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The impact of massive data processing on our daily lives is becoming increasingly more

clear. With this, we must guarantee that vital, data-driven decision-making systems mitigate the

potential negative impacts of the technologies themselves and scale to the massive datasets we

have access to today. We explore both of these facets by studying fairness and scalability for

algorithms on large graphs.

In Part I, we focus on on fair hierarchical clustering. Our first work on this topic [Ah-

madian et al., 2020b] initiates the study of fair hierarchical clustering by extending Chierichetti

et al.’s [Chierichetti et al., 2017] notion of representationally proportional flat clustering to the

hierarchical setting. From there, we introduce the first approximation algorithms for three well-

studied hierarchical clustering optimization problems in the fair context: cost [Dasgupta, 2016],

revenue [Moseley and Wang, 2017], and value [Cohen-Addad et al., 2018]. Our initial work stud-

ies all three fair optimization problems, and our follow-up works [Knittel et al., 2023a, Knittel

et al., 2023b] dive deeper into the notoriously difficult cost optimization problem.



Regarding scalability, we leverage the Massively Parallel Computation (MPC) model, as

well as its recent successor Adaptive Massively Parallel Computation (AMPC), to develop effi-

cient graph algorithms for big data. MPC, discussed in Part II, has been one of the most practi-

cally useful models for massively parallel algorithms in the past decade, influencing a number of

major frameworks including MapReduce, Hadoop, Spark, and Flume. In this model, we present

our work on edge coloring [Behnezhad et al., 2019b], hierarchical clustering [Hajiaghayi and

Knittel, 2020], and tree embeddings [Ahanchi et al., 2023].

AMPC improves upon the MPC model by adding access to a distributed hash table while

still remaining highly implementable in practice. This allows it to overcome some shortcomings

proposed in MPC literature, notably, the 1vs2Cycle Conjecture (i.e., that differentiating between

a single cycle and two cycles is difficult in MPC). In Part III, we introduce a highly efficient and

general tool for executing tree contractions in AMPC [Hajiaghayi et al., 2022b] and additionally

exhibit the power of AMPC on minimum cut problems [Hajiaghayi et al., 2022a].
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Chapter 1: Introduction

The advent of intelligent processing and inference of massive datasets is what distinguishes

modern computing in terms of both potential power and unique challenges. Big data has become

a fundamental tool for societal progression, its impacts pervasive across all aspects of our lives.

As data continues to grow and this influence becomes more ubiquitous, we must ensure that data

systems guarantee a higher standard of efficiency and quality that keeps pace with the times. I

believe two of the biggest questions posed by modern computing are as follows: (1) How can

we identify, quantify, and mitigate the potential negative impacts of big data in an ever-changing

world? (2) How can intelligent technologies keep up with the increasing supply of massive

datasets and demand of those affected?

These broad questions go beyond the scope of a single research proposal. My research

provides an in depth exploration of multiple topics that will be useful tools in solving both of

these problems. In the following sections, I introduce my main areas of research: massively

parallel computation, adaptive massively parallel computation, and fair algorithms (specifically,

hierarchical clustering). In each section, I summarize the problem, its motivations, its relevance

to our overarching research questions, and our related results.
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1.1 Fair Hierarchical Clustering

In order to address our first question, we have to understand some of the major short-

comings of current intelligent systems. Some noteworthy examples we are already aware of

include: discrimination in allocating health care to racial minorities [Ledford, 2019], the dis-

play of ads suggestive of an arrest record more frequently when searching for black-identifying

names [Sweeney, 2013], the reflection of systemic biases against minority groups in hiring pre-

diction [Bogen and Rieke, 2018], and the disproportionate assessment that certain races are a

higher risk for recidivism [Angwin et al., 2016]. These are some major problems that have a

clear negative societal impact, however the problem of unfair algorithmic design is pervasive.

Unfortunately, these are problems that cannot be solved by a single algorithm, or even a sin-

gle field of research, nor should they. Resolution will require careful interdisciplinary work to de-

fine practical notions of fairness and develop algorithms that achieve these notions. To contribute

to these efforts, I study partitioning algorithms that exhibit representational equality. In addition,

I co-led a AAAI 2022 tutorial on fair clustering (https://www.fairclustering.com/).

This tutorial creates a clear taxonomy of the various notions of fairness that have been consid-

ered in research, overviews results and methods across fair clustering, and provides suggested

practices and cautions for the use of fairness in real systems.

Here, we study the problem of fair hierarchical clustering. “Clustering” means partitioning

data into “clusters” without any provided data structure (i.e., it is unsupervised). Hierarchical

clustering extends this notion to form a tiered structure of clusters containing clusters.

This work consisted of two projects: 1) initiating the study of fair hierarchical cluster-

ing [Ahmadian et al., 2020b] (alongside the concurrent work of [Chhabra and Mohapatra, 2022],

2
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which did not consider rigorous guarantees as we did) and 2) massive improvements of our results

in terms of practical use, theoretical guarantees, and explainability [Knittel et al., 2023a, Knittel

et al., 2023b]. Generally speaking, fair hierarchical clustering can be leveraged for a number of

applications. For instance, news articles can be partitioned into a topic hierarchy and we must

ensure that viewpoints are not over-represented in a given topic. Geographic regions, too, have

natural hierarchical partitions, and we may need to consider the representation of protected fea-

tures (i.e., race or gender) of individuals in these regions. More broadly, consider any application

of clustering where fairness is mandatory but the number of desired clusters is not known. A fair

hierarchical clustering can then simultaneously yield clusterings at a number of different resolu-

tions that “agree with each other”1. These clusterings can be evaluated and selected independently

depending on the application.

Our inputs are complete graphs, where edge weights can denote data similarity or differ-

ence, depending on the context. A fairness constraint defines a criteria to determine if a single

cluster is fair. A hierarchical clustering is fair if each cluster is fair. In our work, we utilize [Das-

gupta, 2016]’s objective, cost, and two related functions, revenue [Moseley and Wang, 2017] and

value [Cohen-Addad et al., 2018], to measure the quality of our output. Our results apply to a

broad family of fairness constraints that are union-closed, meaning that if two clusters are con-

sidered fair, then the union of the two clusters is also considered fair. Notably, our results hold

for the most general notion of bounded representational fairness [Bera et al., 2019]: given a color

assignment to all vertices and vectors α⃗ and β⃗ such that 0 ≤ αi ≤ βi ≤ 1 for any color i, a cluster

is fair if color i represents between an αi and βi fraction of its vertices.

1If two vertices are in the same high-resolution cluster, then they will be in the same low-resolution cluster. This
means the clusterings represent the data in similar ways.
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Our results cover all three objectives. For revenue and value, our initial work [Ahmadian

et al., 2020b] proposes nice extensions of state-of-the-art approximation algorithms to the fairness

setting. Our methods are an application of [Chierichetti et al., 2017]’s fairlet decomposition

method, which illustrates the power of this technique. We show that, with small modifications,

these algorithms achieve the same asymptotic approximations of the objectives in many settings

(i.e., many different color proportions in the overall data) and they empirically exhibit little to no

loss in clustering quality. Ultimately, these algorithms are a nice, simple, and practical extension

of popular existing algorithms in this field.

Cost proved to be a much more difficult objective. We initially designed an entirely novel

algorithm that achieves an O(n5/6 log5/4 n)-approximation of cost [Ahmadian et al., 2020b] in

the two color setting. While this was not a practical solution, it was an entirely innovative ap-

proach that showed that, even with careful algorithmic analysis that balances trade-offs between

a number of opposing parameters, it is still intuitively much harder to achieve strong approxi-

mation guarantees under cost than under revenue and value. This generally agrees with work

in (unfair) hierarchical clustering, where revenue and value both yield small, constant-factor ap-

proximations [Alon et al., 2020, Cohen-Addad et al., 2018], but cost is not even constant-factor

approximable under a widely believed conjecture called the Small Set Expansion Hypothesis, and

the best known approximation is O(
√
log n) [Charikar and Chatziafratis, 2017].

In a second [Knittel et al., 2023b] and third work [Knittel et al., 2023a], I made great

strides to improve the approximation factor achieved for fair low-cost hierarchical clustering, the

former achieving a near-polylogarithmic approximation, O(nδpolylog (n)) for arbitrarily small

δ = O(1), and the latter achieving a true polylogarithmic approximation. They both guarantee

that the fraction of any color in any cluster deviates from the true proportion of that color by at
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Figure 1.1: Our algorithms take a potentially unfair hierarchical clustering, apply our tree opera-
tors, and yield fair and/or balanced hierarchies.

most a factor of O(exp(1/δ)). In other words, they are parameterizable by δ ∈ (0, 1), which

determines a trade-off between approximation factor and degree of unfairness. On a given low-

cost hierarchical clustering, both algorithms apply local tree operations to rebalance the tree and

fairly distribute colors (see Figure 1.1). Not only are these operations easy to implement, but

they nicely quantify exactly how the hierarchy is being altered. This simplifies our analysis and

makes the algorithms explainable, an issue not yet commonly studied in hierarchical clustering

to our knowledge.

1.2 Massively Parallel Algorithms

Our second question largely concerns the increasing scale of data alongside the growing

demand for faster products. As data growth begins to outpace hardware speedup in this post-

Moore’s Law era, efficient algorithmic design is necessary to ensure perform at scale. Massively

parallel computing on distributed systems, where individual machines work on small subsets of

the input in parallel, is a natural solution. Not only does it leverage the compute power of par-

allelism, but it also realistically models commodity hardware by assuming individual machines

cannot store the entire input. To this end, in the interest of addressing our first question, I study
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massively parallel algorithms on graphs.

My work leverages Karloff et al.’s [Karloff et al., 2010] Massively Parallel Computation

(MPC) model to develop large-scale graph algorithms. MPC is at the forefront of computa-

tion at scale, and it has been extensively studied and applied to a vast range of graph prob-

lems in recent years. The MPC design models the behavior of programming paradigms such as

MapReduce [Dean and Ghemawat, 2008] and frameworks like Flume [Chambers et al., 2010],

Hadoop [White, 2009], and Spark [Zaharia et al., 2010]. Therefore, theoretical progress in MPC

has great potential for real impact on modern technological systems.

MPC is most often used to solve problems on graphs with n vertices and m edges. In

the linear regime, individual machines are only able to store up to Õ(n)2 bits in their memory.

In the sublinear regime, this reduces to O(nϵ) bits where 0 < ϵ < 1. Both of these regimes

are considered highly efficient and can be practical in a number of applications, however the

sublinear regime is the gold standard.

In MPC, algorithms start with an arbitrary distribution of data across a number of these

space-constrained machines. The algorithm then proceeds in rounds. In each round, a machine

executes a local polynomial time computation on its input. At the end of each round, machines

may send and receive messages within their memory constraints. This continues until the algo-

rithm completes. MPC algorithms are considered highly scalable if they require only logarithmic

rounds. Some more ambitious algorithms manage to achieve complexities like O(
√
log n) (no-

tably, maximum matching) and O(log log n). The gold standard here, of course, is the constant

round algorithm that may run in O(1) or O(poly(ϵ)) rounds. The total space used by the algorithm

must be bounded by Õ(n+m).

2We say Õ(f(n)) = O(f(n) log n).
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Figure 1.2: The color assignment process, assuming four partitions (note: graphs G1,3 and
G2,4 are omitted for simplicity). We require three palettes. The first is used to color edges in
G1, G2, G3, G4, the second for G2,3 and G1,4, and the last for G1,2 and G3,4 (a fourth would be
required to color G1,3 and G2,4). No two edges being colored using the same palette shares an
end point.

Much of the research in MPC is dedicated to solving classical graph theoretic problems

such as graph matching, coloring, and independent set. Many algorithms that solve these prob-

lems have a vast range of applications and often run as subroutines in nearly all technologies

we use today. My research in MPC has led to new, inventive solutions for geometric data em-

beddings [Ahanchi et al., 2023], hierarchical clustering [Hajiaghayi and Knittel, 2020], and edge

coloring [Behnezhad et al., 2019b] that reduce necessary communication and memory. Ulti-

mately, I strive to develop novel MPC algorithms that enable technologies to meet or exceed

scalability demands as datasets continue to grow.

1.2.1 Edge Coloring

Inspired by the recent work of [Chang et al., 2018] which found near-optimal bounds for

MPC vertex coloring and effectively closed the problem, we considered the next natural problem:

edge coloring. Edge coloring is the problem of assigning colors to edges in a graph such that no
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two adjacent edges share a color. We want to minimize the number of colors required to do

this. We [Behnezhad et al., 2019b] start by random allocating vertices to k partitions, V1, . . . , Vk.

With high probability, the max degree ∆i in each Vi is bounded. We then perform a local edge

coloring using ∆i colors on each Vi as guaranteed by Vizing’s [Vizing, 1964] celebtrated theorem.

Since any edge in Vi is not adjacent to any edge in Vj , we can assign the same palette (or, set of

colors) to each partition. Additionally, for any two Vi and Vj , let Eij be the set of edges with

one endpoint in each. We can again find a ∆-coloring locally on this graph, and we can again

show that for many Eij and Ekℓ, we can reuse the same palette of colors. Ultimately, we achieve

a
(
∆+ Õ

(
∆3/4

))
-coloring in Õ(n) machine space and O(1) rounds, outperforming previous

work.

1.2.2 Hierarchical Clustering

This work concerns the problem of scalable hierarchical clustering, but this time without

fairness constraints. In [Hajiaghayi and Knittel, 2020], I introduced Matching Affinity Clustering

(MAC), the successor to [Bateni et al., 2017]’s MPC hierarchical clustering algorithm, Affinity

Clustering (AC). AC constructs a hierarchy based off the minimum spanning tree. It exhibits

state-of-the-art empirical performance and is used in real products, such as Google’s balanced

partitioning algorithms. Unfortunately, it lacks strong theoretical guarantees and can create arbi-

trarily unbalanced hierarchies. Inspired by AC’s use of graph theoretic structures, MAC leverages

scalable matching algorithms to iteratively match and join clusters. This guarantees near perfect

balance and we can show that MAC provides a good approximation for both revenue and value.

MAC is the first hierarchical clustering algorithm to simultaneously achieve: broad theoretical
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Figure 1.3: On the left is a 3-clustering, in the center is a hierarchical clustering, and on the right
is its dendrogram.

guarantees, strong empirical success, cluster balance, and scalability.

1.2.3 Tree Embeddings in High Dimensions

Our final MPC work [Ahanchi et al., 2023] addresses tree embeddings of high-dimensional

data. Often, massive datasets are represented by extremely high-dimensional vectors, which can

be highly impractical to work with. Therefore, there is much interest in dimension-reducing

data embeddings that preserve the relational meaning between data (i.e., in our case, the distance

between datapoints). In this work, we use MPC to efficiently transform high-dimensional data

into tree embeddings, where data is stored on a tree of size O(n), and the distance between data

is encoded by the length of the shortest path between vertices in the tree.

The main strategy here is to use a data partitioning scheme to construct a hierarchically

well-separated tree (HST)3 of the data. The HST will be our final embedding. We consider

two famous geometric data partitioning methods: [Arora, 1997]’s grid partitioning and [Charikar

et al., 1998]’s ball partitioning. In grid partitioning, we create an even grid of cell width w over

the dataset where the origin is shifted by a uniform random vector r⃗. Each cell forms a cluster

(a node in our HST) of the points within the cell, and we recurse with a random shifted grid of

smaller cell width w′ < w, stopping when a cell contains at most one point. These cells will

3An HST is a weighted tree whose leaves are the input data. The distance between input data is determined by
the tree metric defined by the HST.
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be the children of their parent cluster in the HST, and the leaves will represent individual input

points. On the other hand, in ball partitioning, we use a random shifted grid to define the centers

of balls. We place a ball of radius w/4 centered at each grid point, and use these to cluster

the data. Obviously, this does not encompass the entire space, and this must be repeated some

number of times. We then recurse in the same way and the HST is constructed similarly.

(a) Grid partitioning, w = 1. (b) Ball partitioning, w = 1/4. (c) Hybrid partitioning, w = 1/4.

Figure 1.4: We depict one level (and one sample) of each discussed partitioning method on 3-
dimensional space. In grid partitioning (12.1a), we partition the grid into hypercubic cells of
width 1 shifted by a random vector. In ball partitioning (12.1b), we place a ball of radius 1/4
at each intersection of grid boundaries. In hybrid partitioning (12.1c) with r = 2, we run a ball
partitioning with ball radius 1/4 on buckets of dimensions. In this example, we bucket {x, y}
together (hence, the circular xy cross-sections) and {z} separately.

Due to the number of grids required, ball partitioning cannot be implemented in MPC’s

space requirements. While grid partitioning can, it does not provide an acceptable distortion

(i.e., proportional deviation between true and embedded distance). To combat this, we propose a

hybrid grid and ball partitioning algorithm, where we create buckets of subsets of the dimensions

of the data. For each bucket, we do a ball partition on the data projected into the dimensions of

the bucket. For instance, on 3 dimensions with axes x, y, and z, the bucket of dimensions {1, 2}

corresponds to projecting data into the xy plane and then running a ball partitioning. In the end,

these methods require O((nd)ϵ) space (for dimensionality d) and run highly efficiently in O(1)

rounds. They produce tree embeddings with Õ(log1.5 n) distortion and imply results for Earth

mover distance, minimum spanning tree, maximum cut, and densest ball.
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1.3 Adaptive Massively Parallel Computation

In order to keep up with the increasing pace of big data, we must be constantly critical of our

tools and models so that we may identify when a tool is insufficient to solve a problem. On that

note, one of the most inhibiting qualities of the MPC model is the widely believed 1vs2Cycle

conjecture. This posits that distinguishing between an n-lengthed cycle or two disjoint n/2-

lengthed cycles requires O(log n) rounds in MPC. This has significant implications on a wide

range of other graph problems, yielding lower bounds for connectivity [Behnezhad et al., 2019d],

matching [Ghaffari et al., 2019a, Nanongkai and Scquizzato, 2019], clustering [Yaroslavtsev and

Vadapalli, 2018], and more [Andoni et al., 2019, Ghaffari et al., 2019a, Lacki et al., 2020]. To

combat these lower bounds, a novel extension of the MPC model, Adaptive Massively Parallel

Computing (AMPC), was introduced by Behnezhad et al. [Behnezhad et al., 2019c]. AMPC

improves upon MPC by adding the power of a distributed hash table, which allows individual

machines to select their data over the course of a round, as opposed to being sent the data before

the round starts. Specifically, machines are given access to a sequence of distributed hash tables,

{Hi}i=1,2,..., which are shared data structures of size Õ(n + m). In the ith round, all machines

are allowed in-round read-only access toHi and write-only access toHi+1.

Predating the formal notion of AMPC, MPC with a distributed hash table had already been

studied in the context of finding connected components [Kiveris et al., 2014] and hierarchical

clusterings [Bateni et al., 2017], expressing its power and also its practicality in real world sys-

tems. Since its conception, a number of works have exhibited both the power [Behnezhad et al.,

2019c, Behnezhad et al., 2020] and limitations [Charikar et al., 2020] of the AMPC model. No-

tably, the 1vs2Cycle conjecture does not hold in AMPC, and thus AMPC is a promising tool
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Figure 1.5: An illustration of our algorithm’s compress (where contiguous groups of vertices in a
pre-order traversal are contracted) and rake operations on low degree trees. On high degree trees,
the same compress and rake framework is followed, but the low-degree algorithm is used as the
compress function.

to further scalable algorithmic performance. My recent work in this area addresses tree contrac-

tions (a general technique for algorithms on trees) and minimum cut computation. As this is a

new model, I am one of the first researchers to study AMPC.

1.3.1 Tree Contraction

This work [Hajiaghayi et al., 2022b] proposes an AMPC adaptation of Miller and Reif’s [Miller

and Reif, 1985] tree contraction. Initially implemented in PRAM, or parallel RAM, standard tree

contraction provides a general tool for solving a wide range of problems on trees. This algorithm

involves a two step process: (1) compress, where every other vertex on a long chain of vertices

with degree two is contracted into its parent and (2) rake, where all leaves are contracted into

their parent. It is not hard to see that this results in an O(log n)-time PRAM algorithm to contract

a tree into a single vertex. This O(log n) barrier has not been broken since the algorithm’s incep-

tion 25 years ago. We are the first to show that there exists a model, AMPC, that can implement

highly efficient constant-round tree contractions.

In order to do this, we first consider a pre-order traversal of the tree. This creates an ordering

over the vertices. We create a “group” of vertices for every contiguous chunk of about nϵ vertices
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in the ordering (where ϵ is our AMPC memory limit parameter). To compress, we contract each

connected component within each group into a single vertex. To rake, for every set of leaves who

share a parent, we iteratively contract them into each other in groups of nϵ until they fit on one

machine, at which point we contract them into their parent vertex. We then rigorously show that

this reduces the graph size by a factor of nϵ, thus requiring only O(1/ϵ) rounds. This, however,

only works on trees of max degree nϵ. On general trees, we simply group vertices into low-

degree components, and then use the low-degree algorithm to compress each component. This

defines the compress stage, and the rake stage is effectively the same. Ultimately, this defines an

O(1/ϵ3)-round sublinear AMPC algorithm for tree contractions, greatly exceeding the efficiency

of its PRAM counterpart.

In addition, we show a generalized technique for solving problems in constant sublinear

AMPC rounds using this framework. The most natural such problems are dynamic programs

on trees that can be solved in a bottom-up fashion and admit connected and sibling contracting

functions. A connected contracting function takes in a connected component of size up to O(nϵ),

contracts it into a single vertex, and assigns the new vertex v data Dv such that given a solution

to v’s children, Dv can be used to compute the dynamic program value at the component’s root.

We require Dv to fit in Õ(deg(v)) space, where deg(v) is v’s degree after contraction. Sibling

contracting functions are similar, but they contract a parent and its leaf children. They must

allow for efficient AMPC computation on parents with many children (i.e., exceeding the O(nϵ)

local space constraint). We show that the dynamic programs required to solve weighted tree

matching, weighted tree independent set, and tree isomorphism satisfy these, and thus can be

solved in constant AMPC rounds. We expect, however, that our algorithm is much more widely

applicable.
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Figure 1.6: A heavy light decomposition. Heavy paths are denote in bolded color. These paths
are replaced by complete binary trees with the path in the leaves. The tree becomes low-depth,
and we can extract a labeling.

1.3.2 Minimum Cut

In the minimum cut problem, we are asked to partition the graph into two sets such that

the weight of the edges crossing from one set to another is minimized. The current best MPC

algorithm by Ghaffari and Nowicki [Ghaffari and Nowicki, 2020] requires O(log n log log n)

rounds. In their work, they show that by contracting a graph along the edges of the minimum

spanning tree on random-weighted edges many times in parallel, it is likely that at some point in

one of the parallel processes, the minimum singleton cut (i.e., one that isolates a single vertex) is

an approximate minimum cut in the expanded graph.

Using their general method, we create an entirely different underlying implementation for

decomposing the graph and computing the minimum singleton cut at each step. We start by

executing a low depth tree decomposition, which assigns a labeling to vertices and allows for

extremely fast parallel decomposition of a given tree. This can be created efficiently in AMPC
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by leveraging its ability to root and orient trees as well as identify connected components to

restructure long paths in this tree with complete binary trees. This restructuring reduces the depth

of the tree and allows for fast vertex labeling according to vertex depth in this new tree. After

obtaining our labeling, we can then leverage the implied decomposition and a counting argument

on the singleton cuts in order to track each singleton cut without executing too much redundant

computation. In the end, this cuts down an O(log n)-round MPC computation from Ghaffari

and Nowicki to take O(1) rounds in AMPC. What we are left with is a complete O(log log n)-

round AMPC algorithm that solves minimum cut in the sublinear regime, an exponential round

complexity speedup over the work of Ghaffari and Nowicki.

1.4 Roadmap

This dissertation covers the aforementioned works in their entirety. It is divided into three

parts. In Part I, we discuss our results in fair hierarchical clustering. Chapter 2 discusses our first

work which initiated the field of research, and Chapters 3 and 4 describe the follow-up works. In

Part II, we turn our attention to scalability through the lens of Massively Parallel Computation.

Here, we present our work on edge coloring (Chapter 10), hierarchical clustering (Chapter 11),

and tree embeddings (Chapter 12). Finally, we end our discussion on scalable graph algorithms

with our Adaptive MPC works on tree contraction in Chapter 15 and minimum cut in Chapter 16.
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Part I

Fair Hierarchical Clustering
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Chapter 2: Fair Hierarchical Clustering

2.1 Introduction

Algorithms and machine learned models are increasingly used to assist in decision making

on a wide range of issues, from mortgage approval to court sentencing recommendations [Klein-

berg et al., 2017a]. It is clearly undesirable, and in many cases illegal, for models to be biased

to groups, for instance to discriminate on the basis of race or religion. Ensuring that there is

no bias is not as easy as removing these protected categories from the data. Even without them

being explicitly listed, the correlation between sensitive features and the rest of the training data

may still cause the algorithm to be biased. This has led to an emergent literature on computing

provably fair outcomes (see the book [Barocas et al., 2019]).

The prominence of clustering in data analysis, combined with its use for data segmentation,

feature engineering, and visualization makes it critical that efficient fair clustering methods are

developed. There has been a flurry of recent results in the ML research community, proposing

algorithms for fair flat clustering, i.e., partitioning a dataset into a set of disjoint clusters, as cap-

tured by K-CENTER, K-MEDIAN, K-MEANS, correlation clustering objectives [Ahmadian et al.,

2019, Ahmadian et al., 2020c, Backurs et al., 2019, Bera et al., 2019, Bercea et al., 2019, Chen

et al., 2019, Chiplunkar et al., 2020, Huang et al., 2019, Jones et al., 2020, Kleindessner et al.,

2019a,Karloff et al., 2010]. However, the same issues affect hierarchical clustering, which is the
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problem we study.

The input to the hierarchical clustering problem is a set of data points, with pairwise sim-

ilarity or dissimilarity scores. A hierarchical clustering is a tree, whose leaves correspond to

the individual datapoints. Each internal node represents a cluster containing all the points in the

leaves of its subtree. Naturally, the cluster at an internal node is the union of the clusters given by

its children. Hierarchical clustering is widely used in data analysis [Dubes and Jain, 1980], social

networks [Mann et al., 2008,Rajaraman and Ullman, 2011], and image/text organization [Karypis

et al., 2000].

Hierarchical clustering is frequently used for flat clustering when the number of clusters is a

priori unknown. A hierarchical clustering yields a set of clusterings at different granularities that

are consistent with each other. Therefore, in all clustering problems where fairness is desired but

the number of clusters is unknown, fair hierarchical clustering is useful. As concrete examples,

consider a set of news articles organized by a topic hierarchy, where we wish to ensure that

no single source or view point is over-represented in a cluster; or a hierarchical division of a

geographic area, where the sensitive attribute is gender or race, and we wish to ensure balance

in every level of the hierarchy. There are many such problems that benefit from fair hierarchical

clustering, motivating its study.

Our contributions We initiate an algorithmic study of fair hierarchical clustering. We build

on Dasgupta’s seminal formal treatment of hierarchical clustering [Dasgupta, 2016] and prove

our results for the revenue [Moseley and Wang, 2017], value [Cohen-Addad et al., 2018], and

cost [Dasgupta, 2016] objectives in his framework.

To achieve fairness, we show how to extend the fairlets machinery, introduced by [Chierichetti
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et al., 2017] and extended by [Ahmadian et al., 2019], to this problem. We then investigate

the complexity of finding a good fairlet decomposition, giving both strong computational lower

bounds and polynomial time approximation algorithms.

Finally, we conclude with an empirical evaluation of our approach. We show that ignoring

protected attributes when performing hierarchical clustering can lead to unfair clusters. On the

other hand, adopting the fairlet framework in conjunction with the approximation algorithms we

propose yields fair clusters with a negligible objective degradation.

Related work Hierarchical clustering has received increased attention over the past few years.

Dasgupta [Dasgupta, 2016] developed a cost function objective for data sets with similarity

scores, where similar points are encouraged to be clustered together lower in the tree. Cohen-

Addad et al. [Cohen-Addad et al., 2018] generalized these results into a class of optimization

functions that possess other desirable properties and introduced their own value objective in the

dissimilarity score context. In addition to validating their objective on inputs with known ground

truth, they gave a theoretical justification for the average-linkage algorithm, one of the most

popular algorithms used in practice, as a constant-factor approximation for value. Contempora-

neously, Moseley and Wang [Moseley and Wang, 2017] designed a revenue objective function

based on the work of Dasgupta for point sets with similarity scores and showed the average-

linkage algorithm is a constant approximation for this objective as well. This work was further

improved by Charikar [Charikar et al., 2019a] who gave a tighter analysis of average-linkage for

Euclidean data for this objective and [Ahmadian et al., 2020a, Alon et al., 2020] who improved

the approximation ratio in the general case.

In parallel to the new developments in algorithms for hierarchical clustering, there has been

19



tremendous development in the area of fair machine learning. We refer the reader to a recent text-

book [Barocas et al., 2019] for a rich overview, and focus here on progress for fair clustering.

Chierichetti et al. [Chierichetti et al., 2017] first defined fairness for k-median and k-center clus-

tering, and introduced the notion of fairlets to design efficient algorithms. Extensive research

has focused on two topics: adapting the definition of fairness to broader contexts, and designing

efficient algorithms for finding good fairlet decompositions. For the first topic, the fairness def-

inition was extended to multiple values for the protected feature [Ahmadian et al., 2019, Bercea

et al., 2019, Rösner and Schmidt, 2018]. For the second topic, Backurs et al. [Backurs et al.,

2019] proposed a near-linear constant approximation algorithm for finding fairlets for k-median,

Schmidt et al. [Schmidt et al., 2019] introduced a streaming algorithm for scalable computation

of coresets for fair clustering, Kleindessner et al. [Kleindessner et al., 2019a] designed a linear

time constant approximation algorithm for k-center where cluster centers are selected proportion-

ally from a set of colors, Bercea et al. [Bercea et al., 2019] developed methods for fair k-means,

while Ahmadian et al. [Ahmadian et al., 2020c] and Ahmadi et al. [Ahmadi et al., 2020] defined

approximation algorithms for fair correlation clustering. Concurrently with our work, Chhabra et

al. [Chhabra and Mohapatra, 2022] introduced a possible approach to ensuring fairness in hier-

archical clustering. However, their fairness definition differs from ours (in particular, they do not

ensure that all levels of the tree are fair), and the methods they introduce are heuristic, without

formal fairness or quality guarantees.

Beyond clustering, the same balance notion that we use has been utilized to capture fairness

in other contexts, for instance: fair voting [Celis et al., 2018], fair optimization [Chierichetti et al.,

2019], as well as other problems.
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2.2 Formulation

2.2.1 Objectives for hierarchical clustering

Let G = (V, s) be an input instance, where V is a set of n data points, and s : V 2 → R≥0 is a

similarity function over vertex pairs. For two sets, A,B ⊆ V , we let s(A,B) =
∑

a∈A,b∈B s(a, b)

and S(A) =
∑

{i,j}∈A2 s(i, j). For problems where the input is G = (V, d), with d a distance

function, we define d(A,B) and d(A) similarly. We also consider the vertex-weighted versions

of the problem, i.e. G = (V, s,m) (or G = (V, d,m)), where m : V → Z+ is a weight function

on the vertices. The vertex-unweighted version can be interpreted as setting m(i) = 1,∀i ∈ V .

For U ⊆ V , we use the notation m(U) =
∑

i∈U m(i).

A hierarchical clustering of G is a tree whose leaves correspond to V and whose internal

vertices represent the merging of vertices (or clusters) into larger clusters until all data merges at

the root. The goal of hierarchical clustering is to build a tree to optimize some objective.

To define these objectives formally, we need some notation. Let T be a hierarchical cluster-

ing tree of G. For two leaves i and j, we say i∨ j is their least common ancestor. For an internal

vertex u in T , let T [u] be the subtree in T rooted at u. Let leaves(T [u]) be the leaves of T [u].

We consider three different objectives—revenue, value, and cost—based on the seminal

framework of [Dasgupta, 2016], and generalize them to the vertex-weighted case.

Revenue. Moseley and Wang [Moseley and Wang, 2017] introduced the revenue objective

for hierarchical clustering. Here the input instance is of the form G = (V, s,m), where s : V 2 →

R≥0 is a similarity function.

Definition 1 (Revenue). The revenue (rev) of a tree T for an instance G = (V, s,m), where s(·, ·)
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denotes similarity between data points, is: revG(T ) =
∑

i,j∈V s(i, j) ·
(
m(V )−m(leaves(T [i ∨

j]))
)
.

Note that in this definition, each weight is scaled by (the vertex-weight of) the non-leaves.

The goal is to find a tree of maximum revenue. It is known that average-linkage is a 1/3-

approximation for vertex-unweighted revenue [Moseley and Wang, 2017]; the state-of-the-art

is a 0.585-approximation [Alon et al., 2020].

As part of the analysis, there is an upper bound for the revenue objective [Cohen-Addad

et al., 2018, Moseley and Wang, 2017], which is easily extended to the vertex-weighted setting:

revG(T ) ≤
(
m(V )− min

u,v∈V,u̸=v
m({u, v})

)
· s(V ). (2.1)

Note that in the vertex-unweighted case, the upper bound is just (|V | − 2)s(V ).

Value. A different objective was proposed by Cohen-Addad et al. [Cohen-Addad et al.,

2018], using distances instead of similarities. Let G = (V, d,m), where d : V 2 → R≥0 is a

distance (or dissimilarity) function.

Definition 2 (Value). The value (val) of a tree T for an instance G = (V, d,m) where d(·, ·)

denotes distance is: valG(T ) =
∑

i,j∈V d(i, j) ·m(leaves(T [i ∨ j])).

As in revenue, we aim to find a hierarchical clustering to maximize value. Cohen-Addad

et al. [Cohen-Addad et al., 2018] showed that both average-linkage and a locally ϵ-densest cut

algorithm achieve a 2/3-approximation for vertex-unweighted value. They also provided an upper

bound for value, much like that in (2.1), which in the vertex-weighted context, is:

valG(T ) ≤ m(V ) · d(V ). (2.2)
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Cost. The original objective introduced by Dasgupta [Dasgupta, 2016] for analyzing hierarchical

clustering algorithms introduces the notion of cost.

Definition 3 (Cost). The cost of a tree T for an instance G = (V, s) where s(·, ·) denotes simi-

larity is: costG(T ) =
∑

i,j∈V s(i, j) · | leaves(T [i ∨ j])|.

The objective is to find a tree of minimum cost. From a complexity point of view, cost

is a harder objective to optimize. Charikar and Chatziafratis [Charikar and Chatziafratis, 2017]

showed that cost is not constant-factor approximable under the Small Set Expansion hypothesis,

and the current best approximations are O
(√

log n
)

and require solving SDPs.

Convention. Throughout the paper we adopt the following convention: s(·, ·) will always

denote similarities and d(·, ·) will always denote distances. Thus, the inputs for the cost and

revenue objectives will be instances of the form (V, s,m) and inputs for the value objective will

be instances of the form (V, d,m). All the missing proofs can be found in the Supplementary

Material.

2.2.2 Notions of fairness

Many definitions have been proposed for fairness in clustering. We consider the setting in

which each data point in V has a color; the color corresponds to the protected attribute.

Disparate impact. This notion is used to capture the fact that decisions (i.e., clusterings)

should not be overly favorable to one group versus another. This notion was formalized by

Chierichetti et al. [Chierichetti et al., 2017] for clustering when the protected attribute can take

on one of two values, i.e., points have one of two colors. In their setup, the balance of a cluster

is the ratio of the minimum to the maximum number of points of any color in the cluster. Given
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a balance requirement t, a clustering is fair if and only if each cluster has a balance of at least t.

Bounded representation. A generalization of disparate impact, bounded representation fo-

cuses on mitigating the imbalance of the representation of protected classes (i.e., colors) in clus-

ters and was defined by Ahmadian et al. [Ahmadian et al., 2019]. Given an over-representation

parameter α, a cluster is fair if the fractional representation of each color in the cluster is at most

α, and a clustering is fair if each cluster has this property. This was further generalized by Bera et

al. [Bera et al., 2019] and Bercea et al. [Bercea et al., 2019]. They introduce vectors α⃗, β⃗ such that

for a cluster to be fair, for each color ci, the fractional representation of ci in the cluster must be

between βi and αi. We discuss our results in terms of the over-representation constraint by [Ah-

madian et al., 2019], however many of these results extend to this more general setting given an

appropriate fairlet decomposition. An interesting special case of this notion is when there are c

total colors and α = 1/c. In this case, we require that every color is equally represented in every

cluster. We will refer to this as equal representation. These notions enjoy the following useful

property:

Definition 4 (Union-closed). A fairness constraint is union-closed if for any pair of fair clusters

A and B, A ∪B is also fair.

This property is useful in hierarchical clustering: given a tree T and internal node u, if each

child cluster of u is fair, then u must also be a fair cluster.

Definition 5 (Fair hierarchical clustering). For any fairness constraint, a hierarchical clustering

is fair if all of its clusters (besides the leaves) are fair.1

1According to the definition, a hierarchical clustering tree might be fair even if every layer (apart from the root)
is an unfair clustering. For example, consider a tree that splits off one singleton at its root. Every layer in the tree
apart from the root will contain this singleton and thus is an unfair clustering. An alternative way of defining a fair
tree is to enforce that the tree has to contain a layer of fairlets of some small size. The results of this paper extend to
either definition.
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Thus, under any union-closed fairness constraint, this definition is equivalent to restricting

the bottom-most clustering (besides the leaves) to be fair. Then given an objective (e.g., revenue),

the goal is to find a fair hierarchical clustering that optimizes the objective. We focus on the

bounded representation fairness notion with c colors and an over-representation cap α. However,

the main ideas for the revenue and value objectives work under any notion of fairness that is

union-closed.

2.3 Fairlet decomposition

Definition 6 (Fairlet [Chierichetti et al., 2017]). A fairlet Y is a fair set of points such that there

is no partition of Y into Y1 and Y2 with both Y1 and Y2 being fair.

In the bounded representation fairness setting, a set of points is fair if at most an α fraction

of the points have the same color. We call this an α-capped fairlet. For α = 1/t with t an integer,

the fairlet size will always be at most 2t − 1. We will refer to the maximum size of a fairlet by

mf .

Recall that given a union-closed fairness constraint, if the bottom clustering in the tree is

a layer of fairlets (which we call a fairlet decomposition of the original dataset) the hierarchical

clustering tree is also fair. This observation gives an immediate algorithm for finding fair hierar-

chical clustering trees in a two-phase manner. (i) Find a fairlet decomposition, i.e., partition the

input set V into clusters Y1, Y2, . . . that are all fairlets. (ii) Build a tree on top of all the fairlets.

Our goal is to complete both phases in such a way that we optimize the given objective (i.e.,

revenue or value).

In Section 2.4, we will see that to optimize for the revenue objective, all we need is a fairlet
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decomposition with bounded fairlet size. However, the fairlet decomposition required for the

value objective is more nuanced. We describe this next.

Fairlet decomposition for the value objective For the value objective, we need the total distance

between pairs of points inside each fairlet to be small. Formally, suppose V is partitioned into

fairlets Y = {Y1, Y2, . . .} such that Yi is an α-capped fairlet. The cost of this decomposition is

defined as:

ϕ(Y) =
∑
Y ∈Y

∑
{u,v}⊆Y

d(u, v). (2.3)

Unfortunately, the problem of finding a fairlet decomposition to minimize ϕ(·) does not admit

any constant-factor approximation unless P = NP.

Theorem 7. Let z ≥ 3 be an integer. Then there is no bounded approximation algorithm for

finding ( z
z+1

)-capped fairlets optimizing ϕ(Y), which runs in polynomial time, unless P = NP.

The proof proceeds by a reduction from the Triangle Partition problem, which asks if a

graph G = (V,E) on 3n vertices can be partitioned into three element sets, with each set forming

a triangle in G. Fortunately, for the purpose of optimizing the value objective, it is not necessary

to find an approximate decomposition.

2.4 Optimizing revenue with fairness

This section considers the revenue objective. We will obtain an approximation algorithm

for this objective in three steps: (i) obtain a fairlet decomposition such that the maximum fair-

let size in the decomposition is small, (ii) show that any β-approximation algorithm to (2.1)

(i.e., any algorithm that achieves a β-factor approximation of (2.1) for some given β) plus this
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fairlet decomposition can be used to obtain a (roughly) β-approximation for fair hierarchical

clustering under the revenue objective, and (iii) use average-linkage, which is known to be a 1/3-

approximation to (2.1). (We note that the recent work [Ahmadian et al., 2020a,Alon et al., 2020]

on improved approximation algorithms compare to a bound on the optimal solution that differs

from (2.1) and therefore do not fit into our framework.)

First, we address step (ii). Due to space, this proof can be found in 2.9.2. Note that

Theorem 8 extends to the fairness constraint defined by [Bera et al., 2019, Bercea et al., 2019]’s

provided a fairlet decomposition in this setting.

Theorem 8. Given an algorithm that obtains a β-approximation to (2.1) where β ≤ 1, and a

fairlet decomposition with maximum fairlet size mf , there is a β
(
1− 2mf

n

)
-approximation for

fair hierarchical clustering under the revenue objective.

Prior work showed that average-linkage is a 1/3-approximation to (2.1) in the vertex-unweighted

case; this proof can be easily modified to show that it is still 1/3-approximation even with vertex

weights. This accounts for step (iii) in our process.

Combined with the fairlet decomposition methods for the two-color case [Chierichetti et al.,

2017], which has mf = b + r for b blue vertices and r red vertices, and for multi-color case

(Supplementary Material), which has mf ≤ 2t− 1, to address step (i), we have the following.

Corollary 9. There is polynomial time algorithm that constructs a fair tree that is a 1
3

(
1− 2mf

n

)
-

approximation for revenue objective, where mf is the maximum size of fairlets.
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2.5 Optimizing value with fairness

In this section we consider the value objective. As in the revenue objective, we prove that

we can reduce fair hierarchical clustering to the problem of finding a good fairlet decomposition

for the proposed fairlet objective (2.3), and then use any approximation algorithm for weighted

hierarchical clustering with the decomposition as the input. Again, our result applies to [Bera

et al., 2019, Bercea et al., 2019]’s fairness constraint if we are given an appropriate fairness

decomposition.

Theorem 10. Given an algorithm that gives a β-approximation to (2.2) where β ≤ 1, and a

fairlet decomposition Y such that ϕ(Y) ≤ ϵ · d(V ), there is a β(1− ϵ) approximation for (2.2).

We complement this result with an algorithm that finds a good fairlet decomposition in

polynomial time under the bounded representation fairness constraint with cap α.

Let R1, . . . , Rc be the c colors and let Y = {Y1, Y2 . . .} be the fairlet decomposition. Let

ni be the number of points colored Ri in V . Let ri,k denote the number of points colored Ri in

the kth fairlet.

Theorem 11. There exists a local search algorithm that finds a fairlet decomposition Y with

ϕ(Y) ≤ (1 + ϵ)maxi,k
ri,k
ni

d(V ) in time Õ(n3/ϵ).

We can now use the fact that both average-linkage and the ϵ
n

-locally-densest cut algorithm

give a 2
3
- and (2

3
−ϵ)-approximation respectively for vertex-weighted hierarchical clustering under

the value objective. Finally, recall that fairlets are intended to be minimal, and their size depends

only on the parameter α, and not on the size of the original input. Therefore, as long as the

number of points of each color increases as input size, n, grows, the ratio ri,k/ni goes to 0. These
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results, combined with Theorem 10 and Theorem 11, yield Corollary 12.

Corollary 12. Given bounded size fairlets, the fairlet decomposition computed by local search

combined with average-linkage constructs a fair hierarchical clustering that is a 2
3
(1 − o(1))-

approximation for the value objective. For the ϵ
n

-locally-densest cut algorithm in [Cohen-Addad

et al., 2018], we get a polynomial time algorithm for fair hierarchical clustering that is a (2
3
−

ϵ)(1− o(1))-approximation under the value objective for any ϵ > 0.

Given at most a small fraction of every color is in any cluster, Corollary 12 states that we

can extend the state-of-the-art results for value to the α-capped, multi-colored constraint. Note

that the preconditions will always be satisfied and the extension will hold in the two-color fairness

setting or in the multi-colored equal representation fairness setting.

Fairlet decompositions via local search In this section, we give a local search algorithm to

construct a fairlet decomposition, which proves Theorem 11. This is inspired by the ϵ-densest

cut algorithm of [Cohen-Addad et al., 2018]. To start, recall that for a pair of sets A and B

we denote by d(A,B) the sum of interpoint distances, d(A,B) =
∑

u∈A,v∈B d(u, v). A fairlet

decomposition is a partition of the input {Y1, Y2, . . .} such that each color composes at most an

α fraction of each Yi.

We start by finding an arbitrary α-capped fairlet decomposition. For two colors with α =

r/(b + r), we use the fairlet decomposition introduced by Chierichetti et al. [Chierichetti et al.,

2017]. For multiple colors with α = 1/t, we defer to Lemma 24 in Appendix 2.9.3.2. Our

algorithm will then recursively subdivide the cluster of all data to construct a hierarchy by finding

cuts. To search for a cut, we will use a swap method.
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Definition 13 (Local optimality). Consider any fairlet decomposition Y = {Y1, Y2, . . .} and

ϵ > 0. Define a swap of u ∈ Yi and v ∈ Yj for j ̸= i as updating Yi to be (Yi \ {u}) ∪ {v} and

Yj to be (Yj \ {v}) ∪ {u}. We say Y is ϵ-locally-optimal if any swap with u, v of the same color

reduces the objective value by less than a (1 + ϵ) factor.

The algorithm constructs a (ϵ/n)-locally optimal algorithm for fairlet decomposition, which

runs in Õ(n3/ϵ) time. Consider any given instance (V, d). Let dmax denote the maximum dis-

tance, mf denote the maximum fairlet size, and ∆ = dmax · mf

n
. The algorithm begins with an

arbitrary decomposition. Then it swaps pairs of monochromatic points until it terminates with a

locally optimal solution. By construction we have the following.

Claim 14. Algorithm 1 finds a valid fairlet decomposition.

We prove two things: Algorithm 1 optimizes the objective (2.3), and has a small running

time. The following lemma gives an upper bound on Y’s performance for (2.3) found by Algo-

rithm 1.

Algorithm 1 Algorithm for (ϵ/n)-locally-optimal fairlet decomposition.
Input A set V with distance function d ≥ 0, parameter α, small constant ϵ ∈ [0, 1]
Output An α-capped fairlet decomposition Y .

1: Find dmax, ∆← mf

n
dmax.

2: Arbitrarily find an α-capped fairlet decomposition {Y1, Y2, . . .} such that each partition has
at most an α fraction of any color ▷ See [Chierichetti et al., 2017] or Appendix 2.9.3.2

3: while ∃u ∈ Yi, v ∈ Yj, i ̸= j of the same color, such that for the decomposition Y ′ after

swapping u, v,
∑

Yk∈Y d(Yk)∑
Yk∈Y′ d(Yk)

≥ (1 + ϵ/n) and
∑

Yk∈Y d(Yk) > ∆ do
4: Swap u and v by setting Yi ← (Yi \ {u}) ∪ {v} and Yj ← (Yj \ {v}) ∪ {u}.
5: end while

Lemma 15. The fairlet decomposition Y computed by Algorithm 1 has an objective value for

(2.3) of at most (1 + ϵ)maxi,k
ri,k
ni

d(V ).
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Finally we bound the running time. The algorithm has much better performance in practice

than its worst-case analysis would indicate. We will show this later in Section 2.7.

Lemma 16. The running time for Algorithm 1 is Õ(n3/ϵ).

Together, Lemma 15, Lemma 16, and Claim 14 prove Theorem 11. This establishes that

there is a local search algorithm that can construct a good fairlet decomposition.

2.6 Optimizing cost with fairness

This section considers the cost objective of [Dasgupta, 2016]. Even without our fairness

constraint, the difficulty of approximating cost is clear in its approximation hardness and the fact

that all known solutions require an LP or SDP solver. We obtain the result in Theorem 17; extend-

ing this result to other fairness constraints, improving its bound, or even making the algorithm

practical, are open questions.

Theorem 17. Consider the two-color case. Given a β-approximation for cost and a γt-approximation

for minimum weighted bisection 2 on input of size t, then for parameters t and ℓ such that n ≥ tℓ

and n > ℓ+ 108t2/ℓ2, there is a fair O
(
n
t
+ tℓ+ nℓγt

t
+ ntγt

ℓ2

)
β-approximation for cost(T ∗

unfair).

With proper parameterization, we achieve an O
(
n5/6 log5/4 n

)
-approximation. We defer

our algorithm description, pseudocode, and proofs to the Supplementary Material. While our

algorithm is not simple, it is an important (and non-obvious) step to show the existence of an

approximation, which we hope will spur future work in this area.

2The minimum weighted bisection problem is to find a partition of nodes into two equal-sized subsets so that the
sum of the weights of the edges crossing the partition is minimized.
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Table 2.1: Dataset description. Here (b, r) denotes the balance of the dataset.
Name Sample size # features Protected feature Color (blue, red) (b, r)

CENSUSGENDER 30162 6 gender (female, male) (1, 3)
CENSUSRACE 30162 6 race (non-white, white) (1, 7)

BANKMARRIAGE 45211 7 marital status (not married, married) (1, 2)
BANKAGE 45211 7 age (< 40, ≥ 40) (2, 3)

Table 2.2: Impact of Algorithm 1 on ratiovalue in percentage (mean ± std. dev).

Samples 400 800 1600 3200 6400 12800

CENSUSGENDER, initial 88.17 ± 0.76 88.39 ± 0.21 88.27 ± 0.40 88.12 ± 0.26 88.00 ± 0.10 88.04 ± 0.13
final 99.01 ± 0.60 99.09 ± 0.58 99.55 ± 0.26 99.64 ± 0.13 99.20 ± 0.38 99.44 ± 0.23

CENSUSRACE, initial 84.49 ± 0.66 85.01 ± 0.31 85.00 ± 0.42 84.88 ± 0.43 84.84 ± 0.16 84.89 ± 0.20
final 99.50 ± 0.20 99.89 ± 0.32 100.0 ± 0.21 99.98 ± 0.21 99.98 ± 0.11 99.93 ± 0.31

BANKMARRIAGE, initial 92.47 ± 0.54 92.58 ± 0.30 92.42 ± 0.30 92.53 ± 0.14 92.59 ± 0.14 92.75 ± 0.04
final 99.18 ± 0.22 99.28 ± 0.33 99.59 ± 0.14 99.51 ± 0.17 99.46 ± 0.10 99.50 ± 0.05

BANKAGE, initial 93.70 ± 0.56 93.35 ± 0.41 92.95 ± 0.25 93.28 ± 0.13 93.36 ± 0.12 93.33 ± 0.12
final 99.40 ± 0.28 99.40 ± 0.51 99.61 ± 0.13 99.64 ± 0.07 99.65 ± 0.08 99.59 ± 0.06

2.7 Experiments

This section validates our algorithms from Sections 2.4 and 2.5 empirically. We adopt the

disparate impact fairness constraint [Chierichetti et al., 2017]; thus each point is either blue or

red. In particular, we would like to:

• Show that running the standard average-linkage algorithm results in highly unfair solutions.

• Demonstrate that demanding fairness in hierarchical clustering incurs only a small loss in

the hierarchical clustering objective.

• Show that our algorithms, including fairlet decomposition, are practical on real data.

In 2.9.7 we consider multiple colors and the same trends as the two color case occur.

Datasets. We use two datasets from the UCI data repository.3 In each dataset, we use features

with numerical values and leave out samples with empty entries. For value, we use the Euclidean

distance as the dissimilarity measure. For revenue, we set the similarity to be s(i, j) = 1
1+d(i,j)

3archive.ics.uci.edu/ml/index.php, Census: archive.ics.uci.edu/ml/datasets/
census+income, Bank: archive.ics.uci.edu/ml/datasets/Bank+Marketing

32

archive.ics.uci.edu/ml/index.php
archive.ics.uci.edu/ml/datasets/census+income
archive.ics.uci.edu/ml/datasets/census+income
archive.ics.uci.edu/ml/datasets/Bank+Marketing


where d(i, j) is the Euclidean distance. We pick two different protected features for both datasets,

resulting in four datasets in total (See Table 2.1 for details).

• Census dataset: We choose gender and race to be the protected feature and call the resulting

datasets CENSUSGENDERand CENSUSRACE.

• Bank dataset: We choose marital status and age to be the protected features and call the

resulting datasets BANKMARRIAGEand BANKAGE.

In this section, unless otherwise specified, we report results only for the value objective.

Results for the revenue objective are qualitatively similar and are omitted here. We do not evalu-

ate our algorithm for the cost objective since it is currently only of theoretical interest.

We sub-sample points of two colors from the original data set proportionally, while approx-

imately retaining the original color balance. The sample sizes used are 100×2i, i = 0, . . . , 8. On

each, we do 5 experiments and report the average results. We set ϵ in Algorithm 1 to 0.1 in all of

the experiments.

Implementation. The code is available in the Supplementary Material. In the experiments, we

use Algorithm 1 for the fairlet decomposition phase, where the fairlet decomposition is initialized

by randomly assigning red and blue points to each fairlet. We apply the average-linkage algorithm

to create a tree on the fairlets. We further use average-linkage to create subtrees inside of each

fairlet.

The algorithm selects a random pair of blue or red points in different fairlets to swap, and

checks if the swap sufficiently improves the objective. We do not run the algorithm until all the

pairs are checked, rather the algorithm stops if it has made a 2n failed attempts to swap a random

pair. As we observe empirically, this does not have material effect on the quality of the overall
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Table 2.3: Impact of Algorithm 1 on ratiofairlets.

Samples 100 200 400 800 1600 3200 6400 12800

CENSUSGENDER, initial 2.5e-2 1.2e-2 6.2e-3 3.0e-3 1.5e-3 7.5e-4 3.8e-4 1.9e-4
final 4.9e-3 1.4e-3 6.9e-4 2.5e-4 8.5e-5 3.6e-5 1.8e-5 8.0e-6

CENSUSRACE, initial 6.6e-2 3.4e-2 1.7e-2 8.4e-3 4.2e-3 2.1e-3 1.1e-3 5.3e-4
final 2.5e-2 1.2e-2 6.2e-3 3.0e-3 1.5e-3 7.5e-4 3.8e-4 1.9e-5

BANKMARRIAGE, initial 1.7e-2 8.2e-3 4.0e-3 2.0e-3 1.0e-3 5.0e-4 2.5e-4 1.3e-4
final 5.9e-3 2.1e-3 9.3e-4 4.1e-4 1.3e-4 7.1e-5 3.3e-5 1.4e-5

BANKAGE, initial 1.3e-2 7.4e-3 3.5e-3 1.9e-3 9.3e-4 4.7e-4 2.3e-4 1.2e-4
final 5.0e-3 2.2e-3 7.0e-4 3.7e-4 1.3e-4 5.7e-5 3.0e-5 1.4e-5
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Figure 2.1: (i) ratiofairlets, every 100 swaps. (ii) ratiovalue, every 100 swaps. (iii) CENSUSGEN-
DER: running time vs sample size on a log-log scale.

solution.

Metrics. We present results for value here, the results for revenue are qualitatively similar. In our

experiments, we track the following quantities. Let G be the given input instance and let T be the

output of our fair hierarchical clustering algorithm. We consider the following ratio ratiovalue =

valueG(T )
valueG(T ′)

, where T ′ is the tree obtained by the standard average-linkage algorithm. We consider

the fairlet objective function where Y is a fairlet decomposition. Let ratiofairlets =
ϕ(Y)
d(V )

.

Results. Average-linkage algorithm always constructs unfair trees. For each of the datasets,

the algorithm results in monochromatic clusters at some level, strengthening the case for fair

algorithms.

In Table 2.2, we show for each dataset the ratiovalue both at the time of initialization (Initial)

and after using the local search algorithm (Final). We see the change in the ratio as the local
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Table 2.4: Clustering on fairlets found by local search vs. upper bound, at size 1600 (mean ±
std. dev).

Dataset CENSUSGENDER CENSUSRACE BANKMARRIAGE BANKAGE

Revenue vs. upper bound 81.89± 0.40 81.75± 0.83 61.53± 0.37 61.66± 0.66
Value vs. upper bound 84.31± 0.15 84.52± 0.22 89.17± 0.29 88.81± 0.18

search algorithm performs swaps. Fairness leads to almost no degradation in the objective value

as the swaps increase. Table 2.3 shows the ratiofairlets between the initial initialization and the

final output fairlets. As we see, Algorithm 1 significantly improves the fairness of the initial

random fairlet decomposition. The more the locally-optimal algorithm improves the objective

value of (2.3), the better the tree’s performance based on the fairlets. Figures 2.1(i) and 2.1(ii)

show ratiovalue and ratiofairlets for every 100 swaps in the execution of Algorithm 1 on a subsample

of size 3200 from Census data set. The plots show that as the fairlet objective value decreases,

the value objective of the resulting fair tree increases. Such correlation are found on subsamples

of all sizes.

Now we compare the objective value of the algorithm with the upper bound on the opti-

mum. We report the results for both the revenue and value objectives, using fairlets obtained by

local search, in Table 2.4. On all datasets, we obtain ratios significantly better than the theoretical

worst case guarantee. In Figure 2.1(iii), we show the average running time on Census data for

both the original average-linkage and the fair average-linkage algorithms. As the sample size

grows, the running time scales almost as well as current implementations of average-linkage al-

gorithm. Thus with a modest increase in time, we can obtain a fair hierarchical clustering under

the value objective.
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2.8 Conclusions

In this paper we extended the notion of fairness to the classical problem of hierarchical

clustering under three different objectives (revenue, value, and cost). Our results show that rev-

enue and value are easy to optimize with fairness; while optimizing cost appears to be more

challenging.

Our work raises several questions and research directions. Can the approximations be

improved? Can we find better upper and lower bounds for fair cost? Are there other important

fairness criteria?
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Broader Impact

Our work builds upon a long line of work of fairness in machine learning. See the excellent

books by Kearns and Roth [Kearns and Roth, 2020], and Barocas et al. [Barocas et al., 2019] for

a rich introduction to the field.

Our aim in this work is algorithmic in nature, finding near-optimal hierarchical clustering

algorithms that attain certain fairness guarantees. Since these methods are common unsupervised

learning primitives, it is important to develop tools for practitioners to use. At the same time we

remark that just because an algorithm is proven to be “fair” under some definition, does not mean

it can be applied blindly.

As is now well known, [Kleinberg et al., 2017b], different fairness notions can be incom-

patible with each other. Moreover, fairness in machine learning is necessarily problem specific,

and depends on the goals and the values of the person invoking the algorithm. While these facts

are well established in the research community, they are far from common knowledge outside of

it. Thus work on algorithmic notions of fairness runs the risk of someone treating the results as a

silver bullet, and eschewing the deeper analysis that is necessary in any real world application.
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2.9 Appendix

2.9.1 Approximation algorithms for weighted hierarchical clustering

In this section we first prove that running constant-approximation algorithms on fairlets

gives good solutions for value objective, and then give constant approximation algorithms for

both revenue and value in weighted hierarchical clustering problem, as is mentioned in Corol-

lary 9 and 12. That is, a weighted version of average-linkage, for both weighted revenue and

value objective, and weighted (ϵ/n)-locally densest cut algorithm, which works for weighted

value objective. Both proofs are easily adapted from previous proofs in [Cohen-Addad et al.,

2018] and [Moseley and Wang, 2017].

2.9.1.1 Running constant-approximation algorithms on fairlets

In this section, we prove Theorem 10, which says if we run any β-approximation algo-

rithm for the upper bound on weighted value on the fairlet decomposition, we get a fair tree with

minimal loss in approximation ratio. For the remainder of this section, fix any hierarchical clus-

tering algorithm A that is guaranteed on any weighted input (V, d,m) to construct a hierarchical

clustering with objective value at least βm(V )d(V ) for the value objective on a weighted input.

Recall that we extended the value objective to a weighted variant in the Preliminaries Section and

m(V ) =
∑

u∈V mu. Our aim is to show that we can combine A with the fairlet decomposition Y

introduced in the prior section to get a fair hierarchical clustering that is a β(1−ϵ)-approximation

for the value objective, if ϕ(Y) ≤ ϵd(V ).

In the following definition, we transform the point set to a new set of points that are
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weighted. We will analyze A on this new set of points. We then show how we can relate this to

the objective value of the optimal tree on the original set of points.

Definition 18. Let Y = {Y1, Y2, . . .} be the fairlet decomposition for V that is produced by the

local search algorithm. Define V (Y) as follows:

• Each set Yi has a corresponding point ai in V (Y).

• The weight mi of ai is set to be |Yi|.

• For each partitions Yi, Yj , where i ̸= j and Yi, Yj ∈ Y , d(ai, aj) = d(Yi, Yj).

We begin by observing the objective value that A receives on the instance V (Y) is large

compared to the weights in the original instance.

Theorem 19. On the instance V (Y) the algorithm A has a total weighted objective of β(1− ϵ) ·

nd(V ).

Proof. Notice that m(V (Y)) = |V | = n. Consider the total sum of all the distances in V (Y).

This is
∑

ai,aj∈V (Y) d(ai, aj) =
∑

Yi,Yj∈Y d(Yi, Yj) = d(V ) − ϕ(Y). The upper bound on the

optimal solution is (
∑

Yi∈Y mi)(d(V ) − ϕ(Y) = n(d(V ) − ϕ(Y)). Since ϕ(Y) ≤ ϵd(V ), this

upper bound is at least (1 − ϵ)nd(V ). Theorem 10 follows from the fact that the algorithm A

archives a weighted revenue at least a β factor of the total weighted distances.

2.9.1.2 Weighted hierarchical clustering: Constant-factor approximation

For weighted hierarchical clustering with positive integral weights, we define the weighted

average-linkage algorithm for input (V, d,m) and (V, s,m). Define the average distance to be
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Avg(A,B) = d(A,B)
m(A)m(B)

for dissimilarity-based input, and Avg(A,B) = s(A,B)
m(A)m(B)

for similarity-

based input. In each iteration, weighted average-linkage seeks to merge the clusters which mini-

mizes this value, if dissimilarity-based, and maximizes this value, if similarity-based.

Lemma 20. Weighted average-linkage is a 2
3
(resp., 1

3
) approximation for the upper bound on

weighted value (resp., revenue) objective with positive, integral weights.

Proof. We prove it for weighted value first. This is directly implied by the fact that average-

linkage is 2
3

approximation for unweighted value objective, as is proved in [Cohen-Addad et al.,

2018]. We have already seen in the last subsection that a unweighted input V can be converted

into weighted input V (Y). Vice versa, we can construct a weighted input (V, d,m) into un-

weighted input with same upper bound for value objective.

In weighted hierarchical clustering we treat each point p with integral weights as m(p)

duplicates of points with distance 0 among themselves, let’s call this set S(p). For two weighted

points (p,m(p)) and (q,m(q)), if i ∈ S(p), j ∈ S(q), let d(i, j) = d(p,q)
m(p)m(q)

. This unweighted

instance, composed of many duplicates, has the same upper bound as the weighted instance.

Notice that running average-linkage on the unweighted instance will always choose to put all

the duplicates S(p) together first for each p, and then do hierarchical clustering on top of the

duplicates. Thus running average-linkage on the unweighted input gives a valid hierarchical

clustering tree for weighted input. Since unweighted value upper bound equals weighted value

upper bound, the approximation ratio is the same.

Now we prove it for weighted revenue. In [Moseley and Wang, 2017], average-linkage

being 1
3

approximation for unweighted revenue is proved by the following. Given any clustering
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C, if average-linkage chooses to merge A and B in C, we define a local revenue for this merge:

merge-rev(A,B) =
∑

C∈C\{A,B}

|C||A||B|Avg(A,B).

And correspondingly, a local cost:

merge-cost(A,B) =
∑

C∈C\{A,B}

(|B||A||C|Avg(A,C) + |A||B||C|Avg(B,C)).

Summing up the local revenue and cost over all merges gives the upper bound. [Moseley and

Wang, 2017] used the property of average-linkage to prove that at every merge, merge-cost(A,B) ≤

2merge-rev(A,B), which guarantees the total revenue, which is the summation of merge-rev(A,B)

over all merges, is at least 1
3

of the upper bound. For the weighted case, we define

merge-rev(A,B) =
∑

C∈C\{A,B}

m(C)m(A)m(B)Avg(A,B).

And

merge-cost(A,B) =
∑

C∈C\{A,B}

(m(B)m(A)m(C)Avg(A,C)

+m(A)m(B)m(C)Avg(B,C)).

And the rest of the proof works in the same way as in [Moseley and Wang, 2017], proving

weighted average-linkage to be 1
3

for weighted revenue.

Next we define the weighted (ϵ/n)-locally-densest cut algorithm. The original algorithm,
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introduced in [Cohen-Addad et al., 2018], defines a cut to be d(A,B)
|A||B| . It starts with the original

set as one cluster, at every step, it seeks the partition of the current set that locally maximizes

this value, and thus constructing a tree from top to bottom. For the weighted input (V, d,m), we

define the cut to be d(A,B)
m(A)m(B)

, and let n = m(V ). For more description of the algorithm, see

Algorithm 4 in Section 6.2 in [Cohen-Addad et al., 2018].

Lemma 21. Weighted (ϵ/n)-locally-densest cut algorithm is a 2
3
− ϵ approximation for weighted

value objective.

Proof. Just as in the average-linkage proof, we convert each weighted point p into a set S of

m(p) duplicates of p. Notice that the converted unweighted hierarchical clustering input has the

same upper bound as the weighted hierarchical clustering input, and the ϵ/n-locally-densest cut

algorithm moves all the duplicate sets S around in the unweighted input, instead of single points

as in the original algorithm in [Cohen-Addad et al., 2018].

Focus on a split of cluster A ∪ B into (A,B). Let S be a duplicate set. ∀S ⊆ A, where S

is a set of duplicates, we must have

(1 +
ϵ

n
)
d(A,B)

|A||B|
≥ d(A \ S,B ∪ S)

(|A| − |S|)(|B|+ |S|)
.
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Pick up a point q ∈ S,

(1 +
ϵ

n
)d(A,B)|S|(|A| − 1)(|B|+ 1)

= (1 +
ϵ

n
)d(A,B)(|A||B|+ |A| − |B| − 1)|S|

= (1 +
ϵ

n
)d(A,B)(|A||B|+ |A||S| − |B||S| − |S|) + (1 +

ϵ

n
)d(A,B)(|A||B|)(|S| − 1)

≥ (1 +
ϵ

n
)d(A,B)(|A| − |S|)(|B|+ |S|) + d(A,B)|A||B|(|S| − 1)

≥ |A||B|d(A \ S,B ∪ S) + d(A,B)|A||B|(|S| − 1)

= |A||B|(d(A,B) + |S|d(q, A)− |S|d(q, B)) + |A||B|(|S| − 1)d(A,B)

= |A||B||S|(d(A,B) + d(q, A)− d(q, B)).

Rearrange the terms and we get the following inequality holds for any point q ∈ A:

(
1 +

ϵ

n

) d(A,B)

|A||B|
≥ d(A,B) + d(q, A)− d(q, B)

(|A| − 1)(|B|+ 1)
.

The rest of the proof goes exactly the same as the proof in [Cohen-Addad et al., 2018, Theorem

6.5].

2.9.2 Proof of Theorem 8

Proof. Let A be the β-approximation algorithm to (2.1). For a given instance G = (V, s), let

Y = {Y1, Y2, . . .} be a fairlet decomposition of V ; let mf = maxY ∈Y |Y |. Recall that n = |V |.

We use Y to create a weighted instance GY = (Y , sY ,mY). For Y, Y ′ ∈ Y , we define

s(Y, Y ′) =
∑

i∈Y,j∈Y ′ s(i, j) and we define mY(Y ) = |Y |.

We run A on GY and let TY be the hierarchical clustering obtained by A. To extend this
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to a tree T on V , we simply place all the points in each fairlet as leaves under the corresponding

vertex in TY .

We argue that revG(T ) ≥ β
(
1− 2mf

n

)
(n− 2)s(V ).

SinceA obtains a β-approximation to hierarchical clustering on GY , we have revGY

(
TY) ≥

β ·
∑

Y,Y ′∈Y s(Y, Y ′)(n−m(Y )−m(Y ′)).

Notice the fact that, for any pair of points u, v in the same fairlet Y ∈ Y , the revenue they

get in the tree T is (n−m(Y ))s(u, v). Then using revG(T ) =
∑

Y ∈Y(n−m(Y ))s(Y )+rev(TY),

revG(T ) ≥
∑
Y ∈Y

β(n−m(Y ))s(Y ) + β
∑

Y,Y ′∈Y

s(Y, Y ′)(n−m(Y )−m(Y ′))

≥ β(n− 2mf )

(∑
Y ∈Y

s(Y ) +
∑

Y,Y ′∈Y

s(Y, Y ′)

)
≥ β

(
1− 2mf

n

)
(n− 2)s(V ).

Thus the resulting tree T is a β
(
1− 2mf

n

)
-approximation of the upper bound.

2.9.3 Proofs for (ϵ/n)locally-optimal local search algorithm

In this section, we prove that Algorithm 1 gives a good fairlet decomposition for the fairlet

decomposition objective 2.3, and that it has polynomial run time.

2.9.3.1 Proof for a simplified version of Lemma 15

In Subsection 2.9.3.2, we will prove Lemma 15. For now, we will consider a simpler

version of Lemma 15 in the context of [Chierichetti et al., 2017]’s disparate impact problem,

where we have red and blue points and strive to preserve their ratios in all clusters. Chierichetti

et al. [Chierichetti et al., 2017] provided a valid fairlet decomposition in this context, where each
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fairlet has at most b blue points and r red points. Before going deeper into the analysis, we state

the following useful proposition.

Proposition 22. Let rt = |red(V )| be the total number of red points and bt = |blue(V )| the

number of blue points. We have that, max{ r
rt
, b
bt
} ≤ 2(b+r)

n
.

Proof. Recall that balance(V ) = bt
rt
≥ b

r
, and wlog bt ≤ rt. Since the fractions are positive and

bt
rt
≥ b

r
we know that bt

bt+rt
≥ b

b+r
. Since bt + rt = n we conclude that bt ≥ b

b+r
n. Similarly, we

conclude that rt
bt+rt

≤ r
b+r

. Therefore rt ≤ r
b+r

n.

Thus, r
rt
≥ b+r

n
≥ b

bt
. However, since bt ≤ rt and bt + rt = n, rt ≥ 1

2
n, r

rt
≤ 2r

n
≤

2(b+r)
n

.

Using this, we can define and prove the following lemma, which is a simplified version of

Lemma 15.

Lemma 23. The fairlet decomposition Y computed by Algorithm 1 has an objective value for

(2.3) of at most (1 + ϵ)2(b+r)
n

d(V ).

Proof. Let Y : V 7→ Y denote a mapping from a point in V to the fairlet it belongs to. Let

dR(X) =
∑

u∈red(X) d(u,X), and dB(X) =
∑

v∈blue(X) d(v,X). Naturally, dR(X) + dB(X) =

2d(X) for any set X . For a fairlet Yi ∈ Y , let ri and bi denote the number of red and blue points

in Yi.

We first bound the total number of intra-fairlet pairs. Let xi = |Yi|, we know that 0 ≤ xi ≤

b+r and
∑

i xi = n. The number of intra-fairlet pairs is at most
∑

i x
2
i ≤

∑
i(b+r)xi = (b+r)n.

The While loop can end in two cases: 1) if Y is (ϵ/n)-locally-optimal; 2) if
∑

Yk∈Y d(Yk) ≤

∆. Case 2 immediately implies the lemma, thus we focus on case 1. By definition of the algo-

rithm, we know that for any pair u ∈ Y (u) and v ∈ Y (v) where u, v have the same color and
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Y (u) ̸= Y (v) the swap does not increase objective value by a large amount. (The same trivially

holds if the pair are in the same cluster.)

∑
Yk

d(Yk) ≤ (1 +
ϵ

n
)(
∑
Yk

d(Yk)− d(u, Y (u))− d(v, Y (v)) + d(u, Y (v)) + d(v, Y (u))− 2d(u, v))

≤ (1 +
ϵ

n
)(
∑
Yk

d(Yk)− d(u, Y (u))− d(v, Y (v)) + d(u, Y (v)) + d(v, Y (u))).

After moving terms and some simplification, we get the following inequality:

d(u, Y (u)) + d(v, Y (v))

≤ d(u, Y (v)) + d(v, Y (u)) +
ϵ/n

1 + ϵ/n

∑
Yk∈Y

d(Yk)

≤ d(u, Y (v)) + d(v, Y (u)) +
ϵ

n

∑
Yk∈Y

d(Yk).

(2.4)

Then we sum up (2.4), d(u, Y (u))+d(v, Y (v)) ≤ d(u, Y (v))+d(v, Y (u))+ ϵ
n

∑
Yk∈Y d(Yk),

over every pair of points in red(V ) (even if they are in the same partition).

rt
∑
Yi

dR(Yi) ≤

(∑
Yi

ridR(Yi)

)
+

( ∑
u∈red(V )

∑
Yi ̸=Y (u)

rid(u, Yi)

)
+ r2t

ϵ

n

∑
Yi

d(Yi).

Divide both sides by rt and use the fact that ri ≤ r for all Yi:

∑
Yi

dR(Yi) ≤

(∑
Yi

r

rt
dR(Yi)

)
+

 ∑
u∈red(V )

∑
Yi ̸=Y (u)

r

rt
d(u, Yi)

+
rtϵ

n

∑
Yi

d(Yi). (2.5)
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For pairs of points in blue(V ) we sum (2.4) to similarly obtain:

∑
Yi

dB(Yi) ≤

(∑
Yi

b

bt
dB(Yi)

)
+

 ∑
v∈blue(V )

∑
Yi ̸=Y (v)

b

bt
d(v, Yi)

+
btϵ

n

∑
Yi

d(Yi). (2.6)

Now we sum up (2.5) and (2.6). The LHS becomes:

∑
Yi

(dR(Yi) + dB(Yi)) =
∑
Yi

∑
u∈Yi

d(u, Yi) = 2
∑
Yi

d(Yi.)

For the RHS, the last term in (2.5) and (2.6) is ϵ(bt+rt)
n

∑
Yi
d(Yi) = ϵ

∑
Yi
d(Yi).

The other terms give:

r

rt

∑
Yi

dR(Yi) +
r

rt

∑
u∈red(V )

∑
Yi ̸=Y (u)

d(u, Yi) +
b

bt

∑
Yi

dB(Yi) +
b

bt

∑
v∈blue(V )

∑
Yi ̸=Y (v)

d(v, Yi)

≤ max{ r
rt
,
b

bt
}

{∑
Yi

(dR(Yi) + dB(Yi)) +
∑
u∈V

∑
Yi ̸=Y (u)

d(u, Yi)

}

= max{ r
rt
,
b

bt
}

{∑
Yi

∑
u∈Yi

d(u, Yi) +
∑
Yi

∑
Yj ̸=Yi

d(Yi, Yj)

}

= 2max{ r
rt
,
b

bt
}d(V )

≤ 4(b+ r)

n
d(V ).

The last inequality follows from Proposition 22. All together, this proves that

2
∑
Yk

d(Yk) ≤
4(b+ r)

n
d(V ) + ϵ

∑
Yk

d(Yk).

Then,
∑

Yk
d(Yk)

d(V )
≤ 2(b+r)

n
· 1

1−ϵ/2
≤ (1 + ϵ)2(b+r)

n
. The final step follows from the fact that
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(1 + ϵ)(1− ϵ/2) = 1 + ϵ
2
(1− ϵ) ≥ 1. This proves the lemma.

2.9.3.2 Proof for the generalized Lemma 15

Next, we prove Lemma 15 for the more generalized definition of fairness, which is α-

capped fairness.

Proof of [Lemma 15] The proof follows the same logic as in the two-color case: we first use the

(ϵ/n)-local optimality of the solution, and sum up the inequality over all pairs of points with the

same color.

Let Y : V 7→ Y denote a mapping from a point in V to the fairlet it belongs to. Let

Ri(X) be the set of Ri colored points in a set X . Let dRi
(X) =

∑
u∈Ri(X) d(u,X). Naturally,∑

i dRi
(x) = 2d(X) for any set X since the weight for every pair of points is repeated twice.

The While loop can end in two cases: 1) if Y is (ϵ/n)-locally-optimal; 2) if
∑

Yk∈Y d(Yk) ≤

∆. Case 2 immediately implies the lemma, thus we focus on case 1.

By definition of the algorithm, we know that for any pair u ∈ Y (u) and v ∈ Y (v) where

u, v have the same color and Y (u) ̸= Y (v) the swap does not increase objective value by a large

amount. (The same trivially holds if the pair are in the same cluster.) We get the following

inequality as in the two color case:

d(u, Y (u)) + d(v, Y (v)) ≤ d(u, Y (v)) + d(v, Y (u)) +
ϵ

n

∑
Yk∈Y

d(Yk). (2.7)

For any color Ri, we sum it over every pair of points in Ri(V ) (even if they are in the same
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partition).

ni

∑
Yk

dRi
(Yk) ≤

(∑
Yk

rikdRi
(Yk)

)
+

( ∑
u∈Ri(V )

∑
Yk ̸=Y (u)

rikd(u, Yk)

)
+ n2

i

ϵ

n

∑
Yk

d(Yk).

Divide both sides by ni and we get:

∑
Yk

dRi
(Yk) ≤

(∑
Yk

rik
ni

dRi
(Yk)

)
+

 ∑
u∈Ri(V )

∑
Yk ̸=Y (u)

rik
ni

d(u, Yk)

+
niϵ

n

∑
Yk

d(Yk). (2.8)

Now we sum up this inequality over all colors Ri. The LHS becomes:

∑
Yk

∑
i

dRi
(Yk) =

∑
Yk

∑
u∈Yk

d(u, Yk) = 2
∑
Yk

d(Yk).

For the RHS, the last term sums up to ϵ(
∑

i ni)

n

∑
Yk

d(Yk) = ϵ
∑

Yk
d(Yk). Using the fact that

rik
ni
≤ maxi,k

rik
ni

, the other terms sum up to :

∑
i

∑
Yk

rik
ni

dRi
(Yk) +

∑
i

∑
u∈Ri(V )

∑
Yk ̸=Y (u)

rik
ni

d(u, Yk)

≤ max
i,k

rik
ni

{∑
Yk

∑
i

dRi
(Yi) +

∑
u∈V

∑
Yk ̸=Y (u)

d(u, Yk)

}

= max
i,k

rik
ni

{∑
Yk

∑
u∈Yk

d(u, Yk) +
∑
Yk

∑
Yj ̸=Yk

d(Yj, Yk)

}

= 2max
i,k

rik
ni

· d(V ).
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Therefore, putting LHS and RHS together, we get

2
∑
Yk

d(Yk) ≤ 2max
i,k

rik
ni

d(V ) + ϵ
∑
Yk

d(Yk).

Then,
∑

Yk
d(Yk)

d(V )
≤ maxi,k

rik
ni
· 1
1−ϵ/2

≤ (1 + ϵ) · maxi,k
rik
ni

. The final step follows from the fact

that (1 + ϵ)(1− ϵ/2) = 1 + ϵ
2
(1− ϵ) ≥ 1.

In the two-color case, the ratio maxi,k
rik
ni

becomes max{ r
rt
, b
bt
}, which can be further

bounded by 2(b+r)
n

(see Proposition 22). If there exists a caplet decomposition such that maxi,k
rik
ni

=

o(1), Lemma 15 implies we can build a fair hierarchical clustering tree with o(1) loss in approx-

imation ratio for value objective.

Assuming for all color class Ri, ni → +∞ as n → +∞, here we give a possible caplet

decomposition for α = 1
t
(t <= c) with size O(t) for positive integer t, thus guaranteeing

maxi,k
rik
ni

= o(1) for any i.

Lemma 24. For any set P of size p that satisfies fairness constraint with α = 1/t, there exists a

partition of P into sets (P1, P2, . . .) where each Pi satisfies the fairness constraint and t ≤ |Pi| <

2t.

Proof. Let p = m × t + r with 0 ≤ r < t, then the fairness constraints ensures that there are

at most m elements of each color. Consider partitioning obtained through the following process:

consider an ordering of elements where points of the same color are in consecutive places, assign

points to sets P1, P2, . . . , Pm in a round robin fashion. So each set Pi gets at least t elements and

at most t + r < 2t elements assigned to it. Since there are at most m elements of each color,
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each set gets at most one point of any color and hence all sets satisfy the fairness constraint as

1 ≤ 1
t
· |Pi|.

2.9.3.3 Proof for the running time of (ϵ/n)locally-optimal fairlet decomposi-

tion algorithm

Proof of [Lemma 16] Notice that finding the maximum pairwise distance takes O(n2) time. Thus,

we focus on analyzing the time spent on the While loop.

Let t be the total number of swaps. We argue that t = Õ(n/ϵ). If t = 0 the conclusion

trivially holds. Otherwise, consider the decompositionYt−1 before the last swap. Since the While

loop does not terminate here,
∑

Yk∈Yt−1
d(Yk) ≥ ∆ = b+r

n
dmax. However, at the beginning, we

have
∑

Yk∈Y d(Yk) ≤ (b + r)n · dmax = n2∆ ≤ n2
∑

Yk∈Yt−1
d(Yk). Therefore, it takes at most

log1+ϵ/n(n
2) = Õ(n/ϵ) iterations to finish the While loop.

It remains to discuss the running time of each iteration. We argue that there is a way to

finish each iteration in O(n2) time. Before the While loop, keep a record of d(u, Yi) for each

point u and each fairlet Yi. This takes O(n2) time. If we know d(u, Yi) and the objective value

from the last iteration, in the current iteration, it takes O(1) time to calculate the new objective

value after each swap (u, v), and there are at most n2 such calculations, before the algorithm

either finds a pair to swap, or determines that no such pair is left. After the swap, the update for

all the d(u, Yi) data takes O(n) time. In total, every iteration takes O(n2) time.

Therefore, Algorithm 1 takes Õ(n3/ϵ) time.
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2.9.4 Hardness of optimal fairlet decomposition

Before proving Theorem 7, we state that the PARTITION INTO TRIANGLES (PIT) prob-

lem is known to belong to the NP-complete class [Garey and Johnson, 2002], defined as follows.

In the definition, we call a clique k-clique if it has k nodes. A triangle is a 3-clique.

Definition 25. PARTITION INTO TRIANGLES

(PIT). Given graph G = (V,E), where V = 3n, determine if V can be partitioned into 3-element

sets S1, S2, . . . , Sn, such that each Si forms a triangle in G.

The NP-hardness of PIT problem gives us a more general statement.

Definition 26. PARTITION INTO k-CLIQUES

(PIKC). For a fixed number k treated as constant, given graph G = (V,E), where V = kn,

determine if V can be partitioned into k-element sets S1, S2, . . . , Sn, such that each Si forms a

k-clique in G.

Lemma 27. For a fixed constant k ≥ 3, the PIKC problem is NP-hard.

Proof. We reduce the PIKC problem from the PIT problem. For any graph G = (V,E) given to

the PIT problem where |V | = 3n, construct another graph G′ = (V ′, E ′). Let V ′ = V ∪ C1 ∪

C2∪· · ·∪Cn, where all the Ci’s are (k−3)-cliques, and there is no edge between any two cliques

Ci and Cj where i ̸= j. For any Ci, let all points in Ci to be connected to all nodes in V .

Now let G′ be the input to PIKC problem. We prove that G can be partitioned into triangles

if and only if G′ can be partitioned into k-cliques. If V has a triangle partition V = {S1, . . . , Sn},

then V ′ = {S1 ∪ C1, . . . , Sn ∪ Cn} is a k-clique partition. On the other hand, if V ′ has a

k-clique partition V ′ = {S ′
1, . . . , S

′
n} then C1, . . . , Cn must each belong to different k-cliques
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since they are not connected to each other. Without loss of generality we assume Ci ⊆ Si, then

V = {S ′
1 \ C1, . . . , S

′
n \ Cn} is a triangle partition.

We are ready to prove the theorem.

Proof of [Theorem 7] We prove Theorem 7 by proving that for given z ≥ 4, if there exists a

c-approximation polynomial algorithm A for (2.3), it can be used to solve the PIKC problem

where k = z − 1 for any instance as well. This holds for any finite c.

Given any graph G = (V,E) that is input to the PIKC problem, where |V | = kn = (z−1)n,

let a set V ′ with distances be constructed in the following way:

1. V ′ = V ∪ {C1, . . . , Cn}, where each Ci is a singleton.

2. Color the points in V red, and color all the Ci’s blue.

3. For a e = (u, v), let d(u, v) = 0, if it satisfies one of the three conditions: 1) e ∈ E. 2)

u, v ∈ Ci for some Ci. 3) one of u, v is in V , while the other belong to some Ci.

4. All other edges have distance 1.

Obviously the blue points make up a 1/z fraction of the input so each fairlet should have exactly

1 blue point and z − 1 red points.

We claim that G has a k-clique partition if and only if algorithmA gives a solution of 0 for

(2.3). The same argument as in the proof of Lemma 27 will show that G has a k-clique partition

if and only if the optimal solution to (2.3) is 0. This is equal to algorithm A giving a solution of

0 since otherwise the approximate is not bounded.
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2.9.5 Optimizing cost with fairness

In this section, we present our fair hierarchical clustering algorithm that approximates

Dasgupta’s cost function and satisfies Theorem 17. Most of the proofs can be found in Sec-

tion 2.9.5.1. We consider the problem of equal representation, where vertices are red or blue

and α = 1/2. From now on, whenever we use the word “fair”, we are referring to this fairness

constraint. Our algorithm also uses parameters t and ℓ such that n ≥ tℓ and t > ℓ+ 108t2/ℓ2 for

n = |V |, and leverages a β-approximation for cost and γt-approximation for minimum weighted

bisection. We will assume these are fixed and use them throughout the section.

We will ultimately show that we can find a fair solution that is a sublinear approximation

for the unfair optimum T ∗
unfair, which is a lower bound of the fair optimum. Our main result is

Theorem 17, which is stated in the body of the paper.

The current best approximations described in Theorem 17 are γt = O(log3/2 n) by [Feige

and Krauthgamer, 2000] and β =
√
log n by both [Dasgupta, 2016] and [Charikar and Chatzi-

afratis, 2017]. If we set t =
√
n(log3/4 n) and ℓ = n1/3

√
log n, then we get Corollary 28.

Corollary 28. Consider the equal representation problem with two colors. There is an O
(
n5/6 log5/4 n

)
-

approximate fair clustering under the cost objective.

The algorithm will be centered around a single clustering, which we call C, that is extracted

from an unfair hierarchy. We will then adapt this to become a similar, fair clustering C ′. To

formalize what C ′ must satisfy to be sufficiently “similar” to C, we introduce the notion of a

C-good clustering. Note that this is not an intuitive set of properties, it is simply what C ′ must

satisfy in order
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Definition 29 (Good clustering). Fix a clustering C whose cluster sizes are at most t. A fair

clustering C ′ is C-good if it satisfies the following two properties:

1. For any cluster C ∈ C, there is a cluster C ′ ∈ C ′ such that all but (at most) an O(ℓγt/t +

tγt/ℓ
2)-fraction of the weight of edges in C is also in C ′.

2. Any C ′ ∈ C ′ is not too much bigger, so |C ′| ≤ 6tℓ.

The hierarchy will consist of a C-good (for a specifically chosen C) clustering C ′ as its only

nontrivial layer.

Lemma 30. Let T be a β-approximation for cost and C be a maximal clustering in T under the

condition that all cluster sizes are at most t. Then, a fair two-tiered hierarchy T ′ whose first level

consists of a C-good clustering achieves an O
(
n
t
+ tℓ+ nℓγt

t
+ ntγt

ℓ2

)
β-approximation for cost.

Proof. Since T is a β-approximation, we know that:

cost(T ) ≤ β cost(T ∗
unfair)

We will then utilize a scheme to account for the cost contributed by each edge relative to

their cost in T in the hopes of extending it to T ∗
unfair. There are three different types of edges:

1. An edge e that is merged into a cluster of size t or greater in T , thus contributing t · s(e) to

the cost. At worst, this edge is merged in the top cluster in T ′ to contribute n · s(e). Thus,

the factor increase in the cost contributed by e is O(n/t). Then since the total contribution

of all such edges in T is at most cost(T ), the total contribution of all such edges in T ′ is at

most O(n/t) · cost(T ).
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2. An edge e that started in some cluster C ∈ C that does not remain in the corresponding

cluster C ′. We are given that the total weight removed from any such C is an O(ℓγt/t +

tγt/ℓ
2)-fraction of the weight contained in C. If we sum across the weight in all clusters

in C, that is at most cost(T ). So the total amount of weight moved is at most O(ℓγt/t +

tγt/ℓ
2)·cost(T ). These edges contributed at least 2s(e) in T as the smallest possible cluster

size is two. In T ′, these may have been merged at the top of the cluster, for a maximum

cost contribution of n · s(e). Therefore, the total cost across all such edges is increased by

at most a factor of n/2, which gives a total cost of at most O(nℓγt/t+ ntγt/ℓ
2) · cost(T ).

3. An edge e that starts in some cluster C ∈ C and remains in the corresponding C ′ ∈ C ′.

Similarly, this must have contributed at least 2s(e) in T , but now we know that this edge is

merged within C ′ in T ′, and that the size of C ′ is |C ′| ≤ 6tℓ. Thus its contribution increases

at most by a factor of 3tℓ. By the same reasoning from the first edge type we discussed, all

these edges total contribute at most a factor of O(tℓ) · cost(T ).

We can then put a conservative bound by putting this all together.

cost(T ′) ≤O
(
n

t
+ tℓ+

nℓγt
t

+
ntγt
ℓ2

)
cost(T ).

Finally, we know T is a β-approximation for T ∗
unfair.

cost(T ′) ≤ O

(
n

t
+ tℓ+

nℓγt
t

+
ntγt
ℓ2

)
· β · cost(T ∗

unfair).

With this proof, the only thing left to do is find a C-good clustering C ′ (Definition 29).
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Specifically, using the clustering C mentioned in Lemma 30, we would like to find a C-good

clustering C ′ using the following.

Lemma 31. There is an algorithm that, given a clustering C with maximum cluster size t, creates

a C-good clustering.

The proof is deferred to the Section 2.9.5.1. With these two Lemmas, we can prove Theo-

rem 17.

Proof. Consider our graph G. We first obtain a β-approximation for unfair cost, which yields a

hierarchy tree T . Let C be the maximal clustering in T under the constraint that the cluster sizes

must not exceed t. We then apply the algorithm from Lemma 31 to get a C-good clustering C ′.

Construct T ′ such that it has one layer that is C ′. Then we can apply the results from Lemma 30

to get the desired approximation.

From here, we will only provide a high-level description of the algorithm for Lemma 31.

For precise details and proofs, see Section 2.9.5.1. To start, we need to propose some terminology.

Definition 32 (Red-blue matching). A red-blue matching on a graph G is a matching M such

that M(u) = v implies u and v are different colors.

Red-blue matchings are interesting because they help us ensure fairness. For instance,

suppose M is a red-blue matching that is also perfect (i.e., touches all nodes). If the lowest level

of a hierarchy consists of a clustering such that v and M(v) are in the same cluster for all v, then

that level of the hierarchy is fair since there is a bijection between red and blue vertices within

each cluster. When these clusters are merged up in the hierarchy, fairness is preserved.
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Our algorithm will modify an unfair clustering to be fair by combining clusters and moving

a small number of vertices. To do this, we will use the following notion.

Definition 33 (Red-blue clustering graph). Given a graph G and a clustering C = {C1, . . . , Ck},

we can construct a red-blue clustering graph HM = (VM , EM) that is associated with some

red-blue matching M . Then HM is a graph where VM = C and (Ci, Cj) ∈ EM if and only if

there is a vi ∈ Ci and M(vi) = vj ∈ Cj .

Basically, we create a graph of clusters, and there is an edge between two clusters if and

only if there is at least one vertex in one cluster that is matched to some vertex in the other cluster.

We now show that the red-blue clustering graph can be used to construct a fair clustering based

on an unfair clustering.

Proposition 34. Let HM be a red-blue clustering graph on a clustering C with a perfect red-blue

matching M . Let C ′ be constructed by merging all the clusters in each component of HM . Then

C ′ is fair.

Proof. Consider some C ∈ C ′. By construction, this must correspond to a connected component

in HM . By definition of HM , for any vertex v ∈ C, M(v) ∈ C. That means M , restricted to C,

defines a bijection between the red and blue nodes in C. Therefore, C has an equal number of

red and blue vertices and hence is fair.

We will start by extracting a clustering C from an unfair hierarchy T that approximates

cost. Then, we will construct a red-blue clustering graph HM with a perfect red-blue matching

M . Then we can use the components of HM to define our first version of the clustering C ′.

However, this requires a non-trivial way of moving vertices between clusters in C.
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We now give an overview of our algorithm in Steps (A)–(G). For a full description, see our

pseudocode in Section 2.9.8.

(A) Get an unfair approximation T . We start by running a β-approximation for cost in

the unfair setting. This gives us a tree T such that cost(T ) ≤ β · cost(T ∗
unfair).

(B) Extract a t-maximal clustering. Given T , we find the maximal clustering C such that

(i) every cluster in the clustering is of size at most t, and (ii) any cluster above these clusters in T

is of size more than t.

(C) Combine clusters to be size t to 3t. We will now slowly change C into C ′ during a

number of steps. In the first step, we simply define C0 by merging small clusters |C| ≤ t until the

merged size is between t and 3t. Thus clusters in C are contained within clusters in C0, and all

clusters are between size t and 3t.

(D) Find cluster excesses. Next, we strive to make our clustering more fair. We do this by

trying to find an underlying matching between red and blue vertices that agrees with C0 (matches

are in the same cluster). If the matching were perfect, then the clusters in C0 would have equal

red and blue representation. However, this is not guaranteed initially. We start by conceptually

matching as many red and blue vertices within clusters as we can. Note we do not actually create

this matching; we just want to reserve the space for this matching to ensure fairness, but really

some of these vertices may be moved later on. Then the remaining unmatched vertices in each

cluster is either entirely red or entirely blue. We call this amount the excess and the color the

excess color. We label each cluster with both of these.

(E) Construct red-blue clustering graph. Next, we would like to construct HM =

(VM , EM), our red-blue clustering graph on C0. Let VM = C0. In addition, for the within-cluster

matchings mentioned in Step (D), let those matches be contained in M . With this start, we will
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do a matching process to simultaneously construct EM and the rest of M . Note the unmatched

vertices are specifically the excess vertices in each cluster. We will match these with an iterative

process given our parameter ℓ:

1. Select a vertex Ci ∈ VM with excess at least ℓ to start a new connected component in HM .

Without loss of generality, say its excess color is red.

2. Find a vertex Cj ∈ VM whose excess color is blue and whose excess is at least ℓ. Add

(Ci, Cj) to EM .

3. Say without loss of generality that the excess of Ci is less than that of Cj . Then match all

the excess in Ci to vertices in the excess of Cj . Now Cj has a smaller excess.

4. If Cj has an excess less than ℓ or Cj is the ℓth cluster in this component, end this component.

Start over at (1) with a new cluster.

5. Otherwise, use Cj as our reference and continue constructing this component at (2).

6. Complete when there are no more clusters with over ℓ excess that are not in a component

(or all remaining such clusters have the same excess color).

We would like to construct C ′ by merging all clusters in each component. This would be fair if

M were a perfect matching, however this is not true yet. In the next step, we handle this.

(F) Fix unmatched vertices. We now want to match excess vertices that are unmatched.

We do this by bringing vertices from other clusters into the clusters that have unmatched excess,

starting with all small unmatched excess. Note that some clusters were never used in Step (E)

because they had small excess to start. This means they had many internal red-blue matches.

Remove t2/ℓ2 of these and put them into clusters in need. For other vertices, we will later describe
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a process where t/ℓ of the clusters can contribute 108t2/ℓ2 vertices to account for unmatched

excess. Thus clusters lose at most 108t2/ℓ2 vertices, and we account for all unmatched vertices.

Call the new clustering C1. Now M is perfect and HM is unchanged.

(G) Define C ′. Finally, we create the clustering C ′ by merging the clusters in each compo-

nent of HM . Note that Proposition 34 assures C ′ is fair. In addition, we will show that cluster

sizes in C1 are at most 6t, so C ′ has the desired upper bound of 6tℓ on cluster size. Finally, we

removed at most ℓ+ t2/ℓ2 vertices from each cluster. This is the desired C-good clustering.

Further details and the proofs that the above sequence of steps achieve the desired approx-

imation can be found in the next section. While the approximation factor obtained is not as

strong as the ones for revenue or value objectives with fairness, we believe cost is a much harder

objective with fairness constraints.

2.9.5.1 Proof of Theorem 17

This algorithm contains a number of components. We will discuss the claims made by

the description step by step. In Step (A), we simply utilize any β-approximation for the unfair

approximation. Step (B) is also quite simple. At this point, all that is left is to show how to find

C ′, ie, prove Lemma 31 (introduced in Section 2.6). This occurs in the steps following Step (B).

In Step (C), we apply our first changes to the starting clustering from T . We now prove that the

cluster sizes can be enforced to be between t and 3t.

Lemma 35. Given a clustering C, we can construct a clustering C0, where each C ∈ C0 is a

union of clusters in C and t ≤ |C| < 3t.

Proof. We iterate over all clusters in C whose size are less than t and continually merge them
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until we create a cluster of size ≥ t. Note that since the last two clusters we merged were of size

< t, this cluster is of size t ≤ |C| < 2t. We then stop this cluster and continue merging the rest

of the clusters. At the end, if we are left with a single cluster of size < t, we simply merge this

with any other cluster, which will then be of size t ≤ |C| < 3t.

Step (D) describes a rather simple process. All we have to do in each cluster is count the

amount of each color in each cluster, find which is more, and also compute the difference. No

claims are made here.

Step (E) defines a more careful process. We describe this process and its results here.

Lemma 36. There is an algorithm that, given a clustering C0 with t ≤ |C| ≤ 3t for C ∈ C0, can

construct a red-blue clustering graph HM = (VM , EM) on C0 with underlying matching M such

that:

1. HM is a forest, and its max component size is ℓ.

2. For every (Ci, Cj) ∈ EM , there are at least ℓ matches between Ci and Cj in M . In other

words, |M(Ci) ∩ Cj| ≥ ℓ.

3. For most Ci ∈ VM , at most ℓ vertices in Ci are unmatched in M . The only exceptions to

this rule are (1) exactly one cluster in every ℓ-sized component in HM , and (2) at most n/2

additional clusters.

Proof. We use precisely the process from Step 5. Let VM = C0. HM will look like a bipartite

graph with some entirely isolated nodes. We then try to construct components of HM one-by-one

such that (1) the max component size is ℓ, and (2) edges represent at least ℓ matches in M .
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Let us show it satisfies the three conditions of the lemma. For condition 1, note that we

will always halt component construction once it reaches size ℓ. Thus no component can exceed

size ℓ. In addition, for every edge added to the graph, at least one of its endpoints now has small

excess and will not be considered later in the program. Thus no cycles can be created, so it is a

forest.

For condition 2, consider the construction of any edge (Ci, Cj) ∈ EM . At this point, we

only consider Ci and Cj to be clusters with different-color excess of at least ℓ each. In the next

part of the algorithm, we match as much excess as we can between the two clusters. Therefore,

there must be at least ℓ underlying matches.

Finally, condition 3 will be achieved by the completion condition. By the completion

condition, there are no isolated vertices (besides possibly those leftover of the same excess color)

that have over ℓ excess. Whenever we add a cluster to a component, either that cluster matches

all of its excess, or the cluster it becomes adjacent to matches all of its excess. Therefore at any

time, any component has at most one cluster with any excess at all. If the component is smaller

than ℓ (and is not the final component), then that can only happen when in the final addition, both

clusters end up with less than ℓ excess. Therefore, no cluster in this component can have less than

ℓ excess. For an ℓ-sized component, by the rule mentioned before, only one cluster can remain

with ℓ excess. When the algorithm completes, we are left with a number of large-excess clusters

with the same excess color, say red without loss of generality. Assume for contradiction there are

more than n/2 such clusters, and so there is at least nℓ/2 . Since we started with half red and half

blue vertices, the remaining excess in the rest of the clusters must match up with the large red

excess. Thus the remaining at most n/2 clusters must have at least nℓ/2 blue excess, but this is

only achievable if they have large excess left. This is a contradiction. Thus we satisfy condition
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3.

This concludes Step (E). In Step (F), we will transform the underlying clustering C0 such

that we can achieve a perfect matching M . This will require removing a small number of vertices

from some clusters in C0 and putting them in clusters that have unmatched vertices. This process

will at most double cluster size.

Lemma 37. There is an algorithm that, given a clustering C0 with t ≤ |C| ≤ 3t for C ∈ C0, finds

a clustering C1 and an underlying matching M ′ such that:

1. There is a bijection between C0 and C1.

2. For any cluster C0 ∈ C0 and its corresponding C1 ∈ C1, |C0| − |C1| ≤ ℓ + 108t2/ℓ2. This

means that at most ℓ vertices are removed from C0 in the construction of C1.

3. For all C1 ∈ C1, t− ℓ− 108t2/ℓ2 ≤ |C1| ≤ 6t.

4. M ′ is a perfect red-blue matching.

5. HM is a red-blue clustering graph of C1 with matching M ′, perhaps with additional edges.

Proof. Use Lemma 36 to find the red-blue clustering graph HM and its corresponding graph M .

Then we know that only one cluster in every ℓ-sized component plus one other cluster can have

a larger than ℓ excess. Since cluster sizes are at least t, |VM | ≥ n/t. This means that at most

n/(tℓ) + 1 = (n + tℓ)/(tℓ) ≤ 2n/(tℓ) clusters need more than ℓ vertices. Since the excess is

upper bounded by cluster size which is upper bounded by 3t, this is at most 6n/ℓ vertices in large

excess that need matches.
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We will start by removing all small excess vertices from clusters. This removes at most

ℓ from any cluster. These vertices will then be placed in clusters with large excess of the right

color. If we run out of large excess of the right color that needs matches, since the total amount

of red and blue vertices is balanced, that means we can instead transfer the unmatched small

excess red vertices to clusters with a small amount of unmatched blue vertices. In either case,

this accounts for all the small unmatched excess. Now all we need to account for is at most 6n/ℓ

unmatched vertices in large excess clusters. At this point, note that the large excess should be

balanced between red and blue. From now on, we will remove matches from within and between

clusters to contribute to this excess. Since this always contributes the same amount of red and

blue vertices by breaking matches, we do not have to worry about the balance of colors. We will

describe how to distribute these contributions across a large number of clusters.

Consider vertices that correspond to clusters that (ignoring the matching M ) started out

with at most ℓ excess. So the non-excess portion, which is at least size t− ℓ, is entirely matched

with itself. We will simply remove t2/ℓ2 of these matches to contribute.

Otherwise, we will consider vertices that started out with large excess. We must devise a

clever way to break matches without breaking too many incident upon a single cluster. For every

tree in HM (since HM is a forest by Lemma 36), start at the root, and do a breadth-first search

over all internal vertices. At any vertex we visit, break ℓ matches between it and its child (recall

by by Lemma 36 that each edge in HM represents at least ℓ inter-cluster matches). Thus, each

break contributes 2ℓ vertices. We do this for every internal vertex. Since an edge represents at

least ℓ matches and the max cluster size is at most 3t, any vertex can have at most 3t/ℓ children.

Thus the fraction of vertices in HM that correspond to a contribution of 2ℓ vertices is at least

ℓ/(3t).
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Clearly, the worst case is when all vertices in HM have large excess, as this means that

fewer clusters are ensured to be able to contribute. By Lemma 36, at least n/2 of these are a part

of completed connected components (ie, of size ℓ or with each cluster having small remaining

excess). So consider this case. Since |VM | ≥ n/(3t), then this process yields nℓ2/(18t2) vertices.

To achieve 6n/ℓ vertices, we must then run 108t2/ℓ3 iterations. If an edge no longer represents ℓ

matches because of an earlier iteration, consider it a non-edge for the rest of the process. The only

thing left to consider is if a cluster C becomes isolated in HM during the process. We know C

began with at least t vertices, and at most ℓ were removed by removing small excess. So as long

as t > ℓ + 108t2/ℓ2, we can remove the rest of the 108t2/ℓ2 vertices from the non-excess in C

(the rest must be non-excess) in the same way as vertices that were isolated in HM to start. Thus,

we can account for the entire set of unmatched vertices without removing more than 108t2/ℓ2

vertices from any given cluster.

Now we consider the conditions. Condition 1 is obviously satisfied because we are just

modifying clusters in C0, not removing them. The second condition is true because of our careful

accounting scheme where we only remove ℓ+ 108t2/ℓ2 vertices per cluster. The same is true for

the lower bound in condition 3. When we add them to new clusters, since we only add a vertex

to match an unmatched vertex, we at most double cluster size. So the max cluster size is 6t.

For the fourth condition, note that we explicitly executed this process until all unmatched

vertices became matched, and any endpoint in a match we broke was used to create a new match.

Thus the new matching, which we call M ′, is perfect. It is still red-blue. Finally, note we did not

create any matches between clusters. Therefore, no match in M ′ can violate HM . Thus condition

5 is met.
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Finally, we construct our final clustering in Step (G). However, to satisfy the qualities of

Lemma 30, we must first argue about the weight loss from each cluster.

Lemma 38. Consider any clustering C with cluster sizes between t and 6t. Say each cluster has

a specified r number of red vertices to remove and b number of blue vertices to remove such that

r + b ≤ x for some x, and r (resp. b) is nonzero only if the number of red (resp. blue) vertices

in the cluster is O(n). Then we can remove the desired number of each color while removing at

most an O((x/t)γt) of the weight originally contained within the cluster.

Proof. Consider some cluster C with parameters r and b. We will focus first on removing red

vertices. Let Cr be the red vertex set in C. We create a graph K corresponding to this cluster as

follows. Let b0 be a vertex representing all blue vertices from C, b′0 be the “complement” vertex

to b0, and R be a set of vertices ri corresponding to all red vertices in C. We also add a set of

2r−|Cr|+2X dummy vertices (where X is just some large value that makes it so 2r−|Cr|+X >

0). 2r−|Cr|+X of the dummy vertices will be connected to b0 with infinite edge weight (denote

these δi), the other X will be connected to b′0 with infinite edge weight (denote these δ′i). This

will ensure that b0 and b′0 are in the same partitions as their corresponding dummies. Let sG and

sK be the similarity function in the original graph and new graph respectively.

sK(b0, δi) =∞

sK(b
′
0, δ

′
i) =∞

The blue vertex b0 is also connected to all ri with the following weight (where Cb is the set
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of blue vertices in C):

sK(b0, ri) =
∑
bj∈Cb

sG(ri, bj) +
1

2

∑
rj∈R\{rj}

sG(ri, rj)

This edge represents the cumulative edge weight between ri and all blue vertices. The

additional summation term, which contains the edge weights between ri and all other red vertices,

is necessary to ensure our bisection cut will also contain the edge weights between two of the

removed red vertices.

Next, the edge weights between red vertices must contain the other portion of the corre-

sponding edge weight in the original graph.

sK(ri, rj) =
1

2
sG(ri, rj)

Now, we note that there are a total of 2 − |Cr| + 2X + |Cr| = 2r + 2X vertices. So a

bisection will partition the graph into vertex sets of size r+X . Obviously, in any approximation,

b0 must be grouped with all δi and b′0 must be grouped with all δ′i. This means the b0 partition

must contain |Cr| − r of the R vertices, and the b′0 partition must contain the other r. These r

vertices in the latter partition are the ones we select to move.

Consider any set S of r red vertices in K. Then it is a valid bisection. We now show that

the edge weight in the cut for this bisection is exactly the edge weight lost by removing S from

K. We can do this algebraically. We start by breaking down the weight of the cut into the weight

between the red vertices in S and b0, and also the red vertices in S and the red vertices not in S.
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sK(S, V (K) \ S) =
∑
ri∈S

sK(b0, ri) +
∑

ri∈S,rj∈R\S

sK(ri, rj)

=
∑
ri∈S

∑
bj∈B

sG(ri, bj) +
1

2

∑
rj∈R\{rj}

sG(ri, rj)


+

∑
ri∈S,rj∈R\S

1

2
sG(ri, rj)

=
∑
ri∈S

∑
bj∈B

sG(ri, bj) +
1

2

∑
rj∈R\{rj}

sG(ri, rj)

+
1

2

∑
rj∈R\S

sG(ri, rj)


Notice that the two last summations have an overlap. They both contribute half the edge

weight between ri and vertices in R \ S. Thus, these edges contribute their entire edge weight.

All remaining vertices in S \ {ri} only contribute half their edge weight. We can then distribute

the summation.

sK(S, V (K) \ S) =
∑
ri∈S

∑
bj∈B

sG(ri, bj) +
1

2

∑
rj∈S\{rj}

sG(ri, rj)

+
∑

rj∈R\S

sG(ri, rj)


=

∑
ri∈S,bj∈B

sG(ri, bj) +
1

2

∑
ri∈S,rj∈S\{rj}

sG(ri, rj)

+
∑

ri∈S,rj∈R\S

sG(ri, rj)
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In the middle summation, note that every edge e = (u, v) is counted twice when ri = u

and rj = v, and when ri = v and rj = u. We can then rewrite this as:

sK(S, V (K) \ S) =
∑

ri∈S,bj∈B

sG(ri, bj) +
∑

ri,rj∈S

sG(ri, rj) +
∑

ri∈S,rj∈R\S

sG(ri, rj)

When we remove S, we remove the connections between S and blue vertices, the connec-

tions within S, and the connections between S and red vertices not in S. This is precisely what

this accounts for. Therefore, any bisection on K directly corresponds to removing a vertex set S

of r red vertices from C. If we have a γt-approximation for minimum weighted bisection, then,

this yields a γt-approximation for the smallest loss we can achieve from removing r red vertices.

Now we must compare the optimal way to remove r vertices to the total weight in a cluster.

Let ρ = |Cr| be the number of red vertices in a cluster. Then the total number of possible cuts

to isolate r red vertices is
(
ρ
r

)
. Let S be the set of all possible cuts to isolate r red vertices. Then

if we sum over the weight of all possible cuts (where weight here is the weight between the r

removed vertices and all vertices, including each other), that will sum over each red-red edge and

blue-red edge multiple times. A red-red edge is counted if either of its endpoints is in S ∈ S, and

this happens 2
(

ρ
r−1

)
−
(
R−1
r−2

)
≤ 2
(

ρ
r−1

)
of the time. A blue-red edge is counted if its red endpoint

is in S, which happens
(

ρ
r−1

)
≤ 2
(

ρ
r−1

)
. And of course, since no blue-blue edge is covered, each

is covered under 2
(

ρ
r−1

)
times. Therefore, if we sum over all these cuts, we get at most 2

(
ρ

r−1

)
times the weight of all edges in C.

∑
S∈S

s(S) ≤ 2

(
ρ

r − 1

)
s(C)
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Let OPT be the minimum possible cut. Now since there are
(
ρ
r

)
cuts, we know the lefthand

side here is bounded above by
(
ρ
r

)
s(OPT ).

(
ρ

r

)
s(OPT ) ≤ 2

(
ρ

r − 1

)
s(C)

We can now simplify.

s(OPT ) ≤ 2r

ρ
s(C)

But note we are given ρ = O(t). So if we have a γt approximation for the minimum

bisection problem, this means we can find a way to remove r vertices such that the removed

weight is at most O(r/t)γt. We can do this again to get a bound on the removal of the blue

vertices. This yields a total weight removal of O(x/t)γt.

Finally, we can prove Lemma 31, which satisfies the conditions of Lemma 30.

Proof. Start by running Lemma 35 on C to yield C0. Then we can apply Lemma 37 to yield C1

with red-blue clustering graph HM and underlying perfect red-blue matching M ′. We create C ′

by merging components in HM into clusters. Since the max component size is ℓ and the max

cluster size in C1 is 6t, then the max cluster size in C ′ is 6tℓ. This satisfies condition 2 of being

C-good. In addition, it is fair by Proposition 34.

Finally, we utilize the fact that we only moved at most ℓ+108t2ℓ2 vertices from any cluster,

and note that we only move vertices of a certain color if we have O(n) of that color in that cluster.

Then by Lemma 38, we know we lost at most O(ℓγt/t+ tγt/ℓ
2) fraction of the weight from any

cluster. This satisfies the second condition and therefore C ′ is C-good.
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Table 2.5: Impact of different fairlet decomposition on ratio over original average-linkage in
percentage (mean ± std. dev).

Samples 100 200 400 800 1600

CENSUSGENDER, initial 74.12 ± 2.52 76.16 ± 3.42 74.15 ± 1.44 70.17 ± 1.01 65.02 ± 0.79
final 92.32 ± 2.70 95.75 ± 0.74 95.68 ± 0.96 96.61 ± 0.60 97.45 ± 0.19

CENSUSRACE, initial 65.67 ± 7.53 65.31 ± 3.74 61.97 ± 2.50 59.59 ± 1.89 56.91 ± 0.82
final 85.38 ± 1.68 92.98 ± 1.89 94.99 ± 0.52 96.86 ± 0.85 97.24 ± 0.63

BANKMARRIAGE, initial 75.19 ± 2.53 73.58 ± 1.05 74.03 ± 1.33 73.68 ± 0.59 72.94 ± 0.63
final 93.88 ± 2.16 96.91 ± 0.99 96.82 ± 0.36 97.05 ± 0.71 97.81 ± 0.49

BANKAGE, initial 77.48 ± 1.45 78.28 ± 1.75 76.40 ± 1.65 75.95 ± 0.77 75.33 ± 0.28
final 91.26 ± 2.66 95.74 ± 2.17 96.45 ± 1.56 97.31 ± 1.94 97.84 ± 0.92

2.9.6 Additional experimental results for revenue

We have conducted experiments on the four datasets for revenue as well. The Table 2.5

shows the ratio of fair tree built by using average-linkage on different fairlet decompositions. We

run Algorithm 1 on the subsamples with Euclidean distances. Then we convert distances into

similarity scores using transformation s(i, j) = 1
1+d(i,j)

. We test the performance of the initial

random fairlet decomposition and final fairlet decomposition found by Algorithm 1 for revenue

objective using the converted similarity scores.

2.9.7 Additional experimental results for multiple colors

We ran experiments with multiple colors and the results are analogous to those in the paper.

We tested both Census and Bank datasets, with age as the protected feature. For both datasets

we set 4 ranges of age to get 4 colors and used α = 1/3. We ran the fairlet decomposition

in [Ahmadian et al., 2019] and compare the fair hierarchical clustering’s performance to that

of average-linkage. The age ranges and the number of data points belonging to each color are

reported in Table 2.6. Colors are named {1, 2, 3, 4} descending with regard to the number of

points of the color. The vanilla average-linkage has been found to be unfair: if we take the layer
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of clusters in the tree that is only one layer higher than the leaves, there is always one cluster with

α > 1
3

for the definition of α-capped fairness, showing the tree to be unfair.

Table 2.6: Age ranges for all four colors for Census and Bank.

Dataset Color 1 Color 2 Color 3 Color 4

CENSUSMULTICOLOR (26, 38] : 9796 (38, 48] : 7131 (48,+∞) : 6822 (0, 26] : 6413
BANKMULTICOLOR (30, 38] : 14845 (38, 48] : 12148 (48,+∞) : 11188 (0, 30] : 7030

As in the main body, in Table 2.7, we show for each dataset the ratiovalue both at the time

of initialization (Initial) and after using the local search algorithm (Final), where ratiovalue is the

ratio between the performance of the tree built on top of the fairlets and that of the tree directly

built by average-linkage.
Table 2.7: Impact of Algorithm 1 on ratiovalue in percentage (mean ± std. dev).

Samples 200 400 800 1600 3200 6400

CENSUSMULTICOLOR, initial 88.55 ± 0.87 88.74 ± 0.46 88.45 ± 0.53 88.68 ± 0.22 88.56 ± 0.20 88.46 ± 0.30
final 99.01 ± 0.09 99.41 ± 0.57 99.87 ± 0.28 99.80 ± 0.27 100.00 ± 0.14 99.88 ± 0.30

BANKMULTICOLOR, initial 90.98 ± 1.17 91.22 ± 0.84 91.87 ± 0.32 91.70 ± 0.30 91.70 ± 0.18 91.69 ± 0.14
final 98.78 ± 0.22 99.34 ± 0.32 99.48 ± 0.16 99.71 ± 0.16 99.80 ± 0.08 99.84 ± 0.05

Table 2.8 shows the performance of trees built by average-linkage based on different fair-

lets, for Revenue objective. As in the main body, the similarity score between any two points i, j

is s(i, j) = 1
1+d(i,j)

. The entries in the table are mean and standard deviation of ratios between the

fair tree performance and the vanilla average-linkage tree performance. This ratio was calculated

both at time of initialization (Initial) when the fairlets were randomly found, and after Algorithm

1 terminated (Final).
Table 2.8: Impact of Algorithm 1 on revenue, in percentage (mean ± std. dev).

Samples 200 400 800 1600 3200

CENSUSMULTICOLOR, initial 75.76 ± 2.86 73.60 ± 1.77 69.77 ± 0.56 66.02 ± 0.95 61.94 ± 0.61
final 92.68 ± 0.97 94.66 ± 1.66 96.40 ± 0.61 97.09 ± 0.60 97.43 ± 0.77

BANKMULTICOLOR, initial 72.08 ± 0.98 70.96 ± 0.69 70.79 ± 0.72 70.77 ± 0.49 69.88 ± 0.53
final 94.99 ± 0.79 95.87 ± 2.07 97.19 ± 0.81 97.93 ± 0.59 98.43 ± 0.14

Table 2.9 shows the run time of Algorithm 1 with multiple colors.
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Table 2.9: Average running time of Algorithm 1 in seconds.

Samples 200 400 800 1600 3200 6400

CENSUSMULTICOLOR 0.43 1.76 7.34 35.22 152.71 803.59

BANKMULTICOLOR 0.43 1.45 6.77 29.64 127.29 586.08
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2.9.8 Pseudocode for the cost objective

The following pseudocode describes the process for achieving our fair cost approximation.

Algorithm 2 Fair hierarchical clustering for cost objective.
Graph G, edge weight w : E → R, color c : V → {red, blue}, parameters t and ℓ

1:
2: ▷ Step (A)
3: T ← UNFAIRHC(G,w) ▷ Blackbox unfair clustering that minimizes cost
4:
5: ▷ Step (B)
6: Let C ← ∅
7: Do a BFS of T , placing visited cluster C in C if |C| ≤ t, and not proceeding to C’s children
8:
9: ▷ Step (C)

10: C0, C ′ ← ∅
11: for C in C do
12: C ′ ← C ′ ∪ C
13: if |C ′| ≥ t then
14: Add C ′ to C0
15: E Let C ′ ← ∅
16: end if
17: end for
18: If |C ′| > 0, merge C ′ into some cluster in C0
19:
20: ▷ Step (D)
21: for C in C0 do
22: Let exc(C)← majority color in C
23: Let ex(C)← difference between majority and minority colors in C
24: end for
25:
26: ▷ Step (E)
27: HM ← BuildClusteringGraph(C0, ex, exc)
28:
29: ▷ Step (F)
30: fV ← FixUnmatchedVertices(C0, HM , ex, exc)
31:
32: ▷ Step (G)
33: C ′ ← ConstructClustering(C0, ex, exc, fV )
34: Return C ′
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Algorithm 3 BuildClusteringGraph (C0, ex, exc)
1: HM ← (VM = C0, EM = ∅)
2: Let Ci ∈ VM be any vertex
3: Let ℓ← n1/3

√
log n

4: while ∃ an unvisited Cj ∈ VM such that exc(Cj) ̸= exc(Ci) do
5: Add (Ci, Cj) to EM

6: Swap labels Ci and Cj if ex(Cj) > ex(Ci)
7: Let ex(Ci)← ex(Ci)− ex(Cj)
8: if ex(Ci) < ℓ or |component(Ci)| ≥ ℓ then
9: Reassign starting point Ci to an unvisited vertex in VM

10: end if
11: end while
12: Return HM

Algorithm 4 FixUnmatchedVertices(C0, HM , ex, exc)

1: Let ℓ← n1/3
√
log n

2: for C ∈ C0 \ VM do
3: Let fV (C, red), fV (C, blue)← m2/ℓ2

4: end for
5: for i from 1 to 108t2/ℓ3 do
6: for each k component in HM do
7: for p in a BFS of k do
8: Let ch← some child of p
9: fV (p, exc(p))← fV (p, exc(p)) + ℓ

10: ex(p)← ex(p)− ℓ
11: fV (ch, exc(ch))← fV (ch, exc(ch)) + ℓ
12: ex(ch)← ex(ch)− ℓ
13: if # matches between p and ch < ℓ then
14: Remove (p, ch) from EM

15:
16: ▷ This creates a new component
17: end if
18: end for
19: end for
20: end for
21: Return fV
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Algorithm 5 ConstructClustering(C0, ex, exc, fV )

1: Let C ′, R← ∅
2: for C in C0 do
3: for c in {red, blue} do
4: Let f = fV (C, c)
5: Let Cf = {v ∈ C : c(v) = c}
6: Create the transformed graph L from Cf ▷ Described in the proof of Lemma 38
7: C ′ ← MINWEIGHTBISECTION(L) ▷ Blackbox, returns isolated Cf vertices
8: C ← C \ C ′

9: R← R ∪ C ′

10: ex(C)← ex(C)− |C ′|
11: end for
12: end for
13: for C ∈ C0 do
14: Let S ⊂ R such that |S| = ex(C) with no vertices of color exc(C)
15: C = C ∪ S
16: R← R \ S
17: Add C to C ′
18: end for
19: Return C ′
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Chapter 3: Generalized Reductions: Making any Hierarchical Clustering Fair

and Balanced with Low Cost

3.1 Introduction

Fair machine learning, and namely clustering, has seen a recent surge as researchers rec-

ognize its practical importance. In spite of the clear and serious impact the lack of fairness in

existing intelligent systems has on society [Angwin et al., 2016, Rieke and Bogen, 2018, Led-

ford, 2019, Sweeney, 2013], and despite significant progress towards fair flat (not hierarchi-

cal) clustering [Ahmadian et al., 2020c, Backurs et al., 2019, Bera et al., 2019, Brubach et al.,

2020,Chakrabarti et al., 2021,Chen et al., 2019,Chierichetti et al., 2017,Esmaeili et al., 2021,Es-

maeili et al., 2020,Kleindessner et al., 2019a,Rösner and Schmidt, 2018], fairness in hierarchical

clustering has only received some recent attention [Ahmadian et al., 2020b, Chhabra and Moha-

patra, 2022]. Thus, we are some of the first to study this problem.

Hierarchical clustering (Figure 3.1) is the well-known extension to clustering, where we

create a hierarchy of subclusters contained within superclusters. This structure forms a tree (a

Figure 3.1: On the left is a 3-clustering, in the center is a hierarchical clustering, and on the right
is its dendrogram.
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dendrogram), where leaves represent the input data. An internal node v corresponds to the cluster

of all the leaves of the subtree rooted at v. The root is the cluster of all data.

Hierarchical clusterings more completely illustrate data relationships than flat clusterings.

For instance, they are commonly used in phylogenetics to depict the entire evolutionary history

of species, whereas a clustering would only depict species similarities. It also has a myriad of

other uses in machine learning applications such as search [Cai et al., 2004, Ferragina and Gulli,

2005, Kou and Lou, 2012], social network analysis [Leskovec et al., 2014, Mann et al., 2008],

and image recognition [Arifin and Asano, 2006,Lin et al., 2018,Pan et al., 2016]. On top of this,

hierarchical clusterings can also be used to solve flat clustering when the number of clusters is not

given. To do this, we extract clusterings at different resolutions in the hierarchy that all “agree”

(if two points are together in a cluster, then they will also be together in any larger cluster) and

select the one that best fits the application.

Hierarchical clusterings can be evaluated using a number of metrics. Perhaps most notably,

[Dasgupta, 2016] introduced cost (Definition 40), an intuitive and explainable metric which ex-

hibits numerous desirable properties and has become quite popular and well-respected [Charikar

and Chatziafratis, 2017, Charikar et al., 2019b, Chatziafratis et al., 2018, Cohen-Addad et al.,

2017, Roy and Pokutta, 2016]. Unfortunately, it is difficult to approximate, where the best exist-

ing solutions require semi-definite programs [Dasgupta, 2016,Charikar and Chatziafratis, 2017],

and it is not efficiently O(1)-approximable by the Small-Set Expansion Hypothesis [Charikar and

Chatziafratis, 2017]. The revenue [Moseley and Wang, 2017] and value [Cohen-Addad et al.,

2018] metrics, both derived from cost, exhibit O(1)-approximability, but are not as explainable

or appreciated.

Only two papers have explored fair hierarchical clustering [Ahmadian et al., 2020b,Chhabra
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and Mohapatra, 2022]. Both extend fairness constraints from fair clustering literature that trace

back to [Chierichetti et al., 2017]’s disparate impact. Consider a graph G = (V,E,w), where

each point has a color, which represents a protected class (e.g., gender, race, etc.). On two colors,

red and blue, they consider a clustering fair if the ratio between red and blue points in each cluster

is equal to that in the input data. This ensures that the impact of a cluster on a protected class

is proportionate to the class size. The constraint has been further generalized [Ahmadian et al.,

2019, Bercea et al., 2019]: given a dataset with λ colors and constraint vectors α⃗, β⃗ ∈ (0, 1)λ,

a clustering is fair if for all ℓ ∈ [λ] and every cluster C, αℓ|C| ≤ ℓ(C) ≤ βℓ|C|, were ℓ(C) is

the number of points in C of color ℓ. Naturally, then, a hierarchical clustering is fair if every

non-singleton cluster in the hierarchy satisfies this constraint (with nuances, see Section 3.2.2),

as in [Ahmadian et al., 2020b].

This work explores broad guarantees, namely cost approximations, for fair hierarchical

clustering. The only previous algorithm is quite complicated and only yields a O(n5/6 log5/4 n)

fair approximation for cost (where an O(n)-approximation is trivial) [Ahmadian et al., 2020b],

and it assumes two, equally represented colors. This reflects the inherent difficulty of finding

solutions that are low-cost as opposed to high-revenue or high-value, both of which exhibit fair

O(1)-approximations [Ahmadian et al., 2020b]). Our algorithms improve previous work in quite

a few ways: 1) we achieve a near-exponential improvement in approximation factor, 2) our algo-

rithm works on O(1) instead of only 2 colors, 3) our work handles different representational pro-

portions across colors in the initial dataset, 4) we simultaneously guarantee fairness and relative

cluster balance, and 5) our methods, which modify a given (unfair) hierarchy, have measurable,

explainable, and limited impacts on the structure of the input hierarchy.
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Achieves Approximation Fairness Colors Color ratios Explained

Past Determ. fairness O(n5/6polylog n) Perfect 2 50/50 only No

This Determ. fairness O(nδpolylog n) Approx O(1) O(1) Yes

Work Stoch. fairness O(log3/2 n) Approx O(1) O(1) Yes

ϵ-rel. balance O(
√
log n/ϵ) N/A N/A N/A Yes

1/6-rel. balance O(
√
log n) N/A N/A N/A Yes

Table 3.1: Our versus previous work. Note δ ∈ (0, 1/6) is parameterizable, trading approx-
imation factor for fairness. Our algorithms are explainable in that the alterations made to the
hierarchy are clear and well-defined.

3.1.1 Our Contributions

This work proposes new algorithms for fair and balanced hierarchical clustering. A sum-

mary of our work can be found in Table 3.1.

We introduce four simple hierarchy tree operators which have clear, measurable impacts.

We show how to compose them together on a (potentially unbalanced and unfair) hierarchy to

yield a fair and/or balanced hierarchy with similar structure. This process clarifies the functional-

ity of our algorithms and illustrates the modifications imposed on the hierarchy. Each of our four

proposed algorithms starts with a given γ-approximate (unfair) hierarchical clustering algorithm

(i.e., [Dasgupta, 2016]’s O(
√
log n)-approximation) and then builds on top of each other, impos-

ing a new operator to achieve a more advanced result. Additionally, each algorithm stands alone

as a unique contribution.

Our first algorithm produces a 1/6-relatively balanced hierarchy that 3
2
γ-approximates cost

(see Theorem 50).1 Here, ϵ-relative balance means that at each split in the hierarchy, a cluster

splits in half within a proportional error of up to 1+ ϵ (see Definition 43). Starting at the root, the

1Repeated sparsest cuts achieves this with similar cost. Our algorithms, though, can be used explainably on top
of existing unfair algorithms and may perform better as unfair research progresses.
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Figure 3.2: Our algorithms take a potentially unfair hierarchical clustering, apply our tree opera-
tors, and yield fair and/or balanced hierarchies.

algorithm recursively applies our tree rebalance (see Definition 46) operator. This restructures

the tree by moving some subtree up to become a child of the root. It preserves much of the

hierarchy’s structure while achieving relative balance.

Our next result refines this to achieve ϵ-relative balance for any ϵ ∈ (0, 1/6) that 9
2ϵ
γ-

approximates cost (see Theorem 54). This can get arbitrarily close to creating a perfectly bal-

anced hierarchy. To achieve this, we simply run our first algorithm and then apply a limited

number of subtree deletion and insertion operators (see Definition 47). This operator selects a

subtree, removes it, and reinserts elsewhere. It again preserves much of T ’s structure.

Third, we propose an algorithm for stochastically fair hierarchical clustering (see Defi-

nition 42). Under certain stochastic parameterizations and arbitrarily many colors, the algo-

rithm achieves stochastic fairness and O(γ log n)-approximates cost (see Theorem 58). This is

quite impressive, as the best previous fair approximation (albeit, for deterministic colors) was

poly(n) [Ahmadian et al., 2020b]. To achieve this novel result, we first find an O(1/ log n)-

relatively balanced hierarchy and then apply our level abstraction operator once to the bottom

layers of the hierarchy. This operator removes selected layers, setting much lower descendants

of a vertex as direct children. While this removes details in the hierarchy, the remaining structure

still agrees with the original tree. This simple addition guarantees fairness under stochastic color
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assignment.

Our main result finds an approximately fair hierarchical clustering that O(nδpoly log n)-

approximates cost (see Theorem 63), where δ ∈ (0, 1) is a given constant. This is a near-

exponential improvement over previous work which only achieves a O(n5/6poly log(n)) approx-

imation on two equally represented colors. On top of that, our algorithm works on many colors,

with many different color ratios, and achieves a simultaneously balanced hierarchy in an explain-

able manner. The algorithm, FairHC (Algorithm 8), builds on top of our stochastic algorithm

(parameterized slightly differently, see Section 3.4.4) before applying a new operator: tree fold-

ing. Tree folding maps isomorphic trees on top of each other. In hierarchical clustering, this

means taking two subtrees, mapping clusters in one tree to the other, and then merging clusters

according to the mapping. Matching up clusters with different proportions of colors helps balance

out the color ratios across clusters, which gives us our fairness result.

3.2 Preliminaries

Our input is a complete weighted graph G = (V,E,w) where w : E → R+ is a similarity

measure. A hierarchical clustering can be defined as a hierarchy tree T , where its leaves are

leaves(T ) = V , and internal nodes represent the merging of vertices into clusters and clusters

into superclusters.

3.2.1 Optimization Problem

We use [Dasgupta, 2016]’s cost function as an optimization metric. For simplicity, we let

nT (e) denote the size of smallest cluster in T containing both endpoints of e. In other words,
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for e = (u, v), nT (e) = | leaves(T [u ∧ v])|, where u ∧ v is the lowest common ancestor of u

and v in T and T [u] for any vertex u is the subtree rooted at u. We additionally denote nT (u) =

| leaves(T [u])| for internal node u. Also we let root(T ) be the root of T , and leftT (u) and

rightT (u) access left and right children respectively. We can evaluate the cost contribution of an

edge to a hierarchy.

Definition 39. The cost of e ∈ E in a graph G = (V,E,w) in a hierarchy T is costT (e) =

w(e) · nT (e).

We strive to minimize the sum of costs across all edges.

Definition 40 ( [Dasgupta, 2016]). The cost of a hierarchy T on graph G = (V,E,w) is:

cost(T ) =
∑
e∈E

costT (e)

[Dasgupta, 2016] showed that we can assume that all unfair trees optimizing for cost are

binary. Note that we must consider non-binary trees when we incorporate fairness as it may not

allow binary splits at its lowest levels.

3.2.2 Fairness and Stochastic Fairness

We consider the fairness constraints based off those introduced by [Chierichetti et al., 2017]

and extended by [Bercea et al., 2019]. On a graph G with colored vertices, let ℓ(C) count the

number of ℓ-colored points in cluster C.

Definition 41. Consider a graph G = (V,E,w) with vertices colored one of λ colors, and two

vectors of parameters α, β ∈ (0, 1)λ with αℓ ≤ βℓ for all ℓ ∈ [λ]. A hierarchy T on G is fair if
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for any non-singleton cluster C in T and for every ℓ ∈ [λ], αℓ|C| ≤ ℓ(C) ≤ βℓ|C|. Additionally,

any cluster with a leaf child has only leaf children.

Notice that the final constraint regarding leaf-children simply enforces that a hierarchy must

have some “baseline” fair clustering (e.g., a fairlet decomposition [Chierichetti et al., 2017]).

Consider a tree that is just a stick with individual leaf children at each depth. While internal

nodes may represent fair clusters, you cannot extract any nontrivial fair flat clustering from this,

since it must contain a singleton, which is unfair. We view such a hierarchy This is clearly

undesirable, and our additional constraint prevents this issue.

In the stochastic problem, points are assigned colors at random. We must ensure that with

high probability (i.e., at least 1− 1/polylog (n)) all clusters are fair.

Definition 42. Consider the same context as Definition 41 with an additional function pℓ : v →

(0, 1) denoting the probability v has color ℓ such that
∑λ

ℓ=1 pℓ(v) = 1 and each vertex has exactly

one color. An algorithm is stochastically fair if, with high probability, it outputs a fair hierarchy.

3.3 Tree Properties and Operators

This work is interested in both fair and balanced hierarchies. Balanced trees have numerous

practical uses, and in this paper, we show how to use them to guarantee fairness too.

Definition 43. A hierarchy T is ϵ-relatively balanced if for every pair of clusters C and C ′ that

share a parent cluster Cp with |Cp| ≥ 1/(2ϵ) in T , (1/2− ϵ)|Cp| ≤ |C|, |C ′| ≤ (1/2 + ϵ)|Cp|.

Notice that we only care about splitting clusters Cp with size satisfying |Cp| ≥ 1/(2ϵ). This

is because, on smaller clusters, it may be impossible to divide them with relative balance. For
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instance, if |Cp| = 3, we know we can only split it into a 1-sized and 2-sized cluster, yielding

a minimum relative balance of 1/6. For smaller ϵ, we require larger cluster sizes to make this

possible.

We will often discuss the “separation” of edges in our proposed operators. It refers to

occasions when a point is added to the first cluster that contains both endpoints. We do not care

if points are removed.

Definition 44. An edge e = (u, v) is (or its endpoints are) separated by an operator which

changes hierarchy T to T ′ if clusterT (u ∧ v) ̸⊇ clusterT ′(u ∧ v).

Almost definitionally, if an edge is not separated by an operator, then the cluster size at its

lowest common ancestor does not increase. Thus, its cost contribution does not increase.

3.3.1 Tree Operators

Our work uses a number of different tree operations to modify and combine trees (Fig-

ure 3.3). These illustrate exactly how our algorithms alter the input. We show how many opera-

tors of each type each of our algorithms use and to what extent they affect the hierarchy through

a metric we propose here. Notably, for each proposed algorithm on an input T , it transforms

T into output T ′ by only applying our four tree operators: tree rebalance, subtree deletion and

insertion, level abstraction, and subtree folding.

Each operator has an associated operation cost, which measures the proportional increase

in cost of each edge separated by the operation. We present lemmas that bound the operation cost

of each operator in the Appendix.

Definition 45. Assume we apply some tree operation to transform T into T ′. The operation
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Figure 3.3: We depict our tree operators: tree rebalance (top left), subtree deletion and insertion
(top right), level abstraction (bottom left), and tree folding (bottom right).

cost is an upper bound ∆ such that for any edge e that is separated by the operation, then

costT ′(e) ≤ ∆costT (e).

The first operation is a tree rebalance, which rotates in a descendant of the root to instead

be a direct child. This defines our first result in Theorem 50, as clever use of the tree rebalance

operator allows us to find a relatively balanced tree. This is illustrated in the top left panel of

Figure 3.3.

Definition 46. Consider a binary tree T with internal nodes v, v’s descendant u, and v’s children

a and b. A tree rebalance of u at v (tree rebalance(u, v)) puts a new node c in between v and

sibling nodes a and b. It then removes T [u] from T [a] and sets u to be v’s other child.

Tree rebalancing will only yield 1/6-relatively balanced trees, which is interestingly some-

thing [Dasgupta, 2016]’s sparsest cut algorithm, one of the current best cost approximations,

achieves via a similar analysis. To refine this, we use subtree insertion and deletion (Figure 3.3,

top right). At a root with large child a and small child b, we can move a small subtree from a to

b to improve the balance.

Definition 47. Consider a binary tree T with internal nodes u, some non-ancestor v, u’s sibling

s, and v’s parent g. Subtree deletion at u removes T [u] from T and contracts s into its parent.
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Subtree insertion of T [u] at v inserts a new parent p between v and g and adds u as a second

child of p. The operator del ins(u, v) deletes u and inserts T [u] at v.

We will also need to abstract away (Figure 3.3, bottom left) certain levels of the hierarchy

to simplify it. This involves taking vertices at depth d2 and iteratively merging them into their

parents until they reach depth d1. In other words, ignore tree structure between two levels of the

hierarchy.

Definition 48. Consider a binary tree T with two parameters d1 and d2 such that d1 < d2 <

height(T ). Level abstraction between levels d1 + 1 and d2 (abstract(d1, d2)) involves taking all

internal nodes between depths d1 + 1 and d2 in T and contracting them into their parents.

To achieve fairness in Section 3.4, we use tree folding (Figure 3.3, bottom right). Given

multiple isomorphic trees (ignoring leaves), we map the topologies of the trees together.

Definition 49. Consider a set of subtrees T1, . . . , Tk of T such that all trees Ti without their

leaves have the same topology, and all root(Ti) have the same parent p in T . This means that

for each i ∈ [k], there is a tree isomorphism ϕi : Ii → Ik where Ii and Ik are the internal nodes

of the corresponding trees. A tree folding of trees T1, . . . , Tk (fold(T1, . . . , Tk)) modifies T such

that all T1, . . . , Tk are replaced by a single tree Tf whose root(T ) is made a child of p and Tf

has the same internal topology as Ik such that for any leaf ℓ of any tree Ti with parent pi in Ti,

we set its parent to ϕi(pi).

3.4 Fair and Balanced Reductions

We now present our main algorithms, which sequentially build on top of each other, adding

new operators in a limited, measureable capacity to achieve new results.
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3.4.1 Relatively Rebalanced Trees

Our first algorithm guarantees 1/6-relative balance. It only modifies the tree through a

series of limited tree rebalances (Definition 46). We can show that this only incurs a small

constant factor proportionate increase in cost.

Theorem 50. Given a γ-approximation for cost, we can construct a 3
2
γ-approximation for cost

which guarantees 1
6
-relative balance. It only modifies the tree by applying tree rebalance opera-

tors of operation cost 3/2, and every edge is only separated by at most one such operator.

Algorithm 6 RebalanceTree

Input A hierarchy tree T of size n, with smaller cluster always on the left.
Output A 1

6
-rebalanced T -tree.

1: r, v = root(T )
2: A = leaves(leftT (v))
3: while |A| ≥ 2

3
n do

4: v ← leftT (v)
5: A← leaves(leftT (v))
6: end while
7: T ← T.tree rebalance(v, r)
8: Let T ′

l = RebalanceTree(T [leftT (r)])
9: Let T ′

r = RebalanceTree(T [rightT (r)])
10: Return T ′ with root r with left(r) = root(T ′

l ) and right(r) = root(T ′
r)

This idea was first introduced by [Dasgupta, 2016] as an analytical tool for their algorithm.

However we use it more explicitly here to take any given hierarchy and rearrange it to be balanced.

The basic idea is to start with some given tree T . Draw T from top to bottom such that the smaller

cluster in a split is put on the left. Let A1 and B1 be our first split. Continue working on the left

side, splitting A1 into A2 and B2 and so on. Stop when we find the first cluster Bk such that

|Bk| ≥ n/3. This defines our first split: partition V into Ak and B = ∪k
i=1Bi. Then recurse on

each side.
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It is not too hard to see that this yields a 1
6
-relatively balanced tree. Our search stopping

conditions enforce this.

Lemma 51. Algorithm 6 produces a 1
6
-relatively balanced tree.

The next property also comes from the fact that once an edge is separated, it will never be

separated again.

Lemma 52. In Algorithm 6, every edge is separated by at most one tree rebalance operator.

Finally, the operation cost of the rebalance operators comes from our stopping threshold.

Lemma 53. In Algorithm 6, every tree rebalance operator has operation cost at most 3/2.

In Theorem 50, the relative balance comes from Lemma 51, the operator properties come

from Lemmas 52 and 53 respectively, and the approximation factor comes from Lemma 52 and

Lemma 53 together.

3.4.2 Refining Relatively Rebalanced Trees

We now propose a significant extension of Algorithm 6 which allows us to get a stronger

balance guarantee. Specifically (where ϵ may be a function of n):

Theorem 54. Given a γ-approximation for cost, we can construct a 9γ
2ϵ

-approximation for cost

which guarantees ϵ-relative balance for 0 < ϵ ≤ 1/6. In addtition to Theorem 50, it only modifies

the tree by applying subtree deletion and insertion operators of operation cost 3
ϵ
, and every edge

is only separated by at most one such operator.

To do this, we first apply RebalanceTree. Then, at each split starting at the root, we execute

SubtreeSearch (Algorithm 9 in Appendix 3.8.2), which searches for a small subtree below the
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right child, deletes it, and moves it below the left child in order to reduce the error in the relative

balance. If we do this enough, we can reduce the relative balance to ϵ. We call our algorithm, in

Algorithm 7, RefineRebalanceTree.

Algorithm 7 RefineRebalanceTree

Input A 1
6
-relatively balanced hierarchy tree T of size n, with smaller cluster always on the

left, and balance parameter ϵ ∈ (0, 1/6).
Output An ϵ-relatively balanced tree.

1: if ϵ ≤ 1/(2n) then
2: Return T
3: end if
4: v = root(T )
5: Let Tbig = T [leftT (v)], Tsmall = T [rightT (v)]
6: while | leaves(Tbig)| ≥ (1/2 + ϵ)n do
7: δ ← (| leaves(Tbig)| − n/2)/n
8: Let Tbig = SubtreeSearch(Tbig, δn)
9: end while

10: Tbig ← RefineRebalanceTree(Tbig, ϵ)
11: Tsmall ← RefineRebalanceTree(Tsmall, ϵ)
12: Return T ′ with root r with left(r) = root(Tbig) and right(r) = root(Tsmall)

We can show that this algorithm creates a nicely rebalanced tree. SubtreeSearch specif-

ically guarantees a proportional 2/3 reduction in relative balance (see Appendix 3.8.2). There-

fore, enough executions of SubtreeSearch will make the split ϵ-relatively balanced, and recursing

down the tree guarantees that the entire tree is ϵ-relatively balanced.

Lemma 55. Algorithm 7 produces an ϵ-rebalanced tree.

To bound the operators on top of those used by Algorithm 6, note that we only apply the

subtree deletion and insertion operators. Additionally, each edge cannot be separated more than

once.

Lemma 56. In Algorithm 7, every edge is separated by at most one subtree deletion and insertion

operator.
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Finally, we can also limit the operation cost of the subtree deletion and insertion operator.

This is because we limit the depth of the SubtreeSearch function as it will never be given a

parameter below ϵn.

Lemma 57. In Algorithm 7, every subtree deletion and insertion operator has operation cost at

most 3/ϵ.

For Theorem 54, the relative balance comes from Lemma 55, the operator properties com

from Lemmas 56 and 57 respectively, and the approximation factor comes from Lemma 69,

Lemma 56, and Lemma 57 together.

3.4.3 Stochastically Fair Hierarchical Clustering

At this point, we almost have enough tools to solve stochastically fair hierarchical cluster-

ing. For this, however, we need a simple application of level abstraction (Definition 48). We intro-

duce StochasticallyFairHC, which simply imposes one level abstraction: T ′ = T.abstract(t, hmax)

on the bottom levels of the hierarchy. Here, t is a parameter and hmax is the max depth in T . No-

tice that we require the input to be relatively balanced to achieve this result.

Theorem 58. Given a γ-approximation for cost and any ϵ = 1/(c log2 n), c, λ = O(1), and δ ∈

(0, 1), in the stochastic fairness setting with 1
1−δ

αℓ ≤ pℓ(v) ≤ 1
1+δ

βℓ for all v ∈ V and ℓ ∈ [λ],

there is a e4/(c(1−o(1)) · 3(1−δ) ln(cn)
δ2 minℓ∈[λ] αℓ

· 9γ
2ϵ

fair approximation that succeeds with high probability. On

top of the operators of Theorem 54, it only modifies the tree by applying one level abstraction of

operation cost at most e4/(c(1−o(1)) · 3 ln(cn)
aδ2

.

Theorem 58 with constant αℓ for all ℓ ∈ [λ], c, and δ yields a O(γ log n) approxima-

tion. Since γ = O(
√
log n) [Charikar and Chatziafratis, 2017, Dasgupta, 2016], this becomes
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O(log3/2 n). It is quite impressive, as the best previous fair (albeit, deterministic) approxima-

tion was poly(n) [Ahmadian et al., 2020b]. Also, δ exhibits an important tradeoff: increasing δ

increases success probability but also decreases the range of acceptable pℓ(v) values.

It might be tempting to suggest applying StochasticallyFairHC to any existing hierarchy,

as opposed to one that is ϵ-relatively balanced. However, if we consider, for instance, a highly

unbalanced tree where all internal nodes have at least one leaf-child, the algorithm would only

merge the bottom t internal nodes into a single cluster, thereby not guaranteeing fairness. The

resulting structure would also not be particularly interesting. This is why the rebalancing process

is important.

Obviously, since we only apply level abstraction once, edge separation only happens once

per edge in the algorithm. To bound the operation cost, we explore the relative size of clusters at

a specified depth in the hierarchy. The following guarantee is achieved by considering a root-to-

vertex path where we always travel to maximally/minimally sized clusters according to the tree’s

relative balance.

Lemma 59. Let T be an ϵ-relatively balanced tree and u and v be internal nodes at depth i

in T . Then (1/2 − ϵ)in ≤ nT (u), nT (v) ≤ (1/2 + ϵ)in, which also implies nT (u)
nT (v)

≤ (1+2ϵ)i

(1−2ϵ)i
.

Additionally, if i ≤ log1/2−ϵ(x/n) for some arbitrary x ≥ 1 and ϵ = 1/(c log2 n) for a constant

c, then the maximum cluster size is at most e4/(c(1−o(1)))x.

This yields our operation cost, since it bounds the size of clusters at certain depths.

Lemma 60. In StochasticallyFairHC, the level abstraction has operation cost at most (1/2 +

ϵ)tn.

To get our fairness results, we need to use a Chernoff bound, thus we must guarantee that
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all internal nodes have sufficiently large size. This too comes from our bounds on cluster sizes.

Lemma 61. In StochasticallyFairHC, for any internal node v, nT ′(v) ≥ (1/2− ϵ)tn.

Finally, we must show the fairness guarantee. Since the union of two fair clusters is fair, we

only need to show this for the clusters at height 1 in the hierarchy, as this would imply fairness

for the rest of the hierarchy. This comes from a Chernoff bound.

Lemma 62. The resulting tree from StochasticallyFairHC with t = log1/2−ϵ

(
3(1−δ) ln(cn)

aδ2n

)
for

a = minℓ∈[λ] αℓ and any δ > 0 is stochastically fair for given parameters αℓ, βℓ for all colors

ℓ ∈ [λ] with high probability if with 1
1−δ

αℓ ≤ pℓ(v) ≤ 1
1+δ

βℓ for all v ∈ V and ℓ ∈ [λ] for

λ = O(1).

This is sufficient to show Theorem 58. The fairness is a result of Lemma 62, the operator

properties are a result of Lemma 60 and the obvious fact that we only apply one level abstraction,

and the approximation factor comes from Lemma 70 and Lemma 60 together.

3.4.4 Deterministically Fair Hierarchical Clustering

Finally, we have our main results on the standard, deterministic fair hierarchical clustering

problem. This algorithm builds on top of the results from Theorem 54 and uses methods similar

to Theorem 58. In addition to previous algorithms, it uses more applications of level abstraction

and introduces tree folding.

Theorem 63. Given a γ-approximation for cost over ℓ(V ) = cℓn = O(n) vertices of each color

ℓ ∈ [λ] with h = nδ for any constants c, δ, k, there is an algorithm that yields a hierarchy T ′ that:

1. Is a e
4 log2 n

c(1−o(1))λ log2 h
+ 2

c
+ 4

c(1−o(1)) · 9c2γ
4
· nδ log22 n-approximation for cost.
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2. Is fair for any parameters for all ℓ ∈ [λ]: βℓ ≥ cℓ

(
e4/c

kcℓ
+ e6/c

)1/δ
and αℓ ≤ cℓ

e(6/c) logh(n) .

On top of the operators of Theorem 58, it only modifies the tree by applying level abstraction of

operation cost at most e2/cnδ and tree folding of operation cost ke4/(c(1−o(1)) on k subtrees, and

each edge is separated in at most one level abstraction operator and in at most λ/δ tree fold

operators.

This algorithm runs in O(n2 log n) time.

Since γ = O(
√
log n), this becomes O(nδ log5/2 n) for any constant c, δ ∈ (0, 1), and k

which greatly improves the previous O(n5/6 log5/4(n))-approximation [Ahmadian et al., 2020b].

Additionally, the previous work only considered 2 colors with equal representation in the dataset.

Our algorithm greatly generalizes this to both more colors and different proportions of represen-

tation. While we do not guarantee exact color ratio preservation as the previous work does, our

algorithms can get arbitrarily close through parameterization and we no longer require the ratio

between colors points in the input to be exactly 1.

In terms of fairness, all of the variables here are parameterizeable constants. Increasing k,

c, and δ will all make these values get closer to the true proportions of the colors in the overall

dataset, and this can be done to an arbitrary extent. Therefore, based off the parameterization, this

allows us to enforce clusters to have pretty close to the same color proportions as the underlying

dataset.

The goal of this algorithm is to recursively abstract away the top log2 h depth of the tree,

where we end up setting h = nδ. Each time we do this, we get a kind of “frontier clustering”,

which is an h-sized clustering whose parents in the tree are all the root after level abstraction.

Since the subtrees rooted at each cluster have the same topology (besides their leaves, this is
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due to our level abstraction at the lowest levels in the tree), we can then execute tree folding on

any subset of them. We select cluster subtrees to fold together such that, once we merge the

appropriate clusters, the clustering at this level will be more fair. Then, as we recurse down the

tree, we subsequently either eliminate clusters (via level abstraction) or fold them to guarantee

fairness. For more information, see Algorithm 8.

Algorithm 8 FairHC

Input An ϵ = 1/(c log2 n) relatively balanced hierarchy tree T of size n on red and blue
points, and parameters h = 2i and k = 2j for some 0 < j < i < log1/2−ϵ(1/(2nϵ))

Output A fair tree.
1: Let T ← T.abstract(0, i)
2: if T is height 1 then
3: Return T
4: end if
5: Let V be the children of root(T )
6: for each color ℓ ∈ [λ] do
7: Order V = {vi}i∈[h] decreasing by ℓ(leaves(vi))

| leaves(vi)|
8: For all i ∈ [k], T ← T.fold({T ′[vi+(j−1)k] : j ∈ [h/k]})
9: end for

10: for each child v of root(T ) do
11: Replace T [v]← FairHC(T [v])
12: end for
13: Return T ′

To see why this creates a fair, low-cost hierarchy, we first bound the metrics on the operators

used. When we execute level abstraction, we can leverage relative balance and Lemma 59 to show

that during FairHC, we can bound the abstraction operation cost.

Lemma 64. In Algorithm 8, the level abstraction has operation cost at most e2/ch.

Our tree folding operation cost bound also comes from the balance of a tree, since any two

vertices that are folded together must be at similar depths.

Lemma 65. In Algorithm 8, each tree folding has operation cost at most ke4/(c(1−o(1)) and acts

on k trees.
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In order to bound the cost, we need to first know how many times an edge will be sepa-

rated. We notice that an edge that is separated by level abstraction can no longer be separated

on a subsequent recursive step. Additionally, the number of tree fold operators is proportionally

bounded by the recursive depth, as it only happens λ times each step.

Lemma 66. In Algorithm 8, an edge e is separated by at most 1 level abstraction and λ log2(n)/ log2(h)

tree folds. The maximum recursion depth is also at most log2(n)/ log2(h).

Fairness comes from the ordering over ℓ-colored vertices and the way select subtrees to

fold together. One recursive step of FairHC incurs a small constant factor proportionate loss in

potential fairness, and the number of times this loss occurs is bounded by the depth of recursion.

We desire these fractions to be close to the true color proportions, which we can get arbitrarily

close to by setting parameters c, k, and h.

Lemma 67. For an ϵ-relatively balanced hierarchy T over ℓ(V ) = cℓn = O(n) vertices of each

color ℓ ∈ [λ], Algorithm 8 yields a hierarchical clustering T ′ such that the amount of each color

ℓ ∈ [λ] in each cluster (represented by vertex v) is bounded as follows:

cℓ
e2 logh n/c

≤ ℓ(v)

nT (v)
≤ cℓ · (e4/c/(kcℓ) + e6/c)logh n.

In Theorem 63, fairness is a result of Lemma 67, the operator properties are a result of

Lemmas 64, 65, and 66, and the approximation factor has already been worked out by Lemma 76.
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3.5 Experiments

This section validates our algorithms from Section 3.4. Our simulations demonstrate that

our algorithm incurs only a modest loss in the hierarchical clustering objective and exhibits in-

creased fairness. Specifically, the approximate cost increases as a function of Algorithm 8’s

defining parameters: c, δ, and k.

Datasets. We use two data sets, Census and Bank, from the UCI data repository [Dua and Graff,

2017]. Within each, we subsample only the features with numerical values. To compute the cost

of a hierarchical clustering we set the similarity to be w(i, j) = 1
1+d(i,j)

where d(i, j) is the

Euclidean distance between points i and j. We color data based on binary (represented as blue

and red) protected features: race for Census and marital status for Bank (both in line with the

prior work of [Ahmadian et al., 2020b]). As a result, Census has a blue to red ratio of 1:7 while

Bank has 1:3.

We then subsample each color in each data set such that we retain (approximately) the

data’s original balance. We use samples of size 256. For each experiment, we do 10 replications

and report the average results. We vary the parameters c ∈ {2i}5i=0, δ ∈ (1
8
, 7
8
), and k ∈ {2i}4i=1

to experimentally validate their theoretical impact on the approximate guarantees of Section 3.4.

Implementation. The Python code for the following experiments are available in the Supple-

mentary Material. We start by running average-linkage, a popular hierarchical clustering algo-

rithm. We then apply Algorithms 6 - 8 to modify this structure and induce a fair hierarchical

clustering that exhibits a mild increase in the cost objective.
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Figure 3.4: Cost ratio of Algorithm 8 as compared to average-linkage. (i) Ratio increase as a
function of the parameter c, (ii) ratio increase as a function of the parameter δ, and (iii) ratio
increase as a function of k. Blue lines indicate the result for Census dataset whereas red indicates
the Bank dataset results.

Metrics. In our results we track the approximate cost objective increase as follows: Let G be

our given graph, T be average-linkage’s output, and T ′ be Algorithm 8’s output. We then measure

the ratio RATIOcost =
costG(T ′)
costG(T )

.

Results. We first note that the average-linkage algorithm must construct unfair trees since, for

each data set, the algorithm induces some monochromatic clusters. Thus, our resultant fair clus-

tering is of considerable value in practice.

In Figure 1, we plot the change in cost ratio as the parameters (c, δ, k) are varied for the two

datasets. Supporting our theoretical results, increasing our fairness parameters leads to a modest

increase in cost. This is an empirical illustration of our fairness-cost approximation tradeoff

according to our parameterization. Note that the results are consistent across tested datasets.

We additionally illustrate the resulting balance of our hierarchical clustering algorithm by

presenting the distribution of the cluster ratios of the projected features (blue to red points) in

Figure 3.5 for the Census data. The output of average-linkage naturally yields an unfair clustering

of the data, yet after applying our algorithm on top this hierarchy we see that the cluster’s balance
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move to concentrate about the underlying data balance of 1:7. An equivalent figure for the Bank

dataset is provided in the appendix due to space constraints.

Figure 3.5: Histogram of cluster balances after tree manipulation by Algorithm 8. The left plot
depicts the balances after applying the average- linkage algorithm and the right shows the result
of applying our algorithm. The vertical red line indicates the balance of the dataset. Parameters
were set to c = 4, δ = 3

8
, k = 4 for the above clustering result.

3.6 Limitations

The main limitations this work suffers from encapsulate the general limitations of study in

theoretical clustering fairness. Our work strives to provide algorithms that are applicable to many

hierarchical clustering applications where fairness is a concern. However, our work is inherently

limited by its focus on a specific fairness constraint (i.e., the extension of disparate impact origi-

nally used to study fair clustering [Chierichetti et al., 2017]). While disparate impact has received

substantive attention in the clustering community and is seen as one of the primary fairness def-

initions/constraints [Ahmadian et al., 2020b, Ahmadian et al., 2020c, Bera et al., 2019, Brubach

et al., 2020, Kleindessner et al., 2019b], it is just one of many established fairness constraints for

problems in clustering [Chakrabarti et al., 2021, Chen et al., 2019, Esmaeili et al., 2021, Klein-
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dessner et al., 2019a]. When applying fair machine learning algorithms to problems, it is not

always clear which fairness constraints are the best for the application. This, and the fact that

the application of fairness to a problem can cause harm in other ways [Ben-Porat et al., 2021],

means that the proposal of theoretical fair machine learning algorithms always has the potential

for improper or even harmful use. While this work proposes purely theoretical advances to the

field, we direct the reader to [Barocas et al., 2019] for a broader view on the field.

Our results are also limited by the theoretical assumptions that we make. For instance,

in the stochastic fairness algorithm, we assume that the probabilities of a vertex being a certain

color are within the same bounds across all vertices. This may not be realistic, as there could be

higher variance in the distribution of color probabilities, and even though the probabilities may lie

outside of our assumed bounds, it still may be tractable to find a low-cost hierarchical clustering.

In our main theorem, we assume that there are only two colors (protected classes), and that

they subsume a constant fraction of the general population. The former assumption is clearly

limited in that in many cases, protected classes may take on more than two values. The constant

fraction assumption is actually highly relevant and is reflected in other clustering literature, but it

is a potential limitation that may rule out a handful of applications nevertheless.

Finally, our results are limited to the evaluation of hierarchical clustering quality based off

cost. While this is a highly regarded metric for hierarchy evaluation, there may be situations

where others are appropriate. It also neglects the practicality of empirical study in that many

important machine learning algorithms we use today cannot provide guarantees across all data

(which our results necessarily do), but they perform much better on most actual inputs. However,

we leave it as an open question to further evaluate the practicality of our algorithms through

empirical study.
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3.7 Proofs: Tree Properties and Operators

Here we present all our proofs and theoretical results regarding our tree operator properties.

We start by discussing our tree rebalance operator. Effectively, any edge whose end points

are separated by a tree rebalance operator was contained in a cluster of size nT (u), and now we

guarantee they are in a cluster of size nT (v).

Lemma 68. Given a tree T , let T ′ = tree rebalance(u, v) for a node u and an ancestor node v.

The only edges separated by this are e = (x, y) such that x ∈ cluster(u) and y ∈ cluster(a) \

cluster(u). The operation cost is bounded above by ∆ = nT (v)/nT (p), where p is the parent of

u.

Proof of Lemma 68. Let e = (x, y) be an edge that is separated by a tree rebalance operator

tree rebalance(u, v) for some internal nodes u and v. Let’s consider when we execute the rebal-

ance. Let V = cluster(v) be the set of vertices corresponding to V . Traverse down the tree from

v to u. Label the clusters we come across A1, A2, . . . , Ak−1 and their corresponding un-traversed

children B1, B2, . . . , Bk−1. Let Ak = cluster(u), and Bk be the cluster for its only sibling.

When we rebalance, our first split will now divide V into Ak and B := ∪i∈[k]Bi. For

e to be separated by the rebalance of u with respect to v, it must be that x ∈ cluster(u) and

y ∈ B = cluster(a) \ cluster(u) (without loss of generality). This means that their lowest

common ancestor was on the path between u and v (excluding u), which means the smallest

nT (e) could be is nT (p) where p is the parent of u. That means costT (e) = w(e) · nT (p).

In T ′, their lowest common ancestor is v, thus nT ′(e) = nT ′(v) = nT (v), following from

the observation that v’s cluster does not change. Thus, costT ′(e) ≤ w(e) · nT (v). Putting these
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together, we find costT ′(e) ≤ nT (v)
nT (p)

costT (e).

For our subtree deletion and insertion, the idea is that an edge that is separated costs at least

nT (v) in the original tree, but may cost up to nT (u ∧ v) in the modified tree.

Lemma 69. Given a tree T , let T ′ = del ins(u, v) for two nodes u and v, where u is not an

ancestor of v. The only edges separated by this are e = (x, y) such that x ∈ cluster(u) and

y ∈ cluster(u∧ v) \ cluster(u). The operation cost is bounded above by ∆ = nT (u∧ v)/nT (u).

Proof of Lemma 69. Let e = (x, y) be an edge that is separated by a subtree deletion and insertion

operators del ins(u, v) for some appropriate internal nodes u and v. Let’s consider when we

execute the subtree deletion and insertion. For x and y to be separated, x must be in cluster(u) and

y must be in cluster(u∧ v) \ cluster(u) (without loss of generality). The first part is true because

only the subtree T [u] is moved, otherwise their least common ancestor would be unaffected. The

second part is true because otherwise y is either in T [u] too, in which case their relative position

remains the same in the subtree, or y /∈ T [u∧ v], in which case still the move still does not affect

their least common ancestor (which is higher in the tree than u ∧ v).

Now, since x ∈ T [u] and y /∈ T [u], x ∧ y must be an ancestor of u, thus nT (e) ≥ nT (u).

This means that costT (e) ≥ w(e) · nT (u). In T ′, their least common ancestor must still remain

below u∧ v, since all the points in T [u∧ v] remain somewhere below u∧ v. Also note no points

are added to T [u∧ v] over the two operators. Thus nT ′(e) ≤ n′
T (u∧ v) = nT (u∧ v). This means

costT ′(e) ≤ w(e) · nT (u ∧ v), so costT ′(e) ≤ nT (u∧v)
nT (u)

costT (e). Thus, ∆ = nT (u∧v)
nT (u)

.

The level abstraction operator is somewhat more complicated, as it modifies entire levels

of the tree, instead of individual splits. However, we can still use our notion of operation cost to
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bound the operator’s impact. This just becomes a bit more vague because we have to look at the

largest and smallest clusters between depths h1 and h2 in T .

Lemma 70. Say we apply the level abstraction operator between heights h1 and h2 on hierarchy

T to yield T ′. An edge is separated by the operator if and only if the least common ancestor of its

endpoints is between h1 and h2. Its operation cost is at most ∆ ≤ nT (u)
nT (v)

, where u and v are two

clusters that are abstracted away that maximize this ratio.

Proof of Lemma 70. Let e = (x, y) be an edge that is separated by a level abstraction operator

abstract(h1, h2) for some depths h1 and h2 with h1 < h2. Let’s consider when we execute the

abstraction. For x and y to be separated, x ∧ y must be merged into its parent by the operator.

That means it is between depth h1 and h2. Let v be the vertex with the smallest nT (v) between

depths h1 and h2. Then nT (x ∧ y) ≥ nT (v), and so costT (e) ≥ w(e) · nT (v).

The ancestor it eventually gets contracted into must be of depth h1, because we stop con-

tracting after that point. Although its tree structure is altered below it, its cluster size remains the

same since no vertices are moved away or to its subtree. Let u be the vertex with the largest nT (u)

between depths h1 and h2. Then we get nT ′(x ∧ y) ≥ nT (u), and so costT ′(e) ≤ w(e) · nT (u).

This has shown us that costT ′(e) ≤ nT (u)
nT (v)

costT (e). Notice that u and v are precisely the

internal nodes that maximize the ratio, so costT ′(e) ≤ nT (u)
nT (v)

costT (e).

Tree folding is a bit more complicated because we are merging multiple clusters on top of

each other. Thus we have to factor in the value k on top of considering varying cluster sizes.

Ultimately, however, the product of the ratio between cluster size and k bound the proportional

increase in cost.
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Lemma 71. Say we apply the tree folding operator on hierarchy T to yield T ′. Its operation cost

is at most ∆ ≤ k nT (u)
nT (v)

, where u and v are two clusters that are mapped to each other away that

maximize this ratio.

Proof of Lemma 71. Let e = (x, y) be an edge that is separated by a tree folding operator

fold(T1, . . . , Tk) for subtrees T1, . . . , Tk of T satisfying the operator conditions. Let’s consider

when we execute the folding. For x and y to be separated, x ∧ y must be in one of the subtrees,

say T1 without loss of generality. This means costT (e) ≥ w(e) · nT (x ∧ y).

Now we consider the cost in T ′. Clearly, x∧ y becomes the single vertex in Tf correspond-

ing to ϕ1(x∧ y). A leaf vertex in T2 (without loss of generality) is only a descendant of ϕ1(x∧ y)

if it has an ancestor a such that ϕ2(a) = ϕ1(x ∧ y). Therefore:

nT ′(x ∧ y) = nT ′(ϕ1(x ∧ y)) ≤
∑
i∈[k]

nT (ϕ
−1
i (ϕ1(x ∧ y))

If u = max{nT (u) : u ∈ Ti, i ∈ [k], ϕi(u) = ϕ1(x ∧ y)}, then we further have:

nT ′(x ∧ y) ≤
∑
i∈[k]

nT (u) = knT (u)

This means that costT ′(e) ≤ w(e) · knT (u). Putting these together gives costT ′(e) ≤

nT (x∧y)
nT (v)

k costT (e) ≤ nT (u)
nT (v)

k costT (e) where u and v are the vertices merged together that maxi-

mize this ratio.
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3.8 Proofs: Results

In this section, we prove all lemmas, theorems, and missing algorithmic discussion regard-

ing our main results.

3.8.1 RebalanceTree

This section contains the proofs regarding RebalanceTree.

Proof of Lemma 51. By our definition of Ai and Bi for all i ∈ [k], |Ak−1| ≥ 2n/3, implying

|Ak| ≥ 1
2
|Ak−1| ≥ n/3, and also that |Ak| ≤ n/3 since |Bk| ≥ n/3. Thus n/3 ≤ |Ak|, |B| ≤

2n/3. Since we rearrange our first split to be this way, that means our first tree rebalance creates

a first split that satisfies the relatively balanced condition. From here, we recurse on each side,

guaranteeing that one split after another satisfies the condition. Thus, the entire tree is 1
6
-relatively

balanced.

Proof of Lemma 52. Consider an edge e = (x, y) that is first rebalanced at some recursive step

in Algorithm 6. By Lemma 68, x and y must now be separated at the current tree’s root. There-

fore, at any further level of recursion, only one of e’s endpoints will be present, so it cannot be

separated again.

Proof of Lemma 53. The rebalance operator is applied to v (the node found) at r. Notice that

v’s parent p must be such that nT (p) ≥ 2
3
nT (r), otherwise the loop would have stopped earlier.

Therefore, by Lemma 68, the operation cost is nT (r)/nT (p) ≤ 3/2.

Proof of Theorem 50. Let T ∗ be the optimal tree, let T1 be our guaranteed γ-approximation on

T , and let T ′ be our output. By Lemma 51, T ′ is 1/6-relatively balanced. By Lemmas 52 and 53,
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every edge is separated by at most one tree rebalance operator of length at most 3/2. Because of

this, costT ′(e) ≤ (3/2) costT1(e). Summing over all edges yields cost(T ) ≤ (3/2) cost(T1) ≤

γ cost(T ∗).

3.8.2 RefineRebalanceTree

This section contains the proofs regarding RefineRebalanceTree as well as the algorithmic

description of SubtreeSearch.

Algorithm 9 SubtreeSearch

Input A 1
6
-relatively balanced hierarchy tree T of size n, with smaller cluster always on the

left and error parameter s.
Output Modified 1

6
-relatively balanced T by a subtree deletion and insertion of a subtree of

size between s/3 and s

1: v = root(T )
2: while | leaves(leftT (v))| > s do
3: v ← rightT (v)
4: end while
5: v ← leftT (v)
6:
7: u← root(T )
8: while | leaves(rightT (u))| ≥ | leaves(v)| do
9: u← leftT (u)

10: end while
11: T ′ ← T.del ins(u, v)
12: Return T

As discussed in the body, at a given split, SubtreeSearch traverse the tree below the larger

cluster further down in a similar manner until we find a sufficiently small cluster. This cluster

must be smaller than the current balance error, ϵ. We simply do this by always traversing to the

larger cluster as in Algorithm 9 until its smaller child is sufficiently small. We then remove that

subtree, traverse back to the top of the tree, and try to reinsert the subtree by recursing down the

right children.
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This exhibits nice properties with respect to relative balance.

Lemma 72. SubtreeSearch preserves 1
6
-relative balance.

Proof of Lemma 72. Consider T , the tree at the beginning of the algorithm, and let v be the

vertex whose subtree we end up moving. To start, we only consider the deletion, and then we

will consider the reinsertion of v’s subtree. The only vertices whose corresponding cluster sizes

are altered (specifically, reduced) are v’s ancestors. Note that they are all right children (i.e., the

bigger sibling at the start) and they are reduced by size nT (v).

Let p be the parent of v. Since v = leftT (p), we know nT (v) ≤ 1
2
nT (p). Since we remove

that many vertices, nT (p) is at worst halved. Since p is a right child, say with sibling node q,

nT (p) ≥ nT (q) at the start. Then at the end, nT ′(p) ≥ 1
2
nT ′(q). This implies that, in the end,

the clusters are between 1/3 and 2/3 the size of their parent. Thus relative balance is held on

this split. For ancestor nodes a of p in T , this argument holds since nT (a) > nT (p) both before

and after, and a is also a right child. Therefore, the entire tree is still 1
6
-relatively balanced after

subtree deletion.

Now we consider the second half of the algorithm, where we reinsert T [v]. Let u be the

vertex we select to insert at, p be its new parent, g be its old parent (now its grandparent), and

r = rightT (g) be its old sibling. Before insertion, we know that nT (r) ≥ nT (v) by the while

loop condition. Since T is 1
6
-relatively balanced still, and r is u’s sibling, nT (u) ≥ 1

2
nT (r).

Since the algorithm did not stop at p, then nT (r) ≥ nT (v), thus implying nT (u) ≥ 1
2
nT (v).

Additionally, since the algorithm stopped on u, nT (rightT (u)) ≤ nT (v). Since that is u’s larger

child, nT (u) ≤ 2nT (rightT (u)) ≤ 2nT (v). Since v is u’s new sibling, and one is not more than

twice the size of the other, we have 1
6
-relative balance at that split.
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The only other vertices impacted by the insertion are u’s ancestors. For an ancestor node a

of u in T , the argument also holds since nT (a) ≥ nT (p) ≥ nT (v) meaning nT ′(a) ≤ 2nT (a) and

a must be a left (and therefore smaller) child. Therefore, the relative balance is kept at all splits

involving ancestors of u, thus we have relative balance.

Our other guarantee is that we find a subtree of size at least s/2 to move. This comes from

our first loop’s end condition.

Lemma 73. In Algorithm 9, s/3 ≤ nT (v) ≤ s.

Proof of Lemma 73. When the first loop stops, this is the first visited vertex whose left child,

which ends up being the final v, is at most s. Thus nT (v) ≤ s. Since this was the first such

instance, if g is the grandparent of v, this means nT (leftT (g)) > s since the loop continued after

g. Since right children are larger and v’s parent p is rightT (g), nT (p) ≥ nT (leftT (g)) > s. Since

we have 1
6
-relative balance, nT (v) ≥ 1

3
nT (p) ≥ 1

3
s.

Proof of Lemma 55. At each iteration of Algorithm 7, as long as the relative balance is above ϵ,

we move a subtree of size at least 1
3
δn and at most δn by Lemma 73 where δ is the current relative

balance. This means that the relative balance of the first split reduces by a factor of 2
3
, and by

Lemma 72, the rest of the tree remains 1
6
-relatively balanced. This is simply done until the relative

balance of the first split is small enough. When we recurse, we are still guaranteed 1
6
-relatively

balance, and we can then ensure all sufficiently large splits are ϵ-relatively balanced.

Proof of Lemma 56. Consider an edge e that is first separated by some subtree deletion and in-

sertion operator at some recursive step in Algorithm 7. Notice e must now be separated at the

current tree’s root. This means that at any further level of recursion, only one of e’s end points

will be present, so it cannot be separated again.
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Proof of Lemma 57. The subtree deletion and insertion operator is applied at u of T [v] when u∧v

is the root, i.e., nT (u ∧ v) = nT (r) ≤ n where r is the current tree’s root and n is our original

data set size. We never allow the algorithm to continue with δ ≤ ϵ, therefore the smallest tree size

T [v] that we move is 1
3
nϵ by Lemma 73. Thus the operation cost is at most nT (u∧ v)/nT (v) ≤ 3

ϵ

by Lemma 69.

Proof of Theorem 54. Let T ∗ be the optimal tree, let T1 be our 1/6-relatively balanced 3γ/2

approximation guaranteed by Theorem 50, and let T ′ be our output. By Lemma 55, T ′ is ϵ-

relatively balanced. By Lemmas 56 and 57, every edge is separated by at most one subtree

deletion and insertion operator of operation cost at most 3/ϵ. Because of this and because of

Lemma 69, costT ′(e) ≤ 3
ϵ
costT1(e). Summing over all edges yields cost(T ) ≤ 3

ϵ
cost(T1) ≤

9γ
2ϵ
cost(T ∗).

3.8.3 StochasticallyFairHC

This section contains the proofs regarding StochasticallyFairHC.

Proof of Lemma 59. Since T is ϵ-relatively balanced, any cluster A that splits into clusters B and

C satisfies (1/2 − ϵ)|A| ≤ |C| ≤ |B| ≤ (1/2 + ϵ)|A|, without loss of generality. This means

that the maximum cluster size that can be found at level i is bounded above by traversing the tree

from root down assuming that we always traverse to a maximally sized child, e.g., if p is a parent

of w on our path, then nT (w) ≤ (1/2 + ϵ)nT (p).

Since we traverse i levels, we get for any i-level vertex u, nT (u) ≤ (1/2 + ϵ)in. By the

reverse logic (i.e., traversing from the root to a minimally sized child), for any i-level vertex v,

nT (v) ≥ (1/2− ϵ)in. Then their ratio must be at most nT (u)
nT (v)

≤ (1+2ϵ)i

(1−2ϵ)i
.
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Finally, consider if i ≤ log1/2−ϵ(x/n). We can just assume it is at the maximum possible

level, because this will clearly give the loosest bounds. We already know the smallest cluster size

at level i is at least (1/2 − ϵ)in, and the ratio between the largest and smallest cluster sizes is at

most
(
1+2ϵ
1−2ϵ

)i. Therefore, for a vertex u at level i:

nT (u) ≤
(
1 + 2ϵ

1− 2ϵ

)log1/2−ϵ(n/x)

(1/2− ϵ)log1/2−ϵ(x/n)n

The second term in the product obviously simplifies to x. For the first term, we can see that

since ϵ = 1/(c log2 n):

1 + 2ϵ

1− 2ϵ
= 1 +

4ϵ

1− 2ϵ
= 1 +

4

c(1− 2ϵ) log2 n

We can also bound the exponent. Note that we raise a value that is at least 1 to the exponent,

so to create an upper bound, we must upper bound the exponent as well. We leverage the fact

that 1/(1/2− ϵ) > 2 because ϵ ∈ (0, 1/2). This implies log2(1/(1/2− ϵ)) > 1.

log1/2−ϵ(x/n) =
log2(x/n)

log2(1/2− ϵ)

=
log2(n/x)

log2(1/(1/2− ϵ))

≤ log2(n/x)

≤ log2(n)

Where the last step comes from the fact taht x ≥ 1. We can now put this all together.
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nT (u) ≤
(
1 +

4

c(1− 2ϵ) log2 n

)log2(n)

x ≤ x · e4/(c(1−o(1))

Proof of Lemma 60. By Lemma 59, the smallest cluster at depth i ≥ t is at most (1/2 + ϵ)tn. If

we assume a trivial cluster size lower bound of 1, this implies for any contracted internal nodes

u and v in the level abstraction, nT (u)/nT (v) ≤ (1/2 + ϵ)tn.

Proof of Lemma 61. By Lemma 59, the largest cluster at depth i ≤ t in T is at least (1/2 −

ϵ)tn. When we execute level abstraction, this cluster size is not changed, but we know all other

potentially smaller clusters are contracted into their parents. Thus, this is the smallest cluster size

in T ′.

Proof of Lemma 62. Consider a vertex v at height 1. By Lemma 61, nT ′(v) ≥ (1/2 − ϵ)tn =

3(1−δ)
aδ2

ln(cn). Fix some ℓ ∈ [λ]. Let Xℓv count the number of vertices of color ℓ in leaves(v).

Note this is a sum of Bernoullis, so E[|Xℓv|] =
∑

u∈cluster(v) pℓ(u). Note that we are given that

pℓ(u) ≥ 1
1−δ

αℓ for all u. This gives us the following bounds from Lemma 61:

E[Xℓv] ≥
3(1− δ)

aδ2
ln(cn) · 1

1− δ
a =

3

δ2
ln(cn)

E[Xℓv] ≥
1

1− δ
αℓnT ′(v)

E[Xℓv] ≤
1

1 + δ
βℓnT ′(v)

Then by a Chernoff bound with δ as the error parameter:
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P (|Xℓv − E[Xℓv]| ≥ δE[Xℓv])

≤2 exp(−E[Xℓv]δ
2/3)

=2 exp(− 3

δ2
ln(cn)δ2/3)

=
2

cn

Thus with probability at least 1− 2
cn

:

Xℓv − E[Xℓv] ≤δE[Xℓv]

Xℓv ≤(1 + δ)E[Xℓv]

≤(1 + δ) · 1

1 + δ
βℓnT ′(v)

≤βℓnT ′(v)

In other words, the cluster leaves(v) satisfies the upper bound for color ℓ. We also find that:

−Xℓv + E[Xℓv] ≥δE[Xℓv]

Xℓv ≥(1− δ)E[Xℓv]

≥(1− δ) · 1

1− δ
αℓnT ′(v)

≥αℓnT ′(v)
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Which means it also satisfies the upper bound. Let y be the number of internal nodes with leaf-

children. Since we already saw the minimum such cluster size is O(log n) (since a, δ = O(1)),

then y = O(n/ log n). Notice, also, that the vertices counted by y are the only ones we need to

prove are fair, since taking the union of two fair clusters is fair. Thus, to show this is true for all

ℓ and v, we take a union bound over all λ values of ℓ and y values of v. We then find that with

probability at least 1− 2λn/ logn
cn

= 1− 2
logn

, all height 1 clusters must be fair, meaning the entire

hierarchy must be fair by the union-bound property.

Proof of Theorem 58. Let T ∗ be the optimal tree, let T1 be our ϵ-relatively balanced 9γ
2ϵ

approx-

imation guaranteed by Theorem 54, and let T ′ be our output. By Lemma 62, T ′ satisfies our

fairness constraints. By Lemmas 60 and the fact that we only apply one operator, every edge

is separated by at most one level abstraction operator of operation cost at most (1/2 + ϵ)tn,

but we know from Lemma 59 that this is bounded above by e4/(c(1−o(1)) · 3(1−δ) ln(cn)
aδ2

. Be-

cause of this, costT ′(e) ≤ e4/(c(1−o(1)) · 3(1−δ) ln(cn)
aδ2

costT1(e). Summing over all edges yields

cost(T ) ≤ e4/(c(1−o(1)) · 3(1−δ) ln(cn)
aδ2

cost(T1) ≤ e4/(c(1−o(1)) · 3(1−δ) ln(cn)
aδ2

· 9γ
2ϵ
cost(T ∗).

3.8.4 FairHC

This section contains the proofs and additional theoretical discussion regarding FairHC.

Lemma 74. StochasticallyFairHC with t = log1/2−ϵ(1/(2nϵ)) outputs a hierarchy where the

ϵ-relatively balanced guarantee holds for all splits except those forming the leaves. Additionally,

it admits a proportional cost increase of at most 1
2
ce4/(c(1−o(1)) log2 n.

Proof of Lemma 74. Say T is our input (i.e., it is ϵ-relatively balanced). Notice that StochasticallyFairHC
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only modifies T ’s structure below depth log1/2−ϵ(1/(2nϵ)), which means any balance guarantees

hold up to that level. By Lemma 59, for any vertex v at depth log1/2−ϵ(1/(2nϵ)) or above,

nT (v) ≥ (1/2 − ϵ)log1/2−ϵ(1/(2nϵ))n = 1/(2ϵ). By the definition of ϵ-relative balance, this means

that the balance guarantee holds for the split at this vertex. Since all internal vertices in the result-

ing tree T ′ are at or above this level, all internal vertices except those with leaf children exhibit

the relative balance guarantee.

In order to bound the proportional increase in cost, we must bound the operation cost of

the level abstraction. The minimum depth in the abstraction is log1/2−ϵ(1/(2nϵ)). By Lemma 59,

this means the maximum cluster size is at most e4/(c(1−o(1)))/(2ϵ) = 1
2
ce4/(c(1−o(1)) log2 n. Since

the smallest cluster size involved is at least 1, we can then bound the operation cost by this max

cluster size, giving our result.

Lemma 75. If T is ϵ-relatively balanced besides the final layer of splits, then the subtrees rooted

at all of the root’s children in FairHC after tree folding are as well.

Proof of Lemma 75. Tree folding only involves overlaying the topology of isomorphic trees (ig-

noring their leaves). Consider a non-root vertex v in FairHC after tree folding that is also not a

parent of leaves. It is the result of merging k vertices v1, . . . , vk, and its left and right children l

and r are the result of merging l1, . . . , lk and r1, . . . , rk respectively. Due to this:
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nT ′(v) =
∑
i∈[k]

nT (vi)

nT ′(l) =
∑
i∈[k]

nT (li)

nT ′(r) =
∑
i∈[k]

nT (ri)

We also have, by relative balance, for any i ∈ [k]:

(1/2− ϵ)nT (vi) ≤ nT (li), nT (ri) ≤ (1/2 + ϵ)nT (vi)

A simple combination of these shows that:

(1/2− ϵ)nT (v) ≤ nT (l), nT (r) ≤ (1/2 + ϵ)nT (v)

This means the split from v to l and r is relatively balanced. We can apply this to all such

splits to find the entire new subtree is relatively balanced.

Proof of Lemma 64. By Lemma 59, for any vertex v at depth i ≥ log2 h, nT (v) ≥ (1/2−ϵ)log2 hn.

This can be further simplified using that ϵ = 1/(c log n) and h ≤ n.

nT (v) ≥
1

2log2 h

(
1− 2

c log2 n

)log2 h

n ≥ e−2/cn/h

Obviously, the largest nT (u) for any u within our depth bounds is n. Thus the level ab-

straction operation cost is at most n/(e−2/cn/h) = e2/ch.
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Proof of Lemma 65. That it acts on k trees is obvious. To prove the operation cost, consider u, v

in trees Ti and Tj respectively where ϕi(u) = ϕj(v). Since we are using the tree isomorphism

between the trees, this means that u and v have the same height in Ti and Tj respectively, which

also means that they had the same height in the original tree T , as the roots of Ti and Tj are both

at height log2(h) in T . Since u and v are on the same level i ≤ log1/2−ϵ(1/(2nϵ)), Lemma 59

tells us:

nT (u)

nT (v)
≤ e4/(c(1−o(1))

Since this holds for all such pairs u and v, this also bounds the tree folding operation cost.

Note that when we do this operator, the ϵ-relative balance is held by Lemma 75. Thus, this

argument holds across all tree folds in the for loop.

Proof of Lemma 66. If an edge e = (u, v) is separated by the level abstraction, that means u ∧ v

is above depth log2 h. Notice that we recurse on clusters at depth log2 h, which means on any

recursive instance here forward, e will not be contained within the trees, so e cannot be separated.

Therefore, e can only be separated by one level abstraction.

Otherwise, notice that the depth of the last internal node is log1/2−ϵ(1/(2nϵ)) by assump-

tion. At each recursive step, we reduce the depth by log2 h since we start at subtrees of depth h

in the previous tree. Therefore, there are at most log1/2−ϵ(1/(2nϵ))/ log2 h levels of recursion.

To simplify this, we use similar methods to Lemma 65. which allows us to bound the recursive

depth by log2(n)/ log2(h).

At each level of recursion, since e is contained in only one tree, it is only separated by λ

tree folds. This means e may only be separated by λ log2(n)/ log2(h) tree folds.
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Lemma 76. For an ϵ-relatively balanced hierarchy T , Algorithm 8 outputs a tree T ′ such that:

cost(T ′) ≤ e
4λ log2(n)

c(1−o(1)) log2 h
+ 2

c · h cost(T )

Proof of Lemma 76. Lemmas 64, 65, and 66 tell us an edge e must only be involved in at most

1 level abstraction of operation cost at most e2/ch and λ log2(n)/ log2(h) tree folds of operation

cost at most e4/(c(1−o(1)) on k trees. By Lemmas 70 and 71, this will incur a total proportional

cost increase of:

costT ′(e)

costT (e)
≤ (e4/(c(1−o(1)))λ log2(n)/ log2(h) · e2/ch

Which, summed over all edges, is equivalent to the desired result.

Lemma 77. For an ϵ-relatively balanced hierarchy T over ℓ(V ) = cℓn = O(n) vertices of

each color ℓ ∈ [λ], FairHC before recursion ensures that the clustering induced on each depth-1

internal node v of the output tree T ′ each have cℓ
e6/c
≤ ℓ(v)

leaves(v)
≤ cℓ · (e4/c/(kcℓ) + e6/c) for each

ℓ ∈ [λ].

Proof of Lemma 77. We start by looking at one tree fold operator. Assume the color we are

trying to sort is red. Consider the ordering of the vertices {vi}i∈[h] from Algorithm 8, and let ri

the number of red points from leaves(vi) and R be the total number of red vertices.

Fix some i and let v′i be the root vertex of the resulting subtree in the ith fold (i.e., the one

all the subtrees are mapped onto). We know the vertices involved in this were vi+(j−1)k for all

j ∈ [h/k]. Because of the ordering, we know that:
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ri+(j−1)k/nT (vi+(j−1)k) ≤ry+(j−2)k/nT (vy+(j−2)k), (1)

ri+(j−1)k/nT (vi+(j−1)k) ≥ry+jk/nT (vy+(j−2)k) (2)

for all y ∈ [h/k] assuming j > 1 for (1) and j < k for (2). Since these three vertices are

at the same height, say h′ (with respect to T after rebalancing and before the algorithm began),

Lemma 59 gives us that:

nT (vi+(j−1)k)/nT (vy+(j−2)k) ≤
(1 + 2ϵ)log2 n

(1− 2ϵ)log2 n
,

nT (vi+(j−1)k)/nT (vy+jk) ≥
(1− 2ϵ)log2 n

(1 + 2ϵ)log2 n

Combining these with the previous inequalities yield:

ri+(j−1)k ≤
(1 + 2ϵ)log2 n

(1− 2ϵ)log2 n
ry+(j−2)k,

ri+(j−1)k ≥
(1− 2ϵ)log2 n

(1 + 2ϵ)log2 n
ry+jk

for all y ∈ [h/k]. Since ϵ = 1/(c log2 n), this bound can be further simplified to:

e−4/cry+jk ≤ ri+(j−1)k ≤e4/cry+(j−2)k
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Since these hold for all y, we can say that:

k

h
e−4/c

∑
y∈[h/k]

ry+jk ≤ ri+(j−1)k ≤
k

h
e4/c

∑
y∈[h/k]

ry+(j−2)k

Another way to think of this is partitioning the vertices (in order) into contiguous chunks of

size h/k. Then vi+(j−1)k is the ith vertex in the jth chunk, and we know it has a lower of fraction

of red points than clusters in the previous ((j − 2)th) chunk and a higher fraction than clusters in

the next (jth) chunk.

Now let Rj−1 be the number of reds in the entire jth chunk (i.e., Rj−1 =
∑

y∈[h/k] ry+(j−1)k)

Additionally, we can make a comparison between the reds in all chunks and R, namely,
∑

j∈[k] Rj−1 =

R.

Putting our two previous results together, for our fixed i:

∑
j∈[k]

ri+(j−1)k ≤ri +
k

h
e4/c

∑
j∈[k]

Rj−1

=ri +
k

h
e4/cR,∑

j∈[k]

ri+(j−1)k ≥rh−h/k+i +
k

h
e−4/c

∑
j∈[k]

Rj−1

=
k

h
e−4/cR

Notice that if everything were perfectly balanced, k
h
R is exactly the number of reds we

would want in leaves(v′i). We now must bound ri. Unfortunately, it could be an entirely red
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cluster, so this is only bounded by the size of the cluster at depth log2 h, which we get from

Lemma 59.

ri ≤nT (vi)

≤(1/2 + ϵ)log2 hn

=2− log2 h(1 + 2ϵ)log2 hn

≤e2/cn/h

Note the final inequality comes from the fact that h ≤ n and ϵ = 1/(c log n). Now note

that we are given R = cRn for some cR = O(1). We can sub this in.

ri ≤ e2/cR/(cRh)

Now, notice we are actually looking for the fraction of red points in the cluster. Since

Lemma 59 gives us that nT ′(v′i) ≥ k(1 − 2ϵ)log2 hn/h ≥ ke−2/cn/h and nT ′(v′i) ≤ k(1 +

2ϵ)log2 hn/h ≤ ke2/cn/h (applying the same logic as the upper bound to nT (vi), k times), we

get:
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∑
j∈[k] ri+jk

nT ′(v′i)
≤
e2/cR/(cRh) +

k
h
e4/cR

ke−2/c(n/h)

=
R

n
·
(
e4/c/cR

k
+ e6/c

)
,∑

j∈[k] ri+jk

nT ′(v′i)
≥

k
h
e−4/cR

ke2/c(n/h)

=
R

n
· 1

e6/c

This completes the proof for one tree fold under the observation that R
n

= cℓ if red is ℓ.

The same (if not stronger) bounds hold for all subsequent λ tree folds for each color. Note that as

we proceed, this bound will not be disrupted since merging two clusters that guarantees the same

upper bound on the fraction of red points still guarantees the same bound.

Proof of Lemma 67. Clearly, the most imbalanced clusters in this process will be the clusters in

the final level of the hierarchy. By Lemma 77, when we recurse, we have at most an cℓ
e6/c
≤

ℓ(v)
leaves(v)

≤ cℓ · (e4/c/(kcℓ) + e6/c) fraction of vertices of color ℓ for each ℓ ∈ [λ]. Clearly, after at

most log2 n/ log2 h = logh n recursive levels guaranteed by Lemma 66, our bound becomes:

cℓ
e6t logh n/c

≤ ℓ(v)

leaves(v)
≤ cℓ · (e4/c/(kcℓ) + e6/c)logh n.

Proof of Theorem 63. Let T ∗ be the optimal tree, let T1 be our input tree which is a ce4/(c(1−o(1)) log2 n·

9γ
4ϵ

approximation guaranteed by Theorem 58 but using t = log1/2−ϵ(1/(2nϵ)) (this was shown

more explicitly in Lemma 74), and let T ′ be our output. By Lemma 67, T ′ satisfies our fairness

123



constraints. By Lemmas 64, 65, and 66, every edge is separated by at most 1 level abstraction of

max operation cost e2/cn/h and log2(n)/ log2(h) tree folds of operation cost at most e4/(c(1−o(1))

on k subtrees. Lemma 76 immediately tells us:

cost(T ′) ≤ e
4λ log2 n

c(1−o(1)) log2 h
+ 2

c · h cost(T1)

Combining this with the approximation guaranteed by T1:

cost(T ′)

≤ e
4λ log2 n

c(1−o(1)) log2 h
+ 2

c · hce4/(c(1−o(1)) log2 n ·
9γ

4ϵ
cost(T ∗)

Simplifying and plugging in h = nδ, ϵ = 1/(c log2 n) yields the desired result.

3.9 Runtime

Here we analyze the runtime of our four algorithms. Recall that before each of these

algorithms, we run a black-box cost-approximate hierarchical clustering algorithm as well as all

previous algorithms. For simplicity, here we will present the contribution of each algorithm to

the runtime.

Theorem 50: This algorithm starts at the root, traverses down one side of the tree until a certain

sized cluster is found, and then applies a tree rebalance. It then recurses on each child. The

length of traversal is bounded by O(n), and a single tree rebalance operation requires some

simple constant-time pointer operations. As this is run from each vertex in the tree, the total
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runtime is O(n2).

Theorem 54: As in the previous algorithm, here we do a computation at each of the O(n) nodes

in the tree. At each node, we apply subtree search until the desired balance is achieved. If δ

is the current balance, we reduce this to at most 2δ/3 at each step. Thus, this will require a

total of O(log(1/ϵ)) steps to complete. Each subtree search operation requires two, O(n)-length

traversals to find the place to insert and delete. Otherwise, it is constant-time pointer math. Thus,

the algorithm runs in O(n2 log(1/ϵ)) time.

Theorem 58: This algorithm is quite, simple, as we are simply deleting some set of low nodes

in the tree. Thus it only requires O(n) time.

Theorem 63: Again, we execute a computation for at most O(n) nodes in the tree. By a similar

logic as before, tree abstraction steps require O(n) time. It is not too hard to see that computing

the fraction of red and blue vertices in each considered cluster and then sorting them accordingly

also requires O(n) time. Finally, we fold the vertices on top of each other. The isomorphism used

for folding can be found by simply indexing the vertices in each subtree, and then applied quite

directly, which also takes O(n) time. Thus this requires only O(n2) time.

Therefore, the entire final algorithm (without the blackbox step) is bounded by the compu-

tation time from Theorem 54, which is O(n2 log(1/ϵ)). Intuitively, ϵ is bounded by ϵ > 1/n, thus

this becomes O(n2 log n).
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Chapter 4: Fair, Polylog-Approximate Low-Cost Hierarchical Clustering

4.1 Introduction

Clustering is a pervasive machine learning technique which has filled a vital niche in every

day computer systems. Extending upon this, a hierarchical clustering is a recursively defined

clustering where each cluster is partitioned into two or more clusters, and so on. This adds struc-

ture to flat clustering, giving an algorithm the ability to depict data similarity at different resolu-

tions as well as an ancestral relationship between data points, as in the phylogenetic tree [Kraskov

et al., 2003].

On top of computational biology, hierarchical clustering has found various uses across

computer imaging [Selvan et al., 2005], computer security [Chen et al., 2020b,Chen et al., 2021],

natural language processing [Ramanath et al., 2013], and much more. Moreover, it can be applied

to any flat clustering problem where the number of desired clusters is not given. Specifically, a

hierarchical clustering can be viewed as a structure of clusterings at different resolutions that all

agree with each other (i.e., two points clustered together in a higher resolution clustering will

also be together in a lower resolution clustering). Generally, hierarchical clustering techniques

are quite impactful on modern technology, and it is important to guarantee they are both effective

and unharmful.

Researchers have recognized the harmful biases unchecked machine learning programs
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pose. A few examples depicting racial discrimination include allocation of health care [Ledford,

2019], presentation of ads suggestive of arrest records [Sweeney, 2013], prediction of hiring suc-

cess [Bogen and Rieke, 2018], and estimation of recidivism risk [Angwin et al., 2016]. A popular

solution that has been extensively studied in the past decade is fair machine learning. Here, fair-

ness concerns the mitigation of bias, particularly against protected classes. Most often, fairness is

an additional constraint on the allowed solution space; we optimize for problems in light of this

constraint. For instance, the notion of individual fairness introduced by the foundational work

of [Dwork et al., 2012] deems that an output must guarantee that any two individuals who are

similar are classified similarly.

In line with previous work in clustering and hierarchical clustering, this paper utilizes the

notion of group fairness, which enforces that different protected classes receive a proportionally

similar distribution of classifications (in our case, cluster placement). [Chierichetti et al., 2017]

first introduced this as a constraint for the flat clustering problem, arguing that it mitigates a

system’s disparate impact, or non-proportional impact on different demographics. This notion

of fair clustering has been similarly leveraged and extended by a vast range of works in both

flat [Ahmadian et al., 2019, Bera et al., 2019, Bercea et al., 2019] and hierarchical [Ahmadian

et al., 2020b, Knittel et al., 2023b] clustering.

To illustrate our fairness concept, consider the following application (Figure 4.1): a news

database is structured as a hierarchical clustering of search terms, where a search term is as-

sociated with a cluster of news articles to output to the reader, and more specific search terms

access finer-resolution clusters. When a user searches for a term, we simply identify the corre-

sponding cluster and output the contained articles. However, as is, the system does not account

for the political skew of articles. In Figure 4.1, we label conservative-leaning articles in red and
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Figure 4.1: A hierarchical clustering of news articles. Red articles are conservative, blue are
liberal. On the left is the optimal unfair hierarchy. We alter the hierarchy slightly on the right to
achieve fairness. Now, the user’s query for global warming will yield both liberal and conserva-
tive articles.

liberal-leaning articles in blue. We can see that in this example, when the user searches for global

warming articles, they will only see liberal articles. To resolve this, we add a group fairness

constraint on our cluster: for example, require at least 1/3 of the articles in each cluster to be

of each political skew. This guarantees (as depicted on the right) that the outputted articles will

always be at least 1/3 liberal and 1/3 conservative, thus guaranteeing the user is exposed to a

range of perspectives along this political axis. This notion of fairness, which we formally define

in Definition 81, has been explored in the context of hierarchical clustering in both [Ahmadian

et al., 2020b] and [Knittel et al., 2023b].

This paper is concerned with approximations for fair low-cost (i.e., optimizing for [Das-

gupta, 2016]’s famous cost metric) hierarchical clustering. This is perhaps the most natural and

well-motivated metric for hierarchical clustering evaluation, however it is quite difficult to opti-

mize for (the best being O(
√
log n)-approximations [Charikar and Chatziafratis, 2017,Dasgupta,

2016]; it hypothesized to not be O(1)-approximable [Charikar and Chatziafratis, 2017]). This

appears to be even more difficult in the hierarchical clustering literature. The first work to at-

tempt this problem, [Ahmadian et al., 2020b], achieved a highly impractical O(n5/6 log3/2 n)-

128



approximation (not too far from the trivial O(n) upper bound), posing fair low-cost hierarchical

clustering as a in interesting and inherently difficult problem. [Knittel et al., 2023b] greatly im-

proved this to a near-polylog approximation factor of O(nδpolylog (n)), where δ can be arbitrar-

ily close to 0, and parameterizes a trade-off between approximation factor and degree of fairness.

Still, a true polylog approximation was left as an open problem, one which we solve in this paper.

4.1.1 Our Contributions

This work proposes the first polylogarithmic approximation for fair, low-cost hierarchical

clustering. We leverage the work of [Knittel et al., 2023b] as a starting inspiration and create

something much simpler, more direct, and better in both fairness and approximation. Like their

algorithm, our algorithm starts with a low-cost unfair hierarchical clustering and then alters it

with multiple well-defined and limited tree operators. This gives it a degree of explainability, in

that the user can understand exactly the steps the algorithm took to achieve its result and why. In

addition, our algorithm achieves both relative cluster balance (i.e., clusters who are children of

the same cluster have similar size) and fairness, along with a parameterizeable trade-off between

the two.

On top of the benefits of [Knittel et al., 2023b]’s techniques, we propose a greatly simpli-

fied algorithm. They initially proposed an algorithm that required four tree operators, however,

we only require two of the four, and we greatly simplify the more complicated operator. This

makes the algorithm simpler to understand and more implementable. We show that even with

this reduced functionality, we can cleverly achieve both a better approximation and degree of

fairness:
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Theorem 1. When T is a γ-approximate low-cost vanilla hierarchical clustering over ℓ(V ) =

cℓn = O(n) vertices of each color ℓ ∈ [λ], MakeFair (Algorithm 11), for any constants ϵ, h, k

with h >> kλ and n >> h, runs in O(n log n(h + λ log n)) time and yields a hierarchy T ′

satisfying:

1. T ′ is an O
(

(h−1)
ϵ

+ 1+ϵ
1−ϵ

kλ
)

-approximation for cost.

2. T ′ is fair for any parameters for all i ∈ [λ]: αi ≤ λi

n

(
1−ϵ

(1+ϵ)2

(
1− k(1+ϵ)

cih

))O(log(n))

and

βi ≥ λi

n

(
1+ϵ

(1−ϵ)2

(
1 + 1−ϵ

cik

))O(log(n))

, where λi = cin.

3. All internal nodes in T ′ are ϵ-relatively balanced.

To put this in perspective, previously, the best approximation for fair hierarchical clustering

previously was O(nδpolylog (n)), whereas the best unfair approximation is O(
√
log n). Our

work greatly reduces this gap by providing a true O(polylog (n)) approximation. This can be

achieved by setting k = O(1), h = O(log n), and ϵ = O(1/ log n) (note we assume λ = O(1)

and the best current γ = O(
√
log n):

Corollary 78. There is a hierarchical clustering algorithm which runs in O(n log2 n) time and

yields a hierarchy T ′ satisfying: 1) T ′ is an O(log2(n))-approximation for cost, 2) T ′ is fair for

any parameters for all i ∈ [λ]: αi = ai
λi

n
and βi ≥ bi

λi

n
where ai ∈ (0, 1) and bi > 1 are

constants for all i ∈ [λ], and 3) All internal nodes in T ′ are O
(

1
logn

)
-relatively balanced.
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4.2 Preliminaries

4.2.1 The Vanilla Problem

Fair clustering literature refers to the original problem variant, without fairness, as the

“vanilla” problem. We define the vanilla problem of finding a low-cost hierarchical clustering

here using our specific notation.

In this problem, we are given a complete graph G = (V,E,w) with a weight function

w : E → R+ is a measure of the similarity between datapoints. Note the data is encoded as a

complete tree because we require knowledge of all point-point relationships. We must construct a

hierarchical clustering, represented by its dendrogram, T , with root denoted root(T ). T is a tree

with vertices corresponding to all clusters of the hierarchical clustering. Leaves of T , denoted

leaves(root(T )) correspond to the points in the dataset (i.e., singleton clusters). An internal node

v corresponds to the cluster containing all leaf-data of the maximal subtree (i.e., contains all its

descendants) rooted at v, T [v]. In addition, we let u ∧ v denote the lowest common ancestor of u

and v in T .

In order to define [Dasgupta, 2016]’s cost function, we use the same notational simplifica-

tions as [Knittel et al., 2023b]. For an edge e = (x, y) ∈ E, we say nT (e) = | leaves(T [x ∧ y])|

is the size of the smallest cluster in the hierarchy containing e. Similarly, for a hierarchy node v,

nT (vi) = | leaves(T [vi])| is the size of the corresponding cluster. This is sufficient to introduce

the notion of cost.

Definition 79 ( [Knittel et al., 2023b]). The cost of e ∈ E in a graph G = (V,E,w) in a hierarchy

T is costT (e) = w(e) · nT (e).
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Dasgupta’s cost function can then be written as a sum over the costs of all edges.

Definition 80 ( [Dasgupta, 2016]). The cost of a hierarchy T on graph G = (V,E,w) is:

cost(T ) =
∑
e∈E

costT (e)

Our algorithm begins by assuming we have some approximate vanilla hierarchy, T . That

is, if OPT is the optimal hierarchy tree, then cost(T ) ≤ α · cost(OPT ) for some approximation

factor α. According to [Dasgupta, 2016], we can transform this hierarchy to be binary without

increasing cost. Our paper simply assumes our input is binary. We then produce a modified

hierarchy T ′ which similar structure to T that guarantees fairness, i.e., cost(T ′) ≤ α′ ·cost(OPT )

for some approximation factor α′ ≥ α. Note this comparison is being made to the vanilla OPT ,

as we are unsure, at this time, how to classify the optimal fair hierarchy. Note that the binary

assumption may not hold when we consider adding a fairness constraint.

4.2.2 Fairness and Balance Constraints

We consider the fairness constraints based off those introduced by [Chierichetti et al., 2017]

and extended by [Bercea et al., 2019]. On a graph G with colored vertices, let ℓ(C) count the

number of ℓ-colored points in cluster C.

Definition 81 ( [Knittel et al., 2023b]). Consider a graph G = (V,E,w) with vertices colored

one of λ colors, and two vectors of parameters α, β ∈ (0, 1)λ with αℓ ≤ βℓ for all ℓ ∈ [λ]. A

hierarchy T on G is fair if for any non-singleton cluster C in T and for every ℓ ∈ [λ], αℓ|C| ≤

ℓ(C) ≤ βℓ|C|. Additionally, any cluster with a leaf child has only leaf children.
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Effectively, we are given bounds αℓ and βℓ for each color ℓ. Every non-singleton cluster

must have at least an αℓ fraction and at most a βℓ fraction of color ℓ. This guarantees proportional

representational fairness of each color in each cluster.

As an intermediate step in achieving fairness, we will create splits in our hierarchy that

achieve relative balance in terms of subcluster size. Thus, the following definition will come in

handy.

Definition 82. In a hierarchy, a vertex v (corresponding to cluster C) with cv children is ϵ-

relatively balanced if for every cluster {Ci}i∈[cv ] that corresponds to a child of v, ( 1
cv
− ϵ)|C| ≤

|Ci| ≤ ( 1
cv

+ ϵ)|C|.

While this definition is quite similar to that from [Knittel et al., 2023b], it deviates in two

ways: 1) we only define it on a single split as opposed to the entire hierarchy and 2) we allow

splits to be non-binary. If we apply it to the entire hierarchy and constrain it to be binary, it is

equivalent to the former definition.

4.2.3 Tree Operators

Our work simplifies the work of [Knittel et al., 2023b]. In doing so, we follow the same

framework, using tree operators to make well-defined and limited alterations to a given hierarchi-

cal clustering (Figure 4.2). In addition, our algorithm simplifies operator use in two ways: 1) we

only utilize two of their four tree operators, and 2) we greatly simplified their most complicated

operator and show that it can still be used to create a fair hierarchy.

First off, we utilize the same subtree deletion and insertion operator. The main difference

is how we use it, which will be discussed in Section 4.3. At a high level, this operator removes
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Figure 4.2: Our operators: subtree deletion and insertion and shallow tree folding.

a subtree from one part of the hierarchy and reinserts it elsewhere, adding and removing parent

vertices as necessary.

Definition 83 ( [Knittel et al., 2023b]). Consider a binary tree T with internal nodes u, some

non-ancestor v, u’s sibling s, and v’s parent g. Subtree deletion at u removes T [u] from T and

contracts s into its parent. Subtree insertion of T [u] at v inserts a new parent p between v and g

and adds u as a second child of p. The operator del ins(u, v) deletes u and inserts T [u] at v.

The other operator we leverage is their tree folding operator, however we greatly simplify

it. In the previous work, tree folding took two or more isomorphic trees and mapped the internal

nodes to each other. Instead, we simply take two or more subtrees and merge their roots. The

new root then directly splits into all children of the roots of all folded trees. In a way, this is an

implementation of their folding operator but only at a single vertex in the tree topology. This is

why we call it a shallow tree fold.

Definition 84. Consider a set of subtrees T1, . . . , Tk of T such that all root(Ti) have the same

parent p in T . A shallow tree folding of trees T1, . . . , Tk (fold(T1, . . . , Tk)) modifies T such that
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all T1, . . . , Tk are replaced by a single tree Tf whose root(T ) is made a child of p, and T1, . . . , Tk

make up the direct descendants of root(Tf ).

In addition, we assume the subtree Tf is then arbitrarily binarized [Dasgupta, 2016] after

folding. Since our algorithm works top-bottom, creating balanced vertices as it goes, we don’t

yet care about the fairness of the descendants of Tf . Moreover, we will then recursively call our

algorithm on Tf to do precisely this.

4.3 Main Algorithm

In this section, we present our fair, low-cost, hierarchical clustering algorithm along with its

analysis. Ultimately, we achieve the following (for a more intuitive explanation, see Section 4.1):

Theorem 1. When T is a γ-approximate low-cost vanilla hierarchical clustering over ℓ(V ) =

cℓn = O(n) vertices of each color ℓ ∈ [λ], MakeFair (Algorithm 11), for any constants ϵ, h, k

with h >> kλ and n >> h, runs in O(n log n(h + λ log n)) time and yields a hierarchy T ′

satisfying:

1. T ′ is an O
(

(h−1)
ϵ

+ 1+ϵ
1−ϵ

kλ
)

-approximation for cost.

2. T ′ is fair for any parameters for all i ∈ [λ]: αi ≤ λi

n

(
1−ϵ

(1+ϵ)2

(
1− k(1+ϵ)

cih

))O(log(n))

and

βi ≥ λi

n

(
1+ϵ

(1−ϵ)2

(
1 + 1−ϵ

cik

))O(log(n))

, where λi = cin.

3. All internal nodes in T ′ are ϵ-relatively balanced.

The main idea of our algorithm is to leverage similar tree operators to that of [Knittel

et al., 2023b], but greatly simplify their usage and apply them in a more direct, careful manner.

Specifically, the previous work processes the tree four times: once to achieve 1/6-relative balance
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everywhere, next to achieve ϵ-relative balance, next to remove the bottom of the hierarchy, and

finally to achieve fairness. The problem is that this causes proportional cost increases to grow

in an exponential manner, particularly because the relative balance significantly degrades as you

descend the hierarchy. Our solution is to instead do a single top to bottom pass of the tree,

rebalancing and folding to achieve fairness as we go. We describe this in detail now.

First, we assume our input is some given hierarchical clustering tree. Ideally, this will be

a good approximation for the vanilla problem, but our results do work as a black box on top of

any hierarchical clustering algorithm. Second, we apply SplitRoot in order to balance the root

(Section 4.3.1). And finally, we apply shallow tree folding on the children of the root to achieve

fairness (Section 4.3.2). This gives us the first layer of our output, and then we recurse.

4.3.1 Root Splitting and Balancing

SplitRoot is depicted in Algorithm 10. This fills the role of [Knittel et al., 2023b]’s Refine

Rebalance Tree algorithm (and skips their Rebalance Tree algorithm), but it functions differently

in that it only rebalances the root and it immediately splits the root into h children, according to

our input parameter h.

We start SplitRoot by adding dummy children to v until it has h children (recall we can

assume the input is binary). A dummy or null child is just a placeholder for a child to be con-

structed, or alternatively simply a zero-sized tree (note: this does not add any leaves to the tree).

None of these children will be left empty in the end. Next, we define vmax and vmin, the maximal

subtrees rooted at children(root(T ′)) which have the most and fewest leaves, respectively.

As long as the root is not ϵ-relatively balanced (which is equivalent to nT ′(vmax) or nT ′(vmin)

136



deviating from the target n/h by over nϵ, as they are extreme points), we will attempt to rebal-

ance. We define δ1 and δ2 to be the proportional deviation of nT ′(vmin) and nT ′(vmax) from the

target size n/h respectively, and δ to be the minimum of the two. In effect, δ measures the maxi-

mum number of leaves we can move from the large subtree to the small subtree without causing

nT ′(vmax) to dip below n/h or nT ′(vmin) to peak above n/h. This is important to guarantee our

runtime: as an accounting scheme, we show that clusters monotonically approach size n/h, and

thus we can quantify how fast our algorithm completes. We fully analyze this later, in Lemma 86.

Algorithm 10 SplitRoot

Input A binary hierarchy tree T of size n ≥ 1/2ϵ over a graph G = (V,E,w), with smaller
cluster always on the left, and parameters h ∈ [n] and ϵ ∈ (0,min(1/6, 1/h)).

Output A hierarchical clustering T ′ with an ϵ-relatively balanced root that has k children.
1: Initialize T ′ = T
2: v = root(T ′)
3: Add null children to v until it has h children
4: Let vmin = argminv′∈children(v)nT ′(v′)
5: Let vmax = argmaxv′∈children(v)nT ′(v′)
6: while nT ′(vmax) > n(1/h+ ϵ) or nT ′(vmin) < n(1/h− ϵ) do
7: δ1 = 1/h− nT ′(vmin)/n
8: δ2 = nT ′(vmax)/n− 1/h
9: δ = min(δ1, δ2)

10: Let v = vmax

11:
12: while nT ′(v) > δn do
13: v ← rightT ′(v)
14: end while
15:
16: u← vmin

17: while nT ′(rightT ′(u)) ≥ nT ′(v) do
18: u← leftT ′(u)
19: end while
20: T ′ ← T ′.del ins(u, v)
21: Reset vmin and vmax

22: end while

Now we must attempt exactly this: move a large subtree from vmax to vmin, though this

subtree can have no more than δn leaves. To do this, we simply start at vmax and traverse down
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its right children (recall below vmax, the tree is still binary). We halt on the first child that is of

size δn or smaller. We then remove it and find a place to reinsert it under vmin.

The insertion spot is found similarly by descending down vmin’s left children until the right

child of the current vertex has fewer leaves in its subtree than the tree we are inserting. Thus we

have completed our insertion/deletion operation. We repeat until the tree is relatively balanced,

as desired.

We now analyze this part of the algorithm. The full proofs can be found in the appendix, but

we give intuition here. To start, consider the tree we are deleting and reinserting, T ′[v]. Ideally,

we want this to have many leaves, but no more than δn. We find that:

Lemma 85. For a subtree T ′[v] that is deleted and reinserted in SplitRoot (Algorithm 10),

ϵn/(2(h− 1)) < nT (v) ≤ δn.

The upper bound simply comes from our stopping condition in the first nested while loop:

we ensure nT ′(v) ≤ δn before selecting it. The lower bound is slightly more complicated.

Effectively, we start by noting that max(δ1, δ2) > ϵ, because otherwise the stopping condition

for the outer loop would be met. Then, consider the total amount of “excess of large clusters”,

or more precisely, the sum over all deviations from n/h of clusters larger than n/h (note if

all clusters were n/h, it would be perfectly balanced). This total excess must be matched in

the “deficiency of small clusters”, which is the sum of deviations of clusters smaller than n/h.

Therefore, since there are at least h small or h large clusters, the largest deviation must be at most

h times the smallest deviation, according to our accounting scheme. This allows us to bound

δ ≥ ϵ/(h−1). The tree that is inserted and deleted must have at least half this many leaves, since

it is the larger child of a node with over δn leaves in its subtree. This gives our lower bound,
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showing we move at least a significant number of vertices each step.

Next, we want to show the relative balance. Along with the analysis, we also get the

runtime, which turns out to be near linear, assuming h≪ n.

Lemma 86. SplitRoot (Algorithm 10) yields a hierarchy whose root is ϵ-relatively balanced with

h children. In addition, it requires O(nh) time to halt.

To see why this is true, it’s pretty obvious the root has h children, as this is set at the

beginning and never changes. The runtime comes from our aforementioned accounting scheme:

the total excess and deficiency is reduced by the number of leaves in the subtree we move at each

step, which we showed in Lemma 85 is nϵ/(2(h− 1)) at least. This gives us a convergence time

of O(h), and each step can be bounded by O(n) time as we search for our insertion and deletion

spots. Finally, the balance comes from the fact that our stopping condition is equivalent to the

root being relatively balanced.

All that is left is to show the negative impact on the cost of edges that are separated by the

algorithm. We bound it as follows:

Lemma 87. In SplitRoot (Algorithm 10), for all e ∈ E that is separated:

costT ′(e) ≤ n · w(e) ≤ 2(h− 1) · costT (e)/ϵ

Lemma 85 tells us that moved subtrees are at least of size ϵn/(2(h− 1)), which is a lower

bound on the size of the smallest cluster containing any edge separated by the algorithm. This is

because separated edges must have one endpoint in the deleted subtree and one outside, so their

least common ancestor is an ancestor of the subtree. At worst, the final size of the smallest cluster
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containing such an edge is n, so the proportional increase is 2(h− 1)/ϵ at worst.

4.3.2 Fair Tree Folding

Next, we discuss how to achieve fairness by using MakeFair, as seen in Algorithm 11. This

is our final recursive algorithm which utilizes SplitRoot. Assume we are given some hierarchical

clustering. We start by running SplitRoot, to balance the split at the root and give it h children.

Next we use a folding process similar to that of [Knittel et al., 2023b], but we use our shallow

tree fold operator.

More specifically, we first sort the children of the root by the proportional representation

of the first color (say, red). Then, we do a shallow fold across various k-sized sets, defined as

follows: according to our ordering over the children, partition the vertices into k contiguous

chunks starting from the first vertex. For each i ∈ [h/k], we find the ith vertex in each chunk and

fold them together. Notice that this is a k-wise fold since there are k chunks, and we end up with

h/k vertices. This is repeated on each color. After this, we simply recurse on the children. If a

child is too small to be balanced by SplitRoot, then we stop and give it a trivial topology (a root

with many leaf-children).

This completes our algorithm description. We now evaluate its runtime, degree of fairness,

and approximation factor. To start, we show the degree of fairness achieved at the top level of the

hierarchy.

Lemma 88. MakeFair (Algorithm 11) yields a hierarchy such that all depth 1 vertices satisfy

fairness under αi ≤ λi

n
· 1−ϵ
(1+ϵ)2

(
1− k(1+ϵ)

cih

)
and βi ≥ λi

n
· 1+ϵ
(1−ϵ)2

(
1 + 1−ϵ

cik

)
, where λi = cin.

This proof is quite in depth, and most details are deferred to the appendix. At a high level,
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we are showing that the folding process guarantees a level of fairness. The parts in our partition

are ordered by the density of the color (say, red). Since each final vertex is made by folding

across one vertex in each part, meaning that the vertices have a relatively wide spread in terms of

their density of red poitns. This means that red vertices are distributed relatively well across our

final subtrees. This guarantees a degree of balance.

The problem is that the degree of fairness still exhibits a compounding affect as we recurse.

That is, since the first children are not perfectly balance, then in the next recursive step, the total

data subset we are working on may now deviate from the true color proportions. This deviation

is bounded by our result in Lemma 88, but it will increase proportionally at each step.

Lemma 89. In MakeFair (Algorithm 11), let {λi}i∈[λ] be the proportion of each color and assume

kλ << h. At any recursive call, the proportion of any color is (where λi = 1/ci for constant ci):

λi

(
1− ϵ

(1 + ϵ)2

(
1− k(1 + ϵ)

cih

))O(log(n/h))

≤ λj
i ≤ λi

(
1 + ϵ

(1− ϵ)2

(
1 +

1− ϵ

cik

))O(log(n/h))

Also, the recursive depth is bounded above by O(log(n/h)).

This fairly neatly comes from Lemma 88. Effectively, we increase the proportion of each

color by the same factor each recursive step. All that is left to do is bound the recursive depth.

Notice we start with n vertices. After splitting, our subtrees have size at most (1 + ϵ)n/h. After

one fold, this is increased by a factor of k, and thus kλ after all folds. Interestingly, this doesn’t

impact the final result significantly; it’s fairly similar to turning an n-sized tree into an n/h-sized

tree, giving an O(log(n/h)) recursive depth. This will be sufficient to show our fairness.
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Algorithm 11 MakeFair

Input A hierarchy tree T of size n ≥ 1/2ϵ over a graph G = (V,E,w) with vertices given
one of λ colors, and parameters h ∈ [n], k ∈ [h/(λ− 1)], and ϵ ∈ (0,min(1/6, 1/h)).

Output A fair hierarchical clustering T ′.
1: T ′ = SplitRoot(T, h, ϵ)
2: h′ ← h
3: for each color ℓ ∈ [λ] do
4: Order {vi}i∈[h′] = children(root(T ′)) decreasing by ℓ(leaves(vi))

nT ′ (vi)

5: For all i ∈ [k], T ′ ← T ′.fold({T ′[vi+(j−1)k] : j ∈ [h′/k]})
6: h′ ← h′/k
7: end for
8: for each child vi of root(T ′) do
9: if n ≥ max(1/2ϵ, h) then

10: Replace T ′[vi]← MakeFair(T ′[vi], h, k, ϵ)
11: else
12: Replace T ′[vi] with a tree of root vi, leaves leaves(T ′[vi]), and depth 1.
13: end if
14: end for

Next, we evaluate the cost incurred at each stage in the hierarchy.

Lemma 90. In MakeFair (Algorithm 11), for all e ∈ E that is separated before the recursive

call:

costT ′(e) ≤ O

(
2(h− 1)

ϵ
+

1 + ϵ

1− ϵ
kλ

)
costT (e)

As discussed before, the final cluster size should be (1 + ϵ)nkλ/h. Any separated edge

must have a starting cluster size of at least (1 − ϵ)n/h, as this is the size of the smallest cluster

involved in tree folding. From this, it is simple to compute the proportional cost increase of a

single recursive level. We must also account for the cost increase from the initial splitting, from

Lemma 87.

Another nice property of our method is that whenever an edge is separated, its endpoints’

least common ancester will no longer be involved in any further recursive step. This tells us:

Lemma 91. In MakeFair (Algorithm 11), any edge e ∈ E is separated at only one level of
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recursion.

Putting these two together pretty directly gives us our cost approximation.

Lemma 92. In MakeFair (Algorithm 11), cost(T ′) ≤ O
(

2(h−1)
ϵ

+ 1+ϵ
1−ϵ

kλ
)
cost(T ).

Finally, Theorem 1 comes directly from Lemmas 90 and 92.

4.4 Simulations

This section validates the theoretical guarantees of Algorithm 11. Specifically, we demon-

strate that modifying an unfair hierarchical clustering using the presented procedure yields a fair

hierarchy that incurs only a modest increase in cost.

Datasets. We use two data sets, Census and Bank, from the UCI data repository [Dua and

Graff, 2017]. Within each, we subsample only the features with numerical values. To compute

the cost of a hierarchical clustering we set the similarity to be w(i, j) = 1
1+d(i,j)

where d(i, j) is

the Euclidean distance between points i and j. We color data based on binary (represented as blue

and red) protected features: race for Census and marital status for Bank (both in line with the

prior work of [Ahmadian et al., 2020b]). As a result, Census has a blue to red ratio of 1:7 while

Bank has 1:3. We then subsample each color in each data set such that we retain (approximately)

the data’s original balance. We use samples of size 512 for the balance experiments, and vary the

sample sizes when assessing cost. For each experiment we conduct 10 independent replications

(with different random seeds for the subsampling), and report the average results. We vary the

parameters (c, h, k, ε) to experimentally assess their theoretical impact on the approximate guar-

antees of Section 4.3. Due to space constrains, we here present only the results for the Census

dataset and defer the complimentary results on Bank to the appendix.
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Figure 4.3: Histogram of cluster balances after tree manipulation by Algorithm 11 on a subsam-
ple from the Census dataset of size n = 512. The four panels depict: (A) cluster balances after
applying the (unfair) average-linkage algorithm, (B) the resultant cluster balances after running
Algorithm 11 with parameters (c, h, k, ε) = (8, 4, 2, 1/c·log2 n), (C) cluster balances after tuning
c = 4, (D) cluster balances after further tuning c = 2. The vertical red line on each plot indicates
the balance of the dataset itself.

Implementation. The Python code for the following experiments are available in the Sup-

plementary Material. We start by running average-linkage, a popular hierarchical clustering al-

gorithm. We then apply Algorithm 11 to modify this structure and induce a fair hierarchical

clustering that exhibits a mild increase in the cost objective.

Metrics. In our results we track the approximate cost objective increase as follows: Let G

be our given graph, T be average-linkage’s output, and T ′ be Algorithm 11’s output. We then

measure the ratio RATIOcost = costG(T
′)/costG(T ). We additionally quantify the fairness that

results from application of our algorithm by reporting the balances of each cluster in the final

hierarchical clustering, where true fairness would match the color proportions of the underlying

dataset.

Results. We first demonstrate how our algorithm adapts an unfair hierarchy into one that

achieves fair representation of the protected attributes as desired in the original problem formu-

lation.

In Figure 4.3, we depict the cluster balances of an unfair hierarchical clustering algorithm,

namely “average-linkage”, and subsequently demonstrate that our algorithm effectively concen-

trates all clusters around the underlying data balance. In particular, we first apply the algorithm
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and then show how we the balance is further refined by tuning the parameters. The application

of Algorithm 11 dramatically improves the representation of the protected attributes in the final

clustering and, as such, firmly resolves the problem of achieving fairness.

Figure 4.4: Relative cost of the fair hi-
erarchical clustering resulting from Algo-
rithm 11 compared to the unfair clustering
as a function of the sample size n.

While reaching this fair partitioning of the

data is the overall goal, we further demonstrate

that, in modifying the unfair clustering, we only

increase the cost approximation by a modest

amount. Figure 4.4 illustrates the change in rel-

ative cost as we increase the sample size n, the

primary influence on our theoretical cost guaran-

tees of Section 4.3. Specifically, we vary n in

{128, 256, 512, 1024, 2048} and compute 10 replications (on different random seeds) of the fair

hierarchical clustering procedure. Figure 4.4 depicts the mean relative cost of these replications

with standard error bars. Notably, we see that the cost does increase with n as expected, but the

increase relative to the unfair cost obtain by average linkage is only by a small multiplicative

factor.

As demonstrated through this experimentation, the simplistic procedure of Algorithm 11

not only ensures the desired fairness properties absent in conventional (unfair) clustering algo-

rithms but accomplishes this feat with a negligible rise in the overall cost. These results further

highlight the immense value of our work.
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4.5 Limitations

Fair machine learning strives to combat the limitations of vanilla machine learning by pro-

viding a means for bias mitigation for any desired quantifiable bias. However, fair research

itself has its own limitations. First, “fairness” can be defined in a number of ways. For in-

stance, [Dwork et al., 2012] explores notions of fairness in classification problems, proposing

a type of “individual fairness” which guarantees that similar individuals are treated similarly.

This has been extended to clustering by only the work of [Brubach et al., 2020]. Cluster-

ing has been predominantly viewed through the lens of “group fairness” which guarantees that

different protected classes receive similar, proportional treatment. This was first proposed in

clustering by [Chierichetti et al., 2017] and expanded upon in many further works [Ahmadian

et al., 2019, Bera et al., 2019, Bercea et al., 2019], including previous fair hierarchical clustering

work [Ahmadian et al., 2020b, Knittel et al., 2023b] and this work. Not only is it inherently dif-

ficult to account for both of these simultaneously, in some sense these two notions are at odds: if

we treat similar individuals similarly, it becomes much harder to impose a diverse range of treat-

ments to individuals in each group, as they often are quite similar themselves. This illustrates

the necessity of applying fair algorithms on a case by case basis, carefully considering what fair

effect is most desirable.

Second, bias mitigation through fair algorithmic techniques has been shown to cause harm

in at least one application [Ben-Porat et al., 2021]. Thus, all fair machine learning techniques,

including ours, should be used with great caution and consideration of all downstream effects.

We defer the reader to [Barocas et al., 2019] as well as the Fair Clustering Tutorial [AAAI 2023]

for further perspectives on fair machine learning and its limitations.
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The main results of this paper are theoretical guarantees on algorithmic performance. Nat-

urally, this provides additional limitations, predominantly in that the guarantees only hold under

the assumptions clearly stated in this paper. For instance, our main algorithm requires that each

color represents a constant fraction of the total data. This assumption is quite realistic and can

be found throughout fair learning literature, but there are certain practical instances where our

results may not be applicable. In addition, since our proofs only consider worst-case analysis,

we do not know much about the average-case guarantees of our algorithms (other than they are

strictly better than the worst case). We account for this through empirical evaluation, though this

is inherently limited as tested data sets cannot represent all potential applications.

Finally, our work focuses on the cost objective function. While cost is highly regarded by

the hierarchical clustering community [Dasgupta, 2016], it may not be an appropriate metric for

all applications. Moreover, it is sometimes viewed as impractical in that it is quite difficult to pro-

vide worst-case guarantees for [Charikar and Chatziafratis, 2017]. Future work might consider

evaluating our algorithms using other objectives such as revenue [Moseley and Wang, 2017] or

value [Cohen-Addad et al., 2018] to see how they perform.

4.6 Proofs

This section contains the formal proofs for all of our lemmas and theorems.

Proof of Lemma 85. We start by comparing δ and ϵ at some iteration. Consider vmin and vmax

at that iteration. Without loss of generality, say n/h − nT ′(vmin)/n ≤ nT ′(vmax)/n − n/h,

implying δ = δ1 = n/h − nT ′(vmin)/n. Additionally, since the while loop executed, we know

either nT ′(vmax) = n(1/h+ δ2) > n(1/h+ ϵ) or nT ′(vmin) = n(1/h− δ1) < n(1/h− ϵ). With
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a little algebraic simplification, this gives us that δ1 > ϵ or δ2 > ϵ. Since we said δ = δ1, δ1 must

be the smaller, so we can safely assume δ2 > ϵ.

Now, we know conservatively that δ2 < nT ′(vmax)/n ≤ 1. Since nT ′(vmin)/n has the

largest deviation from 1/h of all of v′ ∈ children(root(T ′)) with nT ′(v′) ≤ n/h, this means

that 1/h − nT ′(v′)/n ≤ δ1 for all v′ ∈ children(root(T ′)), in other words, nT ′(v′) ≥ n(1/h −

δ1). Since children(root(T ′)) form a clustering of the data,
∑

v′∈children(root(T ′)) nT ′(v′) = n. In

addition, because of our bound:

∑
v′∈children(root(T ′))

nT ′(v′) =
∑

v′∈children(root(T ′))\vmax

nT ′(v′) + nT ′(vmax)

≥ (h− 1) · n(1/h− δ1) + n/h+ nδ2

= n− n(h− 1)δ1 + nδ2

Recall our original value is n. Thus n ≥ n − n(h − 1)δ1 + nδ2. Finally, we get δ1 ≥

δ2/(h−1). This means δ ≥ ϵ/(h−1). A similar math can show the same result if δ2 is the smaller

value. For an upper bound, we have that since the smallest cluster size is 0, δ ≤ δ1 ≤ 1/h.

Let p be the parent of v. By the halting condition of the while loop on Line 13, we know

nT ′(p) > δn, otherwise the loop would have halted earlier. Since v is the right child of p, it is the

larger of two children, implying nT ′(v) ≥ nT ′(p)/2 > δn/2, which is just at least ϵ/(2(h − 1))

by our previous math. Finally, since the loop did halt on v, we know nT ′(v) ≤ δn.

Proof of Lemma 86. First off, clearly the root has h children, because we give it h children and

never change this.
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For the runtime, notice that we always decrease the number of leaves of the child with the

max number of leaves. Let ntot =
∑

v′∈childrenv:nT ′ (v′)>1/h nT ′(v′) − n/h ≤ n. Note that the

number of vertices in this summation is only ever reduced, since we swap at most δn vertices

from the largest to the smallest vertex, implying the smallest vertex will never exceed n/h. Since

vmax is necessarily involved in this sum (if not, then nT ′(vmax) = 1/h, implying all children

are of equal size, meaning the algorithm already halted), and nT ′(vmax) is reduced by at least

ϵn/(2(h − 1)) each iteration by Lemma 85, we require at most 2(h − 1) iterations of the while

loop before we halt. In each iteration, we traverse down two subtrees to delete and insert, which

takes at most O(n) time each, for a total of O(nh) time to complete the algorithm.

Finally, assume for contradiction it is not ϵ-relatively balanced with respect to h children.

This means that in the output, either: 1) some vertex has under (1/h− ϵ)n leaves in its subtree, or

2) some vertex has over (1/h+ ϵ)n leaves in its subtree. In the first case, this means nT ′(vmin) <

(1/h−ϵ)n, implying the while loop will continue to execute, contradicting that this is the resulting

output. A similar argument holds in the second case. Thus, the root is ϵ-relatively balanced.

Proof of Lemma 87. Consider an edge e = (x, y) that is separated when we delete and insert.

This can only happen if, without loss of generality, x is in the deleted/inserted component and y

is not. Recall v whose subtree is deleted and reinserted. By Lemma 85, nT (v) > ϵn/(2(h− 1)).

Since x is a descendant of v and y is not, their lowest common ancestor v′ must be an

ancestor of v. Thus nT (v
′) > nT (v) > ϵn/(2(h − 1)). Thus, costT (e) = nT (v

′) · w(e) ≥

nϵ ·w(e)/(2(h−1)). In the end, the maximum cost is costT ′(e) ≤ n ·w(e), therefore costT ′(e) ≤

2(h−1)
ϵ

. This concludes the proof.
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Proof of Lemma 88. For simplicity, assume kλ|h. Our algorithm first orders the depth 1 vertices

decreasing by the fractional representation of the first color, say red. It then partitions it into parts

of size h/k according to this order and folds all vertices of the same index in their part together.

That is, k clusters are merged. We begin with h vertices, but after the (x − 1)th fold, we only

have h/kx remaining. Let x be the iteration we are at in the folding process.

Let f(i, j) denote the ith index in the jth partition of V , i.e., f(i, j) = jh/k + i. Then for

every i ∈ [h/k], we create a new vertex ui by folding vf(i,j) together for all j ∈ k. Let ri denote

the number of red vertices in ui. For any i:

ri/nT ′(ui) =
1

nT ′(ui)

∑
j∈[k]

red(vf(i,j)) ≤
1

nT ′(ui)
red(vf(1,1)) +

1

nT ′(ui)

∑
j∈{2,...,k}

red(vf(i,j))

Note that if we perfectly balanced all cluster sizes at n/h, then red(vf(1,1)) ≤ n/h =

nT ′(ui)/k would hold. However, vf(1,1) may be a factor of at most 1 + ϵ larger and nT ′(ui) may

be a factor of at least 1− ϵ smaller. This means that our first term simplifies to 1+ϵ
k(1−ϵ)

.

For our second term, we note that red(vf(i,j))/nT (vf(i,j)) ≤ red(vf(i,j−1))/nT (vf(i,j−1)).

Since we have relative balance, all nT values are within a factor of 1+ϵ
1−ϵ

of each other. This

means red(vf(i,j)) ≤ 1+ϵ
1−ϵ

red(vf(i′,j−1)) for all i′ ∈ [h/k]. We can also take this as an average,

as in, red(vf(i,j)) ≤ k(1+ϵ)
h(1−ϵ)

∑
i′∈[h/k] red(vf(i′,j−1)). Conservatively, this results in the summa-

tion
∑

j∈{2,...,h/k}
∑

i′∈[k] red(vf ′,j−1)). Here, we are practically counting (actually slightly un-

dercounting) the total number of reds, which we call R. Plugging all of this in:
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ri/nT ′(ui) ≤
1 + ϵ

k(1− ϵ)
+

(1 + ϵ)

n(1− ϵ)2
R =

R

n
· 1 + ϵ

(1− ϵ)2

(
1 +

1− ϵ

cRk

)

Where since R = O(n), we let cR be the constant satisfying R ≥ cRn.

All that is left is to consider the lower bound. We can apply similar simplifications as

before, but now we reverse the bound.

ri/nT ′(ui) =
1

nT ′(ui)

∑
j∈[k]

red(vf(i,j)) ≥
1− ϵ

nh(1 + ϵ)2

∑
j∈[k−1]

∑
i′∈[k]

red(vf(i′,j+1))

Again, we are undercounting R in the nested summations, though it is more problematic in

the lower bound. Our missing terms are
∑

i′∈[k] red(vf(i′,1)). We can only bound this by the total

size of the first partition, which is at most (1 + ϵ)kn/h.

ri/nT ′(ui) ≥
1− ϵ

n(1 + ϵ)2
(R− (1 + ϵ)kn/h) =

R

n
· 1− ϵ

(1 + ϵ)2

(
1− k(1 + ϵ)

cRh

)

Proof of Lemma 89. We prove this inductively, saying at the jth level of recursion, λi

(
1−ϵ

(1+ϵ)2

(
1− k(1+ϵ)

cih

))j
≤

λj
i ≤ λi

(
1+ϵ

(1−ϵ)2

(
1 + 1−ϵ

cik

))j
. This is obviously true in the base call to the algorithm, since

λ′
i = λi. Assume this holds for level j.

In level j + 1, any instance of the problem is really a subproblem on the hierarchy induced
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on a cluster from the jth level of recursion. In that level of recursion, the number of vertices

of color i, our induction shows that λi

(
1−ϵ

(1+ϵ)2

(
1− k(1+ϵ)

cih

))j
≤ λj

i ≤ λi

(
1+ϵ

(1−ϵ)2

(
1 + 1−ϵ

cik

))j
.

By Lemma 88, we can bound how much worse this gets by an additional multiplicative factor,

yielding the desired inductive proof.

All that is left is to show the depth. At any recursive level, we begin with clusters of size of

at most (1 + ϵ)n/h after balancing. We fold k vertices together at most λ times, for a total size

of at most (1 + ϵ)nkλ/h. This means after the jth iteration, we have n((1 + ϵ)kλ/h)j vertices

left. Once we have only h vertices left, we will certainly stop. With a little simple arithmetic,

we find this occurs when j ≤ log(n/h)
log(h/((1+ϵ)kλ))

= O(log(n/h)) as long as h ≥ (1 + ϵ)kλ. This is

the maximum number of iterations we require. Plugging this into our inductive finding gives the

complete proof.

Proof of Lemma 90. We already know that an edge e may be separated by SplitRoot, and if so, it

incurs a cost of 2(h− 1)/ϵ. If this occurs, note that we already consider the worst case scenario:

when costT ′(e) = n · w(e). Therefore, if an edge is involved in separation in MakeFair, the cost

increase estimate cannot get worse.

We now consider an edge e that is separated in MakeFair. It is not too hard to see that the

cluster containing e must have been one of the depth 1 clusters, because otherwise e would not be

affected by the algorithm. Therefore, nT (e) ≥ (1−ϵ)n/h (again, assuming it was not affected by

the balancing). In the end, the max cluster size e belongs to will be (1 + ϵ)nkλ/h, thus incurring

a total cost increase of 1+ϵ
1−ϵ

kλ.

Proof of Lemma 91. This is not too hard to see. If an edge e is separated in a recursive level, that

means the new worst-case ancestor is either the root at that level of recursion or the next. In the
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former case, e is not involved in any further trees in the recursive process. In the latter case, it

is contained in the root of one more recursive process. As this is already the most costly way to

cluster e in the subproblem, it cannot be further separated.

Proof of Lemma 92. This simply follows from Lemmas 90 and 91. The former shows the cost of

separating an edge at a recursive level, and the latter says that this happens at most once to each

edge.

Proof of Theorem 1. Relative balance holds because we create relative balance in SplitRoot.

While we do fold these nodes together, merging nodes does not break relative balance. Our

approximation factor is proved in Lemma 92. Lemma 89 gives us a bound on the proportion of

each color in each recursive level, which in effect also tells us the actual fairness of each cluster in

the hierarchy (i.e., by looking at the proportion of a certain color when we recurse on a cluster’s

subtree). This yields the desired fairness guarantee.

Finally, we showed the runtime for SplitRoot is O(n′h) in Lemma 86, where n′ is the

current tree size. In MakeFair, we require simple iteration and sorting to process the colors,

and folding is a pretty simple process. Thus the first for loop only requires O(n′ log n′) time

per execution for a total of O(λn′ log n′) time. At any recursive level, a node is involved in

at most one recursive instance. This means that the total time to execute a single recursive

level is O(n(h + λ log n)). Finally, Lemma 89 also tells us the recursive depth is bounded by

O(log(n/h)) = O(log n). Thus the total runtime is O(n log n(h+ λ log n)).
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4.7 Additional Experiments

We here demonstrate how our algorithm adapts an unfair hierarchy into one that achieves

fair representation of the protected attributes on the Bank dataset through a complimentary sim-

ulation to that of Section 4.4.

Figure 4.5: Histogram of cluster balances after tree manipulation by Algorithm 11 on a subsam-
ple from the Bank dataset of size n = 512. The four panels depict: (A) cluster balances after
applying the (unfair) average-linkage algorithm, (B) the resultant cluster balances after running
Algorithm 11 with parameters (c, h, k, ε) = (8, 4, 2, 1/c·log2 n), (C) cluster balances after tuning
c = 4, (D) cluster balances after further tuning c = 2. The vertical red line on each plot indicates
the balance of the dataset itself.
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Part II

Massively Parallel Graph Algorithms
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Chapter 10: Streaming and Massively Parallel Algorithms for Edge Coloring

10.1 Introduction

Given a graph G(V,E), an edge coloring of G is an assignment of “colors” to the edges in

E such that no two incident edges receive the same color. The goal is to find an edge coloring

that uses few colors. Edge coloring is among the most fundamental graph problems and has been

studied in various models of computation, especially in distributed and parallel settings.

Denoting the maximum degree in the graph by ∆, it is easy to see that ∆ colors are nec-

essary in any proper edge coloring. On the other hand, Vizing’s celebrated theorem asserts

that ∆ + 1 colors are always sufficient [Vizing, 1964]. While determining whether a graph

can be ∆ colored is NP-hard, a ∆ + 1 coloring can be found in polynomial time [Arjomandi,

1982, Gabow et al., 1985]. These algorithms are, however, highly sequential. As a result, in re-

stricted settings, it is standard to consider more relaxed variants of the problem where more colors

are allowed [Alon et al., 1986, Barenboim et al., 2016, Fraigniaud et al., 2016, Goldberg et al.,

1987, Goldberg and Plotkin, 1987, Harris et al., 2016, Johansson, 1999, Kuhn and Wattenhofer,

2006, Linial, 1992, Luby, 1985, Panconesi and Srinivasan, 1992].

In this paper, we study edge coloring in large-scale graph settings. Specifically, we focus

on the Massively Parallel Computations (MPC) model and the Graph Streaming model.
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10.1.1 Massively Parallel Computation

The Model. The MPC model [Beame et al., 2017, Goodrich et al., 2011, Karloff et al.,

2010] is a popular abstraction of modern parallel frameworks such as MapReduce, Hadoop,

Spark, etc. In this model, there are N machines, each with a space of S words1 that all run

in parallel. The input, which in our case is the edge-set of graph G(V,E), is initially distributed

among the machines arbitrarily. Afterwards, the system proceeds in synchronous rounds wherein

the machines can perform any arbitrary local computation on their data and can also send mes-

sages to other machines. The messages are then delivered at the start of the next round so long

as the total messages sent and received by each machine is O(S) for local machine space S. The

main parameters of interest are S and the round-complexity of the algorithm, i.e., the number of

rounds it takes until the algorithm stops. Furthermore, the total available space over all machines

should ideally be linear in the input size, i.e., S ·N = O(|E|).

Related Work in MPC. We have seen a plethora of results on graph problems ever since

the formalization of MPC. The studied problems include matching and vertex cover [Ahn and

Guha, 2015a, Assadi et al., 2019a, Behnezhad et al., 2019e, Czumaj et al., 2018, Ghaffari et al.,

2018, Lattanzi et al., 2011, Behnezhad et al., 2018b, Brandt et al., 2018], maximal independent

set [Ghaffari et al., 2018,Harvey et al., 2018,Behnezhad et al., 2018b,Brandt et al., 2018], vertex

coloring [Chang et al., 2018, Harvey et al., 2018, Parter, 2018, Parter and Su, 2018], as well as

graph connectivity and related problems [Andoni et al., 2014, Andoni et al., 2018, Behnezhad

et al., 2019d,Jurdzinski and Nowicki, 2018,Bateni et al., 2017]. (This is by no means a complete

list of the prior works.)
1Throughout the paper, the Stated space bounds are in the number of words that each denotes O(log n) bits.
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We have a good understanding of the complexity of vertex coloring in the MPC model,

especially if the local space is near linear in n: Assadi et al. [Assadi et al., 2019a] gave a remark-

able algorithm that using Õ(n) space per machine, finds a (∆ + 1) vertex coloring in a constant

number of rounds. The algorithm is based on a sparsification idea that reduces the number of

edges from m to O(n log2 n). But this algorithm alone cannot be used for coloring the edges,

even if we consider the more relaxed (2∆ − 1) edge coloring problem which is equivalent to

(∆ + 1) vertex coloring on the line graph. The reason is that the line-graph has O(m) vertices

where here m is the number of edges in the original graph. Therefore even after the sparisification

step, we have Õ(m) vertices in the graph which is much larger than the local space available in

the machines.

Not much work has been done on the edge coloring problem in the MPC model. The only

exception is the algorithm of Harvey et al. [Harvey et al., 2018] which roughly works by random

partitioning the edges, and then coloring each partition in a different machine using a sequential

(∆ + 1) edge coloring algorithm. The choice of the number of partitions leads to a trade-off

between the number of colors used and the space per machine required. The main shortcoming

of this idea, however, is that if one desires a ∆+ Õ(∆1−Ω(1)) edge coloring, then a strongly super

linear local space of n∆Ω(1) is required.

Our main MPC result is the following algorithm which uses a more efficient partitioning.

The key difference is that we use a vertex partitioning as opposed to the algorithm of Harvey et

al. which partitions the edges.

Result 1 (Theorem 93). There exists an MPC algorithm that using Õ(n) space per machine and

O(m) total space, returns a ∆ + Õ(∆3/4) edge coloring in O(1) rounds. This algorithm w.h.p.
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uses (1 + o(1))∆ colors.

The algorithm exhibits a tradeoff between the space and the number of colors (see Theo-

rem 93) and can be made more space-efficient as the maximum degree gets larger. For instance,

if ∆ > nϵ for any constant ϵ > 0, it requires a strictly sublinear space of n1−Ω(1) to return a

∆ + o(∆) edge coloring in O(1) rounds. This is somewhat surprising since all previous non-

trivial algorithms in the strictly sublinear regime of MPC require ω(1) rounds.

Our algorithm can also be implemented in O(1) rounds of Congested Clique, leading to a

∆+ Õ(∆3/4) edge coloring there. Prior to our work, no sublogarithmic round Congested Clique

algorithm was known even for (2∆− 1) edge coloring.

10.1.2 Streaming

The Model. In the standard graph streaming model, the edges of a graph arrive one by one

and the algorithm has a space that is much smaller than the total number of edges. A particularly

important choice of space is Õ(n)—which is also known as the semi-streaming model [Feigen-

baum et al., 2004]—so that the algorithm has enough space to store the vertices but not the edges.

For edge coloring, the output is as large as the input, thus, we cannot hope to be able to store the

output and report it in bulk at the end. For this, we consider a standard twist on the stream-

ing model where the output is also reported in a streaming fashion. This model is referred to

in the literature as the “W-streaming” model [Demetrescu et al., 2006, Glazik et al., 2017]. We

particularly focus on one-pass algorithms.

Designing one-pass W-streaming algorithms is particularly challenging since the algorithm

cannot “remember” all the choices made so far (e.g., the reported edge colors). Therefore, even
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the sequential greedy algorithm for (2∆ − 1) edge coloring, which iterates over the edges in an

arbitrary order an assigns an available to each color upon visiting it, cannot be implemented since

we are not aware of the colors used incident to an edge.

Our first result is to show that a natural algorithm w.h.p.2 provides an O(∆) edge coloring

if the edges arrive in a random-order.

Result 2 (Theorem 102). If the edges arrive in a random-order, there is a one-pass Õ(n) space

W-streaming edge coloring algorithm that always returns a valid edge coloring and w.h.p. uses

(2e+ o(1))∆ ≈ 5.44∆ colors.

If the edges arrive in an arbitrary order, we give another algorithm that requires more colors.

Result 3 (Theorem 103). For any arbitrary arrival of edges, there is a one-pass Õ(n) space

W-streaming edge coloring algorithm that succeeds w.h.p. and uses O(∆2) colors.

These are, to our knowledge, the first streaming algorithms for edge coloring.

10.2 The MPC Algorithm

In this section, we consider the edge coloring problem in the MPC model. Our main result

in this section is an algorithm that achieves the following:

Theorem 93. For any parameter k (possibly dependent on ∆) such that n/k ≫ log n, there

exists an MPC algorithm with O(n∆
k2

+ n
k

√
∆ log n/k) space per machine and O(m) total space

that w.h.p. returns a ∆+O(
√
k∆ log n) edge coloring in O(1) rounds.

As a corollary of Theorem 93, we get the following algorithm which uses Õ(n) space:

2Throughout, we use “w.h.p.” to abbreviate “with high probability” implying probability at least 1− 1/poly(n).
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Corollary 94. There exists a randomized MPC algorithm with Õ(n) space per machine and

O(m) total space that w.h.p. returns a (1 + o(1))∆ edge coloring in O(1) rounds.

Proof. By setting k = Θ(∆0.5) in Theorem 93, we get a ∆+O(∆3/4
√
log n) edge coloring using

Õ(n) space. Note that this already is a (1 + o(1))∆ edge coloring if ∆ = ω(log2 n). Otherwise,

using a space per machine of O(n log2 n), we can simply fit the whole graph into one machine and

find a ∆+1 edge coloring there using the known sequential algorithms [Arjomandi, 1982,Gabow

et al., 1985].

Moreover, assuming that ∆ = nΩ(1), by setting k = ∆0.5+ϵ for a small enough constant

ϵ ∈ (0, 1), we get the following O(1) round algorithm which requires n1−Ω(1) machine space,

which is notably strictly sublinear in n:

Corollary 95. If ∆ = nΩ(1), there exists a randomized MPC algorithm with O(n/∆2ϵ) =

n1−Ω(1) space per machine and O(m) total space that w.h.p. returns a ∆+ O(∆0.75+ϵ/2
√
log n)

= (1 + o(1))∆ edge coloring in O(1) rounds.

Finally, by setting k =
√
∆ + log n, the space required per machine will be O(n). Using

a reduction from [Behnezhad et al., 2018a], this leads to an O(1) round Congested Clique ∆ +

Õ(∆3/4) edge coloring algorithm.

Corollary 96. There exists a randomized Congested Clique algorithm that w.h.p. finds a ∆ +

O(∆3/4
√
log n+

√
∆ log n) edge coloring in O(1) rounds.

We note that the Congested Clique algorithm above is particularly useful, i.e., achieves a

(1 + o(1))∆ edge-coloring, for graphs with maximum degree at least ∆ = ω(log2 n). For the

lower degree graphs, the additive O(
√
∆ log n) colors exceed ∆ and thus may not be negligible.
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The Idea Behind the Algorithm. The first step in the algorithm is a random partition-

ing of the vertex set into k groups, V1, . . . , Vk. We then introduce one subgraph for each ver-

tex subset, called G1, . . . , Gk, and one subgraph for every pair of groups which we denote as

G1,2, . . . , G1,k, . . . , Gk−1,k. Any such Gi is simply the induced subgraph of G on Vi. Moreover,

any such Gi,j is the subgraph on vertices Vi ∪ Vj , with edges with one point in Vi and the other in

Vj .

The general idea is to assign different palettes, i.e., subsets of colors, to different subgraphs

so that the palettes assigned to any two neighboring subgraphs (i.e., those that share a vertex)

are completely disjoint. A key insight to prevent this from blowing up the number of colors, is

that since any two edges from Gi,j and Gi′,j′ with i ̸= i′ and j ̸= j′ cannot share endpoints by

definition, it is safe to use the same color palette for them.

To assign these color palettes, we consider a complete k-vertex graph with each vertex

vi in it corresponding to partition Vi and each edge (vi, vj) in it corresponding to the subgraph

Gi,j . We then find a k edge coloring of this complete graph, which exists by Vizing’s theorem

since maximum degree in it is k − 1. This edge coloring can actually be constructed extremely

efficiently using merely the edges’ endpoint IDs. Thereafter, we map each of these k colors to a

color palette. By carefully choosing k and the number of colors in each palette, we ensure that:

(1) The total number of colors required is close to ∆. (2) Each subgraph Gi,j can be properly

edge-colored with those colors in its palette. (3) Each subgraph fits the memory of a single

machine so that we can put it in whole there and run the sequential edge coloring algorithm on it.

The algorithm outlined above is formalized as Algorithm 12. We start by proving certain

bounds on subgraphs’ size and degrees.
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Algorithm 12 An MPC algorithm for edge coloring.
Input k
Output An edge coloring of a given graph G = (V,E) with maximum degree ∆ using

Ψ := ∆+ d
√
k∆ log n colors for some large enough constant d.

1: Independently and u.a.r. partition V into k subsets V1, . . . , Vk.
2: For every i ∈ [k], let Gi be the induced subgraph of G on Vi.
3: For every i, j ∈ [k] with i ̸= j, let Gi,j be the subgraph of G including an edge e ∈ E iff one

end-point of e is in Vi and the other is in Vj .
4: Partition [Ψ] into k + 1 disjoint subsets C1, . . . , Ck, C

′, which we call color palettes, in an
arbitrarily way such that each palette has exactly Ψ

k+1
colors.

5: for each graph Gi in parallel do
6: Color Gi sequentially in a single machine with palette C ′.
7: end for
8: ▷ In what follows, we implicitly construct a k edge coloring of a complete k-vertex graph Kk

and assign palette Cα to subgraph Gi,j where α is the color of edge (i, j) in Kk.
9: for each graph Gi,j in parallel do

10: Color Gi,j sequentially in a machine with palette Cα where α = ((i+ j) mod k) + 1.
11: end for

Claim 97. W.h.p., every subgraph of type Gi or Gi,j has maximum degree ∆
k
+O(

√
∆ log n

k
) and

has at most O(n∆
k2

+ n
k

√
∆ log n/k) edges.

Proof. Let us start with bounding the degree of an arbitrary vertex v ∈ Vi in subgraph Gi. The

degree of vertex v in Gi is precisely the number of its neighbors that are assigned to partition Vi.

Since there are k partitions, the expected degree of v in Gi is degG(v)/k ≤ ∆/k. Furthermore,

since the assignment of vertices to the partitions is done independently and uniformly at random,

by a simple application of Chernoff bound, v’s degree in Gi should be highly concentrated around

its mean. Namely, with probability at least 1−n−2, it holds that degGi
(v) ≤ ∆

k
+O(

√
∆ log n/k).

Now, a union bound over the n vertices in the graph, proves that the degree of all vertices in their

partitions should be at most ∆
k
+O(

√
∆ log n/k) with probability 1− 1/n.

Bounding vertex degrees in subgraphs of type Gi,j also follows from essentially the same

argument. The only difference is that we have to union bound over n ·k choices, as we would like

to bound the degree of any vertex v with say v ∈ Vi in k subgraphs Gi,1, . . . , Gi,k. Nonetheless,
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since k ≤ n, there are still poly(n) many choices to union bound over. Thus, by changing the

constants in the lower terms of the concentration bound, we can achieve the same high probability

result.

Finally, we focus on the number of edges in each of the subgraphs. Each partition Vi

has n/k vertices in expectation since the n vertices are partitioned into k groups independently

and uniformly at random. A simple application of Chernoff and union bounds, implies that the

number of vertices in each partition Vi is at most O(n
k
) w.h.p., so long as n/k ≫ log n, which

is the case. Since the number of edges in each partition is less than the number of vertices times

max degree, combined with the aforementioned bounds on the max degree, we can bound the

number of edges in Gi and Gi,j for any i and j by

O
(n
k

)
·O

(
∆

k
+

√
∆

k
log n

)
= O

(
n∆

k2
+

n

k

√
∆

k
log n

)
,

which is the claimed bound.

Next, observe that we use palettes C1, . . . , Ck+1, C
′, each of size Ψ

k+1
to color the subgraphs.

We need to argue that the maximum degree in each subgraph is at most Ψ
k+1
− 1 to be able to

argue that using Vizing’s theorem in one machine, we can color any of the subgraphs with the

assigned palettes. This can indeed be easily guaranteed if the constant d is large enough:

Observation 98. If constant d in Algorithm 12 is large enough, then maximum degree of every

graph is at most Ψ
k+1
− 1, w.h.p.
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Proof. We have Ψ = ∆+ d
√
k∆ log n in Algorithm 12, therefore:

Ψ

k + 1
=

∆

k + 1
+

d
√
k∆ log n

k + 1
=

∆

k
+Θ(

√
∆ log n/k),

where the hidden constants in the second term of the last equation can be made arbitrarily large

depending on the choice of constant d. On the other hand, recall from Claim 97 that the maximum

degree in any of the subgraphs is also at most ∆
k
+ O(

√
∆ log n/k). Thus, the palette sizes are

sufficient to color the subgraphs if d is a large enough constant.

We are now ready to prove the algorithm’s correctness.

Lemma 99. Algorithm 12 returns a proper edge coloring of G using ∆+O(
√
k∆ log n) colors.

Proof. The algorithm clearly uses Ψ = ∆ + O(
√
k∆ log n) colors, it remains to argue that the

returned edge coloring is proper. Each subgraph (of type Gi or Gi,j) is sent to a single machine

and edge-colored there using the palette that it is assigned to. Since by Observation 98, each

palette has at least ∆′ + 1 colors for ∆′ being the max degree in the subgraphs, there will be

no conflicts in the colors associated to the edges within a partition. We only need to argue that

two edges e and f sharing a vertex v that belong to two different subgraphs are not assigned the

same color. Note that all subgraphs of type Gi are vertex disjoint and all receive the special color

palette C ′, thus there cannot be any conflict there. To complete the proof, it suffices to prove that

any two subgraphs Gi,j and Gi′,j′ that share a vertex receive different palettes. Note that in this

case, either i = i′ or j = j′ by the partitioning. Assume w.l.o.g. that i = i′ and thus j ̸= j′.

Based on Algorithm 12 for Gi,j and Gi′,j′ to be assigned the same color palette, it should hold
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that

((i+ j) mod k) + 1 = ((i′ + j′) mod k) + 1.

Since i = i′, this would imply that (j mod k) = (j′ mod k), though this would not be possible

given that both j and j′ are in [k] and that j ̸= j′. Therefore, any two subgraphs that share a

vertex receive different palettes and thus there cannot be any conflicts, completing the proof.

Next, we turn to prove the space bounds.

Lemma 100 (Implementation and Space Complexity). Algorithm 12 can be implemented with

total space O(m) and space per machine of O(n∆
k2

+ n
k

√
∆ log n/k) w.h.p.

Proof. We start with an implementation that uses the specified space per machine but can be

wasteful in terms of the total space, then describe how we can overcome this problem and also

achieve an optimal total space of O(m).

We can use k +
(
k
2

)
machines, each with a space of size O(n∆

k2
+ n

k

√
∆ log n/k) to assign

colors to the edges in parallel. The first m1, . . . ,mk machines will be used for edge coloring

on G1, G2, . . . , Gk respectively. The other mk+1, . . . ,mk+(k2)
machines will be used for edge

coloring on the Gi,j graphs. Lemma 97 already guarantees that each subgraph has size O(n∆
k2

+

n
k

√
∆ log n/k) w.h.p., and thus fits the memory of a single machine.

In the implementation discussed above, since the machines use Õ(n∆/k2) space and there

are O(k2) machines, the total memory can be Õ(n∆) which may be much larger than O(m). This

is because we allocate O(n∆/k2) space to each machine regardless of how much data it actually

received. Though, observe that each edge of the graph belongs to exactly one of the subgraphs,

i.e., the machines together only handle a total of O(m) data. So we must consolidate into fewer

machines. We do this by putting multiple subgraphs in each machine.

166



We start by recalling a sorting primitive in the MPC model which was proved in [Goodrich

et al., 2011]. Basically, if there are N items to be sorted and the space per machine is NΩ(1), then

the algorithm of [Goodrich et al., 2011] sorts these items into the machines within O(1) rounds.

To use this primitive, we first label each edge e = (u, v) of the graph by its subgraph name (e.g.

Gi or Gi,j) which can be determined solely based on the end-points of the edge. After that, we

sort the edges based on these labels. This way, all the edges inside each subgraph can be sent to

the same machine within O(1) rounds while also ensuring that the total required space remains

O(m).

The algorithm for Theorem 93 was formalized as Algorithm 12. We showed in Lemma 99

that the algorithm correctly finds an edge coloring of the graph with the claimed number of colors.

We also showed in Lemma 100 that the algorithm can be implemented with O(m) total space and

O(n∆
k2

+ n
k

√
∆ log n/k) space per machine. This completes the proof of Theorem 93.

10.3 Streaming Algorithms

We start in Section 10.3.1 by describing our streaming algorithm and its analysis when the

arrival order is random. Then in Section 10.3.2, we give another algorithm for adversarial order

streams.

10.3.1 Random Edge Arrival Setting

In this section, we give a streaming algorithm for O(∆) edge coloring using Õ(n) space

where the edges come in a random stream. That is, a permutation over the edges is chosen

uniformly at random and then the edges arrive according to this permutation.
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We first note that if ∆ = O(log n) then the problem is trivial as we can store the whole

graph and then report a ∆+1 edge coloring (even without knowledge of ∆). As such, we assume

∆ = ω(log n).

The algorithm — formalized as Algorithm 13 — maintains a counter cv for each vertex

v. At any point during the algorithm, this counter cv basically denotes the highest color number

used for the edges incident to v so far, plus 1. Therefore, upon arrival of an edge (u, v), it is safe

to color this edge with max(cu, cv) as all edges incident to u and v have a color that is strictly

smaller than this. Then, we increase the counters of both v and u to max(cu, cv) + 1. It is not

hard to see that the solution is always a valid coloring, in the remainder of this section, we mainly

focus on the number of colors required by this algorithm and show that w.h.p., it is only O(∆)

for random arrivals.

Algorithm 13 Edge coloring for random streams.
Output A feasible coloring C : E → [Ψ] for a given graph G = (V,E) with maximum

degree ∆ in a random stream
1: cv ← 0 ∀v ∈ V
2: while (u, v) is read from stream do
3: C(u, v)← max(cu, cv)
4: cu, cv ← C(u, v) + 1
5: end while

We start by noting that this algorithm can actually be extremely bad if the order is adver-

sarial. To see this, consider a path of size n. In an adversarial stream where the edges arrive in

the order of the path, Algorithm 13 uses as many as n − 1 colors while the maximum degree is

only 2! It is easy to see why this example is very unlikely to occur in random order streams: For

a fixed path, it is very unlikely that the edges are randomly ordered in this very specific way.

To make this intuition rigorous for general graphs, we first prove the following crucial

lemma which gives us the correct parameter to bound.

168



Lemma 101. Let Ψ be the size of the longest monotone (in the order of arrival) path in the

line-graph of G. Then Algorithm 13 uses exactly Ψ colors.

Proof. Take a monotone path v1, v2, . . . , vΨ in the line-graph of G and let e1, e2, . . . , eΨ be the

edges of the original graph that correspond to these vertices respectively, i.e., e1 arrives before e2

which arrives before e3 and so on. Since for any i, vi and vi+1 are neighbors in the line-graph, then

ei and ei+1 should share an end-point v. This means that at the time of arrival of ei+1, we have

cv ≥ C(ei) + 1 which in turn, implies C(eΨ) > C(eΨ−1) > . . . > C(e1). Therefore, C(eΨ) ≥ Ψ.

On the other hand, suppose that there is an edge e1 = (u, v) for which C(e1) = Ψ in

Algorithm 13. This means that at least one of cu or cv equals Ψ when e1 arrives, say cu w.l.o.g.

Let e2 be the last edge incident to u that has arrived before e1. It should hold that C(e2) =

Ψ − 1. Using the same argument, for each 1 < i ≤ Ψ, we can find a neighboring edge ei such

that C(ei) = C(ei−1) − 1. This way, we end up with a sequence e1, . . . , eΨ of edges, the path

corresponding to this sequence in the line graph will be a monotone path of length Ψ, completing

the proof.

Theorem 102. There is a streaming edge coloring algorithm that for any graph G = (V,E) uses

at most (2e+ ϵ)∆ ≈ 5.44∆ colors w.h.p. for any constant ϵ > 0 given that the edges in E arrive

in a random order.

Proof. We first prove that Algorithm 13 gives us a feasible coloring of graph G. Consider two

edges e1 = (u, v) and e2 = (u, v′) incident to vertex u such that e1 appears earlier than e2 in the

stream. For any edge e we represent by C(e) the color assigned to that by the algorithm. After

the algorithm colors e1 with C(e1), it sets cu to C(e1) + 1. Thus, cu is at least C(e1) + 1 when

e2 arrives and C(e2) ≥ C(e1) + 1 consequently. Therefore, C(e2) > C(e1) for any pair of edges
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incident to a common vertex, and C is a feasible coloring.

Next, for some constant α that we fix later, we show that the probability that an edge is

assigned a color number at least α∆ is at most n−c for some constant c ≥ 2, implying via a union

bound over all the edges that indeed w.h.p., Ψ ≤ α∆.

We showed in Lemma 101 that if the number of colors Ψ used is α∆, then there should exist

a monotone path in the line-graph with size at least α∆. Let e0, e2, . . . , eα∆ be the corresponding

edges to this path. Thus, it suffices to bound the probability of this event. Let Π denote the set of

all such paths in the line graph. For a specific path π ∈ Π, the probability that it is monotone is

1/(α∆)!. Call this event Xπ. On the other hand, we can upper bound the number of such paths

by (2∆)α∆, i.e., |Π| ≤ (2∆)α∆. This follows from the fact that each path should start from the

corresponding vertex to e0 in the line-graph, and that maximum degree in the line graph is 2∆−2

(which is the upper bound on the number of neighboring edges to each edge). Thus:

Pr[C(e0) ≥ α∆] = Pr[
∨
π∈Π

Xπ] ≤
∑
π∈Π

Pr[Xπ = 1] ≤ (2∆)α∆

(α∆)!
,

where the last inequality is obtained by replacing Pr[Xπ = 1] and |Π| by the aforementioned

bounds. Taking the logarithm of each side of the inequality, we get

ln(Pr[C(e0) ≥ α∆]) ≤ α∆ ln(2∆)− ln((α∆)!)

≤ α∆ ln(2∆)− ((α∆+ 1/2) ln(α∆)− α∆) (10.1)

= α∆ ln(2e/α)− 1/2 ln(α∆) (10.2)

≤ α∆ ln(2e/α). (10.3)
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To obtain (10.1), we use Stirling’s approximation of factorials to lower-bound ln((α∆)!). Finally,

we rearranged terms to imply (10.2). By plugging in α = 2e(1 + ϵ), we get

ln(Pr[C(e0) ≥ 2e(1 + ϵ)∆]) ≤ 2e(1 + ϵ)∆ ln

(
1

1 + ϵ

)
= −2e(1 + ϵ) ln(1 + ϵ)∆

≤ −2e(1 + ϵ) ln(1 + ϵ)
c

2e(1 + ϵ) ln(1 + ϵ)
ln(n) (10.4)

= −c ln(n)

Since ∆ = ω(log(n)), we have ∆ > c′ ln(n) for any constant c′. Inequality (10.4) follows from

setting c′ = c/(2e(1+ ϵ) ln(1+ ϵ)) in ∆ > c′ ln(n), where c is the constant for which we want to

show the probability is upper-bounded by n−c. Hence,

Pr[C(e0) ≥ 2e(1 + ϵ)∆] ≤ n−c.

Thus, Algorithm 13 returns a feasible coloring of the input graph G using at most 2e(1 + ϵ)∆

colors, for any constant ϵ > 0 w.h.p. if the edges arrive in a random order.

To further evaluate the performance of Algorithm 13, we implemented and ran it for cliques

of different size. The result of this experiment is provided in Table 10.1. The numbers are

obtained by running the experiment 100 times and taking the average number of colors used. As

it can be observed from Table 10.1, for cliques of size 100 to 1000, the number of colors used

by the algorithm is in range [3.3∆, 3.9∆] and it slightly increases by the size of the graph. Our

analysis, however, shows that it should never exceed 5.44∆.
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Clique Size 100 200 300 400 500 600 700 800 900 1000

Colors Used 3.363∆ 3.563∆ 3.665∆ 3.717∆ 3.756∆ 3.787∆ 3.815∆ 3.838∆ 3.849∆ 3.863∆

Table 10.1: The number of colors used by Algorithm 13 on cliques averaged over 100 trials.

10.3.2 Adversarial Edge Arrival Setting

In this section, we turn to arbitrary (i.e., adversarial) arrivals of the edges. We assume that

the adversary is oblivious, i.e., the order of the edges is determined before the algorithm starts

to operate so that the adversary cannot abuse the random bits used by the algorithm. Having

this assumption, we give a randomized algorithm that w.h.p., outputs a valid edge coloring of the

graph using O(∆2) colors while using Õ(n) space. The algorithm is formalized as Algorithm 14.

We note that this algorithm, as Stated, requires knowledge of ∆. However we later show that we

can get rid of this assumption. Overall, we get the following result:

Theorem 103. Given a graph G with maximum degree ∆, there exists a one pass streaming

algorithm, that outputs a valid edge coloring of the G using O(∆2) colors w.h.p., using Õ(n)

memory.

Consider two vertices v and u and their string of random bits rv and ru defined in the

algorihtm. Let du,v be the smallest index i where ru,i ̸= rv,i. Upon arrival of an edge e = (u, v),

we first find i := du,v. If ∆2−i > log n, we color the edge immediately. Otherwise, we store it.

We will show that all the stored edges fit in the memory thus after reading all the stream we can

color them with a palette of at most ∆+ 1 new colors. In the algorithm, for any vertex v and any

i ∈ [log n], we define a counter cu,i. If ∆2−i > log n for any edge e, then we immediately assign

e a color which is represented by a tuple (cu,i, cv,i, i). Then, we increase counters cu,i and cv,i.

Note that we say two colors are the same if all three elements of them are equal. We first show
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Algorithm 14 Edge coloring in the adversarial order
Output A feasible coloring for a given graph G = (V,E) with maximum degree ∆

1: for any vertex v ∈ V do
2: rv ← a sequence of log(n) independent random bits
3: for any i ∈ [log n] do
4: cv,i ← 0
5: end for
6: end for
7: for any edge e = (u, v) in the stream do
8: Let i be the smallest index for which rv,i ̸= ru,i.
9: if ∆2−i > log n then

10: if ru,i = 1 then
11: Assign color (cu,i, cv,i, i) to e.
12: else
13: Assign color (cv,i, cu,i, i) to e.
14: end if
15: Increase both cv,i and cu,i by one.
16: else
17: Store edge e.
18: end if
19: end for
20: Color the stored edges using a new set of colors.

that this gives us a valid coloring, which means it does not assign the same color to two edges

adjacent to the same vertex. We use proof by contradiction. Assume that our algorithm assigns

the same color to edges e1 = (u, v1) and e2 = (u, v2) adjacent to vertex u. None of them can be

from the stored edges since we color them using a new palette. This means that du,v1 = du,v2 . Let

us denote it by i. Without loss of generality, we assume that ru,i = 1 and that in the input stream

e1 arrives before e2. Note that the first element of the colors (which are tuples) assigned to these

edges is the value of counter cu,i when they arrive. However, the algorithm increases cu,i by one

after arrival of e1 thus the colors assigned to e1 and e2 cannot be the same.

Now, it suffices to show that the total number of colors used by the algorithm is O(∆2).

Given a vertex v, and a number l ∈ [log n] let us compute an upper-bound for counter cv,i. Let

Nv be the set of neighbors of this vertex and let Nv,i be the set of neighbors like u where dv,u = i.
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We know that cv,i = |Nv,i|, thus given any vertex v and i ∈ [log(n)], we need to find a bound

for |Nv,i|. Given any edge e = (v, u) the probability of e being in set Nv,i is 2−i which means

E[|Nv,i|] = deg(v)2−i where deg(v) is the degree of vertex v in the input graph.

Using a simple application of the Chernoff bound, for any vertex v, we get:

Pr
[
|Nv,i| ≥ deg(v)2−i +O

(√
deg(v)2−i log n

)]
≤ 1

nc
.

Setting c to be a large enough constant, one can use union bound and show that w.h.p., for any

vertex v and i ∈ [log n] where deg(v)2−i ≥ log n, we have |Nv,i| ≤ O(deg(v)2−i).

Having this, we conclude that for any i ∈ [log n], where ∆2−i > log n, the number of

colors used by the algorithm whose third element is i is at most O(∆22−2i) since the first and

the second element of the color can get at most O(∆2−i) different values. Therefore, the total

number of colors used for any such i is at most O
(∑

i∈[logn] ∆
22−2i

)
= O(∆2). We will also

show that the stored edges fit in the memory and thus we can color them using O(∆) new colors.

As a result the total number of colors used is O(∆2).

To give an upper-bound for the number of stored edges we first show that the expected

number of stored edges for each vertex is O(log n). Let j := log( ∆
logn

). Recall that we store an

edge (u, v) when ∆2−du,v < log n. Thus the expected number of stored edges adjacent to a single

vertex v is at most

∑
j≤i≤logn

dv2
−i ≤

∑
j≤i≤logn

∆2−i ≤
∑

j≤i≤logn

log(n)2−i+j = O(log n).

To get the last equation we use the fact that ∆2−j ≤ log n. By a similar argument that we
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used above (using Chernoff and Union bounds), with a high probability the total number of stored

edges is O(n log n) which can be stored in the memory. Therefore the proof of this theorem is

completed.

Knwoledge of ∆. As written, our algorithm depends on the knowledge of ∆ because we

must check ∆2−i > log n. We can get rid of this condition by keeping track of the degree degHv

of a vertex in the subgraph H we have seen so far, and then computing the max degree degHmax.

This only requires an additional O(n) space. Thereafter, instead of checking if ∆2−i > log n,

we check if degHmax 2
−i > log n. Whenever degHmax increases, we iterate over all stored edges

and recompute whether or not degHmax 2
−i > log n. If so, we color the edge and remove it from

the buffer, else we keep it. It is easy to see that this will not exceed the space bounds because

at any timestep, we can assume the input graph was H in the first place. Then its max degree is

∆H = degHmax, and we can apply the same argument for the space bounds as before, but using

∆H instead of ∆. All other parts of the proof still hold. Therefore our algorithm does not require

knowledge of ∆.

Finally, we remark that if one allows more space, then one can modify Algorithm 14 to use

fewer number of colors. Though we focused only on the Õ(n) memory regime.

10.4 Open Problems

We believe the most notable future direction is to improve the number of colors used in

our streaming algorithms. Specifically, our streaming algorithm for adversarial arrivals requires

O(∆2) colors. A major open question is whether this can be improved to O(∆) while also keep-

ing the memory near-linear in n. Also for random arrival streams, we showed that Algorithm 13
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achieves a 5.44∆ coloring and showed, experimentally, that it uses at least 3.86∆ colors. A par-

ticularly interesting open question is whether there is an algorithm that uses arbitrarily close to

2∆ colors using Õ(n) space in random arrival streams.
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Chapter 11: Matching Affinity Clustering: Improved Hierarchical Clustering at

Scale with Guarantees

11.1 Introduction

Clustering is one of the most prominent methods to provide structure, in this case clusters,

to unlabeled data. It requires a single parameter k for the number of clusters. Hierarchical cluster-

ing elaborates on this structure by adding a hierarchy of clusters contained within superclusters.

This problem is unparameterized, and takes in data as a graph whose edge weights represent the

similarity or dissimilarity between data points. A hierarchical clustering algorithm outputs a tree

T , whose leaves represent the input data, internal nodes represent the merging of data and clusters

into clusters and superclusters, and root represents the cluster of all data.

Obviously it is more computationally intensive to find T as opposed to a flat clustering.

However, having access to such a structure provides two main advantages: (1) it allows a user to

observe the data at different levels of granularity, effectively querying the structure for clusterings

of size k without recomputation, and (2) it constructs a history of data relationships that can yield

additional perspectives. The latter is most readily applied to phylogenetics, where dendrograms

depict the evolutionary history of genes and species [Kraskov et al., 2003]. Hierarchical cluster-

ing in general has been used in a number of other unsupervised applications. In this paper, we
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explore four important qualities of a strong and efficient hierarchical clustering algorithm:

1. Theoretical guarantees. Previously, analysis of hierarchical clustering algorithms has

relied in experimental evaluation. While this is one indicator for success, it cannot assure

performance across a large range of datasets. Researchers combat this by considering

optimization functions to evaluate broader guarantees [Charikar et al., 2004, Lin et al.,

2006]. One function that has received significant attention recently [Charikar et al., 2019b,

Cohen-Addad et al., 2018] is a hierarchical clustering cost function proposed by [Dasgupta,

2016]. This function is simple and intuitive, however, [Charikar and Chatziafratis, 2017]

showed that it is likely not constant-factor approximable. To overcome this, we examine

its dual, revenue, proposed by [Moseley and Wang, 2017], which considers a graph with

similarity-based edge weights. For dissimilarity-based edge weights, we look to [Cohen-

Addad et al., 2018]’s value, another cost-inspired function. We are interested in constant

factor approximations for these functions.

2. Empirical performance. As theoretical guarantees are often only intuitive proxies for

broader evaluation, it is still important to evaluate the empirical performance of algorithms

on specific, real datasets. Currently, [Bateni et al., 2017]’s Affinity Clustering remains the

state-of-the-art for scalable hierarchical clustering algorithms with strong empirical results.

With Affinity Clustering as an inspirational baseline for our algorithm, we strive to preserve

and, hopefully, extend Affinity Clustering’s empirical success.

3. Balance. One downside of algorithms like Affinity Clustering is that they are prone to

creating extremely unbalanced clusters. There are a number of natural clustering problems

where balanced clusters are preferable or more accurate for the problem, for example, clus-

178



tering a population into genders. Some more specific applications include image collection

clustering, where balanced clusters can make the database more easily navigable [Dengel

et al., 2011], and wireless sensor networks, where balancing clusters of sensor nodes en-

sures no cluster head gets overloaded [Amgoth and Jana, 2014]. Here, we define balance

as the minimum ratio between cluster sizes.

4. Scalability. Most current approximations for revenue are serial and do not ensure perfor-

mance at scale. We achieve scalability through distributed computation. Clustering itself,

as well as many other big data problems, has been a topic of interest in the distributed

community in recent years [Chitnis et al., 2015,Chitnis et al., 2016,Ghaffari et al., 2019b].

In particular, hierarchical clustering has been studied by [Jin et al., 2013, Jin et al., 2015],

but only [Bateni et al., 2017] has attempted to ensure theoretical guarantees through the

introduction of a Steiner-based cost metric. However, they provide little motivation for its

use. Therefore, we are interested in evaluating distributed algorithms with respect to more

well-founded optimization functions like revenue and value.

For our distributed model, we look to Massively Parallel Communication (MPC), which

was used to design Affinity Clustering. MPC is a restrictive, theoretical abstraction of

MapReduce: a popular programming framework famous for its ease of use, fault tolerance,

and scalability [Dean and Ghemawat, 2008]. In the MPC model, individual machines carry

only a fraction of the data and execute individual computations in rounds. At the end of

each round, machines send limited messages to each other. Complexities of interest are

the number of rounds and the individual machine space. This framework has been used

in the analysis for many large-scale problems in big data, including clustering [Im et al.,
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2017, Ludwig, 2015, Ghaffari et al., 2019b]. It is a natural selection for this work.

11.1.1 Related Work

There exist algorithms that can achieve up to two of these qualities at a time. Affinity Clus-

tering, notably, exhibits good empirical performance and scalability using MPC. While [Bateni

et al., 2017] describe some minor theoretical guarantees for Affinity Clustering, we believe that

proving an algorithm’s ability to optimize for revenue and value is a stronger and more well-

founded result due to their popularity and relation to Dasgupta’s cost function. A simple random

divisive algorithm proposed by [Charikar and Chatziafratis, 2017] was shown to achieve a 1/3

expected approximation for revenue and can be efficiently implemented using MPC. However,

it is notably nondeterministic, and we show that it does not exhibit good empirical performance.

Similarly, balanced partitioning may achieve balanced clusters, but it is unclear whether it is

scalable, and it has not been shown to achieve strong theoretical guarantees.

For both revenue and value, Average Linkage achieves near-state-of-the-art 1/3 and 2/3-

approximations respectively [Moseley and Wang, 2017, Cohen-Addad et al., 2018]. [Charikar

et al., 2019a] marginally improves these factors to 1/3 + ϵ for revenue and 2/3 + ϵ for value,

through semi-definite programming (SDP, a non-distributable method). However, since value

and revenue both strove to characterize Average Linkage’s optimization goal, and this was only

marginally beat by an SDP, we do not expect to surpass Average Linkage in the restrictive dis-

tributed context.

180



11.1.2 Our contributions

In this work, we propose a new algorithm, Matching Affinity Clustering, for distributed

hierarchical clustering. Inspired by Affinity Clustering’s reliance on the minimum spanning tree

in order to greedily merge clusters [Bateni et al., 2017], Matching Affinity Clustering merges

clusters based on iterative matchings. It notably generalizes to both the edge weight similarity

and dissimilarity contexts, and achieves all four desired qualities.

In Section 11.4, we theoretically motivate Matching Affinity Clustering by proving it

achieves a good approximation for both revenue and value (the latter depending on the existence

of an MPC minimum matching algorithm), nearing the bounds achieved by Average Linkage:

Theorem 104. In the revenue context (where edge weights are data similarity), with Õ(n) ma-

chine space, Matching Affinity Clustering achieves:

• a (1/3 − ϵ)-approximation for revenue in O(log(n) log log(n) · (1/ϵ)O(1/ϵ)) rounds when

n = 2N ,

• and a (1/9− ϵ)-approximation for revenue in O(log(nW ) log log(n) · (1/ϵ)O(1/ϵ)) rounds

in general.

Theorem 105. Assume there exists an MPC algorithm that achieves an α-approximation for min-

imum weight k-sized matching in O(f(n)) rounds and Õ(n) machine space. In the value context

(where edge weights are data distances) and in O(f(n) log(n)) rounds with Õ(n) machine space,

Matching Affinity Clustering achieves:

• a 2
3
α-approximation for value when n = 2N ,
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• and a 1
3
α-approximation for value in general.

Furthermore, in Theorem 106, we prove that Matching Affinity Clustering can give no

guarantees with respect to revenue or value. The discussion and proof of this theorem can be

found in the Appendix.

Theorem 106. Affinity Clustering cannot achieve better than a O(1/n)-factor approximation for

revenue or value.

We also present an efficient and near-optimal MPC algorithm for k-sized maximum match-

ing in Theorem 112 in Section 11.3. This is used by Matching Affinity Clustering.

To evaluate the empirical performance of our algorithm, we run [Bateni et al., 2017]’s

experiments used for Affinity Clustering on small-scale datasets in Section 11.5. We find Match-

ing Affinity Clustering performs competitively with respect to state-of-the-art algorithms. On

filtered, balanced data, we find that Matching Affinity Clustering consistently outperforms other

algorithms by at least a small but clear margin. This implies Matching Affinity Clustering may

be more useful on balanced datasets than Affinity Clutsering.

To confirm the balance of our algorithm, we are able to prove that Matching Affinity

Clustering achieves perfectly balanced clusters on datasets of size 2N , and otherwise guarantee

near balance (a cluster size ratio of at most 2). See Lemma 113. This was also confirmed in our

empirical evaluation in Section 11.5.

Finally, we show in Section 11.4 that Matching Affinity Clustering is highly scalable be-

cause it was designed in the same MPC framework as Affinity Clustering. We provide similar

complexity guarantees to Affinity Clustering.

Matching Affinity Clustering is ultimately a nice, simply motivated successor to Affinity
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Clustering that achieves all four desired qualities: empirical performance, theoretical guarantees,

balance, and scalability. No other algorithm that we know of does this.

11.2 Background

In this section, we describe basic notation, hierarchical clustering cost functions, and Mas-

sively Parallel Communication (MPC).

11.2.1 Preliminaries

The standard hierarchical clustering problem takes in a set of data represented as a graph

where weights on edges measure similarity or dissimilarity between data. In this paper, edge

weights, denoted wG(u, v) for a graph G and may be similarities or differences as specified.

11.2.2 Optimization functions

Consider some hierarchical tree, T . We say i ∨ j for leaves i and j is the least common

ancestor of i and j. The subtree rooted at an interior vertex v is T [v], therefore the subtree

representing the smallest cluster that contains both i and j is T [i∨ j]. Let leaves(T [v]) be the set

of leaves in T [v], and non-leaves(T [v]) be the set of all of the leaves of T but not T [v]. Now we

can describe Dasgupta’s function.

Definition 107 ( [Dasgupta, 2016]). Dasgupta’s cost function of tree T on graph G with similarity-

based edge weights wG is a minimization function.

costG(T ) =
∑

i,j∈V (G)

wG(i, j)| leaves(T [i ∨ j])|.
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To minimize edge weight contribution, we want a small | leaves(T [i∨ j])| for heavy edges.

This ensures that heavy edges will be merged earlier in the tree. To calculate this, it is easier to

break it down into a series of merge costs for each node in T . It counts the costs that accrue due

to the merge at that node so that we can keep track of the cost throughout the construction of T .

It is defined as:

Definition 108 ( [Moseley and Wang, 2017]). The merge cost of a node in T which merges

disjoint clusters A and B is:

mergecostG(A,B) =|B|
∑

a∈A,c∈G\(A∪B)

wG(a, c)

+ |A|
∑

b∈B,c∈G\(A∪B)

wG(b, c).

This breaks down the cost of a hierarchy tree into a series of merge costs. Consider some

edge, (i, j). At each merge containing exclusively i or j, this edge contributes wG(i, j) times the

size of the other cluster. In the hierarchical tree, this counts how many vertices accrue during

merges along the paths from i and j to i ∨ j. However, this does not account for the leaves i

or j themselves, so we need to add wG(i, j) two extra times in addition to each merge. This

means we can derive the total cost from the merge costs as: costG(T ) = 2
∑

i,j∈V (G) wG(i, j) +∑
merges A,B mergecostG(A,B).

Next, we consider Moseley and Wang’s dual to Dasgupta’s function [Moseley and Wang,

2017].

Definition 109 ( [Moseley and Wang, 2017]). The revenue of tree T on graph G with similarity-
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based edge weights is a maximization function.

revG(T ) =
∑

i,j∈V (G)

wG(i, j)| non-leaves(T [i ∨ j])|.

We can, in a similar fashion to Dasgupta’s cost function, break revenue down into a series

of merge revenues.

Definition 110. [Moseley and Wang, 2017]. The merge revenue of a node in T which merges

disjoint clusters A and B is:

mergerevG(A,B) = (n− |A| − |B|)
∑

a∈A,b∈B

wG(a, b).

Note that for some i and j, wG(i, j) is contributed exactly once, when i and j merge at

i ∨ j, and n − |A| − |B| is the number of non-leaves at that step. Therefore: revG(T ) =∑
i,j∈V (G) mergerevG(i, j). In addition, note the contribution of each i, j pair, which is scaled

by wG(i, j), is the number of leaves of i ∨ j for revenue, and the number of non-leaves of i ∨ j

for cost. Therefore the contribution of each edge for revenue is n minus the contribution for cost,

scaled by wG(i, j). In other words: revG(T ) = n
∑

i,j∈V (G) wG(i, j)− costG(T ).

While cost is a popular and well-founded metric, [Charikar and Chatziafratis, 2017] found

that it is not constant factor approximable under the Small Set Expansion Hypothesis. On the

other hand, [Moseley and Wang, 2017] proved that revenue is, and Average Linkage achieves a

1/3-approximation. This makes it a more practical function to work with.

Our other function of interest is [Cohen-Addad et al., 2018]’s value function. This was

introduced as a Dasgupta-inspired optimization function where edge weights represent distances.
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It looks exactly like cost, except it is now a maximization function because it is in the distance

context.

Definition 111 ( [Cohen-Addad et al., 2018]). The value of tree T on graph G with dissimilarity-

based edge weights wG is a maximization function.

valG(T ) =
∑

i,j∈V (G)

wG(i, j)| leaves(T [i ∨ j])|.

Like revenue, value is constant factor-approximable. In fact, the best approximation (other

than an SDP) for value is Average Linkage’s 2/3-approximation [Cohen-Addad et al., 2018]. To

our knowledge, there are no distributable approximations for value.

11.2.3 Massively Parallel Communication (MPC)

Massively Parallel Communication (MPC) is a model of distributed computation used in

programmatic frameworks like MapReduce [Dean and Ghemawat, 2008], Hadoop [White, 2009],

and Spark [Zaharia et al., 2010]. MPC consists of “rounds” of computation, where parts of the

input are distributed across machines with limited memory, computation is done locally for each

machine, and then the machines send limited messages to each other. The primary complexities

of interest are machine space, which should be Õ(n), and the number of rounds. Many MPC

algorithms are extremely efficient. For instance, Affinity Clustering in some cases can have

constantly many rounds, and otherwise may use up to O(log2 n) rounds [Bateni et al., 2017].
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11.3 Finding a k-sized maximum matching

The algorithm we introduce in Section 11.4 requires the use of a (1− ϵ)-approximation for

the maximum k-sized (or less) matching, where k > n/2. For this we will use [Ghaffari et al.,

2018]’s (1 − ϵ)-approximation for maximum matching in MPC, which runs in O(log log(n) ·

(1/ϵ)1/ϵ) rounds with O(n/polylog(n)) space. Inspired by the results of [Hassin et al., 1997], we

provide a distributed reduction between matching and k-matching. To do this, we add n − 2k

vertices and edges of weight Q (which is found with a binary search) between the new and

original vertices, and run the matching algorithm. Both the proof and algorithm (Algorithm 2)

are found in the Appendix in the full paper.

Theorem 112. There exists an MPC algorithm for k-sized maximum matching with nonnegative

edge weights and max edge weight W for k > n/2 that achieves a (1 − ϵ)-approximation in

O(log(nW ) log log(n) · (1/ϵ)1/ϵ) rounds and O(n/polylog(n)) machine space.

11.4 Bounds on a matching-based hierarchical clustering algorithm

We now introduce our main algorithm, Matching Affinity Clustering. For revenue, we show

it achieves a
(
1
3
− ϵ
)
-approximation for graphs with 2N vertices, and a

(
1
9
− ϵ
)
-approximation

in general. Similarly, for value, we show it achieves a 2
3
α-approximation for graphs with 2N

vertices, and a 1
3
α-approximation in general, given an α-approximation algorithm for minimum

weighted k-sized matching in MPC.
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Figure 11.1: An example of the first iteration of Matching Affinity Clustering. We start by doing
a 6-sized matching on the current graph on the right. We then duplicate unmatched vertices and
merge to create the next cluster graph with 2n vertices on the right. In subsequent iterations,
matches are perfect. Edge weights are the Average Linkage between clusters (non-edges are
zero).

11.4.1 Matching Affinity Clustering

Matching Affinity Clustering is defined in Algorithm 15. Its predecessor, Affinity Cluster-

ing, uses the MST to select edges to merge across, which sometimes causes imbalanced clusters.

This is one reason why it cannot achieve a good approximation for revenue or value (Theorem

106). We fix this by, instead, using iterated maximum matchings (for similarity edge weights)

and minimum perfect matchings (for dissimilarity edge weights). This ensures that on n = 2N

vertices for some N , clusters will always be balanced.

The algorithm starts with one cluster per each of n vertices. Let 2N be the smallest value

such that 2N ≥ n. It finds a maximum (resp. minimum) matching of size k = 2n − 2N (line 8,

this means it matches 2n− 2N vertices with n− 2N−1 edges) and merges these vertices (line 12,

Figure 11.1). Note that if n = 2N , then k = 0, then the first step is a perfect matching. After

this step, we have 2N−1 clusters. We then transform the graph into a graph of clusters with edge

weights equal to the Average Linkage between clusters (lines 17-21). We find a maximum (resp.

minimum) perfect matching of clusters in this new graph (line 10), then iterate.
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Algorithm 15 Matching Affinity Clustering
Input A graph G with weight function w : E(G)→ Z+

1: n← |V |
2: N ← Such that 2N−1 < n ≤ 2N

3: C ← G ▷ Current clustering graph, see Definition 114
4: while n > 1 do
5: Yield C ▷ Output each level of the hierarchy
6: end while
7: if First iteration then
8: M ← KMATCH(C, 2n− 2N) ▷ Alg. 2 (Appendix)
9: else

10: M ← MATCH(C) ▷ [Ghaffari et al., 2018]
11: end if
12: V ← {v = (i, j) : (i, j) ∈M}
13: E ← V × V
14: w ← ∅
15: n← |V |
16: Allocate each Cj ∈ V to a machine
17: for Every machine mj on Cj that merged Aj, Bj ∈ V (C) do
18: for Every other Ck ∈ V that merged Ak, Bk ∈ V (C) do
19: w(Cj, Ck)← 1

4
(wC(Aj, Ak) + wC(Aj, Bk) + wC(Bj, Ak) + wC(Bj, Bk))

20: end for
21: end for
22: C ← (V,E,w)

11.4.2 Revenue approximation

Now, we evaluate the efficiency and approximation factor of Matching Affinity Clustering

with respect to revenue. In this section, edge weights represent the similarity between points.

Proofs are in the Appendix in the full version of the paper. Ultimately, we will show the following.

Theorem 104. In the revenue context (where edge weights are data similarity), with Õ(n) ma-

chine space, Matching Affinity Clustering achieves:

• a (1/3 − ϵ)-approximation for revenue in O(log(n) log log(n) · (1/ϵ)O(1/ϵ)) rounds when

n = 2N ,
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• and a (1/9− ϵ)-approximation for revenue in O(log(nW ) log log(n) · (1/ϵ)O(1/ϵ)) rounds

in general.

This will be a significant motivation for Matching Affinity Clustering’s theoretical strength.

As stated previously, one of the goals of Matching Affinity Clustering is to keep the cluster sizes

balanced at each level. However, in the first step, note that Matching Affinity Clustering creates

n − 2N−1 clusters of size 2, and the rest of the vertices form singleton clusters. Therefore, to

use this benefit of Matching Affinity Clustering, we need to ensure that cluster sizes will never

deviate too much.

Lemma 113. After the first round of merges, Matching Affinity Clustering maintains cluster bal-

ance (ie, the minimum ratio between cluster sizes) of 1/2.

After every matching, the algorithm creates a new graph with vertices representing clusters

and edges representing the average linkage between clusters. We will call this a clustering graph.

Definition 114. A clustering graph C(G,C) for graph G and clustering C = {C1, . . . , Ck} of

G is a complete graph with vertex set V = C. Its edge weights are the average linkage between

clusters. Specifically, for vertices vCi
and vCj

in C(G,C) corresponding to clusters Ci and Cj

where i ̸= j, the weight of the edge between these vertices is:

wC(G,C)(vCi
, vCj

) =
1

|Ci| · |Cj|
∑

u∈Ci,w∈Cj

wG(u,w).

The fact that the edge weights in the clustering graph are the average linkage between

clusters denotes the similarities between Matching Affinity Clustering and Average Linkage. Es-

sentially, we are trying to optimize for average linkage at each step, but instead of merging two
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clusters, we merge many pairs of clusters at once with a maximum matching.

Since Matching Affinity Clustering computes this graph, we must show how to efficiently

transform a clustering graph at the ith level, C(G,Ci) with clustering Ci, into a clustering at the

i+ 1th level, C(G,Ci+1) with clustering Ci+1.

Lemma 115. Given C(G,Ci) and Ci+1 where clusters are all composed of two subclusters in

Ci, C(G,Ci+1) can be computed in the MPC model with Õ(n) machine space and one round.

This will eventually be used for our proof of efficiency of Theorem 104. For now, we return

our attention to the approximation factor. Our approximation proof is going to observe the total

merge cost and revenue across all merges on a single level of the hierarchy. For concision, we

introduce the following notation to describe cost and revenue over a single clustering.

Definition 116. The clustering revenue based off of some superclustering C ′ of C on graph G is

the sum of the merge revenues of combining clusters in C to create clusters in C ′. It is denoted

by clustering-revG(C,C
′).

Definition 117. The clustering cost based off of some superclustering C ′ of C on graph G is

the sum of the merge costs of combining clusters in C to create clusters in C ′. It is denoted by

clustering-costG(C,C
′).

In order to prove an approximation for revenue, we want to compare each clustering rev-

enue and cost. First, we must show that Matching Affinity Clustering has a large clustering

revenue at any level.

Lemma 118. Let clusters Ci and Ci+1 be the ith and i+1th level clusterings found by Matching

Affinity Clustering, where C0 = V . Let p be the indicator that is 1 if n is not a power of 2. Then
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the clustering revenue of Matching Affinity Clustering at the ith level is at least:

clustering-revG(C
i, Ci+1)

≥ 23i−2p+1
(
2n−i−1 − 1

) ∑
(A,B)∈Mi

wC(G,Ci)(vA, vB).

Now we address clustering cost. This time, we must show an upper bound for clustering

cost at the ith level in terms of clustering revenue at the ith level. Let Mi be the matching

Matching Affinity Clustering uses to merge Ci into Ci+1. Then Mi is a (1− ϵ)-approximation of

the optimum M∗
i .

Lemma 119. Let Ci and Ci+1 be the ith and i+ 1th level clusterings found by Matching Affinity

Clustering, where the ith step uses matching Mi ≥ (1 − ϵ)M∗ for maximum matching M∗ and

C0 = V . Then the clustering cost of Matching Affinity Clustering at the ith level is at most:

clustering-costG(C
i, Ci+1)

≤ 22p+1

1− ϵ
clustering-revG(C

i, Ci+1).

Now we are ready to prove the approximation factor for Matching Affinity Clustering. We

combine Lemma 119 with properties of revenue from Section 11.2.2 to obtain an expression for

revenue in terms of (n− 2) times the sum of weights in the graph. We use this as a bound for the

optimal revenue.

Lemma 120. Matching Affinity Clustering obtains a (1/3 − ϵ)-approximation for revenue on

graphs of size 2N , and a (1/9− ϵ)-approximation on general graphs.

Finally, the round complexity is limited by the iterations and calls to the matching algo-
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rithm. The space complexity is determined by the clustering graph construction.

Lemma 121. Matching Affinity Clustering uses Õ(n) space per machine and runs in O(log(n)

log log(n) · (1/ϵ)O(1/ϵ)) rounds on graphs of size 2N , and O(log(nW ) log log(n) · (1/ϵ)O(1/ϵ))

rounds in general.

Lemmas 120 and 121 are sufficient to prove Theorem 104. Our algorithm achieves an

approximation for revenue efficiently in the MPC model. In addition, the algorithm creates a

desirably near-balanced hierarchical clustering tree.

We now prove the approximation bound tightness for Matching Affinity Clustering when

|V | = 2N . Recently, [Charikar et al., 2019a] proved by counterexample that Average Linkage

achieves at best a (1/3 + o(1))-approximation on certain graphs. We find that Matching Affinity

Clustering acts the same as Average Linkage on these graphs, and so has at best a (1/3 + o(1))-

approximation.

Theorem 122. There is a graph G on which Matching Affinity Clustering achieves no better than

a (1/3 + o(1))-approximation of the optimal revenue.

11.4.3 Value approximation

Now we consider Matching Affinity Clustering when edge weights represent distances

instead of similarities. In this context, instead of running a k-sized maximum matching and then

iterative general maximum matchings, we run a k-sized minimum matching and then iterative

general minimum perfect matchings. Therefore, this algorithm is dependent on the existence of

a k-sized minimum matching algorithm in MPC. Due to its similarity to other classical problems

with 1 + ϵ solutions in MPC [Ghaffari et al., 2018, Behnezhad et al., 2019e], we conjecture:
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Conjecture 123. There exists an MPC algorithm that achieves a (1 + ϵ)-approximation for min-

imum weight k-sized matching that uses Õ(n) machine space.

Given such an algorithm, we can show that Matching Affinity Clustering approximates

value.

Theorem 124. Assume there exists an MPC algorithm that achieves an α-approximation for min-

imum weight k-sized matching in O(f(n)) rounds and Õ(n) machine space. In the value context

(where edge weights are data distances) and in O(f(n) log(n)) rounds with Õ(n) machine space,

Matching Affinity Clustering achieves:

• a 2
3
α-approximation for value when n = 2N ,

• and a 1
3
α-approximation for value in general.

The proof for this result is quite similar to the proof for the 2/3-approximation of Average

Linkage by [Cohen-Addad et al., 2018]. Instead of focusing on single merges, however, we

observed the entire set of merges across a clustering layer in our hierarchy. Then we can make

the same argument about the value across an entire level of the hierarchy, and use the cluster

balance from Lemma 113 to achieve our result.

If Claim 123 hold, then the approximation factors become 2/3− ϵ and 1/3− ϵ respectively.

We see a similar pattern as the revenue result, where the algorithm nears the state-of-the-art

2/3-approximation achieved by Average Linkage [Cohen-Addad et al., 2018] on datasets of size

n = 2N , and still achieves a constant factor in general. Finally, we can additionally show the

former approximation is tight. See the construction and proofs in the Appendix.

Theorem 125. There is a graph G on which Matching Affinity Clustering achieves no better than

a (2/3 + o(1))-approximation of the optimal revenue.

194



11.4.4 Round comparison to Affinity Clustering

In this section, we only consider Matching Affinity Clustering in the similarity edge weight

context. The round complexities of Matching Affinity Clustering and regular Affinity Clustering

depend on graph qualities, and in certain cases one outperforms the other. On dense graphs

with n1+c edges for constant c, [Bateni et al., 2017] showed that Affinity Clustering runs in

⌈log(c/ϵ)⌉ + 1 rounds. On sparse graphs, it runs in O(log2 n) rounds, and it runs in O(log n)

rounds when given access to a distributed hash table. We saw that Matching Affinity Clustering

runs in O
(
log(n) log log(n) · (1/ϵ)O(1/ϵ)

)
rounds on graphs of size 2N , and O

(
log(nW ) log log(n) · (1/ϵ)O(1/ϵ)

)
in general for max edge weight W .

There are two situations where our algorithm outperforms Affinity Clustering. First, if

the graph is sparse and the number of vertices is 2N , then our algorithm runs in O
(
log(n)

log log(n) · (1/ϵ)O(1/ϵ)
)

rounds, and Affinity runs in O(log2(n)) rounds. Otherwise, if the graph

is sparse, Matching Affinity Clustering performs better as long as the largest edge weight is

W = o
(

exp(log2(n)/ log log(n))
n

)
. This is strictly larger than constant. If W is large, Affinity Clus-

tering is slightly more efficient. Finally, if the graph is dense, Affinity Clustering achieves an

impressive constant round complexity, and is therefore more efficient. In any case, Matching

Affinity Clustering is an efficient and highly scalable algorithm.

11.5 Experiments

We now empirically validate these results to further motivate Matching Affinity Clustering.

The algorithm is implemented as a sequence of maximum or minimum perfect matchings, and

the testing software is provided in supplementary material. The software as well as the five UCI
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datasets [Dua and Graff, 2017] ranging between 150 and 5620 data points are exactly the same

as those that were used for small-scale evaluation of Affinity Clustering [Bateni et al., 2017].

The data is represented by a vector of features. Similarity-based edge weights are the cosine

similarity between vectors, and dissimilarity-based edge weights are the L2 norm. Most data

and algorithms are deterministic and thus have consistent outcomes, but for any randomness, we

run the experiment 50 times and take the average. Just like the evaluation of Affinity Clustering,

our evaluation runs hierarchical clustering algorithms on k-clustering problems until we find a k-

clustering within the hierarchy. This was compared to the ground truth clustering for the dataset.

We evaluate performance using the Rand index, which was designed by [Rand, 1971] to

be similar to accuracy in the unsupervised context. This is an established and commonly used

metric for evaluating clustering algorithms and was used in the evaluation of Affinity Clustering.

Definition 126 ( [Rand, 1971]). Given a set V = {v1, . . . , vn} of n points and two clusterings

X = {X1, . . . , Xr} and Y = {Y1, . . . , Ys} of V , we define:

• a: the number of pairs in V that are in the same cluster in X and in the same cluster in Y .

• b: the number of pairs in V that are in different clusters in X and in different clusters in Y .

The Rand index r(X, Y ) is (a + b)/
(
n
2

)
. By having the ground truth clustering T of a

dataset, we define the Rand index score of a clustering X to be r(X,T ).

In addition, we are interested in evaluating the balance between cluster sizes in the clus-

terings, which indicates how good our algorithms are at evaluating balanced data. We use the

cluster size ratio of a clustering, which was observed in [Bateni et al., 2017]. For a clustering

X = {X1, . . . , Xr}, the size ratio is mini,j∈[r] |Xi|/|Xj|.
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(a) Rand Index on Raw Data

(b) Rand Index on Filtered Data

(c) Cluster Balance on Raw Data

(d) Cluster Balance on Filtered Data

Figure 11.2: Rand Index and cluster balance on raw and filtered (randomly pruned for balance
and n = 2N ) UCI datasets. Legend (bars, left to right): Max Matching Affinity Clustering is
blue, Min Matching Affinity Clustering is orange, Affinity Clustering is green.
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In Figure 11.2a, we see the Rand indices of Max Matching Affinity Clustering (ie, in the

similarity context), Min Matching Affinity Clustering (ie, in the distance context), and Affinity

Clustering. A Rand index is between 0 and 1, where higher scores indicate the clustering is more

similar to the ground truth. Matching Affinity Clustering performs similarly to state of the art

algorithms like Affinity Clustering on all data except the Soy-Bean dataset. A full evaluation

on other algorithms (see the Appendix) illustrates that Matching Affinity Clustering outperforms

other algorithms like Random Clustering and Average Linkage.

Figure 11.2b depicts the same information but on a slightly modified dataset. Here, we ran-

domly remove data until (1) the dataset is of size 2N , and (2) ground truth clusters are balanced.

We did this 50 times and took the average results. This is motivated by Matching Affinity Clus-

tering’s stronger theoretical guarantees on datasets of size 2N and ensured cluster balance. As

expected, Matching Affinity Clustering performs consistently better than Affinity Clustering on

filtered data, albeit by a a small margin in many cases. This shows that, experimentally, Matching

Affinity Clustering performs better on balanced datasets of size 2N .

Finally, Figures 11.2c and 11.2d depict the cluster size ratios on the raw and filtered data

respectively. In theory, at every level in the hierarchy of Matching Affinity Clustering, no cluster

can be less than half as small as another (Lemma 113). However, in our evaluation, we are

comparing a single k-clustering, which may not precisely correspond to a level in the hierarchy.

In this case, we take some clusters from the first level with fewer than k clusters and the last

level with more than k clusters. Therefore, since cluster sizes double at each level, the lower

bound for the cluster size ratio is now 1/4. This is reflected Figure 11.2c, where Matching

Affinity Clustering stays consistently above this minimum, and often exceeds it by quite a bit. On

the filtered data (Figure 11.2d), Matching Affinity Clustering maintains perfect balance in every
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instance, whereas Affinity Clustering performs much worse. Thus, Matching Affinity Clustering

has proven empirically successful on small datasets.

11.6 Conclusion

Matching Affinity Clustering is the first hierarchical clustering algorithm to simultane-

ously achieve our four desirable traits. (1) Theoretically, it guarantees state-of-the-art approx-

imations for revenue and value (given an approximation for MPC minimum perfect matching)

when n = 2N , and good approximations for revenue and value in general. Affinity Clustering

cannot approximate either function. (2) Compared to Affinity Clustering, our algorithm achieves

similar empirical success on general datasets and performs even better when datasets are balanced

and of size 2N . (3) Clusters are theoretically and empirically balanced. (4) it is scalable.

These attributes were proved through theoretical analysis and small-scale evaluation. While

we were unable to perform the same large-scale tests as [Bateni et al., 2017], our methods still

establish several advantages to the proposed approach. Matching Affinity Clustering simulta-

neously attains stronger broad theoretical guarantees, scalability through distribution, and small-

scale empirical success. Therefore, we believe that Matching Affinity Clustering holds significant

value over its predecessor as well as other state-of-the-art hierarchical clustering algorithms, par-

ticularly with its niche capability on balanced datasets.
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11.7 Appendix

11.7.1 Affinity Clustering approximation bounds

In this section and all following sections, we provide the proofs for all theorems and lemmas

introduced in this paper. It is broken down into sections based off of the sections corresponding

to sections in the paper itself.

We start by proving Theorem 106. [Bateni et al., 2017] were in part motivated by the lack

of theoretical guarantees for distributed hierarchical clustering algorithms. Thus, they introduced

Affinity Clustering, based off of [Borůvka, 1926]’s algorithm for parallel MST. In every parallel

round of Borůvka’s algorithm, each connected component (starting with disconnected vertices)

selects the lowest-weight outgoing edge and adds that to the solution, eventually creating an

MST. Affinity Clustering creates clusters of each component. Note that Affinity Clustering was

evaluated on a graph with weights representing dissimilarities between vertices, as opposed to our

representation where weights are similarities. It is easy to verify that Affinity Clustering functions

equivalently using max spanning tree in our representation. [Bateni et al., 2017] theoretically

validate their algorithm by defining a cost function based off the cost of the minimum Steiner

tree for each cluster in the hierarchy, however they do not motivate this metric. Therefore, it is

more interesting to evaluate in terms of revenue and value. We ultimately show:

Theorem 106. Affinity Clustering cannot achieve better than a O(1/n)-factor approximation for

revenue or value.

We will split this into two cases for each objective function. We start with revenue. First,

note that when Affinity Clustering merges clusters in common connected components, it creates
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one supercluster (ie, cluster of clusters) for all clusters in that component. Therefore, it may

merge many clusters at once. A brief counterexample of why such a hierarchy does not work is

when the max spanning tree is a star. Here, all vertices will be merged to a cluster in one round

for a revenue of zero, which is not approximately optimal. To evaluate this algorithm, we must

consider all possible ways Affinity Clustering might decide to resolve edges on the max spanning

tree of the input graph. We propose a graph family that shows Affinity Clustering cannot achieve a

good revenue approximation. The hierarchy we use for comparison is one that Matching Affinity

Clustering would find, not including the k-matching step. We prove the following lemma.

Lemma 128. There exists a family of graphs on which Affinity Clustering cannot achieve better

than a O(1/n)-factor approximation for revenue.

Proof. Consider a complete bipartite graph G with 2n vertices such that each partition, L and R,

has 2n−1 vertices, and all edges have weight 1. To make it a complete graph, we simply fill in the

rest of the graph with 0 weight edges. We first consider how Affinity Clustering might act on G.

To start, each vertex reaches across one if its highest weight adjacent edges, a weight one edge,

and merges with that vertex. Therefore, a vertex in L will merge with a vertex in R, and vice

versa. There are many ways this could occur. We consider one specific possibility.

Take vertices cL and cR from L and R respectively. It is possible that every vertex in L \ cL

will merge with cR and every vertex in R \ cR will merge with cL. It doesn’t matter which

vertices cR and cL try to merge with. Then G is divided into two subgraphs, both of which are

stars centered at cL and cR respectively. The spokes of the stars have unit edge weights, and all

other edges have weight 0. In the next step, the two subgraphs will merge into one cluster. Since

there are no non-leaves at that point, it contributes nothing to the total revenue. Therefore, all
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revenues are encoded in the first step.

Since the subgraphs are identical, they will contribute the same amount to the hierarchy

revenue. Recall that we are trying to prove a bound for whatever method Affinity Clustering

might choose to break down a merging of a large subgraph into a series of independent clusters.

Notice, however, due to the symmetries of the subgraphs, it does not matter in what order the

independent merges occur. Therefore, we consider an arbitrary order. Let T be the hierarchy of

Affinity Clustering with this arbitrary order. We must break it down into individual merges, and

let T0 be the portion of the hierarchy contributing to one of the stars. We only need to sum over

the merges of nonzero weight edges.

revG(T ) =2 revG(T0).

At each step of merging the star subgraph, we merge a single vertex across a unit weight

edge into the cluster containing the star center. Call this growing cluster Ci at the ith merge.

Let vi be the vertex that gets merged with C at the ith step. Then we can break this down into

2n−1 − 1 total merges.

revG(T ) =2
2n−1−1∑
i=1

merge- revG({vi}, Ci), (1)

=2
2n−1−2∑
i=0

2n − i− 1, (2)

=O(22n). (3)
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In step (1), we simply break a single star’s merging into a series of individual merges in

temporal order. Step (2) uses the fact that there are 2n total vertices and i and 1 vertices in the

groups being merged to apply the definition of merge revenue. Finally, in (3), we simply evaluate

the summation.

Now we consider how Matching Affinity Clustering will act on this graph. It simply finds

the maximum matching. In the first iteration, it must match across unit weight edges, and there-

fore is a perfect matching on the bipartite graph. After this, due to symmetry, it simply finds any

perfect matching at each iteration until all clusters are merged. Since the number of vertices is 2n,

it can always find such a perfect matching. Let T ′ be Matching Affinity Clustering’s hierarchy on

G. We will break this down into clusterings at each level, as we did in Section 11.4. Note there

are log2(2
n) = n total clusterings required in the hierarchy. And at each clustering, we have a

matching Mi that we merge across, so we can break it down into merges across matches. Let any

Ci be the usual clustering at the ith level of this algorithm.

revG(T
′) =

n∑
i=1

clustering-revG(C
i, Ci+1),

=
n∑

i=1

∑
(A,B)∈Mi

mergerevG(A,B).

Note that by symmetry, each merge on a level contributes the same amount to the revenue.

Therefore, we can simply count the number of merges and their contributions. At the ith level,

there are 2n−i total merges. The size of each cluster being merged is 2i−1, so the number of

non-leaves is 2n − 2 · 2i−1 = 2n − 2i. Finally, the number of edges being merged across at each

merge, since the graph is bipartite, is just 2i.
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revG(T
′) =

n∑
i=1

2i−1(2n − 2i) · 2i = O(23n).

Therefore, if we take the ratio of the revenues in the long run, we find the following.

revG(T
′)

revG(T )
= O(2n).

So by cleverly selecting n, we can make the clustering found by Affinity Clustering arbi-

trarily worse. If the size of the graph is N = 2n, then Affinity Clustering can only achieve at best

a 1/O(n) approximation for this graph.

We now move on to value.

Lemma 129. There exists a family of graphs on which Affinity Clustering cannot achieve better

than a O(1/n)-factor approximation for value.

Proof. Consider simply a graph G that is a matching (ie, each vertex is connected to exactly one

other vertex with edge weight 1) with 4n vertices. Again, recall that Affinity Clustering must

match along the edges of a minimum spanning tree.

Partition the vertices into sets of four, which consist of two pairs. Consider one such set: v1

is matched to v2 and u1 is matched to u2. Most of the edges here are zero. Therefore, a potential

component of the minimum spanning tree is the line v1, u1, u2, v2. If we do this for all sets, we

can then simply pick an arbitrary root for each set (ie, v1), make some arbitrary order of sets, and
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connect the roots in a line. All of these added edges are weight 0, so this is clearly a valid MST.

However, note that each edge is contained within some set of four. So if Affinity Clustering

merges across these edges first, then the largest cluster the 1-weight edges can be merged in has

four vertices. Say the tree returned by Affinity Clustering is T . Note that we have 2n edges.

val(T ) ≤ 4
2n∑
i=1

1 = 8n.

We now observe the optimal solution. Since this is bipartite, we can simply merge each side of

the partition first. Then we can merge the two partitions together at the top of the hierarchy. This

means all edges are merged into the final, 4n-sized cluster. Call this T ∗.

val(T ∗) = 4n
2n∑
i=1

1 = 8n2.

Thus val(T )/val(T ∗) = 1/O(n). Thus, Affinity Clustering cannot achieve better than a 1/O(n)

approximation on this family of graphs.

Finally, we simply combine the results of Lemma 128 and Lemma 129 to prove Theo-

rem 106.

11.7.2 Distributed maximum ksized matching

In this section, we prove our results for distributed k-sized matching and additionally pro-

vide the pseudocode.

Theorem 112. There exists an MPC algorithm for k-sized maximum matching with nonnegative

edge weights and max edge weight W for k > n/2 that achieves a (1 − ϵ)-approximation in
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Algorithm 16 Approximate k-Sized Matching

1: Let U be set of dummy vertices for |U | = n− 2k
2: Let δ be the minimum of ϵ and the value satisfying ϵ = (c+ 1)δ − δ2 for k ≤ cn
3: V ′ ← V ∪ U ▷ Constructing the transformed graph
4: E ′ ← E ∪ {(u, v) : u ∈ U, v ∈ V }
5: while Binary search of Q ∈ [nW ] for the min Q that results in |M | ≤ k and 1

k(1−δ)
w(M) ≤ Q

do
6: w′(u, v) = Q for all u ∈ U, v ∈ V
7: M ← MATCH(V ′, E ′) ▷ [Ghaffari et al., 2018]’s matching algorithm
8: M ←M \ {(u, v) : (u, v) ∈M,u ∈ U, v ∈ V } ▷ Remove edges not in G
9: end while

O(log(nW ) log log(n) · (1/ϵ)1/ϵ) rounds and O(n/polylog(n)) machine space.

Proof. Let us define Q by a binary search on values 1 through nW to find the minimum Q that

satisfies a halting condition: that the resulting M the algorithm finds satisfies |M | = k and

1
k(1−δ)

w(M) = Q (line 5) where W is the largest weight in G. First we transform the graph.

Create a vertex set U of n − 2k dummy vertices, add them to our vertex set, and connect them

to all vertices in G with edge weights Q (lines 1 to 6). Then we run [Ghaffari et al., 2018]’s

algorithm (line 7) on this new graph with error δ being the minimum of the value satisfying

ϵ = (c + 1)δ − δ2 and ϵ itself, and k ≤ cn. Find the portion of this matching in G, and use this

to check our halting condition.

We must start by showing that if MG,k is a (1 − ϵ)-approximate k-matching in G, then

when Q = 1
k(1−ϵ)

w(MG,K), our algorithm finds a k-matching with a (1− ϵ)-approximate weight.

Assume there is such a matching, and consider when our algorithm selects Q for this value.

Consider the matching the algorithm finds in the transformed graph. Assume for contradiction

that some u ∈ U is not matched to any v ∈ V , and every edge in the matching from G has weight

over Q. Because u is not connected to any vertex in U , that means it isn’t matched at all. And

since u is connected to all v ∈ V with a positive edge, for u to not have been matched, all v ∈ V
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must have been matched. Since k < n/2, a perfect matching on G has at least k edges. Thus the

weight of the algorithm’s matching in G, MA,G, is bounded below by k edges of weight greater

than Q.

w(MA,G) > kQ =
1

1− ϵ
w(MG,k).

But OPTG,k for k-sized matching in G must be at least as large as this, so then (1 −

ϵ)w(OPTG,k) > w(MG,k), which is a contradiction on the assumption of MG,k. Otherwise, if

there is some u ∈ U that is not matched to any v ∈ V where one of the edges in the matching

from G has weight Q or less, removing that match and pairing one of those vertices with u can

only improve the matching. Thus we can add a processing step afterwards to ensure all n − 2k

new vertices are matched, while not decreasing the value of the matching.

Thus our algorithm matches all n − 2k vertices in U to n − 2k vertices in V , and the

remaining 2k vertices in V create a matching for a total size of k or less. Thus the algorithm

outputs an at most k-sized matching in G, so this selection of Q will make the halting condition

true.

Let MA be the matching our algorithm finds in the transformed graph. Then the total weight

is,

w(MA) = (n− k)Q+ w(MA,G).

By the same argument as before, but without the 1 − ϵ factor, there is an OPT in the

transformed graph that matches all vertices in U to vertices in V . Thus the expression for OPT

is similar, where OPTG,k is the optimum for a k-sized matching in G.
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w(OPT) = (n− k)Q+ w(OPTG,k).

We know MA is a (1− ϵ)-approximation for OPT, so we can combine these two equations.

(n− k)Q+ w(MA,G) ≥(1− ϵ)(n− k)Q

+ (1− ϵ)w(OPTG,k).

We are interested in the portion of the solution in G, or MA,G.

w(MA,G) ≥ −ϵ(n− k)Q+ (1− ϵ)w(OPTG,k).

Recall that Q = 1
k(1−ϵ)

w(MG,k), and MG,k is a k-sized matching in G. Therefore w(MG,k) ≤

(OPTG,k). We can apply this to our inequality and simplify.

w(MA,G) ≥− ϵ(n− k)
1

k(1− ϵ)
w(OPTG,k)

+ (1− ϵ)w(OPTG,k),

=(1− ϵ(1 + (n/k − 1)(1− ϵ)))w(OPTG,k).

Since k = O(n), then n/k is bounded above by some constant. Then the approximation

factor is 1 − ϵ(1 + c(1 − ϵ)) = 1 − (c + 1)ϵ + ϵ2. So for any approximation factor ϵ, we can

select some δ to run [Ghaffari et al., 2018]’s algorithm such that our algorithm gives a (1 − δ)-
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approximation.

The algorithm searches for the minimum Q that satisfies this, so all that’s left to prove is that

a selection of Q < 1
k(1−δ)

w(MG,k) yields a k-sized matching MA,G where Q = 1
k(1−δ)

w(MA,G)

still is a (1− ϵ)-approximation. If this is true, it must have matched all n− 2k vertices in U with

vertices in V and selected k edges from G. The value of this, where we sub in our value for Q,

is:

w(MA) = (n− 2k)Q+ w(MA,G),

= (n− 2k)w(MA,G) + w(MA,G),

= (n− 2k + 1)w(MA,G).

Therefore, the approximation factor on the transformed graph is equivalent to the approx-

imation factor on G. Since we ran [Ghaffari et al., 2018]’s algorithm on the transformed graph

with error δ where δ ≤ ϵ, this yields a matching within error of OPTG,k.

Therefore, our algorithm returns the desired approximation. This algorithm requires O(log(nW ))

iterations for the binary search on Q. In each iteration, the only significant computation in

both round and space complexity is the use of the [Ghaffari et al., 2018] algorithm that uses

O(log log(n) · (1/ϵ)1/ϵ) rounds and O(n/polylog(n)) machine space. Thus our algorithm runs in

O(log(nW ) log log(n) · (1/ϵ)1/ϵ) rounds and O(n/polylog(n)).
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11.7.3 Revenue approximation

Lemma 113. After the first round of merges, Matching Affinity Clustering maintains cluster bal-

ance (ie, the minimum ratio between cluster sizes) of 1/2.

Proof. After the first round of merges, note that any duplicated vertex must be merged with its

duplicate. This is because the edge weight between these vertices is essentially infinite (for the

purposes of this paper, we will say it is arbitrarily large). Thus no duplicates will be matched with

another duplicate, so each of the 2-sized clusters has at least one real vertex. In any subsequent

merges, this property will hold. Thus it holds for all clusters beyond the initial singleton clusters.

Lemma 115. Given C(G,Ci) and Ci+1 where clusters are all composed of two subclusters in

Ci, C(G,Ci+1) can be computed in the MPC model with Õ(n) machine space and one round.

Proof. We start by constructing the vertex set, V i+1, which corresponds to the clusters at the new

i + 1th level. So for every Ci+1
j ∈ Ci+1, create a vertex vCi+1

j
and put it in vertex set V i+1. It

must be a complete graph, so we can add edges between all pairs of vertices.

Consider two vertices vCi+1
j

and vCi+1
k

. Since we merge sets of two clusters at each round,

these must have come from two clusters in Ci each. Say they merged clusters from vertices

u1, u2 and v1, v2 respectively. Note that these vertices are from the previous clustering graph,

C(G,Ci). Then the edges (u1, v1), (u1, v2), (u2, v1), (u2, v2) have weights that are the average

distances between corresponding i-level clusters (because they were from the previous clustering

graph, C(G,Ci)). Since the clusters in Ci all have the same size, we can calculate the weight as
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follows.

wC(G,Ci+1)(vCi+1j, vCi+1
k

) =
1

4
(wC(G,Ci)(u1, v1)

+ wC(G,Ci)(u1, v2)

+ wC(G,Ci)(u2, v1)

+ wC(G,Ci)(u2, v2)).

This is true because the weights in C(G,Ci) are already the average weights in the ith

level clusters, so they are normalized for the clusters size, which is 1/4th of the cluster size at

the next level. So when we sum together the four edge weights, we account for all the edges

that contribute to the edge weight in the next level, then we only need to divide by 4 to find the

average.

Matching Affinity Clustering can utilize one machine per (i + 1)-level cluster . Each ma-

chine needs to keep track of the distance between its subclusters and all other subclusters at level

i. It can then do this calculation to capture edge weights in one round with O(n) space.

Lemma 118. Let clusters Ci and Ci+1 be the ith and i+1th level clusterings found by Matching

Affinity Clustering, where C0 = V . Let p be the indicator that is 1 if n is not a power of 2. Then

the clustering revenue of Matching Affinity Clustering at the ith level is at least:

clustering-revG(C
i, Ci+1)

≥ 23i−2p+1
(
2n−i−1 − 1

) ∑
(A,B)∈Mi

wC(G,Ci)(vA, vB).

Proof. First, we want to break down the clustering revenue into the sum of its merge revenues.
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Since each match in our matching Mi defines a cluster in the next level of the hierarchy, we can

view each merge as a match in Mi. Then we apply the definition of merge revenue.

clustering-revG(C
i, Ci+1)

=
∑

(A,B)∈Mi

mergerevG(A,B),

=
∑

(A,B)∈Mi

(2n − |A| − |B|)
∑

a∈A,b∈B

wG(a, b).

Because we start with a power of two vertices after padding, each step can find a perfect matching,

thus yielding a power of two many clusters of equal size at each level. Then since cluster size

doubles each round, the cluster size at the ith iteration is 2i. Even though some of the vertices

may not contribute to the revenue, this is an upper bound on the size. So n − |A| − |B| in this

formula is at least 2n − 2i+1. This is the work done in (1) below.

clustering-revG(C
i, Ci+1)

≥ (2n − 2i+1)
∑

(A,B)∈Mi

∑
a∈A,b∈B

wG(a, b), (1)

= (2n − 2i+1)
∑

(A,B)∈Mi

|A||B|wC(G,Ci)(vA, vB), (2)

= 22i−2p(2n − 2i+1)
∑

(A,B)∈Mi

wC(G,Ci)(vA, vB), (3)

= 23i−2p+1(2n−i−1 − 1)
∑

(A,B)∈Mi

wC(G,Ci)(vA, vB). (4)

In (2), we simply substitute in place of the sum of the edge weights between A and B in G. By

definition, the edge weight between vA and vB in the clustering graph is the average of the same
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edge edge weights in G. Thus if we just scale that by |A||B|, we can substitute it in for the sum

of those edge weights. In (3), we simply pull out |A||B|. These contain 2i total vertices, and by

Lemma 113, they contain at least 2i−1 that contribute to the revenue for a total factor of 22i−2.

If there were 2n vertices to start, then all clusters contain only real vertices, so the factor is 22i.

With the indicator, this is 22i−2p. We then simplify in (4).

Lemma 119. Let Ci and Ci+1 be the ith and i+ 1th level clusterings found by Matching Affinity

Clustering, where the ith step uses matching Mi ≥ (1 − ϵ)M∗ for maximum matching M∗ and

C0 = V . Then the clustering cost of Matching Affinity Clustering at the ith level is at most:

clustering-costG(C
i, Ci+1)

≤ 22p+1

1− ϵ
clustering-revG(C

i, Ci+1).

Proof of Lemma 119. As in Lemma 118, we want to break apart the clustering cost at the ith

level into a series of merge costs. Again, we know the merge costs can be defined through the
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matching Mi.

clustering-costG(C
i, Ci+1)

=
∑

(A,B)∈Mi

mergecostG(A,B), (1)

=
∑

(A,B)∈Mi

|A| ∑
b∈B,c/∈A∪B

wG(b, c)

+|B|
∑

a∈A,c/∈A∪B

wG(a, c)

 , (2)

≤ 2i
∑

(A,B)∈Mi

 ∑
b∈B,c/∈A∪B

wG(b, c)

+
∑

a∈A,c/∈A∪B

wG(a, c)

 . (3)

At this step, we broke the clustering cost into merge costs of the matching (1), applied the defini-

tion of merge cost (2), and pulled out |A| = |B| ≤ 2i (3). Consider the inner clusters. Instead of

selecting c /∈ A ∪ B, we can consider c being in any other cluster from Ci. Let Ci
1, . . . , C

i
k ∈ Ci

be all clusters other than A or B (i.e., Ci
j ̸= A,B). Then we can define c as an element in any

214



cluster Ci
j for j ∈ [k]. After, we simply rearrange the indices of summation.

clustering-costG(C
i, Ci+1)

≤ 2i
∑

(A,B)∈Mi

 ∑
b∈B,j∈[k]

∑
c∈Ci

j

wG(b, c)

+
∑

a∈A,j∈[k]

∑
c∈Ci

j

wG(a, c)

 ,

= 2i
∑

(A,B)∈Mi

∑
j∈[k]

∑
b∈B,c∈Ci

j

wG(b, c)

+
∑
j∈[k]

∑
a∈A,c∈Ci

j

wG(a, c)

 .

Recall that the edge weights in C(G,Ci) are the average edge weights between clusters in Ci

on graph G. Again, to turn this into just the summation of the edge weights, we must scale by

|B||Ci
j| and |A||Ci

j|.

clustering-costG(C
i, Ci+1)

≤ 2i
∑

(A,B)∈Mi

∑
j∈[k]

|B||Ci
j|wC(G,Ci)(vB, vCj

)

+
∑
j∈[k]

|A||Ci
j|wC(G,Ci)(vA, vCi

j
)

 ,

= 23i
∑

(A,B)∈Mi

∑
j∈[k]

wC(G,Ci)(vB, vCj
)

+
∑
j∈[k]

wC(G,Ci)(vA, vCj
)

 .

For each iteration of the outer summation, we are taking all the edges with one endpoint as
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A and all edges with one as B (besides the edge from A to B itself) and adding their weights.

Since the only edge in Mi with an endpoint at A or B is the edge from A to B, the summation

covers all edges with one endpoint as either A or B that are not in Mi. Consider an edge from

some C to C ′ that isn’t in Mi. In every iteration besides possibly the first, Mi matches everything,

so we will consider C and C ′ in separate iterations of the sum. In both of these iterations, we add

the weight wC(G,Ci)(vC , vC′). Thus, each edge in C(G,Ci) outside of Mi is accounted for twice,

and no edge in Mi is accounted for.

Consider a multigraph H with vertex set V (C(G,Ci)) and an edge set that contains all

edges except those in Mi twice over. Note since C(G,Ci) was a complete graph, H must be a

2(|V (C(G,Ci)| − 2)-regular graph. Thus, we could find a perfect matching in H with a maximal

matching algorithm, remove those edges to decrease all degrees by 1, and repeat on the new reg-

ular graph. Do this until all vertices have degree 0. Since each degree gets decremented by 1 each

iteration, there must be a total of 2(|V (C(G,Ci)| − 2) matchings N1, N2, . . . , N2(|V (C(G,Ci)|−2).

Thus the clustering cost can be alternatively thought of as the sum of the weights of these alternate

matchings in clustering graph C(G,Ci).

clustering-costG(C
i, Ci+1)

≤ 23i
∑

j∈[2(|V (C(G,Ci)|−2)]

wC(G,Ci)(Nj), (4)

≤ 23i
∑

j∈[2(|V (C(G,Ci)|−2)]

wC(G,Ci)(M
∗
i ), (5)

≤ 23i+1(|V (C(G,Ci)| − 2)wC(G,Ci)(M
∗
i ). (6)
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In (4), we viewed the summations as the sum of weights of the alternative matchings described

earlier. Step (5) utilizes the fact that M∗
i is a maximum matching, so the weight of any Nj is

bounded above by the weight of M∗
i . Finally, in (6), we note that the summation does not depend

on j, and so we remove the summation.

Since Mi is an approximation of the maximum matching on C(G,Ci), we know wC(G,Ci)(M
∗
i ) ≤

wC(G,Ci)(Mi)/(1 − ϵ). We can substitute this in and then rewrite it as the summation of edge

weights in Mi.

clustering-costG(C
i, Ci+1)

≤ 23i+1(|V (C(G,Ci)| − 2)
1

1− ϵ
wC(G,Ci)(Mi),

≤ 23i+1(|V (C(G,Ci)| − 2)

· 1

1− ϵ

∑
(A,B)∈Mi

wC(G,Ci)(vA, vB).

The total number of vertices in C(G,Ci) (ie, the total number of clusters at the ith level) is

just the total number of vertices over the cluster sizes: 2n/2i. Plugging that in gives the desired
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result.

clustering-costG(C
i, Ci+1)

≤ 23i+1

(
2n

2i
− 2

)
1

1− ϵ

∑
(A,B)∈Mi

wC(G,Ci)(vA, vB), (7)

≤ 23i+2
(
2n−i−1 − 1

) 1

1− ϵ

∑
(A,B)∈Mi

wC(G,Ci)(vA, vB),

≤ 22p+1

1− ϵ
clustering-revG(C

i, Ci+1). (8)

The first steps consist of plugging in the cluster sizes and performing algebraic simplifications.

Finally, Step (8) refers to Lemma 118 for the clustering revenue. Recall this is an upper bound

for the clustering cost in G, and so the proof is complete.

So far, we have covered most of the lemma’s claim. Now we just need to account for the

first step, when we utilize the k-sized matching. Note the argument is dependent on Mi being a

perfect matching, where M0 may only be a maximum matching on 2N − 2n vertices. The proof

structure here will function similarly. In this case, we still construct a multigraph H as described

on the subset of G containing vertices matching in M0, then we add double copies of all the

edges between vertices in the matching that aren’t matched to each other for a max degree of

4N − 2n+1 − 4 and thus create 4N − 2n+1 − 4 matchings on the 2N − 2n vertices to cover these

edges. However, the cost also accounts for edges from the matched vertices to the unmatched

vertices. We can construct a bipartite graph with all these edges once. Then all vertices on one

side of the bipartition have degree 2n−N , and the vertices on the other side have degree 2N−2n.

So we can construct 2n − N matchings with 2N − 2n edges in this graph that cover all edges.

Alternatively, this can be viewed as 2n+1 − 2N matchings on 2N − 2n vertices. In this case,
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we have a bunch of sized matchings on 2N − 2n vertices, N1, N2, . . . , N2N−4. The rest of the

arguments hold. Since i = 0, step (7) becomes the following.

clustering-costG(C
0, C1)

≤ 2 (N − 2) · 1

1− ϵ

∑
(A,B)∈Mi

wC(G,Ci)(vA, vB), (9)

≤ 2(2n − 2)
1

1− ϵ

∑
(A,B)∈Mi

wC(G,Ci)(vA, vB), (10)

≤ 4(2n−1 − 1)
1

1− ϵ

∑
(A,B)∈Mi

wC(G,Ci)(vA, vB),

≤ 23

1− ϵ
clustering-revG(C

0, C1). (12)

This mirrors the computation in steps (7) through (8). In (9), we substitute i in for (7), and

also replace the number of matchings with the new number of matchings (though recall at this

point, we have already halved that value). Step (10) applies the fact that N < 2n. Finally, in (11),

we substitute in the clustering revenue. In the analysis for revenue, note that there do not exist

unreal vertices yet, so we can consider p = 0 when we refer to the Lemma 118. However, for this

Lemma proof, this is the case where we do eventually duplicate vertices, so we analyze it along

with other clusterings where p = 1, so it only needs to meet the condition when p = 1.

clustering-costG(C
0, C1)

≤ 22p+1

1− ϵ
clustering-revG(C

0, C1). (13)
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Thus concludes our proof.

Lemma 120. Matching Affinity Clustering obtains a (1/3 − ϵ)-approximation for revenue on

graphs of size 2N , and a (1/9− ϵ)-approximation on general graphs.

Proof. We prove this by constructing Matching Affinity Clustering. Our algorithm starts by

allocating one machine to each cluster. Run Algorithm 16 for either the desired k- or n/2-

matching, which finds our 1 − ϵ approximate matching, to create clusters of two vertices each,

then apply the algorithm from Lemma 115 to construct the next clustering graph based off this

clustering. Repeat this process until we have a single cluster.

From Lemma 119, we see that at each round, the cumulative cost is bounded above by 2
1−ϵ

times the revenue. Then we utilize the definition of the cost of an entire hierarchy tree T to get
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bounds.

costG(T ) = 2
∑

u,v∈G,u ̸=v

wG(u, v)

+
∑

merges of A,B

mergecostG(A,B), (1)

= 2
∑

u,v∈G,u ̸=v

wG(u, v)

+
∑

i∈[logn]

clustering-costG(C
i, Ci+1), (2)

≤ 2
∑

u,v∈G,u ̸=v

wG(u, v)

+
23p+1

1− ϵ

∑
i∈[logn]

clustering-revG(C
i, Ci+1), (3)

≤ 2
∑

u,v∈G,u ̸=v

wG(u, v) +
22p+1

1− ϵ
revG(T ). (4)

Step (1) simply break down the total cost into merge costs, and then step (2) consolidates merge

costs in each level of the hierarchy into clustering costs. Note that every iteration halves the

number of clusters, so there must be log n iterations. In (3), we apply the result from Lemma

119, and finally in (4), we add up all the clustering revenues into the total hierarchy revenue. We

can then examine hierarchy revenue.

revG(T ) = n
∑

u,v∈G,u ̸=v

wG(u, v)− costG(T ),

≥ n
∑

u,v∈G,u ̸=v

wG(u, v)− 2
∑

u,v∈G,u ̸=v

wG(u, v)

− 22p+1

1− ϵ
revG(T ).
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The above simply utilizes the duality of revenue and cost, and then substitution from step (4).

Next we only require algebraic manipulation to isolate revG(T ).

22p+1 + 1− ϵ

1− ϵ
revG(T ) ≥ (n− 2)

∑
u,v∈G,u ̸=v

wG(u, v).

revG(T ) ≥
1− ϵ

22p+1 + 1− ϵ
(n− 2)

∑
u,v∈G,u ̸=v

wG(u, v).

Then we know the optimal solution T ∗ can’t have more than n− 2 non-leaves, which means that

each edge will only contribute at most n − 2 times its weight to the revenue. Thus, revG(T ∗) ≤

(n − 2)
∑

u,v∈G,u̸=v wG(u, v). In addition, since 1−ϵ
22p+1+1−ϵ

can be arbitrarily close to 1
22p+1+1

, we

rewrite it as 1
22p+1+1

− ϵ. Apply all these to our most recent inequality to get the desired results.

revG(T ) ≥
(

1

22p+1 + 1
− ϵ

)
revG(T

∗).

For an input of size 2n, we have p = 0 and get a 1
3
− ϵ approximation for revenue. For all

other inputs, p = 1, and we get a 1
9
− ϵ approximation. We note that these applications of cost

and revenue properties are heavily inspired by Moseley and Wang’s proof for the approximation

of Average Linkage [Moseley and Wang, 2017].

Lemma 121. Matching Affinity Clustering uses Õ(n) space per machine and runs in O(log(n)

log log(n) · (1/ϵ)O(1/ϵ)) rounds on graphs of size 2N , and O(log(nW ) log log(n) · (1/ϵ)O(1/ϵ))

rounds in general.

Proof. First, we use Algorithm 16 to obtain a k-sized matching, which runs in O(log(nW ) log log(n)·

(1/ϵ)1/ϵ) rounds and O(n/polylog(n)) machine space. After this, there are log n iterations, and

at each iteration, we use [Ghaffari et al., 2018]’s matching algorithm Algorithm, which finds our
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(1 − ϵ)-approximate matching in O(log log n · (1/ϵ)O(1)) rounds and O(n/polylog(n)) machine

space [Ghaffari et al., 2018]. We also transform the graph as in Lemma 115, which adds no round

complexity, but requires O(n) space. Thus in total, this requires O(log(nW ) log(n) log log(n) ·

(1/ϵ)O(1/ϵ)) rounds and O(n) space per machine. However, note that when p = 0, we can just run

[Ghaffari et al., 2018]’s algorithm directly, and achieve a slightly better bound of O(log(n) log log(n)·

(1/ϵ)O(1/ϵ)) rounds and O(n) space per machine.

Theorem 122. There is a graph G on which Matching Affinity Clustering achieves no better than

a (1/3 + o(1))-approximation of the optimal revenue.

Proof of Theorem 122. The graph G consists of N vertices. We divide the vertices into N1/3

“columns” to make large cliques. In every column, make a clique with edge weights of 1. In

addition, enumerate all vertices in each column. For some index i, we take all ith vertices in each

column and make a “row” (so there are N2/3 rows that are essentially orthogonal to the columns).

Rows become cliques as well, with edge weights of 1 + ϵ. All non-edges are assumed to have

weight zero.

This is the graph described by [Charikar et al., 2019a] to show Average Linkage only

achieves a 1/3-approximation, at best, for revenue. They are able to achieve this because Average

Linkage will greedily select all the 1 + ϵ edges to merge across first. We can then leverage these

results by showing that Matching Affinity Clustering, too, merges across these edges first.

In our formulation, we assume N = 23n for some n. Then there are 2n columns and 22n

rows with 22n and 2n vertices respectively. Additionally, our algorithm skips the k-matching steps

(ie, all vertices are real). In the first round, we can clearly find a maximum perfect matching

by simply matching within the rows, and we can assure this for our approximate matching by
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selecting a small enough error. In the next clustering graph, since edge weights are the average

linkage between nodes, note that the highest edge weights are still going to be 1 + ϵ within

the rows. Therefore, this matching will continue occurring until it can no longer find perfect

matchings within the rows. Since the rows are cliques of 2n vertices, this will happen until all

each row is merged into a single cluster. This is then sufficient to refer to the results of [Charikar

et al., 2019a] to get a 1/3 bound.

11.7.4 Value approximation

Our goal in this section is to prove Theorem 124.

Theorem 124. Assume there exists an MPC algorithm that achieves an α-approximation for min-

imum weight k-sized matching in O(f(n)) rounds and Õ(n) machine space. In the value context

(where edge weights are data distances) and in O(f(n) log(n)) rounds with Õ(n) machine space,

Matching Affinity Clustering achieves:

• a 2
3
α-approximation for value when n = 2N ,

• and a 1
3
α-approximation for value in general.

Since this is effectively the same algorithm as the revenue context, we can the analysis of

Lemma 121 and simplify it to show the complexity of the algorithm. All that is left to do is

prove the approximation. Our proof will be quite similar to that of [Cohen-Addad et al., 2018],

however we will require some clever manipulation to handle many merges at a time. Fortunately,

the fact that we merge based off a minimum matching with respect to Average Linkage makes

the analysis still follow the [Cohen-Addad et al., 2018] proof quite well. We start with a lemma.
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Lemma 139. Let T be the tree returned by Matching Affinity Clustering in the distance context.

Consider any clustering C at some iteration of Matching Affinity Clustering above the first level.

Let Ci be the ith cluster which merged clusters Ai and Bi in the previous iteration. Say there

are k clusters in C. Then given an α-approximation MPC algorithm for minimum weight k-sized

matching:

∑k
i=1w(Ai, Bi)∑k
i=1 |Ai| · |Bi|

≥ 2α

∑k
i=1(w(Ai) + w(Bi))∑k

i=1(|Ai|(|Ai| − 1) + |Bi|(|Bi| − 1))

Proof. Let a = 1
2

∑k
i=1 |Ai|(|Ai| − 1) and b = 1

2

∑k
i=1 |Bi|(|Bi| − 1). Let A = ∪k

i=1Ai and

B = ∪ki=1Bi. Using these, one can see that the average edge weight of all edges contained in any

Ai or Bi cluster is: ∑k
i=1(w(Ai) + w(Bi))

a+ b

These edges were all merged across at some point lower in the hierarchy. This means that the

edge set between Ai’s and Bi’s are the union of all edges merged across in lower clusterings in

the hierarchy. Therefore, by averaging, we can say there exists a clustering C ′ (with |C ′| = k′)

below C in the hierarchy, with clusters and splits similarly defined as C ′, A′
i and B′

i respectively,

such that: ∑k′

i=1w(A
′
i, B

′
i)∑k

i=1 |A′
i| · |B′

i|
≥
∑k

i=1(w(Ai) + w(Bi))

a+ b

Now we would like to build a similar expression for the edges between all Ai and Bi. The average
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of these edge weights is the following expression:

∑k
i=1 w(Ai, Bi)∑k
i=1 |Ai| · |Bi|

Consider the iteration that formed C ′. Notice because C is a higher level of the hierarchy, every

cluster A′
j and B′

j must be a subset of some Ai or Bi. Fix some i, and consider all the edges that

cross from some A′
j to some B′

k such that A′
j, B

′
k ⊂ Ai ∪ Bi = Ci. The union of all these edges

precisely makes up the set of edges between Ai and Bi. Do this for every i, and we can see this

makes up all the edges of interest. We can decompose this into a set of matchings across the entire

dataset. By another averaging argument, we can say there exists another alternate clustering C ′′

(as opposed to C ′) which only matches clusters A′
j and B′

k that are descendants of Ai and Bi

respectively such that: ∑k
i=1w(A

′′
i , B

′′
i )∑k

i=1 |A′′
i | · |B′′

i |
≤
∑k

i=1w(Ai, Bi)∑k
i=1 |Ai| · |Bi|

Note that this was a valid matching, and therefore a valid clustering, at the same time that C ′

was selected. Also, note that either both C and C ′ were perfect matchings, or they were both

restricted to the same k size in the first step of the algorithm. Thus, since C ′ was an α-approximate

minimum (k-sized) matching in the graph where edges are the average edge weights between

clusters, we know: ∑k
i=1 w(A

′
i, B

′
i)∑k

i=1 |A′
i| · |B′

i|
≤ α

∑k
i=1 w(A

′′
i , B

′′
i )∑k

i=1 |A′′
i | · |B′′

i |

Putting this all together, we find the desired result:

∑k
i=1(w(Ai) + w(Bi))

a+ b
≤ α

∑k
i=1 w(Ai, Bi)∑k
i=1 |Ai| · |Bi|
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And we can use this to prove our theorem, similar to the results of [Cohen-Addad et al.,

2018].

Proof of Theorem 124. We prove this by induction on the level of the tree. At some level, with

clustering C, consider truncating the entire tree T at that level, and thus only consider the subtrees

below C, ie with roots in C. Call this tree TC . We will consider the aggregate value accumulated

by this level. Trivially, the base case holds. Then we can split the value of C into the value

accumulated at the most recent clustering step and value one step below C. We use induction on

the latter value. Since the approximation ratio is 1
3

for p = 1 and 1
2

for p = 0, we can write the

ratio as
(
1
3

)p (1
2

)1−p.

val(TC)

≥
k∑

i=1

(|Ai|+ |Bi|)w(Ai, Bi)

+

(
1

3

)p(
2

3

)1−p k∑
i=1

(|Ai|w(Ai) + |Bi|w(Bi))

Now we would like to apply Lemma 1 to modify the first term in a similar manner to Cohen-

Addad et al. Specifically, we want to extract terms of the form |Ai|w(Bi) and |Bi|w(Ai). We

will find this is harder to do with our formulation of Lemma 1, and therefore we have to rely on

Lemma x that says that the cluster balance is at least 1
2
. Let m = min

(
{|Ai|}ki=1 ∪ {|Bi|}ki=1}

)
be the minimum cluster size. This and our cluster balance ratio implies that m ≤ |Ai|, |Bi| ≤ 2m

for all i. Note that when N = 2n, we have perfect cluster balance, so |Ai| = |Bi| = m. Thus for

our indicator p, m ≤ |Ai|, |Bi| ≤ 2pm. Now we can manipulate our Lemma 1 result. Start by
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isolating the numerator on the left.

k∑
i=1

w(Ai, Bi)

≥ 2α

∑k
i=1 |Ai| · |Bi|

∑k
i=1(w(Ai) + w(Bi))∑k

i=1(|Ai|(|Ai| − 1) + |Bi|(|Bi| − 1))

Note now that
∑k

i=1 |Ai| · |Bi| ≥ m2 and |Ai|(|Ai| − 1) ≤ 22pm2 and similarly for Bi.

k∑
i=1

w(Ai, Bi) ≥2α
km2

∑k
i=1(w(Ai) + w(Bi))

22p+1km2

=α

∑k
i=1(w(Ai) + w(Bi))

22p

To get the correct term on the left, we see that
∑k

i=1(|Ai|+|Bi|)w(Ai, Bi) ≥ 2m
∑k

i=1w(Ai, Bi).

So we can multiply this result by 2m, and then plug it into a portion of the first term. To preserve

the ratio for both p = 1 and p = 0, we multiply it by
(
2
3

)p (1
2

)1−p.

val(TC) ≥
(
1− 2

3

)1−p(
1− 1

3

)p k∑
i=1

(|Ai|+ |Bi|)w(Ai, Bi)

+
2m

22p
·
(
2

3

)p(
1

3

)1−p

α

k∑
i=1

(w(Ai) + w(Bi))

+

(
1

3

)p(
2

3

)1−p

α

k∑
i=1

(|Ai|w(Ai) + |Bi|w(Bi))
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Next, note m ≥ |Ai|, |Bi|. This can be used on the second term.

val(TC) ≥
(
1

3

)p(
2

3

)1−p k∑
i=1

(|Ai|+ |Bi|)w(Ai, Bi)

+ ·
(
1

3

)p(
2

3

)1−p

α

k∑
i=1

(w(Ai) + w(Bi))

+

(
1

3

)p(
1

2

)1−p

α

k∑
i=1

(|Ai|w(Ai) + |Bi|w(Bi))

≥
(
1

3

)p(
2

3

)1−p

α
k∑

i=1

|Ci|w(Ci)

Therefore, this captures 2
3
α of the weight of each subtree at height C when n = 2N , and 1

3
α more

generally.

Finally, we can show Theorem 125, which shows the tightness of the stronger approxima-

tion factor.

Theorem 125. There is a graph G on which Matching Affinity Clustering achieves no better than

a (2/3 + o(1))-approximation of the optimal revenue.

Proof. Consider G which is almost a bipartite graph between partitions A and B (with |A| =

|B|), except with a single perfect matching removed. For instance, if we enumerate A =

{a1, . . . , an} and B = {b1, . . . , bn}, we have w(ai, bj) = 1 for all i ̸= j and w(ai, bi) = 0.

And since it’s bipartite, w(ai, aj) = w(bi, bj) = 0 for all i, j.

Consider the removed perfect matching to get clusters {a1, b1}, . . . , {an, bn}. Matching Affin-

ity Clustering could start by executing these merges, as this is a zero weight (and thus minimum)

matching.

229



Now consider G′, the remaining graph after these merges with a vertex for each cluster and

edges representing the total edge weight between clusters. This is a complete graph of size n

with 2-weight edges. By [Dasgupta, 2016]’s results, we know the value (with is calculated the

same as cost) of any hierarchy on G′ is 2
3
(n3−n). However, this ignores the fact that clusters are

size 2, so the contribution of this part to the hierarchy on G yields a revenue of 4
3
(n3 − n).

Now let’s consider the obvious good hierarchy, where we simply merge all of A, then all of

B, then merge A and B together. Thus all n(n − 2) edges will be merged into a cluster of size

2n for a total value of 2(n3 − 2n2).

Asymptotically, then, Matching Affinity Clustering only achieves a ratio of 2/3 on this graph.

11.7.5 Experiments

Here we include more complete visualizations of the performance of all tested algorithms.

Like in the main body of text, we find the rand index and cluster size ratio on balanced and

filtered data. These tests were run in the same way as the tests in the main body, we just present

results on other common algorithms for completeness. The results are presented in Figures 11.3b

through 11.3e.

Most of these results are as expected and simply reproduce the results from [Bateni et al.,

2017]. However, we add one more algorithm: random clustering. Again, this is the clustering that

randomly recursively partitions the data into a hierarchy. In our experiments, random clustering
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(a) Legend

(b) Rand Index on Raw Data

(c) Rand Index on Filtered Data

(d) Cluster Balance on Raw Data

(e) Cluster Balance on Filtered Data

Figure 11.3: Rand Index scores and cluster balance on raw and filtered (randomly pruned so
ground truth is balanced, n = 2N ) UCI datasets.

231



had surprisingly good cluster balance ratios (see Figure 11.3d). In fact, on raw data, it on average

had more balanced clusters than Matching Affinity Clustering on three of the datasets.

There are three main observations about why Matching Affinity Clustering is still clearly

more empirically successful than random clustering. First, notice that on filtered data in Fig-

ure 11.3e, Matching Affinity Clustering has more balanced clusters than Random clustering by a

very wide margin. Second, it is clear in Figures 11.3b and 11.3c that Matching Affinity Clustering

consistently and significantly outperforms random clustering. Third, random clustering is nonde-

terministic, whereas Matching Affinity Clustering is deterministic. Therefore, Matching Affinity

Clustering’s theoretical strengths and empirical performances are much stronger assurances than

that of random clustering. Therefore, while an argument can be made that random clustering

seems to empirically balance clusters well, Matching Affinity Clustering still does better in a

number of respects, and thus is a more useful algorithm.
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Chapter 12: Massively Parallel Tree Embeddings for High Dimensional Spaces

12.1 Introduction

Massive data-driven computation benefits greatly from embedding finite metric spaces into

simpler spaces. Specifically, high-dimensional massive datasets, while often highly practical,

are frequently too large to store on commodity hardware. Therefore, there is much interest in

finding efficient methods for transforming this data into low-dimensional spaces. For instance,

one of the most famous algorithms in high-dimensional geometry is the Johnson-Lindenstrauss

transform [Johnson and Lindenstrauss, 1984], which embeds n points in the Euclidean space with

any dimension into the O(log n)-dimensional Euclidean space. Another branch of work solving

this problem involves embedding metric spaces into tree metrics. A tree metric over n points is

represented by an n-vertex tree, and therefore is also highly compact, requiring only O(n) space.

The main result of this paper is the first non-trivial massively parallel constant round extension

of Bartal [Bartal, 1996]’s famous probabilistic tree metric embeddings of geometric datasets. We

additionally provide a space-efficient massively parallel adaptation of the Johnson-Lindenstrauss

transform.

Rabinovich and Raz [Rabinovich and Raz, 1998] showed that deterministically embedding

a simple n-cycle into a tree metric requires Ω(n) distortion, or maximum proportional deviation

between embedded and true distance. To circumvent this, Karp [Karp, 1989] leverages random-
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ization to approximate a cycle by a path with low distortion. Alon, Karp, Peleg, and West [Alon

et al., 1995] were the the first to probabilistically embed arbitrary metric spaces into trees, how-

ever they required up to 2O(
√
logn log logn) distortion to do so. Bartal’s work greatly surpassed

this, achieving an O(log2 n)-approximation. A novel idea of Bartal’s work in comparison with

previous research is that it defines and utilizes probabilistic partitions, which ensures that two

close points are more likely to be grouped together in the partition. By applying a hierarchy

of probabilistic partitions, Bartal’s algorithm embeds the input metric space into the so-called

hierarchically well-separated tree (HST).

Tree embedding with HSTs has been improved a number of times since Bartal’s inaugu-

ral work [Bartal, 1998, Charikar et al., 1998, Konjevod et al., 2001], culminating in the work of

Fakcharoenphol, Rao, and Talwar [Fakcharoenphol et al., 2003], who improved the approxima-

tion factor to O(log n), notably yielding the first polylogarithmic approximation for the k-median

problem. Since Ω(log n) is also the lower bound [Bartal, 1996], this result sets a good foundation

for expanding tree embeddings in other directions [Chan et al., 2005, Gupta et al., 2006, Gupta

et al., 2003].

Metric tree embeddings have already been studied in PRAM [Blelloch et al., 2012,Friedrichs

and Lenzen, 2018, Andoni et al., 2020], a classic model of parallel computing. Given a gen-

eral metric space, Blelloch, Gupta, and Tangwongsan [Blelloch et al., 2012] designed a parallel

O(log n)-approximate metric tree embedding algorithm using O(n2 log n) work (i.e., number

of operations) and O(log2 n) depth (i.e., parallel time). Friedrichs and Lenzen [Friedrichs and

Lenzen, 2018] considered the shortest path metric given by a graph (i.e., graph metric) and gave

a parallel O(poly(log n))-approximate metric tree embedding algorithm using O(m+n1+ε) work

and O(log n) depth where ε > 0 is an arbitrary constant and m is the number of edges of the in-
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put graph. Andoni, Stein, and Zhong [Andoni et al., 2020] improved the work of [Friedrichs and

Lenzen, 2018] to (m+n) ·poly(log n) though with a larger distortion, a high degree poly(log n).

Due to the success of many modern massively parallel systems such as MapReduce [Dean

and Ghemawat, 2008], Hadoop [White, 2009], and Spark [Zaharia et al., 2016], a more refined

model of parallel computing emerged — Massively Parallel Computation (MPC) [Karloff et al.,

2010,Goodrich et al., 2011,Beame et al., 2017]— and has led to the development of new parallel

algorithms in recent years. In this model, data is distributed to multiple machines where each

machine has a sublinear amount of memory. We alternate between rounds of computation and

rounds of communication where each machine can only send messages with size bounded by its

local memory in a single round. Since communication is always the bottleneck of the model, the

goal in MPC is to design an algorithm with few rounds (parallel time). We know that t-depth

PRAM algorithms can be simulated in MPC in O(t) rounds [Roughgarden et al., 2016]. Thus, in

MPC, the simulation of any above mentioned PRAM algorithm would require Ω(log n) parallel

time. On the other hand, an o(log n)-round MPC algorithm is always more desired in practice

and faster MPC algorithms exist for many problems (see e.g., [Andoni et al., 2018,Andoni et al.,

2019, Ghaffari and Uitto, 2019, Czumaj et al., 2018]).

Thus emerges the following natural question that we study in this paper:

Can we design an o(log n)-round MPC algorithm for metric tree embedding?

The answer is no for general input metric spaces (e.g., the graph metric) with polylogarithmic

distortion unless the 1-vs-2Cycle Conjecture [Yaroslavtsev and Vadapalli, 2018] is false. In

geometric space, Arora [Arora, 1997]’s grid partitioning solves this in O(1) MPC rounds with

O(log2 n) distortion.
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We are the first to break this distortion barrier. On n points in Rd with aspect ratio poly(n),

there exists an O(1)-round MPC algorithm for Õ(log1.5 n)-approximate metric tree embedding.12

This yields O(1)-round Õ(log1.5 n)-approximate MPC algorithms for Euclidean: minimum span-

ning tree, Earth-Mover distance, and densest ball.

We propose a new hierarchical probabilistic partitioning method to embed data in Rd into a

tree with distortion Õ(log1.5 n) using constant MPC rounds and low memory. Generally speaking,

these methods iteratively partition the data and then recurse on each part in the partition until

singletons or empty sets are reached. This yields a tree whose edges we weight and whose leaf

set is the dataset. Its tree metric defines pairwise embedded distances. Our algorithm, hybrid

partitioning, can be seen as a generalization of two existing partitioning methods: Arora [Arora,

1997]’s grid partitioning and Charikar et al. [Charikar et al., 1998]’s ball partitioning.

The main novelty of our methods is a hybridization of the two methods at each level of

partitioning. Specifically, to partition the data, we group dimensions into r buckets, executing a

ball partitioning on each bucket, and combining them with grid partitioning-like methods. If we

set r = 1, all dimensions are in one bucket so the algorithm simply ball partitions the data. If

r = d, the ball partitioning step simplifies greatly, and we end up effectively grid partitioning all

points.

Our algorithm illustrates the trade-offs between the two methods in the parallel setting: grid

partitioning methods reduce local memory and ball partitioning methods improve distortion. It

turns out the key in our methods is to guarantee that an entire partition of the data can be stored in

local memory. This becomes complicated using ball partitioning, since it requires a large number

1The aspect ratio of a point set is the ratio between the largest and the smallest interpoint distance.
2Õ(f(n)) denotes O(f(n) · polylog(f(n))).
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of attempts (and therefore, entire grids to store) to encode a partition. Our hybridization finds a

nice way to reduce this space by only running ball partitions on subsets of dimensions.

Even with our space-reducing hybridization, a preprocessing application of the Johnson-

Lindenstrauss transform to the input data is required to reduce dimensionality. Therefore, we

include, as a result of independent and dependent interest, an efficient MPC implementation

of the Fast Johnson-Lindenstrauss transform (Theorem 4). It achieves an O(log n)-distortion

embedding in O(1) MPC rounds with low memory. The use of the fast transform over the original

in particular allows for an important reduction in the total space for high-dimensional data.

12.1.1 Massively Parallel Computation

We work in the Massively Parallel Computation (MPC) model [Karloff et al., 2010,Beame

et al., 2017]. MPC is an abstraction of MapReduce [Dean and Ghemawat, 2008] that mod-

els programming frameworks such as Hadoop [White, 2009], Spark [Zaharia et al., 2016], and

Flume [Chambers et al., 2010]. MapReduce is used across industry, and is known for its fault

tolerance and compatibility with commodity hardware. On graphs specifically, MPC has been

used in many applications such as clustering [Bateni et al., 2017, Hajiaghayi and Knittel, 2020,

Yaroslavtsev and Vadapalli, 2018] and Earth-Mover distance [Andoni et al., 2014], as well as

theoretical problems like connectivity [Andoni et al., 2018, Andoni et al., 2019, Assadi et al.,

2019c,Behnezhad et al., 2019d], matching and vertex cover [Ahn and Guha, 2015b,Assadi et al.,

2019a, Behnezhad et al., 2019e, Ghaffari et al., 2018], minimum spanning tree [Andoni et al.,

2014], and coloring [Assadi et al., 2019b, Behnezhad et al., 2019b]. Recent research has also

explored adaptations of MPC [Behnezhad et al., 2019c,Behnezhad et al., 2020,Hajiaghayi et al.,
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2022b, Hajiaghayi et al., 2022a, Roughgarden et al., 2016]. MPC is highly practical and for this

reason, we study it in this work.

In MPC, the input is distributed across multiple machines. The computation proceeds in

rounds, wherein each machine executes a local polynomial-time computation. At the end of the

round, machines may send messages to and receive messages from any other machines. The total

size of messages sent or received by a machine in a round is bounded by its local memory. MPC

algorithm efficiency is measured by: the number of rounds (parallel time), the local memory, and

the total space (number of machines times the local memory).

In this work, we consider MPC algorithms in the geometric context, where the input data

contains n points in Rd, represented by d-dimensional vectors. We use the most restrictive version

of MPC where local space per machine is O((nd)ε) for any constant ε ∈ (0, 1)—termed the “fully

scalable” regime [Andoni et al., 2018,Andoni et al., 2019]. All our algorithms are fully scalable,

take O(1) rounds, and use total space near linear in the input size n · d.

12.1.2 Grid Partitioning Methods for Tree Metrics

We now describe two grid partitioning methods that we will extend in our work: random

shifted grids and ball partitioning.

12.1.2.1 Random Shifted Grids

The first is the standard random shifted grid introduced by Arora [Arora, 1997]. Consider

a geometric space in d dimensions. A random shifted grid is just a standard grid with cell width

w whose origin is translated by some vector (x1, . . . , xd) where xi is drawn uniformly at random
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from [0, w]. Equivalently, each cell is translated by the vector (x1, . . . , xd). A visualization can

be seen in Figure 12.1a.

Definition 141. Given a cell width parameter w, consider a grid G of cell length w shifted ran-

domly by a vector sampled uniformly at random from [0, w]d. Place each point p into a partition

representing the cell that contains it. This partitioning is a random shifted grid partitioning with

scale w.

We now discuss how to create a hierarchical partitioning from these random shifted grids.

At this point, we will often refer to a level, which refers to a flat partitioning in a hierarchy, or

alternatively, the recursive level in the hierarchical partitioning algorithm, starting with zero at

the top. Let ∆ be the aspect ratio (the maximum ratio between the maximum and minimum

pairwise distances), B be a bounding box over our data (which we can say has width ∆), and ℓ

be a parameter defining how many cells our grid should have, and how much it should increase

at each level. We start by sampling a random shifted grid over B with cell width w = ∆/ℓ.

Each point then falls into a cell in the grid. We create a partitioning of data where each partition

corresponds to a non-empty cell such that it contains all points contained within the cell. We then

recurse to make a hierarchical structure. The idea is to create a more refined grid (i.e., a grid with

a smaller cell width) at each consecutive step. Generally, at the ith level in the hierarchy, partition

each partition in the previous level using a randomly shifted grid of width ∆/ℓi. This then yields

a new partitioning over our data, where partitions are more numerous and smaller, which we add

to the hierarchy. For any partition, we stop partitioning as soon as it has one or no points.

The hierarchy defined by the random shifted grid partitioning procedure can be simply

viewed as a tree. Let B be the root vertex. Then for each cell we create, add a vertex to the tree
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with parent vertex corresponding to the cell’s parent cell (i.e., the one which contains a superset

of its points). Clearly this is a tree, and the leaves will either be empty (in that case, we can simply

not create such a node) or they will represent a single datapoint. Therefore, we have created a

tree structure to represent the data. Consider labeling each tree edge with weight w
√
d, where w

was the cell width on that level. Then, the distance between two points is defined as the weight

of the shortest path between the two points.

Grid partitioning is a nice, simple, classic technique that has inspired many results, includ-

ing ball partitioning and our hybrid partitioning. It would be nice to simply use grid partitioning

out-of-the-box, and it is not too hard to see that this can be implemented efficiently in MPC in

O(1) rounds with no significant local and total space issues. However, grid partitionings only

achieve an O(log2 n) distortion. We can do better.

12.1.2.2 Ball Partitioning

The ball parititioning method, depicted in Figure 12.1b, was introduced by [Charikar et al.,

1998] for the purpose of derandomizing Bartal’s algorithm. In spirit, it works quite similarly to

random shifted grids, however we create partitions based off a grid of balls instead of the cells

in a grid. In this method, we have two width parameters: the cell width and the ball radius. For

simplicity of understanding, say that the ball radius is w and the cell width is ℓ = 4w.

To create a single partitioning, first sample a random shifted grid of cell width 4w over the

space. At each grid intersection point in our bounding box, create a ball of radius w. Note here

that it is necessary that the cell width is more than twice as large as the ball radius, otherwise the

balls will overlap and a point may fall into two balls. Even if the balls do not overlap, the resulting
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partitioning will not necessarily partition the grid entirely, as some points may fall outside of all

balls. To account for this, we simply continue to sample random shifted grids and create partitions

for each grid, removing covered points as we go. We do this until all points are covered (or stop

at some point and know that we succeed at covering all points with some probability).

Definition 142. Given a cell length parameter ℓ and radius w with w = 1
4
ℓ, consider a sequence

of grids G1, G2, . . . of cell length ℓ shifted randomly by vectors s1, s2, . . . sampled uniformly at

random from [0, ℓ]d. Place a ball of radius w at each grid point for all G1, G2, . . .. Place each

point p into the first ball that contains it according to the grid ordering. This partitioning is a

ball partitioning with scale w (or scale ℓ).

The described method defines a partitioning at a single layer in the hierarchy. To create an

entire hierarchy, we use the exact same strategy employed by the random shifted grids method,

but instead creating our partitionings at each level using the ball partition.

Ball partitionings, while slightly more complicated, achieve a much nicer O(log1.5 n) dis-

tortion. The issue with this method is that it requires too much space to implement efficiently

in MPC. Namely, we need to generate a large number of grids in order to cover the entire

space, which will be exponential in d. Even though we reduce d to O(log n) using the Johnson-

Lindenstrauss transform, this dependency is still too large. We later show in Lemma 153 how to

reduce this dependency by adding more buckets of dimensions.

12.1.3 Our Contributions

We propose fully scalable, constant-round MPC algorithms for embeddings of geometric

data in the MPC model. The set of points P ⊂ Rd is encoded as a set of d-dimensional vectors
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(a) Grid partitioning, w = 1. (b) Ball partitioning, w = 1/4. (c) Hybrid partitioning, w = 1/4.

Figure 12.1: We depict one level (and one sample) of each discussed partitioning method. In grid
partitioning (12.1a), we partition the grid into hypercubic cells of width 1 shifted by a random
vector. In ball partitioning (12.1b), we place a ball of radius 1/4 at each intersection of grid
boundaries. Note that one instance of this placement is not sufficient to partition an entire space,
as some parts are not covered by balls. Thus, we need to repeatedly draw randomly shifted
grids and place balls at the intersections until every point in the space is covered by a ball. In
hybrid partitioning (12.1c) with r = 2, we run a ball partitioning with ball radius 1/4 on buckets
of dimensions. If the z axis is sticking out towards the reader, then this involves two buckets:
{x, y} and {z}. We do a ball partitioning of the points projected onto the xy-plane and the z-axis
independently, and then intersect them to get a partitioning. Since partitions in the xy plane are
circles and partitions on the z axis are intervals, taking their intersection in 3-dimensional space
results in cylindrical-shaped partitions.

(and therefore requires O(nd) total space) and is assumed to have a bounded aspect ratio. Without

loss of generality, we regard the coordinates of points as integers from [∆] = {1, 2, · · · ,∆}. For

two points x, y ∈ Rd, we use ∥x− y∥2 to denote their Euclidean distance. Our goal is to output a

weighted tree containing all points in P such that distT (p, q), the total length of the path from p

to q on T (i.e., the tree metric on T ), is close to ∥p− q∥2. Note that since the input size is O(nd),

O((nd)ϵ) local space is considered fully scalable.

Our main result is the first fully scalable constant round MPC algorithm to break the

O(log2 n) expected distortion (i.e., the multiplicative deviation of ET [distT (p, q)] from ||p−q||2)

implied by Arora [Arora, 1997]’s grid partitioning. To our knowledge, other than the work of

Arora, this is the only constant-round MPC algorithm for tree embeddings of high-dimensional

data. Note that the success probability 1− 1/poly(n) holds for any polynomial function in n.

242



Theorem 2. Consider a set of n points P ⊆ [∆]d for ∆ ∈ Z≥1. There is an O(1)-round random-

ized MPC algorithm which computes a weighted spanning tree T over P when it succeeds, such

that ∀p, q ∈ P ,

1. distT (p, q) ≥ ∥p− q∥2,

2. ET [distT (p, q)] ≤ O(
√
log n · log∆ ·

√
log log n) · ∥p− q∥2.

The success probability is at least 1 − 1/poly(n). The algorithm uses

O(n · d + n log n ·
(
log∆ · log log n+min(d, log2 n)

)
) total space and each machine holds

O((nd)ε) local space for an arbitrary constant ε ∈ (0, 1). If the algorithm fails, it reports

failure.

The algorithm that achieves this result has two parts. The first is an efficient implemen-

tation of the Fast Johnson Lindenstrauss transform, a famous technique that reduces any high

dimensional space into at most O(log n) dimensions. The second is a novel hybrid partitioning

algorithm which combines Arora’s random shifted grid partitioning [Arora, 1997] and Charikar

et al.’s ball partitioning [Charikar et al., 1998] methods. On O(log n)-dimensional data, this can

be efficiently implemented in MPC. Together, these yield our main result.

This result stands in contrast to the results for general shortest-path metric of graphs.

Conditioning on the 1-vs-2Cycle Conjecture [Yaroslavtsev and Vadapalli, 2018] (which pos-

tulates that distinguishing between a graph that is one n-cycle or two disjoint n/2-cycles requires

Ω(log n) MPC rounds), any fully scalable MPC algorithm for general graph connectivity needs

Ω(log n) rounds. If a graph is disconnected, then there are some p, q ∈ P that are infinitely far

apart. Any multiplicative approximation of the shortest path distance between p and q by a fully

scalable MPC algorithm would approximate that distance as infinite, thus identifying the graph
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as disconnected. It therefore requires Ω(log n) rounds. This means that there is no multiplicative-

approximate o(log n)-round fully scalable MPC metric tree embedding algorithm for the graph

metric under the 1-vs-2Cycle Conjecture [Yaroslavtsev and Vadapalli, 2018]. While we do not

break this important barrier, our results show that the 1-vs-2Cycle Conjecture implies an infinite

approximation gap for sublogarithmic MPC round shortest path distance in metric and geometric

graphs.

12.1.3.1 Methods: Hybrid Partitioning

To achieve our result, we introduce the notion of hybrid partitioning, which combines two

different geometric partitioning methods. Both partitioning methods are illustrated in Figure 12.1.

The first is the standard random shifted grid introduced by Arora [Arora, 1997], where the data

is partitioned by the cells of a grid, and the origin of the grid is offset by a random vector.

The second is the randomized ball partitioning method, where the same random grid is used but

instead of partitioning into the grid cells, balls of radius 1/4 the width of the cells are placed at

each line intersection [Charikar et al., 1998]. These define partitions. This is repeated until each

point is covered.

The goal of a hybrid partitioning is to create an intermediate method which combines strate-

gies from both partitioning algorithms. When parameterized to one extreme, hybrid partitioning

is equivalent to grid partitioning. At the other extreme, it is equivalent to ball partitioning. We

define hybrid partitioning with parameters w, ℓ ≤ ∆ and r ≤ d, where ℓ and w determine the

scale of the partitions (similarly to ball partitioning) and r controls how to hybridize grid and

ball partitioning. The following formal definition defines a flat partitioning of the space (and the
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data). This can be made hierarchical by recursing on each partition. The resulting hierarchy is

represented by a weighted tree: our embedding.

Definition 143. In a d-dimensional space, consider bucketing all d dimensions into r buckets

{{1, . . . , d/r}, {d/r + 1, . . . , 2d/r}, . . . {d − d/r + 1, . . . , d}} for parameter r ≤ d. Let ℓ be a

scaling parameter and w = 1
4
ℓ.3 For an arbitrary point p ∈ Rd, let p(i) ∈ Rd/r be obtained from

restricting (projecting) p on the dimensions in bucket i. For each bucket 1 ≤ i ≤ r, run a ball

partitioning on P (i) = {p(i) : p ∈ P} with parameters w and ℓ. If a partitioning of Rd satisfies

that p and q are in the same partition if and only if they are in the same partition for all buckets,

we call it an r-hybrid partitioning with scale w (or scale ℓ).

An illustration of hybrid partitioning on R3 can be seen in Figure 12.1c. Abstracting away

the specific functionality of the algorithm, we can see the similarities between ball and grid

partitioning, and how hybrid partitioning is an intermediate strategy. In this example, r = 2. If

r = 3, hybrid partitioning must partition the space into cubes. If r = 1, it must partition the space

into spheres.

We start with a sequential algorithm which is described in Section 12.3. Later, in Sec-

tion 12.4, we will show how this algorithm can be implemented fully scalably in the MPC model,

which results in our Theorem 2. We show that the sequential algorithm achieves the following

guarantees:

Theorem 3. Consider a set of n points P ⊆ [∆]d for ∆ ∈ Z≥1 and a parameter r ∈ [d].

Algorithm 17 computes a weighted spanning tree T over P such that ∀p, q ∈ P , ∥p − q∥2 ≤

distT (p, q) and ET [distT (p, q)] ≤ O(
√
d · r · log∆) · ∥p− q∥2.

3Without loss of generality, we assume d is divisible by r. Otherwise, we can concatenate 0s to each point to
increase d to d′ by a factor at most 2 and d′ mod r = 0.
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We now describe our sequential algorithm for hybrid partitioning. Without loss of general-

ity, we suppose r divides d. We start by grouping the dimensions into r buckets each containing

d/r dimensions. For each bucket, we project the data points into the space defined by these

dimensions and then we run a ball partitioning (see Section 12.1.2.2 for a detailed description)

with scale parameter Θ(w), meaning that the ball radius is w. Then each point is associated with

one partition for each bucket. To join the buckets, we simply take the intersection of partitions

over all buckets. For instance, two points p and q are in the same final partition under the hybrid

partitioning if they are in the same partition obtained by the ball partitioning for every bucket.

To compute a tree embedding, we iteratively call the hybrid partitioning. At the beginning,

w = ∆/2. Once we obtain the partitions from the hybrid partitioning, we reduce the scale

parameter w by a factor of 2 and recursively apply the hybrid partitioning on each partition. This

yields a hierarchy whose root is the partition of all data points, and leaves represent a partitioning

into singletons. As we move down the hierarchy, we connect each child node to its parent node

with a weight proportional to w ·
√
r, where w is the scale parameter of the recursive level, and

we show that w ·
√
r is an upper bound of the diameter of a partition in the current level. Finally,

we obtain a weighted tree. We refer readers to Section 12.3 for more details.

To see why this algorithm generalizes grid and ball partitioning, we consider extreme val-

ues of r. When r = 1, we have a single bucket. Clearly, then, our partitioning algorithm just

executes the ball partitioning algorithm. When r = d, we partition each dimension separately.

Therefore, the shapes of the intersections of all partitions end up being hypercubes. In our im-

plementation, we let the ball radius be w and the cell length be 4w, which means there is space

between the hypercubes, unlike grid partitioning. However, if we instead let the ball radius be

w/2, we eliminate all the uncovered space for r = d, and our algorithm becomes equivalent to
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grid partitioning. Therefore, this is a hybridized version of the two partitioning methods. This

algorithm also, notably, is implementable in the MPC model.

An interesting property of our hybrid partitioning is that we can find a bound on the cutting

probability of two points (i.e., the probability that two points are assigned to different partitions)

that is independent of r. This means that we can ensure some probability that two points are

not separated at some level in the hierarchy regardless of the selection of r. Our bound for the

diameter of partitions, however, is dependent on r. These two bounds are as follows. Note that

the separation probability bound is only useful when w >
√
d||p− q||2. Since w starts as ∆, this

is true for at least one pair of points (though in most cases, many pairs) in the initial stages of the

algorithm.

Lemma 144. Consider a hybrid partitioning with parameters w ∈ R>0 and r ≤ d in the d-

dimensional Euclidean space. For any two points p, q ∈ Rd, the probability that p and q are

assigned to different partitions is at most O
(√

d · ∥p−q∥2
w

)
. If p, q ∈ Rd are assigned to the same

partition, ∥p− q∥2 ≤ O(
√
r · w).

12.1.3.2 Methods: Johnson Lindenstrauss in MPC

In addition to our metric tree embedding result, we devise an efficient MPC implementation

of the Fast Johnson-Lindenstrauss Transform (FJLT) [Ailon and Chazelle, 2006]. The FJLT

utilizes sparse projections and the randomized Fourier transform to improve upon the standard

Johnson-Lindenstrauss transform [Johnson and Lindenstrauss, 1984]. It reduces the dimension

of data points to O(log n) with distortion at most (1 ± ξ) for any ξ > 0. The guarantee of our

algorithm is the following, beating previous work in terms of total space by a factor of log n/ξ2:
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Theorem 4. Consider a set of points P = {p1, p2, · · · , pn} ⊂ Rd. Let ϕ : Rd → Rk be Fast

Johnson Lindenstrauss Transform with k = Θ(ξ−2 log n) for ξ ∈ (0, 0.5). There is an MPC

algorithm which outputs ϕ(p1), ϕ(p2), · · · , ϕ(pn) in O(1) rounds. In addition, the total space of

the algorithm is at most O(nd + ξ−2n log3 n) and each machine holds O((nd)ε) local space for

an arbitrary constant ε ∈ (0, 1).

Details on the implementation and proofs can be found in Section 12.5. Along with be-

ing a separate interesting result in its own right, the ability to execute the transform in MPC

is necessary for our main result. If we were to omit the transform as the first step before the

hybrid partitioning, the hybrid partitioning would work on a potentially n-dimensional dataset.

However, as we will see in the analysis for the MPC implementation of hybrid partitioning in

Section 12.4, this would require an intractable computation. Specifically, the number of “balls”

(i.e., partitions) at each partitioning is required to be exponential in d in order to cover the whole

space with high probability. Since we must store the entire partitioning, potentially, this would

make the total space exponential in n, which is quite excessive in MPC. However, we show

that the dimensionality reduction of the Johnson Lindenstrauss transform is sufficient to yield an

efficient MPC implementation.

We briefly note that the fast transform, as opposed to the original method, yields a more

efficient MPC algorithm on high-dimensional data. Specifically, the standard transform would

require O(nd log n) total space. However, if d = ω(log2 n), the rest of our algorithm (along with

the fast transformation) achieves about O(nd) total space. Therefore, we are able to achieve a

total space reduction that is proportional to log n using the fast transform. In large-scale models

such as MPC, even careful improvements like this can yield significant gains.
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12.1.3.3 Applications

Both our metric tree embedding and fast Johnson Lindenstrauss results are useful for cre-

ating compact representations of high-dimensional geometric spaces. In fact, Theorem 2 is ob-

tained by running the result from Theorem 4 to reduce the dimension of the data with constant

distortion and then an MPC implementation of Algorithm 17 with r = O(log log n) (Theorem 3).

Metric tree embeddings can be used to solve or approximate many problems in graph the-

ory, and our results are no exception. This work can be extended to numerous applications, and

we note three important ones below. Proofs can be found in the appendix. Note that an (α, β)-

approximate densest ball is a bicriteria solution indicating that given a target diameter D, we

approximate the problem of finding the ball that contains the most points within a factor of α

with up to a β-multiplicative violation of the ball diameter. In other words, the ball may have

diameter up to βD.

Corollary 145. Consider a set of n points P ⊆ Rd with aspect ratio ∆ ∈ Z≥1. There is an

O(1)-round randomized MPC algorithm which computes (on P with probability at least 1 −

1/ log log n) a:

1. (1−O(1/ log log n), Õ(log1.5 n))-approximate densest ball

2. Õ(log1.5 n)-approximate minimum spanning tree

3. Õ(log1.5 n)-approximate Earth-Mover distance

It uses O(n·d+n log n·
(
log∆ · log log n+min(d, log2 n)

)
) total space and each machine

holds O((nd)ε) local space for an arbitrary constant ε ∈ (0, 1).
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There are a few important things to note regarding these applications. First, to our knowl-

edge, densest ball has not been studied in MPC and therefore our result is the first in this area. It

is highly related to the problem of finding the densest subgraph of a given graph. In this prob-

lem the idea is to identify a subgraph H of an unweighted graph G that minimizes the density

d(H) = |E(H)|/|H|, where E(H) is the set of edges with both endpoints in H . While this has

been studied in the sublinear regime [Bahmani et al., 2014, Ghaffari et al., 2019b], it does not

imply any results for densest ball.

Additionally, a recent work [Chen et al., 2020a] proposed an efficient Θ̃(log n)-approximate

algorithm for EMD and MST in Rd. However, their work is less broad since they directly com-

pute EMD and MST, whereas we provide a general low-distortion embedding algorithm that can

be used to solve a wide range of problems. In addition, there are applications where maintaining

a space-efficient embedding of a dataset before computation may be highly practical. Therefore,

our result is still of unique interest.

Finally, it is also notable that storing data on trees provides a unique structure for data com-

putation. For instance, related works [Bateni et al., 2018a, Hajiaghayi et al., 2022b] introduced

efficient low-memory MPC and AMPC algorithms for solving dynamic programs on trees.4 Con-

sider a problem that can be formulated on a tree embedding (i.e., where leaves correspond to the

data set) with distortion α such that the problem can be approximated within a factor of f(α).

Then we can apply these algorithms on top of our embedding to achieve an f(Õ(log1.5(n))-

approximation. Since the AMPC algorithm of [Hajiaghayi et al., 2022b] runs in constant rounds,

then this process would require O(1) rounds overall to embed and compute. Unfortunately, the

4Adaptive MPC, a related model where machines have adaptive in-round read-only access to a distributed hash
table.
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MPC algorithm of [Bateni et al., 2018a] requires O(log n) rounds, and therefore does not fully

leverage our constant round complexity. Future work in this area may reveal more interesting

results.

12.1.3.4 Related Lower Bounds

When the aspect ratio is poly(n), the distortion of our current metric tree embedding is

Õ(log1.5 n). One of the future directions is to improve this approximation ratio in the MPC model.

A natural goal would be to improve the distortion to O(log n) since any o(log n)-distortion metric

tree embedding would imply an embedding of the Earth-Mover distance into ℓ1 with distortion

better than the long-standing state-of-the-art embeddings [Naor and Schechtman, 2006] (even for

planar Earth-Mover distance).

A number of related problems also exhibit similar apparent limitations. Embedding an n-

point metric in ℓ2 space into probabilistic trees needs at least Ω(
√
log n) distortion. This follows

from a result of Rao [Rao, 1999] which states any finite planar metric of cardinality n, in particu-

lar a log n-level diamond graph, can be embedded into ℓ2 space with distortion O(
√
log n) (which

is tight according to Lee and Naor [Lee and Naor, 2004]) and another result of Gupta, Newman,

Rabinovich, and Sinclair [Gupta et al., 2004] which states a log n-level diamond graph needs

distortion of at least Ω(log n) to probabilistically embed into trees. Therefore, the distortion of

embedding Euclidean points into trees must be at least Ω(
√
log n). While some of the above

discussion does not enforce bounds on our problem, they are indicative of the difficulty of metric

tree embedding in general. It is an open question to further explore this gap for high-dimensional

Euclidean spaces.

251



12.2 Preliminaries

Here we introduce some preliminary definitions that will be useful in describing our al-

gorithm and our results. This work provides tree embeddings on geometric data that exhibit

two properties: they dominate the original geometric space and have small distortion. A metric

space dominates another if the distance between any pairs of points is not smaller in the new

metric space. This is a baseline assumption that many embeddings are shown to satisfy, as in

Fakcharoenphol, Rao, and Talwar [Fakcharoenphol et al., 2003]. They define domination as

follows.

Definition 146 ( [Fakcharoenphol et al., 2003]). A metric space M dominates another metric

space N for all q, p ∈ P for some set of points P if dM(q, p) ≥ dN (q, p), where dM and dN

represent the distance function in each metric space respectively.

Distortion (in our case, bi-Lipschitz distortion) measures the difference between the dis-

tance between two points in the original space and two points in a tree embedding. It is a mea-

sure of the goodness of the embedding in that low distortion implies we better approximate all

pairwise distances, as measured by the largest proportional deviation.

Definition 147 ( [Blelloch et al., 2012]). A metric spaceM has α distortion over another metric

space N if and only if M dominates N and for any points x and y, dM(x, y) ≤ αdN (x, y),

where dM and dN represent the distance function in each metric space respectively.

If M is generated by a random process or represents a distribution over metric spaces,

we instead view distortions in expectation, where E[dM(x, y)] ≤ αdN (x, y). Specifically, our

algorithm is randomized, so we will use this probabilistic interpretation of distortion. In this
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paper, we develop algorithms that dominate the original geometric space with low distortion.

12.3 Hybrid Partitioning and its Distortion

Our sequential hybrid partitioning algorithm, Algorithm 17 (subroutines BuildGrids and

BallPart can be found in the appendix, is a generalization of both Arora [Arora, 1997]’s random

shifted grid and Charikar et al. [Charikar et al., 1998]’s random ball partition method. As we dis-

cussed in Section 12.1.2, the reason we cannot use either of these independently for a massively

parallel algorithm is actually quite simple. For random shifted grids, the problem is that the re-

sulting distortion is O(log2 n). Our methods strive to achieve a better approximation factor than

this. For ball partitions, the local space required is exponential in the dimension of the problem

since we require many random shifted grids to cover all points in P . Even for d logarithmic in n,

this method is unattainable in MPC.
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Algorithm 17 Hybrid Partitioning: A Sequential Tree Embedding Algorithm
Input: Point set P ⊆ [∆]d and parameters r ∈ [d], the number of buckets, and U ∈ N, the
number of grids
Output: T , a tree embedding of P

// Bucket the dimensions [d] into r buckets
for j ∈ [r] do

j0 ← (d/r) · (j − 1)
P (j) ← {p(j) | p ∈ P : p(j) = (pj0+1, pj0+2, · · · , pj0+d/r)}

end for

// Create a full ball partitioning and a corresponding hierarchy For each bucket
For all j ∈ [r]: G(j) = BuildGrids(P (j), r, U)
For all j ∈ [r]: Tj ← BallPart(P (j), G(r)),
If any ball partitionings failed, halt and report failure

// Join the partitionings to make a single, unified hierarchy
For all j ∈ [r]: v0,j ← the root of Tj

v0 = (v0,1, v0,2, · · · , v0,r) // A vertex For the single cluster containing all of P
T ← ({v0}, ∅)
Let C : T → 2P where C(v0) = P // Identifying the cluster corresponding to a vertex
while ∃v = (v1, v2, . . . , vr) ∈ leaves(T ) such that |C(v)| > 1 do

S = children(v1)× children(v2)× · · · × children(vr)
for u = (u1, u2, . . . ur) ∈ S do

Pu ← {p ∈ P : ∀j ∈ [r], p(j) is in the cluster corresponding to uj}
If Pu ̸= ∅, add u to T as a child of v and set C(u) = Pu.

end for
end while
Return T

The advantage of ball partitioning, however, is that it achieves a lower distortion. Therefore,

the main idea of the hybrid partitioning method is to combine these two methods such that it is

implementable in MPC, like random shifted grids, while still obtaining the improved distortion

from ball partitioning. To do this, we introduce the notion of bucketing. To see how bucketing

works, consider our bounding box B of our data, whose width is ∆, the aspect ratio of the data.

To partition this bounding box, we start by bucketing the d dimensions into r buckets. That is,

for a vector x⃗ = (x1, . . . , xd), let it be bucketed as follows:
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x(1) = (x1, . . . , xd/r), x
(2) = (xd/r+1, . . . , x2d/r),

. . . , x(r) = (xd−d/r+1, . . . , xd)

In a sense, the bucketing is taking a single point in space and projecting it into a number of

different orthogonal subspaces. Since all dimensions are contained in exactly one subspace each,

we do not lose any information in this process. This describes how one point is broken up into

different projections. Over a set P of points, we create sets for each bucket of dimensions. The

set contains the projection of each point in P into the respective bucket.

P (1) = {x(1)|∀x ∈ P}, P (2) = {x(2)|∀x ∈ P},

. . . , P (r) = {x(r)|∀x ∈ P}

At a high level, our algorithm, Algorithm 17, will create a ball partitioning on each bucket

with cell width 4w and ball radius w for each level with different scale parameter w, and only

group two points together if they are in the same partition for each bucket. Specifically, for each

i ∈ [r], let Ci be the partitioning created by the ball partitioning on only the dimensions in bucket

i (i.e., the (i−1)d/r+1 through id/r dimensions of each data point). We create our C partitioning

as follows: for each point p, to find the other points in its partition, let Cp be the set of partitions

in C1, . . . , Cr that contain p (note that some may be empty, as a ball partitioning may not cover

p). Take the intersection of all partitions in Cp to form the partition Cp (Cp =
⋂

C∈Cp C). If

Cp contains any other point, then it will be a partition in our new partitioning. Like in the ball

partitioning method, we repeat this until all points are covered. If at any point in this method a
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point does not have any other points within w of it, we simply partition it as its own partition.

Beyond this, the algorithm simply proceeds as the others to construct a hierarchy. Our ball

radius starts as w = ∆/2 for the top level and is scaled by 1/2 at each recursive step. We recurse

on each partition until all partitions are empty or singletons, and we create an edge of weight

√
rw from each partition to its parent partition. With this hierarchy as our final tree embedding,

it is not hard to see that the distance between any two points can be calculated by the number of

levels of the hierarchy in which the two points are separated. If at any level they are separated,

we add
√
rw to their distance.

It is not too difficult to see how this method generalizes both the random shifted grid and

ball partitions. Definitionally, if r = 1, then there is a single bucket containing all dimensions,

and thus we are simply working in the original space. Then for any iteration of ball partitioning,

two points are grouped together if they are captured by the same ball. Therefore, for r = 1,

we are simply running the ball partitioning algorithm. If r = d and if we let the ball radius be

half the cell width, then each dimension is given its own bucket. When we run a ball partition

on each bucket, or each 1-dimensional space, independently, we are just shifting that coordinate

and partitioning that dimension into equally-sized intervals. Intersecting the partitions formed by

partitioning dimensions like this is the same as defining d-dimensional cells in a grid based off a

random shift vector composed of the random shifts of each individual dimension. Thus, we get

precisely the random shifted grid.

Now that we have discussed the algorithm, we move on to the desired result. Note that all

proofs can be found in the appendix. We ultimately show that, as long as we cover all points in

each level (this is discussed probabilistically, by setting a high value of U , in Section 12.4):
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Theorem 3. Consider a set of n points P ⊆ [∆]d for ∆ ∈ Z≥1 and a parameter r ∈ [d].

Algorithm 17 computes a weighted spanning tree T over P such that ∀p, q ∈ P , ∥p − q∥2 ≤

distT (p, q) and ET [distT (p, q)] ≤ O(
√
d · r · log∆) · ∥p− q∥2.

The first property, the lower bound on the tree distance, is the notion of dominance. The

second defines the amount of distortion resulting from the metric. Both are commonly required

in popular probabilistic tree embeddings. It turns out that the first is much simpler to show for

our algorithm:

Lemma 148. For any two points p, q ∈ P , ∥p− q∥2 ≤ distT (p, q).

The next goal is to prove the distortion. Crucially, to show this, we must find a relationship

between the distance between two points and whether or not they are in the same partition at some

level. This brings up the following lemma, which reveals an interesting property: the probability

that two points are separated at a level can be bounded in a way that is independent of r, however

the diameter of a partition relative to P is bounded by
√
r · w.

Lemma 144. Consider a hybrid partitioning with parameters w ∈ R>0 and r ≤ d in the d-

dimensional Euclidean space. For any two points p, q ∈ Rd, the probability that p and q are

assigned to different partitions is at most O
(√

d · ∥p−q∥2
w

)
. If p, q ∈ Rd are assigned to the same

partition, ∥p− q∥2 ≤ O(
√
r · w).

Since this lemma is quite extensive, we break it down into two parts. The more interesting

part is considering the probability that two points are separated in the partitioning at a certain

level. We simply consider a ball partitioning:
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Lemma 149. Consider a ball partitioning over a set of points P ⊂ Rk. For any two points

p, q ∈ P , the probability that p and q are assigned to different partitions in a level with scale w

is at most O
(√

k ∥p−q∥2
w

)
.

In order to solve this, we consider a random variable Iq,p that indicates if q and p exist in the

same ball in a partitioning. This can be used to determine the probability of separation, but we

can also relate it to the volume of the intersection of balls centered at these points with radius w.

Eventually, we see that the probability of separation boils down to the probability that a random

unit vector falls into the bound of a cap surface intersected with the surface of a sphere. In order

to bound this, we need a slight detour into more pure geometric arguments, Lemma 150.

In particular, the following lemma shows that the probability that a random vector is near

the equator of a unit sphere has a good upper bound.

Lemma 150. Let u ∈ Rd be a random vector drawn uniformly from a unit sphere. Then for any

D,w ∈ R≥0, we have

Pr[|u1| ≤ D/(2w)] = O

(√
d · D

w

)
.

While this lemma is close to the result we need, it unfortunately deals with vectors drawn

from a voluminous shape, whereas we are interested in the probability that a random vector

drawn from a surface falls within the bounds of intersected surfaces. A slight adaptation yields

the following:

Lemma 151. Let v ∈ Rd be a random vector drawn uniformly from a unit ball. Then for any
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D,w ∈ R≥0, we have

Pr[|v1| ≤ D/(2w)] = O

(√
d · D

w

)
.

For two points to not be separated within some bucket in the partitioning, they must either

be grouped together or left uncovered. This allows us to relate the probability of separation to

the intersection of geometric surfaces. Ultimately, we can then derive a bound from Lemma 149

using Lemma 151 (see the proof of Lemma 149 in the appendix. Since two points separated on a

level must be separated in some bucket, the separation probability is bounded by a union bound

over the probability of separation in each bucket, yielding Lemma 144. As we have already

showed the domination result, all we need is to show that the expected distortion is small, which

is directly related to the probability that two points are separated on any level. This concludes

Theorem 3.

12.4 Tree Embedding in MPC

In this section we show how to implement Algorithm 17 in O(1) of rounds in the MPC

model using the total space O(n·d+n·log∆·log n·log log n). Specifically, we prove Theorem 2.

Theorem 2. Consider a set of n points P ⊆ [∆]d for ∆ ∈ Z≥1. There is an O(1)-round random-

ized MPC algorithm which computes a weighted spanning tree T over P when it succeeds, such

that ∀p, q ∈ P ,

1. distT (p, q) ≥ ∥p− q∥2,

2. ET [distT (p, q)] ≤ O(
√
log n · log∆ ·

√
log log n) · ∥p− q∥2.
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The success probability is at least 1 − 1/poly(n). The algorithm uses

O(n · d + n log n ·
(
log∆ · log log n+min(d, log2 n)

)
) total space and each machine holds

O((nd)ε) local space for an arbitrary constant ε ∈ (0, 1). If the algorithm fails, it reports

failure.

At a high level, our algorithm consists of four main steps:

1. Using our fast Johnson-Lindenstrauss (see Section 12.5), embed the data into O(log n)

dimensions. This is the first O(1) rounds of the algorithm.

2. We group dimensions into r buckets and generate grids for each bucket and distribute the

grids and points among the machines. This requires 1 round on 1 machine.

3. We compute the hierarchical tree using ball partitioning. This requires 1 round of parallel

computation.

4. For each node, we compute the path-to-root in the hybrid partitioning (to construct the final

tree). This also requires 1 round of parallel computation.

In order to create the hierarchy in parallel, the grid of balls will be shared among all ma-

chines. Andoni [Andoni, 2009] lets us bounds the number of grids needed to cover the entire

space:

Lemma 152 ( [Andoni, 2009] Section 3.2.2). Consider a d-dimensional space Rd, and fix some

δ > 0. Let G be a regular infinite grid of balls of radius w placed at coordinates 4w · Zd. Define

Gu, for u ∈ N, as Gu = G + su, where su ∈ [0, 4w]d is a uniformly selected random shift of the

grid Gd. If Ud = 2O(d log d) log 1/δ, then the grids G1, G2, . . . GUd
cover the entire space Rd, with

probability at least 1− δ.
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Since we will be using grids to cover the whole space for each bucket and level we need

the following lemma:

Lemma 153. Consider n points over a d-dimensional space, and fix some parameter ϵ > 0, δ >

0. Define U as the number of grids of balls used in the hybrid partitioning. By setting U =

2O((d/r) log(d/r)) · log( r log∆
δ

), hybrid partitioning covers the whole space with probability at least

1− δ.

For standard ball partitioning the number of grids needed to cover the whole space would

be too large. More specifically, for standard ball partitioning of a d-dimensional space we need

2O(d log d) grids. Even after reducing the data into O(log n) dimensions, this would result in

2O(logn log logn) = nO(log logn) dimensions which would be too large considering we have O(nϵ)

space per machine. Hence the need to use hybrid partitioning.

To do so first we transform the data points from d-dimensional space to O(log n) dimen-

sional space using our fast Johnson-Lindenstrauss transform. We fix r = 2/ϵ · log log n. Then

we group the dimensions into r buckets and distribute them among the machines, each machine

holding nϵ

log∆
points. This is because the ball partitioning needs log∆ space per point to store the

hierarchy, assuming we store the path from a vertex to the root.

For each bucket j we generate sets of grids {Gj
1, G

j
2, · · ·G

j
log∆} and distribute them to the

corresponding machines that hold points from this bucket. Where Gj
i = {B1, B2, · · ·BU} is the

set of grids that cover the space in bucket j in level 2i. Each Bk is a partitioning from a single

randomly shifted instance of a ball partition.

Define U as the number of grids used to cover the space in our hybrid partitioning.

Lemma 154. Consider n points over a d-dimensional space where d = O(log n), and a hybrid
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partitioning with r = 2/ϵ · log log n buckets. The space used per machine to store the set of grids

is O(nϵ) as long as δ = Ω(1/poly(n)).

This proves all grids can be stored on each machine, and thus the local computation can

proceed in constant rounds to complete Theorem 2.

Algorithm 18 MPC Hybrid Partitioning
Input: Point set P ⊆ [∆]d and a parameter r ∈ [d] (after dimension reduction, e.g., see Section 12.5).
Output: T , a tree embedding of P

// Run on a single machine:
Split the dimensions [d] into r = O(log log n) buckets // As in the first step of Algorithm 17
Let U = 2O((d/r) log(d/r)) · log(r log∆) // This comes from Lemma 153
For each j ∈ [r]: G(r) = BuildGrids(P (j), r, u)
SEnd G to all other machines
Partition P into parts Pi with |Pi| = O(nϵ/ log∆) and sEnd Pi to machine mi

// In parallel:
for each machine mi do

For each j ∈ [r]: Tj ← BallPart(P (j)
i , G(r))

If any ball partitionings failed, halt and report failure
for each p ∈ Pi do

for j ∈ [r] do
Find pathj(p)← (v

(j)
0 , v

(j)
1 , . . . , v

(j)
log∆, p

(j)), the path from p to the root of Tj

end for
For i ∈ [log∆]: pathi(p) ← (v

(1)
i , v

(2)
i , . . . , v

(r)
i ), the tuple For the ith element on p’s path For

all Tj

path(p)← (path1(p), path2(p), . . . , pathlog∆(p), p), the path from p to the root of T
end for
Let Ti be the union of path(p) For all p ∈ Pi

Return Ti as a part of the output tree T (implicitly, T is the union of all State Returned Tis)
end for

12.5 MPC Fast Johnson-Lindenstrauss

The Johnson Lindenstrauss transform, which maps any high-dimensional data into loga-

rithmic dimensions with arbitrarily small distortion constant, is a foundational method for (po-

tentially) significant reductions in data dimension in the sequential setting. Unfortunately, in
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the massively parallel setting, this effectively becomes a general matrix multiplication problem,

which does not meet the round and space complexity goals of many MPC algorithms. Particu-

larly, we can achieve this either using O(ndk) = O(nd log n) total space in a constant number of

rounds [Epasto et al., 2021] or using linear space O(nd) in O(log n) rounds.

To prove our main result, Theorem 2, we require first applying the Johnson Lindenstrauss

transform to reduce the dimensionality of our data, then we apply our methods from Section 12.4.

The transform must be applied first because otherwise the number of balls required to partition

the entire space with sufficiently high probability is too large, and they cannot be fit within our

total space requirements.

Recall that our final results manage to shave off the additional logarithmic factor in the

total space. Namely, running an O(nd log n) total space implementation of the Johnson Lin-

denstrauss transform would increase our total space. Therefore, we propose a solution to the

dimension-reducing problem in the MPC model based on a more recent iteration of the Johnson

Lindenstrauss transform by Ailon and Chazelle [Ailon and Chazelle, 2006] that uses linear total

space.

Consider a dataset of n points in a d-dimensional Euclidean space. The Fast Johnson

Lindenstrauss Transform (FJLT), developed by Ailon and Chazelle [Ailon and Chazelle, 2006],

is a quickly computed transformation that maps the input points into a k-dimensional space while

preserving distances within a (1± ξ) factor. Here, k = cξ−2 log n for some constant c.

They show that the FJLT, ϕ(x) = k−1PHDx, for some input x can be computed relatively

quickly. Matrices P , H , and D are designed as follows:

1. P is a k × d matrix with Pij = 0 with probability 1 − q, otherwise it is sampled from the
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Gaussian distribution N (0, q−1). We let q take value:

q = Θ

(
min

(
log2 n

d
, 1

))

2. H is a normalized d × d Walsh-Hadamard matrix. In other words, it is the d-dimensional

discrete Fourier transform. In particular, Hi,j = d−1/2 · (−1)⟨i−1,j−1⟩ where ⟨i − 1, j − 1⟩

is the bitwise inner product of the binary representations of i− 1 and j − 1.

3. D is a random diagonal d × d matrix where Di,i = −1 with probability 0.5 and Di,i = 1

otherwise.

We now propose a method to parallelize this algorithm in the MPC model as shown in

Algorithm 19. We consider the case where each machine has local space O((nd)ε) for some

arbitrary constant ε ∈ (0, 1). The algorithm takes an input A which is a d×n matrix. To compute

PHD(A), we simply apply one matrix at a time. To compute D(A), since D is diagonal, we

can use O(1) rounds and O(d) total space to generate all Di,i. To multiply D with A, since D

is diagonal, each of the resulting nd entries in DA form a simple binary multiplication problem.

We simply allocate (nd)1−ϵ machines to do O((nd)ϵ) computations each. To apply H , we can

simply apply the fast Fourier transform in the MPC model introduced by Hajiaghayi, Saleh,

Seddighin, and Sun [Hajiaghayi et al., 2021]. This step takes O(1/ε) rounds. Finally, we generate

P in a similar way to D, by allocating O((nd)ϵ) entries per machine and randomly generating

numbers. To apply P , we can bound the total number of multiplications by the results of Ailon

and Chazelle, and then distribute additions across machines iteratively to compute the matrix in

O(1/ε) rounds.
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Theorem 4. Consider a set of points P = {p1, p2, · · · , pn} ⊂ Rd. Let ϕ : Rd → Rk be Fast

Johnson Lindenstrauss Transform with k = Θ(ξ−2 log n) for ξ ∈ (0, 0.5). There is an MPC

algorithm which outputs ϕ(p1), ϕ(p2), · · · , ϕ(pn) in O(1) rounds. In addition, the total space of

the algorithm is at most O(nd + ξ−2n log3 n) and each machine holds O((nd)ε) local space for

an arbitrary constant ε ∈ (0, 1).

Proof. Let A ∈ Rd×n be the concatenation of points p1, p2, · · · , pn. Then, the goal is to compute

P ·H ·D ·A. First, we show how to compute DA (a d× n-dimensional matrix). Clearly we can

use O(1) rounds and O(d) total space to generate the entries on the diagonal of D. Note that we

can easily compute each element (DA)ij = DiiAij . This is a total of nd computations. So we

can do it on (nd)1−ϵ machines with (nd)ϵ local space per machine in O(1) rounds.

Next, we compute H(DA) (a d × n-dimensional matrix). Note that H is just the d-

dimensional DFT. We can then utilize the d-dimensional MPC FFT algorithm [Hajiaghayi et al.,

2021] and apply it to each column of DA. For any ϵ ∈ (0, 1), this requires O (dϵ) machines,

O (d1−ϵ) memory, and O(1/ε) rounds. Thus, we can compute all columns of DA in the MPC

model using O((nd)ε) space per machine and O((nd)1−ε) machines in O(1/ε) rounds.

Finally, we compute P (HDA) (a k×n-dimensional matrix). Just as in Ailon and Chazelle,

we see that the number of nonzero values, or |P |, is ∼ Binom(dk, q), which means:

E[|P |] =nkq = O
(
dξ−2 log3(n)/d

)
= O(log3(n)/ξ2)

And then by the Markov inequality, we have |P | = O(log3(n)/ξ2) with probability at least 0.99.

This means we only have O(ξ−2 log3 n) values in P with probability at least 0.99. For each value

in P , we multiply it by one row of HDA of length n for a total of O(nξ−2 log3 n) computations.
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Beyond this, some of these values need to be added to find values in PHDA, but that will not

exceed O(nξ−2 log3 n). Thus, these computations can be done in O(1) rounds as long as the total

space is at least Ω(nξ−2 log3 n). Finally, there are at most d additions required to define a single

entry, then we can divide this into d1−ϵ sets of additions of size dϵ. We can then pack all these

sets of computations of size at most dϵ into machines with memory O(dϵ). This requires at most

O(d1−ϵ) machines. Then we perform the computations. To find the values for entries that require

n computations, this will require O(1/ϵ) rounds. That completes the computation.

Algorithm 19 FJLT in MPC
Input: A, a matrix of n d-dimensional vectors, and a parameter ξ ∈ (0, 0.5)
Output: ϕ(A)

for i ∈ [d] in parallel do
Let Di,i be 1 or −1 with probabilities 1/2

end for
for i ∈ [d], j ∈ [n] in parallel do

(DA)i,j ← Di,iAi,j

end for
Let H(DA)← FFT(DA, ε)

//MPC algorithm for fast Fourier transform [Hajiaghayi et al., 2021]. Each machine holds
O((nd)ε) space.
Let M be the set of multiplications of nonzero entries in P and entries in HDA
for Assign M to (nd)1−ϵξ−2 log3 n/d machines in parallel do

Compute multiplication m ∈M locally.
end for
Let A be the set of additions of m outputs in P (HDA)
while A is nonempty do

for Pack large contiguous chunks of a ∈ A into (nd)ϵ per machine in parallel do
Compute a and simplify A

end for
end while
Store results of A in ϕ(A) = P (HDA)
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Part III

Adaptive Massively Parallel Graph Algorithms
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Chapter 15: Adaptive Massively Parallel Constant-round Tree Contraction

15.1 Introduction

In this paper, we study and extend Miller and Reif’s fundamental FOCS’85 [Miller and

Reif, 1985,Miller and Reif, 1991,Miller and Reif, 1989] O(log n)-round parallel tree contraction

method. Tree contraction is a process involving iterated contraction on graph components for

efficient computation of problems on trees (see Section 15.1.2). Their work leverages PRAM,

a model of computation in which a large number of processors operate synchronously under a

single clock and are able to randomly access a large shared memory. In PRAM, tree contractions

require n processors. Though the initial study of tree contractions was in the CRCW (concurrent

read from and write to shared memory) PRAM model, this was later extended to the stricter

EREW (exclusive read from and write to shared memory) PRAM model [Dekel et al., 1986]

as well, and then to work-optimal parallel algorithms with O(n/ log n) processors [Gazit et al.,

1988]. Since then, a number of additional works have also built on top of Miller and Reif’s

tree contraction algorithm [Acar et al., 2004,Cole and Vishkin, 1988,Gibbons and Rytter, 1989].

Tree-based computations have a breadth of applications, including natural graph problems like

matching and bisection on trees, as well as problems that can be formulated on tree-like structures

including expression simplification.

The tree contraction method in particular is an extremely broad technique that can be ap-
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plied to many problems on trees. Miller and Reif [Miller and Reif, 1989] initially motivated their

work by showing it can be used to evaluate arithmetic expressions. They additionally studied

a number of other applications [Miller and Reif, 1991], using tree contractions to construct the

first polylogarithmic round algorithm for tree isomorphism and maximal subtree isomorphism of

unbounded degrees, compute the 3-connected components of a graph, find planar embeddings of

graphs, and compute list-rankings. An incredible amount of research has been conducted to fur-

ther extend the use of tree contractions for online evaluation of arithmetic circuits [Miller et al.,

1988], finding planar graph separators [Gazit and Miller, 1987], approximating treewidth [Bod-

laender et al., 2016], and much more [Atallah et al., 1989, Goodrich and Kosaraju, 1996, Grohe

and Verbitsky, 2006, Jez and Lohrey, 2016,Miller and Ramachandran, 1987,Papadopoulos et al.,

2015]. This work extends classic tree contractions to the adaptive massively parallel setting.

The importance of large-scale data processing has spurred a large interest in the study

of massively parallel computing in recent years. Notably, the Massively Parallel Computation

(MPC) model has been studied extensively in the theory community for a range of applications

[Ahn and Guha, 2015b,Andoni et al., 2014,Andoni et al., 2018,Andoni et al., 2019,Assadi et al.,

2019a,Assadi et al., 2019b,Assadi et al., 2019c,Bateni et al., 2017,Bateni et al., 2018b,Behnezhad

et al., 2019e, Behnezhad et al., 2019d, Behnezhad et al., 2019b, Boroujeni et al., 2018, Czumaj

et al., 2018, Ghaffari et al., 2018, Hajiaghayi and Knittel, 2020, Harvey et al., 2018, Lacki et al.,

2020, Nanongkai and Scquizzato, 2019, Roughgarden et al., 2016, Yaroslavtsev and Vadapalli,

2018], many with a particular focus on graph problems. MPC is famous for being an abstraction

of MapReduce [Karloff et al., 2010], a popular and practical programming framework that has

influenced other parallel frameworks including Spark [Zaharia et al., 2016], Hadoop [White,

2009], and Flume [Chambers et al., 2010]. At a high level, in MPC, data is distributed across a
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range of low-memory machines which execute local computations in rounds. At the end of each

round, machines are allowed to communicate using messages that do not exceed their local space

constraints. In the most challenging space-constrained version of MPC, we restrict machines to

O(nϵ) local space for a constant 0 < ϵ < 1 and Õ(n +m) total space (for graphs with m edges,

or just Õ(n) otherwise).

The computation bottleneck in practical implementations of massively parallel algorithms

is often the amount of communication. Thus, work in MPC often focuses on round complexity,

or the number of rounds, which should be O(log n) at a baseline. More ambitious research of-

ten strives for sublogarithmic or even constant round complexity, though this often requires very

careful methods. Among others, a specific family of graph problems known as Locally Checkable

Labeling (LCL) problems – which includes vertex coloring, edge coloring, maximal independent

set, and maximal matching to name a few – admit highly efficient MPC algorithms, and have

been heavily studied during recent years [Behnezhad et al., 2019e, Assadi et al., 2019b, Assadi

et al., 2019a, Behnezhad et al., 2019a, Ghaffari et al., 2020, Ghaffari and Uitto, 2019, Czumaj

et al., 2018]. Another consists of DP problems on sequences including edit distance [Boroujeni

et al., 2018] and longest common subsequence [Hajiaghayi et al., 2019], as well as pattern match-

ing [Hajiaghayi et al., 2021]. The round complexity of aforementioned MPC algorithms can be

interpreted as the parallelization limit of the corresponding problems.

While MPC is generally an extremely efficient model, it is theoretically limited by the

widely believed 1-vs-2Cycle conjecture [Ghaffari et al., 2019a], which poses that distinguishing

between a graph that is a single n-cycle and a graph that is two n/2-cycles requires Ω(log n)

rounds in the low-memory MPC model. This has been shown to imply lower bounds on MPC

round complexity for a number of other problems, including connectivity [Behnezhad et al.,
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2019d], matching [Ghaffari et al., 2019a,Nanongkai and Scquizzato, 2019], clustering [Yaroslavt-

sev and Vadapalli, 2018], and more [Andoni et al., 2019,Ghaffari et al., 2019a,Lacki et al., 2020].

To combat these conjectured bounds, Behnezhad et al. [Behnezhad et al., 2019c] developed a

stronger and practically-motivated extension of MPC, called Adaptive Massively Parallel Com-

puting (AMPC). AMPC was inspired by two results showing that adding distributed hash tables

to the MPC model yields more efficient algorithms for finding connected components [Kiveris

et al., 2014] and creating hierarchical clusterings [Bateni et al., 2017]. AMPC models exactly

this: it builds on top of MPC by allowing in-round access to a distributed read-only hash table of

size O(n+m). See Section 15.1.1 for a formal definition.

In their foundational work, Behnezhad et al. [Behnezhad et al., 2019c] design AMPC algo-

rithms that outperform the MPC state-of-the-art on a number of problems. This includes solving

minimum spanning tree and 2-edge connectivity in log logm/n(n) AMPC rounds (outperforming

O(log n) and O(logD log logm/n n) MPC rounds respectively), and solving maximal indepen-

dent set, 2-Cycle, and forest connectivity in O(1) AMPC rounds (outperforming Õ(
√
log n),

O(log n), and O(logD log logm/n n) MPC rounds respectively). Perhaps most notably, how-

ever, they proved that the 1-vs-2Cycle conjecture does not apply to AMPC by finding an al-

gorithm to solve connectivity in O(log logm/n n) rounds. This was later improved to be O(1/ϵ)

by Behnezhad et al. [Behnezhad et al., 2020], who additionally found improved algorithms for

AMPC minimum spanning forest and maximum matching. Charikar, Ma, and Tan [Charikar

et al., 2020] recently show that connectivity in the AMPC model requires Ω(1/ϵ) rounds uncon-

ditionally, and thus the connectivity result of Behnezhad et al. [Behnezhad et al., 2020] is indeed

tight. In a subsequent work, Behnezhad [Behnezhad, 2021] shows an O(1/ϵ)-round algorithm

for the maximal matching problem in AMPC.
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A notable drawback of the current work in AMPC is that there is no generalized frame-

work for solving multiple problems of a certain class. Such methods are important for providing

a deeper understanding of how the strength of AMPC can be leveraged to beat MPC in gen-

eral problems, and often leads to solutions for entirely different problems. Studying Miller and

Reif [Miller and Reif, 1989]’s tree contraction algorithm in the context of AMPC provides ex-

actly this benefit. We get a generalized technique for solving problems on trees, which can be

extended to a range of applications.

Recently, Bateni et al. [Bateni et al., 2018a] introduced a generalized method for solving

“polylog-expressible” and “linear-expressible” dynamic programs on trees in the MPC model.

This was heavily inspired by tree contractions, and also is a significant inspiration to our work.

Specifically, their method solves minimum bisection, minimum k-spanning tree, maximum weighted

matching, and a large number of other problems in O(log n) rounds. We extend these methods,

as well as the original tree contraction methods, to the AMPC model to create more general

techniques that solve many problems in Oϵ(1) rounds.

15.1.1 The AMPC Model

The AMPC model, introduced by Behnezhad et. al [Behnezhad et al., 2019c], is an ex-

tension of the standard MPC model with additional access to a distributed hash table. In MPC,

data is initially distributed across machines and then computation proceeds in rounds where ma-

chines execute local computations and then are able to share small messages with each other

before the next round of computation. A distributed hash table stores a collection of key-value

pairs which are accessible from every machine, and it is required that both key and value have a
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constant size. Each machine can adaptively query a bounded sequence of keys from a centralized

distributed hash table during each round, and write a bounded number of key-value pairs to a

distinct distributed hash table which is accessible to all machines in the next round. The dis-

tributed hash tables can also be utilized as the means of communication between the machines,

which is implicitly handled in the MPC model, as well as a place to store the initial input of the

problem. It is straight-forward to see how every MPC algorithm can be implemented within the

same guarantees for the round-complexity and memory requirements in the AMPC model.

Definition 155. Consider a given graph on n vertices and m edges. In the AMPC model, there

are P machines each with sublinear local space M = O(nϵ) for some constant 0 < ϵ < 1, and

the total memory of machines is bounded by Õ(n + m). In addition, there exist a collection of

distributed hash tablesH0,H1,H2, . . ., whereH0 contains the initial input.

The process consists of several rounds. During round i, each machine is allowed to make at

most O(M) read queries fromHi−1 and to write at most O(M) key-value pairs toHi. Meanwhile,

the machines are allowed to perform an arbitrary amount of computation locally. Therefore, it is

possible for machines to decide what to query next after observing the result of previous queries.

In this sense, the queries in this model are adaptive.

15.1.2 Our Contributions

The goal of this paper is to present a framework for solving various problems on trees with

constant-round algorithms in AMPC. This is a general strategy, where we intelligently shrink

the tree iteratively via a decomposition and contraction process. Specifically, we follow Miller

and Reif’s [Miller and Reif, 1989] two-stage process, where we first compress each connected
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component in our decomposition, and then rake the leaves by contracting all leaves of the same

parent together. We repeat until we are left with a single vertex, from which we can extract

a solution. To retrieve the solution when the output corresponds to many vertices in the tree

(i.e., maximum matching instead of maximum matching value), we can undo the contractions in

reverse order and populate the output as we gradually reconstruct the original tree.

The decomposition strategy must be constructed very carefully such that we do not lose

too much information to solve the original problem and each connected component must fit on a

single machine with O(nϵ) local memory. To compress, we require oracle access to a black-box

function, a connected contracting function, which can efficiently contract a connected component

into a vertex while also retaining enough information to solve the original problem. To rake

leaves, we require oracle access to another block-box function, a sibling contracting function,

which executes the same thing but on a set of leaves that share a parent. These two black-box

functions are problem specific (e.g., we need a different set of functions for maximum matching

and maximum independent set). In this paper,

we only require contracting functions to accept nϵ vertices as the input subgraphs, and we

always run these black-box functions locally on a single machine. Thus, we can compress any

arbitrary collection of disjoint components of size at most nϵ in O(1) AMPC rounds. See Section

15.2.1 for formal definitions.

This general strategy actually works on a special class of structures, called degree-weighted

trees (defined in §15.2). Effectively, these are trees T = (V,E,W ) with a multi-dimensional

weight function where W (v) ∈ {0, 1}Õ(deg(v)) stores a vector of bits proportional in size to the

degree of the vertex v ∈ V . When we use our contracting functions, we use W to store data

about the set of vertices we are contracting. This is what allows our algorithms to retain enough
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information to construct a solution to the entire tree T when we contract sets of vertices. Note that

the degree of the surviving vertex after contraction could be much smaller than the total degree

of the original set of vertices.

Our first algorithm works on trees with bounded degree, more precisely, trees with maxi-

mum degree at most nϵ. The reason this is easier is because when an internal connected com-

ponent is contracted, we often need to encode the output of the subproblem at the root (e.g., the

maximum weighted matching on the rooted subtree) in terms of the children of this component

post-contraction. In high degree graphs, it may have many children after being contracted, and

therefore require a large encoding (i.e., one larger than O(nϵ)) and thus not fit on one machine.

In this algorithm, we find that if the degree is bounded by nϵ and we compress sufficiently

small components, then the algorithm works out much more smoothly. The underlying technique

that allows us to contract the tree into a single vertex in O(1/ϵ) iterations is a decomposition

of vertices based on their preorder numbering. The surprising fact is that each group in this

decomposition contains at most one non-leaf vertex after contracting connected components.

Thus, an additional single rake stage is sufficient to collapse any tree with n vertices to a tree

with at most n1−ϵ vertices in a single iteration. However, we need O(1/ϵ) AMPC rounds at

the beginning of each iteration to find the decomposition associated with the resulting tree after

contractions performed in the previous iteration. This becomes O(1/ϵ2) AMPC rounds across all

iterations. See Section 15.3.1 for the proofs and more details.

This is a nice independent result, proving a slightly more efficient O(1/ϵ2)-round algorithm

on degree bounded trees. Additionally, many problems on larger degree trees can be represented

by lower degree graphs. For example, both the original Miller and Reif [Miller and Reif, 1985]

tree contraction and the Betani et al. [Bateni et al., 2018a] framework consider only problems in

275



which we can replace each high degree vertex by a balanced binary tree, reducing the tree-based

computation on general trees to a slightly different computation on binary trees. Equally notably,

it is an important subroutine in our main algorithm.

Theorem 156. Consider a degree-weighted tree T = (V,E,W ) and a problem P . Given a

connected contracting function on T with respect to P , one can compute P (T ) in O(1/ϵ2) AMPC

rounds with O(nϵ) memory per machine and Õ(n) total memory if deg(v) ≤ nϵ for every vertex

v ∈ V .

Remark 157. It may be tempting to suggest that in most natural problems the input tree can be

transformed into a tree with degree bounded by nϵ. However, we briefly pose the MedianParent

problem, where leaves are given values and parents are defined recursively as the median of their

children. By transforming the tree to make it degree bounded, we lose necessary information to

find the median value among the children of a high degree vertex.

Next, we move onto our main result: a generalized tree contraction algorithm that works on

any input tree with arbitrary structure. Building on top of Theorem 156, we can create a natural

extension of tree contractions. Recall that the black-box contracting functions encode the data

associated with a contracted vertex in terms of its children post-contraction. Thus, allowing high

degree vertices introduces difficulties working with contracting functions. In particular, it is not

possible to store the weight vector W (v) of a high degree vertex v inside the local memory of a

single machine. The power of this algorithm is its ability to implement COMPRESS and RAKE

for nϵ-tree-contractions in O(1/ϵ3) rounds.

The most significant novelty of our main algorithm is the handling of high degree vertices.

To do this, we first handle all maximal connected components of low degree vertices using the
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algorithm from Theorem 156 as a black-box. This compresses each such component into one ver-

tex without needing to handle high degree vertices. By contracting these components, we obtain

a special tree called Big-Small-tree (defined formally in §15.3.2) which exhibits nice structural

properties. Since the low degree components are maximal, the degree of each vertex in every

other layer is at least nϵ, implying that a large fraction of the vertices in a Big-Small-tree must be

leaves. Hence, after a single rake stage, the number of high degree vertices drops by a factor of

nϵ.

In order to rake the leaves of high degree vertices, we have to carefully apply our sibling

contracting functions in a way that can be implemented efficiently in AMPC. Unlike Theorem 156

in which having access to a connected contracting function is sufficient, here we also require a

sibling contracting function. Consider a star tree with its center at the root. Without a sibling

contracting function, we are able to contract at most O(nϵ) vertices in each round since the

components we pass to the contracting functions must be disjoint. But having access to a sibling

contracting function, we can rake up to O(n) leaf children of a high degree vertex in O(1/ϵ)

rounds. For more details about the algorithm and proofs see Section 15.3.2.

Theorem 158. Consider a degree-weighted tree T = (V,E,W ) and a problem P . Given a

connected contracting function and a sibling contracting function on T with respect to P , one

can compute P (T ) in O(1/ϵ3) AMPC rounds with O(nϵ) memory per machine and Õ(n) total

memory.

Theorem 156 and Theorem 158 give us general tools that have the power to create efficient

AMPC algorithms for any problem that admits a connected contracting function and a sibling

contracting function. Intuitively, they reduce constant-round parallel algorithms for a specific

277



problem on trees to designing black-box contracting functions that are sequential. We should

be careful in designing contracting functions to make sure that the amount of data stored in the

surviving vertex does not asymptotically exceed its degree in the contracted tree. Also note that

a connected contracting function works with unknown values that depend on the result of other

components.

Satisfying these conditions is a factor that limits the extent of problems that can be solved

using our framework. For example, the framework of Bateni et. al [Bateni et al., 2018a] works

on a wider range of problems on trees since their algorithm, roughly speaking, tolerates exponen-

tial growth of weight vectors using a careful decomposition of tree. Indeed, they achieve these

benefits at the cost of an inherent requirement for at least O(log n) rounds due to the divide-

and-conquer nature of their algorithm. However, their framework comes short on addressing

problems such as MedianParent (defined in Remark 157) that are not reducible to binary trees.

Nonetheless, we show several techniques for designing contracting functions that satisfy these

conditions, in particular:

1. In Section 15.3.3, we prove a general approach for designing a connected contracting func-

tion and a sibling contracting function given a PRAM algorithm based on the original

Miller and Reif [Miller and Reif, 1985] tree contraction. We do this by observing that in

almost every conventional application of Miller and Reif’s framework, the length of data

stored at each vertex remains constant throughout the algorithm.

2. Storing a minimal tree representation of a connected component contracted into v in the

weight vector W (v) enables us to simplify a recursive function defined on the subtree

rooted at v in terms of yet-unknown values of its children, while keeping the length of W (v)
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asymptotically proportional to deg(v). For instance, our maximum weighted matching

algorithm (See Section 4.1 of the full version for more details) uses this approach.

Ultimately, this is a highly efficient generalization of the powerful tree contraction algo-

rithm. To illustrate the versatility of our framework, we show that it gives us efficient AMPC

algorithms for many important applications of frameworks such as Miller and Reif [Miller and

Reif, 1989]’s and Bateni et al. [Bateni et al., 2018a]’s by constructing sequential black-box con-

tracting functions. In doing so, we utilize a diverse set of techniques, including the ones men-

tioned above, that are of independent interest and can be applied to a broad range of problems on

trees. The proof Theorem 159 and more details about each application can be found in the full

version.

Theorem 159. Algorithms 20 and 21 can solve, among other applications, dynamic expres-

sion evaluation, tree isomorphism testing, maximal matching, and maximal independent set in

O(1/ϵ2) AMPC rounds, and maximum weighted matching and maximum weighted independent

set in O(1/ϵ3) AMPC rounds. All algorithms use O(nϵ) memory per machine and Õ(n) total

memory.

15.1.3 Paper Outline

The work presented in this paper is a constant-round generalized technique for solving a

large number of graph theoretic problems on trees in the AMPC model. In Section 15.2, we

go over some notable definitions and conventions we will be using throughout the paper. This

includes the introduction of a generalized weighted tree, a formalization of the general tree con-

traction process, the definition of contracting functions, and a discussion of a tree decomposition
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method we call the preorder decomposition. In the Section 15.3, we go over our main results,

algorithms, and proofs. The first result (§15.3.1) is an algorithm for executing a tree contraction-

like process which solves the same problems on trees of bounded maximum degree. The second

result (§15.3.2) utilizes the first result as well as additional novel techniques to implement gener-

alized tree contractions. We additionally show (§15.3.3) that our algorithms can also implement

Miller and Reif’s standard notion of tree contractions, and (§15.3.4) we show how to efficiently

reconstruct a solution on the entire graph by reversing the tree contracting process.

15.2 Preliminaries

In this work, we are interested in solving problems on trees T = (V,E) where |V | = n.

Our algorithms iteratively transform T by contracting components in an intelligent way that: (1)

components can be stored on a single machine, (2) the number of iterations required to contract

T to a single vertex is small, and (3) at each step of the process, we still have enough information

to solve the initial problem on T .

To achieve (3), we must retain some information about an original component after we con-

tract it. For instance, consider computing all maximal subtree sizes. For a connected component

S with r = lca(S)1, the contracted vertex vS of S might encode |S| and a list of its leaves (when

viewing S as a tree itself). It is not difficult to see that this would be sufficient knowledge to

compute all maximal subtree sizes for the rest of the vertices in T without considering all indi-

vidual vertices in S. Data such as this is encoded as a multi-dimensional weight function which

maps vertices to binary vectors. We will specifically consider trees where the dimensionality of

the weight function is bounded by the degree of the vertex.
1lca is the least common ancestor function.
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We note that in this paper, when we refer to the degree of a vertex in a rooted tree, we

ignore parents. Therefore, deg(v) is the number of children a vertex has.

Definition 160. A degree-weighted tree is a tree T = (V,E,W ) with vertex set V , edge set E,

and vertex weight vector function W such that for all v ∈ V , W (v) ∈ {0, 1}Õ(deg(v)).2

(a) Each vertex in the degree weighted tree T stores
the size of its subtree, which is 1 initially and the
structure of the subtree between each vertex and its
children using parenthesis notation which is simply a
star for every vertex at the beginning. In the paren-
thesis notation, we traverse the tree according to the
preorder numbering and put an ‘(’ whenever we go
down from a parent to a child, and a ‘)’ whenever we
go up from a child to a parent.

(b) In the contracted degree weighted tree
T ′, the structure of the yellow subgraph is
recorded in the weight vector of the root,
a tree with 4 leaves (equal to the degree of
root) which is not a star. In addition, the
size of the contracted subgraph is stored in
the weight vector of the root.

Figure 15.1: A degree weighted tree T = (V,E,W ) with |V | = 11. In Subfigure 15.1a, we have
a degree weighted tree with |Wv| ≤ 4deg(v). We contract the subgraph with 7 vertices depicted
by yellow in Subfigure 15.1a using a connected contracting function (Defined in Definition 162).
The resulting degree weighted tree T ′ is depicted in Subfigure 15.1b. Note that the length of
weight vectors in proportional to the degree of each vertex even after the contraction.

Notationally, we let w(v) = dim(W (v)) = Õ(deg(v)) be the length of the weight vectors.

Additionally, note that a tree T = (V,E) is a degree-weighted tree where W (v) = ∅ for all

v ∈ V .

In order to implement our algorithm, we also require specific contracting functions whose

properties allow us to achieve the desired result (§15.2.1). In addition, we will introduce a specific

tree decomposition method, called a preorder decomposition, that we will efficiently implement

2Õ(f(n)) = O(f(n) log n).
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and leverage in our final algorithms (§15.2.2).

15.2.1 Tree Contractions and Contracting Functions

Our algorithms provide highly efficient generalizations to Miller and Reif’s [Miller and

Reif, 1989] tree contraction algorithms. At a high level, their framework provides the means to

compute a global property with respect to a given tree in O(log n) phases. In each phase, there

are two stages:

• COMPRESS stage: Contract around half of the vertices with degree 1 into their parent.

• RAKE stage: Contract all the leaves (vertices with degree 0) into their parent.

Repeated application of COMPRESS and RAKE alternatively results in a tree which has only

one vertex. Intuitively, the COMPRESS stage aims to shorten the long chains, maximal connected

sequences of vertices whose degree is equal to 1, and the RAKE stage cleans up the leaves. Both

stages are necessary in order to guarantee that O(log n) phases are enough to end up with a single

remaining vertex [Miller and Reif, 1989].

In the original variant, every odd-indexed vertex of each chain is contracted in a COMPRESS

stage. In some randomized variants, each vertex is selected with probability 1/2 independently,

and an independent set of the selected vertices is contracted. In such variants, contracting two

consecutive vertices in a chain is avoided in order to efficiently implement the tree contraction in

the PRAM model. However, this restriction is not imposed in the AMPC model, and hence we

consider a more relaxed variant of the COMPRESS stage where each maximal chain is contracted

into a single vertex.
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We introduce a more generalized version of tree contraction called α-tree-contractions.

Here, the RAKE stage is the same as before, but in the COMPRESS stage, every maximal subgraph

containing only vertices with degree less than α is contracted into a single vertex.

Definition 161. In an α-tree-contraction of a tree T = (V,E), we repeat two stages in a number

of phases until the whole tree is contracted into a single vertex:

• COMPRESS stage: Contract every maximal connected component S containing only ver-

tices with degree less than α, i.e., deg(v) < α ∀v ∈ S, into a single vertex S ′.

• RAKE stage: Contract all the leaves into their parent.

Figure 15.2: An example phase in α-tree-contraction for α = 4. In the leftmost tree the initial
tree is depicted, and the vertices are numbered from 1 to n in the preorder ordering. In the middle
tree, we performed a COMPRESS stage to get a tree with 12 vertices. Next, we RAKE the leaves
to end up with a tree with 3 vertices depicted on the right.

Notice that the relaxed variant of Miller and Reif’s COMPRESS stage is the special case

when α = 2. Our goal will be to implement efficient α-tree-contractions where α = nϵ.

In order to implement COMPRESS and RAKE, we need fundamental tools for contracting

a single set of vertices into each other. We call these contracting functions. In the COMPRESS

stage, we must contract connected components. In the RAKE stage, we must contract leaves with

the same parent into a single vertex. These functions run locally on small sets of vertices.

Definition 162. Let P be some problem on degree-weighted trees such that for some degree-

weighted tree T , P (T ) is the solution to the problem on T . A contracting function on T with
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respect to P is a function f that replaces a set of vertices in T with a single vertex and incident

edges to form a degree-weighted tree T ′ such that P (T ) = P (T ′)3. There are two types:

1. f is a connected contracting function if f contracts4 connected components into a single

vertex of T .

2. f is a sibling contracting function if f is defined on sets of leaf siblings (i.e., leaves that

share a parent p) of T , and the new vertex is a leaf child of p.

Since the output of the contracting function is a degree-weighted tree, it implicitly must

create a weight W (v) for any newly contracted vertex v.

15.2.2 Preorder Decomposition

A preorder decomposition (formally defined shortly) is a strategy for decomposing trees

into a disjoint union of (possibly not connected) vertex groups. In this paper, we will show that

the preorder decomposition exhibits a number of nice properties (see §15.3) that will be necessary

for our tree contraction algorithms. Ultimately, we wish to find a decomposition of vertices

V1, V2, . . . , Vk ⊆ V of a given tree T = (V,E) (∪ki=1Vi = V and Vi ∩ Vj = ϕ ∀i, j : i ̸= j)

so that for all i ∈ [k], after contracting each connected component contained in the same vertex

group, the maximum degree is bounded by some given λ. Obviously, this won’t be generally

possible (i.e., consider a large star), but we will show that this holds when the maximum degree

of the input tree is bounded as well.

3With some nuance, it depends on the format of the problem. For instance, when computing the value of the
maximum independent set, the single values P (T ) and P (T ′) should be the same. When computing the maximum
independent set itself, uncontracted vertices must have the same membership in the set, and contracted vertices
represent their roots.

4Consider a connected component S with a set of external neighbors N(S) = {v ∈ V \ S : ∃u ∈ S(v, u) ∈ E}.
Then contracting S means replacing S with a single vertex with neighborhood N(S).
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The preorder decomposition is depicted in Figure 15.3a. Number the vertices by their

index in the preorder traversal of tree T , i.e., vertices are numbered 1, 2, . . . , n where vertex

i is the i-th vertex that is visited in the preorder traversal starting from vertex 1 as root. In

a preorder decomposition of T , each group Vi consists of a consecutive set of vertices in the

preorder numbering of the vertices. More precisely, let li denote the index of the vertex v ∈ Vi

with the largest index, and assume l0 = 0 for consistency. In a preorder decomposition, group Vi

consists of vertices li−1 + 1, li−1 + 2, . . . , li.

Definition 163. Given a tree T = (V,E), a “preorder decomposition” V1, V2, . . . , Vk of T is

defined by a vector l ∈ Zk+1, such that 0 = l0 < l1 < . . . < lk = n, as Vi = {li−1 + 1, li−1 +

2, . . . , li} ∀i ∈ [k]. See Subfigure 15.3a for an example.

Assume we want each Vi in our preorder decomposition to satisfy
∑

v∈Vi
deg(v) ≤ λ for

some λ. As long as deg(v) ≤ λ for all v ∈ V , we can greedily construct components V1, . . . , Vk

according to the preorder traversal, only stopping when the next vertex violates the constraint.

Since
∑

v∈V deg(v) ≤ n, it is not hard to see that this will result in O(n/λ) groups that satisfy

the degree sum constraint.

Observation 164. Consider a given tree T = (V,E). For any parameter λ such that deg(v) ≤ λ

for all v ∈ V , there is a preorder decomposition V1, V2, . . . , Vk such that ∀i ∈ [k],
∑

v∈Vi
deg(v) ≤

λ, and k = O(n/λ).

The dependency tree T ′ = (V ′, E ′), as seen in Figure 15.3b of a decomposition is useful

notion for understanding the structure of the resulting graph. In T ′, vertices represent connected

components within groups, and there is an edge between vertices if one contains a vertex that is
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a parent of a vertex in the other. This represents our contraction process and will be useful for

bounding the size of the graph after each step.

Definition 165. Given a tree T = (V,E) and a decomposition of vertices V1, V2, . . . , Vk, the

dependency tree T ′ = (V ′, E ′) of T under this decomposition is constructed by contracting each

connected component Ci,j for all j ∈ [ci] in each group Vi. We call a component contracted to a

leaf in T ′ an independent component, and a component contracted to a non-leaf vertex in T ′ a

dependent component.

(a) An example preorder decomposition of T into
V1, V2, . . . , V7 with λ = 8. Edges within any Fi are
depicted bold, and edges belonging to no Fi are de-
picted dashed.

(b) Dependency tree T ′, created by con-
tracting connected components of every
Fi. Each red vertex represents a dependent
component, and each white vertex repre-
sents an independent component.

Figure 15.3: In Subfigure (a), a preorder decomposition of a given tree T is demonstrated. Based
on this preorder decomposition, we define a dependency tree T ′ so that each connected com-
ponent S in each forest Fi is contracted into a single vertex S ′. This dependency tree T ′ is
demonstrated in Subfigure (b). It is easy to observe that the contracted components are maximal
components which are connected using bold edges in T , and each edge in T ′ corresponds to a
dashed edge in T .

15.3 Constant-round Tree Contractions in AMPC

The main results of this paper are two new algorithms. The first algorithm applies α-tree-

contraction-like methods in order to solve problems on trees where the degrees are bounded by

nϵ. Though this algorithm is similar in inspiration to the notion of tree contractions, it is not a
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true α-tree-contraction method.

Theorem 156. Consider a degree-weighted tree T = (V,E,W ) and a problem P . Given a

connected contracting function on T with respect to P , one can compute P (T ) in O(1/ϵ2) AMPC

rounds with O(nϵ) memory per machine and Õ(n) total memory if deg(v) ≤ nϵ for every vertex

v ∈ V .

This algorithm provides us with two benefits: (1) it is a standalone result that is quite

powerful in its own right and (2) it is leveraged in our main algorithm for Theorem 158. The

only differences between this result and our main result for generalized tree contractions is that

we require deg(v) ≤ nϵ, but it runs in O(1/ϵ2) rounds, as opposed to O(1/ϵ3) rounds. Thus, if

the input tree has degree bounded by nϵ, then clearly the precondition is satisfied. Additionally,

if the tree can be decomposed into a tree with bounded degree such that we can still solve the

problem on the decomposed tree, this result applies as well.

Our general results are quite similar, with a slightly worse round complexity, but with the

ability to solve the problem on all trees. Notably, it is a true α-tree-contraction algorithm.

Theorem 158. Consider a degree-weighted tree T = (V,E,W ) and a problem P . Given a

connected contracting function and a sibling contracting function on T with respect to P , one

can compute P (T ) in O(1/ϵ3) AMPC rounds with O(nϵ) memory per machine and Õ(n) total

memory.

In this section, we introduce both algorithms and prove both theorems.
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15.3.1 Contractions on Degree-Bounded Trees

We now provide an O(1/ϵ2)-round AMPC algorithm with local space O(nϵ) for solving

any problem P on a degree-weighted tree T = (V,E,W ) with bounded degree deg(v) ≤ nϵ for

all v ∈ V given a connected contracting function for P . The method, which we call Bound-

edTreeContract, can be seen in Algorithm 20.

Much like an α-tree-contraction algorithm, it can be divided into a COMPRESS and RAKE

stage. In the COMPRESS stage, instead of compressing the whole maximal components that

consist of low-degree vertices as required for α-tree-contractions, we partition the vertices into

groups using a preorder decomposition and bounding the group size by nϵ. In the RAKE stage,

since the degree is bounded by nϵ, all leaves who are children of the same vertex can fit on one

machine. Thus each sibling contraction that must occur can be computed entirely locally. If

we include the parent of the siblings, we can simply apply COMPRESS’s connected contracting

function on the children. This is why we do not need a sibling contracting function.

Let T0 = T be the input tree. For every iteration i ∈ [O(1/ϵ)]: (1) find a preorder decompo-

sition V1, . . . Vk of Ti−1, (2) contract each connected component in the preorder decomposition,

and (3) put each maximal set of leaf-siblings (i.e., leaves that share a parent) in one machine and

contract them into their parent. We sometimes refer to these maximal sets of leaf-siblings by

leaf-stars. After sufficiently many iterations, this should reduce the problem to a single vertex,

and we can simply solve the problem on the vertex.

Notice that we can view the first and second steps as the COMPRESS stage except that we

limit each component such that the sum of the degrees in each component is at most nϵ. Since

the size of the vector W (v) is w(v) = Õ(deg(v)) = Õ(nϵ), we can store an entire component (in
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Algorithm 20 BoundedTreeContract
(Computing the solution P (T ) of a problem P on degree-weighted tree T with max degree nϵ

using connected contracting function C)
Input Degree-weighted tree T = (V,E,W ) with degree bounded by nϵ and a connected

contracting function C.
Output he problem output P (T ).

1: T0 ← T
2: for i← 1 to l = O(1/ϵ) do
3: Let O be a preordering of Vi−1

4: Find a preorder decomposition V1, V2, . . . , Vk of Ti−1 with
5: λ = nϵ using O
6: Let Si−1 be the set of all connected components in Vi for all i ∈ [k]
7: Let T ′

i−1 be the result of contracting C(Si−1,j) for all Si−1,j ∈ Si−1

8: Let Li−1 be the set of all maximal leaf-stars (containing their parent) in T ′
i−1

9: Let Ti be the result of contracting C(Li−1,j) for all Li−1,j ∈ Li−1

10: end for
11: Return C(Tl)

its current, compressed state) in a single machine, thus making the second step distributable. The

third step can be viewed as a RAKE function which, as we stated, can be handled on one machine

per contraction using the connected contracting function.

In order to get O(1/ϵ2) rounds, we first would like to show that the number of phases is

bounded by O(1/ϵ). To prove this, we show that there will be at most one non-leaf node after

we contract the components in each group. In other words, the dependency tree resulting from

the preorder decomposition has at most one non-leaf node per group in the decomposition. This

is a necessary property of decomposing the tree based off the preorder traversal. To see why this

is true, consider a connected component in a partition. If it is not the last connected component

(i.e., it does not contain the partition’s last vertex according to the preorder numbering), then after

contracting, it cannot have any children.

Lemma 166. The dependency tree T ′ = (V ′, E ′) of a preorder decomposition V1, V2, . . . , Vk of

tree T = (V,E) contains at most 1 non-leaf vertex per group for a total of at most k non-leaf
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vertices. In other words, there are at most k dependent connected components in ∪i∈[k]Fi.

Proof. Each group Vi induces a forest Fi on tree T , and recall that each Fi is consisted of multiple

connected components Ci,1, Ci,2, . . . , Ci,ci , where ci is the number of connected components of

Fi. Assume w.l.o.g. component Ci,ci is the component which contains vertex li, the vertex

with the largest index in Vi. We show that every connected component in Fi except Ci,ci is

independent, and thus Lemma 166 statement is implied. See in Subfigure 15.3b that there is at

most 1 dependent component, red vertices in T ′, for each group Vi. Also note that Ci,ci , the only

possibly dependent component in Fi, is always the last component if we sort the components

based on their starting index since li ∈ Ci,ci and each Ci,j contains a consecutive set of vertices.

Assume for contradiction that there exists Ci,j for some i ∈ [k], j ∈ [ci − 1], a non-last

component in group Vi, such that Ci,j is a dependent component, or equivalently C ′
i,j is not a leaf

in T ′. Since Ci,j is a dependent component, there is a vertex v ∈ Ci,j which has a child outside

of Vi. Let u be the first such child of v in the pre-order traversal, and thus u ∈ Vj for some j > i.

Consider a vertex w ∈ Vi that comes after v in the pre-order traversal. Then, since u, and thus

Vj , comes after v and Vi in the pre-order traversal, u must come after w in the pre-order traversal.

Since w is between v and u in the pre-order traversal, and u is a child of v, the only option is

for w to be a descendant of v. Then the path from w to v consists of w, w’s parent p(w), p(w)’s

parent, and so on until we reach v. Since a parent always comes before a child in a pre-order

traversal, all the intermediate vertices on the path from w to v come between w and v in the

pre-order traversal, so they must all be in Vi. This means w is in Ci,j since w is connected to v in

Fi. Since any vertex after v in Vi must be in Ci,j , Ci,j must be the last connected component, i.e.,

j = ci. This implies that the only possibly dependent connected component of Fi is Ci,ci , and all
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other Ci,j’s for j ∈ [ci − 1] are independent.

Lemma 166 nicely fits with our result from Observation 164 to bound the total number of

phases BoundedContract requires. In addition, we can show how to implement each phase to

bound the complexity of our algorithm. Note that we are assuming that our component contract-

ing function is defined to always yield a degree-weighted tree. We only need to show that the

degrees stay bounded throughout the algorithm.

Proof of Theorem 156. In each phase of this algorithm, the only modifications to the graph that

occur are applications of the connected contracting functions to connected components of the

tree. Since these are assumed to preserve P (T ) and we simply solve P (Tl) for the final tree Tl,

correctness of the output is obvious.

An important invariant in this algorithm is the O(nϵ) bound on the degree of vertices

throughout the algorithm. At the beginning, we know that the degrees are bounded according

as it is promised in the input. We show that this bound on the maximum degree of the tree is

invariant by proving the degree of vertices are still bounded after a single contraction.

Recall that we use preorder decomposition with λ = nϵ to find the connected components

we need to contract in the COMPRESS stage. According to definition, the total degree of each

group in our decomposition is bounded by λ. After we contract a component S, the degree of the

contracted vertex vS never exceeds the sum of the degree of all vertices in S since every child of

vS is a child of exactly one of the vertices in S. Thus, the degree of vS is bounded by λ = nϵ. In

RAKE stage, we contract a number of sibling leaves into their common parent. In this case, the

degree of the parent only decreases and the bound still holds.

We now focus on round and space complexities. A preordering can be computed using the
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preorder traversal algorithm from Behnezhad et al. [Behnezhad et al., 2019c], which executed in

O(1/ϵ) rounds with O(nϵ) local space and Õ(n) total space w.h.p.5 This completes step 1. In

steps 2 and 3, the contracting functions are applied in parallel for a total of O(1) rounds (based off

our assumption about any given contracting functions) within the same space constraints. Thus,

all phases require O(1) rounds except the first, which is O(1/ϵ) rounds, and satisfy the space

constraints of our theorem.

Now we must count the phases. Lemma 166 tells us that for every group, we only have

one non-leaf component in the dependency graph after each step 2. In step 3, we then “RAKE”

all leaves into their parents. This means that the remaining number of vertices after step 3 is

equal to the number of non-leaf vertices in the dependency graph after step 2, which is k = nϵ.

Observation 164 tells us that the resulting graph size is then O(n/nϵ) = O(n1−ϵ). Therefore,

in order to get a graph where |Tl| = 1, we require O(1/ϵ) phases. Combining this with the

complexity of each phase yields the desired result.

15.3.2 Generalized α-Tree-Contractions

In the rest of this section we prove our main result: a generalized tree contraction algorithm,

Algorithm 21. Building on top of Theorem 156, we can create a natural extension of tree con-

tractions. Recall from §15.2 that in the COMPRESS stage, we must contract maximal connected

components containing only vertices v with degree d(v) < α. Conveniently, by Theorem 156,

Algorithm 20 achieves precisely this. Therefore, to implement tree contractions, we simply need

to:

1. Identify maximal connected components of low degree (Algorithm 21, line 3), which can
5This means with probability at least 1/poly(n)
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be done in O(1/ϵ) rounds by Behnezhad et al. [Behnezhad et al., 2020].

2. Use our previous algorithm to execute the COMPRESS stage on each component (Algo-

rithm 21, line 5), which can be done by Algorithm 20 in O(1/ϵ2) rounds.

3. Apply a function that can execute the RAKE stage (Algorithm 21, lines 7 through 14).

To satisfy the third step, we use a sibling contracting function (Definition 162), which can

contract leaf-siblings of the same parent into a single leaf. Since a vertex might have up to n

children, to do this in parallel, we may have to group siblings into nϵ-sized groups and repeatedly

contract until we reach one leaf. Assuming sibling contractions are locally performed inside

machines, this will then take O(1/ϵ) AMPC rounds.

Algorithm 21 TreeContract
(Computing the solution P (T ) of a problem P on degree-weighted tree T using a connected
contracting function C and a sibling contracting functionR)

Input Degree-weighted tree T = (V,E,W ), a connected contracting function C, and a
sibling contracting functionR.

Output The problem output P (T ).
1: T0 ← T
2: for i← 1 to l = O(1/ϵ) do
3: Let Si−1 ← Connectivity(Ti−1 \ {v ∈ V : deg(v) > nϵ)
4: Let Ki−1 ← Components in Si−1,j which represent a leaf in T ′

i−1

5: Contract each Si−1,j ∈ Ki−1 into S ′
i−1,j by applying BoundedTreeContract(Sj, C)

6: Let Li−1 be the set of all maximal leaf-stars (excluding their parent) in T ′
i−1

7: for Li−1,0 = {v1, v2, . . . , vk} ∈ Li−1 do
8: for j ← 1 to 1/ϵ do
9: Split Li−1,j−1 into k/njϵ parts Li−1,j,1, . . . , Li−1,j,k/njϵ each of size nϵ

10: Contract each Li−1,j,z into L′
i−1,j,z by applyingR(Li−1,j,z)

11: Let Li−1,j ← {L′
i−1,j,1, . . . , L

′
i−1,j,k/njϵ}

12: end for
13: Contract Li−1,1/ϵ by applyingR(Li−1,1/ϵ)
14: end for
15: Let Ti ← T ′

i−1

16: end for
17: Return C(Tl)
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We can show that this requires O(1/ϵ) phases to execute, and each phase takes O(1/ϵ2)

rounds to compute due to Theorem 156 and our previous argument for RAKE by sibling contrac-

tion. Thus we achieve the following result:

Theorem 158. Consider a degree-weighted tree T = (V,E,W ) and a problem P . Given a

connected contracting function and a sibling contracting function on T with respect to P , one

can compute P (T ) in O(1/ϵ3) AMPC rounds with O(nϵ) memory per machine and Õ(n) total

memory.

Recall the definition of α-tree-contraction (Definition 161) from §15.2.1. First, we prove

Lemma 167 to bound the number of phases in α-tree-contraction.

Lemma 167. For any α ≥ 2, the number of α-tree-contraction phases until we have a constant

number of vertices is bounded by O(logα(n)).

To show Lemma 167 we will introduce a few definitions. The first definition we use is a

useful way to represent the resulting tree after each COMPRESS stage. Before stating the defini-

tion, recall the Dependency Tree T ′ of a tree T from Definition 165.

Definition 168. An α-Big-Small Tree T ′ is the dependency tree of a tree T with weighted vertices

if it is a minor of T constructed by contracting all components of T made up of low vertices v

with deg(v) < α (i.e., the connected components of T if we were to simply remove all vertices u

with deg(v) ≥ α) into a single node.

We call a node v in T ′ with deg(v) > α in T a big node. All other nodes in T ′, which really

represent contracted components of small vertices in T , are called small components.

Note that a small component may not be small in itself, but it can be broken down into

smaller vertices in T . It is not hard to see the following simple property. This simply comes from
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the fact that maximal components of small degree vertices are compressed into a single small

component, thus no two small components can be adjacent.

Observation 169. No small component in an α-Big-Small tree can be the parent of another small

component.

Consider our dependency tree T ′ based off a tree T that has been compressed. Obviously,

T ′ is a minor of T constructed as described for α-Big-Small Tree because the weight of a vertex

equals its number of children (by the assumption of Lemma 167). Note a small component refers

to the compressed components, and a big node refers to nodes that were left uncompressed.

To show Lemma 167, we start by proving that the ratio of leaves to nodes in T ′ is large.

Since RAKE removes all of these leaves, this shows that T gets significantly smaller at each step.

Showing that the graph shrinks sufficiently at each phase will ultimately give us that the algorithm

terminates in a small number of phases.

Lemma 170. Let T ′
i be the tree at the end of phase i. Then the fraction of nodes that are leaves

in T ′
i is at least α/(α + 4) as long as w(v) is equal to the number of children of v for all v ∈ T ′

i

and α ≥ 2.

Proof. For our tree T ′
i , we will call the number of nodes n, the number of leaves ℓ, and the

number of big nodes b. We want to show that ℓ > nα/(α + 4). We induct on b. When b = 0, we

can have one small component in our tree, but no others can be added by Observation 169. Then

n = ℓ = 1, so ℓ > nα/(α + 4).

Now consider T ′
i has some arbitrary b number of big nodes. Since T ′

i is a tree, there must

be some big node v that has no big node descendants. Since all of its children must be small

components and they cannot have big node descendants transitively, then Observation 169 tells
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us each child of v is a leaf. Note that since v is a big node, it must have weight w(v) > α, which

also means it must have at least α children (who are all leaves) by the assumption that w(v) is

equal to the number of children.

Consider trimming T ′
i on the edge just above v. The size of this new graph is now n∗ =

n− w(v)− 1. It also has exactly one less big node than T ′
i . Therefore, inductively, we know the

number of leaves in this new graph is at least ℓ∗ ≥ α
α+4

n∗ = α
α+4

(n − w(v) − 1). Compare this

to the original tree T ′
i . When we replace v in the graph, we remove up to one leaf (the parent p of

v, if p was a leaf when we cut v), but we add w(v) new leaves. This means the number of leaves

in T ′
i is:

ℓ =ℓ∗ − 1 + w(v)

=
α

α + 4
(n− w(v)− 1)− 1 + w(v)

=
α

α + 4
n− α

α + 4
w(v)− α

α + 4
− 1 + w(v)

=
α

α + 4
n+

4

α + 4
w(v)− 2α + 4

α + 4

>
α

α + 4
n+

4

α + 4
α− 2α + 4

α + 4
(1)

≥ α

α + 4
n (2)

Where in line (1) we use that w(v) > α and in line (2) we use that α ≥ 2.

Now we can prove our lemma.

Proof of Lemma 167. To show this, we will prove that the number of nodes from the start of one

COMPRESS to the next is reduced significantly. Consider Ti as the tree before the ith COMPRESS

and T ′
i as the tree just after. Let Ti+1 be the tree just before the i + 1st COMPRESS, and let ni
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be the number of nodes in Ti, n′
i be the number of nodes in T ′

i , and ni+1 be the number of nodes

in Ti+1. Since T ′
i is a minor of Ti, it must have at most the same number of vertices as Ti, so

n′
i ≤ ni. Since Ti+1 is formed by applying RAKE to T ′

i , then it must have the number of nodes in

T ′
i minus the number of leaves in T ′

i (ℓ′i). Therefore:

ni+1 = n′
i − ℓ′i ≤ n′

i −
α

α + 4
n′
i =

4

α + 4
n′
i ≤

4

α + 4
ni

Where we apply both Lemma 170 that says ℓ′i ≥ α
α+4

n′
i and the fact that we just showed

that n′
i ≤ ni. This shows that from the start of one compress phase to another, the number of

vertices reduces by a factor of 4
α+4

. Therefore, to get to a constant number of vertices, we require

logα+4
4
(n) = O(logα(n)) phases.

Now we are ready to prove our main theorem.

Theorem 158. Consider a degree-weighted tree T = (V,E,W ) and a problem P . Given a

connected contracting function and a sibling contracting function on T with respect to P , one

can compute P (T ) in O(1/ϵ3) AMPC rounds with O(nϵ) memory per machine and Õ(n) total

memory.

Proof. We will show that our Algorithm 21 achieves this result. Lemma 167 shows that there

will be only at most O(1/ϵ) phases. In each phase i, we start by running a connectivity algo-

rithm to find maximally connected components of bounded degree, which takes O(1/ϵ) time.

Let Ki−1 be the set of connected components which are leaves in T ′
i−1. Then for each compo-

nent Si−1,j ∈ Ki−1, we run BoundedTreeContract (Algorithm 20) in parallel using only our

connected contracting function C. Since the total degree of vertices over all members of Ki−1 is
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not larger than |Ti−1| and the amount of memory required for storing a degree-weighted trees is

not larger than the total degree, the total number of machines is bounded above by O(n1−ϵ). By

definition, the maximum degree of any Si−1,j is nϵ. By Theorem 156, each instance of Bound-

edTreeContract requires O(1/ϵ2) rounds, O(|Si−1,j|ϵ) local memory and Õ(|Si−1,j|) total mem-

ory. As |Si−1,j| ≤ |Ti−1| (we know |T0| = n and it only decreases over time), we only require

at most O(nϵ) memory per machine. Since Since the total degree of vertices over all members

of Ki−1 is not larger than |Ti−1|, the total memory required is only Õ(|Ti−1|)) = Õ(n). This is

within the desired total memory constraints.

Finally,R is given to us as a sibling contractor. Consider the RAKE stage in our algorithm.

We distribute machines across maximal leaf-stars. For any leaf-star with nϵ ≤ deg(v) ≤ knϵ for

some (possibly not constant) k, we will allocate k machines to that vertex. Since again the number

of vertices is bounded above by n, this requires only O(n1−ϵ) machines. On each machine, we

allocate up to nϵ leaf-children to contract into each other. We can then contract siblings into

single vertices using R. Since there are at most n children for a single vertex, it takes at most

O(1/ϵ) rounds to contract all siblings into each other. Then, finally, we can use C to compress

the single child into its parent, which takes constant time.

Therefore, we have O(1/ϵ) phases which require O(1/ϵ2) rounds each, so the total number

of rounds is at most O(1/ϵ3). We have also showed that throughout the algorithm, we maintain

O(nϵ) memory per machine and Õ(n) total memory. This concludes the proof.
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15.3.3 Simulating 2-tree-contraction in O(1) AMPC rounds

Due to Theorem 158, we can compute any P (T ) on trees as long as we are provided

with a connected contracting function and a sibling contracting function with respect to P . A

natural question that arises is the following: for which class of problem P there exists black-box

contracting functions? We argue that many problems P for which we have a 2-tree-contraction

algorithm can also be computed in O(1/ϵ3) AMPC rounds using nϵ-tree-contraction.

In many problems which are efficiently implementable in the Miller and Reif [Miller and

Reif, 1989] Tree Contraction framework, we are given C andR contracting functions, for COM-

PRESS and RAKE stages respectively, which contract only one node: either a leaf in case of RAKE

or a vertex with only one child in case of COMPRESS. Let us call this kind of contracting func-

tions unary contracting functions and denote them by C1 and R1. This is a key point of original

variants of Tree Contraction which contract odd-indexed vertices, or contract a maximal inde-

pendent set of randomly selected vertices. Working efficiently regardless of using only unary

contracting functions is the reason Tree Contraction was considered a fundamental framework

for designing parallel algorithms on trees in more restricted models such as PRAM. For exam-

ple, in the EREW variant of PRAM, an O(log(n)) rounds tree contraction requires to use only

unary contracting functions R1 and C1. More generally, we define i-ary contracting functions as

follows.

Definition 171. An “i-ary contracting function”, denoted by Ci or Ri, is a contracting func-

tion which admits a subset S = {v1, v2, . . . , vk} of at most i + 1 vertices at a time such that∑k
j=1 deg(vj) = O(i). A special case of i-ary contracting functions, are “unary contracting func-

tions”, denoted by C1 orR1, which contract only one vertex at a time.
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However, in the the AMPC model, we can contract the chains more efficiently, and thus

we are allowed to utilize more relaxed variants of COMPRESS stage. Furthermore, as we show

in Theorem 172, designing unary contracting functions C1 and R1 is not easier than designing

i-ary contracting functions Ci and Ri in the AMPC model. We show this by reducing Ci and

Ri to C1 and R1 in O(1) rounds for any i = O(nϵ). In other words, the restrictions of PRAM

model, which requires C1 and R1 exclusively, enables us to directly translate a vast literature of

problems solved using tree contraction to efficient AMPC algorithms for the same problem given

C1 andR1.

As we have shown in Theorem 158, it is possible to solve any problem P (T ) in O(1/ϵ3)

AMPC rounds given a connected contracting function C and a sibling contracting function R,

where both are nϵ-ary contracting with respect to P . In what follows, we demonstrate the con-

struction of nϵ-ary contracting functions given a unary connected contracting function C1 and a

sibling contracting functionR1.

Theorem 172. Given a unary connected contracting function C1 and a unary sibling contracting

function R1 with respect to a problem P defined on trees, one can build an i-ary connected

contracting function Ci and an i-ary sibling contracting function Ri with respect to P and both

Ci andRi run in one AMPC rounds as long as i = O(nϵ).

Proof. First, we present an algorithm for Ci. We are given a connected subtree induced by S =

{v1, v2, . . . , vk} of T so that
∑k

j=1 degT (vj) = O(i). Since i = O(nϵ), the whole subtree fits

into the memory of a single machine. Some of the leaves of this subtree are known, meaning

that they are a leaf also in T , and others are unknown, meaning that they have children outside S.

Let U = {u1, u2, . . . , ul} be the set of the children of unknown leaves as well as the children of

300



non-leaf nodes which are outside of S. Ultimately, we want to compress the data already stored

on the vertices of S into a memory of Õ(l) as the degree of v1 in the contracted tree T ′ will be

l + 1, and thus degT ′(v1) = l + 1.

The W (v1) of each contracted vertex v1 is a weighted-degreee tree structure T C(v1) whose

leaves are the children of v1 in T ′, and there is no vertex with exactly one child in T C(v1).

Thus, the number of vertices in T C(v1) is bounded by O(l) = O(degT ′(v1)). In addition, we are

guaranteed that the total size of vectors on each vertex of T C(v1) is bounded by |T C(v1)| since

C1 and R1 are unary contracting functions. Therefore, we assume each W (vj) for each vertex

vj ∈ S has stored a tree structure of size Õ(degT (vj)). We concatenate all these trees to get an

initial T C(v1) whose size is bounded by
∑k

j=1 Õ(degT (vj)) = Õ(nϵ).

We run a 2-tree-contraction-like algorithm locally on T C(v1) using C1 and R1. Note that

we can only rake the known leaves since the data of unknown leaves depend on their children.

We repeating COMPRESS and RAKE stages until there is no known leaf or a vertex with one child

remain in T C(v1). Then, according to Lemma 167 for α = 2, the number of remaining vertices

in T C(v1) is bounded by O(l). We store the final T C(v1) in T ′ which requires a memory of

Õ(l) = Õ(wT ′(v1)). Hence, Ci satisfies the size-constraint on the weight vectors of the resulting

weighted-degree tree.

Finally, we present an algorithm for Ri which is more straight-forward compared to that

of Ci. We are given a leaf-star S = {v1, v2, . . . , vk} of T so that
∑k

j=1 degT (vj) = O(i). This

implies that there are at most O(nϵ) vertices in S as long as i = O(nϵ), and we can fit the whole

S into a memory of a single machine. To simulate Ri, we only need to k − 1 times apply R1 on

Sj = {v1, vj+1} at the j-th iteration. Note that every vj ∈ S is a leaf in T , so the data stored in

W (vj) is just Õ(1) bits and not a tree structure. Theorem 172 statement is implied.
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15.3.4 Reconstructing the Tree for Linear-sized Output Problems

Consider a problem P (T ) whose output size is also linear in the size of input n. For

instance, in maximum weighted matching we need to find the matching itself. Up to this point,

in all of our algorithms, we assume the output of function P (T ) is of constant-sized. We simply

contract the tree through some iterations until it collapses into a single vertex, and we do not need

to remember anything about a vertex which is contracted as a member of a connected component

or as a member of a leaf-star.

In this section, we present a general approach for retrieving the linear-sized solution in a

natural scenario, where we need to retrieve a recursively-defined weight vector P (v) of constant

size for each vertex v ∈ V . In the special case of maximum weighted matching which can be

formulated as a dynamic programming problem, P (v) contains the final value of different DP

values with respect to the subtree rooted at v6.

Roughly speaking, our reconstruction algorithm is based on storing the information about

components we contracted throughout the algorithm in an auxiliary memory of size O(n). It

is easy to observe that if we store the degree-weighted subtree of every connected component or

leaf-star that we contract during the algorithm we need at most O(n) addition total memory. Note

that during each application of black-box contracting functions, we remove at least one vertex

from the tree and each vertex except root is removed exactly once when the algorithm terminates.

Namely, for every phase i we need to store Si and Li in Algorithm 20, and Ki and every Li,j,z

in Algorithm 21 (In addition to the data stored by each black-box application of Algorithm 20).

Since we have adaptive access to these subsets in AMPC, it is sufficient to index them by the id

6Note that retrieving P (v) for each vertex v still does not give us the optimum matching and a problem-specific
post-processing step is required to retrieve the actual matching
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of the surviving vertex of each subset.

The full reconstruction algorithm starts after the main contraction algorithm finishes. We

only need to store the information about contracted subsets during the running time of the con-

traction algorithm. Next, we iterate over the phases of the algorithm in reverse order, i.e.,

i = {1/ϵ, 1/ϵ − 1, . . . , 1}, and undo the contractions that were performed during phase i. Let

Cv be a connected contracted component rooted at v, and {w1, w2, . . . , wk} be children of v

post-contraction.

Whenever we undo a connected contraction like Cv, we replace v with the whole structure

of Cv including W (u) for every u ∈ Cv, u ̸= v. Then we populate the P (u) for every u ∈

Cv, u ̸= v. During the contraction algorithm P (wj) is not known for any j. However, during the

reconstruction we know P (wj) for every 1 ≤ j ≤ k since these vertices are contracted in a later

phase than the phase we contract Cv. Hence, we have already populated P (wj) and we can use

these values to locally populate P (u) for every u ∈ Cv. Undoing the sibling contracting functions

in much simpler since their values do not depend on other vertices nor the value of other vertices

depend on their value. We populate P (u) for every u ∈ L, where L is a leaf-star, based on the

already constant-sized weight vectors W (u).

15.4 Conclusion

This paper introduces some of the first generalized techniques for solving various prob-

lems in the AMPC model. Specifically, we show that Miller and Reif’s [Miller and Reif, 1985]

O(log n)-time PRAM tree contraction algorithm can be efficiently extended to a constant-round

low-memory AMPC algorithm. This implies O(1/ϵ2)-round algorithms for expression evalu-
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ation, tree isomorphism testing, maximal matching on trees, and maximal independent set on

trees. It additionally implies O(1/ϵ3)-round algorithms for maximum weighted matching and

maximum weighted independent set on trees. However, we expect these algorithms to have much

broader applications to tree-based problems, as did the original work by Miller and Reif.

It remains to be seen precisely which of extensions of the PRAM algorithm apply to the

AMPC model. Many of them require computational overhead beyond the black-box applica-

tion of the tree contraction process (which our algorithm can directly and efficiently simulate),

therefore the extension of those applications to this work is highly non-trivial. Of notable in-

terest is the application of tree contractions to graphs of bounded treewidth, where Bodlaender

and Hagerup [Bodlaender and Hagerup, 1995] showed how to construct low-width tree decom-

positions using PRAM tree contractions. If AMPC tree contractions can also solve this and

additionally solve tree contractions on graphs of bounded tree-width, then our work can be no-

tably generalized. Another potential course of research is the exploration of problems such as

MedianParent, which cannot be simplified to problems on trees with bounded tree width. It is

an open question if these, too can be solved in O(1/ϵ2) rounds.
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Chapter 16: Adaptive Massively Parallel Algorithms for Cut Problems

16.1 Introduction

Massively Parallel Computation (MPC) – introduced by Karloff et al. [Karloff et al., 2010]

in 2010 – is an abstract model that captures the capabilities of the modern parallel/distributed

frameworks widely used in practice such as MapReduce [Dean and Ghemawat, 2008], Hadoop [White,

2009], Flume [Chambers et al., 2010], and Spark [Zaharia et al., 2016]. MPC has been at the

forefront of the research on parallel algorithms in the past decade, and it is now known as the de

facto standard computation model for the analysis of parallel algorithms.

In this paper, we focus on sublogarithmic-round algorithms for the Min Cut problem in the

Adaptive Massively Parallel Computation (AMPC) model, which is a recent extension of MPC.

In both MPC and AMPC, the input data is far larger than the memory of a single machine, and

thus an input of size N is initially distributed across a collection of P machines. In the MPC

model, the algorithm executes in several synchronous rounds, in which each machine executes

local computations isolated from other machines, and the machines can only communicate at the

end of a round. The total size of incoming/outgoing messages for each machine is limited by

local memory constraints. We are interested in fully-scalable algorithms in which every machine

is allocated a local memory of size O(Nϵ) for any constant 0 < ϵ < 1. Moreover, we can often
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improve the round complexity1 of the massively parallel algorithms by allowing a super-linear

total memory O(N1+ϵ), for example, the filtering technique of Lattenzi et al. [Lattanzi et al.,

2011] in MPC or the maximal matching algorithm of Behnezhad et al. [Behnezhad et al., 2020]

in AMPC. So we are primarily interested in algorithms with Õ(N) total memory, and therefore

we assume there are P = Õ(N1−ϵ) machines. 2

Recent developments in the hardware infrastructure and new technologies such as RDMA [Drago-

jevic et al., 2017], eRPC, and Farm [Dragojević et al., 2014] allow for high-throughput, low-

latency communication among machines in data centers, such that remote volatile memory ac-

cesses are becoming faster than accessing local persistent storage. The concept of a shared remote

memory is in particular useful when machines need to query data adaptively – i.e., deciding what

to query next based on the previously queried data – which requires a communication round per

query in the MPC model. Behnezhad et al. [Behnezhad et al., 2019c] incorporates this RDMA-

like paradigm of remote memory access into the MPC model and introduces AMPC. In the new

model, the machines can adaptively query from a distributed hash table, or a shared read-only

memory, during each round. Machines are only allowed to write to shared memory at the end

of each round. There is also empirical evidence that AMPC algorithms for several problems

– including maximal independent set, maximal matching, and connectivity – obtain significant

speedups in running time compared to state-of-the-art MPC algorithms [Behnezhad et al., 2020].

This fact, which stems from the meaningful drop in the number of communication rounds, veri-

fies the practical power of the AMPC model.

In this paper, we provide the first AMPC-specific algorithms for the Min Cut problem. The

1The number of rounds is a main complexity of interest since in practice the bottleneck is often the communica-
tion phase.

2Where Õ hides polylogarithmic factors, i.e., Õ(f(n)) = O(f(n)poly log(n)).
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Min Cut of a given graph G = (V,E) is the minimum number of outgoing edges, δ(S), among

every subset of vertices S ⊆ V . The celebrated result of Karger and Stein [Karger and Stein,

1996] solves Min Cut by recursively contracting edges in random order. Specifically, it runs

two instances of the contraction process with different seeds in parallel. Each instance is run in

parallel until the graph size is reduced by a factor of 1√
2
, at which point each instance recurses

(thereby creating a parallel split again). They return the minimum of the two returned cuts. The

algorithm itself is mainly inspired by another result of Karger [Karger, 1993] for finding the Min

Cut using graph contractions. We also extend our approach to the Min k-Cut problem, in which

we are given a graph G = (V,E) and an integer k and we want to find a decomposition of V

into k subsets V1, V2, . . . , Vk so that
∑k

i=1 δ(Vi) is minimized. We utilize the greedy algorithm

of Saran and Vazirani [Saran and Vazirani, 1995] which gives an O(2− 2
k
)-approximation of the

Min k-Cut. Gomuri and Hu give an alternative algorithm with the same approximation guarantee

with additional features [Gomory and Hu, 1961].

We study the Min Cut and Min k-Cut problems in the AMPC model. We give O(log log n)-

round AMPC algorithms for a (2 + ϵ)-approximation of Min Cut and a (4 + ϵ)-approximation

of Min k-Cut.

16.1.1 Adaptive Massively Parallel Computation (AMPC)

Massively Parallel Computation (MPC) and Adaptive Massively Parallel Computation

(AMPC) both sprung out of an interest in formalizing a theoretical model for the famous

MapReduce programming framework. The most common problems in MPC and AMPC are

on graph inputs, and since our paper only considers graph problems, we define these two models
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in terms of problems on graphs. Consider a graph G = (V,E) with n = |V | and m = |E|.

In standard MPC [Goodrich et al., 2011, Andoni et al., 2014, Karloff et al., 2010, Lattanzi

et al., 2011], we are given a collection of P machines and are allowed to compute the solution to

a problem in parallel. As we have already discussed, MPC computation occurs in synchronous

rounds, each consisting of local polynomial-time computation and ending with machine-machine

communication where all messages sent to and from a machine must fit within its local memory.

Fully-scalable algorithms, the strongest memory regime in MPC, require the local memory to

be constrained by O(nϵ) for any given 0 < ϵ < 1. Additionally, we are primarily interested in

algorithms that require at most O(log n) rounds. However, often sublogarithmic – i.e., O(
√
log n)

or O(log log n) – round complexity is much more desirable. In most cases, the total space must

be at most Õ(n+m), though sometimes we allow slightly superlinear total space.

AMPC extends MPC to add functionality while remaining implementable on modern hard-

ware. Formally, in the AMPC model, we are given a set of distributed hash tablesH0, . . . ,Hk for

each of the k rounds of computation. These hash tables are each limited in size by the total space

of the model (i.e., Õ(n+m)). As in MPC, we are given a number of machines and computation

proceeds in rounds. In each round, local computations occur and then messages are sent between

machines. The distinction in AMPC is that during the local computations, machines are allowed

simultaneous read access to the hash table for that round (i.e., Hi−1 for round i) and during the

messaging phase of the round, they are allowed to write data to the next hash table, Hi. Reading

and writing is limited by machine local memory. The power of the AMPC model over the MPC

model is that, at the beginning of a round, the machines do not need to choose all the data they

will access during the round. Instead, they can dynamically access the data stored in the hash

table over the course of the local computation, thus potentially selecting data based on its own
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local computation.

It is not too hard to see that AMPC is a strictly stronger model than MPC. In fact, it was

formally shown that all MPC algorithms can be implemented in AMPC with the same round and

space complexities [Behnezhad et al., 2019c].

16.1.2 Our Contributions and Methods

This work is the first to study the Adaptive Massively Parallel Computation (AMPC) model

for Min Cut problems on graphs. We mainly focus on the standard single Min Cut problem, al-

though we also propose an approximation algorithm for the Min k-Cut problem. Our main result

for the Min Cut problem is a 2 + ϵ approximate algorithm that uses sublogarithmic O(log log n)

rounds.

Theorem 173. There is an O(log log n)-round AMPC algorithm that uses Õ(n+m) total mem-

ory and Õ(nϵ) memory per machine which finds a (2 + ϵ)-approximation of Min Cut with high

probability.

Note that this is a vast improvement over the current state-of-the art algorithms in MPC

by Ghaffari and Nowicki [Ghaffari and Nowicki, 2020], which achieves the same 2 + ϵ approx-

imation in O(log n log log n) rounds. Both our algorithm and that of Ghaffari and Nowicki use

Karger’s methods as a general structure for finding the Min Cut. Using this method, the goal is

to recursively execute random graph contractions. From the results of Karger, the contraction

process either finds a singleton cut that is a 2 + ϵ approximation or preserves a specific Min Cut

with probability dependent on the depth of recursion. To leverage this result, at each step of the

recursion process, we find the best singleton cut on the existing graph. Once the graph is small
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enough, the problem can be solved efficiently. Out of all the singleton solutions found during this

process and the final Min Cut on the small graph, we simply select the best cut. This is a 2 + ϵ

approximate Min Cut with high probability.

To implement this approach in a distributed model, both methods assign random weights

to the edges of the input graph and find a minimum spanning tree (MST). Greedily, selecting

edges in order of decreasing weight, we contract the graph along the current edge. This process

is equivalent to the same greedy random contraction process on the original graph. This step,

already, currently requires at least Ω(log n) rounds in MPC, but the flexibility of the AMPC

model allows us to achieve this step in a constant number of rounds.

It remains to show how can one find the best singleton cuts at each level of recursion. In

order to do this, we employ a low-depth tree decomposition on the minimum spanning tree until

it becomes a set of separated vertices. On top of this recursive divide-and-conquer process, we

design a process to compute and remember the best singleton cut.

The high level idea of recursively partitioning the tree and applying a process on top of

that to find the best singleton cut is the same in both our paper and Ghaffari and Nowicki’s

paper [Ghaffari and Nowicki, 2020]. However, the processes used to do this in MPC do not yield

simple improvements in AMPC. Rather, we must use entirely novel techniques that leverage

adaptivity to get truly sublogarithmic results. In fact, this must be done in constant rounds to

achieve our results, whereas Ghaffari and Nowicki do this in O(log n) rounds. In order to create

a tree decomposition, we consider maximal paths of heavy edges (i.e., edges that go from a parent

to its child with the largest subtree). These paths are replaced by binary trees whose leaves are

the path and the root connects to the path’s parent. Consider labeling the resulting vertices in

the graph with their depth. For each internal node in one of these binary trees, which was not a
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vertex in the original tree, we select a specific descendant leaf in the binary tree expansion of the

path to send its depth to. The final value a vertex receives is then what we call the “label”, which

measures at what level of recursion the tree splits at that vertex. An entire labeling of the tree

encodes an entire tree decomposition. This is done in constant AMPC rounds.

To compute the singleton cuts at each level, we assign to each singleton cut formed during

the contraction process a vertex that has the lowest label. We show that such vertices are well-

defined, i.e. there is only one vertex with the lowest label within vertices on the same side

of a singleton cut. Because removing vertices of labels lower than i partitions the tree into

disjoint subtrees such that each subtree contains at most one vertex with label i, we are able

to calculate minimal singleton cuts corresponding to these vertices with label i in parallel in a

constant number of AMPC rounds. Since, we constructed the low-depth decomposition such that

the range of labels has size O(log2 n), thus, by increasing the total memory, we can perform these

computations for all different lables in a constant number of AMPC rounds. For more details, we

defer to Section 16.4.

We then show how this work can be leveraged to achieve efficient results for approximate

Min k-Cut, generalizing the results from Saran and Vazirani [Saran and Vazirani, 1995]. At a

high level, we start by computing a Min Cut. Then we add the edges of the cut to a set D. In all

following k − 1 iterations, we calculate the Min Cut on the graph without edges in D, and add

the new cut edges to D for the next iteration. The set of the first k cuts we compute is our k-cut.

Compared to Saran’s and Vazirani’s technique, our method uses an approximate Min Cut

rather than an exact Min Cut on each splitting step. This requires adapted analysis of this general

approach. We employ the structure of Gomory-Hu trees (see [Gomory and Hu, 1961]) for this

purpose and show the following result:
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Theorem 174. Algorithm APX-SPLIT is an (4 + ϵ) approximation of the Min k-Cut. Further-

more, it can be implemented in the AMPC model with O(nϵ) memory per machine in O(k log log n)

rounds and O(m) total memory.

Therefore, for small values of k, we can achieve efficent algorithms for 4 + ϵ approximate

Min k-Cut in AMPC. Note that there are no existing results in the MPC model, however our

methods applied to the work of Ghaffari and Nowicki [Ghaffari and Nowicki, 2020] yield:

Corollary 175. There is an algorithm that achieves a (4+ϵ) approximation of the Min k-Cut with

high probability that can be implemented in the MPC model with O(nϵ) memory per machine in

O(k log n log log n) rounds and O(m) total memory.

Note there is still a logarithmic-in-n improvement in the round complexity in AMPC over

MPC no matter the value of k. Due to space constraints both these result are presented in the

appendix.

16.2 Minimum Cut in AMPC

Karger and Stein [Karger and Stein, 1996] proposed a foundational edge contraction strat-

egy for solving Min Cut:

• Create two copies of G, and independently on each, contract edges in a random order until

there are at most n√
2

vertices.

• Recursively solve the problem on each contracted copy until they have constant size.

• Return the minimum of the cuts found on both copies.
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Lemma 176 ( [Karger and Stein, 1996]). The contraction process executed to the point where

there are only n
t

vertices left preserves any fixed minimum cut with probability Ω
(

1
t2

)
.

According to Lemma 176, naively contracting random edges until there are only two ver-

tices remaining preserves at least one minimum cut with probability Ω
(

1
n2

)
. Thus, we need to

repeat the naive contraction process at least O (n2 log n) times so that we have a high probability

of success, i.e., preserving a minimum cut. However, Karger and Stein [Karger and Stein, 1996]

show that their recursive strategy succeeds with probability Ω
(

1
logn

)
. In turn, running O

(
log2 n

)
instances of the recursive strategy is enough to find a minimum cut with high probability.

Roughly speaking, the choice of t =
√
2 as the inverse of the branching factor assures that

a minimum cut is preserved with probability 1
t2

= 1
2

throughout the contractions in each copy.

Thus, the probability of success, say P (n), for n vertices is bounded by:

P (n) ≥ 1−
(
1− 1

2
· P
(

n√
2

))2

(16.1)

Note that the random contractions in two copies are assumed to be independent, and the

probability of success for each copy is at least 1
2
· P
(

n√
2

)
since we recurse on the resulting

contracted graph with n√
2

vertices. Inequality (16.1) implies that at the k-th level of recursion

(counting from the bottom), the probability of success is Ω
(
1
k

)
, and in particular Ω

(
1

logn

)
at the

root of recursion. [Karger and Stein, 1996].

Let us now give some high-level insight into the approach by Ghaffari’s and Nowicki.

Ghaffari and Nowicki [Ghaffari and Nowicki, 2020] observed that if we only desire a (2 + ϵ)

approximate cut, we can use a better bound for the probability of preserving a minimum cut, or

alternatively, the success probability.
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Lemma 177 ( [Ghaffari and Nowicki, 2020, Karger and Stein, 1996]). On an n-vertex graph

G, let C be a minimum cut with weight λ. Fix an arbitrary ϵ ∈ (0, 1). The described random

contraction process that contracts G down to n
t

vertices either at some step creates a singleton

cut of size at most (2 + ϵ)λ or preserves C - i.e., it does not contract any of its edges - with

probability at least 1
t1−ϵ/3 .

A singleton cut is a partitioning of graph vertices so that there is only one vertex on one

side, i.e., δ(S) so that |S| = 1. Assuming that one is able to verify whether a singleton cut of a

small size has been formed during the contraction process, they show that this greater probability

of success can boost the recursive process. In short, consider the k-th level of recursion, where

level 0 corresponds to the bottom level. Let n
tk

be the size of a single recursive instance at level

k, and denote by sk the total number of instances on this level. For all k, they ensure sk = t
1−ϵ/3
k .

Now, let x1−ϵ/3
k be the branching factor on level k. That is, the recursion produces x1−ϵ/3

k

copies of the instance at level k, and on each of them independently contracts edges in a random

order until the number of vertices is bigger than n
tk
· 1
xk

. If we have an algorithm that is able to

track whether a small singleton cut appeared in each of these random processes, we either get

a singleton cut that (2 + ϵ) approximates a minimum cut or a minimum cut is preserved with

probability x
1−ϵ/3
k . Since we made x

1−ϵ/3
k copies, by a similar argument as in Karger’s approach,

we get that, in the latter case, the probability of preserving a minimum cut is Ω
(
1
k

)
.

Finally, observe that on the k-th level of recursion, the most costly operation is copying

a k-th level instance x
1−ϵ/3
k times in order to contract edges in each of these instances. Since

the instance has size n
tk

and we have sk instances, processing these tasks in parallel requires

n
tk
· sk · x1−ϵ/3

k space. If one want to fit this in O(n) space, then it must be that xk ≤ t
(ϵ/3)/(1−ϵ/3)
k .
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Anyway, we get that the number of contractions we can make on k-th level is polynomial in the

number of contractions we made on higher levels, and if the recurrence is solved, then it follows

that it will be O(log log n) levels until we reach a graph of a constant size.

Ghaffari and Nowicki [Ghaffari and Nowicki, 2020], use Lemma 177 and the above boost-

ing scheme to show an O(log log n · log n)-round MPC algorithm for Min Cut. The main non-

trivial part of their algorithm involves tracking the smallest singleton cut on each recursion level,

which they do in O(log n) rounds because of the divide and conquer nature of their approach.

Effectively, they assign all edges random and unique edge weights, and contract all uncontracted

edges in decreasing order by edge weight. It can then be shown that all that needs to be done is

to compute the MST of this graph and contract these edges accordingly (all other edges will be

automatically contracted when another edge is contracted). We reduce the number of rounds for

singleton cut tracking down to O(1) rounds in the AMPC model. We aim to prove the following

theorem.

Theorem 173. There is an O(log log n)-round AMPC algorithm that uses Õ(n+m) total mem-

ory and Õ(nϵ) memory per machine which finds a (2 + ϵ)-approximation of Min Cut with high

probability.

To track singleton cuts, the first step is to find a low depth decomposition of the current

MST. At a high level, a low depth decomposition of a tree is a labeling of its vertices with values

1 through d, where d is the depth. This label must satisfy the following: for every level i ∈ [d], the

connected components induced on vertices with label at least i must contain at most one vertex

for each i. This defines a recursive splitting process: starting at depth 1, there must be at most one

vertex v with the minimum label, so we can split the tree into multiple parts by removing v. Then
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we simply recurse on each connected component, considering the next set of labels, and knowing

the process will always split each connected component once at a time. This is the general idea

captured by both this and previous works. However, in order to increase the efficiency of this

step, we require a new decomposition structure (see Definition 178) and new methods for finding

the decomposition. Notice that it is always true that at each level, each connected component

contains at most one vertex at the next level.

In Section 16.3, we show how to find a low depth decomposition with depth O(log2 n)

in AMPC in O(1/ϵ) rounds (Lemma 179) with O(nϵ) space per machine. Roughly speaking,

we create a heavy-light decomposition of the MST, where we store “heavy paths” consisting of

edges connecting vertices to their children with the largest number of descendants and isolated

“light nodes”. We replace each heavy path with a complete binary tree whose leaves contain the

vertices in the path, which gives us an efficient structure to obtain our labeling. This yields our

low depth decomposition.

In the next step, we compute the size of of every singleton cut S that is created during the

process. Note that the contractions are inherently sequential and the number of contractions we

need to make at step k is xk ∈ O(n). However, each singleton cut is a connected component on

the MST containing a specific edge e, whose contraction – in the increasing order of contracting

MST edges – results in subset S, if we only allow the edges that have a smaller weight than e. We

partition these connected components based on the vertex in the cut with the lowest level in the

heavy-light decomposition of the MST. This way, we can compute every level of the low depth

decomposition in parallel with only an O(log2 n) blowup in total memory. In Section 16.4, we

show that we can track every singleton cut in the contraction process in O(1) AMPC rounds. A

high level pseudocode of the main algorithm is given in Algorithm 22.
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Algorithm 22 AMPC-MinCut
(An algorithm that calculates (2+ϵ) approximation of Min Cut in G. The novel part is underlined.
)

Input A graph G = (V (G), E(G)), a parameter k
Output (2 + ϵ) approximation of Min Cut.

1: if |G| ∈ nϵ then
2: Return Min Cut of G calculated on a single machine
3: end if
4: Let Ĝ1, . . ., Ĝk be copies of G with assigned random weight on edges (independently for

each copy)
5: In parallel for all i ∈ [k], Si← MinSingletonCut(Ĝi)

6: In parallel for all i ∈ [k], Gi← copy of Ĝi after first k contractions
7: In parallel, Ci← AMPC-MinCut(Gi)
8: min(S1, . . . , Sk, C1, . . . , Ck)

Note that MinSingletonCut (Algorithm 24) is introduced in Section 16.4 and it leverages

LowDepthDecomp (Algorithm 23) from Section 16.3.

16.3 Generalized Low Depth Tree Decomposition

This section and the next address our algorithmic formulation and analysis. Note that all

omitted proofs are deferred to the Appendix.

In order to efficiently compute the singleton cuts in parallel, we first need to compute

an efficient decomposition of the MST. The low depth tree decomposition Ghaffari and Now-

icki [Ghaffari and Nowicki, 2020] introduce is a very specific decomposition with i levels such

that at each level ℓ, any connected component of size s on vertices at that level or higher has a sin-

gle vertex at level ℓ that separates the component into two components with size at least s/3 each.

Unfortunately, it is unclear how to calculate this precise decomposition efficiently in AMPC. To

work around this, we introduce a more generalized version of the low depth tree decomposition,

show that it can be computed in AMPC, and later show that we can leverage this to obtain our
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Min Cut algorithm.

Definition 178. A generalized low depth tree decomposition of some tree T is a labeling ℓ :

V (T ) → [h] of vertices with levels for decomposition height h ∈ O(log2 n) such that for each

level i, the connected components induced on T i = {v ∈ T : ℓ(v) ≥ i} have at most one vertex

labeled i each.

Notice we do not define how a level is assigned; we simply require it is assigned to satisfy

the property on connected components. We describe one way to do that in this section.

To see what such a decomposition looks like, consider a process where at timestep t we

look at the subgraph induced on the vertices v with ℓ(v) ≥ t (i.e., T t). Consider a connected

component C and let v be its minimum level vertex. Then ℓ(v) ≥ t, and it is the only vertex at

that level in C. At timestep ℓ(v) + 1, C becomes separated into multiple components who all

contain a vertex adjacent to v. This process defines forests with smaller and smaller trees as time

passes, and eventually results in isolated vertices. The completion time of this process depends

on the height of the decomposition, which in our case is O(log2 n). We will, of course, make this

more efficient in Section 16.4.

It is not that hard to see that Ghaffari and Nowicki’s low depth tree decomposition is a

specific example of generalized tree decomposition with depth O(log n). They put a single vertex

in the first level and then simply recurse on the two trees in the remaining forest. Note that they

require additional properties of this decomposition to obtain their result, specifically that each

new component has size at least 1
3

of the original component, but we will see later that these are

not necessary for finding the singleton cuts.

Like Ghaffari and Nowicki in MPC, we prove this can be computed efficiently in, instead,
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AMPC.

Lemma 179. Computing a generalized low depth tree decomposition of an n-vertex tree can be

done in O(1/ϵ) AMPC rounds with O(nϵ) memory per machine and O(n log2 n) total memory.

The rest of this section is dedicated to proving Lemma 179. The formal and complete

algorithm is shown in Algorithm 23 and further details and definitions can be found later in this

section. At a high level, our algorithm proceeds as follows:

1. Root the tree and orient the edges [line 2].

2. Contract heavy paths in a heavy-light decomposition of T into meta vertices to construct a

meta tree, TM [lines 3 to 5].

3. For each meta vertex, create a binarized path, a binary tree whose leaves are the vertices in

the heavy path, in order. Expanding meta vertices in this manner yields our expanded meta

tree [lines 7 to 11].

4. Label each vertex according to properties of the expanded meta tree. For all new vertices

(i.e., vertices created in step 3) v, label v with the depth of the highest vertex u in the same

meta node such that v is the leftmost leaf descending from the rightmost child of u in the

binarized path of the meta node [lines 13 to 15].

Each of these steps correspond to the following subsections. For instance, step 1 corre-

sponds to Section 16.3.1. All relevant terminology related to these steps are additionally found

in the corresponding subsections. Lemma 179 is proven at the end of the final subsection.
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Algorithm 23 LowDepthDecomp
(Computing a generalized low depth tree decomposition of an input tree in AMPC)

Input A tree T = (V (T ), E(T )).
Output A mapping ℓ : V (T )→ N of tree vertices to levels.

1: Initialize ℓ : V (T )→ N
2: Root and orient T
3: Let TH = (V (T ), {e ∈ E(T ) : e is heavy}
4: Let P be the connected components of TH

5: Let TM = (P , {(P1, P2) : P1, P2 ∈ P ,∃(u1, u2) ∈ V (P1) × V (P2) such that (u1, u2) ∈
E(T )})

6: for v ∈ TM of heavy path Pv in parallel do
7: Let V (Tv) be a vertex set of size 2|Pv| − 1 with associated indices 1, . . . , 2|Pv| − 1,

denoted by iu
8: Let Tv = (V (Tv), {(u, pu) : ipu = ⌊iu/2⌋})
9: Pre-order traverse T and sort Pv accordingly

10: Pre-order traverse Tv and let L be its sorted leaves
11: For all i ∈ [|Pv|], map Pv[i] to L[i]
12: for u ∈ V (Tv) do
13: Find path P u to the root of the expanded meta-tree
14: Let u′ ∈ V (Tv) ∩ P u be such that u is the leftmost descendant of u′’s right child

(otherwise u′ = u)
15: Label ℓ(u) = d(u′)
16: end for
17: end for
18: Return ℓ limited to the original vertices in T

16.3.1 Rooting the Tree

Like in Ghaffari and Nowicki, the first thing we need to do in line 2 of Algorithm 23 is

compute an orientation of the edges. Fortunately this, along with rooting the tree, can be done

quickly in AMPC by the results of Behnezhad et al. [Behnezhad et al., 2019c] in their Theorem

7.

Lemma 180 (Behnezhad et al. [Behnezhad et al., 2019c]). Given a forest F on n vertices, the

trees in F can be rooted and edges can be oriented in O(1/ϵ) AMPC rounds w.h.p. using O(nϵ)

local memory and O(n log n) total space w.h.p.
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Figure 16.1: The heavy-light decomposition of an example tree.

Here, w.h.p. means “with high probability.” This completes the first step of our algorithm.

16.3.2 Meta Tree Construction

We also leverage Ghaffari and Nowicki’s notion of heavy-light decompositions for our

AMPC algorithm, which can be found from lines 3 through 5 in Algorithm 23. This process

allows us to quickly decompose the tree into a set of disjoint paths of heavy edges, which are

defined as follows (note that our definition slightly deviates from Ghaffari and Nowicki [Ghaffari

and Nowicki, 2020], where the heavy edge must extend to the child with the largest subtree

without requiring this subtree to be that large, though it is the same as the definition used by

Sleator and Tarjan [Sleator and Tarjan, 1981]):

Definition 181 (Sleator and Tarjan [Sleator and Tarjan, 1981]). Given a tree T and a vertex

v ∈ T , let {ui}i∈k be the set of children of v where the subtree rooted at u1 is the largest out of

all ui. If there is no strictly largest subtree, we arbitrarily choose exactly one of the children with

a largest subtree. Then (u1, v) is a heavy edge and (ui, v) is a light edge for all 1 < i ≤ k.

Then the definition of a heavy path follows quite simply.
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Definition 182 (Ghaffari and Nowicki [Ghaffari and Nowicki, 2020]). Given a tree T , a heavy

path is a maximal length path consisting only of heavy edges in T .

Ghaffari and Nowicki then make the observation that the number of light edges and heavy

paths is highly limited in a tree. This comes from a simple counting argument, where if you

consider the path from root r to some vertex v, any time you cross a light edge, the size of the

current subtree is reduced by at least a factor of 2. This holds even with our different notion of

heavy edges since subtrees rooted at children of light edges are still much smaller compared to

the subtree rooted at the parent vertex. This bounds the number of light edges between r and

v, where each pair of light edges are separated by at most one heavy path, and therefore it also

bounds the number of heavy paths.

Observation 183 (Ghaffari and Nowicki [Ghaffari and Nowicki, 2020]). Consider a tree T ori-

ented towards root r. For each vertex v, there are only O(log n) light edges and only O(log n)

heavy paths on the path from v to r.

Using the definition of heavy edge from Sleator and Tarjan [Sleator and Tarjan, 1981]

instead of from Ghaffari and Nowicki, we get an additional nice property. This is because in our

definition, every internal vertex has one descending heavy edge to one child.

Observation 184 (Sleator and Tarjan [Sleator and Tarjan, 1981]). Given a tree T and an internal

vertex v ∈ T , v must be on exactly one heavy path. For a leaf ℓ ∈ T , ℓ must be on at most one

heavy path.

Our first goal is to compute what we call a meta tree. This is a decomposition of our

tree that will allow us to effectively handle heavy edges. It is quite analogous to Ghaffari and
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Figure 16.2: The meta-tree of the same tree from Figure 16.1 is demonstrated in this figure.

Nowicki’s notion of the heavy-light decomposition, which partitions the tree into heavy and light

edges.

Definition 185. Given a tree T , the meta tree of T , denoted TM , comes from contracting all the

heavy paths in T . We call the vertices of T original vertices and the vertices of TM meta vertices.

Note that contracting all heavy paths simultaneously is valid because, by Observation 184,

all heavy paths must be disjoint. Additionally, all internal meta vertices are contracted heavy

paths (as opposed to original vertices), again by Observation 184. We note that in AMPC, since

connectivity is easy, it is additionally quite easy to contract the heavy paths of T into single

vertices.

Lemma 186. Given a tree T , the meta tree TM can be computed, rooted, and oriented in AMPC

in O(1/ϵ) rounds with O(nϵ) memory per machine and O(n log2 n) total space w.h.p.

This completes the second step of our decomposition algorithm.

16.3.3 Expanding Meta Vertices

In order to label the vertices, we need a way to handle the heavy paths corresponding to

each meta vertex. Let v ∈ TM be a meta vertex, and Pv be the heavy path of original vertices in
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T corresponding to v. Note that we have no stronger bound on the length of a heavy path than

O(n). Therefore, a recursive partitioning, or labeling of vertices that has polylogarithmic depth

must be able to cleverly divide heavy paths. We can do this with a new data structure.

Definition 187. Given some path P , a binarized path is an almost complete binary tree T with

|P | leaves where there is a one-to-one mapping between P and the leaves of T such that the

pre-order traversal of P and T limited to its leaves agree.

By “agree”, we mean that if a vertex v ∈ P comes before a vertex u ∈ P in the pre-order

traversal of P , then it also does in the pre-order traversal of T . To characterize this tree, we make

a quick observation:

Observation 188. An almost complete binary tree on n leaves has 2n− 1 vertices, ⌊log2 n⌋+ 1

max depth, and every layer is full except the last, which has 2n− 2⌊log2 n⌋+1 vertices.

Additionally, we can find a relationship between the ancestry of triplets in P based off of

the order of the three vertices. While this is not required for expanding meta vertices, it is a

property of the binarized path that will be useful when we label vertices later.

Observation 189. Given a binarized path T of a path P , for any u, u′, u′′ ∈ P that appear in that

order (or reversed), if v is the lowest common ancestor of u and u′ and v′ is the lowest common

ancestor of u and u′′, then v′ is an ancestor of v or v′ = v.

To create the tree, we do the following for every v ∈ TM :

1. Create an almost complete binary tree Tv with |Pv| leaves, linking children to parents and

noting if a vertex is a left or right child [lines 7 and 8].
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2. Do a pre-order traversal of Tv and Pv and map the vertices in Pv to the leaves of Tv such

that the pre-order traversal of Pv and of Tv limited to its leaves agree. [lines 9 to 11].

Next, it is pretty direct to see that the produced tree is a binarized path.

Observation 190. The process described above produces a binarized path Tv of Pv for all v.

We prove that this can be done in the proper constraints.

Lemma 191. The heavy paths of a tree can be converted into binarized paths in O(1/ϵ) AMPC

rounds with O(nϵ) local memory and O(n log n) total space w.h.p.

16.3.4 Labeling Vertices

Our next goal is to label the vertices with the level they should be split on. Consider, hypo-

thetically, expanding the meta tree TM such that every heavy path for a meta vertex v is replaced

with its binarized path (which is an almost complete binary tree) Tv, and the tree continues at the

leaves corresponding to the nodes in the heavy path. Note that only some vertices in the hypo-

thetical tree correspond to vertices in the original tree T . Specifically, the internal nodes of each

component subtree Tv are not vertices in T , but the leaves correspond exactly to the vertices in

T .

Ultimately, for a vertex u ∈ T in meta vertex v, let u′ be the vertex in Tv such that u is the

leftmost leaf-descendant of the right child of u′ in TuM
(or if this doesn’t exist, u′ = u). Then we

will label ℓ(u) = d(u′) where d is the depth in the expanded meta tree. Following this, our vertex

labeling process will be as follows for each v ∈ TM and u ∈ Tv:

1. Vertex u finds the path P u from u to the root of TM , assuming the meta vertices are ex-

panded [line 13].
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2. Let u′ be the highest vertex in Tv such that u is the leftmost descendant of the right child

of u. If there is no such vertex, let u′ = u [line 14].

3. Label u with the depth (assuming roots have depth 1) of u′ in the expanded TM [line 15].

We start by making a quick observation that comes directly from Observations 183 and 188.

Observation 192. The max depth of TM with meta nodes expanded (“the expanded TM”) into

binary trees is O(log2 n).

This will be greatly helpful in showing the efficiency of our algorithm. We now show that

this final part can be implemented efficiently, which is sufficient to prove our main lemma.

Lemma 193. The process described above finds a generalized low depth tree decomposition of

original tree T of height h ∈ O(log2 n) in 1 round with O(nϵ) local memory and O(n log2 n)

total space.

16.4 Calculating the smallest singleton cut

In this section, we show a O(1/ϵ) round AMPC algorithm that executes a series of con-

tractions and outputs the size of the smallest singleton cut that appeared during the contraction

process. That is we prove the following result.

Theorem 194. There exists an AMPC algorithm that given a graph G with unique weights

on edges calculates the minimum singleton cut that appears during the contraction process in

O(1/ϵ) rounds using O(nϵ) local memory and O((n+m) log2 n) total space.
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16.4.1 Contraction process

We view the contraction process of a weighted graph G = (V,E,w : E → [n3]) as

a sequential process in which we iterate over multiple timesteps 0 to n3. For a given time i,

we contract the edge e having w(e) = i to a single vertex. Let G0, . . . , Gn3 be the sequence

of graphs created in the process, where G0 denotes the graph before any contraction and Gn3

denotes the graph after all contractions. Via a quick comparison to Kruskal’s algorithm, it is clear

that the edges whose contraction changed the topology of the graph must belong to the minimum

spanning tree of the weighted graph G (since weights are unique, the MST is unique as well).

Let T = (V,ET , w : ET → [n3]) be the minimum spanning tree of G.

From the previous observation, it is enough to consider only contracting edges from tree T ,

which we will focus on in the rest of this section. It will also be convenient visualize vertices as

simply being grouped instead of fully contracted.

Definition 195. A bag of vertex v at time t ∈ [n3], which we denote bag(v, t), is the set of vertices

that can be reached from v using only edges of tree T of weight at most t. We denote nbr bag(v, t)

for set of neighbors of a bag, that is set of these vertices u that do not belong to the bag and there

exists an edge connecting u and any vertex of the bag of weight greater than t. The degree of a

bag, denoted ∆bag(v, t), is the size of the set nbr bag(v, t).

If we proceed with our edge contraction process, where an edge with weight t is contracted

at time t, then bag(v, t) is the set of all vertices that have been contracted with v at time t.

The value ∆bag(v, t) is simply the degree of the vertex that corresponds to contracted vertices.

Therefore, the following simple observations holds.
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Observation 196. The value of the minimum singleton cut in the contraction process of the

weighted graph G is equal to the following:

min
v∈V,t∈[n3]

∆bag(v, t).

16.4.2 Simulating tree contractions with low depth decomposition

By Observation 196 our goal is to calculate the value of

min
v∈V,t∈[n3]

∆bag(v, t).

To find this, we could calculate the value mint∈[n3] ∆bag(v, t) for every vertex v independently

in parallel. However, this would require a minimum of Ω(n · (n+m)) total space, which roughly

corresponds to replicating the whole graphs for each independent instance. There are two key

observations that will allow us to reduce the space complexity. First, bags are determined solely

from the topology of tree T . Second, for larger t, it is likely the case that bag(u, t) = bag(v, t), so

we would like to remove this redundant computation. Therefore, we will exploit tree properties

and the low depth decomposition to partition the work and avoid redundancy.

Let ℓ : V → [h], h ∈ O(log2 n) be the labeling from the generalized low depth decomposi-

tion of tree T (see Definition 178). Let us asses to each bag a uniquely chosen vertex.

Definition 197. The leader of a bag, denoted bagLeader(v, t), is the vertex u with the smallest

label ℓ(u) among all vertices from bag(v, t). We define a number ldr time(v) to be the greatest

number 0 ≤ t′ ≤ n3 such that bagLeader(v, t′) = v.
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Let us first argue the correctness of the above definitions.

Lemma 198. The leader of every bag can be determined uniquely. Also, for every vertex v ∈ V

it holds: the number ldr time(v) exists, ldr time(v) ≥ 0, and for every 0 ≤ t′ ≤ ldr time(v) we

have that bagLeader(v, t′) = v.

Using the fact that each bag has exactly one leader, we can reformulate the expression

minv∈V,t∈[n3] ∆bag(v, t) as follows

min
v∈V,t∈[n3]

∆bag(v, t) = min
v∈V

min
0≤t≤ldr time(v)

∆bag(v, t).

We then will distribute the work needed to calculate the right-hand side of the above equality by

requiring each vertex to calculate the minimal degree among bags for which it is the leader:

min
0≤t≤ldr time(v)

∆bag(v, t).

Let i be a number in [⌈log2n⌉]. Let Li (the ith level) be the set of vertices v ∈ V with low

depth decomposition label ℓ(v) = i, and L≤i be that with label ℓ(v) ≤ i (for convenience we

assume that L≤0 = ∅). Let T i be the tree T with L≤i−1 removed. The following observation,

derived from the fact that a bag is a connected subgraph of T and the leader has lowest value ℓ(·),

relates bag location to the topology of the low depth decomposition.

Observation 199. For every i ∈ [⌈log2n⌉], v ∈ Li, and 0 ≤ t ≤ ldr time(v), the set bag(v, t) be-

longs to a single connected component of graph T i. For any two u, v ∈ Li, sets bag(u, ldr time(u))

and bag(v, ldr time(v)) belong to different components of graph T i.
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Recall, that we wanted to calculate the value

min
0≤t≤ldr time(v)

∆bag(v, t)

for every v ∈ V , which we rewrote as

min
v∈V

min
0≤t≤ldr time(v)

∆bag(v, t).

Grouping by vertices in the same layers, we get

min
v∈V

min
0≤t≤ldr time(v)

∆bag(v, t)

= min
i∈[⌈log2n⌉]

min
v∈Li

min
0≤t≤ldr time(v)

∆bag(v, t).

By Observations 199, we can hope that computing the value

min
v∈Li

min
0≤t≤ldr time(v)

∆bag(v, t),

can be done in parallel without exceeding global memory limit of O(m log2 n), since for

different v ∈ Li, their bags up to time ldr time(v) belong to different components of T i, thus

we might avoid redundant work. The details of computing this value are presented in the next

section. Let us now formalize the progress so far.

Lemma 200. Given a tree T and a graph G = (V,E,w : E → [n3]) as an input, calculating the
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value minv∈V,t∈[n3] ∆bag(v, t) can be reduced to O(log2 n) instances of calculating values

min
v∈Li

min
0≤t≤ldr time(v)

∆bag(v, t),

for i ∈ [⌈log2n⌉]. The reduction can be implemented in AMPC with O(1/ϵ) rounds, O((n +

m) log2 n) total space, and O(nϵ) local memory.

Proof. The correctness follows from the above discussion. For the implementation, the general-

ized low depth decomposition of T can be determined in O(1/ϵ) rounds with O(n log2 n) total

space by Lemma 179. Consider now O(log2) tuples of format (T, ℓ, E, Li). Preparing them

requires O((n+m) log2 n) total space and the above discussion shows that the value

min
v∈Li

min
0≤t≤ldr time(v)

∆bag(v, t)

for every i ∈ [⌈log2n⌉] can be computed from the tuple (T, ℓ, E, Li), thus the lemma follows.

16.4.3 Resolving the problem for vertices on the same level.

Following Lemma 200, we fix i ∈ [⌈log2n⌉] and set Li. We calculate:

min
v∈Li

min
0≤t≤ldr time(v)

∆bag(v, t).

In this approach, we will frequently query the minimum value over a path in a tree, thus the

following result is helpful.

Theorem 201 (Behnezhad et al. [Behnezhad et al., 2019e]). Consider a rooted, weighted tree
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T , the heavy-light decomposition of this tree together with an RMQ data structure that supports

queries on heavy paths can be computed in O(1/ϵ) AMPC rounds using O(nϵ) local memory and

O(n log n) total space. If the aforementioned data structures are precomputed, then obtaining a

minimum value on a path of a tree can be calculated with O(log n) queries to global memory.

We will also make use of the following theorem.

Theorem 202 (Behnezhad et al. [Behnezhad et al., 2019d]). For a given sequence of integer

numbers S of length n, computing the minimum prefix sum over all prefix sums can be done in

O(1/ϵ) AMPC rounds using O(nϵ) local memory and O(n log n) total space.

Finally, we show that the construction of the low depth decomposition provided in Sec-

tion 16.3 gives easy access to edges that connect vertices of higher labels with vertices of smaller

labels.

Lemma 203. For any connected component Ci in T i, there are at most 2 tree edges between

Ci and V \ T i according to the low depth decomposition ℓ given in Lemma 193. Moreover,

both edges can be calculated in O(1/ϵ) AMPC rounds with O(nϵ) memory per machine and

O(n log2 n) total memory.

Let us now turn to the proper part of this subsection. First, we show how to compute values

ldr time(v) for all v ∈ Li.

Lemma 204. Given a tuple (T, ℓ, E, Li) for tree T , low depth decomposition ℓ, set of weighted

edges E, and levels Li for some i ∈ [⌈log2 n⌉], there exists an AMPC algorithm that calculates

the value ldr time(v) for every v ∈ Li, in O(1/ϵ) rounds using O(nϵ) local memory and O((n+

m) log2 n) global memory.

332



Proof. Consider vertex v ∈ Li. Vertex v ceases to be the leader of a bag at the first time t when

its bag is contracted with another bag containing at least one vertex of the set L≤i−1. According

to the tree contraction process, time t is equal to the largest weight of tree edges between v’s

connected component in graph T i and the set of vertices L≤i−1. By Lemma 203, these edges can

be extracted with at most O(log2 n) queries to the low depth decomposition structure. We then

simply find the minimum. Thus, all values ldr time(v) for vertices from Li can be computed in

constant number of rounds assumed the conditions stated in the lemma.

We can assume that values ldr time(v) ∈ Li are known. We would like to efficiently

compute

min
0≤t≤ldr time(v)

∆bag(v, t),

for each v ∈ Li. For this, we make the following observation.

Lemma 205. Consider an edge (x, y) =: e ∈ E and a vertex v ∈ Li. All possible values

0 ≤ t′ ≤ ldr time(v) at which e belongs to set nbr bag(v, t′) form a consecutive (possible empty)

interval of integers [ae, be] ⊆ [0, . . . , ldr time(v)], called also a time interval with respect to v.

Proof. The lemma follows immediately from the fact that

bag(v, 0) ⊆ bag(v, 1) ⊆ . . . ⊆ bag(v, n3).

Additionally, the following observation shows, given edge time intervals, how to derive

min0≤t≤ldr time(v) ∆bag(v, t) and clarifies the purpose of time intervals.

Observation 206. Fix a vertex v ∈ V and consider time intervals [ae, be] with respect to v, for
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Figure 16.3: A sample structure of an MST tree. Firm edges are tree edges, while dotted are
non-tree edges. The number inside vertices denote their levels. Different colors symbolize dif-
ferent binarized paths. The numbers underlined are times of contraction of corresponding edges.
Next to these number the time intervals of these edges with respect to vertex v are given. Since
ldr time(v) = 2, thus all these intervals are contained in [0, 2].

all e ∈ E. Denote the set of all intervals containing value x by Ix. Then, computing the value

min
0≤t≤ldr time(v)

∆bag(v, t),

is equivalent to computing the minimum over all values |Ix| for x in the range [0, ldr time(v)].

Since this task is ‘linear’, it can be computed efficiently in AMPC. We now discuss how to

compute the intervals for all edges in E.

Lemma 207. Given a tuple (T, ℓ, E, Li), there exists an AMPC algorithm that for every ver-

tex v ∈ Li and every edge e ∈ E calculates the maximal, non-empty time interval [ea, eb] ⊆

[0, . . . , ldr time(v)] of e with respect to v. The algorithm works in O(1/ϵ) rounds, uses O(nϵ)

local memory and O((n+m) log2 n) global memory.

Proof. The algorithm starts by removing vertices L≤i−1 with all edges adjacent to them from tree

T which gives us T i. Given decomposition ℓ, this can be done in O(1) rounds. By definition 178,

vertices Li = {v1, . . . , vq} belong to different trees. Next, the algorithm roots these trees that

contain vertices from Li in v1, . . . , vq and calculates heavy-light decompositions of each tree
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together with an RMQ structure on heavy paths. By Theorem 201, this can be done in O(1/ϵ)

within our memory constraints.

Let us now fix an edge (x, y) =: e ∈ E. Importantly, we consider here all edges of the

graph G, not only tree edges ET . Let rx ∈ {⊥, v1, . . . , vq} be the root of this tree in T i to which

the vertex x belongs. If the vertex x does not belong to any tree, that is x ∈ L≤i−1 since these are

the vertices that have been removed, we write rx =⊥. Let mw(x) be the minimum weight over

edges of path that connects vertex x with vertex rx in graph T i. Observe, that unless rx =⊥ this

value is well defined as T i is a collection of tree and there is exactly one path connecting is x and

rx in this graph. We extend the above definitions on y in the natural way.

By Theorem 201, computing rx, ry,mw(x),mw(y) takes O(log n) queries to the memory

for a single edge. Therefore, we can compute these values for all edges e ∈ E in O(1) round

under the conditions assumed in this lemma.

Observe that edge e = (x, y) can have non-empty time intervals only with vertices rx

and ry. Any other vertex from Li belongs to a different connected component in graph Ti and

therefore its bag cannot contain x nor y while the vertex is the leader of its bag. Thus, all that

is left to show is how mw(x) and mw(y) can help determine the time intervals in which edge e

belongs to nbr bag(rx) and nbr bag(ry). We consider the following cases.

Case 1. rx =⊥, ry =⊥. In this case, edge (x, y) has no effect on degrees of bags of vertices rx

and ry at any time. The algorithm skips such edges.

Case 2. rx =⊥, ry ̸=⊥, (or symmetrically rx ̸=⊥, ry =⊥). Since T i is a subset of the minimum

spanning tree T , thus the first time when vertex x belongs to rx’s bag is the time mw(x). Now,

y starts to belong to rx’s bag either at the time being equal to the maximal weight on the path

between rx and y. Observer however, that this path has to contain vertices that does not belong
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to T i and therefore the maximal weight has to be greater than ldr time(rx). What follows the

correct interval in this case is:

[mw(x), ldr time(rx)],

or an empty interval if mw(x) > ldr time(rx).

Case 3. rx ̸=⊥, ry ̸=⊥. We distinguish two sub-cases:

Subcase a) rx ̸= ry. Since the path between rx and ry does not belong to T i we can proceed

analogously to the Case 2.. The correct interval for vertex x is

[mw(x), ldr time(rx)],

or an empty interval if mw(x) > ldr time(rx), while for vertex y it is

[mw(y), ldr time(ry)],

or an empty interval if mw(y) > ldr time(ry)

Subcase b) rx = ry. Since T i is a subgraph of the minimum spanning tree T , we have that

min(mw(x),mw(y)) is the first time when at least one of x and y belongs to rx’s bag, while the

first time when both belong to rx’s bag is max(mw(x),mw(y)). Thus, the proper time interval

for this edge:

[min(mw(x),mw(y)),max(mw(x),mw(y))]

∩ [1, . . . , ldr time(rx)]
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We obtain that for every edge e ∈ E all non-empty time intervals in which this edge

belong to nbr bag of some vertex v can be computed in O(log(n)) queries to the memory. There-

fore, computing these values for all edges can be done in constant number of rounds assumed

O(m log n) total memory.

Implementing Observation 206 is purely technical.

Lemma 208. There exist an AMPC algorithm that given a set of integer intervals I = {[p1, k1], . . . , [pn, kn]},

∀i∈[n][pi, ki] ⊆ [0, R] finds the minimal number of intersecting intervals in O(1/ϵ) rounds using

O(nϵ) local memory and O(n log2 n) total memory.

Proof. First, the algorithm sorts the set {p1, k1, . . . , pn, kn} of all endpoints of these intervals in

non-increasing order (ties are resolved with priority for endpoints pi) obtaining a sequence S.

Consider assigning to every endpoint pi, i ∈ [n] from sequence S value +1 and to every endpoint

ki, i ∈ [n] value −1. This operation leads to a sequence S ′ of pairs of format (endpoint, value).

Finally, let S ′′ be a sequence constructed from S ′ in which all consecutive pairs that have the same

first coordinate are compressed to a single pair in which the first coordinate is preserved and the

second is the sum of second coordinates of contracted pairs. It can be observed that finding the

minimal prefix sum of sequence made from second coordinates of pairs in S ′′ is equivalent to the

minimal number of intersecting intervals. The construction of sequence S ′′ requires only sorting

and contracting consecutive pairs which can be implemented in O(1/ϵ) rounds in AMPC with

the memory constrains stated in the lemma. To find the minimal prefix sum we use Theorem 202

which completes the proof.

The above discussion is summarized in the following lemma.
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Lemma 209. There exists an AMPC algorithm that given a tuple (T, ℓ, E, Li) calculates the

value

min
v∈Li

min
0≤t≤ldr time(v)

∆bag(v, t)

in O(1/ϵ) rounds using O(nϵ) local memory and O((n+m) log2 n) total memory.

Proof. Using Lemma 204 we are able to calculate value ldr time for every v ∈ Li in constant

number of rounds. By Lemma 207 we can calculate time all non-empty time intervals for every

e ∈ E and every v ∈ Li. This requires O(m log2 n) total memory. Each time interval [a, b]

can be assigned a vertex v with respect to whom it was calculated. Then, we group time inter-

vals with respect to vertices from Li they were calculated. This can be done in a single round

with O(m log2 n) global memory since there are only O(m) non-empty time intervals. Finally,

Lemma 208 guarantees that we can compute, for every v ∈ Li, the minimum number of intersect-

ing intervals in O(1/ϵ) rounds with total memory proportional to the number of these intervals.

Therefore, assumed O(m log2 n) global memory we can extend the last computation to a paral-

lel computation for v ∈ Li while preserving the round complexity. By Observation 206 this is

equivalent to calculating

min
0≤t≤ldr time(v)

∆bag(v, t),

for every v ∈ Li. Since the minimum of the above values over v ∈ Li can be computed in a

single round, the lemma is proven.
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16.4.4 The final algorithm.

We are now able to prove Theorem 194 and present the final algorithm, SmallestSingle-

tonCut, that calculates the smallest singleton cut that appears in the contraction process of G.

The pseudcode can be found in Figure 24, while the proof of correctness is below.

Algorithm 24 SmallestSingletonCut
Input Graph G = (V,E,w : V → [n3]).
Output Size of the smallest singleton cut.

1: Compute the minimum spanning tree T of G
2: Compute the low depth decomposition DT of T
3: Prepare O(log2 n) tuples (T,DT , E, Li), i ∈ [⌈log2n⌉]
4: for each tuple (T,DT , E, Li) do
5: Compute: lci ← minv∈Li

min0≤t≤ldr time(v) ∆bag(v, t)
6: end for
7: Return min(lc1, . . . , lc[⌈log2n⌉])

Proof of Theorem 194. The correctness follows from Observation 196 and Lemmas 200 and 209.

Also the implementation details of lines 3−7 are discussed in the these two lemmas. To calculate

minimum spanning tree in line 1 we use Lemma 180 while the implementation of the low depth

decomposition from the next line is given by Lemma 179.
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