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The Fire Problem

« Surface flame spread is a key
determinant of early fire growth

* Flame to surface heat feedback
controls material burning rate

« Widely used standards assessing

material flammability show:

— Limited predictive capabillities outside
of standard test conditions

— Conflicting assessments between tests
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Flame Spread Models

Early analyfical models
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« Addifional influences to consider
— Heat Feedback Distribution
— Heat Transfer Mechanism
— Solid Phase Degradation Mechanism
— Temperature Dependent Material Properties

— Secondary Burning Behavior
« Dripping / Polymer Melt flow
« Soot Formation and Deposition
« Charring
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« Computational Models
— Predict material degradation in response to

external heat

« How to describe flame heat flux

— Flame height

— Heat feedback profile
« Steady state (peak) heat flux

« Form/shape, decay region

Hasemi Y., Fire Science and
Technology, pp. 75-90 (1984)



Purpose of Study

e rooem ¢ Better resolve flame to surface
of Home Spread heat feedback at the critical

Purpose of Study

length scale
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Burning Behavior feedback solely as a function of

Modeling Framework
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Flame Model Development
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Purpose of Study

 Couple empirical model of flame
heat feedback with pyrolysis
model to simulate early stages of
upward flame spread

 Generdlize wall flame model to
describe the burning behavior of
a range of materials

 Examine the impact of secondary
burning behavior on fire growth
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Ilgnite sample base with propane
burner; for PMMA, 125 s exposure

Allow flame to propagate freely until
full sample involvement

Measure flame to surface heat
feedback or sample mass loss rate
until steady conditions are observed
or early sample extinction required
(e.g. due to dripping)
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PMMA Mass Loss Rate

Infroduction
The Fire Problem

Controlling Mechanisms
of Flame Spread

Purpose of Study

Flame Heat Feedback Model
Experimental Work
Experimental Results
Model Development

Unified Model of Material
Burning Behavior
Modeling Framework
Model Parameterization

Vertical Burning and
Upward Flame Spread

Flame Model Development
Material Selection
Experimental Results
Model Predictions

Model Applications

Conclusions and Future Work

dm'/dt (g st cm?)

0.04

0.035

0.03

o
o o
o RO
o o

o
o
s
a1

0.01

0.005

¢ Testl

B Test2

Test 3
—Average

Prediction of Upward Flame Spread
over Polymers

360

11/24/2015

420

480

14



PMMA Mass LosSS

Infroduction
The Fire Problem

Controlling Mechanisms
of Flame Spread

Purpose of Study

Flame Heat Feedback Model
Experimental Work
Experimental Results
Model Development

Unified Model of Material
Burning Behavior
Modeling Framework
Model Parameterization

Vertical Burning and
Upward Flame Spread

Flame Model Development
Material Selection
Experimental Results
Model Predictions

Model Applications

Conclusions and Future Work

dm'/dt (g cm?ts?)

0.016

0.014

0.012

o o
o o o
=) =) o
> & g

0.004

0.002

Rate

0 60 120

180

240

t- 1:ign (S)

Prediction of Upward Flame Spread
over Polymers

11/24/2015

300

360

15



PMMA Mass Loss Rate

Infroduction
The Fire Problem

Controlling Mechanisms
of Flame Spread

Purpose of Study

Flame Heat Feedback Model
Experimental Work
Experimental Results
Model Development

Unified Model of Material
Burning Behavior
Modeling Framework
Model Parameterization

Vertical Burning and
Upward Flame Spread

Flame Model Development
Material Selection
Experimental Results
Model Predictions

Model Applications

Conclusions and Future Work

0.03

0.025

o
o
[}

o
o
—
o1

dm'/dt (g st cm?)

0.01

0.005

e Fitted

0 60 120 180 240

3
t

00 360 420 480 540
(s)

—— =-5.40x10"°(t —t,,,)° +4.35x10 *(t —t,; )* —8.13x10*°(t —t,,)°

+4.75x107°(t -t

Prediction of Upward Flame Spread

over Polymersdm/‘dtising st cm™and tis in

ign

)2 +2.79x107°(t -t )+1.44x10°°

ign

11/24/2015

600

16



PMMA Flame Heat Flux

Infroduction
The Fire Problem

Controlling Mechanisms
of Flame Spread

Purpose of Study

Flame Heat Feedback Model
Experimental Work
Experimental Results
Model Development

Unified Model of Material
Burning Behavior
Modeling Framework
Model Parameterization

Vertical Burning and
Upward Flame Spread

Flame Model Development
Material Selection
Experimental Results
Model Predictions

Model Applications

Conclusions and Future Work

40

35

N
(6]

N
o

T'rrg (KW 12)

y=7.5cm

|

W
pandl's

.IH“.
rqim.’

—Test 1

—Test 2
—Test 3
—7.5cm Avg
60 120 180 240 300
t(s)
Prediction of Upward Flame Spread 11/24/2015 17

over Polymers



PMMA Flame Heat Flux

Infroduction
The Fire Problem

Controlling Mechanisms
of Flame Spread

Purpose of Study

Flame Heat Feedback Model
Experimental Work
Experimental Results
Model Development

Unified Model of Material
Burning Behavior
Modeling Framework
Model Parameterization

Vertical Burning and
Upward Flame Spread

Flame Model Development
Material Selection
Experimental Results
Model Predictions

Model Applications

Conclusions and Future Work

Ty (KW m?)

40

30

25

20

15

10

——

”\«.

Wy("

=3 Ccm
=4 cm
=5 Ccm
=—75cm
=10 cm
—12.5Ccm
=—=15cm
—17.5Ccm
20 cm

60 120 180

t- tign (S)

Prediction of Upward Flame Spread
over Polymers

240

300

360 420

11/24/2015

480

18



PMMA Flame
Effects of Finr

Infroduction
The Fire Problem

Controlling Mechanisms
of Flame Spread

Purpose of Study

Flame Heat Feedback Model
Experimental Work
Experimental Results
Model Development

Unified Model of Material
Burning Behavior
Modeling Framework
Model Parameterization

Vertical Burning and
Upward Flame Spread

Flame Model Development
Material Selection
Experimental Results
Model Predictions

Model Applications

Conclusions and Future Work

0 g (KWmM2)

40

35

30

25

20

15

10

Heat F
e Wid-

anter
1ge

nter

y = 15cm, eage

60

120

180

360 420

480



PMMA Flame

Infroduction
The Fire Problem

Controlling Mechanisms
of Flame Spread

Heat Flux

Purpose of Study 40 oS
e
Flame Heat Feedback Model 35 [r? ______________-----::::::::;;;; ....
Experimental Work ,—"'- PO L bbb :::—“‘"'"“::::—‘-"j:""’““
Experimental Results 30 J gl JPrtiias /,—"’ et
Model Development g . / ,/ /// //’ ,,"
y | S R -~ el
Unified Model of Material =3 0 W A s P ===23cm
Burning Behavior K gL S /S ol Lo === 4cm
Modeling Framework AT l/ // ,/ ot ’/' - ?g”c‘m
Model Parameterization ’o S ’/ // — - 10em
Vertical Burning and 10 ,' J ’/' /’ R —== 125cm
Upward Flame Spread ! JS ',/ === 15cm
5 _,:,' g /,v' === 175cm
Flame Model Development r 2= 20cm
Material Selection | . . . . . .
Experimental Results 0 60 120 180 240 300 360 420
Model Predictions t -ty (9)
Model Applications
Conclusions and Future Work N
Prediction of Upward Flame Spread 11/24/2015

over Polymers

480

20



Steady State
Flame Heat Flux

Infroduction y=17.5cm
The Fire Problem

Controlling Mechanisms
of Flame Spread

Purpose of Study 40 0.14
Flame Heat Feedback Model B r 0.12
Experimental Work
Experimental Results 30 0.1
Model Development 25
Unified Model of Material g 0.08
Burning Behavior =20 r
Modeling Framework g ——Measured 0.06
Model Parameterization =15 —Fitted
Vertical Burning and e ("steady 0.04
Upward Flame Spread 10 —dq"/dt '
Flame Model Development 5 1 0.02
Material Selection
Experimental Results 0 . . . . . . 0
Model Predictions 0 60 120 180 240 300 360 420 480

t-t,, ()
Model Applications ign

Conclusions and Future Work
Prediction of Upward Flame Spread

11/24/201
over Polymers /24/2015

dg" e /dt (KW m2 s)



Infroduction
The Fire Problem

Controlling Mechanisms
of Flame Spread

Purpose of Study

Flame Heat Feedback Model
Experimental Work
Experimental Results
Model Development

Unified Model of Material
Burning Behavior
Modeling Framework
Model Parameterization

Vertical Burning and
Upward Flame Spread

Flame Model Development
Material Selection
Experimental Results
Model Predictions

Model Applications

Conclusions and Future Work

Steady Star

Flame Heat

10 |+ O Preliminary Burner Configuration

5 [ @ Weighted Average

<& Final Burner Configuration

35 __*_iﬁ_i é _____ * _+§____§____

10
y (cm)

12

14

16

18

20



* —

g~ = q"fitted/q"steady

1.2

o
oo

o
o

©
~

0.2

Normalized Flame Heat Flux

e

\, ——

—3cm
—4.cm
—=5cm
—7.5cm
=10 cm
—=12.5cm
—15cm
—17.5cm
20cm

60

120

180

240
t- tign (S)

300

360

420

480



Flame Heat Flux Profile

Infroduction
The Fire Problem

Controlling Mechanisms
of Flame Spread

Purpose of Study

Flame Heat Feedback Model
Experimental Work
Experimental Results
Model Development

Unified Model of Material
Burning Behavior
Modeling Framework
Model Parameterization

Vertical Burning and
Upward Flame Spread

Flame Model Development
Material Selection
Experimental Results
Model Predictions

Model Applications

Conclusions and Future Work

1.2

0.8

‘= 0.6

0.4

0.2

14 / ”
/ y
f' + o
’)?/ | =0 cm
— ] cm
/
— ] 5 cm
8 | =10 cm
/ L7 cor0s A “-i%ﬁcm
— c1m
../(‘ 150s —17.5cm
90s + A 20 cm
. 4 AdSSs +A |
+
60 120 186° 240 300 Wo |420
i o o2 "okmW®s 08 1 12
q'k
Prediction of Upward Flame Spread 11/24/2015

over Polymers

480

24



Flome Heat Flux Profile

The Fire Problem

20 —
Controlling Mechanisms
of Flame Spread

Purpose of Study

18 r
16 r
Flame Heat Feedback Model
Experimental Work 14
Experimental Results
Model Development

e

oA

Unified Model of Material >
Burning Behavior

10
Modeling Framework
Model Parameterization

8 -
Y
Vertical Burning and
Upward Flame Spread

Flame Model Development
Material Selection
Experimental Results
Model Predictions

90s

2 1

0 02 04 06 038 1
Model Applications

1.2
q* = q"fitted / q”steady

" " dm' qsteady !
Conclusions and Future Work OQtiame =9 | Y, dt -

Y= Yq
(a X qls'teadyxe_ln(a)X(y*) ) !

Y>Yq



Infroduction
The Fire Problem

Controlling Mechanisms
of Flame Spread

Purpose of Study

Flame Heat Feedback Model
Experimental Work
Experimental Results
Model Development

Unified Model of Material
Burning Behavior
Modeling Framework
Model Parameterization

Vertical Burning and
Upward Flame Spread

Flame Model Development
Material Selection
Experimental Results
Model Predictions

Model Applications

Conclusions and Future Work

Determining Flame Height, y,
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ThermaKin2D Modeling Framework

Gas phase is represented by
empirical relations between
flame heat transfer and
component mass flux.

: E
Condensed phase is represented by £
a mixture of components that may ~
interact chemically and physically.

2D heat transfer within solid:
q;:'onduction =—k % or =—K a—T Conduction{

In-depth radiation

Material degradation mechanism absorption

defined by:
e First order Arrhenius reaction rates:

E
r= AEXp (_ ﬁj &COMPl

&
< G (Y)
&

e Temperature dependent material
properties (k, p, c,, A):
property= p, + p,T + p,T"

PMMA—PMMA, +PMMA

Key predicted

) x (mm) " (KW m-2
guantity qs (KW m2) 31
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 Thermogravimetric Analyzer (TGA)

Milligram Scale Testing

— Kinetics: A, E

E
r= AEXp (_ ﬁj &COMPl

Differential Scanning Calorimetry (DSC)

— Thermodynamics
— Specific heat, C,
— Heats of
* Decomposition, h
* Melting, h

melt

Degradation Mechanism

Bench Scale Testing

* Gasification Experiments
— Thermal Conductivity, k
— Absorption coefficient, a

Gas Flow Chamber E Sample Specimen

Glass Beads
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Pyrolysis Model Va
Milligram Scale Testing (0D)

idation:

Experimental and simulated TGA of PMMA
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Normalized Heat Flow (W g™)
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A Generalized
Wall Flame Model

« Generalize flame model to predict the
behavior of flames supported by a wide
range of materials

« Wall flame height is often calculated as
a function of heat release rate

« Attempt scaling of model expressions on the
basis of the heat of combustion of the
gaseous volatiles

— Flame height
— Peak heat flux
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« Materials

— PMMA (cast) ABS, Fiberglass, HDPE,
HIPS, PBT, PET, PP, POM

« Sample Dimensions

— Height 3 to 15 cm
— Width 5 cm

e Measurements

— Mass loss rate
— Flame heat flux
— Heat of Combustion
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Model Accuracy

Method 1 Method 2 Method 3 Method 4 Method 5
Vi~ AH oo Yt~ AH heat Yi~dH.oy Vi~ (X)) AHohean Vi~ (1-X) AH pear 1

Material Th~AH o To~AHchean  Ta~AdHeo v Ty~ (1-X) AH pear Th~AH e
ABS 5.4 6.6 5.9 10.8 6.6
FRP 1.6 4.0 12.4 5.1 4.0
HIPS 3.7 9.2 2.4 14.9 9.2
PBT 5.2 5.1 6.3 5.1 5.1
PMMA T 2.1 2.0 2.1 2.0 2.0
POM 9.3 7.8 8.7 7.0 7.8
PP 1.7 2.1 2.2 6.1 2.1
Average 4.2 5.2 5.7 7.3 5.2
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FDS Simulations

sensitivity of FDS simulation results to user
decisions during model development and
indicate the experimental measurements
needed to parameterize key inputs required for
accurate predictions of laminar wall fire
behavior.

[Filler text; pretty graphs coming soon]
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Conclusions

« Obtained highly resolved measurements
of flame to surface heat feedback
during upward flame spread

« Developed a flame model that relates
flame heat feedback (as a function of
distance above the base of the flame)
to width-normalized mass loss rate
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Conclusions

« Coupled flame heat flux model with the
solid phase pyrolysis solver ThermaKin2D

— This uniflied model simultaneously predicts
outcome of thermal analysis, gasification,
and vertical flame spread experiments

— Accurate predictions of time to ignition, initial,
peak, and rate of rise of burning rate during
upward flame spread

— This model bridges a range of scales and
offers a path for development of rigorous
quantitative relationships between various
flammability test standards
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Conclusions

Generalized flame model to describe
heat feedback from wall flames
supported by a wide range of materials
— Significant melt flow/dripping: POM, PP

— Heavy soot formation/deposition: ABS, HIPS
— Composite materials: FRP, PBT

Model-predicted flame heat flux, shown
to match experimental measurements
with an average accuracy of 4.2 kW m—
(approximately 10 — 15 % of peak
measured flame heat flux)
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Ongoing work

* Prediction of material burning behavior
in Standard Flammability tests (e.g. UL 94,
ISO 9705)

« Characterize mechanisms of action of
gas phase flame retardants
— Flame height
— Flame heat feedback
— Flame stability

« Quantify flame heat transfer mechanism
(convection vs. radiation) of wall flames
across a range of scales
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Similarity of Burning Behavior of
Different Sized Samples
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10 cm

5s

HIPS

150 s| 270 s‘ 330 s

450 s 660 s 810s

Cracks in the soot layer of ABS
samples spread upwards from
the base of the sample

Cracks in the soot layer of HIPS
samples do not present a
preferred growth direction.
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New |gnition Source

Height above base of Burner (cm)

B August 2015 Pre-mixed Methane Burner
¢ August 2014 Non-premixed Propane Burner
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221 Series (Pure Polymer + 12,
16, or 24% Bromiertes Acrylat FR)

Sample Preheat Duration
(q”preheat =10 kW m-Z)

Burner Application
(Methane, premixed)

External Heat Flux
(9 e = 20 KW m2)

PBT 221 1 5 minutes 30s Apply immediately
after sample ignition

PBT 221 2 10 minutes 20's Apply immediately
after sample ignition

PBT 221 3 12 minutes Propane Hand Torch | Reposition heater, then

(=85)

apply propane torch

* Typical burning & extinction behavior, see:
PBT 221 1 7x5cm 20150820 1110am

BASF/UMD Conference Call
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221 Series (Pure Polymer

12,

16, or 24% Bromiertes Acrylat FR)

¢ # Note: All samples exposed to
0.09 r I q"ext = 20 kW m-2 during burning
0oog L™ = BUT preheated by g"=10 kW m-2 for
-J ‘- different lengths of time:
] D
0.07 s l- 0’:0"“’ 221_1_— 5 mlp,
; H, *aq e o QQ 221_2 =10 min
% 0.06 M ~ 221_3 =12 min
= ry L4 O e
= 0.05 * "‘ PBT 221_1
= m N u % #PBT 221 2
5004 - m & WPBT 221 3
" ® o " -
0.03 “»
.I- Ly R
0.02 Ju = n\
& . 0 .’,‘»"' \
0.01 r (23
‘ - fou ¢ ’0 & *
0 Loww ' ' AP W PN T
0 30 60 90 120 150
Time After Sample Ignition (s)
BASF/UMD Conference Call 11/24/2015
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221 Series (Pure Polymer

12,

16, or 24% Bromiertes Acrylat FR)

60
L 2
m LeA W
- N PBT 221_1
50 f;'-eﬂ r s *PBT 221_2
*
JPY S . 3 =PBT 221 3
40 | % m .
o ¢ - .
*
] L
* [ | ‘

Measurements shown here are not

N

o
—
00’.

'l
TSR 2 4
00\
PR 4

}0
X * 5
10 #  corrected for applied external heat flux ‘,’
M of 20 kW m-2, First drop is flame
extinction, second is heater removal.
| —

O 1 1 1 1
0 30 60 90 120 150
Time after sample ignition (s)
BASF/UMD Conference Call 11/24/2015 102



221 Series (Pure Polymer

12,

16, or 24% Bromiertes Acrylat FR)

01 —
009 | #
0.08 | ™ =g
0.07 & '{"' p
Zo0s [ o8 ‘
=005 | P
£004 | o.°
S o
003 '€

| |
[ ]
[ |
I
0
001 ¢

0 ‘e»
0 30

PBT 221_1
#PBT 221 2
mPBT 221 3

120

Time After Sample anltlon (s)

XA

150

60 |
L J
PBT 221 1
50 ¢PBT 221 2
EPBT 221 3
[ |
s
E *
= 30
< *
- 4
£ 20 @
T
10 F
0 | ;
0 30 60 90 120

Time after sample ignition (s)

150 /7015
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220 Series (Pure Polymer

16, or 20 % Exolr

3, 12,

- OP 1230)

PBT 220 1 Non-premixed Propane Burner (120 s)
Material Sample Preheat Duration Burner Application External Heat Flux
(9 preneat = 10 KW m2) (Methane, premixed) (Q ot = 20 KW m-?)

PBT 220 2 7 minutes 20 s Apply immediately
after sample ignition

PBT 220 3 7 minutes 40 s Apply immediately
after sample ignition

PBT 220 4 10 minutes 55s Apply immediately
after sample ignition

PBT 220 5 10 minutes 70s Apply immediately
after sample ignition

BASF/UMD Conference Call
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PBT 220_2 (8 % Exolit)

Mass Loss Rate

@ 7cmAug 7th 1:45 g"ext = 20

B7 cm Aug 7th 3:09pm g"ext = 20

7 cm Aug 8, 3:09pm g"ext = 10
® 7 .cm avg dm/dt (gext = 20)

N NA
U. UV

(1-s B) 1p/wp

360 480 600 720 840

120 240
Time After Sample Ignition (s)

0

-120

105
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PBT 220 2 (8 % Exolif)
Flame Heat Flux

30 1 —7 cm 20150810 515 pm
q"'ex=20kW/m2
' =7 cm 20150810 610 pm
20 q"ex=20kW/m2
10 cm 20150812 1230 pm
q"'ex=20kW/m2
10 = Avg 10, 7 cm (clean tests)
0 1 1 1 1 1 1 1 1 1 1 1 1

0 60 120 180 240 300 360 420 480 540 600 660 720
Time after sample ignition (s)

BASF/UMD Conference Call 11/24/2015 106



PBT 220_2 (8 % Exolit)

t = 0 s (1gnition) t=060s t=180s t=300s t=390s

(vertical (attempted
flickering) reginition of
vapors)

« PBT 220 2 10 x 5 cm 20150812 325pm

BASF/UMD Conference Call 11/24/2015 107



Sample Mass Loss Rate (g s2)

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

PBT 220_3 (12 % Exolit)

Mass Loss Rate

©
© o 7cmAug 6, 1242 pm
a o
©oo o o 7cmAug 6, 1215 pm
[ceeo0)
goomoo ©
00 @O0 4 cm Aug 11 1248 pm
© o
° —5cm Aug 11 115 pm
OO O 00O
© o
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oo g0 0 000
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0 240 480 720 960

Time after sample ignition (s)
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PBT 220 3 (12 % Exolif)
Flame Heat Flux

..
il SYmE T

O
= = 6.8 cm 20150813 1157am q"ex=20kW/m?2
! O
7 . [J6.8 cm 20150813 1230pm q"'ex=20kW/m2
1]
'Y
A9 cm 20150806 508pm g"ex=20kW/m2

L—O.—
360 480 600 720

0
120 240
Time after sample ignition (s)

11/24/2015 109

BASF/UMD Conference Call



PBT 220_3

% Exolit :
(12 % Exoli
<
£
S 10 { 6.8 cm 20150813 1230pm
q"ex=20kW/m2
0 1 1 1 1 1
0 120 240 360 480 600 720

Time after sample ignition (s)

K 8

t=0s t=90s i t=300s

t=420s t=540s

« PBT 220_3 6.8x5 cm 2015081 1230pm

BASF/UMD Conference Call 11/24/2015 110



dm/dt (g s1)

PBT 220 4 (16 % Exolif)
Mass Loss Rate

0.06
0.05 H N ¢ 7 cm Augl1 300pm q"ext = 20
u B 7 cm Augll 330pm g"ext = 20
A4 cm Augll 5pm g"ext =20
0.04 -
0.03 -
0.02
A A
/ A /i JAVAA Y‘VV vv vVVVvvvvv A AAA iy : v

0.01 ’ ' 7 vv ARAA A AAAAS v‘ e VvVV vvvvvvvvvvvv A A A

A »78%77 vvvvv A A A 4 wy v oyyr Vvl vy .

oy A DA, L, L)

MM A D AL A ] s A ‘}

Ad/AvA
O T '-"' A_A4 -

0 120 240 360 480 600 720 840 960 1080 1200
Time after sample ignition (s)
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PBT 220 4 (16 % Exolif)
Flame Heat Flux

60

50 A

40

0 hrg (KW m2)

e

20

=—6.8 cm 20150818 407 pm
q"ex=20kW/m2

=—6.8 cm 20150818 504 pm

10
q"ex=20kW/m2

480 600 720

120 240 360
Time after sample ignition (s)
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PBT 220 4
(16 % Exolit)

0y (KW M)

—6.8 cm 20150818

504 pm..

Tm%e Qter saﬁ%‘e Ignl'ﬂgR (5

t=400s

t=30s t=180s

+ PBT 220 -4 6.8x5 cm 20150818 504pm

BASF/UMD Conference Call
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0.06

0.05

0.04

0.03

dm/dt (g s?)

0.02

0.01

PBT 220 5 (20 % Exolif)
Mass Loss Rate

360 480 600
Time after sample Ignition (s)

BASF/UMD Conference Call

@7 cm Augll 530pm g"ext = 20

7 cm Augll 640pm g"ext = 20

11/24/2015
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q heg (KW m2)

PBT 220_5 (20 % Exolit)

Flame Heat Flux

=6.8 cm 20150813 512 pm g"ex=20kW/m2

——PBT 220_5 6.8 cm 20150813 540 pm
g"ex=20kW/m2

120

240 360 480 600
Time after sample ignition (s)

BASF/UMD Conference Call 11/24/2015
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PBT 220 5
(20 % Exolit)

t=0s

t=160s

W

—PBT 220_56.8 cm
20150813 540 pm...

120

Tirr%é}%fter sa?’r?p?le ignitlilgrg) (s)

t=3905s

1=190'5

600

t=180s

« PBT 220 5 7x5cm 20150811 533 pm

BASF/UMD Conference Call
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dm/dt (g s?)
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0.04
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PBT 220 Series (Exolit)

Mass Loss Rate
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dm/dt (g s?)

0.05

0.045 -
0.04 -

0.035 -

o
© o ©
=3 S =)
N O ®

0.015

0.01 |

0.005

PBT 220 Series (Exolit)
Mass Loss Rate

——Fitted 220_2

Fitted 220_3

Fitted 220_4 (7 cm)
——Fitted 220 _4 (4 cm)

Fitted 220 5
—220_115cm

A

120 240 360 480 600 720 840 960 1080
Time after sample ignition (s)
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PBT 220 Series (Exolit)

Flame Heat Flux

80

70 r

a1
o

q"HFg (kW m2)
N w D
(@») (@») (@)

[EEN
o

PBT 220_1 (9cm avg)

PBT 220_5 6.8 cm 20150813 540 pm
PBT 220 _4 6.8 cm, selected
PBT 220_3 Avg 6.8 & 9 cm tests
PBT 220 _2 Avg 10,7 cm tests

—PBT 220_1 (9cm single test)

Measurements shown here are not corrected for
applied external heat flux of 20 kW m-2.

O 1 1
0 60 120 180 240 300 360 420 480 540
Time after sample ignition (s)
BASF/UMD Conference Call
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