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Abstract

One-step majority-logic decoding is one of the simplest algorithms for decoding cyclic block codes.
However, it is an effective decoding scheme for very few codes. This paper presents a gener-
alization based on the “common-symbol decoding problem.” Suppose one is given M (possibly
corrupted) codewords from M (possibly different) codes over the same field; suppose further that
the codewords share a single symbol in common. The common-symbol decoding problem is that
of estimating the symbol in the common position. (This is equivalent to one-step majority logic
decoding when each of the “constituent” codes is a simple parity check.) This paper formulates
conditions under which this decoding is possible and presents a simple algorithm that accom-
plishes the same. When applied to decoding cyclic block codes, this technique yields a decoder
structure ideal for parallel implementation. Furthermore, this approach frequently results in a
decoder capable of correcting more errors than one-step majority-logic decoding. To demonstrate
the simplicity of the resulting decoders, an example is presented.

t Supported in part by National Science Foundation grant NCR-8957623; also by the NSF Engi-
neering Research Centers Program, CDR-8803012. Portions of this paper were presented at the

1991 International Symposium on Information Theory, June 23-28, 1991, Budapest, Hungary



Captions:

Figure 1: M codewords that share a common symbol.

Figure 2: M codewords sharing a common symbol being transmitted over a noisy channel.
Figure 3: Block diagram of the common-symbol decoding algorithm.

Figure 4: Common-symbol decoder for cyclic codes.

Figure 5: Common-symbol decoder for the (21, 8, 6) cyclic code.

Table 1: Some cyclic codes for which the common-symbol decoding algorithm corrects/detects more
errors than one-step majority logic decoding.

Table 2: The truth table for common-symbol decoding of the (21, 8, 6) cyclic code.



I. Introduction

One-step majority-logic decoding (first studied in detail by Massey [1]), is perhaps the simplest
decoding strategy for decoding linear block codes. Unfortunately, it does not apply effectively to
many codes. On the contrary, there are only several small classes of codes for which one-step

majority-logic decoding (MLD) is capable of correcting | (dmin — 1)/2] errors [1-5].

A lot of effort has gone into modifying one-step majority-logic decoding so that it can be used to
decode a larger class of codes. Usually, a little of the simplicity is sacrificed to achieve wider
applicability. In [1], Massey generalized his one-step majority-logic decoding algorithm to an
L-step algorithm and demonstrated its applicability to a larger class of codes. This algorithm
was shown to be formally equivalent to the Reed algorithm for decoding Muller codes by Gore [6].
Chen [7], and Kasami and Lin [8] showed that the L-step majority-logic decoding algorithm is
optimal for decoding finite-geometry codes. Rudolph [9-10] suggested a different generalization
of majority-logic decoding involving non-orthogonal parity-checks and a weighted thresholding.
Though applicable to all cyclic codes over F,, its use has been limited by the need to find an
appropriate set of parity-checks and a corresponding set of weights. Another generalization was
proposed by Gore [11]that decodes Reed-Solomon codes optimally, and others by Assmus et.al. [12],
and Gore [13].

The work in this paper can be viewed as yet another generalization of majority-logic decoding.
One-step majority-logic decoding can be crudely described as follows: First, find J parity-checks
orthogonal on the first symbol position of the code. Each of these parity-checks acts as a vote on
the error value in that position. The majority vote is accepted as the error in the first position.
This is repeated for every symbol position of the code to construct the error in the codeword. (For
a more rigorous description, see [1].)

Upon closer examination, it can be seen that the J orthogonal parity-checks describe .J simple
parity check codes; that is, if one looks only at the symbol positions indicated by a particular parity
check, the set of symbols that can be legitimately placed in those positions forms a simple linear
code with minimum distance two. Thus, one-step majority logic decoding may be viewed as the
process of decoding the one symbol common to J codewords from .J different parity-check codes.

An immediate generalization springs to mind: What if codes other than simple parity-check codes
are used in this same manner ? It is reasonable to assume that doing so might allow us to decode a
larger class of codes optimally. In other cases, we might expect that this decoding strategy, though
sub-optimal, would correct more errors than the one-step majority-logic decoding algorithm. Fur-
thermore, the proposed generalization potentially retains the most appealing aspect of MLD: Tt
takes a difficult problem—decoding a powerful block code—and breaks it down into several easier
problems—decoding less powerful codes—that can be done in parallel.



In [14], Fuja, Heegard and Goodman considered the following special case of decoding a symbol
common to two codewords: Suppose one is given two (possibly corrupted) codewords from two
(possibly different) linear block codes over Fy—an (n1, k1, dy ) code C; and an (ny, k2, dy ) code Cs.
Suppose further that they share a single symbol in common—that is, the two codewords together
consist of n; + ny — 1 symbols, with n; — 1 symbols belonging to the codeword from C; alone,
ny — 1 symbols belonging to the codeword from C; alone, and a single symbol belonging to both.
The problem addressed was: When can the common symbol be corrected? In [14], it is shown that
as long as no more than |(d; — 1) /2] errors occur in the nq + ny — 1 symbols making up the two

codewords, the common symbol can be recovered; here d; = d; + dy — 1.

In Section 3, we consider the generalization of this problem to the case where the symbol is common
to M > 2 codewords. This problem is called the common-symbol decoding problem. In Section 4,
a decoding algorithm that accomplishes this goal is developed. The algorithm is conveniently
* structured in that each “constituent” codeword is decoded in isolation, and the partial results are
then “pooled” to obtain a final estimate of the common symbol. In Section 5, we demonstrate the
applicability of the common-symbol decoding problem to decoding linear cyclic block codes. The
resulting decoder structure is highly suited to a parallel implementation. Section 6 presents a list
of some of the codes that we found for which the common-symbol decoding algorithm corrects more
errors than the one-step majority-logic decoding algorithm. As an example, Section 7 describes a
simple implementation of a decoder for a (21, 8, 6) linear, cyclic, binary block-code that corrects
all double errors. Section 8 concludes this paper. First however, we introduce some notation, and
preliminary material.

II. Notation and Background

Throughout this paper, we shall denote the Galois Field with ¢ elements and the associated set
by F,. Furthermore, we shall use F to represent the product space F; x Fy; x --- X F,.

Unless otherwise stated, in this paper, we shall assume a minimum-distance decoding strategy as
defined below.

Definition 1 (Minimum-Distance Decoding): Let C be a linear block code of block-length n

over F,. For any vectorr = (r1,72,...,Tn) € F;’, and foreach ¢ = 1,2,...,n,define a mapping

©; : F; — F U {?}



as follows: Whenever there exists a unique solution u; to

u; = argmin min du(r,c). (2.1)
acF, c=(c1,c2,...,cn)EC:
Ci=0

A . . . , ,
define ®;(r) = u; as that unique solution. If however there exists more than one solution to (2.1),

A .
we define ®;(r) = ?. Then, the mapping ®; defines the minimum-distance decoder for the ith
symbol-position of the code C. The mapping onto a “?” implies a decoder failure.

Next, we define the symbol-protection distance of a code and state (without proof) some associated
lemmas. These results are drawn from the work on unequal error protection by Masnick and Wolf
[15].

Definition 2 : Let C be a linear block code of block-length n defined over ¥,. For each i =

1,2,...,n, the symbol-protection distance of the ith symbol is defined as

e

d; min du(x,y).

X:(zl,zg,...,xn),
y=(y17y27"'7yn)ec
TiFYi

That is, d; is the minimum distance between codewords of C that differ in the ith position. (It
is possible that the minimum above may not be defined—i.e., if all of the codewords in C contain

a zero in the :*" position. In such a case the i** symbol is useless, and so we shall ignore this
possibility.)

Lemma 1. (The Symbol-Protection Lemma) Let r = ¢ + e, where ¢ = [c¢1,¢2,...,¢y] €

C, and let d; be the symbol-protection distance of the i** symbol of C. Then minimum distance
decoding will recover c; from r provided

Furthermore, if d; is even, and wt(e) = d;/2, then it is possible to either correctly decode c; or to
detect the presence of an uncorrectable error.

Lemma 2. There exists an error pattern with weight wt(e) = |d; /2| + 1 for which the ith symbol
is decoded erroneously.

Proofs of Lemmas 1 and 2 follow from recognizing that the symbol-protection distance of the ith
symbol (d;), is related to the unequal error protection (f;) of Masnick and Wolf [15] by f; =



[(di —1)/2].

The decoding algorithms we shall consider in this paper are of a symbol-by-symbol decoding form.
Therefore, the relevant parameter of the code is not its minimum distance, but rather the symbol-
protection distance (or equivalently, the unequal error protection) of the associated symbol.

II1. The Common-Symbol Decoding Problem

Consider M linear block codes C1,Cz,...,Cp, each defined over F; assume that C; has block-
length n;. Suppose that we select one codeword from each code for transmission over a noisy
channel; suppose further that we always select the codewords for transmission so that the first
symbol in each codeword is the same, and we transmit this common symbol only once. To illustrate,
let

c,'=(ci’1,ci,2,...,c,’,m)GC,’, 1=1,2,...,. M

be such a set of M codewords. Then foreach: =1,2,..., M, «¢;2,¢i3,...,Cin; arethen; —1

symbols that belong only to ¢;. The first symbol in each codeword c* 2 €11 =C20 = " =CM,1
is common to each of them. (See Fig. 1.)

Let r; = ¢; + e; be the (possibly corrupted) received n;-tuple for = = 1,2,...,M. The e;’s
therefore represent the error patterns. Since the common symbol was transmitted only once,
any possible error in the common symbol affects the first symbol of every codeword similarly (i.e.
€1,1 = €2,1 = -+ = ep,1), and therefore the received n;-tuples also share the first symbol in

common (i.e., 71,1 =721 = -+ =7TM,1). (See Fig. 2.)

The Common-Symbol Decoding Problem: Suppose one is given M (possibly corrupted) code-
words ry,rs2,...,ry, one from each of the codes C1,Ca,...,Cur; suppose further that these M
codewords have a common first symbol, as described above. Under what conditions can the com-
mon symbol be correctly estimated?

Our approach to solving the common-symbol decoding problem shall be as follows: We shall con-
struct a code C whose codewords are equivalent to all the possible selections of M codewords
from the M codes C1,Cs,...,Cp. We shall then describe necessary and sufficient conditions
under which a minimum distance decoder for the common position in C will always yield a correct
estimate.

Theorem 1. (The Common-Symbol Decoding Theorem) Given M (possibly corrupted) code-
words v,v,, ... vy as described above, it is possible to correctly estimate the common symbol

provided no more than |(8—1)/2] errors have occurred throughout then = ny +na+---+np —



(M — 1) transmitted symbols. Here

= ()
= Zsl _(M_1)7

where  §; = min wt(e).
c:(cl,CQ,...,Cni)ECi
C]#O

Further, if 8 is even and 8/2 errors occur, then it is possible to either correctly decode the common
symbol, or to detect the presence of an uncorrectable error.

Proof. Consider aset T C F;’l X F’;2 X ++o x FyM defined as
A i
T = {(Xl,x2,... ,XM) 1 X; = (.’I)i,l,xi’Q,.. . ’-Ti,M) € Fq and 11 =221 = = IM,I}-

Therefore each element of T is a collection of M vectors over F, that share the first symbol between

them. Now define an invertible mapping
A: T+ F,

where n = ny +ns +...ny — (M — 1), by

*
A(Xl,XZ, e ,XM) - ( T ,wl’z,wl,g, . e ,.’171,711 ,5132,2, [P ,.’132;,,2, CL'3,2 e
L ,mM—l,nM_la-fCM,Q, AR S'I.M,‘n]u )
where z* = 211 = 22,1 = --+ = zpm,1. Thatis, A(x1,%2,...,Xp) represents a concatenation
of the M vectors x1,X5,...,X3s into the n~tuple x: the common symbol appears only once—at

the first position in x.

Now construct a code C as follows:
VAN
C={c=Aler,ca,...,epm):e; €C;y, and c11=co1=""-=CM1}.

Then C is also a block code over F, with block-length n. The common-symbol decoding problem

therefore reduces to performing minimum-distance decoding of the first symbol of C and Lemma 1
and 2 can be applied.

Indeed, let H; = (h; 1,h; ... ,h; ,,) be the parity-check matrix for the code C;. Here h; ;, j =
1,2,...,n; represent the n; column-vectors of the parity-check matrix H;. Then, it can easily be
shown that the parity-check matrix H of the code C is given by

hl,l h1’2 ---}ll’n1 0 e cee eee eee ees cee e 0

h2’1 0 LI 0 h2,2 .« h2’n2 0 ...... 0
H= o

Bars 0 oo oo e e e aee ol 0 hyz - harny,



where the 0’s are all-zero column vectors of appropriate lengths.

For each 1 = 1,2,..., M, let a; be a codeword from C; with wt(a;) = §; and ¢;; = 1. By
definition of §;, such a codeword is guaranteed to exist. Thena = A(a;,as,...,apr)is a codeword
from C. Furthermore, this is the (possibly non-unique) minimum-weight codeword of C containing
a non-zero symbol in the first position. Its weight is therefore, by linearity, the symbol-protection
distance of the first symbol in C. Showing that

M

wi(a) = » (wt(a;) —1) +1

i=1

M
=) (6i-1) +1

=0

and invoking Lemma 1 completes the proof. 0

Theorem 2. There exists an error pattern e with wt(e) = |8/2| + 1 for which the common symbol
is decoded erroneously.

Proof. In the proof of Theorem 1 we showed that the symbol protection distance of the first
symbol in C is 8. So the result follows by invoking Lemma 2. O

Theorem 1 places a restriction on the number of errors that may occur in the n symbols, and
still guarantee correct decoding of the common symbol, and Theorem 2 shows that this condition
cannot be made less restrictive.

Finally, we should note that Theorems 1 and 2 are consistent with the analogous results for one-
step majority logic decoding. If each of the codes are simple parity checks then §; = 2 for all z;
this in turn implies § = M + 1 and so we have the following familiar result: If we can find M
orthogonal parity checks on a position, then it is possible to correctly estimate the value in that
position in the presence of up to [M /2| errors. Further, if M is odd, then the presence of any
(M + 1)/2 errors can be detected.

IV. The Common-Symbol Decoding Algorithm for Binary Codes

In Section 3 we showed that it is possible to correctly estimate a symbol common to M codewords
provided no more than |(8— 1)/2] errors have occurred; here § = §; + 8, + ...+ éy — (M — 1)

and J; is the minimum Hamming distance between any two codewords in the ¢ th constituent code
differing in the common position. Unfortunately, the method used to prove this result assumed



the existence of a large “super-decoder” for the “super code” constructed from the constituent
codes. Since our ultimate goal is to use these constituent codes to simplify decoding of the “super
code”—just as in majority logic decoding we decode a powerful code by decoding several parity
check codes—the method used in Section 3 is unacceptable.

In this section we develop an algorithm for decoding a symbol common to binary M codewords
that is naturally distributed. That is, the algorithm consists of first decoding the constituent codes
and then “pooling” their collective results in a simple way to estimate the common symbol.

Let C1,C3,...,Cp be M linear binary block codes. Assume the block-length of C; is n;, and let
d; be the symbol-protection distance of its first symbol position. That is,

8 = min wt (e).
c:(01)02’--"CM)€C"

01750

Furthermore, let ¢; € Cy,e3 € Ca,...,ep € Cpr be M codewords that share the first sym-

bol between them ie. ¢;1 = c23 = --- = cym,1. Then 2 ny+ny+...+ny—(M-—1)
symbols that make up these codewords are transmitted over a noisy channel, Let r; = ¢; + e;
represent the received n;-tuples. As was pointed out earlier, the common symbol is transmitted
only once. Therefore the e;’s and the r;’s also share the corresponding common-symbols. That
is, 11 = ey = - =eypandry; =ry1 = -+ = ry;. (Note: ¢;,ri,e; € Fy' for each

1 =1,2,...,M.) We now define the following terms:

(i) e = A(e1,ez,...,en). That is, e consists of a concatenation of all the errors in all
of the codewords, with the common errors occurring once in the first position. Let ¢
denote that value in the first position.

(ii) {: the number of errors in the common position—i.e., { = life; = 1 and and { = 0 if
e; = 0. (The distinction: {is a number and e; is an element of F'5.)

(iii) 7: the final estimate of ey, the error in the common position. 7) € F.

(iv) 7; = wt (e;): the number of errors that actually occurred in ¢; foreach: = 1,2,..., M.

(v) Foreachi = 1,2,..., M let D; : F}' — C; U {?} be a decoder for the :"* code defined
as follows:

v & | argmin {du(x,r;) :x € Si(r;)}, if Si(r;) # O ;
Dites) = {?, ’ if Si(ri) = @;



where

Si(rs) £ {y € Ci : duly,r:) < [(8 — 1)/2)}.

Remark: D; represents a bounded distance decoder with a slight “twist”. Since §; is the
symbol-protection distance for the first position in C; — and not the minimum distance
— it follows that S;(r;) may contain more than one codeword; the decoder selects as its
output the codeword in S;i(r;) that is closest to the received n;-tuple. Note that all of
the elements in S;(r;) must have the same first symbol. Note also, it is possible that
there are multiple solutions to the above equation—i.e., it is possible that there may
exist many codewords in S;(r;) that are each “closest” to r;. In such a case we do not

care which of the possible solutions is chosen.

~ . . "~ A

(vi) &;: the sth decoder’s estimate of e;. Whenever D;(r;) # ?, let ¢; = D;(r;) for each
. ~ A n P ANEN AN N
t = 1,2,...,M. Then &; = (r; — ¢;). Further define }; = ¢é;1 and 7, = wt(&;).
Therefore 7); represents the :th decoder’s estimate of the error in the common position

and 7; represents its estimate of wt(e;). When D;(r;) = ?, this information is somehow
conveyed. (One arbitrary way to do thisistoset }; = 1,7; = 0.)

Remark: The decoding algorithm that we shall subsequently develop does not re-
quire a knowledge of €;, but only of 7}, and 7;. This fact may in some cases result in a
simplification of the decoder structure.

(vi) U £ {¢ : Di(r;) = ?}: the indices of all those decoders that detect an uncorrectable

error. We will denote by U° the complement of this set—i.e., the indices of all those
decoders that come up with a codeword estimate (whether right or wrong).

A ., . . qe .
(viii) R = {¢:1); = e1,t € U°}: the indices of all those decoders that come up with the
correct estimate of the error in the common position.

) W 2 {¢: N; # e1,2 € U°}: the indices of all those decoders that come up with an

incorrect estimate of the error in the common position.

P .
(x) Eg = {¢:7; = 0,¢ € U°}: the indices of all those decoders that estimate a “0” for the
error in the common position.

. AL L . e e .
(xi) E; = {¢: f); = 1,7 € U°}: the indices of all those decoders that estimate a “1” for the
error in the common position,

10



Remark: Note that Eq and E; partition U’ -ie,,E) NE; = J,and Eg UE, = U“.
Similarly R and W also partition U°.

We develop the decoding algorithm through the following series of lemmas.
Lemma 3. Forall: € US, it holds that ©; > 7;.

Lemma 4. Forall: € U, it holds that 21; > 6;.

Lemma 5. Forall: € W, it holds that ©; > 6; — 1;.

Proof of Lemmas 3-5 follow from the properties of the Hamming metric, and by definition of the
Dy’s.

Lemma 6. If e is an error pattern such that wt(e) < |(6 — 1)/2] then

fore; =1: Z(2Ti—6i)§M—2

i€Uc
fore; =0: — Z §; < Z (21, — &) < —M.
ielUe icU°

Proof. Let e satisfy wt(e) < |(§ — 1)/2]. Then

M
=  2wt(e)+1< (Z5i) -M+1

M ) M
= 2(2@—0) +20+1< (Z&-) ~M+1

= Y @u-8&)+ Y @u-8&)<M(2-1)-2¢ (4.1)

€U 1€Uc

From Lemma 4 we have

2(21,' —8;) > 0.

ieU

Therefore, for e; = 1(¢ { = 1), we have

Z (2"[,'—5,') <M - 2.
ieUe

For e; = 0, using the fact that 7; > 0, and (4.1) we have

—-Z(S,'S Z(ZT,‘—(S,‘)S—M.

ieUe ieUe

11



This completes the proof of Lemma 6.

Corollary 6. If Z 8; < M then, either 1 # 0orwt(e) > |(6 —1)/2].
ieUe

Proof. Follows as the contra-positive of Lemma 6.

Lemma 7. If éis even, and e is an error pattern such that wt (e) = 8/2, then

fore; =1: Z(2T,~—5i)§M—1

icU°
fore;=0: = > &< Y (u-&)<—(M-1).
:€U° i€eU°

Proof. Similar to that of Lemma 6.

Corollary 7. If Y & < M — 1then either e; # 0 or wt(e) > |5/2].
ieU°

Proof. Follows from Corollary 6 and the contra-positive of Lemma 7.

Lemma 8. Define the quantity o.as
A n u
o= Z(QT,'—(S,') - Z(QT,‘—(S,').
icE; icE,
Then o satisfies the following inequalities:

e1=0 = a>-)Y (2u-4§)
i€l

e1=1 = o< Z(Qr,-—&).
=1 A3

Proof. Forei =0: Ey =R, andE; =W, and so

a2 @2-6)- Y (2ti—6)

1€E, i€k,
=) (2-8)- ) (2t —8&)
i€EW i€eR

Using Lemmas 3 and 5, we get

o> 2(51 —27;) — 2(2%’ —&;)

i€EW i€R

12



= ) (8 —2mw)

icRUW
=— Z (21, — &;)
ieUe
Fore; =1: E; =R, and Eg = W. Proceeding in a similar fashion as above, we get
a < Z (21; — &).
1eUe

This completes the proof of Lemma 8. 0

Define the quantity B as
A
ey s
ieUe
Then Corollary 6 and 7 represent constraints on f3. Specifically, we can deduce that if e is an error
pattern that satisfies wt(e) < |8/2]|. Then
B<M-1 = e #0 (4.2)

Either e; # O or

p=M-1 dis even and wt(e) = §/2.

(4.3)

Here, (4.2) follows from Corollary 6 and (4.3) from Corollary 7. Note that (4.3) implies that
if = M — 1 and e; = 0 then e is an uncorrectable error pattern. Further, from Lemma 6-8 it
follows that

Case1: forwt(e) < |(6— 1)/2] it is true that
forey =1: a<M-1
andfore; =0: o> M — 1. (4.4)
Case 2: for § even and wt(e) = §/2,
fore; =1 a<M-1
andfore; =0: a> M —1. (4.5)

where (4.4) follows from Lemma 6 and 8, and (4.5) follows from Lemma 7 and 8.

Combining the constraints dictated by equations (4.2)- (4.5) the following decoding algorithm

results.

(i) Receive the M (possibly corrupted) codewords r1 = ¢1 + €1, rs = ¢g +€o,....ry =
cym + en.

13



(i) Decode the individual codes; i.e., foreach i = 1,2,..., M, evaluate (7};,7;).

(iii) Form the sets Ey,E, and U°.

(iv) Compute o, = Z (2%, — &) — Z (2%; — ;).
13 O icE,

(v) Compute f = Z 0.

i€U°
(B< M — 1then f=1
= . o< M—1then f1=1
(i) If < p= M= Lhenif {aZM—~1then =17
B>M —1lthenif { o=M—1then f1=2
. a> M —1then ﬁ:o

A block-diagram representation of the algorithm appears in Fig. 3.

It is worth pointing out that the above algorithm is indeed equivalent to one-step majority logic
decoding when each of the constituent codes is a simple parity check—i.e., §; = 2 for all 7. In such
a case Eg = U° contains the indices of the decoders that do not observe a parity violation, while
U contains the indices of the decoders that do. Thus it follows that o = B = 2[Eo| = 2(M — V),

where V is the number of parity violations. Inserting these values into the above yields the
following algorithm:

V< (M+1)/2, thenf =0;
If { V=(M+1)/2, then?)=7;
V>(M+1)/2, thenqy =1.

This is exactly the one-step majority logic decoding algorithm.

The algorithm that we have developed for decoding of the common symbol has some very nice
features:

(i) This algorithm is guaranteed to correct all errors of weight | (6 — 1)/2] or less; and for

d even, it is guaranteed to either detect or correct all errors of weight §/2. However,

there may be some errors of weight greater than |§/2| for which Lemma 6 may hold.

14



The common symbol can be corrected in the presence of all such errors. There may also
be other such errors for which Lemma 7 (and not Lemma 6) holds. For all such errors,
it is possible to either correctly decode the common symbol or if that is not possible,
to declare an uncorrectable error has occurred. Therefore, the algorithm can possibly
correct more errors than are dictated by Theorem 1.

(ii) The decoders D1, D,, ..., Dy can work in complete isolation from each other. All that
each D; needs is the n;-tuple r;. Therefore, each decoder D; can be implemented on a
different processor, with no inter-processor communication required.

(iii) Individual decoders are required only to return their estimates 7;, and 7; (rather than
their estimate of the transmitted codeword). This may be used to simplify their struc-
ture.

(iv) The final decision 7]is a very simple threshold function of the decoder outputs. It requires
no other information besides that which the decoders Dy, Ds, ..., Dy provide.

(v) There are no circuits in the data-dependency graph of the algorithm. Thus, the algo-
rithm is also highly suitable for pipelined structures.

Thus the above algorithm solves the problem set forth in Section 3—that of correctly estimating

a symbol common to M possibly corrupted codewords—and it does it in a way that is naturally

distributed. That is, no “super-decoder” is necessary—just a (partial) decoder for each of the

constituent codes and then a remarkably simple central unit that “pools” the partial results to

arrive at the estimate of the common symbol.

V. Decoding Cyclic Codes

In this section, we demonstrate the applicability of the common-symbol decoding algorithm devel-

oped in Section 4 to decoding cyclic codes. First, we introduce the concept of a partition.

Definition 3 : A partition P = {P1,P2,..., P} on the coordinates {1,2,... ,n} is a collection

whose elements satisfy the following properties:

@ P; C{1,2,...,n} Vi=1,2,...,M, and

(i) P;NP; = {1} Vi#£;1<4j<M

The size (or cardinality) of the partition is |P| = M.

15



Remark: In difference to the usual notion of a “partition”, here we do not require that the union
of the P;’s be equal to {1,2,...,n}, and (in addition) we require that “1” is common to every cell
of the partition.

Assume a partition P = {P1,P,..., Py} whereP; = {p;1 = 1,pi2,...,Pin, },and n; = |P;|.
We will now use P to “break up” an n-tuple over F; into M shorter vectors over F, as follows:
First, define a mapping
. mn n n n
Bp:F; — F ! XF 2 X XFM

by Bp(x)=(y1,¥2,---»YMm)s (5.1)

where for any x = (71, 22,...,%,) € Fy,
y;, = (xpi,mxpi,w""xpi,n;)7 V 1= 1a27"' 3]\4

Therefore Bp(x) = (y;,¥3,-..,¥ ) essentially represents a “partitioning” of the symbols from
the n-tuple x into y;,y,, .. .,y s according to the partition P; all symbols with positions that are
included in Py are used to form y;; those with positions in P, form y,, and so on. Note that the
first symbol of x is also the first symbol of each of y,,y5,...,¥ .

Example 1: Let © = {0,,0;} be a partition of {1,2,...,21}, with &, = {1,2,4,6,8,10,
12,14,16,18,20} and ©; = {1,3,5,7,9,11,13,15,17,19,21}. Let x = (21,22, ...,221) €
F2'. Then Bo(x) = (y1,¥,), where y; = {1,z2, 4, T6, Ls, T10, T12, T14, T16, T1s, T2o }, and

y, = {:cl,xg,xs,x7,m9,w11,x13,:c15,:c17,:1:19,:c21}. Note that v = y2,1 = 2. 0

We shall use this idea of a partition to construct some codes. Let C be a (n, k, dyin ) cyclic block-
code over Fy, and let P = {P;,P;,...,Py/} be a partition on {1,2,...,n}. Then for each i
define Cp, to be the set of n;-tuples obtained by deleting from every codeword in C every symbol

except those whose coordinates are indicated by P;—i.e.,

A
CP; = {Yi : (yI’Y27' .. ayM) = BP(C) for some ¢ € C}

Definition 4 : The code Cp, as constructed above is termed the i'th constituent code of C, for each
1=1,2,..., M.

Since C is linear, each of its constituent codes is also linear for any partition.

An equivalent construction is as follows: Let G = (g,,8>, - - -, &, ) be the generator matrix of the
code C. Here g,,g,,...,&, are the n column vectors of G. Consider a partition P as described
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above. Then the code Cp, is the row-space of the matrix

A
gP,- = (gp.’,l ’gpi,z P 7gp,',n'. )

Example 2: Consider the partition © of Example 1. Let C be the (21, 8,6) binary BCH code
with generator polynomial g(z) = 1 + 22 + 23 + 2% + 2% + 27 + 28 + 2'0 + 2!! + 2!3. The
corresponding generator matrix is

(101101111011010000000

010110111101101000000\

00101101111011010000¢0

000101101111 011010000

g = 000010110111101101000

000001011011110110100

000000101101111011010

\000000010110111101101)

Then,

(10111011000\ (11011100000\
01101110000 00111011000
60011101100 01101110000
00110111000 00011101100
Go, = 00001110110 , and Go, = 00110111000
00011011100 00001110110
00000111011 00011011100
\00001101110) \00000111011

Since the rows of Gg, and Gg, are linearly independent they can be used as generator matrices
for the component codes. It can be shown that Cg, and Cg, are both (11,8, 2) codes. O

For the :th component-code Cp, define

e

op, min du(x,y). (5.2)

x=($1,1,'2,...,1:n;), V
y:(yl,yh'“:yni )ecPi
€17 Y1

Note that as defined above, dp, is the symbol-protection distance of the first symbol of the ¢th
component code Cp,, foreach: = 1,2,..., M.
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Definition 5 : The quantity ép defined as

M
5p 2 Zapj — (M =1) (53)

is called the common-symbol decoding distance of the code C with respect to the partition P.

Example 3: For the codes developed in Example 2, it can be shown that ¢, = d¢, = 3. So the
decoding distance of the partition © for the (21, 8, 6) binary cyclic code of Example 2 is dp = 5.0

We are now in a position to discuss the decoding of the linear cyclic block code C. Let the codeword
¢ =(c1,¢2,...,¢n) € Cbetransmitted, and an error e € F; occurs. The received n-tuple is then

r=c+e.

Theorem 3. It is possible to recover ¢ from r provided

wife) < |22,

Further, if 8p is even, and wt(e) = 8p /2, then it is possible to either correctly decode ¢, or to detect
the presence of an uncorrectable error.

Proof. From the construction above, we observe that the received n-tuple r can be considered
as the concatenation of M codewords (one each from Cp,,Cp,, . ..,Cp,,), with the first symbol in
common. The common-symbol decoding theorem (Theorem 1) can therefore be applied, completing
the proof. a

For linear, cyclic binary block codes, however, we now have a means of decoding the common-
symbol, namely, the common-symbol decoding algorithm of Section 4. Hence, a decoding procedure
for linear, cyclic binary block-codes is:

(i) Construct codes Cp,,Cp,,...,Cp,, according to (5.4). Compute dp,, V¢ = 1,2,

..., M, and 8p using (5.2) and (5.3) respectively. Further, let D; be the decoder for
the code Cp, as defined in Section 4.

(ii) Let r be the received n-tuple. Break up r intor;,rs,...,rys using P as follows:

(r1,r2,...,ra) = Bp(r).

(iii) Compute 7] (the estimate of the error in the common position) using the common-symbol
decoding algorithm of Section 4.
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(iv) If f} # ? then r; = r1 — 1], otherwise signal an uncorrectable error pattern, and abort
processing.

(v) Repeat (ii)-3v) for all n — 1 cyclic shifts of r. (Of course, if the code is systematie, it is
sufficient to recover only the data symbols.)

A block diagram for the decoder appears in Fig. 4.

As was pointed out earlier, the common-symbol protection distance of a code is a function of the
associated partition. If for some code C with minimum distance dpi, there exists a partition P
such that dpni, = dp, then the common-symbol decoding algorithm is optimal (i.e., it corrects up
to |(dmin — 1)/2] errors, and for dmi, even, detects (or corrects) all occurrences of dmin/2 errors).
Such a partition is called an “optimal partition”. Unfortunately, for a given code, an optimal
partition does not always exist. The next best thing is to settle for a “maximal partition”, i.e., one
that maximizes the common-symbol decoding distance for a given code.

Additionally, it is favorable to choose a partition with the largest size. This has twin advantages:
(1) the implementation complexity decreases with increasing partition size; and (ii) the degree of
parallelism increases with increasing partition size. These advantages are seen by considering
the largest possible partition —i.e., the partition corresponding to one-step majority logic decoding,
where the partition defines many trivially simple constituent codes.

Given a code C, suppose P™ is the maximal (i.e. — the best) partition of size m, for each m =
2,3, .... Suppose further, that the associated common-symbol decoding distance is dp~. Then, it
is shown in [16] that

dmin231)2 25P32"'2dm1d;

where dmq = J + 1, and J is the largest number of orthogonal parity checks one may find for the
code. Therefore, in going to a larger partition, the advantages of a simpler decoder implementation
may be compromised by a loss in correcting capability. A more detailed consideration of these
practical issues may be found in [16].

VI. Search Results

Table 1 lists some cyclic codes for which the common-symbol decoding algorithm corrects/detects
more errors than one-step majority-logic decoding. The column entries are as follows:

Col. 1: Serial number —i.e., the code identifier.
Col. 2: (n,k,dmin): The code is a linear, cyclic, block-code of block-length n, dimen-

sionality £, and minimum-distance dpyjy.
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Col. 3: g(z): the generator polynomial of the code.

Col. 4: dp)q: the one-step majority-logic decoding distance of the code — i.e., dmq =
J + 1, where J is the maximum number of orthogonal parity checks one can find for the

code.
Col. 5: Pj;: the first component of a partition of size 2. The other component is given

by P2 = {1,2,...,n} — Py. (Here, “—” is the set-difference operation.)

Col.6,7: (ni,kq,8p,)and (ns, ks, 8p,): the component codes are (n1, k1) and (n2, k2)
linear, binary block-codes with ép, and &p,, the respective symbol-protection distances

for the common position.

Col.8: &p: the decoding distance of the code with respect to the partition P = {P, P, }.
Obviously, ép = ép, + Jp, .

VII. Decoder Implementation

Consider again, the (21, 8,6) linear, cyclic, binary block-code of Example 2. This is a two error-
correcting, three error-detecting code. The one-step majority-logic decoding distance of this code
is dmg = 4, and so using the one-step majority-logic decoding algorithm, we are able to correct all

single errors and detect double errors.

Now, let us consider the common-symbol decoding approach. We partition the code according to
the partition ® = {01, 0; }, as in Example 2, to get component codes Cp, , and Co,, with generator

matrices Gg,, and Je,. Both Ce,, and Ce, are (11,8, 2) codes. Their parity-check matrices are

11001000100
He, =[01011111010
11100111001

and

10111110100
Ho,=|01011111010].

10010001001

Observe that in each case the smallest number of linearly dependent columns including the first
column is three; thus, g, = de, = 3.

Let r = (r1,72,...,724) be the received 24-tuple. Then, the received vectors for the component
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codes are (r;,ry) = 3521 (r), where B is as defined in equation (5.1). Therefore, we have

r = (7’1,7"2,7"4,7’6,7‘8,7“10,7"12,7'14,7“16,7"18,7‘20)

and ry = (r1,7r3,75,77,79,711,713, 715,717, 19,721 )-

Next, we compute the error-syndromes
A T
81 — 1‘1pr == (31,1,31,2781,3)
A T
and 89 =— l‘zHPz = (82’1,82,2,82’3),

which gives us the following syndrome generator equations:
$11=T1Dr2DrsDrie
81,2 =ro@Dre Drg DB rio D ri2 D rigs D rig
813 =r1Dro@rasDrioDriz D ria @ rao
and S21 =71 DrsDrr OroDrin Driz dDriy
S0 =T3Dr7Brg@Briy Oriz G risdrig

803 =r1Br7Bris Brox.

(The @ here, represents the exclusive or operation.) Next, we will compute the quantities 7),, 75,

71, and T, as a function of these syndromes. Upon performing a Karnaugh map minimization, the
functional relationships are

f, = $1,151,251,3

Ty =s11+s12+ 51,3
and 7, = 821522923

Ty = S2,1 + S2,2 + S2.3.

Here, the 7)’s and the 7Ts are in keeping with the notation of Section 4. The action of the common-
symbol decoding algorithm is given in Table 2. Another logic minimization yields

n= ﬁ1%2 + fh’ﬁ.
Combining all the parts, a common-symbol decoder for correcting all occurrences of two or fewer
errors in a codeword from the (21,8, 6) cyclic code is presented in Fig. 5. (In the figure, we have

shown the circuit to decode one symbol. By cyclic shifts of the input, all other symbols can be
corrected.) From the circuit, we see that the decoder is indeed simple.
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VIII. Conclusions

This paper outlined a new approach for the distributed decoding of cyclic linear block codes. The
approach is a generalization of one-step majority-logic decoding: It involves considering a symbol
of a (potentially corrupted) codeword as the one symbol common to M > 2 less powerful codes;
by decoding the less powerful codes and “pooling” the results in a simple fashion we have shown
it 1s possible to reliably estimate that symbol. This approach yields a decoder structure that is
suitable for parallel implementation.

The technique developed in this paper suggests a whole spectrum of algorithms for decoding a pow-
erful block code — with one-step majority logic decoding at one extreme and iterative techniques
that solve many errors simultaneously (such as Berlekamp-Massey) at the other. The research
presented in this paper describes one approach to the “middle ground” between the extremes.
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Table 2. Truth table for common-symbol decoding of the (21, 8, 6) cyclic code.

o 71 fla T o« p 9

0 0 0 6 0
0 0 0 1 4 6 0
0 0 1 1 2 6 0
0 1 0 0 4 6 0
0 1 0 1 2 0
0 1 1 1 0 6 1
1 1 0 0 2 6 0
1 1 0 1 0 6 1
1 1 1 1 -2 6 1







