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Researchers have increasingly looked to social media data as a means of measuring population health 
and well-being in a less intrusive and more scalable manner compared to traditional public health data 

sources. In this dissertation, I outline three studies that leverage social media as a data source, to 
answer research questions related to public health and compare traditional public health data sources 

to social media data sources. In Study #1, I conduct a study with the aim of developing, from geotagged 
Twitter data, a predictive model for the identification of food deserts in the United States, using the 

linguistic constructs found in food-related tweets. The results from this study suggest the food-
ingestion language found in tweets, such as census-tract level measures of food sentiment and 

healthiness, are associated with census tract-level food desert status. Additionally, the results suggest 
that including food ingestion language derived from tweets in classification models that predict food 

desert status improves model performance when compared to baseline models that only include socio-
economic characteristics. In Study #2, I evaluate whether attitudes towards COVID-19 vaccines 

collected from the Household Pulse Survey can be predicted using attitudes extracted from Twitter. 
The results reveal that attitudes toward COVID-19 vaccines found in tweets explain 61-72% of the 

variability in the percentage of HPS respondents that were vaccine hesitant or compliant. The results 
also reveal significant statistical relationships between perceptions expressed on Twitter and in the 
survey.  In Study #3, I conduct a study to examine whether supplementing COVID-19 vaccine uptake 

forecast models with the attitudes found in tweets improves over baseline models that only use 
historical vaccination data. The results of this study reveal that supplementing baseline forecast models 
with both historical vaccination data and COVID-19 vaccine attitudes found in tweets reduce RMSE by 

as much as 9%. The studies outlined in this dissertation suggest there is a valuable signal for public 
health research in Twitter data. 
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Chapter 1 - Introduction 

1.1. Problem Identification 

Public health research contributes an immense amount of value to society. With health 

topics ranging from infectious diseases to food insecurity, public health research provides 

society with relevant information about disease risk factors and trends, health outcomes and 

treatments, and public health interventions, and also helps improve the quality of healthcare 

while reducing healthcare expenditures [1]. Traditional data sources used in public health 

research include surveys, medical records, claims data, peer-reviewed literature, vital records, 

surveillance data, and disease registries [2]. While these traditional data sources come with 

many advantages of their use and have paved the way for a vast body of public health research 

to be produced, each of these data sources come with their own challenges. For example, while 

surveys are a great tool for collecting health information to better understand a larger 

population, surveys are oftentimes expensive to administer, have low response rates, and can 

be difficult to get detailed information from [3]. Public health surveillance data, which comes 

from databases and automated electronic reporting systems to monitor disease outbreaks, has 

proved to be a particularly important data source in controlling the spread of diseases, but one 

drawback of surveillance data is the sparsity of data from certain geographic areas if 

responsible agencies do not report it [4]. Medical records are perhaps the most direct and 

accurate source of health information, but the availability of this information only exists among 

people who have access to medical care [5] . 
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Adding to the challenges associated with costly traditional public health data sources is 

the fact that public health jurisdictions have a history of chronic underfunding and unstable 

budgets [6]. Federal public health funding is determined annually, making it difficult for public 

health jurisdictions to plan strategically. A report by TFAH examining federal, state, and local 

public health funding found that less than 3 percent of the estimated $3.6 trillion allocated 

annually to health is directed specifically toward public health and prevention in the United 

States. Considering the pressures on public health funding, it is even more important for public 

health jurisdictions to find effective and low-cost ways to address the increasing public health 

challenges of the 21st century.  

Over the past few years, alternative data sources for public health research have been 

adopted by researchers. With social media usage among adults increasing from just 5% in 2005 

to 72% in 2021, social media is increasingly becoming a tool for researchers to gain insights into 

the personal lives of millions of people across the globe [7]. Social media can be broadly defined 

as a set of online platforms, blogs, and activities that facilitate information sharing, mass 

communication, crowdsourcing, and collaboration among users [8]. Social media data is self-

reported and provides a “snapshot” into the lives of real people, providing researchers with 

scalable methods of answering targeted research questions. This non-traditional data source 

has been deemed attractive due the geographic granularity of such novel information, and 

importantly, the speed of data collection [9]. 

Social media users are becoming more diverse and more representative of the larger 

population. Among adults aged 18-29, 84% say they use at least one social media platform; 

among adults aged 30-49, 81% say they use at least one social media platform; among adults 
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aged 50-64, 73% say they use at least one social media platform; and 45% of adults 65+ report 

using at least one social media platform [7]. Research has shown that YouTube & Facebook are 

the most popular social media platforms, with 81% and 69% of American adults reporting using 

each platform, respectively [7]. Affinity to specific social media platforms differs by various 

demographics, such as education, age, and gender [7]. Researchers have increasingly looked to 

social media data as a means of measuring population health and well-being in a less intrusive 

and more scalable manner [10]. Social media data have proved useful in evaluating health 

outcomes in many studies, so it may prove to be a very rich data source for examining other 

health-related issues, such as food insecurity and COVID-19.  

Prior studies have successfully extracted information from social media to address 

various types of health-related outcomes, relying on the naturalistic observations deduced from 

social media data to answer questions related to health and well-being [10]. For example, in a 

study that sought to predict depression among Twitter users, researchers leveraged behavioral 

cues found in tweets to develop a classifier for depression [11]. In a study that considered 

Twitter data for various public health applications, researchers conducted syndromic 

surveillance of serious illnesses, measured behavioral risk factors, and mapped illnesses to 

various geographic regions [12]. Another study used Twitter to monitor and predict influenza 

prevalence in the United States by conducting a network analysis of Twitter users and 

demonstrating the association of social ties and co-location of symptomatic people with one’s 

risk of contracting the flu [13]. A study that sought to develop a publicly available 

neighborhood-level dataset with indicators related to health behaviors and well-being also 
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examined the associations between these Twitter-derived indicators and key neighborhood 

demographics [14].  

1.2. Research Objectives 

In this dissertation, I present three studies that leverage social media as a data source, 

to answer research questions related to public health and compare traditional public health 

data sources to social media data sources.  

§ Research Objective #1: Examine the linguistic constructs found in tweets to evaluate the 

differences in food nutritional value and food consumption behavior of individuals in 

food deserts compared to non-food deserts.  

○ The following research questions are addressed in this study: 

● RQ 1. Is living in a food desert associated with the food-ingestion 

language and sentiment of tweets observed among Twitter users? 

● RQ 2. Can the food-ingestion language among Twitter users in a census 

tract be used to infer census tract-level food desert status? 

The first study in this dissertation (Chapter 3) aims to develop, from geotagged Twitter 

data, a predictive model for the identification of food deserts in the United States, using the 

linguistic constructs found in food-related tweets. Tweet sentiment and average nutritional 

value of foods mentioned in tweets were extracted and used to examine the associations 

between food desert status and the food-ingestion language and sentiment of tweets in a 

census tract, and to determine whether food-related tweets can be used to infer census tract-

level food desert status. The results from this study suggest the food-ingestion language found 
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in tweets, such as census-tract level measures of food sentiment and healthiness, are 

associated with census tract-level food desert status. Additionally, the results suggest that 

including food ingestion language derived from tweets in classification models that predict food 

desert status improves model performance when compared to baseline models that only 

include socio-economic characteristics. 

The linguistic cues found in tweets may provide some insights into the food 

environment and food ingestion patterns of individuals. The resulting predictive model can be 

used as a tool to identify census tracts that may be at risk of becoming food deserts in the 

future, based on the food conversation found on Twitter, along with other features. Analyzing 

food-related conversations using tweets presents researchers with the rare opportunity to 

capture more recent changes in dietary habits and food environment, which would not 

normally be captured using traditional methods of food environment assessments, such as the 

USDA’s identification of food deserts. 

§ Research Objective #2: Examine if aggregate attitudes extracted from COVID-19 vaccine 

tweets can predict vaccine attitudes reflected in traditional surveys, across metropolitan 

areas in the United States. 

○ The following research questions are addressed in this study: 

● RQ 1. How do attitudes towards the COVID-19 vaccine found in tweets 

compare to the attitudes found in surveys? 

● RQ 2. Can aggregate attitudes extracted from COVID-19 vaccine tweets 

predict vaccine attitudes reflected in traditional surveys? 
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The second study in this dissertation (Chapter 4) compares social media to a more 

traditional data source – surveys. In this study, attitudes towards the COVID-19 vaccine found in 

tweets were compared to the attitudes found in the Census Bureau’s Household Pulse Survey. 

A regression analysis was then conducted to evaluate the ability for sentiments and emotions 

found in COVID-19 vaccine tweets to predict those expressed in the Census Bureau’s Household 

Pulse Survey. The results revealed that attitudes toward COVID-19 vaccines found in tweets 

explain 61-72% of the variability in the percentage of HPS respondents that were vaccine 

hesitant or compliant. The results also revealed significant statistical relationships between 

perceptions expressed on Twitter and in the survey. The results of this study may suggest that 

social media data may contain much of the same information found in traditional surveys, with 

the added benefit of more readily available data and no or low-cost data collection efforts.  

§ Research Objective #3: Develop a time series forecasting algorithm that can predict 

vaccination rates across metropolitan areas using information extracted from tweets. 

○ The following research question will be addressed in this study: 

● RQ 1. Does supplementing forecast models with real-time information 

found in tweets improve over baseline models that forecast vaccination 

rates using historical data only? 

In the third study (Chapter 5), I examine whether supplementing COVID-19 vaccine 

uptake forecast models with the attitudes found in COVID-19 vaccine tweets improves over 

baseline models that only use historical vaccination data. COVID-19 vaccine tweets were used 

to construct features that were included in the time series forecasting model, such as daily 

sentiment, emotions expressed in tweets, and user engagement metrics, such as number of 
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tweets about COVID-19 vaccines, re-tweets, and favorites. The results of this study revealed 

that supplementing baseline forecast models with both historical vaccination data and COVID-

19 vaccine attitudes found in tweets reduce RMSE by as much as 9%. The conversation on social 

media surrounding COVID-19 vaccines changes daily, as do vaccination rates, so accounting for 

the vaccine conversation on social media might improve the performance of vaccine forecast 

models. The results of this study may lead to the development of a predictive tool for 

vaccination uptake in the United States, which may empower public health researchers and 

decision makers to design targeted vaccination campaigns in hopes of achieving the vaccination 

threshold required for the US to reach herd immunity. 

The culmination of each of these studies will provide further evidence of the benefits of 

using social media data for public health research. The overarching contribution of my work will 

be adapting alternative data sources, machine learning, and natural language processing 

techniques to assist in public health decision making. 

1.3. Organization of the Dissertation 

The organization of this dissertation is as follows: in Chapter 2, I present a review of the 

literature and related work – focusing on natural language processing (NLP) methods, the 

Twitter API, and key studies that combine NLP methods and Twitter data to conduct public 

health research. In Chapter 3, I present a study which focuses on predicting food desert status 

using Twitter data. This study was published in the Journal of Medical Internet Research (JMIR) 

– Public Health and Surveillance in July 2022. In Chapter 4, I present a study which seeks to 

validate social media as a data source by predicting the public perceptions of the COVID-19 
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vaccine in traditional surveys using sentiments and emotions found in tweets. This study is 

currently under review at Journal of Medical Internet Research (JMIR) – Public Health and 

Surveillance. In Chapter 5, I present a third study, where I forecast COVID-19 vaccination rates 

using Twitter data. This study is currently under review at Journal of Medical Internet Research 

(JMIR) – Infodemiology. In the final chapter, Chapter 6, I present the conclusions, limitations, 

policy implications, and future directions of this dissertation. 
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Chapter 2 - Literature Review  

2.1. Study #1 - Using Social Media to Predict Food Deserts in the United States 
In Chapter 1, I present a study that aims to examine the use of food-ingestion language 

found in tweets to predict food desert status among census tracts in the United States. Outside 

of more traditional methods, there is a growing body of work that uses social media as a lens 

into the food environment and dietary choices of individuals in various geographic locations. 

The following section provides an overview of relevant studies. 

2.1.1. Traditional Food Insecurity Identification Methods 
There are several different ways researchers identify and assess food insecure regions 

and food deserts. A review of the literature determined the most frequently used measures to 

assess food access are (1) GIS technology/census data, (2) food store assessments, and (3) 

surveys [15]. 

2.1.1.1. Food Store Assessments  
Researchers have utilized food store assessments to measure food insecurity and 

identify food deserts in the United States. Food store assessments may include both objective 

and subjective assessments of the food environment. In a previous study that sought to 

determine whether or not residents found healthy foods to be accessible in their 

neighborhoods, objective food store assessments were conducted by simply counting the 

number of food stores located within a mile of the three Boys and Girls Clubs in the area [16]. 

Subjective food store assessments were in the form of interviews with study participants, 

where they were asked open-ended questions pertaining to perceptions and interpretations of 
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food access, and asked to describe the relationship between social contexts, social conditions, 

social positions, and access to healthy foods [17]. The study found a disconnect between the 

objective and subjective food store assessments – food stores identified during the objective 

assessments were oftentimes not acknowledged by interviewees because of the “less than 

ideal” quality and nature of the stores [17].  

Another study that utilized food store assessments to measure food insecurity involved 

an instrument that was designed to measure the availability, quality, and preparation of food 

based on the menus of restaurants [17]. Researchers chose to use the restaurants’ menus to 

reduce bias in the data and avoid interactions between the surveyor and restaurant employees. 

The instrument also assessed features such as promotions, cleanliness, and service quality [18].  

There are several limitations associated with using food store assessments to measure 

food insecurity and identify food deserts. One possible limitation is sample size. For example, 

the researchers in [19] recognized the impact of their small, non-random sample size on the 

ability for study results to be generalized to a larger population. Additionally, researchers often 

only examine one metro area at a time [19]. Another limitation of using food store assessments 

for measuring food insecurity and identifying food deserts is the costs associated with 

conducting these assessments. Studies that use food store assessments require the use of 

several different data sources to identify food stores, personnel have several different stores to 

assess, and trained observers must spend a significant amount of time traveling to and from 

stores and conducting the assessments [20]. Time spent conducting the study is also a 

limitation associated with this method. In previous work, where the study was conducted over 
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a long time period, the food environment and access changed rather quickly, leading one to 

question the relevance of the results [18].  

2.1.1.2. GIS Technology and Census Data  
Another traditional method for measuring food insecurity and identifying food deserts 

in the United States incorporates geographic information system (GIS) technology and census 

data. In this method, researchers use geocoding to map resources, or create density maps that 

illustrate differences in food security and access in various locations.  

One study that used GIS sought to examine the food environment in predominantly 

Black and low-income areas, suggesting the food environment has an impact on the 

development of food-related chronic conditions. To assess the food environment in 

neighborhoods of interest, researchers mapped all the fast-food restaurants in the city of New 

Orleans, Louisiana and calculated the number of restaurants per square mile in each census 

tract. Researchers used multiple regression to determine the association between the number 

of restaurants per square mile and Black and low-income neighborhoods [21].  

Another study that used GIS to measure food insecurity sought to examine the 

availability of supermarkets in neighborhoods of various racial and socioeconomic compositions 

[16]. Researchers mapped various food stores in Mississippi, North Carolina, Maryland, and 

Minnesota from the addresses obtained from local health departments, and linked census data 

to each mapped census tract. Neighborhood wealth was measured by median house values 

from census data, and racial composition was measured using the proportion of black residents 

from census data.  
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There are several limitations associated with using GIS and census data in order to 

measure food insecurity and identify food deserts. The first limitation to be discussed here is 

risk of misidentification of food stores in the GIS [16]. GIS maps are pulled from several 

different data sources, so there will never be perfect accuracy and precision. Another limitation 

associated with using GIS and census data is changes in food resources over time. For example, 

there is the possibility that food stores will close over the course of the study, so the mapping 

and results may be inaccurate [16]. Finally, mapping fails to provide information about food-

consumption behavior within food deserts. Although GIS allows us to illustrate things like store 

density and composition across different regions, this method does not provide insight into 

what is going on in these areas with inadequate food access, such as food consumption 

behavior.  

2.1.1.3. Surveys  
Surveys have also been used to measure food insecurity in the United States. In this 

method, researchers gather data from randomly sampled households related to household 

food expenditures, quantities, and consumption for a specified period of time.  

[22] used both surveys and census data to identify a link between body mass index and 

the socioeconomic characteristics of the neighborhoods in which local grocery stores were 

located. Researchers used data from the Los Angeles Family and Neighborhood Study (LA FANS) 

database, a collection of 2620 adults from 65 neighborhoods in Los Angeles County from 2000 

and 2002. The topics covered in the LA FANS included household income, education, 

employment, marital status, and residency, as well as information about medical care, food 

consumption, and entertainment. BMI was calculated using reported height and weight. 
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Researchers used reported information to identify a link between food-related responses and 

BMI.  

Another study sought to link neighborhood food availability and dietary behavior. 

Researchers surveyed a sample of participants in the Supplemental Nutrition Assistance 

Program (SNAP) using the 1996-1997 National Food Stamp Program Survey [22]. One 

component of the survey included a 1-week food inventory method, in which participant’s food 

consumption was determined during two at-home interviews. Researchers assessed the 

relationship between observed and reported food consumption and neighborhood food 

availability using linear regression.  

There are several limitations associated with using surveys to assess food insecurity. 

One limitation is related to the use of existing national surveys to answer questions related to 

food consumption. Many studies use information from these surveys as a proxy to measure 

food insecurity. However, pulling food consumption information from existing, more general 

surveys may not provide sufficient information for measuring food access. For example, [22] 

acknowledged the fact that there were certain measures that were better at measuring food 

consumption behavior than the proxies used from the National Food Stamp Program Survey.  

Another limitation associated with using surveys to assess food insecurity is self-

reporting inaccuracies. Researchers in [22] suggested that self-reported height and weight are 

often misreported, and the accuracy of these measures varied significantly among different 

ethnic groups. In a study that specifically used self-reported weight and height to calculate BMI, 

these inaccuracies and variations likely caused bias and incorrect associations in the results.  
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2.1.2. Using Social Media to Examine Food Insecurity 
Social media is increasingly becoming a source for measuring food insecurity in the 

United States. In a study that leveraged social media to better understand the health behaviors 

and well-being of communities, researchers extracted and labeled foods mentioned in 

geotagged tweets according to their caloric density and “healthiness” [23]. Researchers found 

tweets with references related to healthy foods were less frequent in low-income census tracts 

and neighborhoods with higher proportions of minorities. In a study conducted by [24], 

researchers developed an algorithm to extract nutritional information, such as calorific content, 

from food-related Instagram posts. These researchers utilized this framework in another study 

to understand dietary choices and nutritional challenges in food deserts [10]. Researchers 

analyzed a sample of 3 million geotagged, food-related posts shared on Instagram, and found 

that food posts originating from food desert census tracts were higher in fat, cholesterol and 

sugar compared to food posts originating in non-food desert census tracts. Researchers also 

used the food ingestion language derived from Instagram posts to develop an algorithm for 

predicting census tract food desert status, with accuracy over 80%.  

In a study by [25], researchers examined dietary preferences across various geographic 

regions using recipes accessed on the web as a proxy to measure food consumption. In this 

study, researchers found qualitative agreement between the measured sodium content in 

accessed recipes over time and time series of hospital admissions rates for congestive heart 

failure in a hospital in Washington, D.C. 

To examine the dietary choices of Americans, [26] analyzed tweets from 210,000 Twitter 

users, linking their dining experiences to their social networks and demographics. By extracting 
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the caloric density of foods mentioned in tweets, researchers found correlations between the 

caloric values of the foods mentioned in tweets and state-wide obesity rates. Researchers also 

developed a model to predict county-wide obesity and diabetes statistics using the nutritional 

content of the foods mentioned in tweets and the demographic variables of the respective 

geographic regions. 

2.2. Study #2 - Validating social media as a data source: Public perceptions about 
COVID-19 vaccines in tweets compared to traditional surveys  

In Chapter 2, I present a study that aims to predict the public perceptions of COVID-19 

vaccines in traditional surveys using the sentiments and emotions found in tweets. Several 

researchers have already examined public perceptions of COVID-19 vaccines, but this research 

has been conducted using a variety of different data sources. For example, some studies 

examined COVID-19 vaccine hesitancy and acceptance using surveys, while others extracted 

information from social media platforms. The following section provides an overview of these 

relevant studies. 

2.2.1. Examining COVID-19 Vaccine Perceptions using Survey Data  
As previously stated, many studies leveraged surveys to examine COVID-19 vaccine 

hesitancy and compliance. In April 2020, [27] administered four online, nationally 

representative surveys to adults in France in order to identify reasons why individuals would or 

would not take the COVID-19 vaccine once one became available. Researchers found that 

nearly a quarter of respondents refused to take the COVID-19 vaccine once one was made 

available to them, citing reasons such as not trusting vaccines in general, concerns about the 
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expedited vaccine development process, and lack of fear of COVID-19, deeming the vaccine 

unnecessary.  

A cross-sectional, self-administered survey was conducted in [28] to evaluate COVID-19 

vaccine intent among nurses in Hong Kong, China. Researchers found higher rates of vaccine 

hesitancy compared to vaccine acceptance, with nurses citing concerns about the safety and 

efficacy of the vaccines. An online survey conducted in [29] attempted to identify the predictors 

of intent to vaccinate against COVID-19 among Americans. Nearly 40% of survey respondents 

refused to vaccinate against COVID-19. Among survey respondents, male, older, white, married, 

and higher SES individuals were more likely to be vaccinated against COVID-19. Researchers 

also found that Republicans and Fox News viewers were less likely to get vaccinated, while 

individuals who were previously vaccinated for influenza were more likely to be vaccinated for 

COVID-19. 

Another study [30] administered online surveys to adults in the US to measure COVID-

19 vaccine acceptance. Researchers used regression models to identify factors correlated with 

vaccine intent and found that the majority of respondents (69%) were willing to get vaccinated. 

Individuals were more likely to get vaccinated if their healthcare provider recommended it, if 

they had moderate or liberal political views, or if they felt they were likely to contract COVID-19 

in the future. Researchers in [31] combined interviews and surveys to study COVID-19 vaccine 

acceptability among parents. Most participants stated both them and their children would get 

vaccinated for COVID-19, citing self-protection as the primary motivation for vaccination. 

However, participants did cite concerns regarding vaccine safety and efficacy. 
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2.2.2. Examining COVID-19 Vaccine Perceptions using Social Media Data 
There is no shortage of studies that use social media to study vaccine hesitancy and 

acceptance. With the onset of the pandemic in early 2020, researchers leveraged NLP methods 

such as sentiment analysis, emotion analysis, and topic modeling to examine vaccine-related 

perceptions. [32]–[34] collected tweets over the course of the pandemic in order to examine 

public sentiments and opinions towards COVID-19 vaccines. Researchers in [35] found most 

tweets to have positive sentiment, but there was also lots of discussion about vaccine hesitancy 

and rejection. Researchers also found Twitter bots and political activists to be the main culprits 

for spreading anti-vaccine views online. A study conducted by [36] found mostly negative 

perceptions of the COVID-19 vaccine among Twitter users.  

A topic modeling and emotion analysis conducted by [37] revealed vaccine progress and 

vaccine instructions as dominant topics over the past year, with overall positive sentiment 

found in tweets. Trust remained the dominant emotion expressed in tweets. A topic modeling 

analysis conducted in [38] revealed topics such as vaccine development, vaccine information 

seeking, financial concerns, vaccine efficacy, and conspiracy theories. Identifying themes and 

sentiments on social media platforms is beneficial to public health officials in the battle against 

COVID-19.  

2.3. Study #3 - Using COVID-19 vaccine Twitter chatter to predict vaccination rates in 
the United States 

In Chapter 3, I present a study that aims to establish a comparative framework for 

forecasting COVID-19 vaccination rates in the United States. In this study, I plan to develop a 

time series model for forecasting vaccination rates using traditional univariate time series 

methods and compare the performance of this model to a multivariate time series model that 
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not only accounts for past vaccination rates, but also accounts for the changes in the vaccine-

related discussion on Twitter, over time. While there are several studies that use time series 

methods to forecast COVID-19 cases, very few studies aim to forecast COVID-19 vaccination 

rates. The following section provides an overview of these relevant studies. 

2.3.1. Forecasting COVID-19 Related Measures Using Social Media 
There is no shortage of studies that sought to forecast COVID-19 cases using information 

from social media. Researchers in [39] conducted a study using COVID-19 related terms 

mentioned in tweets and Google searches to predict COVID-19 waves in the United States. 

Researchers found that tweets that mentioned COVID-19 symptoms predicted 100% of first 

waves of COVID-19 days sooner than other data sources. Another study used data from Google 

searches, tweets, and Wikipedia page views to predict COVID-19 cases and deaths in the United 

States [40]. Researchers found models that included features from all three sources performed 

better than baseline models that did not include these features. Researchers also found that 

Google searches were a leading indicator of the number of cases and deaths across the United 

States. Another study [41] examined the relationship between daily COVID-19 cases and COVID-

19 related tweets and Google Trends. In a study conducted by [42], researchers used reports of 

symptoms and diagnoses on Weibo, a popular social media platform in China, in order to 

predict COVID-19 case counts in Mainland China. Researchers found reports of symptoms and 

diagnoses on the social media platform to be highly predictive of daily case counts. Although 

each of these studies forecast COVID-19 cases and deaths, none of these studies forecast 

COVID-19 vaccination rates. 
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2.3.2. Forecasting Vaccinations 
Very few studies have conducted time series forecasting of the COVID-19 vaccinated 

population in the United States. In a study conducted by [32], researchers developed a time 

series model to predict the percentage of the US population that would get at least one dose of 

the COVID-19 vaccine or be fully vaccinated. Researchers projected that by the end of July 

2021, 62.44% and 48% of the US population would get at least one dose of the COVID-19 

vaccine or be fully vaccinated, respectively. Although this paper also included a separate tweet 

sentiment analysis, researchers did not include Twitter-related features in the forecast model. 

Additionally, researchers used aggregated vaccination data for the entire United States, rather 

than a more granular geographic level. 

Another study aimed to evaluate if and when the world would reach a vaccination rate 

sufficient enough for herd immunity by forecasting the number of people fully vaccinated 

against COVID-19 in various countries, including the US [43]. In this study, researchers used a 

common univariate time series forecasting method, Autoregressive Integrated Moving Average 

(ARIMA), to forecast the future number of fully vaccinated people using only historical 

vaccination data. Based on the resulting projections, researchers concluded that countries were 

nowhere near the necessary herd immunity threshold needed to end the COVID-19 pandemic.  

A study conducted by [44] sought to predict COVID-19 vaccine uptake using various 

sociodemographic factors. Although not a time series forecasting model, the results of this 

study showed that geographic location, education level, and online access were highly 

predictive of vaccination uptake in the United States. The model predicted vaccine uptake with 

62% accuracy. 
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Although there are very few studies related to COVID-19 vaccination forecasting, other 

studies have been conducted to predict immunizations for other illnesses. For example, one 

study analyzed electronic medical records of a cohort of 250,000 individuals over the course of 

ten years [45]. Researchers developed a model to predict vaccination uptake of individuals in 

the upcoming influenza season based on previous personal and social behavioral patterns. 

Another study developed a tool for leveraging immunization related content from Twitter and 

Google Trends to develop a model for predicting whether a child would receive immunizations 

[46]. Researchers were able to predict child immunization status with 76% accuracy. 

2.4. Twitter Application Programming Interface (API) 
With the vast number of studies using Twitter as a data source, it is important to discuss 

how these data are accessed. The Twitter application programming interface (API) was 

established in 2006 to make information on Twitter widely available to researchers, companies, 

developers, and Twitter users [47]. The Twitter API makes it possible for users to develop 

software that integrates Twitter, as well as provides access to public Twitter data. Academic 

researchers make up a large proportion of users who take advantage of the Twitter API, using 

the various Twitter APIs to collect and analyze the public conversations found in tweets [47]. 

There are three main Twitter access points: the Streaming API, the Search API, and the 

Historical PowerTrack [48]. 

2.4.1. Types of Twitter APIs 
 The Twitter Streaming API is the most common resource for accessing publicly available 

tweets [48]. The Streaming API is a free resource which allows users to collect tweets as they 

are posted in real-time but requires end users to maintain an uninterrupted connection to the 
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server. While the Streaming API is a great resource for collecting tweets as they are posted, 

there is a limit to the number of tweets that are available to end users [49]. For example, using 

the Streaming API, users are limited to a 1% random sample of tweets being pushed to the data 

server at a single point in time. The Twitter Search API is another publicly available, free 

resource for collecting publicly available tweets. Unlike the Streaming API, the Search API 

allows users to pull tweets from the past 6 to 9 days, as opposed to pulling tweets in real-time 

[50]. The final type of Twitter API is the Historical PowerTrack, which provides users with access 

to historical tweets posted within a specified time frame [51]. Unlike the Streaming and Search 

APIs, the Historical PowerTrack API is not free and can be very costly [48]. 

2.4.2. How the Twitter API works  
The most common Twitter APIs, such as the Streaming and Search APIs, can be accessed 

via popular programming languages, such as R and Python. Packages such as tweepy, twarc, 

and PyTweet in Python and twitteR, streamR, and rtweet in R allow users to connect to the 

Twitter Streaming API to collect tweets [52]. These packages allow users to establish a 

connection with the Twitter data server and users can pull tweets based on keywords and/or 

location. When searching based on location, it is important to remember that tweets may 

contain two types of geographical metadata: tweet location, which is available when the user 

enables the sharing of their location at the time the tweet is posted and is tagged with a 

specific latitude/longitude coordinate, and account location, which is based on the ‘home’ 

location that the user provided in their profile [53]. During a location-based search, the Twitter 

API will first attempt to find location-matched geo-tagged tweets, which are tweets that were 

sent while the user had their GPS enabled, and therefore have associated latitude and 
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longitude coordinates [54]. If this does not return matches, or once the matches have been 

exhausted, the Twitter API will retrieve tweets from Twitter users who have a ‘home’ location 

in their public profile that can be reverse geocoded into the location specified in the search 

query [54].  

Consider the following example: if a user would like to collect COVID-19 related tweets 

in Atlanta, GA, they should establish a connection with the Twitter API using one of the popular 

Twitter API packages and specify up to 400 keywords related to COVID-19 to filter their search. 

In order to further filter their search based on the location of interest, Atlanta, GA, the user 

must specify the location in their search query using the location name (i.e. fetch tweets from 

Atlanta, GA), location coordinates and radius (i.e. fetch tweets within 10 miles of 33.7490° N, 

84.3880° W, the coordinates of the city center), or the location bounding box, which contains 

the northeast, northwest, southeast, and southwest geocoordinates of any given location, 

where the Twitter API pulls any tweets that can be reverse geocoded within this bounding box 

(i.e. fetch tweets that fall within these four geocoordinates). Using the Streaming API, the 

resulting query will retrieve COVID-19-related tweets geotagged from Atlanta, GA (or 

associated with Atlanta, GA based on user profile information) in real-time, as they are being 

posted. Using the Search API, the resulting query will retrieve COVID-19-related tweets 

geotagged from Atlanta, GA (or associated with Atlanta, GA based on user profile information) 

from the past 6 to 9 days.  

Once a tweet is fetched from the Twitter API, users must extract the desired 

information from the tweet object. A single tweet object contains several attributes, including 

the date and time of the tweet, the user name of the account holder, the full tweet text, tweet 
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location (if available), the number of times the tweet has been liked, quoted, replied to, 

retweeted, or favorited, and a unique identifier for the tweet [55]. 

2.5. Natural Language Processing 
A key component of each of the three studies in this dissertation is sentiment and 

emotion analysis. Sentiment analysis is a natural language processing (NLP) method that 

identifies positive, negative, or neutral sentiment in text documents [56]. Emotion analysis is 

also an NLP method, but instead of classifying text documents into positive, negative, or neutral 

buckets, emotion analysis detects human emotions in text, such as fear, anger, anticipation, 

surprise, trust, sadness, disgust, and joy [57]. These advanced NLP methods are conveniently 

available for use in computer programming software applications, such as Python and R. 

Sentiment analysis packages work by comparing the individual words found in text to one or 

more specified lexicons. Lexicons contain thousands of words classified as positive or negative, 

and typically have an intensity score associated with each word, in terms of “positiveness” or 

“negativeness” [58]. Each word is then classified as positive or negative based on the label and 

score found in the lexicon. The overall sentiment is then calculated based on the matches 

between the text and the specified lexicon, and the intensities of the matched words [58]. 

Several studies have employed sentiment or emotion analysis of social media data to 

answer research questions related to public health. [59] conducted a sentiment analysis of 

diabetes-related tweets to analyze feelings towards diabetes, as expressed on Twitter. 

Researchers sought to evaluate the impact of social media on people living with diabetes, to 

improve public health interventions. In a study conducted by [60], researchers used sentiment 

analytics to monitor public health concerns in a less-expensive, more scalable manner. Another 
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study used sentiment analytics to capture patient experience from online posts [61]. 

Researchers found the sentiments expressed online to be associated with the results of 

conventional surveys. 

The emergent body of work using social media as a data source in public health research 

has fueled my interest in developing additional use-cases. In this dissertation, I discuss three 

different scenarios where social media data can be leveraged to address important public 

health concerns – each having important policy implications.
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Chapter 3 - Study #1: Using Social Media to Predict Food Deserts in the 
United States 

3.1. Introduction 

3.1.1. Background 
Healthy food is vital to everyday life. However, healthy food is not equally accessible to 

everyone [62]. Food insecurity refers to an individual’s lack of sufficient and consistent access 

to healthy foods that are both affordable and good in quality because of the lack of financial 

and other resources [63]. In 2018, the United States Department of Agriculture (USDA) 

estimated that 14.3 million households (11.1%) in the United States were food insecure [63]. 

Geographic location is one of the most important contributing factors to food insecurity 

and access to healthy foods [63]. Food deserts can be broadly defined as geographic regions 

where residents do not have sufficient access to fresh fruits, vegetables, and other essential 

ingredients for healthy eating [64]. Access to healthy foods can be limited because of low 

availability of grocery stores, low access to sustainable transportation, abundance of 

perceivably cheaper but unhealthy fast-food options, or a combination of such reasons [65], 

[66]. Food deserts are prevalent in rural as well as urban regions, implying that regions with an 

abundance of food options can still be considered food deserts based on the definition of 

healthy food [67].  

3.1.2. Identifying Food Deserts 
The disparities in healthy food access among underserved communities have fueled the 

interest of public health practitioners, researchers, and community activists in not only 
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identifying regions that are currently food deserts but also regions that are at risk for becoming 

food deserts in the future. The Economic Research Service at the USDA uses various indicators 

for the official identification of food deserts in the United States at the census tract level. A 

review of the literature determined that other frequently used measures to assess food access 

are as follows: (1) geographic information systems (GIS) technology, where researchers use 

geocoding to map resources and create density maps that illustrate differences in food security 

and access in various locations [21]; (2) food store assessments, which may include both 

objective and subjective assessments of the food environment [16]–[20]; and (3) consumer 

surveys, which allow researchers to gather data from randomly selected households—data 

regarding household food expenditures and consumption over a specified period [64]. 

Although each of these food desert identification methods have been widely used and 

have provided rich insights into food insecurity in the United States, each method comes with 

unique challenges. For example, GIS technology comes with the risk of misidentification of food 

stores in the GIS and mapping fails to provide information about food consumption behavior 

[17]. Food store assessments may be associated with high costs and small, nonrandom sample 

sizes, as well as significant time spent conducting assessments [20]. Consumer surveys have 

been found to reflect self-reporting inaccuracies [22]. Each of the challenges to the state-of-

the-art approaches present room for another novel approach that uses an alternative, more 

modern data source. This study examines the use of food ingestion language found on social 

media, specifically tweets, for predicting food desert status among census tracts in the United 

States. 
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3.1.3. Social Media for Public Health Research 
Researchers have increasingly looked to social media data as a means of measuring 

population health and well-being in a less intrusive and more scalable manner [10]. Social 

media data have proved useful in predicting health outcomes in many studies; therefore, these 

data may prove to be a very rich source for yet another health-related issue: food insecurity. 

Using social media data to predict the emergence of food deserts provides a people-centered 

approach for identifying food deserts by allowing for the examination of the dietary 

consumption and habits of individuals who reside in food deserts versus those who do not 

reside in food deserts [68].  

Prior studies have successfully extracted information from social media to address 

various types of health-related outcomes, relying on the naturalistic observations deduced from 

social media data to answer questions related to health and well-being [11]. For example, in a 

study that sought to predict depression among Twitter users, researchers leveraged behavioral 

cues found in tweets to develop a classifier for depression [11]. In a study that considered 

Twitter data for various public health applications, researchers conducted syndromic 

surveillance of serious illnesses, measured behavioral risk factors, and mapped illnesses to 

various geographic regions [12]. Another study used Twitter to monitor and predict influenza 

prevalence in the United States by conducting a network analysis of Twitter users and 

demonstrating the association of social ties and colocation of people who were symptomatic 

with one’s risk of contracting influenza [13]. A study that sought to develop a publicly available 

neighborhood-level data set with indicators related to health behaviors and well-being also 

examined the associations between these Twitter-derived indicators and key neighborhood 
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demographics [14]. Another study examined Instagram posts to understand dietary choices and 

nutritional challenges in food deserts [64]. The study by Gore et al [69] examined the 

relationship between the obesity rate in urban areas and the expressions of happiness, diet, 

and physical activity in tweets. 

As seen in this study, several other studies similarly leveraged natural language 

processing methods such as sentiment analysis, emotion analysis, and topic modeling to use 

social media to answer public health research questions. For example, some studies [32]–[36] 

collected tweets over the course of the COVID-19 pandemic to examine public sentiments and 

opinions regarding COVID-19 vaccines. Researchers [37], [38] conducted topic modeling and 

emotion analyses to identify the themes and emotions related to the COVID-19 vaccines to aid 

public health officials in the battle against COVID-19.  

3.1.4. Study Overview 
In this study, I leveraged the linguistic constructs in food-related tweets to develop a 

classification model for food deserts in the United States. I considered both tweet sentiment 

and overall nutritional values of foods found in tweets to identify associations between living in 

a food desert and food consumption.  

To our knowledge, this is the first study to develop a model for inferring food desert 

status among census tracts in the United States using Twitter data. The main objective of this 

study was to examine the linguistic constructs found in food-related tweets to evaluate the 

differences in food nutritional value and food consumption behavior of individuals in food 

deserts versus those in non–food deserts. Our key hypotheses are as follows: (1) living in a food 

desert is associated with positive mentions of unhealthy foods, such as tweets that mention 



 29 

foods that are high in caloric content or low in vital nutrients such as fiber and calcium, and (2) 

food ingestion language among Twitter users in a census tract can be used to infer census 

tract–level food desert status. 

3.2. Methods 

3.2.1. Overview 
An overview of the entire data collection and preparation process is illustrated in Figure 3.1 and 

described in the following subsections. 

Figure 3.1 Twitter data collection process, March 2020 to December 2020. API: application 
programming interface; SES: socioeconomic status; USDA: United States Department of 
Agriculture. 
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3.2.2. Data Collection 

3.2.2.1. Twitter Data 
From March 2020 to December 2020, the Twitter streaming application programming 

interface (API), which provides access to a random sample of 1% of publicly available tweets, 

was used to collect tweets (including retweets and quoted tweets) from 25 of the most 

populated cities in the United States (Table 3.1) [70]. The 25 cities included in this analysis are 

among the top 50 most populated cities in the United States. However, I decided not to go with 

the most populated cities (such as New York City, Los Angeles, and Houston) because I wanted 

to understand whether the framework I developed would be beneficial for smaller cities that 

are not typically the focus of these types of infodemiology studies. Public health resources 

directed at improving population health are historically limited and can vary from one public 

health jurisdiction to the next [71]. Heavily populated cities such as New York City, Los Angeles, 

and Houston likely have an abundance of resources (both financial and personnel) that can be 

used to conduct food desert identification using more traditional (expensive) methods. 

Although the framework outlined in this study would also be useful for heavily populated cities, 

I believe that less populated cities with fewer resources would benefit the most from this type 

of study.
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Table 3.1 Targeted cities for Twitter data collection, March 2020 to December 2020. 

• Albuquerque, New Mexico 

• Dallas, Texas 

• Atlanta, Georgia 

• Baltimore, Maryland 

• Colorado Springs, Colorado 

• Fresno, California 

• Kansas City, Missouri 

• Las Vegas, Nevada 

• Long Beach, California 

• Louisville, Kentucky 

• Mesa, Arizona 

• Miami, Florida 

• Milwaukee, Wisconsin 

• Minneapolis, Minnesota 

• New Orleans, Louisiana 

• Oakland, California 

• Oklahoma City, Oklahoma 

• Omaha, Nebraska 

• Portland, Oregon 

• Raleigh, North Carolina 

• Sacramento, California 

• Tucson, Arizona 

• Tulsa, Oklahoma 

• Virginia Beach, Virginia 

• Wichita, Kansas 
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When a location-based search is specified, the Twitter API extracts tweets tied to a 

certain location based on two criteria that are not mutually exclusive: (1) the user has their 

location enabled for all tweets, in which case these tweets will have specific GPS coordinates, or 

(2) the user has location information in their profile, such as the city and state they live in, in 

which case all tweets associated with this user will be tied to this location but without specific 

geocoordinates. In both cases, these location-tagged tweets are eligible for selection by the 

Twitter API when a location-based search is specified [53].  

As this analysis sought to assign individual tweets to their respective census tracts, all 

tweets in our sample were required to have specific geolocation information (latitude and 

longitude GPS coordinates). A parsing module was created to filter out tweets without specific 

geolocation information. Next, to extract tweets related to food ingestion, tweets were further 

filtered by a list of 1787 food-related words from the USDA FoodData Central Database (examples 

are presented in Table 3.2) [72]. Names of popular fast-food restaurants extracted from 

Wikipedia [73] were also included in this list, as was done in the study by Vydiswaran et al [68]. 

The complete keyword list can be found in Appendix A.
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Table 3.2 Examples of food-related keywords. 

• Healthy 

o Acai  

o Apple  

o Apricot  

o Avocado  

o Banana  

o Blackberries  

o Blueberries  

o Cantaloupe  

o Cherries  

o Clementine  

• Unhealthy 

o Cheesecake  

o Cupcake  

o Donut  

o Pepsi  

o Sprite  

o Sunkist  

o Red velvet cake  

o Chicken McNuggets  

o Double cheeseburger  

o Zinger burger 

• Fast-food restaurants  

o Jack in the Box  

o Chick-fil-A  

o Burger King  
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o Dairy Queen  

o Del Taco  

o Taco Bell  

o Bojangles  

o Checkers  

o Popeyes  

o Whataburger 

Tweets related to job postings and advertisements were filtered out by excluding tweets 

with hashtags and keywords such as “#jobs,” “#hiring,” and “#ad.” For the purposes of this 

research, I assumed that the tweets in our sample, which, at minimum, contained at least one 

of 1787 food-related keywords, were related to food consumption, as was done in the study by 

Nguyen et al [14]. To assess the impact of this assumption, a random sample of 1000 tweets 

was selected for manual classification as food related or not food related. Among the 1000 

tweets in the random sample, 770 (77%) were classified as food related, whereas 230 (23%), 

although they contained food keywords, were classified as not food related. Tweets that 

matched to food words but were not related to food consumption included tweets related to, 

for example, Apple products (e.g., “I went to the Apple Store to purchase an iPhone”) and 

common city nicknames (e.g., New York City, aka “The Big Apple”).  

3.2.2.2. Twitter-Derived Features 
I referred to similar work conducted by Nguyen et al [14] to classify each food item as 

healthy or unhealthy. The classification of foods as healthy or unhealthy was subjective and 

conducted by 2 different annotators (University of Maryland, College Park students – Daniela 

Nganjo and Pauline Comising). Fruits and vegetables were classified as healthy food items. 
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Unhealthy food items included fried foods, fast-food items, and other food items commonly 

considered to be unhealthy. The following nutritional values, per 100 g, were obtained for each 

food item in the list using the USDA FoodData Central Database: calories, calcium, 

carbohydrates, cholesterol, energy, fat, fiber, iron, potassium, protein, fatty acids, sodium, 

sugar, vitamin A, and vitamin C. 

To measure the healthiness of foods mentioned in tweets, the overall nutritional values 

of the foods mentioned in each tweet were calculated. To calculate the nutritional values of 

foods mentioned in each tweet, regular expression matching was used to compare the words in 

each tweet to the items described in the aforementioned food list (Table 3.2). The keyword-

matching algorithm first searched the tweet text for matches to food keywords containing 

multiple words, then searched the tweet text for matches to food keywords with fewer words. 

Using this method, the tweet text was searched for keywords with 3 words, for example, before 

searching for keywords with 2 words, and the tweet text was searched for keywords with 2 

words, before searching for keywords with 1 word. For example, both “Burger King” and 

“burger” were included in the food list. Using this keyword-matching algorithm, a tweet was 

searched for the keyword “Burger King” first to avoid an incorrect match to the keyword 

“burger” alone. Once this match was made, the keyword “Burger King” was removed from the 

tweet text and the remaining tweet text was searched for single-word keywords such as 

“burger.” Next, the respective nutritional values for each matched food word were then 

calculated for the corresponding tweet. For tweets having >1 match to food names in the food 

list, the assigned nutritional value was equal to the average of the nutritional values for all 

matched food items in the tweet.  
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3.2.2.3. Sentiment Analysis 
To capture the attitudes toward foods mentioned in tweets, I conducted a sentiment 

analysis of all tweets using the bing lexicon from the tidytext package in R [74]. The bing lexicon 

provides a label of negative or positive for thousands of words in the English language. To label 

the overall sentiment of a tweet, positive expression words were assigned a value of 1, negative 

expression words were assigned a value of –1, and neutral expression words were assigned a 

value of 0. An overall sentiment score was assigned to each tweet by summing the values 

assigned to all expression words present in a tweet. Tweets with a positive sentiment score 

were labeled as having overall positive sentiment, tweets with a negative sentiment score were 

labeled as having an overall negative sentiment, and tweets with a score of 0 were labeled as 

having overall neutral sentiment. The resulting tweet sentiment assignments were then used to 

flag the following types of tweets: tweets that mentioned healthy foods with positive 

sentiment; tweets that mentioned healthy foods with negative sentiment; tweets that 

mentioned unhealthy foods with positive sentiment; tweets that mentioned unhealthy foods 

with negative sentiment; tweets that mentioned fast-food restaurants with positive sentiment; 

and tweets that mentioned fast-food restaurants with negative sentiment. These tweet-level 

indicators were later aggregated to the census tract level to produce neighborhood-specific 

features related to the proportion of tweets that expressed positive or negative sentiment 

toward healthy foods, unhealthy foods, and fast-food restaurants. 

3.2.2.4. Mapping Tweets to Census Tracts 
As this analysis examined food desert status at the census tract level, for all census 

tracts in the 25 cities listed in Table 3.1, each tweet was then mapped to its respective census 

tract using point-to-polygon mapping of the latitude and longitude coordinates of the 
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geolocated tweet to the bounding box of the respective census tract [75]. Once each tweet was 

mapped to a census tract, the tweets were aggregated to the census tract level and the average 

nutritional content per food item mentioned in tweets within each census tract was calculated. 

Additional census tract–level food-related Twitter-derived features included the following: (1) 

percentage of all tweets in a census tract that mention the following with either positive or 

negative sentiment: healthy foods, unhealthy foods, and fast-food restaurants, and (2) average 

number of healthy food, unhealthy food, and fast-food mentions per tweet. Tweets with 

neutral sentiment were not excluded from the analysis sample, but I did not consider neutral 

sentiment as an independent feature. A complete list of food-related census tract–level 

features derived from Twitter can be found in Table 3.3.
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Table 3.3 Twitter-derived food features. 

• Percentage of tweets that mention healthy foods with positive sentiment 

• Percentage of tweets that mention healthy foods with negative sentiment 

• Percentage of tweets that mention unhealthy foods with positive sentiment 

• Percentage of tweets that mention unhealthy foods with negative sentiment 

• Percentage of tweets that mention fast-food restaurants with positive sentiment 

• Percentage of tweets that mention fast-food restaurants with negative 

sentiment 

• Average number of healthy food mentions 

• Average number of unhealthy food mentions 

• Average number of fast-food mentions 

• Average number of calories per food item (per 100 g) 

• Average calcium per food item (per 100 g) 

• Average carbohydrates per food item (per 100 g) 

• Average cholesterol per food item (per 100 g) 

• Average energy per food item (per 100 g) 

• Average fiber per food item (per 100 g) 

• Average iron per food item (per 100 g) 

• Average potassium per food item (per 100 g) 

• Average fat per food item (per 100 g) 

• Average protein per food item (per 100 g) 

• Average saturated fatty acids per food item (per 100 g) 

• Average sodium per food item (per 100 g) 

• Average sugar per food item (per 100 g) 

• Average trans fatty acids per food item (per 100 g) 

• Average unsaturated fatty acids per food item (per 100 g) 

• Average vitamin A per food item (per 100 g) 
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• Average vitamin C per food item (per 100 g) 

• Average number of calories per healthy food item (per 100 g) 

• Average number of calories per unhealthy food item (per 100 g) 

3.2.2.5. Food Desert Status 
Once all data were collected and aggregated to the census tract level, each census tract 

was classified as a food desert or not a food desert, according to the USDA Food Access 

Research Atlas classification of low-income and low-access tracts measured at 1 mile for urban 

areas and 10 miles for rural areas. The USDA classifies low-income tracts using the following 

criteria: (1) at least 20% of the residents live below the federal poverty level; (2) median family 

income is, at most, 80% of the median family income for the state in which the census tract lies; 

or (3) the census tract is in a metropolitan area and the median family income is, at most, 80% 

of the median family income for the metropolitan area in which the census tract lies [76]. Low-

access census tracts are classified by a significant share (≥500 individuals or at least 33%) of 

individuals in the census tract being far from a supermarket or grocery store [76]. In total, 

7.52% (299/3978) of census tracts with geolocated food-related tweets were classified as low-

income, low-access food deserts, measured at 1 mile for urban areas and 10 miles for rural 

areas. 

3.2.2.6. Demographics and Socioeconomic Status Features 
Demographic and socioeconomic status (SES) characteristics at the census tract level 

were pulled from the 2019 American Community Survey and merged onto the census tract–

level tweets data set. The demographic variables used in this analysis are presented in Table 

3.4. 
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Table 3.4 Census tract–level demographic and socioeconomic status features extracted from the 
2019 American Community Survey. 

• Percentage White and non-Hispanic 

• Percentage Black or African American 

• Percentage other race 

• Percentage Asian 

• Percentage American Indian or Alaska Native 

• Percentage owner-occupied housing units 

• Percentage of population living below the federal 

poverty line 

• Number of housing units 

• Number of households 

• Median family income (US $, 2019) 

• Median age (years) 

• Population 

3.2.3. Data Analysis 

Analyses were performed using R software (version 3.5.1; The R Foundation for Statistical 

Computing) and Python (version 3.8).  

3.2.3.1. Evaluating the Association Between Living in a Food Desert and Food Ingestion 
Language on Twitter 

To test the hypothesis that living in a food desert is associated with the food ingestion 

language of Twitter users, adjusted linear regression was conducted using food desert status as 

the predictor variable and the SES features listed in Table 3.4 as control features to analyze 

which Twitter-derived features presented in Textbox 3 were statistically significantly different 

between food deserts and non–food deserts. Each Twitter-derived feature (Table 3.3) was 
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designated as the outcome variable in individual linear regression models, as specified in the 

following equation: 

yTwitter = β0 + βFDxFD + βSES1xSES1 + ... + βSES12xSES12 + Error 

where yTwitter = Individual Twitter – derived food feature; β0 = y – intercept (constant); βFD=food 

desert classification; and βSES12=each of the 12 demographic and socioeconomic features listed 

in Table 3.4. 

Twitter-derived features that were found to have individual, significant associations with food 

desert status were later used as features in the classification model for predicting food desert 

status to test the hypothesis that key food ingestion language found in tweets can be used to 

infer census tract–level food desert status. 

3.2.3.2. Predicting Food Desert Status 
To test the hypothesis that food ingestion language found in tweets can be used to infer 

census tract–level food desert status, classification models were developed using the Twitter-

derived food-related nutritional features listed in Table 3.3. I developed 5 different 

classification models with different sets of features that would allow us to determine which 

models, if any, show improvements over a baseline model (Table 3.5). The first model, which 

was considered the baseline model, included demographics and SES features previously found 

to be strong predictors of food desert status in prior studies [77]; the second model included 

the demographics and SES features from the baseline model, plus the Twitter-derived food-

related nutritional features presented in Table 3.3; the third model included the demographics 

and SES features from the baseline model, plus the tweet sentiment features; the fourth model 

included all the features (from models 2 and 3 combined); and the fifth model included the 
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demographics and SES features from the baseline model, plus all Twitter-derived food-related 

features found to have a statistically significant association with census tract–level food desert 

status. 

Table 3.5 Classification models for predicting food desert status. 

Model Description Features 

1 Demographics and SESa only 

(baseline) 

Demographics and SES features (Table 3.4) 

2  Demographics and 

SES+nutritional values 

Demographics and SES features (Table 3.4) 

and Twitter-derived food-related nutritional 

features (Table 3.3) 

3 Demographics and 

SES+Twitter mentions 

sentiment 

Demographics and SES features (Table 3.4) 

and sentiment analysis of Twitter mentions 

features (Table 3.3) 

4 Demographics and 

SES+nutritional 

values+Twitter mentions 

sentiment 

Demographics and SES features (Table 3.4), 

Twitter-derived food-related nutritional 

features (Table 3.3), and sentiment analysis of 

Twitter mentions features (Table 3.3) 

5 Demographics and 

SES+statistically significant 

features  

Demographics and SES features (Table 3.4) 

and Twitter-derived food-related features 

found to have a statistically significant 

association with census tract–level food desert 

status 

aSES: socioeconomic status. 

All features were standardized using minimum-maximum normalization, a method that 

standardizes data by rescaling the range of individual features to (0, 1), as described in the 

study by Cao et al [78]. The data were divided into a 70:30 training data and testing data split. 

Each of the models were built using 5-fold cross-validation to keep computation time to a 
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minimum. Using the caret package in R, each model described in Table 1 was run using several 

different classification methods: adaptive boosting, gradient boosting, logistic regression, and 

ensemble methods [79]. The ensemble model combined adaptive boosting, gradient boosting, 

and logistic regression as base methods. Ensemble modeling is a process that aggregates the 

predictions of many different modeling algorithms and uses the results of the base models as 

inputs into a logistic regression model. The ensemble performs as a single model, reducing the 

generalization error of the prediction compared with the base models alone. The results of 

each classification method, regardless of performance, are presented in this paper. 

3.2.4. Ethics Approval 
The University of Maryland College Park institutional review board has determined that 

this project does not meet the definition of human participant research under the purview of 

the institutional review board according to federal regulations. 

3.3. Results 

3.3.1. Overview 
A total of 60,174 geolocated food-related tweets were collected during the data 

collection period. Across the 25 cities in our sample, 3978 census tracts had at least one 

geolocated food-related tweet, with a median of 4 (IQR 8) geolocated food-related tweets per 

census tract. Long Beach, California, had the largest representation of tweets (17,303/60,174, 

28.75%), as well as the largest representation of users (5189/17,978, 28.86%; Table 3.6). 

Fresno, California, had the smallest representation of tweets (421/60,174, 0.7%), and Wichita, 

Kansas, had the smallest representation of users (132/17,978, 0.73%). The maximum number of 

tweets by a single individual was 1277 (from a user in Long Beach, California). On average, 
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there were 6686 (SD 3629) tweets collected from 3264 (SD 1385) users each month. The 

remaining tweet and user statistics can be found in Table 3.6. 

 

Table 3.6 Number of tweets (N=60,174) and users (N=17,978) by city. 

City Number of tweets, n (%) Number of users, n (%) 

Albuquerque, New Mexico 839 (1.39) 224 (1.26) 
Atlanta, Georgia 4936 (8.2) 1739 (9.67) 
Baltimore, Maryland 2521 (4.19) 684 (3.8) 
Colorado Springs, Colorado 847 (1.41) 268 (1.49) 
Dallas, Texas 2472 (4.11) 782 (4.35) 
Fresno, California 421 (0.7) 153 (0.85) 
Kansas City, Missouri 1651 (2.74) 532 (2.96) 
Las Vegas, Nevada 2336 (3.88) 872 (4.85) 
Long Beach, California 17,303 (28.75) 5189 (28.86) 
Louisville, Kentucky 1246 (2.07) 406 (2.26) 
Mesa, Arizona 1888 (3.14) 616 (3.43) 
Miami, Florida 2576 (4.28) 1080 (6.01) 
Milwaukee, Wisconsin 1578 (2.62) 388 (2.16) 
Minneapolis, Minnesota 1282 (2.13) 471 (2.62) 
New Orleans, Louisiana 2144 (3.56) 641 (3.57) 
Oakland, California 2601 (4.32) 614 (3.42) 
Oklahoma City, Oklahoma 1143 (1.9) 371 (2.06) 
Omaha, Nebraska 742 (1.23) 198 (1.1) 
Portland, Oregon 5528 (9.19) 928 (5.16) 
Raleigh, North Carolina 1588 (2.64) 454 (2.53) 
Sacramento, California 1721 (2.86) 565 (3.14) 
Tucson, Arizona 794 (1.32) 250 (1.39) 
Tulsa, Oklahoma 622 (1.03) 209 (1.16) 
Virginia Beach, Virginia 960 (1.6) 212 (1.18) 
Wichita, Kansas 435 (0.72) 132 (0.73) 

Table 3.7 displays descriptive statistics of the census tract–level Twitter-derived food 

features. On average, there was a higher percentage of tweets that mentioned healthy foods 

with positive sentiment (34%) versus negative sentiment (20%), a higher percentage of tweets 

that mentioned unhealthy foods with positive sentiment (34%) versus negative sentiment 
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(17%), and a higher percentage of tweets that mentioned fast-food restaurants with positive 

sentiment (21%) versus negative sentiment (12%).  

 

Table 3.7 Descriptive statistics of Twitter-derived food features from geolocated food-related 
tweets. 

Twitter-derived food features Values, mean (SD) 

Percentage of tweets that mention healthy foods, positive sentiment 33.8 (0.4) 

Percentage of tweets that mention healthy foods, negative sentiment 19.8 (0.3) 

Percentage of tweets that mention unhealthy foods, positive sentiment 33.5 (0.4) 

Percentage of tweets that mention unhealthy foods, negative sentiment 17.1 (0.3) 

Percentage of tweets that mention fast-food restaurants, positive 

sentiment 

21.2 (0.3) 

Percentage of tweets that mention fast-food restaurants, negative 

sentiment 

11.7 (0.3) 

Average number of healthy food mentions 0.2 (0.3) 

Average number of unhealthy food mentions 0.4 (0.4) 

Average number of fast-food mentions 0.1 (0.3) 

Average number of calories per food item (per 100 g) 155.1 (96.3) 

Average calcium per food item (per 100 g) 74 (91.3) 

Average carbohydrates per food item (per 100 g) 23.2 (10.9) 

Average cholesterol per food item (per 100 g) 57.3 (284.4) 

Average energy per food item (per 100 g) 285.1 (115.7) 

Average fat per food item (per 100 g) 10.4 (6.9) 

Average fiber per food item (per 100 g) 1.7 (1.4) 

Average iron per food item (per 100 g) 1.7 (8.5) 

Average potassium per food item (per 100 g) 194.5 (93) 

Average protein per food item (per 100 g) 7 (4.1) 

Average saturated fatty acids per food item (per 100 g) 3.6 (2.5) 
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Average sodium per food item (per 100 g) 524.7 (962.7) 

Average sugar per food item (per 100 g) 11.8 (8.3) 

Average trans fatty acids per food item (per 100 g) 0.1 (0.2) 

Average unsaturated fatty acids per food item (per 100 g) 2.6 (4) 

Average vitamin A per food item (per 100 g) 548.8 (734.5) 

Average vitamin C per food item (per 100 g) 7.1 (15.8) 

Average number of calories per healthy food item (per 100 g) 67.4 (61.5) 

Average number of calories per unhealthy food item (per 100 g) 189.8 (125.9) 

Table 3.8 displays descriptive statistics of census tract–level demographics and SES 

features among census tracts represented in this analysis. Across the represented census tracts, 

62.7% (10,682,930/17,038,167) of all residents were White and non-Hispanic, 15.6% 

(2,657,954/17,038,167) were Black or African American, and 8.9% (1,516,397/17,038,167) 

identified as other race. The median family income across census tracts was approximately US 

$82,000, and the median age was approximately 37 years. 

Table 3.8 Descriptive statistics of census tract–level demographics and socioeconomic status 
features extracted from the 2019 American Community Survey. 

Characteristic Values, mean (SD) 

Percentage White and non-Hispanic 62.7 (23.4) 

Percentage Black or African American 15.6 (21.0) 

Percentage other race 8.9 (12.3) 

Percentage Asian 7.4 (9.2) 

Percentage American Indian or Alaska Native 1.0 (1.9) 

Percentage owner-occupied housing units 49.3 (24.8) 

Percentage of population living below the federal poverty line 16.2 (12.1) 

Number of housing units 1788.4 (863.5) 

Number of households 1628.0 (799.1) 
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Median family income (US $, 2019) 82,371.4 (42,680.1) 

Median age (years) 37.0 (6.8) 

Population 4283.1 (2243.6) 

3.3.2. Hypothesis 1: Living in a Food Desert Is Associated with the Food Ingestion Language 
and Sentiments of Tweets Observed Among Twitter Users 

The adjusted linear regression models confirmed this hypothesis, revealing significant 

associations between food desert status and 5 of the Twitter-derived food characteristics (Table 

3.9). The results show that a census tract being classified as a food desert was associated with 

an increase in the average cholesterol concentration (per 100 g; P=.02) per food item 

mentioned in tweets, a decrease in the average potassium concentration (per 100 g) per food 

item mentioned in tweets (P=.01), and an increase in the average number of unhealthy foods 

mentioned per tweet (P=.03). A census tract being classified as a food desert was also 

associated with an increase in the proportion of tweets that mentioned healthy foods as well as 

the proportion of tweets that mentioned fast-food restaurants with positive sentiment (P=.03 

and P=.01, respectively). 

Table 3.9 Adjusted linear regression model results examining the associations between living in 
a food desert and food ingestion language of Twitter users. 

Twitter-derived food 

features 

β coefficient P value SE R-squared 

Percentage of tweets that 

mention healthy foods, 

positive sentiment 

.077 .03 0.036 0.003 

Percentage of tweets that 

mention healthy foods, 

negative sentiment 

.023 .44 0.031 3.45×10–5 
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Percentage of tweets that 

mention unhealthy foods, 

positive sentiment 

–.051 .06 0.027 0.001 

Percentage of tweets that 

mention unhealthy foods, 

negative sentiment 

.022 .32 0.022 3.98×10–4 

Percentage of tweets that 

mention fast-food 

restaurants, positive 

sentiment 

.096 .01 0.039 0.005 

Percentage of tweets that 

mention fast-food 

restaurants, negative 

sentiment 

.010 .74 0.032 8.88×10–5 

Average number of 

healthy food mentions 

–.002 .54 0.003 9.57×10–5 

Average number of 

unhealthy food mentions 

.014 .03 0.006 0.001 

Average number of fast-

food mentions 

–.003 .76 0.010 2.45×10–5 

Average number of 

calories per food item (per 

100 g) 

.005 .58 0.009 7.93×10–5 

Average calcium per food 

item (per 100 g) 

–.001 .60 0.002 7.36×10–5 

Average carbohydrates 

per food item (per 100 g) 

–.009 .19 0.007 4.46×10–4 

Average cholesterol per 

food item (per 100 g) 

.005 .02 0.002 0.001 
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Average energy per food 

item (per 100 g) 

.004 .60 0.007 7.37×10–5 

Average fat per food item 

(per 100 g) 

–.005 .69 0.012 4.27×10–5 

Average fiber per food 

item (per 100 g) 

–.014 .10 0.008 7.26×10–4 

Average iron per food 

item (per 100 g) 

–6.44×10–4 .56 0.001 9.04×10–5 

Average potassium per 

food item (per 100 g) 

–.008 .01 0.003 0.002 

Average protein per food 

item (per 100 g) 

–.002 .88 0.010 6.11×10–6 

Average saturated fatty 

acids per food item (per 

100 g) 

.007 .31 0.007 2.70×10–4 

Average sodium per food 

item (per 100 g) 

–.005 .06 0.002 9.13×10–4 

Average sugar per food 

item (per 100 g) 

–.005 .35 0.005 2.29×10–4 

Average trans fatty acids 

per food item (per 100 g) 

–.002 .79 0.007 1.78×10–5 

Average unsaturated fatty 

acids per food item (per 

100 g) 

.002 .72 0.006 3.39×10–5 

Average vitamin A per 

food item (per 100 g) 

.004 .58 0.007 8.19×10–5 

Average vitamin C per 

food item (per 100 g) 

–5.53×10–4 .71 0.002 3.52×10–5 
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Average number of 

calories per healthy food 

item (per 100 g) 

9.58×10–4 .95 0.017 1.92×10–6 

Average number of 

calories per unhealthy 

food item (per 100 g) 

.007 .64 0.015 8.42×10–5 

Although I did not expect to see an association between living in a food desert and an 

increase in mentions of healthy foods with positive sentiment, I hypothesize that such an 

association might reflect aspirational tweets of individuals who long for healthy food that is not 

present in their neighborhood (for example, the positive sentiment does not reflect food 

consumption but rather a wish to increase accessibility). 

3.3.3. Hypothesis 2: Food Ingestion Language Among Twitter Users in a Census Tract Can Be 
Used to Infer Census Tract–Level Food Desert Status 

To test the hypothesis that food ingestion language found in tweets can be used to infer 

census tract–level food desert status, I used various machine learning methods to compare the 

performance of 4 classification models (Table 3.10). In this paper, I evaluated model 

performance by comparing each model’s area under the receiver operating characteristic curve 

(AUC) metric, which measures how well each model can distinguish a non–food desert census 

tract from a food desert census tract. I used this metric, instead of accuracy, for evaluating 

model performance because this metric is better suited to measure model performance on 

class-imbalanced data [80], as is the case with the imbalanced food desert classification 

outcome in our sample data (of the 3978 census tracts, 299, 7.52%, were food desert census 

tracts). Model 3, which included sentiment features related to food mentions, showed an 

improvement over the baseline model AUC, using the gradient boosting classification method, 
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by >7%. This was also the best performing model (AUC 0.823). Model 4, which included all 

Twitter-derived food-related features, showed an improvement over the baseline model AUC, 

using the logistic regression classification method, of nearly 19%. These results confirm 

hypothesis 2, suggesting that the best performing models involve the inclusion of Twitter-

derived food ingestion language. 

 

Table 3.10 Model performance. 

Method and modela AUCb 

Adaptive boosting 

 1 (baseline) 0.759 

 2 0.749 

 3 0.738 

 4 0.650 

 5  0.723 

Gradient boosting 

 1 (baseline) 0.766 

 2 0.797 

 3 0.823 

 4 0.777 

 5  0.699 

Logistic regression 

 1 (baseline) 0.682 

 2 0.720 

 3 0.777 

 4 0.809 

 5  0.663 
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Ensemble method 

 1 (baseline) 0.769 

 2 0.771 

 3 0.760 

 4 0.641 

 5  0.740 

aModel descriptions (refer to Table 1)—1: demographics and socioeconomic status only 

(baseline); 2: demographics and socioeconomic status+nutritional values; 3: demographics and 

socioeconomic status+Twitter mentions sentiment; 4: demographics and socioeconomic 

status+nutritional values+Twitter mentions sentiment; 5: demographics and socioeconomic 

status+statistically significant features. 
bAUC: area under the receiver operating characteristic curve. 

3.4. Discussion 

3.4.1. Principal Findings 

In this study, I sought to address two key hypotheses: (1) living in a food desert is 

associated with positive mentions of unhealthy foods, such as tweets that mention foods that 

are high in caloric content or low in vital nutrients such as fiber and calcium, and (2) food 

ingestion language among Twitter users in a census tract can be used to infer census tract–level 

food desert status. The study found significant associations between living in a food desert and 

tweeting about unhealthy foods, including foods high in cholesterol content or low in key 

nutrients such as potassium. I also found that supplementing classification models with 

features derived from food ingestion language found in tweets, such as positive sentiment 

toward mentions of healthy foods and fast-food restaurants, improves baseline models that 

only include demographic and SES features by up to 19%, with AUC scores >0.8. 
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3.4.2. Study Findings in Context 
Assessing and understanding the food environment in neighborhoods is key to 

addressing the issue of food insecurity in the United States. The USDA conducts the official 

identification of food deserts in the United States but this assessment is infrequent and the 

latest assessment from 2015 is outdated. Other methods such as GIS technology, surveys, and 

food store assessments, although effective, can be costly and time consuming. Although 

conducting assessments of food stores provides important insights into the food environment, 

this study suggests that perhaps residents of census tracts unknowingly provide important 

information regarding the food environment on Twitter through the food ingestion language 

found in tweets. Using social media data for food insecurity research allows researchers to 

examine food consumption in various regions, allowing a comparison of how food ingestion 

conversation differs between areas where residents have sufficient access to healthy foods and 

areas where residents do not have sufficient access to healthy foods. 

The findings of this study contribute to the literature on food insecurity in the United 

States by examining the potential effects of living in a food desert on food consumption using 

Twitter-derived food ingestion features as a proxy to examine food consumption. In this study, I 

found that food desert status is associated with not only the sentiment toward the types of 

foods mentioned in tweets but also the nutritional content of foods mentioned in tweets. More 

specifically, a census tract being classified as a food desert was associated with an increase in 

the average cholesterol concentration and a decrease in the average potassium concentration 

(per 100 g) per food item mentioned in tweets, as well as an increase in the proportion of 

tweets that mention unhealthy foods. A census tract classified as a food desert was also 
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associated with an increase in the proportion of tweets that mentioned healthy foods and fast-

food restaurants with positive sentiment. These findings support prior studies that also found 

associations between neighborhood characteristics, such as food desert status or fast-food 

density, and the healthiness of tweets in a census tract [14]. These findings also echo the 

findings in the study by Gore et al [69], which revealed that the prevalence of tweets containing 

terms related to fruit and vegetables was correlated with lower obesity rates in cities.  

This study makes further contributions by examining the predictive ability of food 

ingestion language derived from tweets on census tract food desert status. This builds upon a 

similar study that used Instagram posts to understand dietary choices and nutritional 

challenges in food deserts [64]. In this study, I investigated to what extent ingestion language 

extracted from Instagram posts was able to infer a census tract’s food desert status. This study 

yielded a model with high accuracy (>80%). 

Other similar studies that sought to examine food consumption using tweets across 

various geographic regions suggest that many of the food-related tweets in an area may be an 

artifact of visitors to the area, not residents. For example, a study conducted by Mitchell et al 

[81] showed that travel destinations such as Hawaii have an abundance of tweets with food-

related terms. Similarly, the World Happiness Report [82]  showed that a larger number of 

food-related words in tweets were used by users who regularly travel large distances, such as 

tourists. Although these studies suggest that the tweets I collected may have been from 

residents or from people who were simply visiting an area, in our study, I decided to consider all 

tweets under the premise that tweets from nonresidents can also reflect their food 

consumption experiences when they are in that neighborhood, which still provides some 
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information regarding the local food environment. It is also important to note that because the 

data collection period for this study occurred during the height of the COVID-19 pandemic 

(particularly during travel restrictions and quarantine mandates), this might have allowed us to 

better capture local movement and tweets from actual residents in these areas because people 

were being encouraged to stay closer to home and not travel to other areas [83]. 

Developing an algorithm that predicts food deserts by extracting information from 

tweets allows researchers to monitor food insecurity more frequently than current methods 

allow. The use of tweets for research related to food insecurity provides researchers with more 

frequently updated information, thereby addressing the “lag between capturing information 

about newly opened and recently closed food retail businesses” [64]. This framework also has 

implications for policy making and advocacy. On the basis of the results presented in this paper, 

I recommend the use of similar algorithms by public health officials to encourage the allocation 

of food resources to census tracts that have been identified as food deserts using the algorithm, 

especially if these neighborhoods are not currently identified as food deserts according to the 

USDA’s classifications. Public health officials may also leverage this framework to advocate for 

policy interventions that either prevent food deserts from emerging or increase access to 

healthy foods in neighborhoods identified as food deserts using the algorithm, minimize the 

impacts of limited food access, support data-driven decision-making, and encourage grocery 

store chains to expand into neighborhoods based on need rather than potential profit.  

3.4.3. Limitations 
Although prior research has proved social media to be a rich data source, it does have 

some limitations. The ability to pull millions of tweets from a single data source is an attractive 
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characteristic of Twitter data, but a study conducted by Pew Research Center showed that 

Twitter users are more likely to be younger than the general population (29% of Twitter users 

are aged 18 to 29 years compared with 21% of the general population in the United States), 

more highly educated (42% of Twitter users are college graduates compared with 31% of the 

general population in the United States), have higher incomes (41% of Twitter users earn at 

least US $75,000 per year compared with 32% of the general population in the United States), 

and are more likely to consider themselves Democrats (36% of Twitter users consider 

themselves Democrats compared with 30% of the general population in the United States) [84]. 

These demographics raise some concerns in terms of bias in study results and suggest limited 

ability to generalize results to the larger population.  

Adding to the lack of representation among Twitter users is the disparity in Twitter 

activity among Twitter users. The median number of tweets for Twitter users is only 2 tweets 

per month. Just 10% of Twitter users account for 80% of the tweets across users in the United 

States [84]. In studies that use Twitter data, this disparity suggests that a large sample of tweets 

may only reflect, in reality, a much smaller sample of individuals.  

Tweets were collected using the Twitter streaming API, which is limited to a random 

sample of 1% of all tweets sent by Twitter users at any given time. Of this limited sample of 

tweets, studies have shown that only approximately 1% to 2% of the tweets from the Twitter 

streaming API include geolocation information [14]. Because of the nature of this study, our 

analysis required geolocated tweets, significantly reducing the number of tweets allowed in our 

sample. As a result, I excluded many census tracts in the 25 cities from our sample because of a 

lack of geolocated tweets that were also food related. In addition, census tracts that did contain 
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geolocated food-related tweets may have had only a small number of tweets and these tweets 

may not be representative of the tweets of all Twitter users who reside in a particular census 

tract. As our analysis is limited to geolocated tweets, there is also the potential for tweets 

without location information to differ significantly from tweets with geolocation information, 

which may suggest biased results because of unknown underlying factors.  

Despite these limitations, the results of this study confirm both our hypotheses, 

demonstrating that food ingestion language found in tweets provides a signal that 

differentiates food deserts from non–food deserts. 

3.4.4. Conclusions 
The issue of food insecurity is an important public health issue because of the adverse 

health outcomes and underlying racial and economic disparities that are associated with 

insufficient access to healthy foods [64]. Social media data have been increasingly used to 

answer questions related to health and well-being. Prior research has used various data sources 

for identifying regions classified as food deserts [64], but this study suggests that perhaps the 

individuals in these regions unknowingly provide their own accounts of food consumption and 

food insecurity on social media. In this study, I demonstrated that food desert status is 

associated with food ingestion language found on Twitter and that food ingestion language can 

be used to predict and assess the food environment in American neighborhoods.  
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Chapter 4 - Study #2: Validating social media as a data source: 
Public perceptions about COVID-19 vaccines in tweets compared to 

traditional surveys  

4.1. Introduction 

4.1.1. Background 
The implementation of successful COVID-19 vaccine rollout is essential for COVID-19 to 

remain under control globally. Although vaccines are essential in the global battle against 

COVID-19, vaccine hesitancy continues to be a barrier for effective and consistent vaccine 

rollout programs. According to the US Census Bureau’s Household Pulse Survey, individuals 

who reported being hesitant about receiving a COVID-19 vaccine cited concerns about side 

effects, safety, and lack of trust in the vaccine and/or the government [85]. Although the 

number of vaccine hesitant individuals continues to decline, the fact that vaccine hesitancy still 

exists interferes with infection control by vaccination. 

Vaccine hesitancy has been fueled in part by the spread of vaccine misinformation both 

in the media and online. In fact, the COVID-19 vaccine discussion became a popular topic 

among social media users, with many individuals expressing their concerns about taking the 

vaccine on social media platforms [86]. Amidst the new normal of self-quarantining and 

lockdown, Twitter quickly emerged as an important means of COVID-19 communications and 

discussion [87]. This is in part due to the real-time availability of social media messaging, 

compared to traditional news reporting methods [88]. Twitter users oftentimes take to the 

platform not only to announce their own experiences and opinions about the pandemic, but 

they also see Twitter as a source for up-to-date information about the pandemic [89].  
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The COVID-19 vaccine conversation on social media platforms has been both beneficial 

and detrimental to vaccination efforts across the world. Although the exact effect of social 

media on this unprecedented pandemic is difficult to quantify, there has been a constant battle 

between facts and misinformation, trust and fearmongering, and hope and anger [90]. 

Research has shown that social media use plays a role in the low acceptance of vaccines [91], 

[92]. Therefore, studying the public COVID-19 vaccine–related discussion on social media can 

help researchers  better understand attitudes related to the vaccine [91]. Traditionally, surveys 

are conducted to understand attitudes related to public health, but the information researchers 

aim to extract from surveys could also potentially be retrieved from social media.  

While there are several studies that examine COVID-19 vaccine attitudes through 

surveys and social media, to my knowledge, there are no studies that evaluate the ability for 

Twitter data, a newer data source, to predict the attitudes reflected in traditionally collected 

surveys, such as the Household Pulse Survey (HPS). In recent years, researchers have looked to 

social media as a data source, citing the availability of more readily available data and no or 

low-cost data collection efforts [93]. Traditional paper surveys come with high costs to 

administer, and even though online surveys eliminate costs of postage, paper, printing, and 

data entry, these newer online survey services may still cost up to thousands of dollars for one 

survey [94]. Although relatively inexpensive compared to traditional surveys, online surveys are 

not always cost-effective [94]. Evaluating the ability for information found in traditional surveys 

to be predicted by information extracted from social media would suggests that researchers 

may use this more cost-effective data source to provide us with similar rich information often 

seen in traditional surveys, or, if saving money comes at the cost of losing rich data.  
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4.1.2. Study Overview 
The main objective of this study is to examine if aggregate attitudes extracted from 

social media can predict vaccine attitudes collected via surveys. I hypothesize that social media 

data may contain attitudes similar to those found in traditional surveys, with the added benefit 

of more readily available data and no or low-cost data collection efforts. Specifically, I 

hypothesize that there is a direct, positive relationship between (1) positive sentiments and 

emotions towards COVID-19 vaccines found in Twitter data and the Household Pulse Survey, 

and (2) negative sentiments and emotions towards COVID-19 vaccines found in Twitter data 

and the Household Pulse Survey. 

4.2. Materials and Methods 

4.2.1. Data Collection and Preprocessing 

4.2.1.1. Household Pulse Survey Data 
In April 2020, the U.S. Census Bureau began releasing a bi-weekly, cross-sectional 

nationally representative survey, the Household Pulse Survey, in an effort to assess the social 

and economic impacts of the COVID-19 pandemic on American households [95]. The data from 

this survey is made publicly available in near real-time, with the purpose of informing federal 

and state response and recovery planning [96]. On January 6, 2021, the US Census Bureau 

added COVID-19 vaccine-related questions to the Household Pulse Survey with the goal of 

understanding the factors contributing to vaccine hesitancy and compliance among Americans 

[97] [Table 4.1]. These questions assessed COVID-19 vaccine receipt, whether respondents 

received or plan to receive all required doses, intentions to get vaccinated, and reasons why 

respondents refused to get vaccinated.  
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Table 4.1 COVID-19 Vaccine-related Household Pulse Survey questions. 

Condition Question Responses 

Age 18 years+ Have you received a COVID-19 
vaccine? 

1) Yes 
2) No 

Answered "Yes" to "Have you 
received a COVID-19 vaccine?" 

Did you receive (or do you plan to 
receive) all required doses?  

1) Yes 
2) No 

Answered "No" to "Have you 
received a COVID-19 vaccine?" 

Once a vaccine to prevent COVID-19 
is available to you, would you… 

1) Definitely get a vaccine 
2) Probably get a vaccine 
3) Be unsure about getting a 
vaccine 
4) Probably NOT get a 
vaccine 
5) Definitely NOT get a 
vaccine 

 

 
The measures of vaccine compliance and hesitancy were assessed for each survey wave 

overall and by the metropolitan areas in Table 4.2. For the purposes of this analysis, individuals 

who answered “Yes” to “Have you received a COVID-19 vaccine?” were considered vaccine 

compliant and individuals who answered “No” to “Have you received a COVID-19 vaccine?” and 

answered they would “Probably get a vaccine”, “Be unsure about getting a vaccine”, “Probably 

NOT get a vaccine”, or “Definitely NOT get a vaccine” once available were considered vaccine 

hesitant. 
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Table 4.2 Targeted metropolitan areas for data collection, January - May 2021. 

New York-Newark-Jersey City, NY-NJ-PA Metro Area 

 Los Angeles-Long Beach-Anaheim, CA Metro Area 

 Chicago-Naperville-Elgin, IL-IN-WI Metro Area 

 Dallas-Fort Worth-Arlington, TX Metro Area 

 Houston-The Woodlands-Sugar Land, TX Metro Area 

 Washington-Arlington-Alexandria, DC-VA-MD-WV Metro Area 

 Miami-Fort Lauderdale-Pompano Beach, FL Metro Area 

 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD Metro Area 

 Atlanta-Sandy Springs-Alpharetta, GA Metro Area 

 Phoenix-Mesa-Chandler, AZ Metro Area 

 Boston-Cambridge-Newton, MA-NH Metro Area 

 San Francisco-Oakland-Berkeley, CA Metro Area 

 Riverside-San Bernardino-Ontario, CA Metro Area 

 Detroit-Warren-Dearborn, MI Metro Area 

 Seattle-Tacoma-Bellevue, WA Metro Area 

 
For this study, I used the Household Pulse Survey microdata from Week 22 to Week 30, which 

were collected between January 6th and May 25th, 2021 [Table 4.3].  
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Table 4.3 Household Pulse Survey data collection schedule. 

 
Collection Dates Week 

January 6 – January 19, 2021 22 

January 20 – February 2, 2021 23 

February 3 – February 16, 2021 24 

February 17 – March 2, 2021 25 

March 3 – March 16, 2021 26 

March 17 – March 30, 2021 27 

April 14 – April 27, 2021 28 

April 28 – May 11, 2021 29 

May 12 – May 25, 2021 30 

 

4.2.1.2. Twitter Data 
To align with the Household Pulse Survey data collection period outlined in Table 4.3, 

the Twitter Streaming Application Programming Interface (API), which provides access to a 

random sample of 1% of publicly available tweets, was used to collect tweets from the 

metropolitan areas represented in the Household Pulse Survey [Table 4.2] from January 2021 to 

May 2021. All tweets had “place” information (usually city and state). The place information 

found in tweets was used to determine the metropolitan area associated with each tweet. 

Next, to extract tweets related to COVID-19 vaccines, tweets were further filtered by matching 

variations of vaccine-related keywords, such as vaccine, pfizer, moderna, johnson & johnson, 

and dose. The complete keyword list can be found in Appendix B. The tweets sample was 

further preprocessed to minimize “noise” resulting from tweets that matched our vaccine-

related keywords but did not necessarily reflect the thoughts and opinions of individual Twitter 
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users. For example, companies often promote job postings and advertisements on Twitter using 

targeted hashtags in hopes of reaching their target audience. To prevent these tweets from 

adding noise to the sample, tweets related to job postings and advertisements were removed 

by excluding tweets with hashtags and keywords such as “#jobs”, “#hiring”, and “#ad”.  

4.2.1.3. Sentiment and Emotion Analysis of Tweets 
To capture the attitudes found in COVID-19 vaccine-related tweets, a sentiment and 

emotion analysis of all tweets was conducted using the NRC lexicon from the Syuzhet package 

in R [74]. The NRC lexicon, developed by Saif Mohammad, contains a list of manually labeled 

English words and their associations with negative and positive sentiments and common human 

emotions, such as trust, fear, sadness, surprise, and disgust [98]. The Syuzhet package applies 

the NRC lexicon by independently evaluating and rating each word or expression within a tweet 

[99]. The get_nrc_sentiment function was applied to all tweets to calculate the valence of eight 

different emotions (fear, joy, anticipation, anger, disgust, sadness, surprise, trust), along with 

overall positive and negative sentiment. To assess the accuracy of the sentiment classifier, a 

random sample of 1000 tweets was selected for manual classification by one individual as 

having positive, negative, or neutral sentiment. Among the 1000 tweets in the random sample, 

734 (73.4%) were accurately classified by the automated sentiment classifier. Due to the high 

volume of tweets in the study sample, tweets were not manually reclassified.  

The percentages of the eight emotions, along with the percentage of positive, neutral, 

and negative sentiments were calculated at the metropolitan level. For the purposes of this 

analysis, I used the proportion of tweets with positive sentiment and positive emotions towards 

vaccines as a proxy to capture vaccine compliance among Twitter users, and the proportion of 
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tweets with negative sentiment and negative emotions towards vaccines were used as a proxy 

to capture vaccine hesitancy among Twitter users. 

In order to evaluate any potential differences in sentiments and emotions between 

tweets with location information compared to tweets without location information, a random 

sample of 1000 COVID-19 vaccine tweets without location information was extracted from a 

publicly available dataset containing COVID-19-related tweets [100]. A sentiment and emotion 

analysis was also conducted on this random sample. A two-proportions Z-test, which is a 

statistical hypothesis test used to determine whether two proportions are different from each 

other, was conducted to determine any significant differences in sentiments between tweets 

with location information compared to tweets without location information. 

4.2.2. Data Analysis 
While there may be several factors contributing to an individual's stance on the COVID-

19 vaccine, I examined the differences in COVID-19 vaccine stance by geographic location for 

each data source and compared the results to determine if the two data sources yielded similar 

results. This analysis examined if vaccine compliance or vaccine hesitancy differs across 

geographic regions, and if so, whether these differences are seen in both data sources. Pairwise 

z-tests for proportions were performed to test the null hypotheses of no difference in COVID-19 

vaccine stance across metropolitan areas, with a 0.05 significance level (α = 0.05). All p-values 

were adjusted using the Holm method [101]. To determine whether COVID-19 vaccine attitudes 

on Twitter can predict the COVID-19 vaccine perceptions that are ultimately expressed in the 

HPS, two linear regression models were constructed using base R (Table 4.4). In Model 1, the 

predictor variables were each of the five positive Twitter-derived sentiment and emotion 
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features, and the outcome variable was the proportion of vaccine compliant HPS respondents. 

In Model 2, the predictor variables were each of the six negative Twitter-derived sentiment and 

emotion features, and the outcome variable was the proportion of vaccine hesitant HPS 

respondents. Since anticipation can be perceived as both positive and negative, this emotion 

was included as a feature in both models.
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Table 4.4 Regression models evaluating the relationship between Twitter sentiments/emotions 
and HPS vaccine hesitancy and compliance. 

Model Features Outcome 

Model 1 % Positive % vaccine compliant HPS respondents 

% Joy 

% Surprise 

% Trust 

% Anticipation 

Model 2 % Negative % vaccine hesitant HPS respondents 

% Anger 

% Disgust 

% Sadness 

% Fear 

% Anticipation 

 

4.2.3. Ethics Approval 
The University of Maryland College Park institutional review board has determined that 

this project does not meet the definition of human participant research under the purview of 

the institutional review board according to federal regulations. 

4.3. Results 

4.3.1. Descriptive statistics 
There was a total of 92,453 tweets from 32,645 users across the 14 metropolitan areas 

in this study [Table 4.5]. The Los Angeles-Long Beach-Anaheim metropolitan area had the 

largest representation of tweets (21,500/92,453, 23%), while the New York-Newark-New Jersey 
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metropolitan area had the largest representation of users (18,400/32,645, 56%). The maximum 

number of tweets by a single individual was 274 (from a user in the New York-Newark-New 

Jersey metropolitan area). There was a total of 240,242 respondents to the Household Pulse 

Survey across the 14 metropolitan areas and nine waves in this study, with the majority of 

respondents in the Washington-Arlington-Alexandria metropolitan area [Table 4.6]. 

Table 4.5 Number of tweets (N=92,453) and users (N=32,645) by metropolitan area, January – 
May 2021. 

Metropolitan Area Number of tweets, n (%) Number of users, n (%) 

Atlanta-Sandy Springs-Alpharetta, GA 4234 (4.58) 1542 (4.72) 
Boston-Cambridge-Newton, MA-NH 3019 (3.27) 1298 (3.98) 
Chicago-Naperville-Elgin, IL-IN-WI 5821 (6.3) 2561 (7.84) 
Dallas-Fort Worth-Arlington, TX 6203 (6.71) 2299 (7.04) 
Detroit-Warren-Dearborn-MI 1082 (1.17) 518 (1.59) 
Houston-The Woodlands-Sugar Land, TX 5125 (5.54) 2421 (7.42) 
Los Angeles-Long Beach-Anaheim, CA 21500 (23.26) 5429 (16.63) 
Miami-Fort Lauderdale-Pompano Beach, FL 1954 (2.11) 849 (2.6) 
New York-Newark-Jersey City, NY-NJ-PA 18400 (19.9) 7259 (22.24) 
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 3652 (3.95) 1406 (4.31) 
Phoenix-Mesa-Chandler, AZ 4778 (5.17) 1573 (4.82) 
San Francisco-Oakland-Berkeley, CA 6376 (6.9) 2008 (6.15) 
Seattle-Tacoma-Bellevue, WA 3089 (3.34) 1333 (4.08) 
Washington-Arlington-Alexandria, DC-VA-MD-WV 7220 (7.81) 2419 (7.41) 
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Table 4.6 Number of survey respondents (N=240,242) by metropolitan area, January – May 
2021. 

Metropolitan Area Number of respondents, n (%) 
Atlanta-Sandy Springs-Alpharetta, GA 12611 (5.25) 
Boston-Cambridge-Newton, MA-NH 20078 (8.36) 
Chicago-Naperville-Elgin, IL-IN-WI 16044 (6.68) 
Dallas-Fort Worth-Arlington, TX 15859 (6.6) 
Detroit-Warren-Dearborn-MI 12149 (5.06) 
Houston-The Woodlands-Sugar Land, TX 14179 (5.9) 
Los Angeles-Long Beach-Anaheim, CA 17006 (7.08) 
Miami-Fort Lauderdale-Pompano Beach, FL 11641 (4.85) 
New York-Newark-Jersey City, NY-NJ-PA 19730 (8.21) 
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 20240 (8.42) 
Phoenix-Mesa-Chandler, AZ 14027 (5.84) 
San Francisco-Oakland-Berkeley, CA 17787 (7.4) 
Seattle-Tacoma-Bellevue, WA 18615 (7.75) 
Washington-Arlington-Alexandria, DC-VA-MD-WV 30276 (12.6) 

4.3.2. Attitudes towards COVID-19 vaccines in Twitter Data 
A sentiment analysis classified most tweets across all metropolitan areas as having 

positive sentiment [Figure 4.1]. The Washington-Arlington-Alexandria metropolitan area had 

the largest proportion of tweets with positive sentiment (58.1%), while the Miami-Ft. 

Lauderdale-Pompano Beach metropolitan area had the lowest proportion of tweets with 

positive sentiment (50.9%). Tweets with negative sentiment held the smallest proportions 

across all metropolitan areas. The Los Angeles-Long Beach-Anaheim metropolitan area had the 

largest proportion of tweets with negative sentiment (16.4%), while the Miami-Ft. Lauderdale-

Pompano Beach metropolitan area had the lowest proportion of tweets with negative 

sentiment (12.9%). Tweets with neutral sentiment represented between ~28% and 36% of 

tweets across all metropolitan areas. Examples of tweets expressing positive, neutral, and 

negative sentiments are displayed in Table 4.7.
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Figure 4.1 Distribution of sentiments found in COVID-19 vaccine tweets, by metropolitan area, January – May 2021 (N=92,453). 
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Figure 4.2 Distribution of sentiments found in COVID-19 vaccine tweets without specific geolocation information, January – May 2021 
(N=1,000). 
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Table 4.7 Examples of tweets expressing positive, negative, and neutral sentiment about COVID-
19 vaccines.

 

The emotion analysis also revealed trends towards an overall positive sentiment, 

showing trust as the predominantly expressed emotion in COVID-19 vaccine tweets across all 

metropolitan areas [Figure 4.3]. The most perceived negative emotions across all metropolitan 

areas were anticipation and fear. The least perceived positive emotions were joy and surprise, 

while the least perceived negative emotions were anger and disgust. 

In order to evaluate any potential differences in sentiments and emotions between 

tweets with location information compared to tweets without location information, the 

proportions of sentiments and emotions in the study sample was compared to the random 

sample of 1000 COVID-19 vaccine tweets without location information [Figure 4.2 & Figure 4.4]. 

Similar to tweets with location information, overall sentiment was mostly positive in the 

random sample of 1000 tweets without location information across the US. In this sample, trust 

was also the predominantly expressed emotion, with the most perceived negative emotions 

being anticipation and fear. The least perceived positive emotions were joy and surprise, while 
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the least perceived negative emotions in this sample were anger and disgust. A two-

proportions Z-test confirmed that the proportions of positive, neutral, and negative tweets with 

location information was not significantly different from the proportions of positive, neutral, 

and negative tweets without location information (p-value = 0.2356, 0.4581, and 0.5145, 

respectively). 
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Figure 4.3 Distribution of emotions found in COVID-19 vaccine tweets, by metropolitan area, January – May 2021 (N=92,453). 
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Figure 4.4 Distribution of emotions found in COVID-19 vaccine tweets without specific geolocation information, January – May 2021 
(N=1,000). 
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4.3.3. Attitudes towards COVID-19 vaccines in Household Pulse Survey Data 
Most survey respondents across all metropolitan areas indicated they had received a 

COVID-19 vaccination, ranging from 50.2% of survey respondents in the Phoenix-Mesa-

Chandler metro area to 56.4% of survey respondents in the San Francisco-Oakland-Berkeley 

metro area [Figure 4.5]. Among respondents who indicated they had received a COVID-19 

vaccination, the majority also indicated that they received or planned to receive all required 

doses, except in the Atlanta-Sandy Springs-Alpharetta metropolitan and Phoenix-Mesa-

Chandler metropolitan areas (48.4% and 48.3%, respectively) [Figure 4.6]. Among respondents 

who indicated they had not received a COVID-19 vaccination, the majority indicated that they 

probably or definitely would get vaccinated, ranging from 48% of survey respondents in the 

Phoenix-Mesa-Chandler metro area to 75.2% of survey respondents in the San Francisco-

Oakland-Berkeley metro area [Figure 4.7].
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Figure 4.5 Distribution of HPS respondents who reported receiving a COVID-19 vaccination, January – May 2021 (N=240,242). 
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Figure 4.6 Distribution of HPS respondents who reported receiving all required doses of the COVID-19 vaccination, January – May 
2021 (N=240,242). 
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Figure 4.7 Distribution of HPS respondents who reported being vaccine hesitant or vaccine compliant, January – May 2021 
(N=240,242). 
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4.3.4 Public Attitudes towards COVID-19 vaccines: Comparing Twitter data to Household 
Pulse Survey data 

4.3.4.1 Vaccine Compliant Measures 
To determine how Twitter data compares to surveys in terms of the public attitudes 

they reveal towards COVID-19 vaccines, I compared the sentiments and emotions found in 

tweets to the attitudes towards COVID-19 vaccines expressed in the Household Pulse Survey. 

Figure 4.8 illustrates the proportion of positive sentiments & positive emotions found in tweets, 

compared to the proportion of Household Pulse Survey respondents that report being vaccine 

compliant. In this comparison, I used positive emotions & positive sentiments expressed in 

tweets as a proxy to measure vaccine compliance among Twitter users. Sentiments & emotions 

extracted from tweets are shaded blue, while vaccine compliant measures from Household 

Pulse Survey data are shaded red.  

Across all metropolitan areas, the percentage of COVID-19 vaccine tweets expressing 

positive sentiment was closely aligned with the percentage of survey respondents that 

indicated they have received a COVID-19 vaccine; received (or plan to receive) all required 

doses of the COVID-19 vaccine; and “definitely” or “probably” would get a vaccine once a 

vaccine to prevent COVID-19 was available to them. The San Francisco-Oakland-Berkeley 

metropolitan area showed the closest alignment between positive COVID-19 vaccine 

perceptions across the two different data sources, with a difference of 0.1 percentage points 

between the percentage of COVID-19 vaccine tweets expressing positive sentiment (56.3%) and 

the percentage of survey respondents that indicated they have received a COVID-19 vaccine 

(56.4%). The Dallas-Fort Worth-Arlington metropolitan area also showed close alignment 
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between positive COVID-19 vaccine perceptions across the two different data sources, with a 

difference of 0.2 percentage points between the percentage of COVID-19 vaccine tweets 

expressing positive sentiment (52.6%) and the percentage of survey respondents that indicated 

they have received a COVID-19 vaccine (52.8%).  
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Figure 4.8 Comparison of vaccine acceptance in Twitter data versus HPS data. Sentiments & 
emotions extracted from COVID-19 vaccine tweets are shaded blue, while measures from HPS 

data are shaded red. 
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The percentage of COVID-19 vaccine tweets expressing trust was also closely aligned 

with the percentage of survey respondents that indicated they received (or plan to receive) all 

required doses of the COVID-19 vaccine, or “definitely” or “probably” would get a vaccine once 

a vaccine to prevent COVID-19 was available to them. The Philadelphia-Camden-Wilmington 

metropolitan area showed a difference of only 2.9 percentage points between the percentage 

of COVID-19 vaccine tweets expressing trust (47.5%) and the percentage of survey respondents 

that indicated they received (or plan to receive) all required doses of the COVID-19 vaccine 

(50.4%).  The Boston-Cambridge-Newton metropolitan area showed a difference of only 2.7 

percentage points between the percentage of COVID-19 vaccine tweets expressing trust 

(43.1%) and the percentage of survey respondents that indicated they “definitely” or 

“probably” would get a vaccine once a vaccine to prevent COVID-19 was available to them 

(40.4%). Other positive emotions, such as joy and surprise, did not appear to align with any 

measures of COVID-19 vaccine compliance in the Household Pulse Survey data. 

The results of the proportions tests revealed alignment between the significant 

differences in the Twitter measure of vaccine compliance (positive sentiment) and the percent 

of Household Pulse Survey respondents that indicated that they received a COVID-19 vaccine, 

across the same metropolitan areas, in some cases. For example, both the proportion of 

Household Pulse Survey respondents that indicated that they received a COVID-19 vaccine and 

the proportion of tweets with positive sentiment were significantly higher in the San Francisco-

Oakland-Berkeley, CA metropolitan area (56.4% and 56.3%, respectively) compared to the 

Dallas-Fort Worth-Arlington, TX (52.8% and 52.6%, respectively), Los Angeles-Long Beach-

Anaheim, CA (53% and 52.6%, respectively), and Miami-Fort Lauderdale-Pompano Beach, FL 
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metropolitan areas  (52.9% and 50.9%, respectively). Similarly, both the proportion of  

Household Pulse Survey respondents that indicated that they received a COVID-19 vaccine and 

the proportion of tweets with positive sentiment were significantly higher in the Washington-

Arlington-Alexandria Metro Area (55.3% and 58.1%, respectively) compared to the Dallas-Fort 

Worth-Arlington, TX (52.8% and 52.6%, respectively), Los Angeles-Long Beach-Anaheim, CA 

(53% and 52.6%, respectively), Miami-Fort Lauderdale-Pompano Beach, FL (52.9% and 50.9%, 

respectively), New York-Newark-Jersey City, NY-NJ-PA (52.5% and 55.3%, respectively), and 

Phoenix-Mesa-Chandler, AZ metropolitan areas (50.2% and 53.7%, respectively). 

4.3.4.2 Vaccine Hesitant Measures 
Figure 4.9 illustrates the proportion of negative sentiments & negative emotions found 

in tweets, compared to the proportion of Household Pulse Survey respondents that reported 

being anti-vaccine or vaccine hesitant. In this comparison, I used negative emotions & negative 

sentiments expressed in tweets as a proxy to measure vaccine hesitancy among Twitter users. 

Sentiments & emotions extracted from Tweets are shaded blue, while vaccine hesitant 

measures from Pulse Survey data are shaded red.  

Across some metropolitan areas, the percentage of COVID-19 vaccine tweets expressing 

negative sentiment was closely aligned with the percentage of survey respondents that 

indicated they would “definitely NOT” or “probably NOT” get a vaccine once a vaccine to 

prevent COVID-19 was available to them. The Phoenix-Mesa-Chandler & Atlanta-Sandy Springs-

Marietta metropolitan areas showed the closest alignment between negative COVID-19 vaccine 

perceptions across the two different data sources, with a difference of 1.5 and 2 percentage 

points, respectively, between the percentage of COVID-19 vaccine tweets expressing negative 
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sentiment (15.3% & 14.5%, respectively) and the percentage of survey respondents that 

indicated they would “definitely NOT” or “probably NOT” get a vaccine once a vaccine to 

prevent COVID-19 was available to them (13.8% & 12.5%, respectively). Other negative 

emotions, such as anticipation, fear, sadness, anger, and disgust, did not appear to align with 

any measures of COVID-19 vaccine hesitancy in the Household Pulse Survey data.
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Figure 4.9 Comparison of vaccine hesitancy in Twitter data versus HPS data. Sentiments & 
emotions extracted from tweets are shaded blue, while measures from HPS data are shaded 

red. 
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The results of the proportions tests revealed very little alignment between the 

significant differences of the Twitter measure of vaccine hesitancy (negative sentiment) and the 

percentage of Household Pulse Survey respondents that were vaccine-hesitant (i.e. indicated 

that they probably or definitely would not get a COVID-19 vaccine once it became available to 

them). Both the proportion of Household Pulse Survey respondents that were vaccine hesitant 

and the proportion of tweets with negative sentiment were significantly lower in the 

Washington-Arlington-Alexandria Metro Area (5.1% and 13.7%, respectively) compared to the 

Dallas-Fort Worth-Arlington, TX Metro Area (11.6% and 16.1%, respectively) and Los Angeles-

Long Beach-Anaheim, CA Metro Area (7.3% and 16.4%, respectively). 

4.3.5. Predicting HPS vaccine attitudes using Twitter-based attitudes 
The Model 1 regression analysis revealed significant associations between the 

percentage of vaccine compliant HPS respondents and the percentage of tweets expressing 

positive sentiment, joy, trust, and anticipation [Table 4.8]. The value of the coefficient of 

determination (R-squared) for the vaccine compliant model (Model 1) was 61.17%. This means 

approximately 61% of the variability in the percentage of vaccine compliant HPS respondents 

(dependent variable) was explained by the independent variables (percentage of tweets 

expressing positive sentiment, joy, surprise, trust, and anticipation) in the multiple linear 

regression model, which suggests we can predict fairly well vaccine compliance in the HPS using 

positive sentiments and emotions found on Twitter. The results show that an increase in the 

percentage of tweets expressing positive sentiment or anticipation (both P<0.05) is associated 

with an increase in the percentage of vaccine compliant HPS respondents. Contrastingly, an 
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increase in the percentage of tweets expressing joy or trust (P=.01 and P<0.05, respectively) is 

associated with a decrease in the percentage of vaccine compliant HPS respondents.  

The Model 2 regression analysis revealed significant associations between the 

percentage of vaccine hesitant HPS respondents and the percentage of tweets expressing 

negative sentiment, anger, and anticipation. The R-squared value for the vaccine hesitant 

model (Model 2) was higher than the vaccine compliant model, at 72.16%. The independent 

variables (percentage of tweets expressing negative sentiment, anger, disgust, sadness, fear, 

and anticipation) in the multiple linear regression model explained approximately 72% of the 

variability in the percentage of HPS respondents that were vaccine hesitant, which suggests we 

can predict fairly well vaccine compliance in the HPS using negative sentiments and emotions 

found on Twitter. The results show that an increase in the percentage of tweets expressing 

anticipation (P<0.05) is associated with an increase in the percentage of vaccine hesitant HPS 

respondents. Contrastingly, an increase in the percentage of tweets expressing negative 

sentiment or anger (both P<0.05) is associated with a decrease in the percentage of vaccine 

hesitant HPS respondents.  

Table 4.8 Linear Regression Model Results. Statically significant results (alpha = 0.05) are 
marked by an asterisk (*). 

Model Features β coefficient P-Value Standard Error R-squared 

Model 1 % Positive 3.4221 5.46e-15 * 0.3759 61.17% 

% Joy -1.8232 0.011792 * 0.7116 

% Surprise -0.5250 0.362716     0.5743 

% Trust -1.3539 0.000357 * 0.3671  

% Anticipation 2.8030 9.87e-07 * 0.5396 
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Model 2 % Negative -0.36785 9.71e-05 * 0.09079 72.16% 

% Anger -0.33164 0.000407 * 0.09083 

% Disgust 0.09839 0.332028 0.10096 

% Sadness 0.16890 0.099782 0.10172 

% Fear 0.08012 0.400713 0.09496 

% Anticipation 0.26032 1.02e-05 * 0.05616 

4.4. Discussion 

4.4.1. Principal Findings 

In this study, I sought out to validate social media as a data source by comparing the 

sentiments and emotions found in COVID-19 vaccine tweets to those expressed in the Census 

Bureau’s Household Pulse Survey. A comparison of the public perceptions of COVID-19 vaccines 

found in tweets to those reflected in the Household Pulse Survey across 14 metropolitan areas 

in the United States revealed similar proportions of vaccine compliant sentiments in tweets and 

among survey respondents. Additionally, pairwise proportion tests for differences in vaccine 

compliant measures in tweets and the Household Pulse Survey revealed similar statistically 

significant differences. This study also examined whether the sentiments and emotions found in 

COVID-19 vaccine tweets can predict the vaccine hesitancy and compliance expressed in the 

Census Bureau’s Household Pulse Survey. A linear regression analysis showed significant 

relationships between (1) the percentage of vaccine compliant HPS respondents and the 

percentage of tweets expressing positive sentiment, joy, trust, and anticipation; and (2) the 

percentage of vaccine hesitant HPS respondents and the percentage of tweets expressing 

negative sentiment, anger, and anticipation. 
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4.4.2. Study Findings in Context 
The value of the coefficient of determination (R-squared) for both the vaccine compliant 

model (Model 1 – 61.17%) and vaccine hesitant model (Model 2 – 72.16%) suggests that 

vaccine perceptions in the HPS can be predicted fairly well using sentiments and emotions 

found on Twitter. The main objective of this study was to examine if aggregate attitudes 

extracted from social media can predict vaccine attitudes collected via surveys – more 

specifically, I hypothesized that there is a direct, positive relationship between (1) positive 

sentiments found in Twitter data and the HPS survey, and (2) negative sentiments found in 

Twitter data and the HPS survey.  

The results of the linear regression revealed – as hypothesized – significant relationships 

between (1) the percentage of pro-vaccine HPS respondents and the percentage of tweets 

expressing positive sentiment, joy, trust, and anticipation; and (2) the percentage of anti-

vaccine HPS respondents and the percentage of tweets expressing negative sentiment, anger, 

and anticipation. However, the direction of some of the relationships revealed in the linear 

regression models is not what I would expect. For example, I would expect to see a positive 

relationship between the positive sentiments and emotions on Twitter and vaccine compliance 

in the HPS, as suggested in a previous study that showed a positive relationship between 

positive sentiment scores in COVID-19 vaccine-related tweets and an increase in vaccination 

rates [102]. However, the regression model revealed a significant inverse relationship between 

the vaccine compliant measure in the HPS and the percentage of tweets expressing joy or trust. 

These findings might be indicative of individuals who are vaccine compliant and express these 

positive sentiments on Twitter, but have not received the vaccine just yet, for various reasons. 
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For example, data collection for this study started in early January 2021, but vaccine eligibility 

for adults in the United States was not expanded until mid-April 2021. Therefore, many 

individuals who were tweeting about the vaccine in a positive way were not able to get the 

vaccine during most of the study period due to eligibility reasons [103]. 

I would also expect to see a positive relationship between the negative sentiments and 

emotions on Twitter and vaccine hesitancy in the HPS. However, the regression model revealed 

a significant inverse relationship between the vaccine hesitant measure in the HPS and the 

percentage of tweets expressing negative sentiment or anger. These findings might be 

indicative of individuals whose online personas do not match their reality. For example, an 

individual might be obligated to get a vaccine due to their job or upcoming travel, making them 

vaccine compliant – but rant about it online. In our sample data, this type of person would be 

classified as “pro-vaccine” instead of “anti-vaccine” in the HPS but would also contribute to the 

negative perceptions found on Twitter. These findings also align with prior research that 

suggests an individual’s online persona may differ from their offline identity [104]–[106]. This 

offline identity is oftentimes limited by physical, emotional, and financial circumstances that 

may be beyond an individual’s control [105], [107]–[109]. However, individuals have complete 

control over the identity they choose to present online [104]–[106]. The inverse relationship 

between the vaccine hesitant measure in the HPS and the percentage of tweets expressing 

negative sentiment or anger may also be due to the use of sarcasm in tweets, where the text 

itself contradicts what is actually meant by the user [110]. 

The findings of this study contribute to the literature in two different ways. First, 

although many studies have examined COVID-19 vaccine acceptance by extracting information 
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from either surveys or social media, to my knowledge, there are no studies that provide a 

comparison and evaluate the relationship between these vastly different data sources. Unlike 

social media data, surveys come with postage, paper, printing, and data entry costs, making 

them costly to administer [19]. Evaluating the relationship between the attitudes found in 

surveys and on social media allows researchers to determine whether social media data can be 

trusted to reveal the same information we can extract from traditional surveys, or if I run the 

risk of losing important information just to cut costs. In this study, I found that COVID-19 

vaccine attitudes in the HPS, measured as vaccine compliance and vaccine hesitancy, can be 

predicted using social media attitudes towards vaccines, measured via sentiments and 

emotions towards vaccines. The results of this study support the efforts of researchers, who 

over the past few years have looked to social media as a data source instead of traditional 

surveys, citing the availability of more readily available data and no or low cost data collection 

efforts [18].  

The present study makes further contributions by revealing the sentiments and 

emotions found in tweets across different metropolitan areas. This builds upon several other 

studies that leveraged NLP methods such as sentiment analysis, emotion analysis, and topic 

modeling in order to examine vaccine-related perceptions [32]–[34]. In this study, I found most 

tweets expressed pro-vaccine sentiment, across all metropolitan areas. However, many tweets 

also expressed negative feelings and anticipation. This supports previous work, where 

researchers found lots of discussion about vaccine hesitancy, but ultimately found most tweets 

to have positive sentiment [35]. The present study also revealed trust as the dominant emotion 

found in tweets. This supports the results of a prior study that also found trust to be the 
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dominant emotion expressed in tweets, during an earlier time period [37]. A comparison of 

these results shows the vaccine conversation on Twitter remained relatively consistent over 

time.  

The present study provides further evidence of the benefits of using social media data 

for public health research. The overarching contribution of this work suggests the adaptation of 

alternative data sources and natural language processing techniques to assist in public health 

decision making. 

4.4.3. Limitations and Future Work 
Considering the limitations of the present study may lead to future, related work. This 

study places an emphasis on using Twitter as a data source, but the lack of representation 

among Twitter users leads to bias in the sample. For example, Twitter users tend to be younger, 

more educated, have higher incomes, and more liberal [16]. The lack of representation among 

Twitter users suggests limited generalizability of the results to the larger population. Adding to 

this lack of representation is the limited sample of tweets available to the public via the Twitter 

Streaming API, which makes available a random sample of 1% of all Tweets sent by Twitter 

users at any given time [14]. Additionally, in a study that sought to assess the perceptions of the 

COVID-19 vaccine, individuals who do not have access to social media are systematically 

excluded from the analysis sample. Requiring tweets to have some type of location information 

further limits the tweets sample and poses cause for concerns of bias in results. For example, 

there may be concerns about systematic differences in tweets with and without location 

information. However, the comparative analysis of sentiments and emotions in tweets with and 

without location information showed close alignment of vaccine perceptions. 
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Future studies should endeavor to utilize other NLP approaches, such as topic modeling, 

to compare the public perceptions of the COVID-19 vaccine on social media to those found in 

surveys. The survey used in this study, the Household Pulse Survey, presented respondents with 

in-depth questions related to why they were vaccine hesitant, so applying topic models to 

tweets may reveal some of the same attitudes and themes as those expressed in the survey. 

Future studies may also involve pulling data from other social media platforms, such as 

Facebook, and comparing the overall perceptions reflected across all mediums. 

4.4.4. Conclusions 
The ongoing COVID-19 pandemic requires consistent monitoring and data driven public 

health policies. To slow the spread of the virus, public health officials have stressed that 

vaccines are essential in the world-wide battle against COVID-19. However, vaccine hesitancy 

continues to be a barrier for effective and consistent vaccine rollout programs. Prior efforts 

have utilized surveys to gauge attitudes towards the COVID-19 vaccine, but this study suggests 

that these public perceptions may also be extracted from a readily available, low-cost data 

source – social media. In this study, I validated social media as a data source by evaluating the 

relationship between the attitudes expressed among Twitter users and respondents to the 

Household Pulse Survey as well as the ability for attitudes expressed among Twitter users to 

predict vaccine compliance and hesitancy among HPS respondents. 
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Chapter 5 – Study #3: Using COVID-19 vaccine Twitter chatter to 
predict vaccination rates in the United States 

5.1. Introduction  

5.1.1. Background 
 Since the onset of the COVID-19 pandemic, there has been a global effort to develop 

vaccines that protect against COVID-19. Individuals who are fully vaccinated are far less likely to 

contract and therefore transmit the virus to others [111]. Up until recently, public health 

experts have stressed the importance of achieving a numerical threshold of herd immunity, but 

this is only possible if a significant proportion of the population is fully vaccinated. More recent 

research suggests that the traditional concept of herd immunity may not apply to COVID-19 

[112]. Instead, the goal is to increase vaccination uptake to optimize population protection 

without prohibitive restrictions on our daily lives [113]. Accurately forecasting vaccination 

uptake allows policy makers and researchers to evaluate how close we are to achieving 

normalcy again.  

Researchers have turned to traditional methods for forecasting COVID-19 infection and 

vaccination rates [114]–[116]. For example, one of the most common forecasting methods 

used, univariate time series, involves predicting future vaccination rates using historical 

vaccination rates. While this method can be useful in many cases, it fails to account for other 

time-dependent factors that may also influence vaccinations. For example, The COVID-19 

vaccine conversation on social media has been deemed an infodemic, with anti-vaccination 

misinformation spreading across social media platforms [117]. Researchers have found that the 
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internet and social media both play a role in shaping personal or parental choices about 

vaccinations [118], [119]. Additionally, previous research showed a positive relationship 

between positive sentiment scores in COVID-19 vaccine-related tweets and an increase in 

vaccination rates [102]. These finding suggest it is important to consider the daily conversations 

on social media when developing vaccine uptake forecast models. 

5.1.2. Forecasting COVID-19 Related Measures Using Social Media 
There is no shortage of studies that sought to forecast COVID-19-related measures using 

information from social media. Researchers in [39] conducted a study using COVID-19 related 

terms mentioned in tweets and Google searches to predict COVID-19 waves in the United 

States. Researchers found that tweets that mentioned COVID-19 symptoms predicted 100% of 

first waves of COVID-19 days sooner than other data sources. Another study used data from 

Google searches, tweets, and Wikipedia page views to predict COVID-19 cases and deaths in the 

United States [40]. Researchers found models that included features from all three sources 

performed better than baseline models that did not include these features. Researchers also 

found that Google searches were a leading indicator of the number of cases and deaths across 

the United States. Another study [41] examined the relationship between daily COVID-19 cases 

and COVID-19 related tweets and Google Trends. In a study conducted by [42], researchers 

used reports of symptoms and diagnoses on Weibo, a popular social media platform in China, in 

order to predict COVID-19 case counts in Mainland China. Researchers found reports of 

symptoms and diagnoses on the social media platform to be highly predictive of daily case 

counts. Although each of these studies forecast COVID-19 cases and deaths, none of these 

studies forecast COVID-19 vaccination rates. 
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5.1.3. Forecasting Vaccinations 
Very few studies have conducted time series forecasting of the COVID-19 vaccinated 

population in the United States. In a study conducted by [32], researchers developed a time 

series model to predict the percentage of the US population that would get at least one dose of 

the COVID-19 vaccine or be fully vaccinated. Researchers projected that by the end of July 

2021, 62.44% and 48% of the US population would get at least one dose of the COVID-19 

vaccine or be fully vaccinated, respectively. Although this paper also included a separate tweet 

sentiment analysis, researchers did not include Twitter-related features in the forecast model. 

Additionally, researchers used aggregated vaccination data for the entire United States, rather 

than a more granular geographic level. 

Another study aimed to evaluate if and when the world would reach a vaccination rate 

sufficient enough for herd immunity by forecasting the number of people fully vaccinated 

against COVID-19 in various countries, including the US [43]. In this study, researchers used a 

common univariate time series forecasting method, Autoregressive Integrated Moving Average 

(ARIMA), to forecast the future number of fully vaccinated people using only historical 

vaccination data. Based on the resulting projections, researchers concluded that countries were 

nowhere near the necessary herd immunity threshold needed to end the COVID-19 pandemic.  

A study conducted by [44] sought to predict COVID-19 vaccine uptake using various 

sociodemographic factors. Although not a time series forecasting model, the results of this 

study showed that geographic location, education level, and online access were highly 

predictive of vaccination uptake in the United States. The model predicted vaccine uptake with 

62% accuracy. 
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Although there are very few studies related to COVID-19 vaccination forecasting, other 

studies have been conducted to predict immunizations for other illnesses. For example, one 

study analyzed electronic medical records of a cohort of 250,000 individuals over the course of 

ten years [45]. Researchers developed a model to predict vaccination uptake of individuals in 

the upcoming influenza season based on previous personal and social behavioral patterns. 

Another study developed a tool for leveraging immunization related content from Twitter and 

Google Trends to develop a model for predicting whether a child would receive immunizations 

[46]. Researchers were able to predict child immunization status with 76% accuracy. 

5.1.4. Study Objectives 
Although few previous studies have developed forecast models for COVID-19 

vaccination rates in the United States, to our knowledge, there are no studies that aim to factor 

in the real-time vaccination attitudes present on Twitter. The results of Study #2 (Chapter 4) 

showed that attitudes toward COVID-19 vaccines found in tweets were predictive of vaccine 

attitudes in the Household Pulse Survey. These findings led to the motivation for the present 

study, where I hypothesize that using vaccine attitudes on Twitter as features in vaccine uptake 

forecast models may improve the performance of these forecast models. Previous studies 

developed forecast models that focused on the entire United States as a whole. These forecast 

models fail to appreciate the differences in vaccination roll out, behaviors, and attitudes across 

different geographic regions. The present study also seeks to fill this gap by examining vaccine 

uptake at the metropolitan level.  

The purpose of this study is to develop a time series forecasting algorithm that can 

predict future vaccination rates across US metropolitan areas. Specifically, the present study 
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aims to determine whether supplementing forecast models with real-time vaccine attitudes 

found in tweets – measured via sentiments and emotions – improves over baseline models that 

only use historical vaccination data. Developing a predictive tool for vaccination uptake in the 

United States will empower public health researchers and decision makers to design targeted 

vaccination campaigns in hopes of achieving the vaccination threshold required to reach herd 

immunity. 

5.2. Materials and Methods 

5.2.1. Data Collection and Preprocessing 

5.2.1.1. Twitter Data 
The Twitter Streaming Application Programming Interface (API), which provides access 

to a random sample of 1% of publicly available tweets, was used to collect tweets from 8 of the 

top 10 most populated metropolitan areas in the United States from January 2021 to May 2021 

[Table 5.1] [120]. I chose to focus on large metropolitan areas in order to gather a sufficient 

number of tweets for the analysis. Additionally, larger metropolitan areas also tend to have 

users who enable the location feature when tweeting [121], [122]. It is important to note that 

although the Dallas-Fort Worth-Arlington, TX & Houston-The Woodlands-Sugar Land, TX 

metropolitan areas are among the 10 most populated metropolitan areas in the United States, 

tweets from these areas were not included in the analysis due to the lack of available 

vaccination data during the study period – data that was required for the forecast models.  

All tweets had “place” information (usually city and state). The place information found 

in tweets was used to determine the metropolitan area associated with each tweet. Next, to 

extract tweets related to COVID-19 vaccines, tweets were further filtered by matching 
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variations of vaccine-related keywords, such as vaccine, pfizer, moderna, johnson & johnson, 

and dose. A complete list of vaccine-related keywords can be found in Appendix B. The tweets 

sample was further preprocessed to minimize “noise” resulting from tweets that matched our 

vaccine-related keywords but did not necessarily reflect the thoughts and opinions of individual 

Twitter users. For example, companies often promote job postings and advertisements on 

Twitter using targeted hashtags in hopes of reaching their target audience. To prevent these 

tweets from adding noise to the sample, tweets related to job postings and advertisements 

were removed by excluding tweets with hashtags and keywords such as “#jobs”, “#hiring”, and 

“#ad”.  

Table 5.1 Targeted metropolitan areas for Twitter data collection, January 1 - May 20, 2021. 

Phoenix-Mesa-Chandler, AZ Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 
Miami-Fort Lauderdale-Pompano Beach, FL Washington-Arlington-Alexandria, DC-VA-MD-WV 
Atlanta-Sandy Springs-Alpharetta, GA Chicago-Naperville-Elgin, IL-IN-WI 
New York-Newark-Jersey City, NY-NJ-PA Los Angeles-Long Beach-Anaheim, CA 

 

5.2.1.2. COVID-19 Vaccination Data 
Daily COVID-19 vaccination data at the county-level was collected for the January 2021 

to May 2021 study period from the Centers for Disease Control and Prevention’s (CDC) publicly 

available vaccination dataset [123]. This dataset includes daily vaccination data from clinics, 

pharmacies, long-term care facilities, dialysis centers, Federal Emergency Management Agency 

and Health Resources and Services Administration partner sites, and federal entity facilities. 

Vaccination administration data are reported to the CDC via immunization information systems 

(IISs), the vaccine administration management system (VAMS), and data submissions directly to 

the COVID-19 Data Clearing House [123]. Each county was linked to its respective metropolitan 

area according to the US Census delineation file [124]. Next, the data was aggregated to the 
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daily-metropolitan level and the seven-day rolling average of the percentage of individuals who 

have been administered at least one vaccine dose was calculated. 

5.2.2. Data Analysis 

5.2.2.1. Sentiment and Emotion Analysis of Tweets 
For the purposes of this study, I measure COVID-19 vaccine attitudes via sentiment and 

emotion analyses of tweets. To capture the sentiments and emotions found in COVID-19 

vaccine-related tweets, a sentiment and emotion analysis of all tweets was conducted using the 

NRC lexicon from the Syuzhet package in R [74]. The NRC lexicon, developed by Saif 

Mohammad, contains a list of manually labeled English words and their associations with 

negative and positive sentiments and common human emotions, such as trust, fear, sadness, 

surprise, and disgust [98]. The Syuzhet package applies the NRC lexicon by independently 

evaluating and rating each word or expression within a tweet [99]. The get_nrc_sentiment 

function was applied to all tweets to calculate the valence of eight different emotions (fear, joy, 

anticipation, anger, disgust, sadness, surprise, trust), along with overall positive and negative 

sentiment. As mentioned in Chapter 4, the accuracy of the sentiment classifier, based on a 

random sample of 1000 tweets, was 73.4%. 

The percentages of the eight emotions, along with the percentage of positive, neutral, 

and negative sentiments were calculated at the metropolitan level. The total number of COVID-

19 vaccine related tweets and users per 100,000 population was also calculated for each day of 

data collection, at the metropolitan level. Finally, user engagement metrics, including the 

average number of re-tweets and favorites, were calculated for each day of data collection, at 

the metropolitan level. Retweets and favorites suggest, after processing the information, that a 
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user resonates with an idea expressed in a tweet [125], [126]. Therefore, I believe these 

engagement metrics might also reflect vaccine attitudes. 

5.2.2.2. Time Series Model 

The data were divided into training and test datasets, where the time series analysis was 

trained using the dataset created from the January 1 - April 12, 2021 time period, and tested on 

the dataset created from the April 13th - May 20th, 2021 time period. Auto-Regressive 

Integrated Moving Average (ARIMA) models were executed for forecasting the proportion of 

individuals who have been administered at least one vaccine dose. ARIMAX models, which are 

extensions of ARIMA models that include independent predictors called exogenous variables, 

were also executed. The ARIMA method has been widely used in time series forecasting and 

public health surveillance [127]–[129]. An ARIMA model typically consists of three components: 

(1) auto-regression, notated in the model as p; (2) differencing, notated in the model as d; and 

(3) moving average, notated in the model as q [130]. In an ARIMA model, the present value of 

the time-series is a linear function of random noise and its previous values; the present value is 

also a linear function of both present and past values of the residuals in the model; and the 

auto-regressive moving average model includes both the auto-regressive and moving average 

models, in addition to the historical values in the time series and its residuals [127].  

Stationarity of a time series is a key assumption when making predictions based on past 

observations of a variable [131]. Stationarity requires the properties (mean and variance) of a 

time series to remain constant over time, thus making future values easier to predict [132]. 

Otherwise, the results are spurious and analyses are not valid [126]. The stationarity of all 

variables included in the time series was assessed using the Dickey-Fuller (dfuller) test. If the 
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null hypothesis is rejected, stationarity is satisfied. If stationarity is not satisfied, variables must 

undergo differencing, a process that removes any trend in the times series that is not of 

interest [131]. All differencing and model selection was performed by the auto.arima function 

from the forecast package in R,  which is a function that selects the optimal order of the model 

based on the Hyndman-Khandakar algorithm for automatic ARIMA modeling [132]. A 

combination of unit root tests and minimization of the AIC and MLE allows this algorithm to 

select the best preforming model order by fitting several variations of model components p, d, 

and q [133]. 

For each metropolitan area, a baseline ARIMA model with no exogenous variables was 

constructed to forecast the seven-day rolling average of the number of individuals who have 

been administered at least one vaccine dose, using only past values of this outcome. To assess 

the ability of vaccine attitudes on Twitter to improve COVID-19 vaccination forecasts, multiple 

ARIMAX models were executed, each with individual Twitter-derived features included as 

exogenous variables. Additionally, I executed a multivariate ARIMAX model that included those 

Twitter attitudes that showed improvement over the ARIMA baseline across all metro areas. A 

final ARIMAX model that contained all Twitter features regardless of performance was 

attempted but did not converge. A complete list of the constructed time series models can be 

found in Table 5.2. 
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Table 5.2 Time series models predicting COVID-19 vaccine uptake, January 1 – May 20, 2021. 

Model Type Exogenous Variable(s) 
ARIMA None (baseline) 
ARIMAX Number of users per 100,000 population 
ARIMAX Number of tweets per 100,000 population 
ARIMAX Average favorites 
ARIMAX Average retweets 
ARIMAX % Positive Sentiment 
ARIMAX % Negative Sentiment 
ARIMAX % Neutral Sentiment 
ARIMAX % Trust 
ARIMAX % Surprise 
ARIMAX % Sadness 
ARIMAX % Joy 
ARIMAX % Fear 
ARIMAX % Disgust 
ARIMAX % Anticipation 
ARIMAX % Anger 

ARIMAX 
Best Predictors (predictors that show improvement over 
baseline across all metro areas) 

5.3. Results 

5.3.1. Twitter Data 

A total of 64,737 COVID-19 vaccine-related tweets were collected during the data 

collection period, across 25,905 users [Table 5.3]. The Los Angeles-Long Beach-Anaheim 

metropolitan area had the largest representation of tweets (13,125/64,737, 20.27%), as well as 

the largest representation of users (5,620/25,905, 21.69%). The Houston-Woodlands-Sugar 

Land metropolitan area had the smallest representation of tweets (999/64,737, 1.54%) as well 

as the smallest representation of users (541/25,905, 2.09%). The maximum number of tweets 

by a single individual was 228 (from a user in the Washington-Arlington-Alexandria 

metropolitan area).  
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The temporal trends for the number of COVID-19 vaccine-related tweets from January 

to May 2021 are presented in Figure 5.1. The number of COVID-19 vaccine-related tweets 

fluctuated over time; however, a peak in the number of tweets was observed during the week 

of April 5-11th, 2021. This was the week that President Joe Biden announced that every adult in 

the United States would be eligible to receive a COVID-19 vaccine starting April 19, 2021 [102].  

 
 
 
Table 5.3 Number of COVID-19 vaccine tweets (N=64,737) and users (N=25,905) by city, January 
1 – May 20, 2021. 

Metropolitan Area Number of tweets, 
n (%) 

Number of users, 
n (%) 

Average Retweets, 
mean (sd) 

Average Favorites, 
mean (sd) 

Atlanta-Sandy Springs-Alpharetta, GA 12623 (19.5) 5431 (20.97) 438 (5140) 10 (178) 

Chicago-Naperville-Elgin, IL-IN-WI 6857 (10.59) 2847 (10.99) 543 (9579) 11 (118) 

Los Angeles-Long Beach-Anaheim, CA 13125 (20.27) 5620 (21.69) 438 (6415) 16 (174) 
Miami-Fort Lauderdale-

Pompano Beach, FL 1631 (2.52) 625 (2.41) 176 (1891) 10 (91) 

New York-Newark-Jersey City, NY-NJ-PA 12387 (19.13) 4858 (18.75) 351 (4209) 13 (224) 
Philadelphia-Camden-Wilmington, PA-

NJ-DE-MD 4345 (6.71) 1558 (6.01) 267 (3187) 131 (2389) 

Phoenix-Mesa-Chandler, AZ 2231 (3.45) 914 (3.53) 169 (1704) 6 (20) 
Washington-Arlington-Alexandria, DC-

VA-MD-WV 6488 (10.02) 2025 (7.82) 304 (3952) 13 (124) 
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Figure 5.1 Number of COVID-19 vaccine tweets over time, across all metropolitan areas, January 
1 – May 20, 
2021

 

5.3.2. Sentiment & Emotion Analysis 
A sentiment analysis classified most tweets across all metropolitan areas as having 

positive sentiment, with trust as the predominantly expressed emotion [Table 5.4]. The 

Washington-Arlington-Alexandria metropolitan area had the largest proportion of tweets with 

positive sentiment (57.8%), while the Miami-Ft. Lauderdale-Pompano Beach metropolitan area 

had the lowest proportion of tweets with positive sentiment (50.5%). Tweets with negative 

sentiment held the smallest proportions across all metropolitan areas, with sadness and fear 

being the most perceived negative emotions. The Phoenix-Mesa-Chandler metropolitan area 

had the largest proportion of tweets with negative sentiment (17.2%), while the Miami-Ft. 
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Lauderdale-Pompano Beach metropolitan area had the lowest proportion of tweets with 

negative sentiment (12.8%). Tweets with neutral sentiment represented between ~29% and 

37% of tweets across all metropolitan areas. 
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Table 5.4 Distribution of sentiments and emotions among COVID-19 vaccine tweets collected from January 1 – May 20, 2021 
(N=64,737). 

Metropolitan Area % Positive % Negative % Neutral % Trust % Anticipation % Sadness % Anger % Fear % Joy % Surprise % Disgust 
Atlanta-Sandy Springs-
Alpharetta, GA 53.7 15.5 30.9 43.0 33.1 26.2 24.0 28.6 24.0 21.2 16.1 
Chicago-Naperville-Elgin, IL-
IN-WI 55.4 15.3 29.4 44.6 34.3 26.3 23.6 27.9 26.3 22.6 16.2 
Los Angeles-Long Beach-
Anaheim, CA 51.8 16.4 31.7 42.3 33.9 26.8 24.2 29.5 26.2 22.0 16.4 
Miami-Fort Lauderdale-
Pompano Beach, FL 50.5 12.8 36.7 40.8 30.6 23.4 19.4 25.3 23.7 18.3 13.7 
New York-Newark-
Jersey City, NY-NJ-PA 55.6 14.1 30.3 43.7 34.0 25.9 23.0 29.2 26.6 21.7 15.3 
Philadelphia-Camden-
Wilmington, PA-NJ-DE-MD 55.0 15.7 29.3 47.2 35.8 29.0 24.8 32.4 26.4 22.9 15.9 
Phoenix-Mesa-Chandler, AZ 53.2 17.2 29.5 45.3 36.1 28.4 26.4 33.0 25.5 24.2 16.0 
Washington-Arlington-
Alexandria, DC-VA-MD-WV 57.8 13.5 28.7 48.1 37.3 28.3 22.3 31.2 28.6 23.5 15.8 
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5.3.2. Time Series Forecast 

Multiple time series models were constructed to forecast the vaccine uptake rate (7-day 

rolling average). The results of the Dickey-Fuller (dfuller) test for stationarity revealed that in 

some metropolitan areas, stationarity did not hold for the outcome variable, vaccination rate, 

and several of the exogenous variables, including number of users per 100,000 population, 

number of tweets per 100,000 population, and percentage of tweets expressing trust, 

anticipation, anger, and fear [Table 5.5]. However, the necessary differencing was automatically 

applied via the auto.arima function.  

Table 5.5 Dickey-Fuller (dfuller) Test for Stationarity. Non-stationary variable results are marked 
by an asterisk (*). 

  
Phoenix-Mesa-Chandler, 

AZ 
Miami-Fort Lauderdale-

Pompano Beach, FL 
Atlanta-Sandy Springs-

Alpharetta, GA 
Philadelphia-Camden-

Wilmington, PA-NJ-DE-MD 

Variable 
Test 

Statistic p-value 
Test 

Statistic p-value 
Test 

Statistic p-value 
Test  

Statistic p-value 

% of individuals who have 
been administered at least 

one vaccine dose (7 day 
rolling average) -0.93 0.95* -1.34 0.85* -2.21 0.49* -1.58 0.75* 

Number of users per 100,000 
population -2.72 0.28* -3.15 0.1* -2.1 0.54* -2.21 0.49* 

Number of tweets per 
100,000 population -3.21 0.09* -3.13 0.11* -2.43 0.4* -2.72 0.28* 

Average favorites -4.97 0.01 -4.73 0.01 -8.75 0.01 -4.55 0.01 

Average retweets -4.4 0.01 -4.7 0.01 -4.53 0.01 -5.71 0.01 

% Positive Sentiment -3.75 0.02 -3.74 0.02 -3.67 0.03 -3.77 0.02 

% Negative Sentiment -4.21 0.01 -4.36 0.01 -3.56 0.04 -4.45 0.01 

% Neutral Sentiment -4.89 0.01 -5.05 0.01 -3.72 0.03 -4.75 0.01 
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% Trust -2.99 0.17* -3.04 0.14* -3.11 0.12* -2.98 0.17* 

% Surprise -4.96 0.01 -4.25 0.01 -4.41 0.01 -3.78 0.02 

% Sadness -4.6 0.01 -5.03 0.01 -4.8 0.01 -4.19 0.01 

% Joy -4.01 0.01 -3.86 0.02 -4.81 0.01 -4.04 0.01 

% Fear -5.63 0.01 -4.83 0.01 -4.61 0.01 -3.93 0.01 

% Disgust -5.6 0.01 -4.95 0.01 -4.16 0.01 -5.22 0.01 

% Anticipation -4.98 0.01 -3.01 0.16* -3.71 0.03 -5.23 0.01 

% Anger -5.71 0.01 -4.63 0.01 -4.55 0.01 -4.52 0.01 

  

Washington-Arlington-
Alexandria, DC-VA-MD-

WV 
Chicago-Naperville-Elgin, 

IL-IN-WI 
Los Angeles-Long 

Beach-Anaheim, CA 
New York-Newark-Jersey 

City, NY-NJ-PA 

Variable 
Test 

Statistic p-value 
Test 

Statistic p-value 
Test 

Statistic p-value Test Statistic p-value 

% of individuals who have 
been administered at least 

one vaccine dose (7 day 
rolling average) -1.64 0.72* -1.69 0.71* -1.91 0.62* -1.55 0.76* 

Number of users per 100,000 
population -2.84 0.23* -2.49 0.37* -1.36 0.84* -2.44 0.4* 

Number of tweets per 
100,000 population -2.76 0.26* -2.88 0.21* -1.68 0.71* -2.33 0.44* 

Average favorites -4.4 0.01 -4.24 0.01 -4.19 0.01 -4.04 0.01 

Average retweets -5.52 0.01 -5.42 0.01 -5.2 0.01 -5.67 0.01 

% Positive Sentiment -5.13 0.01 -3.41 0.06* -3.93 0.01 -4.3 0.01 

% Negative Sentiment -5.24 0.01 -3.95 0.01 -4.04 0.01 -4.32 0.01 

% Neutral Sentiment -4.73 0.01 -3.92 0.02 -4.35 0.01 -4.86 0.01 

% Trust -3.37 0.06* -3.01 0.16* -3.76 0.02 -4.17 0.01 
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% Surprise -3.41 0.06* -4.22 0.01 -4.11 0.01 -4.24 0.01 

% Sadness -3.55 0.04 -3.88 0.02 -4.57 0.01 -7.36 0.01 

% Joy -4.48 0.01 -4.35 0.01 -6.24 0.01 -3.73 0.02 

% Fear -4.74 0.01 -2.88 0.21* -4.67 0.01 -4.1 0.01 

% Disgust -3.28 0.08* -5.08 0.01 -6.09 0.01 -4.45 0.01 

% Anticipation -4.77 0.01 -3.93 0.02 -4.72 0.01 -4.63 0.01 

% Anger -3.72 0.03 -3.3 0.07* -5.15 0.01 -5.49 0.01 

 

The performance of the optimal models across all regions, as determined by the 

auto.arima function, can be found in Table 5.6. The best performing model for each 

metropolitan area is marked by an asterisk. Model performance for the “out-sample” forecasts 

was evaluated using the root mean square error (RMSE) instead of AIC because RMSE measures 

how close the data are around the line of best fit [135]. This measure is commonly used in time 

series forecasting to evaluate how close the forecasted values are to the actual values [135]. 

When evaluating model performance using RMSE, across all metropolitan areas, the addition of 

a Twitter-derived feature related to COVID-19 vaccination attitudes improved model 

performance by up to 9%. For example, in both the Phoenix-Mesa-Chandler & Atlanta-Sandy 

Springs-Alpharetta metropolitan areas, adding the percentage of vaccine tweets expressing 

trust as an exogenous variable not only resulted in a lower RMSE compared to the baseline 

ARIMA model, but also resulted in the lowest RMSE across all the models within these 

metropolitan areas. Additionally, in these two metropolitan areas, all the ARIMAX models, 

which each had one Twitter-derived feature related to COVID-19 vaccination attitudes, showed 
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improvement over the baseline ARIMA model that did not factor in Twitter-derived features. A 

final model that contained the 3 features that consistently showed improvement over baseline 

across all metro areas (% Negative Sentiment, % Surprise, % Sadness) showed improvement 

over the baseline ARIMA when combined into one model (ARIMAX with multiple exogenous 

variables). A final ARIMAX model that contained all Twitter features regardless of performance 

was attempted but did not converge. 

Table 5.6 also shows the components (p, d, q) of the ARIMA models. A key component, 

the p component, represents the number of lag observations in the model – also known as the 

lag order. Across all metropolitan areas, most of the ARIMA/ARIMAX models had p=1, which 

means that vaccination rates and Twitter features from the previous day are best used to 

predict future vaccination rates. In the New York-Newark-Jersey City, NY-NJ-PA and 

Washington-Arlington-Alexandria, DC-VA-MD-WV metro areas, a few of the ARIMA/ARIMAX 

models had p=2, which means that vaccination rates and Twitter features (such as the average 

number of retweets and favorites) from two days prior are best used to predict future 

vaccination rates. In the Chicago-Naperville-Elgin, IL-IN-WI and Miami-Fort Lauderdale-

Pompano Beach, FL metro areas, the ARIMAX models containing the average number of 

retweets had p=3, which means that vaccination rates and the average number of retweets 

from three days prior are best used to predict future vaccination rates.  
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Table 5.6 ARIMA/ARIMAX Model Performance (RMSE) and Components (p,d,q). Models that performed better than the baseline 
ARIMA are marked by an asterisk (*). 

Variables 
Phoenix-Mesa-Chandler, 

AZ 
Miami-Fort Lauderdale-

Pompano Beach, FL 
Atlanta-Sandy Springs-

Alpharetta, GA 
New York-Newark-Jersey 

City, NY-NJ-PA 

RMSE  p,d,q RMSE  p,d,q RMSE  p,d,q RMSE  p,d,q 

(Baseline) % of individuals who have been administered at least one vaccine 
dose (7 day rolling average) 0.1217 1, 1, 1 0.1516 1, 1, 1 0.0510 1, 1, 1 0.1039 1, 1, 1 

Number of users per 100,000 population 0.1185 1, 1, 1 0.1466* 1, 1, 1 0.0498 1, 1, 0 0.1015 1, 1, 1 

Number of tweets per 100,000 population 0.1188 1, 1, 1 0.1482 1, 1, 1 0.0497 1, 1, 0 0.1011* 1, 1, 1 

Average favorites 0.1177 1, 1, 1 0.1516 0, 2, 1 0.0509 1, 1, 0 0.1055 2, 1, 0 

Average retweets 0.1217 0, 2, 1 0.1567 3, 1, 0 0.0507 0, 2, 0 0.1042 2, 1, 0 

% Positive Sentiment 0.1188 1, 1, 1 0.1518 1, 1, 1 0.0501 1, 1, 0 0.1034 1, 1, 1 

% Negative Sentiment 0.1175 1, 1, 1 0.1516 0, 2, 1 0.0501 1, 1, 0 0.1036 0, 2, 1 

% Neutral Sentiment 0.1191 1, 1, 1 0.1518 1, 1, 1 0.0502 1, 1, 0 0.1026 1, 1, 1 

% Trust 0.1172* 1, 1, 1 0.1516 1, 1, 1 0.0464* 1, 1, 4 0.1035 1, 1, 1 

% Surprise 0.1193 1, 1, 1 0.1511 0, 2, 1 0.0501 1, 1, 0 0.1037 1, 1, 1 

% Sadness 0.1188 1, 1, 1 0.1503 1, 1, 1 0.0493 1, 1, 0 0.1038 1, 1, 1 

% Joy 0.1192 1, 1, 1 0.1515 1, 1, 1 0.0469 1, 1, 4 0.1034 1, 1, 1 

% Fear 0.1193 1, 1, 1 0.1512 0, 2, 1 0.0499 1, 1, 0 0.1036 1, 1, 1 

% Disgust 0.1193 1, 1, 1 0.1518 1, 1, 1 0.0499 1, 1, 0 0.1038 1, 1, 1 

% Anticipation 0.118 1, 1, 1 0.1484 1, 1, 1 0.0501 1, 1, 0 0.1028 1, 1, 1 

% Anger 0.1193 1, 1, 1 0.1467 1, 1, 1 0.0504 0, 2, 0 0.1037 1, 1, 1 

Best Predictors (% Negative Sentiment, % Surprise, % Sadness) 0.1175 1, 1, 1 0.1495 1, 1, 1 0.0499 1, 1, 0 0.1033 1, 1, 1 
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Variables 
Philadelphia-Camden-

Wilmington, PA-NJ-DE-MD 

Washington-Arlington-
Alexandria, DC-VA-MD-

WV 

Chicago-Naperville-
Elgin, IL-IN-WI 

Los Angeles-Long Beach-
Anaheim, CA 

RMSE  p,d,q RMSE  p,d,q RMSE  p,d,q RMSE  p,d,q 

(Baseline) % of individuals who have been administered at least one vaccine 
dose (7 day rolling average) 0.0856 1, 1, 1 0.0757 1, 1, 1 0.1365 1, 1, 1 0.1457 1, 1, 1 

Number of users per 100,000 population 0.0848 1, 1, 0 0.0760 1, 1, 0 0.1351 1, 1, 1 0.1436 1, 1, 1 

Number of tweets per 100,000 population 0.0848 1, 1, 0 0.0759 1, 1, 0 0.1355 1, 1, 1 0.144 1, 1, 1 

Average favorites 0.0856 0, 2, 0 0.0759 2, 1, 0 0.1365 0, 2, 1 0.1458 1, 1, 1 

Average retweets 0.0857 1, 1, 0 0.0754 2, 1, 0 0.136 3, 1, 0 0.1454 0, 2, 1 

% Positive Sentiment 0.0844* 1, 1, 0 0.0752 2, 1, 0 0.1331 1, 1, 1 0.1433 1, 1, 1 

% Negative Sentiment 0.0846 1, 1, 0 0.0752 1, 2, 0 0.1354 1, 1, 1 0.1441 1, 1, 1 

% Neutral Sentiment 0.0847 0, 2, 0 0.0752 1, 1, 0 0.1304* 1, 1, 1 0.1433 1, 1, 1 

% Trust 0.0846 1, 1, 0 0.0762 1, 1, 0 0.1361 1, 1, 1 0.1433 1, 1, 1 

% Surprise 0.0856 0, 2, 0 0.0754 2, 1, 0 0.1359 1, 1, 1 0.1441 1, 1, 1 

% Sadness 0.0853 0, 2, 0 0.0756 0, 2, 1 0.1359 1, 1, 1 0.1423 1, 1, 1 

% Joy 0.0856 1, 1, 0 0.0753 0, 2, 0 0.1349 1, 1, 1 0.1436 1, 1, 1 

% Fear 0.0848 1, 1, 0 0.0759 2, 1, 0 0.1362 1, 1, 1 0.1370* 1, 1, 1 

% Disgust 0.0857 1, 1, 0 0.0757 0, 2, 1 0.1339 1, 1, 1 0.1381 1, 1, 1 

% Anticipation 0.0857 1, 1, 0 0.0752 0, 2, 1 0.1333 1, 1, 1 0.1421 1, 1, 1 

% Anger 0.0856 1, 1, 0 0.0747* 1, 2, 0 0.1361 1, 1, 1 0.1383 1, 1, 1 

Best Predictors (% Negative Sentiment, % Surprise, % Sadness) 0.0850 1, 1, 0 0.0752 2, 1, 0 0.1347 1, 1, 1 0.1413 1, 1, 1 
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Other metropolitan areas also showed improvements in vaccination predictions when 

Twitter features were added as exogenous variables. For example, in the Miami-Fort 

Lauderdale-Pompano Beach metropolitan area, adding the number of users discussing the 

COVID-19 vaccine per 100,000 population resulted in the best model and a lower RMSE 

compared to the baseline ARIMA model that did not contain exogenous features. In the 

Washington-Arlington-Alexandria metropolitan area, adding the percentage of vaccine tweets 

expressing anger or joy resulted in the best models and a lower RMSE compared to the baseline 

ARIMA model that did not contain any exogenous features. In the Chicago-Naperville-Elgin 

metro area, adding the percentage of vaccine tweets with neutral sentiment resulted in the best 

model and a lower RMSE compared to the baseline ARIMA model. In the Los Angeles-Long 

Beach-Anaheim metropolitan area, adding the percentage of vaccine tweets expressing fear 

resulted in the best model and a lower RMSE compared to the baseline ARIMA model.  

Figure 5.2 illustrates the performance of the baseline ARIMA models (blue dotted line) 

and the best performing ARIMAX models (green dotted line), compared to the observed values 

of the outcome variable during the “out-sample” forecasting period (April 13th – May 20th, 

2021) (red solid line). Across all metropolitan areas, the ARIMAX time series models with 

Twitter-derived features aligned more closely with the actual values of the vaccination rates 

compared to the baseline ARIMA model that relied on past historical vaccination data alone.  
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Figure 5.2 Predicted vs. Observed COVID-19 Vaccination Rates, January 1 – May 20th, 2021 

 
Values.
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5.4. Discussion 

5.4.1. Principal Findings 

 In this study, I sought to determine whether supplementing forecast models with 

COVID-19 vaccine attitudes found in tweets – modeled via sentiments and emotions – improves 

over baseline models that only use historical vaccination data. When evaluating model 

performance across all metro areas, the addition of COVID-19 vaccine attitudes found in tweets 

resulted in improved model performance, as reflected by RMSE, when compared to baseline 

forecast models that did not include these features. Specifically, compared with the traditional 

ARIMA model with vaccination data alone, ARIMAX models with the predictions of both 

historical vaccination data and COVID-19 vaccine attitudes found in tweets reduced RMSE by as 

much as 9%. 

5.4.2. Study findings in context 
The ongoing COVID-19 pandemic emphasizes the need for innovative approaches to 

public health surveillance. The global public health community has monitored the COVID-19 

pandemic by tracking case counts, hospitalizations, deaths, and vaccinations. For the United 

States, these datasets are publicly available. Forecasting case counts and vaccination rates 

using existing historical data has been a key approach in COVID-19 surveillance efforts [137]. 

Previous forecast models for predicting vaccine uptake rate relied on traditional ARIMA 

methods, where historical data was used to predict future rates [138]. However, social media 

data sources, such as Twitter, reveal society’s attitudes towards the pandemic and current 

vaccination efforts on a real-time basis. This provides an opportunity for a large volume of raw 

and uncensored data related to vaccine attitudes, across various geographic locations, to be 
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leveraged for disease surveillance, which can subsequently be used to supplement and improve 

existing models.  

The findings of the present study suggest that attitudes extracted from Twitter data can 

be added to existing forecast models for monitoring vaccination uptake across various 

metropolitan areas. In certain metropolitan areas, the mere volume of tweets and users 

engaged in vaccine-related conversations improved model performance when compared to 

baseline models. These results echo the findings in the study by [129], which revealed another 

social media source, Google Trends data, improved the prediction of COVID-19 vaccination 

uptake in Italy when compared to baseline models. In this study, Google Trends data was 

represented as the relative search volume for each vaccine-related keyword. Another similar 

study developed a framework for predicting vaccination rates in the United States based on 

traditional clinical data and web search queries [139]. The results of this study also revealed the 

ability for online networks to predict societal willingness to receive vaccinations. Specifically, 

the authors found a similar improvement in model performance as the present study – with a 

reduction in RMSE of 9.1%. 

Although few studies sought to supplement current vaccine models with social media 

data, to our knowledge, there are no studies that go beyond the mere volume of relevant 

Twitter data and factor in the sentiment and emotion of vaccine-related conversations. Over 

the course of the pandemic, some states experienced low vaccination rates despite 

comprehensive vaccine roll out programs. In these cases, it is important to consider the public’s 

emotions and sentiments towards vaccines. The present study contributes to the literature by 

evaluating the ability for sentiments and emotions related to the COVID-19 vaccine to predict 
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vaccine uptake. Specifically, the results show an improvement in model performance in certain 

metropolitan areas when models were supplemented with the percentage of tweets expressing 

anger, fear, joy, positive sentiment, or neutral sentiment. A study conducted by Alegado et al 

examined the association between sentiments and emotions found in tweets and vaccine 

uptake via regression coefficient analysis [137]. This study showed similar insights – tweets 

expressing fear, sadness, and anger appeared to be significantly associated with vaccination 

rates. 

The results of the present study have several implications for the present COVID-19 

response. Public health experts now argue that the traditional concept of herd immunity may 

not apply to COVID-19 [112]. Instead, the focus is to increase vaccination uptake to 

substantially control community spread, without the societal disruptions caused by the virus 

[113]. Accurately forecasting vaccination uptake allows policy makers and researchers to 

evaluate how close we are to achieving normalcy again. Additionally, similar algorithms allow 

public health practitioners to better anticipate vaccine uptake behaviors and therefore develop 

targeted policies. As the global community builds towards achieving herd immunity, 

researchers should also “listen” to the vaccine conversation on social media – monitoring 

misconceptions and misinformation and implementing targeted vaccine education campaigns 

that address these misconceptions. Although the COVID-19 pandemic appears to be improving, 

the present framework can also be used to improve vaccine forecast models for future 

pandemics. 
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5.4.3. Limitations and future work 

It is important to note that the present study has some limitations. The study period was 

limited to the first half of 2021. However, vaccines were not yet available to most of the US 

adult population until April 2021. Therefore, the study period did not capture the height of 

vaccination efforts. Another limitation is that as the COVID-19 pandemic evolves, vaccine 

related keywords may change, requiring frequent updating of the model. Future work may 

involve the use of topic modeling to capture the general themes surrounding the COVID-19 

pandemic.  

Another limitation is related to the geographic scope of the present study. The present 

study only focused on forecasting vaccine uptake in the United States. However, it is important 

to note that vaccination efforts must be addressed on a global scale, not just domestically, for 

normalcy to be attained. Future work should consider collecting tweets and vaccination data 

from other countries to see if similar models improve vaccine forecasts globally. Additionally, 

the present study only examined tweets posted in the English language. This potentially 

excluded several relevant tweets related to the COVID-19 vaccine conversation. Future work 

should involve the use of sentiment and emotion classifiers that include lexicons in other 

languages. 

5.4.4. Conclusion 

Researchers have found that the internet and social media both play a role in shaping 

personal or parental choices about vaccinations. Although few previous studies have developed 

forecast models for COVID-19 vaccination rates in the United States, to our knowledge, there 

are no studies that aim to factor in the real-time vaccination attitudes present on Twitter. The 
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present study suggests the benefits of using the linguistic constructs found in tweets to improve 

predictions of the COVID-19 vaccination rate. In this study, I found that supplementing baseline 

forecast models with both historical vaccination data and COVID-19 vaccine attitudes found in 

tweets reduced RMSE by as much as 9%. Developing a predictive tool for vaccination uptake in 

the United States will empower public health researchers and decision makers to design 

targeted vaccination campaigns in hopes of achieving the vaccination threshold required for 

widespread population protection. 
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Chapter 6 – Conclusions, Future Work, and Limitations 
 

Considering the limited resources across public health jurisdictions and high costs 

associated with traditional public health data sources, in this dissertation, I identify three ways 

social media data can be used as an alternative, viable and low-cost data source for public 

health research. In this dissertation, I present three studies that leverage social media as a data 

source, to answer research questions related to public health and compare traditional public 

health data sources to social media data sources. In the next few sections, I present a summary 

of findings and address study limitations, policy implications, and future directions. 

6.1. Study 1: Using Social Media to Predict Food Deserts in the United States: Infodemiology 
Study of Tweets 

Prior research has used data sources such as surveys, geographic information systems, 

and food store assessments to identify regions classified as food deserts, but these data sources 

can be costly and take a long time to collect. In this study, I introduced a novel approach to 

identifying food deserts in the United States using the linguistic constructs found in food-

related tweets. 

The results of this study revealed associations between a census tract being classified as 

a food desert and an increase in the number of tweets in a census tract that mentioned 

unhealthy foods (P=.03), including foods high in cholesterol (P=.02) or low in key nutrients such 

as potassium (P=.01). I also found an association between a census tract being classified as a 

food desert and an increase in the proportion of tweets that mentioned healthy foods (P=.03) 

and fast-food restaurants (P=.01) with positive sentiment. In addition, I found that including 

food ingestion language derived from tweets in classification models that predict food desert 
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status improves model performance compared with baseline models that only include 

socioeconomic characteristics.  

These findings suggest that residents of census tracts unknowingly provide important 

information regarding their food environment on Twitter through the food ingestion language 

found in tweets. Therefore, social media data presents a more accessible, scalable, and cost-

effective alternative to traditional public health data sources, such as surveys, GIS technology, 

and food store assessments, which can be costly and time consuming.  

6.2. Study 2: Using COVID-19 Vaccine Attitudes Found in Tweets to Predict Vaccine 
Perceptions in Traditional Surveys: Infodemiology Study of Tweets  

Traditionally, surveys are conducted to answer questions related to public health but 

can be costly to execute. However, the information that researchers aim to extract from 

surveys could be potentially retrieved from social media – data that is highly accessible and 

lower in cost to collect. In this study, I evaluated whether attitudes towards COVID-19 vaccines 

collected from the Household Pulse Survey can be predicted using attitudes extracted from 

Twitter. Ultimately, I sought to determine whether Twitter can provide us with similar 

information to what is observed in traditional surveys, or, if saving money comes at the cost of 

losing rich data.  

The results of this study revealed that attitudes toward COVID-19 vaccines found in 

tweets explained 61-72% of the variability in the percentage of HPS respondents that were 

vaccine hesitant or compliant. I also found significant statistical relationships between 

perceptions expressed on Twitter and in the survey. A linear regression analysis showed 

significant relationships between (1) the percentage of vaccine compliant HPS respondents and 

the percentage of tweets expressing positive sentiment, joy, trust, and anticipation; and (2) the 
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percentage of vaccine hesitant HPS respondents and the percentage of tweets expressing 

negative sentiment, anger, and anticipation. 

These findings suggest the information researchers aim to extract from surveys could 

also potentially be retrieved from a more accessible and cost-effective data source, such as 

Twitter data. The results of this study support the efforts of researchers, who over the past few 

years have looked to social media as a data source instead of traditional surveys, citing the 

availability of more readily available data and no or low-cost data collection efforts. 

6.3. Study 3: Using COVID-19 vaccine tweets to predict vaccination rates in the United States: 
Infodemiology Study of Tweets 

One of the most common forecasting methods used, univariate time series, involves 

predicting future vaccination rates using historical vaccination rates. While this method can be 

useful in many cases, it fails to account for other time-dependent factors that may also 

influence vaccinations. Researchers have found that the internet and social media both play a 

role in shaping personal choices about vaccinations. Therefore, it may be important to consider 

the daily conversations on social media when developing vaccine uptake forecast models. The 

goal of this study was to determine whether supplementing COVID-19 vaccine uptake forecast 

models with the attitudes found in tweets improves over baseline models that only use 

historical vaccination data.  

When evaluating model performance across all metro areas, the addition of COVID-19 

vaccine attitudes found in tweets resulted in improved model performance, as reflected by 

RMSE, when compared to baseline forecast models that did not include these features. 

Specifically, compared with the traditional ARIMA model with vaccination data alone, ARIMAX 
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models with the predictions of both historical vaccination data and COVID-19 vaccine attitudes 

found in tweets reduced RMSE by as much as 9%. 

 Developing a predictive tool for vaccination uptake in the United States will empower 

public health researchers and decision makers to design targeted vaccination campaigns in 

hopes of achieving the vaccination threshold required for the United States to reach 

widespread population protection.  

6.4. Policy Implications and Future Directions 
This dissertation has one overarching public health implication: Twitter data can be used 

as a viable data source for public health research – a data source that has been deemed 

attractive due the geographic granularity of such novel information, and importantly, the speed 

of data collection. For researchers, this dissertation highlights the importance of evaluating 

ways to modernize public health data and methods, especially considering the public health 

threats of the 21st century, such as COVID-19, natural disasters, drug abuse, and mental health. 

Traditional data sources used in public health research come with their own challenges, but 

most notably the expensive administration costs and low response rates associated with 

surveys; the delay and sometimes sparsity of public health surveillance data; and the limited 

reach and availability of medical records. Considering the chronic underfunding of public health 

jurisdictions in the United States, it is even more important for public health jurisdictions to find 

effective and low-cost ways to address the increasing public health challenges of the 21st 

century. 

Why is Twitter an attractive data source compared to more traditional public health 

data sources? First, we have the speed of data collection. The free, publicly available Twitter 
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API makes it possible for users to develop software that integrates Twitter, as well as provides 

access to public Twitter data, both in real-time and in the past. Academic researchers make up 

a large proportion of users who take advantage of the Twitter API, using the various Twitter 

APIs to collect and analyze the public conversations found in tweets [47]. Next, we have the 

costs associated with data collection, or lack thereof. Data used in this dissertation were 

collected at no cost via the Twitter Streaming API. There is also the geographic granularity of 

tweets. As shown in the three studies presented in this dissertation, many tweets are tagged 

with some type of location information, allowing researchers to answer research questions 

specific to various geographic areas. Finally, social media companies such as Twitter 

acknowledged that academic researchers are one of the largest groups of people using their 

APIs, and have taken the necessary steps to improve the experience for researchers and 

therefore facilitate the use of social media data to advance our disciplines [47]. 

Future work can be done to expand the impact of the studies presented in this 

dissertation. Each of the studies presented in this dissertation focused on large metropolitan 

areas in the United States and only examined tweets posted in the English language. However, 

it is important to note that public health issues such as food insecurity, vaccine hesitancy, and 

vaccine uptake should also be addressed on a global scale, not just domestically. Future work 

should consider the application of similar studies on a global scale, including more rural areas 

that are not typically the focus of large-scale public health efforts. Future work should involve 

the use of sentiment and emotion classifiers that include lexicons in other languages. Future 

work should also involve the improvement of the accuracy of sentiment and emotion classifiers. 
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This dissertation focuses on social media, specifically Twitter data, as a data source for 

public health research. However, social media has the potential to play other roles in public 

health. For example, social media can be used as a tool to increase the impact of public health 

research by providing avenues of disseminating research, combatting misinformation, 

influencing policy, and enhancing professional development of public health practitioners [140]. 

Future work should examine the ways in which social media allows public health researchers to 

shape messaging and public discourse, disseminate their work, and affect policy [141]. 

6.5. Limitations and Privacy Concerns 

Although each of the three studies in this dissertation explored different uses of Twitter 

data, there were common limitations across all the studies. A key limitation of Twitter data is 

lack of representation among Twitter users, which suggests limited generalizability of results to 

a larger population. In general, Twitter users tend to be younger, more educated, have higher 

incomes, and are more liberal [16]. Skewed age in the tweets sample can potentially impact 

findings, especially when exploring food consumption habits or perceptions towards vaccines. 

For example, a study conducted by Allman-Farinelli et al. showed that young people preferred 

and overconsumed unhealthy foods and favored some food products more than older adults, 

such as alcoholic beverages and foods high in sugar [142]. These food consumption habits may 

also appear dominant on Twitter due to the younger user demographic. Demographics such as 

age are not widely available for Twitter users, making it difficult to quantify the impact of this 

limitation. 
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The disparity in Twitter activity among Twitter users can also be noted as a limitation of 

Twitter data. Twitter users tweet a median of only 2 tweets per month, with just 10% of Twitter 

users accounting for 80% of the tweets across users in the United States [44]. This disparity in 

Twitter activity suggests that a large sample of tweets may actually reflect a much smaller 

sample of individuals. Despite these limitations, in all three studies, I obtained results that 

would suggest that the tweets collected contained a significant signal for conducting public 

health research. For example, (1) supplementing classification models with features derived 

from food ingestion language found in tweets, such as positive sentiment toward mentions of 

healthy foods and fast-food restaurants, improved baseline models that only included 

demographic and SES features by up to 19%, with AUC scores >0.8; (2) the attitudes toward 

COVID-19 vaccines found in tweets explained 61-72% of the variability in the percentage of HPS 

respondents that were vaccine hesitant or compliant; and (3) supplementing baseline vaccine 

uptake forecast models with both historical vaccination data and COVID-19 vaccine attitudes 

found in tweets improved forecast models and reduced RMSE by as much as 9%.  

Another limitation to note is the mere volume of tweets available via the Twitter 

Streaming API was limited to a random sample of 1% of all Tweets sent by Twitter users at any 

given time [14]. Each of the studies presented in this dissertation include some level of 

geographic granularity, which required tweets to have geolocation information. However, 

studies have shown that only approximately 1% to 2% of the tweets from the Twitter streaming 

API include geolocation information [20]. Although this was a limitation that I experienced 

during my data collection period, academic researchers now have free access to the entire 

historical archive of public Twitter data via the Academic Track Twitter API.  
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With social media being increasingly used to conduct research, it is also important to 

note the privacy concerns associated with the use of social media for public health research. 

Social media platforms such as Twitter provide free access to user-generated social media 

content. Just like other types of research involving human subjects, researchers should comply 

with the highest standards of data privacy and data protection, even if social media data are 

considered publicly available [143]. Misuses of social media data may lead to individual users’ 

privacy being compromised [143]. Since it is virtually impossible to obtain consent from all 

social media users included in a sample, it is important that all content that can be used to 

identify social media users be removed in order to protect the privacy of the users whose data 

we collect [144]. This protection is especially important when conducting research on sensitive 

topics, such as drug abuse, mental health, politics, and reproductive rights. It is important to 

note that the studies in this dissertation used fully aggregated Twitter data – therefore 

mitigating potential privacy violations. Additionally, the University of Maryland College Park IRB 

determined these studies did not meet the definition of human subject research under the 

purview of the IRB according to federal regulations. 
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Appendix A: Food Keyword List 
 

 good times burgers & frozen custard  

 mint chocolate chip ice cream  

 dominos philly cheese steak pizza  

 pizza hut stuffed crust pizza  

 bojangles famous chicken n biscuits  

 freddys frozen custard & steakburgers  

 penn station east coast subs  

 michelob ultra lime cactus  

 miller high life light  

 shock top raspberry wheat  

 black and white cookie  

 cream cheese with herbs  

 ham and cheese sandwich  

 double whopper with cheese  

 premium alaskan fish sandwich  

 butter pecan ice cream  

 chocolate chip ice cream  

 cookie dough ice cream  

 french vanilla ice cream  

 rocky road ice cream  

 new york strip steak  

 pork baby back ribs  

 peanut butter toast crunch  

 special k chocolatey delight  

 special k protein plus  

 special k red berries  

 new york style pizza  

 pizza hut supreme pizza  

 canada dry ginger ale  

 chicken with rice soup  

 cream of asparagus soup  

 cream of broccoli soup  

 cream of celery soup  

 cream of chicken soup  

 cream of mushroom soup  

 cream of onion soup  

 cream of potato soup  

 creamy chicken noodle soup  

 yoplait boston cream pie  

 yoplait key lime pie  

 captain ds seafood kitchen  

 dixie chili and deli  

 green burrito red burrito  

 the habit burger grill  

 jack in the box  

 lees famous recipe chicken  

 raising canes chicken fingers  

 cranberry apple juice  

 cranberry grape juice  

 passion fruit juice  

 pineapple orange juice  

 white grape juice  

 baileys irish cream  

 beef minute steak  

 beef prime rib  

 rib eye steak  

 veal roast beef  

 bud light chelada  

 bud light lime  

 bud select 55  

 genesee cream ale  

 hurricane high gravity  

 michelob amber bock  

 michelob ultra amber  

 miller genuine draft  

 miller high life  

 milwaukees best light  

 old milwaukee na  

 pabst blue ribbon  

 rolling rock light  

 sierra nevada strong  

 st pauli girl  

 angel food cake  

 black forest cake  

 chocolate cream pie  

 chocolate mousse cake  

 chocolate mousse pie  

 flourless chocolate cake  

 german chocolate cake  

 ice cream cake  

 key lime pie  

 lemon meringue pie  

 pineapple upsidedown cake  

 red velvet cake  

 strawberry rhubarb pie  

 sweet potato pie  

 tres leches cake  

 victoria sponge cake  

 mike and ike  

 peanut butter bars  

 peanut butter cookies  

 sour patch kids  

 canned crushed pineapple  

 canned fruit cocktail  

 canned fruit salad  

 canned mandarin oranges  

 canned mixed fruit  

 canned morello cherries  

 canned sliced pineapple  

 canned sour cherries  

 durum wheat semolina  

 whole grain wheat  
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 monterey jack cheese  

 chicken breast fillet  

 ovenroasted turkey breast  

 smoked turkey breast  

 chive cream cheese  

 feta cream cheese  

 garlic cream cheese  

 olive cream cheese  

 pesto cream cheese  

 philadelphia cream cheese  

 pineapple cream cheese  

 salmon cream cheese  

 vegetable cream cheese  

 walnut cream cheese  

 baby back ribs  

 bacon and eggs  

 chicken caesar salad  

 chicken fried steak  

 chicken pot pie  

 chicken tikka masala  

 chili con carne  

 corned beef hash  

 fish and chips  

 grilled cheese sandwich  

 mac and cheese  

 macaroni and cheese  

 peanut butter sandwich  

 philly cheese steak  

 pulled pork sandwich  

 grand turkey club  

 roast beef classic  

 roast beef max  

 big n tasty  

 original chicken sandwich  

 whopper with cheese  

 chicken teriyaki sandwich  

 grilled chicken salad  

 filet o fish  

 nachos with cheese  

 jr bacon cheeseburger  

 son of baconator  

 ben and jerrys  

 chocolate ice cream  

 coffee ice cream  

 cold stone creamery  

 dairy milk mcflurry  

 hot fudge sundae  

 ice cream sandwich  

 ice cream sundae  

 magnum double caramel  

 magnum double chocolate  

 snickers ice cream  

 strawberry ice cream  

 vanilla ice cream  

 fried bean curd  

 red kidney bean  

 soy nut butter  

 textured soy protein  

 textured vegetable protein  

 flat iron steak  

 pork countrystyle ribs  

 standing rib roast  

 sweetened condensed milk  

 cinnamon toast crunch  

 cracklin oat bran  

 cream of wheat  

 crunchy nut cornflakes  

 honey nut cheerios  

 kelloggs corn flakes  

 post raisin bran  

 post shredded wheat  

 quaker oatmeal squares  

 raisin bran crunch  

 raisin nut bran  

 low carb pasta  

 whole grain noodles  

 whole grain spaghetti  

 banana nut bread  

 conchasmexican sweet bread  

 hot dog buns  

 oatmeal raisin cookies  

 pan de sal  

 whole wheat bread  

 bbq chicken pizza  

 buffalo chicken pizza  

 deep dish pizza  

 four cheese pizza  

 goat cheese pizza  

 quattro formaggi pizza  

 red pepper pizza  

 spinach feta pizza  

 stuffed crust pizza  

 thin crust pizza  

 pork blade steak  

 pork crown roast  

 pork rib roast  

 pork shoulder blade  

 rack of pork  

 french fingerling potatoes  

 japanese sweet potatoes  

 norland red potatoes  

 potatoes au gratin  

 purple majesty potatoes  

 red gold potatoes  

 russian banana potatoes  

 yukon gold potatoes  

 breakfast sausage links  

 cold pack cheese  

 lacy swiss cheese  

 diet cherry coke  

 diet dr pepper  

 minute maid light  

 mug root beer  

 schweppes ginger ale  

 beef noodle soup  

 broccoli cheese soup  

 carrot ginger soup  

 chicken gumbo soup  

 chicken noodle soup  

 chicken vegetable soup  
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 french onion soup  

 golden mushroom soup  

 lobster bisque soup  

 tomato rice soup  

 vegetable beef soup  

 mallard duck meat  

 wild boar meat  

 dry red wine  

 sweet red wine  

 sweet white wine  

 yellow tail wine  

 aloe vera yogurt  

 bircher muesli yogurt  

 skim milk yogurt  

 yoplait french vanilla  

 yoplait greek blueberry  

 yoplait greek coconut  

 yoplait greek strawberry  

 yoplait greek vanilla  

 yoplait harvest peach  

 yoplait mixed berry  

 yoplait pina colada  

 yoplait strawberry banana  

 yoplait strawberry cheesecake  

 arctic circle restaurants  

 atlanta bread company  

 au bon pain  

 buffalo wild wings  

 california pizza kitchen  

 carinos italian grill  

 charleys philly steaks  

 chick fil a  

 chuck a rama  

 chuck e cheese  

 el pollo loco  

 el taco tote  

 gold star chili  

 in n out  

 jersey mikes subs  

 l&l hawaiian barbecue  

 lee roy selmons  

 long john silvers  

 noodles and company  

 port of subs  

 roy rogers restaurants  

 seattles best coffee  

 steak n shake  

 tudors biscuit world  

 beef ribs  

 acai juice  

 aloe vera  

 apple juice  

 apricot nectar  

 banana juice  

 blackberry juice  

 boysenberry juice  

 carrot juice  

 chamomile tea  

 cherry juice  

 coconut milk  

 coconut water  

 concord grape  

 cranberry juice  

 cucumber juice  

 currant juice  

 grape juice  

 grapefruit juice  

 lemon juice  

 lime juice  

 mango lassi  

 orange juice  

 papaya juice  

 peach juice  

 peach nectar  

 pear juice  

 pear nectar  

 pineapple juice  

 plum juice  

 pomegranate juice  

 sauerkraut juice  

 tangerine juice  

 tomato juice  

 vegetable juice  

 blue curacao  

 canadian whiskey  

 grand marnier  

 irish whiskey  

 jack daniels  

 jim beam  

 red wine  

 rose wine  

 sloe gin  

 southern comfort  

 triple sec  

 white wine  

 beef brisket  

 beef fillet  

 beef goulash  

 beef neck  

 beef pancreas  

 beef patty  

 beef ribs  

 beef sirloin  

 beef suet  

 beef tallow  

 beef thymus  

 beef tripe  

 chuck roast  

 chuck steak  

 filet mignon  

 flank steak  

 ground beef  

 ground chuck  

 ground round  

 minced veal  

 porterhouse steak  

 roast beef  

 rump steak  

 skirt steak  

 stew beef  
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 strip steak  

 veal breast  

 veal leg  

 veal shank  

 veal shoulder  

 veal sirloin  

 veal tenderloin  

 blue moon  

 bock beer  

 buckler na  

 bud ice  

 bud light  

 bud select  

 budweiser chelada  

 busch light  

 busch na  

 clausthaler na  

 colt 45  

 coors light  

 coors na  

 dark beer  

 ginger beer  

 honey brown  

 keystone ice  

 keystone light  

 lager beer  

 land shark  

 light beer  

 malt beer  

 michelob lager  

 michelob light  

 michelob ultra  

 miller chill  

 miller lite  

 milwaukees best  

 natural ice  

 natural light  

 nonalcoholic beer  

 odouls na  

 old milwaukee  

 olde english  

 pale ale  

 redbridge glutenfree  

 rolling rock  

 root beer  

 samuel adams  

 shock top  

 steel reserve  

 stout beer  

 strong beer  

 wheat beer  

 apple cake  

 apple cobbler  

 apple crisp  

 apple crumble  

 apple pie  

 apple strudel  

 apple turnover  

 applesauce cake  

 baked alaska  

 bakewell tart  

 banoffee pie  

 birthday cake  

 blueberry cobbler  

 blueberry muffin  

 blueberry pie  

 bundt cake  

 buttermilk pie  

 caramel cake  

 carrot cake  

 cherry pie  

 chess pie  

 chocolate cake  

 chocolate muffin  

 coconut cake  

 coffee cake  

 cream puff  

 crumb cake  

 danish pastry  

 french cruller  

 fruit cake  

 funnel cake  

 king cake  

 layer cake  

 lemon cake  

 madeira cake  

 marble cake  

 opera cake  

 peach cobbler  

 peach pie  

 pecan pie  

 plum cake  

 poppyseed cake  

 pound cake  

 puff pastry  

 pumpkin bread  

 pumpkin cheesecake  

 pumpkin pie  

 raspberry pie  

 rhubarb pie  

 rum cake  

 sacher torte  

 sponge cake  

 strawberry cheesecake  

 strawberry pie  

 swiss roll  

 tarte tatin  

 tiramisu cake  

 treacle tart  

 wedding cake  

 3 musketeers  

 after eight  

 almond roca  

 angel delight  

 animal crackers  

 baby ruth  

 buttermilk pancakes  

 candy apple  

 candy cane  

 candy canes  
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 candy corn  

 candy floss  

 caramel popcorn  

 caramel squares  

 chocolate bar  

 chocolate chips  

 cotton candy  

 eggy bread  

 fairy cakes  

 ferrero rocher  

 fortune cookies  

 granola bars  

 gummi bears  

 hershey kisses  

 jelly beans  

 jelly belly  

 jolly ranchers  

 jordan almonds  

 kit kat  

 laffy taffy  

 lindt chocolate  

 mars bar  

 milk duds  

 milky way  

 peanut bar  

 peanut brittle  

 peppermint bark  

 pop rocks  

 pumpkin seeds  

 rice pudding  

 roasted almonds  

 spritz cookies  

 take 5  

 whoopie pie  

 canned apricots  

 canned blackberries  

 canned blueberries  

 canned cherries  

 canned cranberries  

 canned figs  

 canned gooseberries  

 canned grapefruit  

 canned grapes  

 canned mango  

 canned mangosteen  

 canned oranges  

 canned peaches  

 canned pears  

 canned pineapple  

 canned plums  

 canned raspberries  

 canned strawberries  

 canned tangerines  

 dried fruit  

 barley groats  

 brown rice  

 buckwheat groats  

 corn waffles  

 millet flour  

 millet gruel  

 oat bran  

 pearl barley  

 prawn crackers  

 pretzel sticks  

 rye bran  

 savoury biscuits  

 spelt bran  

 spelt semolina  

 sunflower seeds  

 tortilla chips  

 wheat bran  

 wheat germ  

 wheat gluten  

 wheat semolina  

 wheat starch  

 wholegrain oat  

 american cheese  

 asiago cheese  

 blue cheese  

 cheese fondue  

 cheese spread  

 cheese whiz  

 colby cheese  

 colbyjack cheese  

 cottage cheese  

 dutch cheese  

 edam cheese  

 fresh mozzarella  

 goat cheese  

 grated parmesan  

 grilled cheese  

 italian cheese  

 maasdam cheese  

 manchego cheese  

 muenster cheese  

 raclette cheese  

 sheep cheese  

 soft cheese  

 stilton cheese  

 string cheese  

 swiss cheese  

 white cheddar  

 wisconsin cheese  

 baked ham  

 beef salami  

 boiled ham  

 chopped ham  

 corned beef  

 dutch loaf  

 ham sausage  

 head cheese  

 hickory ham  

 honey ham  

 olive loaf  

 parma ham  

 pimento loaf  

 pork roast  

 serrano ham  

 smoked ham  

 summer sausage  
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 turkey breast  

 turkey ham  

 turkey salami  

 cream cheese  

 baked beans  

 baked chicken  

 bbq ribs  

 beef stew  

 black pudding  

 black rice  

 butter chicken  

 california roll  

 chicken marsala  

 chicken parmesan  

 cobb salad  

 collard greens  

 corn dog  

 cottage pie  

 deviled eggs  

 dim sum  

 fried rice  

 fried shrimp  

 mashed potatoes  

 meat pie  

 orange chicken  

 pad thai  

 pea soup  

 peking duck  

 pork chop  

 potato salad  

 reuben sandwich  

 roast dinner  

 sausage roll  

 sausage rolls  

 shepherds pie  

 shrimp cocktail  

 sloppy joe  

 sloppy joes  

 spaghetti bolognese  

 spring roll  

 spring rolls  

 tandoori chicken  

 yorkshire pudding  

 bbq rib  

 bean burrito  

 angry whopper  

 double whopper  

 triple whopper  

 whopper jr  

 chicken breast  

 chicken fajita  

 chicken mcnuggets  

 chicken nuggets  

 chicken pizziola  

 chicken sandwich  

 chicken wings  

 chop suey  

 curly fries  

 double cheeseburger  

 egg roll  

 fish sandwich  

 french fries  

 ham sandwich  

 hot dog  

 italian bmt  

 big mac  

 egg mcmuffin  

 mighty wings  

 meatball sandwich  

 onion rings  

 smoked salmon  

 spicy italian  

 club sandwich  

 tortilla wrap  

 veggie burger  

 veggie delight  

 veggie patty  

 jr cheeseburger  

 zinger burger  

 fish fingers  

 fish sticks  

 pickled herring  

 red snapper  

 sea bass  

 tuna salad  

 blood oranges  

 custard apple  

 fruit salad  

 mandarin oranges  

 passion fruit  

 ciao bella  

 crunchie mcflurry  

 dippin dots  

 double rainbow  

 healthy choice  

 ice milk  

 magnum almond  

 magnum gold  

 magnum white  

 mcflurry oreo  

 mini milk  

 smarties mcflurry  

 soft serve  

 strawberry sundae  

 turkey hill  

 vanilla cone  

 azuki bean  

 bamboo shoots  

 bean curd  

 bean sprouts  

 bengal gram  

 black beans  

 black chickpeas  

 black gram  

 brown lentil  

 chili bean  

 deepfried tofu  

 extrafirm tofu  

 firm tofu  

 green beans  
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 green gram  

 green lentil  

 kidney beans  

 lima beans  

 mung beans  

 navy bean  

 pinto beans  

 puy lentils  

 red beans  

 red lentils  

 refried beans  

 roasted soybeans  

 silken tofu  

 soft tofu  

 soy cheese  

 soy mayonnaise  

 soy nuts  

 soy yogurt  

 soya cheese  

 soynut butter  

 sugar peas  

 sweet peas  

 white beans  

 yam bean  

 yellow lentils  

 beef jerky  

 beef tenderloin  

 chicken drumstick  

 chicken fat  

 chicken giblets  

 chicken gizzards  

 chicken leg  

 chicken liver  

 chicken meat  

 chicken thigh  

 chicken wing  

 cubed steak  

 pork chops  

 pork loin  

 pork steaks  

 round steak  

 spare ribs  

 tbone steak  

 turkey legs  

 turkey steak  

 turkey wings  

 almond milk  

 chocolate mousse  

 coffee creamer  

 condensed milk  

 creme fraiche  

 evaporated milk  

 goat milk  

 hot chocolate  

 lactosefree milk  

 plain yogurt  

 powdered milk  

 rice milk  

 semiskimmed milk  

 semolina pudding  

 skim milk  

 sour cream  

 soy milk  

 whipped cream  

 whole milk  

 ace drink  

 apple spritzer  

 chai tea  

 chocolate milk  

 chocolate milkshake  

 club mate  

 coca cola  

 coke zero  

 crystal light  

 diet coke  

 egg cream  

 egg nog  

 elderflower cordial  

 ginger tea  

 hawaiian punch  

 ice tea  

 iced tea  

 latte macchiato  

 milkshake dry  

 slush puppie  

 strawberry milkshake  

 tap water  

 vanilla milkshake  

 yerba mate  

 alfalfa sprouts  

 brazil nuts  

 chia seeds  

 cotton seeds  

 ginkgo nuts  

 goa bean  

 hickory nuts  

 lotus seed  

 macadamia nuts  

 pecan nuts  

 pili nuts  

 pine nuts  

 poppy seeds  

 radish seeds  

 safflower seeds  

 sesame seeds  

 smoked almonds  

 soy beans  

 sweet chestnut  

 bran flakes  

 capn crunch  

 chocolate cheerios  

 coco pops  

 cocoa krispies  

 cocoa pebbles  

 cocoa puffs  

 cookie crisp  

 corn flakes  

 corn pops  

 count chocula  

 crunchy nut  
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 fiber one  

 froot loops  

 frosted cheerios  

 frosted flakes  

 frosted miniwheats  

 fruity pebbles  

 golden grahams  

 honey smacks  

 just right  

 life cereal  

 lucky charms  

 multigrain cheerios  

 puffed rice  

 puffed wheat  

 quaker grits  

 quaker oatmeal  

 raisin bran  

 ready brek  

 rice chex  

 rice krispies  

 shredded wheat  

 smart start  

 special k  

 sugar puffs  

 cellophane noodles  

 cheese tortellini  

 dumpling dough  

 egg noodles  

 glass noodles  

 lasagne sheets  

 penne rigate  

 shirataki noodles  

 soy noodles  

 spinach tortellini  

 banana bread  

 beer bread  

 black bread  

 bran muffins  

 bread pudding  

 brown bread  

 cinnamon bun  

 english muffin  

 garlic bread  

 italian bread  

 matzo bread  

 monkey bread  

 multigrain bread  

 oatmeal cookies  

 pita bread  

 potato bread  

 pretzel roll  

 raisin bread  

 rye bread  

 sandwich bread  

 shortcrust pastry  

 soda bread  

 sourdough bread  

 spice cake  

 sweet rolls  

 tortilla bread  

 white bread  

 bbq pizza  

 beef pizza  

 bianca pizza  

 calabrese pizza  

 capricciosa pizza  

 cheese pizza  

 chicken pizza  

 grilled pizza  

 hawaiian pizza  

 margherita pizza  

 mozzarella pizza  

 mushroom pizza  

 napoli pizza  

 pepperoni pizza  

 pizza dough  

 pizza rolls  

 salami pizza  

 sausage pizza  

 seafood pizza  

 shrimp pizza  

 sicilian pizza  

 spinach pizza  

 tarte flambe  

 tuna pizza  

 vegetable pizza  

 vegetarian pizza  

 veggie pizza  

 white pizza  

 canadianstyle bacon  

 ground pork  

 hog maws  

 pig ear  

 pig fat  

 pigs tail  

 pigs trotter  

 pork bacon  

 pork belly  

 pork cutlet  

 pork cutlets  

 pork leg  

 pork meatloaf  

 pork ragout  

 pork ribs  

 pork sausage  

 pork shank  

 pork shoulder  

 pork stomach  

 salt meat  

 salt pork  

 allblue potatoes  

 baked potato  

 boiled potatoes  

 fried potatoes  

 marrow dumplings  

 potato dumpling  

 potato fritter  

 potato gratin  

 potato pancakes  

 potato starch  
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 potato sticks  

 potato waffles  

 potato wedges  

 red potatoes  

 roast potatoes  

 rosemary potatoes  

 russet potatoes  

 sweet potato  

 white potatoes  

 chicken drumsticks  

 chicken legs  

 chicken thighs  

 cornish hens  

 duck breast  

 ostrich meat  

 pheasant breast  

 pheasant leg  

 quail breast  

 turkey cutlet  

 turkey drumsticks  

 wild duck  

 blood sausage  

 cheese pastry  

 chicken salad  

 cooked ham  

 cumberland sausage  

 garlic sausage  

 hot dogs  

 hot sausage  

 italian sausage  

 liver pate  

 luncheon meat  

 polish sausage  

 pork roll  

 ring bologna  

 smoked sausage  

 butter cheese  

 cheese platter  

 cheese slices  

 esrom cheese  

 fol epi  

 gouda cheese  

 leerdammer cheese  

 pepper cheese  

 sandwich cheese  

 smoked cheese  

 white american  

 young gouda  

 bitter lemon  

 cherry coke  

 diet pepsi  

 diet sunkist  

 dr browns  

 dr pepper  

 fanta zero  

 five alive  

 full throttle  

 fuze tea  

 ginger ale  

 jolt cola  

 mello yello  

 minute maid  

 orange soda  

 pibb xtra  

 sprite zero  

 tonic water  

 vanilla coke  

 alphabet soup  

 bean stew  

 beef bouillon  

 beef soup  

 broccoli soup  

 cabbage soup  

 carrot soup  

 chicken bouillon  

 chicken broth  

 chicken stock  

 instant ramen  

 lentil soup  

 meatball soup  

 mushroom soup  

 noodle soup  

 onion soup  

 oxtail soup  

 potato soup  

 pumpkin soup  

 scotch broth  

 thai soup  

 tomato soup  

 vegetable broth  

 vegetable soup  

 vegetable stock  

 wedding soup  

 asian pear  

 cantaloupe melon  

 casaba melon  

 dragon fruit  

 galia melon  

 maraschino cherries  

 pink grapefruit  

 prickly pear  

 soursop fruit  

 star fruit  

 bell pepper  

 black olives  

 brussels sprouts  

 cherry tomato  

 chinese cabbage  

 creamed spinach  

 green olives  

 green onion  

 mustard greens  

 red cabbage  

 turnip greens  

 winter squash  

 alligator meat  

 antelope meat  

 bear meat  

 beaver meat  

 bison meat  
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 bison sirloin  

 buffalo meat  

 goose meat  

 lamb meat  

 mallard meat  

 moose meat  

 mutton meat  

 pheasant meat  

 racoon meat  

 reindeer meat  

 squirrel meat  

 venison sirloin  

 wild boar  

 cabernet sauvignon  

 chenin blanc  

 chocolate wine  

 malbec wine  

 marsala wine  

 merlot wine  

 moscato wine  

 mulled wine  

 pinot gris  

 pinot noir  

 plum wine  

 port wine  

 red wines  

 riesling wine  

 sauvignon blanc  

 sparkling wine  

 sweet wines  

 white zinfandel  

 activia lemon  

 activia strawberry  

 blueberry yogurt  

 cherry yogurt  

 chocolate yogurt  

 cream yogurt  

 creamy yogurt  

 diet yogurt  

 fruit yogurt  

 greek yogurt  

 lowfat yogurt  

 mocca yogurt  

 organic yogurt  

 peach yogurt  

 probiotic yogurt  

 stracciatella yogurt  

 strawberry yogurt  

 vanilla yogurt  

 yogurt corner  

 yoplait mango  

 yoplait strawberry  

 baskin robbins  

 a&w restaurants  

 arthur treachers  

 auntie annes  

 baja fresh  

 boston market  

 burger chef  

 burger king  

 burger street  

 carls jr  

 cheeburger cheeburger  

 chicken express  

 churchs chicken  

 cocos bakery  

 cold stone  

 cook out  

 dairy queen  

 del taco  

 duck donuts  

 dunkin donuts  

 el chico  

 elevation burger  

 farmer boys  

 firehouse subs  

 five guys  

 fosters freeze  

 golden chick  

 halal guys  

 huddle house  

 jamba juice  

 jasons deli  

 jimmy johns  

 jims restaurants  

 johnny rockets  

 krispy kreme  

 lions choice  

 little caesars  

 maid rite  

 marcos pizza  

 mcalisters deli  

 milos hamburgers  

 mod pizza  

 mrs fields  

 mrs winners  

 panda express  

 papa johns  

 papa murphys  

 pita pit  

 pizza hut  

 pollo tropical  

 shake shack  

 skyline chili  

 sneaky petes  

 steak escape  

 taco bell  

 taco bueno  

 taco cabana  

 taco johns  

 taco mayo  

 taco tico  

 taco time  

 tim hortons  

 twin peaks  

 umami burger  

 wetzels pretzels  

 white castle  

 caprisun  

 clamato  
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 lemonade  

 limeade  

 nestea  

 absinthe  

 amaretto  

 applejack  

 asti  

 baileys  

 beer  

 bourbon  

 brandy  

 chambord  

 champagne  

 cider  

 cognac  

 cointreau  

 drambuie  

 frangelico  

 gin  

 jagermeister  

 kahlua  

 liqueur  

 liquor  

 midori  

 prosecco  

 punch  

 rum  

 sambuca  

 sangria  

 scotch  

 sherry  

 tequila  

 vermouth  

 vodka  

 whisky  

 wine  

 beef  

 veal  

 ale  

 bass  

 becks  

 budweiser  

 busch  

 coors  

 corona  

 guinness  

 heineken  

 ipa  

 molson  

 pilsner  

 porter  

 sparks  

 stout  

 tilt  

 cheesecake  

 cupcake  

 donut  

 doughnut  

 flan  

 gingerbread  

 meringue  

 paczki  

 pancake  

 panettone  

 profiterole  

 tiramisu  

 trifle  

 waffles  

 airheads  

 butterfinger  

 celebrations  

 chocolate  

 cookies  

 flapjack  

 gumdrops  

 licorice  

 lifesavers  

 liquorice  

 lollipop  

 mms  

 maltesers  

 marshmallows  

 marzipan  

 payday  

 pez  

 popcorn  

 rolo  

 smores  

 semolina  

 skittles  

 smarties  

 snickers  

 speculoos  

 toblerone  

 twix  

 applesauce  

 amaranth  

 barley  

 buckwheat  

 cornmeal  

 cornstarch  

 couscous  

 cracker  

 flaxseed  

 freekeh  

 gluten  

 grissini  

 kamut  

 millet  

 polenta  

 quinoa  

 rusk  

 sago  

 shortbread  

 spelt  

 tortilla  

 applewood  

 babybel  

 brie  

 camembert  
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 cheddar  

 chester  

 emmentaler  

 feta  

 fontina  

 gjetost  

 gorgonzola  

 gouda  

 gruyere  

 halloumi  

 havarti  

 jarlsberg  

 monterey  

 mozzarella  

 neufchatel  

 parmesan  

 pecorino  

 provolone  

 ricotta  

 romano  

 roquefort  

 bologna  

 bresaola  

 capicola  

 chorizo  

 ham  

 liverwurst  

 pastrami  

 pepperoni  

 prosciutto  

 salami  

 tongue  

 horseradish  

 mascarpone  

 biryani  

 blt  

 burrito  

 chimichanga  

 dal  

 dosa  

 enchiladas  

 fajita  

 hummus  

 jambalaya  

 kebab  

 lasagne  

 meatloaf  

 naan  

 paella  

 paratha  

 pizza  

 ramen  

 ravioli  

 samosa  

 taco  

 reuben  

 bratwurst  

 whopper  

 cheeseburger  

 falafel  

 hamburger  

 lasagna  

 mcchicken  

 mcdouble  

 mcrib  

 tuna  

 turkey  

 baconator  

 zinger  

 poutine  

 anchovy  

 bluefish  

 bream  

 butterfish  

 calamari  

 carp  

 caviar  

 clam  

 cod  

 crawfish  

 crayfish  

 eel  

 flounder  

 grouper  

 haddock  

 hake  

 halibut  

 herring  

 hoki  

 kipper  

 ling  

 lobster  

 mackerel  

 milkfish  

 monkfish  

 mullet  

 mussel  

 octopus  

 pickerel  

 pike  

 pollack  

 redfish  

 salmon  

 sardines  

 scallops  

 scampi  

 shad  

 shark  

 smelt  

 sole  

 squid  

 sturgeon  

 sushi  

 swordfish  

 trout  

 turbot  

 wahoo  

 whitefish  

 whiting  

 acai  
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 apple  

 apricot  

 avocado  

 banana  

 blackberries  

 blueberries  

 cantaloupe  

 cherries  

 clementine  

 cranberries  

 currants  

 dates  

 figs  

 grapes  

 guava  

 jackfruit  

 jujube  

 kiwi  

 lemon  

 lime  

 lychees  

 mango  

 mulberries  

 nectarine  

 olives  

 orange  

 papaya  

 peach  

 pear  

 persimmon  

 physalis  

 pineapple  

 plantains  

 plum  

 pomegranate  

 quince  

 raisins  

 rambutan  

 raspberries  

 rhubarb  

 starfruit  

 strawberries  

 tamarind  

 tangerine  

 watermelon  

 carvel  

 drumsticks  

 friendlys  

 magnolia  

 magnum  

 mcflurry  

 schwans  

 solero  

 sundae  

 butternut  

 chickpeas  

 flageolet  

 lentils  

 marron  

 miso  

 natto  

 okara  

 okra  

 peanuts  

 peas  

 pecan  

 rajma  

 soybeans  

 tempeh  

 tofu  

 yuba  

 alligator  

 chicken  

 duck  

 ostrich  

 pork  

 schnitzel  

 buttermilk  

 cream  

 curd  

 custard  

 kefir  

 lassi  

 milk  

 quark  

 tzatziki  

 yogurt  

 chai  

 coffee  

 cola  

 evian  

 gatorade  

 hic  

 horchata  

 kombucha  

 milo  

 nectar  

 powerade  

 slurpee  

 smoothie  

 tang  

 tea  

 water  

 acorn  

 almonds  

 beechnut  

 breadfruit  

 cashew  

 chestnut  

 coconut  

 hazelnut  

 pecans  

 pistachios  

 walnuts  

 cheerios  

 chex  

 chocos  

 frosties  

 honeycomb  

 kashi  
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 kix  

 krave  

 muesli  

 oatmeal  

 puff  

 scooters  

 toasties  

 trix  

 weetabix  

 wheaties  

 cannelloni  

 capellini  

 farfalle  

 fettuccine  

 fusilli  

 linguine  

 macaroni  

 manicotti  

 mostaccioli  

 orecchiette  

 orzo  

 penne  

 pierogi  

 rigatoni  

 rotini  

 shells  

 spaetzle  

 spaghetti  

 tagliatelle  

 tortellini  

 vermicelli  

 ziti  

 bagel  

 baguette  

 biscuit  

 breadsticks  

 brioche  

 brownies  

 bun  

 cannoli  

 challah  

 chapati  

 ciabatta  

 cornbread  

 crepes  

 croissant  

 crumpet  

 cupcakes  

 empanada  

 flatbread  

 focaccia  

 latkes  

 muffin  

 pie  

 pretzel  

 pumpernickel  

 roll  

 roti  

 sandwich  

 scone  

 souffl  

 spanakopita  

 toast  

 calzone  

 bacon  

 chitterlings  

 lard  

 spareribs  

 cassava  

 croquettes  

 dumplings  

 gnocchi  

 omelette  

 potato  

 rsti  

 yams  

 capon  

 dove  

 emu  

 goose  

 pheasant  

 pigeon  

 poularde  

 quail  

 andouille  

 bockwurst  

 boudin  

 frankfurters  

 jerky  

 kielbasa  

 knackwurst  

 landjaeger  

 linguica  

 mettwurst  

 mortadella  

 sausage  

 souse  

 spam  

 weisswurst  

 edam  

 emmental  

 tilsit  

 7up  

 barqs  

 coke  

 fanta  

 fresca  

 fuze  

 pepsi  

 soda  

 sprite  

 squirt  

 sunkist  

 surge  

 tab  

 bouillon  

 goulash  

 minestrone  

 succotash  

 acerola  
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 cherimoya  

 durian  

 feijoa  

 grapefruit  

 honeydew  

 kumquat  

 lychee  

 mangosteen  

 maracuya  

 muskmelon  

 noni  

 plantain  

 pomelo  

 sapodilla  

 artichoke  

 arugula  

 asparagus  

 aubergine  

 beetroot  

 broccoli  

 cabbage  

 capsicum  

 carrot  

 cauliflower  

 celery  

 chard  

 chicory  

 chives  

 corn  

 courgette  

 cucumber  

 eggplant  

 endive  

 fennel  

 garlic  

 gherkin  

 gourd  

 kale  

 kohlrabi  

 leek  

 lettuce  

 mushrooms  

 nori  

 onion  

 parsnips  

 pepper  

 pumpkin  

 radishes  

 rutabaga  

 shallots  

 spinach  

 squash  

 tomato  

 turnips  

 wasabi  

 zucchini  

 bison  

 buffalo  

 caribou  

 lamb  

 moose  

 mutton  

 rabbit  

 reindeer  

 squirrel  

 venison  

 cava  

 chardonnay  

 gamay  

 merlot  

 riesling  

 shiraz  

 zinfandel  

 activia  

 ayran  

 arbys  

 blimpie  

 bojangles  

 braums  

 burgerville  

 checkers  

 rallys  

 chicfila  

 chipotle  

 chuckarama  

 cinnabon  

 culvers  

 dibellas  

 dominos  

 druthers  

 duchess  

 eegees  

 fatburger  

 hardees  

 kfc  

 kewpee  

 krystal  

 mcdonalds  

 moes  

 mooyah  

 naugles  

 panera  

 popeyes  

 potbelly  

 qdoba  

 quiznos  

 rax  

 robeks  

 saladworks  

 sbarro  

 schlotzskys  

 smashburger  

 sonic  

 spangles  

 starbucks  

 subway  

 swensens  

 swensons  

 wendys  

 whataburger  
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 wienerschnitzel  

 wimpy  

 wingstop  

 zaxbys  

 zippys  

 
 
 

Appendix B: COVID-19 Vaccine Keyword List 
 
phizer 
vaccine 
moderna 
dose 
doses 
vaccines 
johnson and 
johnson 
johnson johnson 
johnson & johnson 
johnsonandjohnson 
johnson&johnson 
johnsonjohnson 
shot 
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