated a minimum requirement of 5.5 dB of measured 

squeezing to beat the SQL, which is higher than the squeezing we measure in our 

lab. In the future, our effort would be to use the methods discussed in Chapter 2 

to improve the visibility of our homodyne detectors and hence measure better 

squeezing. Higher squeezing would help us get a phase sensitivity improvement 

over the SQL.   

In Chapter 4, we discussed the measurement of an unknown phase. Unlike 

Chapter 3, where we measured a small phase modulation around a known fixed 

phase, here we are trying to measure an unknown phase. The goal is to measure 

the phase placed in one arm of an interferometer with the help of a controllable 

phase in the other arm. We apply feedback on the controllable phase to track the 

unknown phase. We perform the experiment in our truncated SU(1,1) 

interferometer for tracking an unknown stochastic phase with ~10KHz bandwidth. 

The goal here is to reduce the phase error below the SQL using our two-mode 

squeezed state. We described the experimental setup we built for tracking the 
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phase of light in Chapter 4. We also talked about some necessary preliminary 

power measurements using heterodyne detectors and a generation of single 

sideband on a carrier using an electro-optic phase modulator. The next task in the 

experiment is to align the system properly to measure squeezing and take the first 

set of data for tracking the stochastic phase of the light. 

In the future, instead of measuring the stochastic waveform, we could also try to 

measure a large fixed phase shift. The experiment would require another adaptive 

algorithm based on Bayesian analysis [16]. Again, the goal here would be to show 

an improvement in phase measurement over the SQL using a truncated SU(1,1) 

interferometer.  
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Appendix A  

A.1 Derivation of the effect of imbalance in 50:50 beam splitter on the 

squeezing measurement 

For a 50:50 beam splitter, the transmittance (|t1|
2) and the reflectance (|r|2) are 

equal, given by 
1

2
. For most real beam splitters this ratio is somewhat off from the 

perfect value and could be given by 
1

2
+ ε, and 

1

2
− ε.  

We start with a homodyne detector where a signal beam with an electric field given 

by,  αSig, overlaps with an LO with amplitude and phase goven by, αLOeiϕ. We 

assume |αLO| ≫ |αSig| in the homodyne detector. We measure the quadrature of 

the signal beam by taking a difference between the two ports of the beam splitter. 

Without losing generality, we can define the reflection and the transmittance 

coefficient of the beam splitter as, r1 = r2 = reiθ, and t1 = t2 = t. For simplicity, we 

have considered the reflectance and transmittance of the both the ports equal. We 

consider a small imbalance between the transmittance and the reflectance of the 

beam splitter, i.e., |t1|
2 = |t2|

2 = |t2| =
1

2
− ε, and |r1|

2 = |r2|
2 = |r2| =

1

2
+ ε. 

 

Figure A.1: Homodyne detector with an imbalanced 50:50 beam splitter. 
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The power in the two ports of the beam splitter are given by  

P1 = |r|2|αLO|2 + |t|2|αsig|
2
+ 2|r||t||αLO||αSig| cos(ϕ + θ) , (A. 1) 

P1 = |t|2|αLO|2 + |r|2|αsig|
2
− 2|r||t||αLO||αSig| cos(ϕ + θ) . (A. 2) 

The difference output is given by  

ΔP = (|r|2 − |t|2) (|αLO|2 − |αSig|
2
) + 4rt|αLO||αSig| cos(ϕ + θ) . (A. 3) 

For |αLO| ≫ |αSig| and using |t|2 =
1

2
+ ε, and |r|2 =

1

2
− ε, 

ΔP = 2ε(|αLO|2) + 4√
1

4
− ε2|αLO||αSig| cos(ϕ + θ) . (A. 4) 

Now, we can separate the LO power into a DC and an AC term, αLO = αLO
DC + ΔαLO. 

The DC term, αLO
DC, represents the amplitude and the AC term, ΔαLO, shows the 

noise on the beam, the amplitude noise. 

We can rewrite equation (A. 4) with the DC and AC term of the LO beam separated,  

ΔP = 2ε (|αLO
DC + ΔαLO|

2
) + 4√

1

4
− ε2(|αLO

DC| + ΔαLO)|αSig| cos(ϕ + θ) . (A. 5) 

Now for an LO, the DC power is much higher than the amplitude noise on it, i.e., 

|αLO
DC| ≫ |ΔαLO|. We can keep the first order terms in ΔαLO and rewrite equation 

(A. 5), 

ΔP = 2ε (|αLO
DC|

2
) + 4ε|αLO

DC|ΔαLO + 4√
1

4
− ε2(|αLO

DC|)|αSig| cos(ϕ + θ). 
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Rewriting the above equation  

ΔP = 2ε (|αLO
DC|

2
) + 4√

1

4
− ε2

(

 
ε

√1
4 − ε2

ΔαLO + |αSig| cos(ϕ + θ)

)

 |αLO
DC|. (A. 6) 

Now the term 2ε (|αLO
DC|

2
) is a DC value so it does not contribute to the noise 

properties. We can see that the 2nd term 
ε

√
1

4
−ε2

|αLO
DC|ΔαLO adds excess noise to the 

quadrature noise of the signal beam. We can calculate the power of the 2nd term, 

and give the excess noise as the ratio of the power of the 2nd term to the 3rd term 

as 

ΔNexcess =
ε2

1
4 − ε2

 Δ2αLO. (A. 7) 

For ε ≪
1

2
, we can write the above equation as 

ΔNexcess =
16ε2Δ2αLO

Δ2XSig
. (A. 8) 

Since we measure the joint quadrature of the probe and the conjugate, we sum 

the homodyne detector outputs of the two beams. The excess noise in our case 

would be 

ΔNexcess =
16ε2(Δ2αLO

p
+ Δ2αLO

c )

Δ2XSig
, (A. 9) 

where ΔαLO
p

 and ΔαLO
c  are the amplitude noises of the probe and the conjugate 

local oscillator.  
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We can also note one more point here. Since we always measure the squeezing 

compared to the shot noise. Our measurement of the shot noise will also be worse 

if we have a beam splitter imbalance. The excess noise added to the shot noise 

measurement will be fractionally less than that added to the squeezed quadrature 

noise. We can use the above equations to exactly compute the squeezing. We 

should add excess noise in both the shot noise measurement and the squeezed 

noise measurement and then take the ratio of two noises.  

A.2 Calibration of the SLM 

Here we provide an explanation and results for the phase characterization of an 

SLM. We show our experimental setup for the phase characterization in 

Figure A.2. We reflect a beam off our SLM at an angle of less than 10o, as 

recommended by the manufacturer. The beam is polarized at an angle of 45o in 

the x − y plane, i.e., orthogonal to the direction of the beam propagation. The SLM 

affects the polarization along the y-direction only and does not provide phase 

modulation to the x polarization. We place a polarizing beam splitter (PBS) in the 

reflected beam and put the beam from one of the ports onto a detector, which 

measures the power of the beam.  

When the SLM puts a phase shift onto the y-polarized part of the beam, the 

effective polarization of the entire beam changes. We can represent the beam 

before it falls on the SLM as 

E⃗⃗ = Eox̂ + Eoŷ. (A. 10) 
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Figure A.2: Experimental setup for the characterization of an SLM. A waveplate rotates the 

polarization of an x-polarized beam to be at angle of 45o with the polarization axis of the SLM 

(perpendicular to the plane of the figure). After reflection from the SLM, another waveplate rotates 

the polarization of the beam by -45o. The beam passes through a polarizing beam splitter and falls 

on a diode for detection. 

After reflection from the SLM, the electric field is given by 

E⃗⃗ = Eox̂ + Eoe
iϕŷ. (A. 11) 

Depending on the phase ϕ, the polarization of the beam could be linear, elliptic, or 

circular. If we rotate the polarization of the beam by 45o, the field becomes 

E⃗⃗ =
Eo

√2
(x̂ + ŷ) +

Eo

√2
eiϕ(x̂ − ŷ), 

which can be re-written as  

E⃗⃗ = (
Eo

√2
+

Eo

√2
eiϕ) x̂ + (

Eo

√2
−

Eo

√2
eiϕ) ŷ. 

If we place a PBS into the beam with the y-axis as the transmission axis and detect 

the transmitted power, we will observe 
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P = |
Eo

√2
−

Eo

√2
eiϕ|

2

= Eo
2(1 − cosϕ). (A. 12) 

We can see that the above power is a sinusoidal function of the phase retardation 

ϕ applied by the SLM. Hence as we change the value of the applied voltage on 

the SLM (eight-bit binary value), we can measure the power and hence calibrate 

the phase retardation with the applied binary value on the SLM.  

 

Figure A.3: Calibration data for the SLM. The blue curve shows the optical power in the transmitted 

PBS port, and the maroon curve shows the sine fit based on equation (A. 12). The y-axis shows 

the pixel value of the flat wavefront that we put on the SLM. We did not consider the surface flatness 

correction for SLM head while doing this calibration, because of the less than 2π phase shift 

availability. 

We show the calibration data for our SLM in Figure A.3. We fit the experimental 

data with equation (A. 12), and find the range of phase modulation to be ~1.823π 

radians.  

A.3 Possible automation in the experimental setup 

We mentioned in Chapter 1 that we produce local oscillators in our experiment 

using a seeded 4WM process. The process amplifies the seed beam to give a 
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probe and produces a conjugate beam. If we seed the process with a probe seed 

beam with a power |αo|
2 in a 4WM system with gain G, the power of the probe and 

the conjugate are G|α|, and (G − 1)|αo|
2 respectively. We can see that the two 

beams are different in power. If we use these beams in our joint homodyne 

detector, we get the following measurement 

X = |αLO|(√GXp + √G − 1Xc), (A. 13) 

where Xp and Xc are the probe and the conjugate beam quadrature operators. We 

can re-write the equation (A. 13) as  

X = |αLO|√G − 1(
√G

√G − 1
Xp + Xc) . (A. 14) 

We can see from equation (A. 14) that when we use a 4WM generated probe and 

conjugate beam LO, we get a weighted joint quadrature operator and not the joint 

phase sum quadrature that we desire in our experiment. This gives an excess 

noise in our detection and reduces the measured squeezing. Though we can get 

rid of the excess probe power easily, it requires extra optics and has the potential 

to bring in orthogonal polarization in the LO which could add excess noise. There 

is another easier way to do this via electronics. We have already shown some 

measurements in Chapters 1 and 2 by electronically attenuating the output of a 

homodyne detector. We can put an electronic gain of κ =
√G−1

√G
 on the probe beam 

homodyne detector output to measure the desired sum quadrature operator.  

Now, in our experimental setup, we have different losses on the probe and the 

conjugate beams. Hence the ratio of the power of the two beams is not necessarily 
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defined by the gain of the 4WM. In our lab, we could measure the power of the 

individual LO beams and make them equal. We do not measure their powers 

directly, instead we check the shot noises of individual homodyne detectors. If the 

shot noises of both the homodyne detectors aren’t equal, we make them equal by 

using an electronic attenuation/gain.  

 

Figure A.4: Experimental setup for the automation of balancing the weights of the two homodyne 

detectors.  

We can also automate the above process by using the standard electronic 

equipment, as shown in Figure A.4. We use two Arduino controlled beam blocks 

to block the two LO beams, one at a time. We measure the shot noise from each 

homodyne detector and calculate the ratio of the two powers. Depending on the 

ratio, we apply a feedback attenuation, which could be an easily available/home 

built current controlled attenuator.  

We give a short description for making a quick current controlled attenuator using 

an electronic mixer. One way to make an electronic attenuator is to apply a dc 

current in the IF port of a mixer and apply the input power in the LO port. The 

attenuation of the output through the RF port depends inversely on the current 
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applied through the IF port. We also show a characterization of a sample 

attenuator we made in our lab. We include a theoretical fit κ = A/(V − B), where V 

is the applied potential across the IF port.  

 

a 
 

b 

Figure A.5: (a) Schematic for an electronic attenuator using an electronic mixer. We apply the input 

to the LO port and dc current to the IF port of the electronic mixer. The attenuation of the output 

through the RF port is inversely proportional to the applied current. (b) Characterization of an 

electronic attenuator including a theoretical fit with κ = A/(V − B), where V is the applied DC 

potential. 
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Appendix B  

B.1 Deriving the phase sensitivity 

We gave phase uncertainty expressions in Chapter 2 for multiple detection 

schemes. We provide here some explanation for how those expressions were 

calculated. We evaluated those expressions with the use of a Mathematica 

package for non-commuting variables [71]. We have provided much of this 

discussion in our publications [50, 53]. 

 

Figure B.1: Schematic of an SU(1,1) type interferometer. ηp1, ηc1, ηp2, and ηc2 are the internal and 

the external losses on the probe and the conjugate beams respectively. The states co, do, eo, and 

fo are vacuum states coupling with the quantum states as a result of the loss. The r and s are the 

squeezing parameters of the 1st and the 2nd NLO media, related to the gain of the media by Gr =

cosh2(r), and Gs = cosh2(s), where Gr and Gs are the gains of the two NLO media. 

We start our discussion by providing a schematic of an SU(1,1) interferometer 

(Figure B.1), similar to the one that we used in Chapter 2. There are two input 

states ao and bo, which after passing through the 1st NLO medium of the 

interferometer become the states ai and bi. The state ai goes through a phase shift 

ϕ. Both the states ai and bi suffer losses ηp1 and ηp2 before mixing with a pump 

beam inside the 2nd NLO medium. The loss is represented by a beam splitter with 
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a transmissivity (ηp1 or other similar expressions) whose other port mixes vacuum 

(co, do, and others) with the input beam. The 2nd NLO performs its operations on 

the two input beams and produces two output modes. The two modes thus 

produced, may suffer a loss at the detection stage.  

To relate the final output af and bf to the inputs ao and bo, we need the 

mathematical representations of various process on the beam path. We start with 

the 4WM (two-mode squeezer), which is given by  [53, 19, 72] 

U = (

cosh(r) 0
0 cosh(r)

0 sinh(r)

sinh(r) 0
0 sinh(r)

sinh(r) 0
cosh(r) 0

0 cosh(r)

) (B. 1) 

We can describe the initial modes with the annihilation operators ao and bo, and 

put them in a column vector as 

v =

(

 

ao

ao
†

bo

bo
†)

 . (B. 2) 

We can write the transformation using the 4WM system as  

(

 
 

a1

a1
†

b1

b1
†

)

 
 

= Uv. (B. 3) 

Similarly, we can take into account the effect of losses and the effect of the 2nd 

NLO medium in an SU(1,1) interferometer. In case of a truncated SU(1,1) 

interferometer, there is no 2nd NLO medium and hence s = 0. We derive 
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expressions for the quantum states af and bf by operating on the term in equation 

(B. 3) with the loss and the 2nd NLO matrices. We provide here the final 

expressions for the states af and bf in terms of known experimental parameters in 

equations B. 4) and B. 5).  

âf = iêo√1 − ηp2

+ √ηp2 {cosh(s) [iĉo√1 − ηp1 + √ηp1(âoe
iϕ cosh(r) + eiϕ sinh(r) b̂o

†)]

− sinh(s) [√ηc1(âo sinh(r) + cosh(r) bo
†)

− i√1 − ηc1do
†]},                               (B. 4) 

b̂f = if̂o√1 − ηc2

+ √ηc2 {cosh(s) [id̂o√1 − ηc1 + √ηc1(b̂o cosh(r) + sinh(r) âo
†)]

− sinh(s) [√ηp1(b̂oe
−iϕ sinh(r) + e−iϕ cosh(r) âo

†)

− i√1 − ηp1ĉo
†]}.             (B. 5) 

We can use the expressions for âf and b̂f for calculating the sensitivities of various 

detection schemes. For example, the sensitivity for the detection with the total 

photon number operator, M̂N = âf
†âf + b̂f

†b̂f, is given by  

Δ2ϕ =
⟨Δ2M̂N⟩

∂ϕ⟨M̂N⟩
. (B. 6) 

The quantities mentioned in equation (B. 6), can be expressed using the 

expressions for âf and b̂f,  
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⟨M̂N⟩ = ⟨âf
†âf + b̂f

†b̂f⟩,  

Δ2M̂N = ⟨M̂N
2 ⟩ − ⟨M̂N⟩

2
= ⟨(âf

†âf + b̂f
†b̂f)

2
⟩ − (⟨âf

†âf + b̂f
†b̂f⟩)

2
. (B. 7) 

We can use equation (B. 7) to get the sensitivity of the photon number (M̂N) 

measurement, shown in equation (3.4). We are not putting the expression here to 

avoid verbosity. Similarly, we can calculate the expressions for the sensitivities of 

other detection schemes. 

We tested all our evaluations with the end cases and in the limits of a coherent 

beam and other intuitive results. All these tests yielded positive results. 

Additionally, we compared our computations with many results available in the 

literature, which matched our calculations. 

B.2 Derivation of phase sensitivity for a Mach-Zehnder interferometer 

We used, in Chapter 2, the expressions relating the electrical signals from the 

devices to the phase sensitivity of our interferometer. Here we derive those 

expressions. Figure B.2 shows a schematic of a homodyne detector. 

 

Figure B.2: Homodyne detector with the signal beam αSig overlapping with a local oscillator αLOeiϕ. 

The power in the LO beam is much higher than the signal beam, i.e., |αLO| ≫ |αsig|. 
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We can describe the output in the two ports of the 50:50 beam splitter by the 

equations 

P1 =
1

2
(|αSig|

2
+ |αLO| + 2|αSig||αLO| cos(ϕ)), 

P2 =
1

2
(|αSig|

2
+ |αLO| − 2|αSig||αLO| cos(ϕ)). 

We subtract one output of the beam splitter from the other to give 

ΔP = 2|αSig||αLO| cos(ϕ). 

Now given the power P1 and P2 falling on the diodes, the electrical current 

generated by the detectors is given by i = ρ(P1 + P2), where ρ is the responsivity 

of the detectors. We can find the difference current generated by the diodes, as 

i = ρΔP = 2ρ|αSig||αLO| cos(ϕ) . (B. 8) 

Since we try to measure the signal to noise ratio (SNR) of the measurement, we 

must measure the power of the associated signal. Power of the difference current 

as measured across a resistor (R) is 

Pelec = i2R = 4Rρ2|αSig|
2
|αLO|2 cos2(ϕ) . (B. 9) 

 

Now we try to measure a small modulation δϕ around a fixed phase ϕo. We can 

put ϕ = ϕo + δϕ in equation (B. 9) to get 

Pelec = 4Rρ2|αSig|
2
|αLO|2 cos2(ϕo + δϕ). 
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For small δϕ, the above equation can be written as  

Pelec = 4Rρ2|αSig|
2
|αLO|2 sin2(ϕo) (δϕ)2. (B. 10) 

Using a sinusoidal modulation δϕ = √2δϕosin (Ωt), we can write the equation 

(B. 10) as 

Pelec = 4Rρ2|αSig|
2
|αLO|2 sin2(ϕo) (δϕo)

22⟨sin2(Ωt)⟩. 

Here ⟨sin2(Ωt)⟩ is the expectation value of sin2(Ωt), which is 
1

2
. Putting this in the 

above equation gives an expression for the modulation signal power, given by 

equation (B. 11),  

Pelec = 4Rρ2|αSig|
2
|αLO|2 sin2(ϕo) (δϕo)

2 . (B. 11) 

Since we observe the signal to noise ratio (SNR) of the measurement, we need an 

expression for the noise. For a coherent beam, the photon number has a Poisson 

distribution, which manifests itself in the current produced by the detectors. For a 

power P of light falling on a diode, the noise power in the current is given by, 

ΔPelec = 2eiBR [31], where e and B are the electronic charge and measurement 

bandwith. The total noise generated by the two diodes in the homodyne detector 

is 

ΔPelec = 2eBR(P1 + P2) = 2eBRρ|αLO|2. (B. 12) 

The above equation assumes |αLO| ≫ |αSig|. We can compute the SNR of the 

measurement using equations (B. 11) and (B. 12),  
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SNR =
Pelec

ΔPelec
=

2ρ|αSig|
2
(δϕo)

2

eB
. (B. 13) 

We can use the SNR of the measurement from a device like a spectrum analyzer, 

and use the SNR to estimate δϕo from equation (B. 13). 

B.3 Geometric description of an SU(1,1) interferometer 

The Lie Algebra corresponding to the group SU(1,1) is spanned by the three 

operators {Kx, Ky, Kz}. The operators satisfy the following commutation relations 

[73, 8]: 

[Kx, Ky] = −iKz, [Ky, Kz] = iKx, [Kz, Kx] = iKy. 

We can define the raising and lowering operators for the group, given by K± =

Kx ± iKy, which satisfy the commutation relations given by  

[K−, K+] = 2Kz, [Kz, K±] = ±K± 

The Cassimir invariant K2 = Kz
2 − Kx

2 − Ky
2 is given by an identity operator K2 =

k(k − 1)I, where k acquires discrete values given by k =
1

2
, 1,

3

2
, 2, …. k.  

 

Figure B.3: A 4-wave mixer 

For an 4-wave mixer with inputs and outputs shown in Figure B.3, the K operators 

are given by [8]: 
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Kx =
1

2
(af

†bf
† + afbf), Ky = −

i

2
(af

†bf
† − afbf), Kz =

1

2
(af

†af + bf
†bf), 

and the corresponding raising (K+) and lowering (K−) operators are represented 

by 

K+ = af
†bf

†, K− = afbf. 

A 4-wave mixer is defined by the scattering matrix S, which transforms its two 

inputs to produce output states given by 

[
aout

bout
] = S [

ain

bin
] , (B. 14) 

S = [
cosh(r) e−iδ sinh(r)

eiδ sinh(r) cosh(r)
], 

where cosh2(r) is the gain of the 4WM process, and δ is the phase of the pump 

beam. 

S can be re-written as 

S = [e
−iδ 0
0 1

] [
cosh(r) sinh(r)

sinh(r) cosh(r)
] [e

−iδ 0
0 1

] , (B. 15) 

Using the above scattering matrix for the 4WM process, one can write the 

transformations of the K operators in Heisenberg picture as: 

[

Kx

Ky

Kz

]

out

= [
cos(δ) sin(δ) 0

− sin(δ) cos(δ) 0
0 0 1

] [
cosh(r) 0 sinh(r)

0 1 0
sinh(r) 0 cosh(r)

] [
cos(δ) − sin(δ) 0

sin(δ) cos(δ) 0
0 0 1

] [

Kx

Ky

Kz

]

in

 

[

Kx

Ky

Kz

]

out

= R(−δ, z)L(2r, y)R(δ, z) [

Kx

Ky

Kz

]

in

(B. 16) 
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The above matrices can be described in a light-cone like space, where the Kx and 

Ky are space like coordinates and Kz is a time like coordinate, with the matrices 

R(−δ, z): rotation about the Kz axis by δ angle, L(2r, y): a Lorentz boost along the 

positive Ky axis, and finally R(δ, z): a rotation by −δ about the Kz axis. We can write 

the transformation more compactly using the notation,  

[

Kx

Ky

Kz

]

out

= eiδKze−2irKye−iδKz [

Kx

Ky

Kz

]

in

e−iδKze2irKyeiδKz . 

Similarly, in the Schrodinger picture, this can be written as: 

|out⟩ = e−iδKze2irKyeiδKz|in⟩, 

where |out⟩ and |in⟩ are collective the output and the input states of the 4-wave 

mixer.  

 

Figure B.4: Schematic of an SU(1,1) interferometer, second 4-wave mixer performs inverse of the 
first. 

In an SU(1,1) interferometer (Figure B.4), if the pump beam phase is set to perform 

the inverse of the first 4-wave mixer, and the sum of the phases of the two modes 

inside the interferometer is given by ϕ. one can describe the entire operation using 

the transformation 

Kfinal = L(2r, y)R(ϕ, z)L(−2r, y)Kin = R(−θ, z)L(γ, x)R(θ, z)Kin, (B. 17) 
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Where θ and γ are explicit functions of ϕ and r. The expression can be regarded 

as a rotation θ about Kz axis, then a Lorentz boost along the positive Kx axis, and 

finally a rotation of −θ about the Kz axis in a light cone space where Kx and Ky act 

as position coordinates and Kz acts like time coordinate. Since the interferometer 

can be explained using the Lorentz transformation of the K operators, which are 

the Lie algebra generators of SU(1,1) group, the interferometer is known as the 

SU(1,1) interferometer.  

Similarly, a Mach-Zehnder interferometer can be described as rotations of the 

angular momentum operators in a 3D space which are the Lie algebra generators 

of SU(2) group, hence it is also given the name SU(2) interferometer. Detailed 

discussion on both the interferometers can be found in Yurke et al. [8].   

  



 

138 
 

Appendix C  

C.1 Kalman Filter 

In this section, we talk about the Kalman Filter, mostly the Discrete-time Kalman 

Filter. We use the discrete time filter for all our data analysis both experimental 

and simulations. The continuous time Kalman filter is used mainly to derive the 

equations in Chapter 3 or for finding their analytical forms. The work has been 

performed very well in various publications [64, 15].  

A Kalman filter is defined using a state and an observation equation [46, 70]. Given 

the following state and observation equations: 

s[n] = Fs[n − 1] + Gu[n], (C. 1) 

x[n] = Cs[n] + Rw[n]. (C. 2) 

u and w are the Zero-mean Gaussian random process with variance 1, and n is 

the successive iteration of data. F, G, C, and R are the scalar constants. s is the 

state of the system under observation, and x is the observed output of the system. 

One goal here is to get an estimate of s[n] based on all the past and the present 

data obtained from the system, i.e., x[0]… . x[n]. A Kalman filter gives the minimum 

mean square error estimator of such a system [46, 70]. The exact derivation of the 

Kalman filter system is beyond the scope of this discussion. 

To apply the Kalman Filter to our system, we must be able to put our system to the 

above form. Our stochastic waveform is given by 
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ϕ(t) = √κ∫ e−(t−s)dV(s)
t

−∞

. (C. 3) 

Differentiating the above equation gives 

ϕ(t + dt) = (1 − λdt)ϕ(t) + √κdV(t), (C. 4) 

where V(t) is a Wiener process. The distribution of dV(t) is given by 

dV(t)~𝒩(0, dt), where 𝒩(0, dt) is a normal distribution with zero mean and dt as 

the variance. For a normal distribution 𝒩(0, dt) = (dt)0.5𝒩(0,1), we also define 

𝒩(0,1)~ u(t), we can rewrite equation (C. 4) as  

ϕ(t + dt) = (1 − λdt)ϕ(t) + √κ√dt u(t). (C. 5) 

We can write the signal from the homodyne detector as  

I(t)dt = 2|α|(ϕ(t) − ϕf(t))dt + √RsqdW(t), (C. 6) 

Rsq = σf
2e2rasq + (1 − σf

2)e−2rsq , (C. 7) 

where σf
2 is the phase variance (or error) of the tracking process, given by σf

2 =

⟨ϕ(t) − ϕf(t)⟩
2,  Rsq is the noise of the joint homodyne detector as a result of the 

error in phase tracking, e2rasq is the noise of the anti-squeezed quadrature, and 

e−2rsq is the noise of the squeezed quadrature. dW(t)~𝒩(0, dt)~(dt)0.5𝒩(0,1). We 

can re-write equation (C. 6) as 

I(t) = 2|α|(ϕ(t) − ϕf(t)) +
√Rsq

√dt
 𝒩(0,1). (C. 8) 
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We can re-write the above equation using  𝒩(0,1)~w(t) and re-arranging the 

terms, 

I(t) + 2|α|ϕf(t) = 2|α|ϕ(t) +
√Rsq

√dt
 w(t). (C. 9) 

We can compare equation (C. 9) with equation (C. 2), and equation (C. 5) with 

equation (C. 1). We find the equations are comparable with the substitutions: 

[

F
G
C
R

] =

[
 
 
 
 
 
1 − λdt

√κ√dt
2|α|

√
Rsq

dt ]
 
 
 
 
 

. (C. 10) 

Also, the state s(t) = ϕ(t), and the observation x(t) = I(t) + 2|α|ϕf(t). We can 

apply a Kalman filter to equations (C. 5) and (C. 9) to get the minimum mean square 

error estimator of ϕ(t).  

C.2 Algorithm of Kalman filtering 

Once we have a state equation and an observation equation, given by equations 

(C. 1) and (C. 2). We can use the following algorithm to get an estimate of the state 

of the system (ŝ(n)) [70, 46]. 

Before describing the algorithm, we describe a few notations we use in the 

description. We use the notations ŝ(n|n), M(n|n), and K(n) to represent the 

estimator of state s at time n, i.e., s(n), the mean error in the estimation, and the 

Kalman gain at time n respectively. We will describe other symbols later, as 

required. We discuss the Kalman filter algorithm next. 
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We start with the initialization of the system. We assign reasonable initial values 

to the estimator and iteratively follow the following steps to get an estimate of the 

state.  

1. Prediction step 

ŝ(k|k − 1) = Fŝ(k − 1|k − 1) 

ŝ(k|k − 1) represents an estimation of s(k) using the estimate at time k − 1. 

2. Mean square error prediction  

M(n|n − 1) = F2M(n − 1|n − 1) + G2. 

3. Kalman Gain 

K(n) =
M(n|n − 1)C

C2M(n|n − 1) + R2
. 

4. Correction 

x̂(n|n) = x̂(n|n − 1) + K(n)(x(n) − Cŝ(n|n − 1)). 

5. Minimum MSE 

M(n|n) = (1 − K(n))M(n|n − 1). 
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C.3 Experimental setup for measuring sidebands on light 

 

Figure C.1: Experimental setup for measuring the sidebands put on the light using a fiber 

modulator. 

Figure C.1 shows the experimental setup used for measuring the sidebands of light 

generated using a fiber modulator in our phase tracking experimental setup. We 

overlap the phase modulated beam with another beam, 80 MHz shifted from the 

carrier of the phase modulated beam, on a 50:50 beam splitter. We measure the 

output using a diode and a spectrum analyzer.   

C.4 Derivation of power measurement using a Heterodyne detector 

We used the expressions relating the electrical signals from the devices to the 

phase sensitivity of our interferometer. Here we derive those expressions. 

Figure C.2 shows a schematic of a homodyne detector. 
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Figure C.2: Heterodyne detector with the signal beam αSig overlapping with a local oscillator αLOeiϕ. 

The power in the LO beam is much higher than the signal beam, i.e., |αLO| ≫ |αsig|. 

We can describe the output in the two ports of the 50:50 beam splitter by the 

equations 

P1 =
1

2
(|αSig|

2
+ |αLO|2 + 2|αSig||αLO| cos(ϕ + Ωt)), 

P2 =
1

2
(|αSig|

2
+ |αLO|2 − 2|αSig||αLO| cos(ϕ + Ωt)). 

We subtract one output of the beam splitter from the other to give 

ΔP = 2|αSig||αLO| cos(ϕ + Ωt). 

Now given the power P falling on the diodes, the electrical current generated by 

the detectors is given by i = ρP, where ρ is the responsivity of the detectors. We 

can find the difference current generated by the diodes, as 

i = ρΔP = 2ρ|αSig||αLO| cos(ϕ + Ωt) . (C. 11) 
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Since we try to measure the signal to noise ratio (SNR) of the measurement, we 

must measure the power of the associated signal. The power of the difference 

current as measured across an R = 50 Ω resistor is 

Pelec = i2R = 4Rρ2|αSig|
2
|αLO|2⟨cos2(ϕ + Ωt)⟩. (C. 12) 

Since the expectation ⟨cos2(ϕ + Ωt)⟩ =
1

2
, we have  

Pelec = 2Rρ2|αSig|
2
|αLO|2. (C. 13) 

Since we observe the signal to noise ratio (SNR) of the measurement, we need an 

expression for the noise. For a coherent beam, the photon number has a Poisson 

distribution, which manifests itself into the current produced by the detectors. For 

a power P of light falling on a diode, the noise power in the current is given by, 

ΔPelec = 2eiBR [31], here B is the measurement bandwidth, e is the electronic 

charge, and R is the 50 Ω resistor used in the equation (C. 12). The total noise 

generated by the two diodes in the homodyne detector is 

ΔPelec = 2eBR(P1 + P2) = 2eBRρ|αLO|2 (C. 14) 

The above equation assumes |αLO| ≫ |αSig|. We can compute the SNR of the 

measurement using equations (C. 13) and (C. 14),  

SNR =
Pelec

ΔPelec
=

2ρ|αSig|
2

eB
. (C. 15) 

We can use the SNR of the measurement from a device like a spectrum analyzer, 

and estimate the power of the signal beam, i.e., |αSig|
2
 from equation (C. 15).  
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