The Viewserver Hierarchy for Inter-Domain Routing:
Protocols and Evaluation®

Cengiz Alaettinogluf A. Udaya Shankar
Information Sciences Institute Institute for Advanced Computer Studies
University of Southern California and Department of Computer Science
Marina del Rey, CA 90292 University of Maryland
cengiz@isi.edu College Park, MD 20742

shankar@cs.umd.edu
CS-TR-3151.1 UMIACS-TR-93-98.1

March 3, 1995

Abstract

We present an inter-domain routing protocol based on a new hierarchy, referred to as the
viewserver hierarchy. The protocol satisfies policy and ToS constraints, adapts to dynamic
topology changes including failures that partition domains, and scales well to large number of
domains without losing detail (unlike the usual scaling technique of aggregating domains into
superdomains). Domain-level views are maintained by special nodes called viewservers. FEach
viewserver maintains a view of a surrounding precinct. Viewservers are organized hierarchically.
To obtain domain-level source routes, the views of one or more viewservers are merged (upto a
maximum of twice the levels in the hierarchy).

We also present a model for evaluating inter-domain routing protocols, and apply this model
to compare our viewserver hierarchy against the simple approach where each node maintains a
domain-level view of the entire internetwork. Our results indicate that the viewserver hierarchy
finds many short valid paths and reduces the amount of memory requirement by two orders of
magnitude.

*To appear in IEEE JSAC Special Issue on Global Internet

* This work is supported in part by ARPA and Philips Labs under contract DASG60-92-0055 to Department of
Computer Science, University of Maryland, and by National Science Foundation Grant No. NCR 89-04590. The
views, opinions, and/or findings contained in this report are those of the author(s) and should not be interpreted as
representing the official policies, either expressed or implied, of the Advanced Research Projects Agency, PL, or the
U.S. Government.

"This research was performed while the author was with the Computer Science Department, University of Mary-

land, College Park, MD 20742.



1 Introduction

A computer internetwork, such as the Internet, is an interconnection of backbone networks, re-
gional networks, metropolitan area networks, and stub networks (campus networks, office networks
and other small networks)!. Stub networks are the producers and consumers of the internetwork
traffic, whereas backbones, regionals, and MANs are transit networks. Most of the networks in an
internetwork are stub networks. Each network consists of nodes (hosts and routers) and links. Two
networks are neighbors when there is one or more links between nodes in the two networks (see

Figure 1).

D auogyIeq

Figure 1: A portion of an internetwork.

An internetwork is organized into domains®. A domain is a set of networks (possibly consisting of
only one network) administered by the same agency. Within each domain, an intra-domain routing
protocol is executed that provides routes between source and destination nodes in the domain.

Across all domains, an inter-domain routing protocol is executed that provides routes be-
tween source and destination nodes in different domains. This protocol must satisfy various con-
straints:

(1) It must satisfy policy constraints, which are administrative restrictions on the inter-domain
traffic [9, 13, 10, 5]. Policy constraints are of two types: transit policies and source policies.
The transit policies of a domain A specify how other domains can use the resources of A
(e.g. $0.01 per packet, no traffic from domain B). The source policies of a domain A specify

constraints on traffic originating from A (e.g. domains to avoid/prefer, acceptable connection

! For example, NSFNET, MILNET are backbones and Suranet, CerfNet are regionals.

2 also referred to as routing domains



cost). Transit policies of a domain are public (i.e. available to other domains), whereas source
policies are usually private (e.g. it may not be desirable to announce how much a domain is
willing to pay for a particular service).

(2) An inter-domain routing protocol must also satisfy type-of-service (ToS) constraints of ap-
plications (e.g. low delay, high throughput, high reliability, minimum monetary cost). To do
this, it must keep track of the types of services offered by each domain [5].

(3) Inter-domain routing protocols must scale up to very large internetworks, i.e. with a very large
number of domains. Practically this means that processing, memory and communication
requirements should be much less than linear in the number of domains. It must also handle
non-hierarchical domain interconnections at any level [10] (e.g. we do not want to hand-
configure special routes as “back-doors”).

(4) Inter-domain routing protocols must automatically adapt to link cost changes, node/link

failures and repairs including failures that partition domains [15].

A simple straightforward approach to inter-domain routing is domain-level source routing with
link-state approach [9, 5]. In this approach, each router® maintains a domain-level view of the
internetwork, i.e., a graph with a vertex for every domain and an edge between every two neighbor
domains. Policy and ToS information is attached to the vertices and the edges of the view.

When a source node needs to reach a destination node, it (or a router? in the source’s domain)
first examines this view and determines a domain-level source route satisfying ToS and policy
constraints, i.e., a sequence of domain ids starting from the source’s domain and ending with the
destination’s domain. Then the packets are routed to the destination using this domain-level source
route and the intra-domain routing protocols of the domains crossed.

The disadvantage of this simple scheme is that it does not scale up for large internetworks. The
storage at each router is proportional to Np X Ep, where Np is the number of domains and Fp
is the average number of neighbor domains to a domain. The communication cost is proportional
to Np X Ep, where Np is the number of routers in the internetwork and Fpg is the average router
neighbors of a router (topology changes are flooded to all routers in the internetwork).

To achieve scaling, several approaches based on aggregating domains into superdomains have

® Not all nodes maintain routing tables. A router is a node that maintains a routing table.
* referred to as the policy server in [9]



been proposed [19, 16, 7, 6]. These approaches have drawbacks because the aggregation results in

loss of detail (discussed in Section 2).

Our protocol

In this paper, we present an inter-domain routing protocol that we proposed recently[2, 3]. It
combines domain-level views with a novel hierarchical scheme. It scales well to large internetworks,
and does not suffer from the problems of superdomains.

In our scheme, domain-level views are not maintained by every router but by special nodes
called viewservers. For each viewserver, there is a subset of domains around it, referred to as the
viewserver’s precinct. The viewserver maintains the domain-level view of its precinct. This solves
the scaling problem for storage requirement.

A viewserver can provide domain-level source routes between source and destination nodes in
its precinct. Obtaining a domain-level source route between a source and a destination that are
not in any single view, involves accumulating the views of a sequence of viewservers. To make this
process efficient, viewservers are organized hierarchically in levels, and an associated addressing
structure is used. Each node has a set of addresses. Each address is a sequence of viewserver ids of
decreasing levels, starting at the top level and going towards the node. The idea is that when the
views of the viewservers in an address are merged, the merged view contains domain-level routes
to the node from the top level viewservers.

We handle dynamic topology changes such as node/link failures and repairs, link cost changes,
and domain partitions. Gateways® detect domain-level topology changes affecting its domain and
neighbor domains. For each domain, there is a reporting gateway that communicates these changes
by flooding to the viewservers in a specified subset of domains; this subset is referred to as its flood
area. Hence, the number of packets used during flooding is proportional to the size of the flood
area. This solves the scaling problem for the communication requirement.

Thus our inter-domain routing protocol consists of two subprotocols: a view-query proto-
col between routers and viewservers for obtaining merged views; and a view-update protocol

between gateways and viewservers for updating domain-level views.

® A node is called a gateway if it has a link to another domain.



Evaluation

Many inter-domain routing protocols have been proposed, based on various kinds of hierarchies.
How do these protocols compare against each other and against the simple approach? To answer this
question, we need a model in which we can define internetwork topologies, policy/ToS constraints,
inter-domain routing hierarchies, and evaluation measures (e.g. memory and time requirements).
None of these protocols have been evaluated in a way that they can be compared against each other
or the simple approach.

In this paper, we present such a model, and use it to compare our viewserver hierarchy to the
simple approach. Our evaluation measures are the amount of memory required at the source and
at the routers, the amount of time needed to obtain the information to construct a path, and the
number of valid paths found (and their lengths) in comparison to the number of available valid
paths (and their lengths) in the internetwork. We use three internetwork topologies each of size
11,110 domains (roughly the current size of the Internet). Our results indicate that the viewserver
hierarchy finds many short valid paths and reduces the amount of memory requirement by two

orders of magnitude.

Organization of the paper

In Section 2, we survey recent approaches to inter-domain routing. In Section 3, we present the view-
query protocol for static network conditions, that is, assuming all links and nodes of the network
remain operational. In Section 4, we present the view-update protocol to handle topology changes.
In Section 5, we present our evaluation model and results from its application to the viewserver
hierarchy. In Section 6, we conclude and describe how to add fault-tolerance and cacheing schemes

to improve performance.

This paper differs from [3] in that in the latter, the view-update protocol and the evaluation
model are not present, the view-query protocol is only informally described, and the evaluation

results are summarized for only one internetwork topology.



2 Related Work

In this section, we survey recently proposed inter-domain routing protocols that support ToS and
policy constraints for large internetworks [17, 16, 19, 11, 7, 6, 22, 1, 21, 20, 8].

Several inter-domain routing protocols (e.g. BGP [17], IDRP [16], NR [11]) are based on path-
vector approach [18]. Here, for each destination domain a router maintains a set of paths, one
through each of its neighbor routers. ToS and policy information is attached to these paths. These
paths are also used to avoid routing loops. FEach router requires O(Np x Np x Epr) space (one
entry for each of Np domains through each of F'r neighbors; each entry contains a path whose
length is bounded by Np). For each destination, a router exchanges its best valid path® with its
neighbor routers. However, a path-vector algorithm may not find a valid path from a source to
the destination even if such a route exists [19]. By exchanging k paths to each destination, the
probability of detecting a valid path for each source can be increased.

The most common approach to solve the scaling problem is to use superdomains (e.g. IDPR [19],
IDRP [16], Nimrod [7, 6]). Superdomains extend the idea of area hierarchy [12]. Here, domains are
grouped hierarchically into superdomains: “close” domains are grouped into level 1 superdomains,
“close” level 1 superdomains are grouped into level 2 superdomains, and so on. A router maintains
a view that contains the domains in the same level 1 superdomain, the level 1 superdomains in the
same level 2 superdomain, and so on. Thus a router maintains a smaller view than it would in the
absence of hierarchy. Fach superdomain has its own ToS and policy constraints derived from that
of the subdomains.

There are several major problems with using superdomains. One problem is that if there are
domains with different (possibly contradictory) constraints in a superdomain, then there is no good
way of deriving the ToS and policy constraints of the superdomain. The usual techniques are to take
either the union or the intersection of the constraints of the subdomains [19]7. Both techniques
have problems. For example, if the union is taken, then a subdomain A can be forced to obey
constraints of other subdomains; this may eliminate a path through A which is otherwise valid. If
the intersection is taken, then a subdomain A can be forced to accept traffic it would otherwise not

accept. Other problems are described in [7, 6, 1]. Some of the problems can be relaxed by having

6 A valid path is a path that satisfies the ToS and policy constraints of the domains in the path.
T If the union (intersection) of the constraints are taken for policies, the superdomain enforces a policy constraint
if that policy constraint is enforced by some (all) of its subdomains.



overlapping superdomains, but this increases the storage requirements drastically.

Nimrod [7, 6] and IDPR [19] use the link-state approach, domain-level source routing, and
superdomains (non-overlapping superdomains for Nimrod). IDRP [16] uses path-vector approach
and a variation of superdomains (which are referred to as routing domain confederations).

Reference [11] combines the benefits of path-vector approach and link-state approach by having
two modes: An NR mode, which is an extension of IDRP and is used for the most common ToS
and policy constraints; and a SDR mode, which is like IDPR and is used for less frequent ToS and
policy requests. This study does not address the scalability of the SDR mode.

In [1], we proposed a superdomain-based protocol which always finds a valid path if one ex-
ists and never admits an invalid path. It does this by maintaining both union and intersection
constraints and using a view-query protocol. If the union constraints of superdomains on a path
are satisfied, then the path is valid. If the intersection constraints of a superdomain are satisfied
but the union constraints are not, then there may be a valid path through this superdomain. The
source queries to obtain a more detailed “internal” view of such superdomains, and searches again
for a valid path. Even though this protocol scales well for realistic internetwork topologies (e.g.
where each superdomain is connected to at most log Np external domains), its worst-case storage
requirement can be linear in Np.

The landmark hierarchy [21, 20] is another approach for solving the scaling problem. Here, each
router is a landmark with a radius, and routers which are within a radius away from the landmark
maintain a route to it. Landmarks are organized hierarchically, such that the radius of a landmark
increases with its level, and the radii of top level landmarks include all routers. A thorough study
of enforcing ToS and policy constraints with this hierarchy has not been done.

The landmark hierarchy may look similar to our viewserver hierarchy, but in fact it is quite the
opposite. In the landmark hierarchy, nodes within the radius of a landmark maintain a route to
the landmark, but the landmark may not have a route to these nodes. In the viewserver hierarchy,
a viewserver maintains routes to the nodes in its precinct.

Route fragments [8] is a mechanism to glue together precomputed partial source routes to obtain
a route from a source node to a destination node. A destination route fragment, called a route
suffiz, is a sequence of domain ids from a backbone to the destination domain. A source route

fragment, called a route prefix, is the reverse of a route suffix of the source domain. There are also



route middles, which extend from transit domains to transit domains. A source queries a name
server and obtains destination route suffixes. It then chooses an appropriate route suffix for the
destination and concatenates it with its own route prefix, and uses route middles if the route suffix
and route prefix do not intersect. This scheme does not handle topology changes and does not

address policy and ToS constraints.

3 Viewserver Hierarchy Query Protocol

In this section, we present our scheme for static network conditions, that is, all links and nodes

remain operational. The dynamic case is presented in Section 4.

Conventions: FEach domain has a unique id. DomainIds denotes the set of domain-ids. Fach
node has a unique id. NodeIds denotes the set of node-ids. For a node u, we use domainid(u) to
denote the domain-id of u’s domain. We use nodeid(u) to denote the node-id of u. For a domain A,
we use domainid(A) to denote the domain-id of A. NodeNeighbors(u) denotes the set of node-ids
of the neighbors of u. DomainNeighbors(A) denotes the set of domain-ids of the domain neighbors
of A.

In our protocol, a node u uses two kinds of sends. The first kind has the form “Send(m) to v”,
where m is the message being sent and v is the destination-id. Here, nodes u and » are neighbors,
and the message is sent over the physical link (u,v). If the link is down, we assume that the packet
is dropped.

The second kind of send has the form “Send(m) to v using dlsr”, where m and v are as above
and dlsr is a domain-level source route between u and v. Here, the message is sent using the intra-
domain routing protocols of the domains in dlsr to reach v. We assume that as long as there is a
sequence of up links connecting the domains in dlsr, the message is delivered to v. If v and v are

in the same domain, dlsr equals the empty sequence ().

Views and Viewservers

Domain-level views are maintained by special nodes called viewservers. Each viewserver has a

precinct, which is a set of domains around the viewserver, and a static view, which is a domain-level



view of the precinct and outgoing edges®. The static view includes the ToS and policy constraints
of domains in the precinct and of domain-level edges. To handle topology changes, a viewserver
also maintains a dynamic view which is described in Section 4. Formally, a viewserver 2 maintains

the following;:
Precinct, C DomainIds. Domain-ids whose view is maintained.

SView,. Static view of z.
= {(A, policy&tos(A), {(B, edge_policy&tos(A, B)): B € subset of DomainNeighbors(A)}) :
A € Precinct, }

The intention of SView, is to obtain domain-level source routes between nodes in Precinct,.
Hence, the choice of domains to include in Precinct, and the choice of domain-level edges to include
in SView, is not arbitrary. Precinct, and SView, must be connected; that is, between any two
domains in Precinct,, there should be a path in SView,. Note that SView, can contain edges to
domains outside Precinct,. We say that a domain A is in the view of a viewserver z, if either A is
in the precinct of z, or SView, has an edge from a domain in the precinct of z to A. Note that

the precincts and views of different viewservers can be overlapping, identical or disjoint.

Viewserver Hierarchy

For scaling reasons, we cannot have one large view. Thus, obtaining a domain-level source route
between a source and a destination which are far away, involves accumulating views of a sequence of
viewservers. To keep this process efficient, we organize viewservers hierarchically. More precisely,
each viewserver is assigned a hierarchy level from 0, 1, ..., with 0 being the top level in the hierarchy.
A parent/child relationship between viewservers is defined as follows:

1. Every level ¢ viewserver, ¢ > 0, has a parent viewserver whose level is less than i.

2. If viewserver x is a parent of viewserver y then x’s view contains y’s domain and y’s view

contains z’s domain.
3. The view of a top level viewserver contains the domains of all other top level viewservers

(typically, top level viewservers are placed in backbones).

& Not all the domain-level edges need to be included.



Note that the third constraint does not mean that all top level viewservers have the same view. In
the hierarchy, a parent can have many children and a child can have many parents. We extend the
range of the parent-child relationship to ordinary nodes; that is, if Precinct, contains the domain
of node u, we say that w is a child of z, and z is a parent of u. We assume that there is at least
one parent viewserver for each node.

For a node u, an address is defined to be a sequence (xq,1,...,2;) such that a; for ¢ < ¢ is
a viewserver-id, ¢ is a top level viewserver-id, z; is the id of u, and z; is a parent of x;49. A
node may have many addresses since the parent-child relationship is many-to-many. If a source
wants a domain-level source route to a destination, it first queries the name servers [14] to obtain
a set of addresses for the destination®. Then, it queries viewservers to obtain an accumulated view
containing both its domain and the destination’s domain. Nodes can reach the viewservers in their
domains using the intra-domain routing protocol of the domain. Otherwise, we assume that nodes

maintain a set of fixed domain-level source routes to viewservers.

View-Query Protocol: Obtaining Domain-Level Source Routes

We now describe how a domain-level source route is obtained.

We want a sequence of viewservers whose merged views contains both the source and the
destination domains. Addresses provide a way to obtain such a sequence, by first going up in
the viewserver hierarchy starting from the source node and then going down in the viewserver
hierarchy towards the destination node. More precisely, let (sq,...,s¢) be an address of the source,
and (do,...,d;) be an address of the destination. Then, the sequence (s;_1,...,5s0,do,...,di_1)
meets our requirements!'®. In fact, going up all the way in the hierarchy to top level viewservers
may not be necessary. We can stop going up at a viewserver s; if there is a viewserver d;,j < [,
such that the domain of d; is in the view of s; (one special case is where s; = d;).

The view-query protocol uses two message types:

¢ (RequestView, s_address, d_address)

where s_address and d_address are the addresses for the source and the destination respec-

tively. A RequestView message is sent by a source to obtain an accumulated view containing

® Querying the name servers can be done the same way it is done currently in the Internet.
10 This is similiar to matching route fragments[8]. However, in our case the sequence is computed in a distributed
fashion (this is needed to handle topology changes).



both the source and the destination domains. When a viewserver receives a RequestView
message, it either sends back its view or forwards this request to another viewserver.

¢ (ReplyView, s_address, d_address, accumview)
where s_address and d_address are as above and accumview is the accumulated view. A
ReplyView message is sent by a viewserver to the source or to another viewserver closer to
the source. The accumuview field in a ReplyView message equals the union of the views of
the viewservers the message has visited.

We now describe the view-query protocol in more detail (please refer to Figure 2 and 3). To

obtain a domain-level source route to a destination node, the source node sends a RequestView

packet containing the source and the destination addresses to its parent in the source address.

Constants

FizedRoutes, (), for every viewserver-id x such that x is a parent of u,

Oy if domainid(u) = domainid(x)
| {{dy,...,dn) : d; € DomainIds}. Set of domain-level routes to # otherwise
Events
RequestView,(s_address, d_address) {Executed when u wants a valid domain-level source route}

Let s_address be {sq,...,s:-1,5¢), and dlsr € FiredRoutesy,(si—1);
Send(RequestView, s_address, d_address) to s;_1 using dlsr

Receive, (ReplyView, s_address, d_address, accumview)
Choose a valid domain-level source route using accumuview;
If a valid route is not found
Execute RequestView, again with another source address and/or destination address

Figure 2: View-query protocol: Events and state of a source u.

Upon receiving a RequestView packet, a viewserver x checks if the destination domain is in
its precinct!'. If it is, = sends back its view in a ReplyView packet. If it is not, = forwards the
request packet to another viewserver as follows (details in Figure 3): 2 checks whether the domain
of any viewserver in the destination address is in its view. If there is such a domain, = sends the
RequestView packet to the last such one in the destination address. Otherwise z is a viewserver
in the source address, and it sends the packet to its parent in the source address.

When a viewserver z receives a ReplyView packet, it merges its view to the accumulated view

in the packet. Then it sends the ReplyView packet towards the source node in the same way it

11 BEven though the destination can be in the view of &, its policies and ToS’s are not in the view if it is not in the
precinct of x.

10



Constants
Precinct,. Precinct of z.
SView,. Static view of z.

Events
Receivey (RequestView, s_address, d_address)
Let d_address be (do, ..., ds);
if domainid(dy) & Precincty then
forward,(RequestView, s_address, d_address, {});
else forward;(ReplyView, d_address, s_address, SViewy); {addresses are switched}
endif

Receive, (ReplyView, s_address, d_address, view)
forward,(ReplyView, s_address, d_address, view U SView,)

where procedure forward;(type, s_address, d_address, view)
Let s_address be (sq,...,s:), d_address be {dy, ..., d);
if 3¢ : domainid(d;) in SView, then
Let ¢ = max{j : domainid(d;) in SView,};

target .= d;;
else target := s; such that s;11 = nodeid(z);
endif;

dlsr := choose a route to domainid(target) from domainid(x) using SView,;
if type = RequestView then

Send(RequestView, s_address, d_address) to target using dlsr;
else Send(ReplyView, s_address, d_address, view) to target using dlsr;
endif

Figure 3: View-query protocol: Events and state of a viewserver z.

would send a RequestView packet towards the destination node (i.e. the roles of the source address
and the destination address are interchanged).

When the source receives a ReplyView packet, it chooses a valid path using the accumuview in the
packet. If it does not find a valid path, it can try again using a different source and/or destination
address. Note that the source does not have to throw away the previous accumulated views; it can
merge them all into a richer accumulated view. In fact, it is easy to change the protocol so that the
source can also obtain views of individual viewservers to make the accumulated view even richer.

Above we have described one possible way of obtaining the accumulated views. There are
various other possibilities, for example: (1) restricting the ReplyView packet to take the reverse
of the path that the RequestView packet took; (2) having ReplyView packets go all the way
up in the viewserver-hierarchy for a richer accumulated view; (3) having the source poll the

viewservers directly instead of the viewservers forwarding request/reply messages to each other;

11



(4) not including non-transit stub domains other than the source and the destination domains
in the accumview; (5) including some source policy constraints and ToS requirements in the

RequestView packet, and having the viewservers filter out some domains.

4 Update Protocol for Dynamic Network Conditions

In this section, we first examine how topology changes such as link/node failures, repairs and cost
changes, map into domain-level topology changes. Second, we describe how domain-level topology
changes are detected and communicated to viewservers, i.e. the view-update protocol. Third, we

modify the view-query protocol appropriately.

Mapping Topology Changes to Domain-Level Topology Changes

Costs are associated with domain-level edges. The cost of the domain-level edge (A, B) equals a
vector of values if the link is up; each cost value indicates how expensive it is to cross domain A
to reach domain B according to some criteria such as delay, throughput, reliability, etc. The cost
equals oo if all links from A to B are down. Each cost value of a domain-level edge (A, B) can be
derived from the cost values of the intra-domain routes in A and links from A to B [4].

Link cost changes and link/node failures and repairs correspond to cost changes, failures and
repairs of domain-level edges. Link/node failures can also partition a domain into cells[15]. A cell is
a maximal subset of nodes of a domain that can reach each other without leaving the domain. In the
same way, link/node repairs may merge cells into bigger cells. We identify a cell with the minimum
node-id of the gateways in the cell'?. In this paper, for uniformity we treat an unpartitioned domain
as a domain with one cell.

If a domain gets partitioned, its vertex in the domain-level views is split into as many pieces as
there are cells. And when the cells merge, the corresponding vertices are merged.

Since a domain can be partitioned into many cells, domain-level source routes now include cell-
ids as well. To reach the next domain cell in a domain-level source route, the intra-domain routing

protocol of a domain should keep track of the domain cells reachable through each of its gateways.

12 Qur cells are like the domain components of IDPR[19].

12



View-Update Protocol: Updating Domain-Level Views

Viewservers do not communicate with each other to maintain their views. Gateways detect and
communicate domain-level topology changes to viewservers. Each gateway periodically (and op-
tionally after a change in the intra-domain routing table) inspects its intra-domain routing table
and determines the cell to which it belongs. For each cell, only the gateway whose node-id is the
cell-id (i.e. the gateway with the minimum node-id) is responsible for communicating domain-level
topology changes. We refer to this gateway as the reporting gateway. Reporting gateways are also
responsible for informing the viewservers of the creation and deletion of cells.

The communication between a reporting gateway and viewservers is done by flooding over a
set of domains. This set is referred to as the flood area'®. The topology of a flood area must be a
connected graph.

Due to the nature of flooding, a viewserver can receive information out of order for a domain
cell. In order to avoid old information replacing new information, each reporting gateway includes

successively increasing time stamps in the messages it sends.

Due to node and link failures, communication between a reporting gateway and a viewserver
can fail, resulting in the viewserver having out-of-date information. To eliminate such information,
a viewserver deletes any information about a domain cell if it is older than a time-to-die period. We
assume that gateways send messages more often than the time-to-die value (to avoid false removal).

When a viewserver learns of a new domain cell, it adds it to its view. To avoid adding a domain
cell which was just deleted™, when a viewserver receives a delete domain cell request, it only marks

the domain cell as deleted and removes the entry after the time-to-die period.

The view-update protocol uses two types of messages as follows:

¢ (UpdateCell, domainid, cellid, timestamp, floodarea, ncostset)
is sent by the reporting gateway to inform the viewservers about current domain-level edge
costs of its cell. Here, domainid, cellid, and timestamp indicate the domain, the cell and the
time stamp of the reporting gateway, ncostset contains a cost for each domain level edge of

the domain, and floodarea is the set of domains that this message is to be sent over.

13 For efficiency, the flood area can be implemented by a hop-count and some forwarding limits (e.g. do not flood
beyond backbones).

14 1f the domain cell was removed, the timestamp for that domain cell is also lost.

13



e (DeleteCell, domainid, cellid, timestamp, floodarea)

where the parameters are as in the UpdateCell message. It is sent by a reporting gateway

when it becomes non-reporting (because its cell expanded to include a gateway with lower id).

Constants:
LocalViewservers,. (C NodeIds). Set of viewservers in ¢’s domain.

LocalGateways,. (C Nodelds). Set of gateways in ¢’s domain excluding g.

AdjForeignGateways,. (C NodeIds). Set of adjacent gateways in other domains.

FloodArea,. (C DomainIds). The flood area of the domain (includes domain of g).
Variables:

IntraDomainRT,. Intra-domain routing table of g. Initially contains no entries.

Cellld, : NodeIds. The id of ¢’s cell. Initially = oo

Clock, : Integer. Clock of g.

Figure 4: State of a gateway g.

The state maintained by a gateway g is listed in Figure 4. Note that LocalViewservers, and
LocalGateways, can be empty. IntraDomainRT, contains a route (next-hop or source) for every
reachable node of the domain and for every reachable neighbor domain cell. We assume that

consecutive reads of C'lock, return increasing values.

Constants:
Precinct,. Precinct of z.
SView,. Static view of z.

TimeToDie, : Integer. Time-to-die value.

Variables:

DView,. Dynamic view of z.
= {(A:g, timestamp, expirytime, deleted,
{(B:h, cost) : B € DomainNeighbors(A) N h € NodeIdsU {x} }):

A € Precincty; A g € NodeIds}
Clock, : Integer. Clock of z.

Figure 5: State of a viewserver x.

The state maintained by a viewserver z is listed in Figure 5. DView, is the dynamic part
of ’s view. We use A:g to denote the cell ¢ of domain A. For each domain cell known to z,

DView, stores a temestamp field which equals the largest timestamp received for this domain cell,

14




an expirytime field which equals the end of the time-to-die period for this domain cell, a deleted
field which marks whether or not the domain cell is deleted, and a cost set which indicates a cost
for every domain level edge of the domain in SView,. The cell-id of a neighbor domain equals * if
no cell of the neighbor domain is reachable.

The events of gateway ¢ and a viewserver z are specified in Appendix A.

Changes to View-Query Protocol

We now enumerate the changes needed to adapt the view-query protocol to the dynamic case (the
formal specification is omitted for space reasons).

Due to link and node failures, RequestView and ReplyView packets can get lost. Hence, the
source may never receive a ReplyView packet after it initiates a request. Thus, the source should
try again after a time-out period.

When a viewserver sends a message to a node whose domain is partitioned, it should send a
copy of the message to each cell of the domain. This is because a viewserver does not know which
cell contains the node.

When a viewserver receives a RequestView message, it should reply with its views only if the
destination domain is in its precinct and its dynamic view contains a path to the destination.
Similarly during forwarding of RequestView and ReplyView packets, a viewserver, when checking
whether a domain is in its view, should also check if its dynamic view contains a path to it.

Note that the internetwork may partition in a way that a cell may not be in the view of any
viewserver, though it is reachable by other cells. In this case, the view-query protocol will fail to
discover a route to the nodes in that cell. One way to solve this problem is to dynamically change

the viewserver precincts and the flood areas of domains. This is outside the scope of this paper.

5 Evaluation

Many inter-domain routing protocols have been proposed, based on various kinds of hierarchies.
How do these protocols compare against each other and against the simple approach? To answer this
question, we need a model in which we can define internetwork topologies, policy/ToS constraints,

inter-domain routing hierarchies, and evaluation measures (e.g. memory and time requirements)

15



for inter-domain routing protocols.

In this section, we first present such a model, and then use the model to evaluate our viewserver
hierarchy and compare it to the simple approach. Our evaluation measures are the amount of
memory required at the source and at the routers, the amount of time needed to obtain the
information to construct a path, and the number of paths found out of the total number of valid
paths.

Even though the model described here can be applied to other inter-domain routing protocols,
we have not done so, and hence have not compared them against our viewserver hierarchy. This
is because of lack of time, and because precise definitions of the hierarchies in these protocols is
not available. For example, to do a fair evaluation of IDPR[19], we need precise guidelines for
how to group domains into super-domains, and how to choose between the union and intersection
methods when defining policy/ToS constraints of super-domains. In fact, these protocols have not
been evaluated in a way that we can compare them to the viewserver hierarchy. To the best of our
knowledge, this paper is the first to evaluate a hierarchical inter-domain routing protocol against

explicitly stated policy constraints.

5.1 Evaluation Model

We first describe our method of generating topologies and policy/ToS constraints. We then describe

the evaluation measures.

Generating Internetwork Topologies

For our purposes, an internetwork topology is a directed graph where the nodes correspond to
domains and the edges correspond to domain-level connections. However, an arbitrary graph will
not do. The topology should have the characteristics of a real internetwork, like the Internet. That
is, it should have backbones, regionals, MANS, LANS, etc.; these should be connected hierarchically
(e.g. regionals to backbones), but “non-hierarchical” connections should also be present.

For brevity, we refer to backbones as class 0 domains, regionals as class 1 domains, metropolitan-
area domains and providers as class 2 domains, and campus and local-area domains as class 3
domains. A (strictly) hierarchical interconnection of domains means that class 0 domains are

connected to each other, and for ¢ > 0, class ¢ domains are connected to class ¢ — 1 domains.

16



As mentioned above, we also want some “non-hierarchical” connections, i.e., domain-level edges
between domains irrespective of their classes (e.g. from a campus domain to another campus
domain or to a backbone domain).

In reality, domains span geographical regions and domain-level edges are often between do-
mains that are geographically close (e.g. University of Maryland campus domain is connected to
SURANET regional domain which is in the east coast). A class ¢ domain usually spans a larger
geographical region than a class 7 + 1 domain. To generate such interconnections, we associate a
“region” attribute to each domain. The intention is that two domains with the same region are
geographically close.

The region of a class ¢ domain has the form rg.rq.---.rj, where the r;’s are integers. For
example, the region of a class 3 domain can be 1.2.3.4. For brevity, we refer to the region of a
class ¢« domain as a class ¢ region.

Note that regions have their own hierarchy. Class 0 regions are the top level regions. We say
that a class ¢ region ro.rq.---.ri_1.ri is contained in the class ¢ — 1 region ro.rq.---.rij_1 (where
i > 0). Containment is transitive. Thus region 1.2.3.4 is contained in regions 1.2.3, 1.2 and 1.

Given any pair of domains, we classify them as local, remote or far, based on their regions.
Let X be a class ¢ domain and Y a class j domain, and without loss of generality let 7 < j. X
and Y are local if they are in the same class ¢ region. For example in Figure 6, A is local to
B,C,J, K, M,N,O,P,and (). X and Y are remote if they are not in the same class ¢ region but
they are in the same class ¢ — 1 region, or if ¢ = 0. For example in Figure 6, some of the domains
A is remote to are D, F, F,and L. X and Y are far if they are not local or remote. For example
in Figure 6, A is far to [I.

We refer to a domain-level edge as local (remote, or far) if the two domains it connects are local

(remote, or far).

We use the following procedure to generate internetwork topologies:

o We first specify the number of domain classes, and the number of domains in each class.

o We next specify the regions. Note that the number of region classes equals the number of
domain classes. We specify the number of class 0 regions. For each class ¢ > 0, we specify a
branching factor, which creates that many class ¢ regions in each class ¢ — 1 region. (That is,

if there are two class 0 regions and the class 1 branching factor equals three, then there are

17



Figure 6: Regions

six class 1 regions.)

For each class ¢, we randomly map the class ¢ domains into the class ¢ regions. Note that
several domains can be mapped to the same region, and some regions may have no domain
mapped into them.

For every class ¢ and every class j, j > 7, we specify the number of local, remote and far
edges to be introduced between class ¢ domains and class 7 domains. The end points of the
edges are chosen randomly (within the specified constraints).

We ensure that the internetwork topology is connected by ensuring that the subgraph of class
0 domains is connected, and each class ¢ domain, for ¢ > 0, is connected to a local class ¢ — 1

domain.

18



Choosing Policy/ToS Constraints

We chose a simple scheme to model Policy/ToS constraints. Each domain is assigned a color: green
or red. For each domain class, we specify the percentage of green domains in that class, and then
randomly choose a color for each domain in that class.

A walid route from a source to a destination is one that does not visit any red intermediate

domains; the source and destination are allowed to be red.

Computing Evaluation Measures

The evaluation measures of most interest for an inter-domain routing protocol are its memory and
time requirements, and the number of valid paths it finds (and their lengths) in comparison to
the number of available valid paths (and their lengths) in the internetwork (e.g. could it find the
shortest valid path in the internetwork).

The only analysis method we have at present is to numerically compute the evaluation measures
for a variety of source-destination pairs. Because we use internetwork topologies of large sizes, it is
not feasible to compute for all possible source-destination pairs. We randomly choose a set of source-
destination pairs that satisfy the following conditions: (1) the source and destination domains are
different, and (2) there exists a valid path from the source domain to the destination domain in
the internetwork topology. (Note that the simple scheme would always find such a path.)

For a source-destination pair, we refer to the length of the shortest valid path in the internetwork
topology as the shortest-path length. Since the number of paths between a source-destination pair
is potentially very large (factorial in the number of domains), and we are not interested in the
paths that are too long, we only count the number of paths whose lengths are not more than the
shortest-path-length plus 2.

The evaluation measures described above are protocol independent. However, there are also
important evaluation measures that are protocol dependent (e.g. number of levels traversed in
some particular hierarchy). Because of this we postpone the precise definitions of the evaluation

measures to the next subsection (their definition is dependent of viewserver hierarchy).

19



5.2 Application to Viewserver Protocol

We have used the above model to evaluate our viewserver protocol for several different viewserver
hierarchies and query methods. We first describe the different viewserver schemes evaluated. Please
refer to Figure 6 in the following discussion.

The first viewserver scheme is referred to as base. It has exactly one viewserver in each domain.
Each viewserver is identified by its domain-id. The domains in a viewserver’s precinct consist of
its domain and the neighboring domains. The edges in the viewserver’s view consist of the edges
between the domains in the precinct, and edges outgoing from domains in the precinct to domains
not in the precinct. For example, the precinct of viewserver A (i.e. the viewserver in domain A)
consists of domains A, B, .J; the edges in the view of viewserver A consists of domain-level edges
(A, B),(A,J),(B,J),(J,M),(J,K),(J,F),(J,D),and (J,C).

As for the viewserver hierarchy, a viewserver’s level is defined to be the class of its domain. That
is, a viewserver in a class ¢ domain is a level ¢ viewserver. For each level i viewserver, 7 > 0, its
parent viewserver is chosen randomly from the level ¢ — 1 viewservers in the parent region such that
there is a domain-level edge between the viewserver’s domain and the parent viewserver’s domain.
For example, for viewserver (', we can pick viewserver J or K; suppose we pick J. For viewserver
J, we have no choice but to pick M (N and O are not connected to J). For M, we pick P (out of
P and Q).

We use only one address for each domain. The viewserver-address of a stub domain is con-
catenation of four viewserver (i.e. domain) ids. Thus, the address of A is P.M.J.A. Similarly, the
address of H is P.M.K.H. To obtain a route between A and H, it suffices to obtain views of
viewservers A, J, K, H.

The second viewserver scheme is referred to as base-QT (where the Q7 stands for “query upto
top”). It is identical to base except that during the query protocol all the viewservers in the source
and the destination addresses are queried. That is, to obtain a route between A and H, the views
of A, J, M, P, K, H are obtained.

The third viewserver scheme is referred to as locals. It is identical to base except that now a
viewserver’s precinct also contains domains that have the same region as the viewserver’s domain.
That is, the precinct of viewserver A has the domains A, B,J,C'. Note that in this scheme a

viewserver’s view is not necessarily connected. For example, if the edge (C,J) is removed, the view

20



of viewserver A is no longer connected. (In Section 3, we said that the view of a viewserver should
be connected. Here we have relaxed this condition to simplify testing.)

The fourth viewserver scheme is referred to as locals-QT. It is identical to locals except that
during the query protocol all the viewservers in the source and the destination addresses are queried.

The fifth viewserver scheme is referred to as vertex-extension. It is identical to base except
that viewserver precincts are extended as follows: Let P denote the precinct of a viewserver in the
base scheme. For each domain X in P, if there is an edge from domain X to domain Y and Y
is not in P, domain Y is added to the precinct; among Y’s edges, only the ones to domains in P
are added to the view. In the example, domains M, K, F, D are added to the precinct of A, but
outgoing edges of these domains to other domains are not included (e.g. (F,G) is not included).
The advantage of this scheme is that even though it increases the precinct size by a factor of Fp
(where Ep is the average number of neighbor domains to a domain), it increases the number of
edges stored in the view by a factor less than 2. (In fact, if the same edge cost and edge policies
are used for both directions of domain-level edges, then the only other information that needs to
be stored by the viewservers is the policy constraints of the newly added domains.)

The sixth viewserver scheme is referred to as full-QT. It is constructed in the same way as
vertez-extension except that the locals scheme is used instead of base scheme to define the P in
the construction. In full-QT, during the query protocol all the viewservers in the source and the
destination addresses are queried.

We also looked at two other schemes, vertex-extension-QT and full, for which the results
were very close to the vertex-extension and the full-Q)T schemes respectively. Hence, we do not
present any results for these two schemes.

In all the above viewserver schemes, we have used the same hierarchy for both domain classes
and viewservers. In practice, not all domains need to have a viewserver, and a viewserver hierarchy
different from the domain class hierarchy can be deployed. However, there is an advantage of
having a viewserver in each domain; that is, source nodes do not require fixed domain-level source
routes to their parent viewservers (in the view-query protocol). This reduces the amount of hand
configuration required. In fact, the base scheme does not require any hand configuration, viewservers
can decide their precincts from the intra-domain routing tables, and nodes can use intra-domain

routes to reach parent viewservers.

21



Results for Internetwork 1

The parameters of the first internetwork topology, referred to as Internetwork 1, are shown in

Table 1.

Class ¢ || No. of Domains

No. of Regions'?

% of Green Domains

Edges between Classes 7 and j

Class j | Local | Remote | Far

0 10 4 0.80 0 8 6 0
1 100 16 0.75 0 190 20 0
1 26 5 0

2 1000 64 0.70 0 100 0 0
1 1060 40 0
2 200 40 0
3 10000 256 0.20 0 100 0 0
1 100 0 0
2 10100 50 0

3 50 50 50

Table 1: Parameters of Internetwork 1.

Our evaluation measures were computed for a (randomly chosen but fixed) set of 1000 source-

destination pairs. For brevity, we use spl to refer to the shortest-path length (i.e. the length of

the shortest valid path in the internetwork topology). The minimum spl of these pairs was 2, the

maximum sp/ was 13, and the average spl was 6.8. Table 2 lists for each viewserver scheme (1) the

minimum, average and maximum precinct sizes, (2) the minimum, average and maximum merged

view sizes, and (3) the minimum, average and maximum number of viewservers queried.

The precinct size indicates the memory requirement at a viewserver. More precisely, the memory

requirement at a viewserver is O(precinct size x Ep), except for the vertez-extension and full-QT

schemes. In these schemes, the memory requirement is increased by a factor less than two. Hence

the wvertex-extension scheme has the same order of viewserver memory requirement as the base

scheme and the full-QQT scheme has the same order of viewserver memory requirement as the locals

15Branching factor is 4 for all region classes.

22




Scheme

Precinct Size

Merged View Size

No. of Viewservers Queried

base 2 /3.2 /68 7/ 71.03 / 101 3/751/8
base-QT 2/32/68 | 30/76.01/ 101 8 /8.00 /8
locals 2/52.0/103 | 3/95.40 /143 2 /742 /8
locals-QT 2 /52.0 /103 | 43/ 101.86 / 143 8 /8.00 /8
vertex-extension || 3/ 19.2 /796 | 23 / 362.15 / 486 3/751/8
Jull-QT 11/ 102.9 / 796 | 228 / 396.80 / 519 8 /8.00 /8

Table 2: Precinct sizes, merged view sizes, and number of viewservers queried for Internetwork 1.

scheme.

The merged view size indicates the memory requirement at a source; i.e. the memory require-
ment at a source is O(merged view size X Ep) except for the vertex-extension and full-QT schemes.
Note that the source does not need to store information about red and non-transit domains. The
numbers in Table 2 take advantage of this.

The number of viewservers queried indicates the communication time required to obtain the
merged view at the source. Because the average spl is 6.8, the “real-time” communication time
required to obtain the merged view at a source is slightly more than one round-trip time between
the source and the destination.

As is apparent from Table 2, using a )7 scheme increases the merged view size and the number
of viewservers queried only by about 5%. Using a locals scheme increases the merged view size by
about 30%. Using the vertex-extension scheme increases the merged view size by 5 times (note that
the amount of actual memory needed increases only by a factor less than 2).

The number of viewservers queried in the locals scheme is less than the number of viewservers
queried in the base scheme. This is because the viewservers in the locals scheme have bigger
precincts, and a path from the source to the destination can be found using fewer views.

Table 3 shows the average number of spl, spl + 1, spl + 2 length paths found for a source-
destination pair by the simple approach and by the viewserver schemes. All the viewserver schemes
are very close to the simple approach. The vertez-extension and full-Q)T schemes are especially close
(they found 98% of all paths). Table 3 also shows the number of pairs for which the viewserver

schemes did not find a path (ranging from 1.4% to 5.9% of the source-destination pairs), and

23



the number of pairs for which the viewserver schemes found longer paths. For these pairs, more
viewserver addresses need to be tried. Note that the locals and vertex-extension schemes decrease the
number of these pairs substantially (adding Q7 yields further improvement). Our policy constraints
are source and destination domain independent. Hence, even a class 2 domain, if it is red, can not
carry traffic to a class 3 domain to which it is connected. We believe that these figures would
improve with policies that are dependent on source and destination domains.

We examined the shortest valid paths between the source-destination pairs for which the
viewserver schemes failed to find paths. We found out that all these paths were very long (11
domain hops or more for full-QT) and very non-hierarchical (i.e. contained many links between

class 3 domains).

Number of paths found | No. of pairs No. of pairs
Scheme spl | spl + 1| spl +2 | with no path | with longer paths
simple 2.51 | 1848 | 131.01 N/A N/A
base 2.41 | 15.84 99.42 59 3 by 1.33 hops
base-QT 2.41 | 15.86 | 100.16 54 3 by 1.33 hops
locals 2.41 | 16.17 | 103.54 29 3 by 1 hop
locals-QT 2.41 | 16.29 | 105.02 20 3 by 1 hop
vertez-extension || 2.51 | 18.38 | 128.19 22 0 by 0 hops
Sull-QT 2.50 | 18.40 | 128.90 14 0 by 0 hops

Table 3: Number of paths found for Internetwork 1.

As is apparent from Table 3 and Table 2, the locals scheme does not find many more extra
paths than the base scheme even though it has larger precinct and merged view sizes. Hence it is
not recommended. The vertez-extension scheme is the best, but even base is adequate since it finds
many paths.

We have repeated the above evaluations for two other internetworks and obtained similar con-

clusions. The results are in Appendix B.

24



6 Concluding Remarks

We presented a hierarchical inter-domain routing protocol that satisfies policy and ToS constraints,
adapts to dynamic topology changes including failures that partition domains, and scales well to
large number of domains.

Our protocol uses partial domain-level views to achieve scaling in space requirement. It floods
domain-level topological changes over limited flood areas to achieve scaling in communication re-
quirement.

It does not abstract domains into superdomains; hence it does not lose any domain-level detail
in ToS and policy information. It merges a sequence of partial views to obtain domain-level source
routes between nodes which are far away. The number of views that need to be merged is bounded
by twice the number of levels in the hierarchy.

Another advantage of our protocol is that it does not tightly bind addresses of nodes to their
locations in the internetwork. Rather, addresses are bound to indirect providers of information
needed for route computation.

To evaluate and compare inter-domain routing protocols against each other and against the
simple approach, we presented a model in which one can define internetwork topologies, policy/ToS
constraints, inter-domain routing hierarchies, and evaluation measures. We applied this model to
evaluate our viewserver hierarchy and compared it to the simple approach. Our results indicate
that the viewserver hierarchy finds many short valid paths and reduces the amount of memory
requirement by two orders of magnitude.

Our protocol recovers from fail-stop failures of viewservers and gateways. When a viewserver
fails, an address which includes the viewserver’s id becomes useless. This deficiency can be overcome
by replicating each viewserver at different nodes of the domain; in this case a viewserver fails only
if all nodes implementing it fail.

One drawback of our protocol is that to obtain a domain-level source route, views are merged
at or prior to the connection setup, thereby increasing the setup time. This drawback is not unique
to our scheme [9, 19, 7, 6, 11]. There are several ways to reduce this setup overhead. First, domain-
level source routes to frequently used destinations can be cached. Second, views of frequently
queried viewservers can be replicated at “mirror” viewservers close to the source domain. Third,

connection setup also involves traversing the name server hierarchy (to obtain destination addresses

25



from names). By integrating the name server hierarchy with the viewserver hierarchy, we may be
able to do both operations simultaneously.

The viewserver hierarchy takes advantage of the structure found in realistic internetwork topolo-
gies. It would be interesting to investigate applications of the viewserver hierarchy to arbitrary in-
ternetworks where the interconnection of networks may not be as hierarchical, but rather is more
like a mesh. We are also studying techniques to apply when a valid path cannot be found using one
pair of addresses. In particular, we are investigating the use of multiple addresses and heuristics to
query viewservers that are not on any address but whose views may help find valid paths.

There were several drawbacks of our evaluation. We only considered simple binary policy/ToS
constraints as opposed to more general policy/ToS constraints such as delay. We only evaluated
the viewserver schemes using the hierarchical internetwork topologies that mimicked the Internet
as opposed to more general topologies that included more mesh-like interconnections. We did not
evaluate the communication capacity requirements of our protocols. We believe the communication
capacity requirements of our protocols will be much less than the simple approach where the

topology changes are flooded to all the routers in the internetwork.

References

[1] C. Alaettinoglu and A. U. Shankar. Hierarchical inter-domain routing protocol with on-demand ToS
and policy resolution. In IFEE International Conference on Networking Protocols 93, San Fransisco,

California, October 1993.

[2] C. Alaettinoglu and A. U. Shankar. Viewserver hierarchy: A new inter-domain routing protocol and
its evaluation. Technical Report UMIACS-TR-93-98, CS-TR-3151, Department of Computer Science,
University of Maryland, College Park, October 1993. Earlier version CS-TR-3033, February 1993.

[3] C. Alaettinoglu and A. U. Shankar. Viewserver hierarchy: A new inter-domain routing protocol. In

IEEE INFOCOM 9/, Toronto, Canada, June 1994.

[4] A. Bar-Noy and M. Gopal. Topology distribution cost vs. efficient routing in large networks. In ACM
SIGCOMM °90, pages 242-252, Philadelphia, Pennsylvania, September 1990.

[5] L. Breslau and D. Estrin. Design of inter—administrative domain routing protocols. In ACM SIGCOMM
’90, pages 231-241, Philadelphia, Pennsylvania, September 1990.

[6] I. Castineyra, J. N. Chiappa, C. Lynn, R. Ramanathan, and M. Steenstrup. The nimrod routing architec-
ture. Internet Draft., March 1994. Available by anonymous ftp from research.ftp.com:pub/nimrod.

[7] J. N. Chiappa. A new ip routing and addressing architecture. Internet Draft.; 1992. Available by
anonymous ftp from research.ftp.com:pub/nimrod.

[8] D. Clark. Route fragments, a routing proposal. Big-Internet mailing list., July 1992. Available by
anonymous ftp from munnari.oz.au:big-internet/list-archive.

[9] D.D. Clark. Policy routing in internet protocols. Request for Comment RFC-1102, Network Information
Center, May 1989.

26



[10] D. Estrin. Policy requirements for inter administrative domain routing. Request for Comment RFC-
1125, Network Information Center, November 1989.

[11] D. Estrin, Y. Rekhter, and S. Hotz. Scalable inter-domain routing architecture. In ACM SIGCOMM
’92, pages 40-52, Baltimore, Maryland, August 1992.

[12] F. Kamoun and L. Kleinrock. Stochastic performance evaluation of hierarchical routing for large net-
works. Computer Networks and ISDN Systems, 1979.

[13] B.M. Leiner. Policy issues in interconnecting networks. Request for Comment RFC-1124, Network
Information Center, September 1989.

[14] P. V. Mockapetris. Domain names - concepts and facilities. Request for Comment RFC-1034, Network
Information Center, November 1987.

[15] R. Perlman. Hierarchical networks and subnetwork partition problem. Computer Networks and ISDN
Systems, 9:297-303, 1985.

[16] Y. Rekhter. Inter-domain routing protocol (idrp). Journal of Internetworking Research and Frperience,
4:61-80, 1993.

[17] Y. Rekhter and T. Li. A border gateway protocol 4 (bgp-4). Request for Comment RFC-1654, Network
Information Center, July 1994.

[18] K. G. Shin and M. Chen. Performance analysis of distributed routing strategies free of ping-pong-type
looping. IEEFE Transactions on Computers, 1987.

[19] M. Steenstrup. An architecture for inter-domain policy routing. Request for Comment RFC-1478,
Network Information Center, July 1993.

[20] P. F. Tsuchiya. The landmark hierarchy: Description and analysis, the landmark routing: Architecture
algorithms and issues. Technical Report MTR-87W00152, MTR-87W00174, The MITRE Corporation,
McLean, Virginia, 1987.

[21] P. F. Tsuchiya. The landmark hierarchy:a new hierarchy for routing in very large networks. In ACM
SIGCOMM °88, August 1988.

[22] P. F. Tsuchiya. Efficient and robust policy routing using multiple hierarchical addresses. In ACM
SIGCOMM °91, pages 53-65, Zurich, Switzerland, September 1991.

A  View-Update Protocol Event Specifications

The events of gateway g are specified in Figure 7. When a gateway g recovers, C'ellld, is set to
nodeid(g). Thus, when g next executes Update,, it sends either an UpdateCell or a DeleteCell
message to viewservers, depending on whether it is no longer the minimum id gateway in its cell.
Sending a DeleteCell message is essential. Because prior to the failure, ¢ may have been the
smallest id gateway in its cell. Hence, some viewserver’s may still contain an entry for its old
domain cell.

The events of a viewserver x are specified in Figure 5. When a viewserver z recovers, DView,
is set to {}. Its view becomes up-to-date as it receives new information from reporting gateways

(and remove false information with the time-to-die period).

27



Update, {Executed periodically and also optionally upon a change in IntraDomainRT,}
{Determines the id of ¢’s cell and initiates UpdateCell and DeleteCell messages if needed.}
OldCellld = Cellidy;

Cellldy := compute cell id using LocalGateways, and IntraDomainRT;
if nodeid(g) = Cellld, then
ncostset 1= compute costs for each neighbor domain cell using IntraDomain R1y;
flood,((UpdateCell, domainid(g), Cellld,, Clock,, FloodArea,, ncostset));
endif
if nodeid(g) = OldCellld # Cellld, then
flood,((DeleteCell, domainid(y), nodeid(g), Clock,, FloodAreay));
endif

Receive,(packet) {either an UpdateCell or a DeleteCell packet}
flood,(packet)

where procedure flood,(packet)
if domainid(g) € packet. floodarea then
{remove domain of ¢ from the flood area to avoid infinite exchange of the same message.}
packet. floodarea := packet. floodarea — {domainid(g)};
for all A € LocalGatewaysy, U LocalViewservers, do
Send(packet) to h using {);
endif
for all h € AdjForeignGateways, A domainid(h) € packet.floodarea do
Send(packet) to h;

Gateway Failure Model: A gateway can undergo failures and recoveries at anytime. We assume failures
are fail-stop (i.e. a failed gateway does not send erroneous messages). When a gateway g recovers, Cellld,
is set to nodeid(yg).

Figure 7: View-update protocol: Events of a gateway g¢.
B Results for Other Internetworks

Results for Internetwork 2

The parameters of the second internetwork topology, referred to as Internetwork 2., are the same
as the parameters of Internetwork 1 (a different seed is used for the random number generation).
Our evaluation measures were computed for a set of 1000 source-destination pairs. The mini-
mum spl of these pairs was 2, the maximum spl was 13, and the average spl was 7.2.
Table 4 and Table 5 shows the results. Similar conclusions to Internetwork 1 hold for Internet-
work 2. In Table 5, the reason that local and QT schemes have more pairs with longer paths than
the base scheme is that these schemes found some paths (which are not shortest) for some pairs for

which the base scheme did not find any path.

28



Receive, (UpdateCell, did, cid, ts, FloodArea, ncset)
if did € Precinct, then
if I(did:cid, timestamp, expirytime, deleted, ncostset) € DView, A

ts > timestamp then {received is more recent; delete the old one}
delete (did:cid, timestamp, expirytime, deleted, ncostset) from DView,;
endif

if =3(did:cid, timestamp, expirytime, deleted, ncostset) € DView, then
Choose ncostset from ncset using SViewsy;
insert {(did:cid, ts, Clock, + TimeToDie,, false, ncostset) to DView:;
endif
endif

Receivey (DeleteCell, did, cid, ts, floodarea)
if did € Precinct, then
if I(did:cid, timestamp, expirytime, deleted, ncostset) € DView, A

ts > timestamp then {received is more recent; delete the old one}
delete (did:cid, timestamp, expirytime, deleted, ncostset) from DView,;
endif

if =3(did:cid, timestamp, expirytime, deleted, ncostset) € DView, then
insert {(did:cid, ts, Clock, + TimeToDiey, true, {}) to DView,;
endif
endif

Delete,. {Executed periodically to delete entries older than the time-to-die period}
for all (A:g, tstamp, expirytime, deleted, neset) € DView, A expirytime < Clock, do
delete (A:g, tstamp, expirytime, deleted, neset) from DView,;

Viewserver Failure Model: A viewserver can undergo failures and recoveries at anytime. We assume
failures are fail-stop. When a viewserver  recovers, DView, is set to {}.

Figure 8: View update events of a viewserver .

Scheme Precinct Size Merged View Size | No. of Viewservers Queried
base 2/32/76 4/ 66.62 / 96 3/7.55/8
base-QT 2/32/76 29 / 72.76 / 96 8 /800/8
locals 3 /69.8 /149 4 /101.32 / 148 2/736/8
locals-QT 3 /69.8 /149 35/ 110.32 / 152 8 /800/8
vertex-extension || 3/ 19.47 / 817 | 15/ 339.60 / 469 3/755/8
full-QT 11/ 135.2 / 817 | 186 / 402.51 / 503 8 /800/8

Table 4: Precinct sizes, merged view sizes, and no of viewservers queried for Internetwork 2.
Results for Internetwork 3

The parameters of the third internetwork topology, referred to as Internetwork 3, are shown in

Table 6. Internetwork 3 is more connected, more class 0, 1 and 2 domains are green, and more

29



Number of paths found | No. of pairs No. of pairs
Scheme spl | spl + 1| spl +2 | with no path | with longer paths
simple 2.21 | 13.22 74.30 N/A N/A
base 1.98 | 8.20 34.40 123 13 by 1.08 hops
base-QT 1.98 | 8.36 35.62 110 15 by 1.13 hops
locals 2.08 | 9.18 40.50 97 23 by 1.39 hops
locals-QT 2.08 | 9.38 42.08 67 23 by 1.30 hops
vertez-extension || 2.18 | 12.57 64.98 19 6 by 1 hop
Sull-QT 2.19 | 12.85 67.37 4 4 by 1 hop

Table 5: Number of paths found for Internetwork 2.

class 3 domains are red. Hence, we expect more valid paths between source and destination pairs.

Our evaluation measures were computed for a set of 1000 source-destination pairs. The mini-

mum spl of these pairs was 2, the maximum spl was 10, and the average spl was 5.93.

Class ¢ || No. of Domains | No. of Regions'® | % of Green Domains | Edges between Classes i and j
Class j | Local | Remote | Far
0 10 4 0.85 0 8 7 0
1 100 16 0.80 0 190 20 0
1 50 20 0
2 1000 64 0.75 0 500 50 0
1 1200 100 0
2 200 40 0
3 10000 256 0.10 0 300 50 0
1 250 100 0
2 10250 150 50
3 200 150 100

Table 6: Parameters of Internetwork 3.

'8 Branching factor is 4 for all domain classes.

30




Table 7 and Table 8 shows the results.

Internetwork 3.

Similar conclusions to Internetwork 1 and 2 hold for

Scheme Precinct Size Merged View Size | No. of Viewservers Queried
base 2/35/171 5/ 134.41 / 206 3/7.26/8
base-QT 2/35/171 55 / 154.51 / 206 8 /8.00/8
locals 3/70.17 /171 4/ 164.16 / 257 2/7.09/8
locals-QT 3/70.17 /171 57 / 191.06 / 258 8 /8.00/8
vertex-extension || 5/ 34.17 / 1986 | 18 / 601.56 / 695 3/726/8
full-QT 14 / 155.5 / 1986 | 503 / 655.79 / 743 8 /8.00/8

Table 7: Precinct sizes, merged view sizes, and no of viewservers queried for Internetwork 3.

Number of paths found | No. of pairs No. of pairs
Scheme spl | spl + 1| spl +2 | with no path | with longer paths
simple 3.34 | 37.55 | 368.97 N/A N/A
base 2.83 | 24.25 | 178.08 17 11 by 1.09 hops
base-QT 2.87 | 25.53 | 193.41 12 8 by 1.12 hops
locals 2.87 | 25.62 | 196.33 21 8 by 1 hop
locals-QT 2.97 | 27.59 | 219.63 2 6 by 1 hop
vertez-extension || 3.32 | 35.73 | 332.54 5 1 by 1 hop
Sull-QT 3.33 | 36.47 | 346.44 0 0 by 0 hops

Table 8: Number of paths found for Internetwork 3.

Figure 9 through Figure 11 show the number of spl, spl + 1 and spl 4+ 2 length paths found by
the schemes as a function of spl (we only show results for spl values for which more than 10 pairs
exist). We do not include base-QT, locals and locals-QT schemes since they are very close to base
scheme. As expected, as spl increases, the number of paths for a source-destination pair increases,

and the gap between the simple scheme and the viewserver schemes increases.

31



spl+1 length paths found spl length paths found

spl+2 length paths found

10 T , : | | _
g I flat —-—
base -+--
7 | vertex-extension & ]
6 full-QT P ]
5 I =
4 I =
I ., S 1
2 I =
1 & e |
3 4 5 6 = o .
spl length
Figure 9: Number of spl length paths found for Internetwork 3.
120 , | . | |
i
100 | flat —— ,
base -+--
80 [ vertex-extension = |

60
40
20

spl length

Figure 10: Number of spl + 1 length paths found for Internetwork 3.

1200

1000
800
600
400
200

- vertex-extension -@---

flat ——
base -+--

0= =—==="

spl length

Figure 11: Number of spl + 2 length paths found for Internetwork 3.

32



