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The Fire Problem 

• Surface flame spread is a key 
determinant of early fire growth 
 

• Flame to surface heat feedback 
controls material burning rate 
 

• Widely used standards assessing 
material flammability show: 
– Limited predictive capabilities outside 

of standard test conditions 
– Conflicting assessments between tests 
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Thermal Model of  
Upward Flame Spread 
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Early Flame Spread Models 

• Early analytical models 
 
 
 

• Additional influences to consider 
– Heat Feedback Distribution 
– Heat Transfer Mechanism 
– Solid Phase Degradation Mechanism 
– Temperature Dependent Material Properties 
– Secondary Burning Behavior 

• Dripping / Polymer Melt flow 
• Soot Formation and Deposition 
• Charring 
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Early Flame Spread Models 

• Computational Models 
– Predict material degradation in response to 

external heat 
• How to describe flame heat flux 

– Flame height 
– Heat feedback profile 

• Steady state (peak) heat flux 
• Form/shape, decay region 
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• Better resolve flame to surface 
heat feedback at the critical 
length scale 
 

• Predict flame to surface heat 
feedback solely as a function of  

 material burning rate  
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• Couple empirical model of flame 
heat feedback with pyrolysis 
model to simulate early stages of 
upward flame spread 
 

• Generalize wall flame model to 
describe the burning behavior of 
a range of materials 

 
• Examine the impact of secondary 

burning behavior on fire growth 



Test Apparatus 
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Test Apparatus 
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Experiments Conducted 

• Materials 
– PMMA (extruded) 

 

• Sample Dimensions 
– Height 3 to 20 cm 
– Width 5 cm 

 

• Experiments 
– Vertical Burning, Upward Flame Spread 
– Measure: 

• Mass Loss Rate 
• Flame Heat Flux 
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Y. Pizzo et al. | Combustion and 
Flame 152 (2008) 451–460 



Experimental Procedure 

• Ignite sample base with propane 
burner; for PMMA, 125 s exposure 
 

• Allow flame to propagate freely until 
full sample involvement 
 

• Measure flame to surface heat 
feedback or sample mass loss rate 
until steady conditions are observed 
or early sample extinction  required 
(e.g. due to dripping) 
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Ignition Source Heat Flux Profile 
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PMMA Mass Loss Rate 
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PMMA Flame Heat Flux 
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Normalized Flame Heat Flux 

 

11/24/2015 
The 7th International Aircraft Fire Cabin 

Safety Research Conference 
23 

Introduction 
 The Fire Problem 
 Thermal Model 
 Early Models of Flame 

Spread 
 Purpose of Study 
  
Experimental Work 
 Experimental Process 
 Flame Spread 
 
Experimental Results 
 Material Burning Behavior 
 Measured Heat Flux 
 Flame Heat Flux Model 
 
Modeling Work 
 Flame Heat Feedback 
 Flame Spread 
 
Conclusions and Future Work 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

0 60 120 180 240 300 360 420 480 

q
" H

F
g
 (

k
W

 m
-2

) 

t  - tign (s) 

3 cm  

 4 cm 

5 cm 

7.5 cm 

10 cm 

12.5 cm 

15 cm 

17.5 cm 

20 cm 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 60 120 180 240 300 360 420 480 

q
*
 =

  
q

" fi
tt

ed
 / 

q
" st

ea
d

y 

t - tign (s) 

3 cm  

4 cm 

5 cm 

7.5 cm 

10 cm 

12.5 cm 

15 cm 

17.5 cm 

20 cm 



Flame Heat Flux Profile 
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Determining Flame Height, yf 

• Flame height is defined as the 
highest position along the sample at 
which q”

HFg is within 2.5% of q”
steady 
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Flame Heat Flux Model 
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Gas phase is represented by 
empirical relations between 
flame heat transfer and 
component mass flux. 

Material degradation mechanism 
defined by: 

• First order Arrhenius reaction rates: 
 
 
 
• Temperature dependent material 

properties (k, ρ, cp, λ): 
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Milligram Scale Testing 

• Thermogravimetric Analyzer (TGA)  
– Kinetics:  A, E 

 

 

• Differential Scanning Calorimetry (DSC) 
– Thermodynamics 

– Specific heat, Cp 

– Heats of  

• Decomposition, hdecomp 

• Melting, hmelt 

Bench Scale Testing 

• Gasification Experiments 

– Thermal Conductivity, k 

– Absorption coefficient, a 
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Experimental and simulated TGA of PMMA  
at 10 K min-1 and 30 K min-1 
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Experimental and simulated DSC of PMMA  
at 10 K min-1 and 30 K min-1 
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Impact of maximum flame temperature on 
ThermaKin2D simulations of burning rate during 
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Impact of polymer melt flow on ThermaKin2D 
simulations of burning rate during upward 
flame spread over PMMA 
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A Generalized  
Wall Flame Model 
• Generalize flame model to predict the 

behavior of flames supported by a wide 
range of materials  
 

• Wall flame height is often calculated as 
a function of heat release rate 
 

• Attempt scaling of model expressions on the 
basis of the heat of combustion of the 
gaseous volatiles  
– Flame height 
– Peak heat flux 
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Experiments Conducted 

• Materials 
– PMMA (cast) ABS, Fiberglass, HDPE, 

HIPS, PBT, PET, PP, POM 
 

• Sample Dimensions 
– Height 3 to 15 cm 
– Width 5 cm 

 

• Measurements 
– Mass loss rate 
– Flame heat flux 
– Heat of Combustion 
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Materials Exhibiting Significant 
Melt Flow: PP and POM 
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Heavily Sooting Materials:  
ABS 
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Heavily Sooting Materials:  
HIPS 
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Heavily Sooting Materials:  
Shielded Heat Flux Tests 
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Glass-Reinforced Composite 
Materials: FRP and PBT 
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Material 

Method 1 

yf ~ ΔHc total 

Tfl ~ ΔHc total 

Method 2 

yf ~ ΔHc heat H 

Tfl ~ ΔHc heat H 

Method 3 

yf ~ ΔHc 0_V 

Tfl ~ ΔHc 0_V 

Method 4 

yf ~ (1-Xr) ΔHc heat H 

Tfl ~ (1-Xr) ΔHc heat H 

Method 5 

yf ~ (1-Xr) ΔHc heat H 

Tfl ~ ΔHc total  

ABS 5.4 6.6 5.9 10.8 6.6 

FRP 1.6 4.0 12.4 5.1 4.0 

HIPS 3.7 9.2 2.4 14.9 9.2 

PBT 5.2 5.1 6.3 5.1 5.1 

PMMACAST 2.1 2.0 2.1 2.0 2.0 

POM 9.3 7.8 8.7 7.0 7.8 

PP 1.7 2.1 2.2 6.1 2.1 

Average 4.2 5.2 5.7 7.3 5.2 
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Material 

Method 1 

yf ~ ΔHc total 

Tfl ~ ΔHc total 

Method 2 

yf ~ ΔHc heat H 

Tfl ~ ΔHc heat H 

Method 3 

yf ~ ΔHc 0_V 

Tfl ~ ΔHc 0_V 

Method 4 

yf ~ (1-Xr) ΔHc heat H 

Tfl ~ (1-Xr) ΔHc heat H 

Method 5 

yf ~ (1-Xr) ΔHc heat H 

Tfl ~ ΔHc total  

ABS 5.4 6.6 5.9 10.8 6.6 

FRP 1.6 4.0 12.4 5.1 4.0 

HIPS 3.7 9.2 2.4 14.9 9.2 

PBT 5.2 5.1 6.3 5.1 5.1 

PMMACAST 2.1 2.0 2.1 2.0 2.0 

POM 9.3 7.8 8.7 7.0 7.8 

PP 1.7 2.1 2.2 6.1 2.1 

Average 4.2 5.2 5.7 7.3 5.2 
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Mechanisms of Action of Flame 
Retardants During Flame Spread 

• Effect of flame retardants on:  
– Flame height, yf 

– Peak flame heat flux (q”
steady) at y < yf 

– Flame stability 
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FDS Simulations 

• sensitivity of FDS simulation results to user 
decisions during model development and 
indicate the experimental measurements 
needed to parameterize key inputs required for 
accurate predictions of laminar wall fire 
behavior. 
 
 

[Filler text; pretty graphs coming soon] 
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Conclusions 

• Obtained highly resolved measurements 
of flame to surface heat feedback 
during upward flame spread 
 

• Developed a flame model that relates 
flame heat feedback (as a function of 
distance above the base of the flame) 
to width-normalized mass loss rate  
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Conclusions 
• Coupled flame heat flux model with the 

solid phase pyrolysis solver ThermaKin2D 
– This unified model simultaneously predicts 

outcome of thermal analysis, gasification, 
and vertical flame spread experiments 

– Accurate predictions of time to ignition, initial, 
peak, and rate of rise of burning rate during 
upward flame spread 

– This model bridges a range of scales and 
offers a path for development of rigorous 
quantitative relationships between various 
flammability test standards 
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Conclusions 

• Generalized flame model to describe 
heat feedback from wall flames 
supported by a wide range of materials 
– Significant melt flow/dripping: POM, PP 
– Heavy soot formation/deposition: ABS, HIPS 
– Composite materials: FRP, PBT 

 
• Model-predicted flame heat flux, shown 

to match experimental measurements 
with an average accuracy of 4.2 kW m-2 

(approximately 10 – 15 % of peak 
measured flame heat flux) 
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Ongoing work 
• Prediction of material burning behavior 

in Standard Flammability tests (e.g. UL 94, 
ISO 9705) 
 

• Characterize mechanisms of action of 
gas phase flame retardants 
– Flame height 
– Flame heat feedback 
– Flame stability 

 
• Quantify flame heat transfer mechanism 

(convection vs. radiation) of wall flames 
across a range of scales 
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• Determine radiative fraction of total 
flame to surface heat flux 

 

 
– Recess the heat flux gauge 0.64 cm to limit 

convective heat transfer 

Flame Heat Transfer Mechanism 
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• The heat flux gauge is recessed, 
determine radiation view factor:  

   φ = 0.77 +/- 0.05 
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HIPS 
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Cracks in the soot layer of ABS 
samples spread upwards from 
the base of the sample 

Cracks in the soot layer of HIPS 
samples do not present a 
preferred growth direction. 



New Ignition Source 
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Sample Preheat Duration 

(q”preheat = 10 kW m-2) 

Burner Application 

(Methane, premixed) 

External Heat Flux 

(q”ext = 20 kW m-2) 

PBT 221_1 5 minutes 30 s Apply immediately 

after sample ignition 

PBT 221_2 10 minutes  20 s Apply immediately 

after sample ignition 

PBT 221_3 12 minutes Propane Hand Torch 

(~8 s) 

Reposition heater, then 

apply propane torch 

221 Series (Pure Polymer + 12, 
16, or 24% Bromiertes Acrylat FR) 
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• Typical burning & extinction behavior, see: 

PBT 221_1 7x5 cm 20150820 1110am 

 



221 Series (Pure Polymer + 12, 
16, or 24% Bromiertes Acrylat FR) 
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221 Series (Pure Polymer + 12, 
16, or 24% Bromiertes Acrylat FR) 
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Measurements shown here are not 
corrected for applied external heat flux 

of 20 kW m-2. First drop is flame 
extinction, second is heater removal. 



221 Series (Pure Polymer + 12, 
16, or 24% Bromiertes Acrylat FR) 
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220 Series (Pure Polymer + 8, 12, 
16, or 20 % Exolit OP 1230) 
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PBT 220_1 Non-premixed Propane Burner (120 s) 

Material Sample Preheat Duration 

(q”preheat = 10 kW m-2) 

Burner Application 

(Methane, premixed) 

External Heat Flux 

(q”ext = 20 kW m-2) 

PBT 220_2 7 minutes 20 s Apply immediately 

after sample ignition 

PBT 220_3 7 minutes 40 s Apply immediately 

after sample ignition 

PBT 220_4 10 minutes 55 s Apply immediately 

after sample ignition 

PBT 220_5 10 minutes 70 s Apply immediately 

after sample ignition 



PBT 220_2 (8 % Exolit) 
Mass Loss Rate 
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PBT 220_2 (8 % Exolit) 
Flame Heat Flux 
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PBT 220_2 (8 % Exolit) 
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• PBT 220_2 10 x 5 cm 20150812 325pm 
 



PBT 220_3 (12 % Exolit) 
Mass Loss Rate 
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PBT 220_3 (12 % Exolit) 
Flame Heat Flux 

11/24/2015 BASF/UMD Conference Call 109 

0 

10 

20 

30 

40 

50 

60 

0 120 240 360 480 600 720 

q
" H

F
g
 (

k
W

 m
-2

) 

Time after sample ignition (s) 

6.8 cm 20150813 1157am  q"ex=20kW/m2 

6.8 cm 20150813 1230pm  q"ex=20kW/m2 

9 cm 20150806 508pm q"ex=20kW/m2 



PBT 220_3  
(12 % Exolit) 
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• PBT 220_3 6.8x5 cm 2015081 1230pm 
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PBT 220_4 (16 % Exolit) 
Mass Loss Rate 
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PBT 220_4 (16 % Exolit) 
Flame Heat Flux 
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PBT 220_4 
(16 % Exolit) 
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• PBT 220_4 6.8x5 cm 20150818 504pm 
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PBT 220_5 (20 % Exolit) 
Mass Loss Rate 
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PBT 220_5 (20 % Exolit) 
Flame Heat Flux 
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PBT 220_5 
(20 % Exolit) 
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• PBT 220_5 7x5cm 20150811 533 pm 
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PBT 220 Series (Exolit)  
Mass Loss Rate 
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PBT 220 Series (Exolit) 
Flame Heat Flux 
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Measurements shown here are not corrected for 
applied external heat flux of 20 kW m-2. 
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