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 The tumor suppressor Beclin 1 mitigates cell stress by regulating the lysosomal 

degradation pathway known as autophagy. This process involves formation of 

intracellular double-membraned vesicles, known as autophagosomes, which engulf 

proteins and damaged organelles and fuse with lysosomes, where the contents are 

degraded. It is unclear whether the function of Beclin 1 in autophagy is related to cell 

transformation in beclin 1+/- animals. Using the fruit fly, Drosophila melanogaster, I 

investigated the function of the Beclin 1 ortholog Atg6 in autophagy and growth control. 

Through transgenic experiments, I found that Atg6, like Beclin 1, induces autophagy by 

functioning in a complex consisting of the lipid kinase Vps34 and the serine-threonine 

kinase Vps15. I also generated a strong loss of function mutant, Atg61, and found that 

Atg6 is required for development. Atg6 mutant animals contained an excess of blood 



   

cells, which surrounded melanotic tumors prior to death. At the cellular level, Atg6 is 

required for autophagy and endocytosis, and cells lacking Atg6 accumulate high levels of 

the endoplasmic reticulum stress protein Hsc3 and the adaptor protein p62. I also showed 

that Atg6 mutant cells displayed mis-regulated nuclear localization of NFκB proteins, 

transcription factors whose downstream targets include regulators of innate immunity. 

Significantly, my results suggest that Atg6 may regulate growth independent of its 

function in autophagy, as mosaic loss of Atg6 in the eye resulted in over-representation of 

Atg6 mutant cells, a phenotype not shared by other autophagy gene mutant mosaics. 

Finally, through a collaborative effort, our lab identified a novel function for Atg6 in 

regulation of epithelial cell polarity. This finding is significant, as epithelial tumor cells 

are known to lose polarity during metastasis. Our studies have provided a significant 

contribution to the Beclin 1 field, by providing the first characterization of a Drosophila 

Atg6 mutant, and demonstrating its function in novel cellular processes. 
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Chapter 1 

 
 

Introduction 
 
 
I. Genetic Regulation of Growth  

 The balance between cell growth, cell proliferation, and cell death ensures correct 

cell, tissue and animal size (Conlon and Raff, 1999). Perturbation of these cell processes 

can lead to disorders, including uncontrolled growth and cancer (Hanahan and Weinberg, 

2000). During animal development, cell proliferation, growth, and death pathways are 

regulated by both extracellular and intracellular signals. Extracellular signals include 

hormones, growth factors, and mitogens, which regulate growth and proliferation by 

binding to membrane receptors, initiating downstream intracellular signaling cascades 

(van der Geer et al., 1994). In addition to growth factors, nutrients also regulate cell 

growth (Shamji et al., 2003). Cells sense nutrient availability and increase in mass by 

synthesizing proteins. In the absence of nutrients, anabolism ceases and catabolic 

pathways are induced to provide energy. The pathways that coordinate these diverse 

signals are highly conserved among diverse organisms.  

 

A. Cell Proliferation 

 Growth factors regulate metazoan cell proliferation and growth via receptor 

tyrosine kinases (RTK). Binding of a growth factor ligand to the extracellular side of its 

RTK induces oligomerization of the intracellular domains of the receptor. Upon 

dimerization, the activated RTK is bound by the adaptor protein Grb2 through its Src 

homology 2 (SH2) domain, which recruits a guanine nucleotide exchange factor (GEF), 
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Son of sevenless (Sos), to the membrane (Bonfini et al., 1992; Chardin et al., 1993). Sos 

activates the small GTPase Ras by stimulating exchange of GDP for GTP (Chardin et al., 

1993). GTP-bound activated Ras plays a central role in cell proliferation, transmitting the 

signal downstream to the mitogen activated protein (MAP) kinase cascade, starting with 

direct activation of the MAP kinase kinase kinase Raf (Hattori et al., 1992; Moodie et al., 

1993; Pomerance et al., 1992). The signal is transduced via a series of phosphorylations 

through the MAP kinase cascade to the nucleus, where proliferation genes, including the 

G1 phase cyclins, are turned on (Lavoie et al., 1996). Alternatively, MAP kinase signaling 

can be initiated by G-protein coupled receptors, which can activate Ras family GTPases 

(Luttrell, 2002).   

 Ras has also been shown to bind directly to the p110 catalytic subunit of the class 

I phosphatidylinositol 3-kinase (PI3K) (Rodriguez-Viciana et al., 1994). PI3K is a central 

regulator of cell growth, which also regulates proliferation via activation of the 

serine/threonine kinase Akt. Following Ras binding and activation of PI3K, Akt is 

recruited to the plasma membrane by the phospholipid product of PI3K, 

phosphatidylinositol (3,4,5)-triphosphate (PIP3), to which Akt is bound via its plekstrin 

homology (PH) domain (Franke et al., 1997). There are numerous downstream targets of 

Akt phophorylation, including regulators of protein synthesis, metabolism, growth, and 

proliferation (Manning and Cantley, 2007). Akt regulates cell proliferation by 

phosphorylating cell cycle regulators. Cell cycle targets of Akt include glycogen synthase 

kinase 3-β (GSK3β), which phosphorylates cyclin D1, targeting it for proteasomal 

degradation, and FOXO, a transcription factor that regulates expression of the cyclin 

dependent kinase inhibitor p21 (Brunet et al., 1999; Cross et al., 1995; Diehl et al., 1998).  
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B. Cell Growth 

 The class I PI3K pathway is also a central regulator of cell growth. Upon growth 

factor binding to transmembrane RTKs, PI3K subunits become localized near the 

membrane and are activated by phosphorylation (Carpenter et al., 1990; Kaplan et al., 

1987; Whitman et al., 1987). Next, they form heterodimers and these active PI3K 

complexes phosphorylate phospholipid substrates, which include phosphatidylinositol 

(PI), phosphatidylinositol 4-phosphate (PI-4-P), and phosphatidylinositol 4,5 

bisphosphate (PIP2) (Whitman et al., 1988; Carpenter et al., 1990). These membrane-

bound phospholipids recruit PH domain-containing proteins to the plasma membrane to 

propagate signaling through phosphorylation of downstream effectors (Franke et al., 

1997).  

  In mammals, there are two subfamilies of class I PI3K proteins. Class IA PI3Ks 

consist of a p110 catalytic subunit, of which there are three isoforms, and a p85 

regulatory subunit, of which there are five isoforms (Engelman et al., 2006). Class IB 

PI3Ks are composed of either a p101 or a p84 regulatory subunit, of which there are 3 

isoforms, and a single p110 catalytic subunit. The two subfamilies of Class I PI3Ks differ 

based on the receptors that activate them. Class IA PI3Ks are activated by RTKs, 

including insulin and insulin like growth factor (IGF) receptors, epidermal growth factor 

receptor (EGFR), and platelet derived growth factor (PDGF) receptor, while class IB 

PI3Ks are activated by G-protein coupled receptors (GPCR).  

 Binding of either insulin or IGF1 to cell surface receptors induces 

autophosphorylation of the dimerized subunits (Kasuga et al., 1982). This leads to 

recruitment of a class IA PI3K p85/p110 complex to the plasma membrane (Gillham et 
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al., 1999). Binding of PI3K by the RTK is facilitated by insulin receptor substrate (IRS) 

proteins, which act as adaptors by binding to both in proximity to the membrane (White, 

1998). The signal is transduced from the RTK through the adaptor protein by 

phosphorylation. The phospholipid substrate of PI3K, PIP2, is converted to PIP3, a second 

messenger that recruits Akt to the membrane, where it is phosphorylated by the 

serine/threonine kinases PDK1 and PDK2 (Vivanco and Sawyers, 2002). Downstream of 

Akt, the kinase target of rapamycin (TOR) regulates growth by stimulating protein 

synthesis in the presence of nutrients, and inhibiting autophagy, a cell autonomous 

catabolic pathway (Fig. 1-1) (Kim et al., 2002; Noda and Ohsumi, 1998; Oldham et al., 

2000). Activated Akt phosphorylates the GTPase activating protein (GAP) tuberous 

sclerosis complex protein 2 (TSC2), leading to its inhibition and subsequent 

accumulation of the active GTP-bound form of the GTPase Rheb (Zhang et al., 2003). 

Upon activation of TOR by Rheb, TOR phosphorylates p70 S6 kinase, inhibiting the 

translational repressor 4E-BP1(Burnett et al., 1998). In a parallel, Rheb-independent 

pathway, Akt can also activate TOR via repression of the proline-rich Akt substrate of 

40kDa (PRAS40) (Sancak et al., 2007). PRAS40 binds to TOR, and mutation of the Akt 

phosphorylation site on PRAS40 leads to TOR activation (Sancak et al., 2007; Vander 

Haar et al., 2007).  
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Figure 1-1. The Class I PI3K signaling pathway regulates growth by inhibiting autophagy and apoptosis. 

Class I PI3K, Akt, Rheb, and TOR are all negative regulators of autophagy (red). PTEN positively 

regulates autophagy by inhibiting activation of Akt by membrane lipids. TSC1 and TSC2 are also positive 

regulators of autophagy, via repression of Rheb (Baehrecke, 2005). 
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 There are multiple regulatory nodes in the PI3K pathway to prevent constitutive 

activation and uncontrolled growth. The phosphatase and tensin homolog (PTEN) 

terminates pathway signaling by converting PIP3 to PIP2, blocking recruitment and 

activation of Akt (Maehama and Dixon, 1998). This central role in growth regulation 

makes PTEN a potent tumor suppressor, and it is mutated in many cancers (Keniry and 

Parsons, 2008). Downstream of Akt, the TSC1-TSC2 complex also serves an inhibitor of 

cell growth (Tee et al., 2002). The TSC1-TSC2 complex activates Rheb GTPase activity, 

leading to GTP-hydrolysis, and conversion of Rheb to its inactive, GDP-bound form 

(Inoki et al., 2003). As negative regulators of TOR signaling, both PTEN and the TSC1-

TSC2 complex positively regulate autophagy, a catabolic process essential to maintaining 

homeostasis. Without negative regulation of TOR, cell growth could proceed 

uncontrolled, a phenomenon which could contribute to cancer. 

 

II. Growth signaling gone awry 

A. Oncogenes 

PI3K pathway activation 

 The PI3K pathway is essential to maintaining tissue homeostasis within an 

organism. However, if left unchecked, ectopic activation of PI3K signaling can lead to 

oncogenesis. Activating mutations in PI3K have been identified in both the p110 catalytic 

subunit and the p85 regulatory subunit. The p110α gene contains two mutational 

hotspots, one in the kinase domain and another in the helical domain, which are 

frequently mutated in a variety of cancers (Zhao and Vogt, 2008a). Many point mutations 

in the kinase domain lead to elevated lipid kinase activity and activation of downstream 
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proliferation and survival pathways (Zhao and Vogt, 2008b). The p110α gene is also 

frequently amplified in cancer. Specifically, amplification of p110α leads to increased 

gene expression and kinase activity in ovarian cancer (Shayesteh et al., 1999). Often, the 

signal is transduced via Akt. However, some cancers display activation of PI3K without 

Akt phosphorylation and activation (Stemke-Hale et al., 2008). Some p85 mutations are 

also associated with cell transformation. Mutations in the SH2 domain of p85α have been 

hypothesized to relieve inhibition of p110α by p85 by weakening the interaction between 

the two subunits (Jaiswal et al., 2009).   

 

Ras  

 Mutations in the small GTPase Ras are the most common in human cancers, with 

approximately 30% of cancers containing activating mutations in one of three Ras genes 

(Downward, 2003). Point mutations have been identified in each of the three Ras genes, 

H-ras, K-ras, and N-ras, and the incidence of mutation in each gene varies among tumor 

types. K-ras mutations are the most prevalent, and are often associated with pancreatic, 

lung, and colorectal cancers, while N-ras mutations are found in myeloid leukemias and 

in approximately 20% of melanomas (Bos, 1989). Due to the pleiotropic nature of Ras 

GTPase activity, activating mutations in Ras can exert oncogenic effects through a 

number of downstream effectors, including Raf and PI3K. Raf, a serine/threonine kinase 

transduces the signal from Ras to the MAPK cascade via the kinase Erk, whose targets 

include regulators of growth and cell cycle entry (Howe et al., 1992).  
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B-cell leukemia/ lymphoma-2 (BCL-2) family proteins 

 Genetically regulated programmed cell death is essential for both physiological 

maintenance of cell homeostasis and also in response to stress or damage. Bcl-2 was 

identified at a B-cell lymphoma-associated chromosomal breakpoint, where a gene 

rearrangement placed it under control of the immunoglobulin heavy chain promoter and 

resulted in overexpression of Bcl-2 (Tsujimoto and Croce, 1986). Bcl-2 was later 

characterized as a proto-oncogene, as Bcl-2 expression conferred resistance to cell death 

following growth factor withdrawal and induced tumor formation in mice (Reed et al., 

1988; Reed et al., 1990; Vaux et al., 1988). Further, knock down of Bcl-2 in leukemia 

cells resulted in apoptosis (Reed et al., 1990). Anti-apoptotic function was attributed to 

Bcl-2 in 1990, when Hockenbery et al. found that mouse pro-B lymphocyte cells 

transfected with human Bcl-2, inducible by interleukin-3 (IL-3), did not display the 

membrane blebbing, nuclear condensation, and DNA fragmentation associated with 

apoptosis in control cells following IL-3 withdrawal (Hockenbery et al., 1990). 

Furthermore, Bcl-2 was found to localize to the inner mitochondrial membrane, where it 

was later shown to block apoptosis by suppressing release of cytochrome c and 

subsequent caspase activation (Hockenbery et al., 1990; Yang et al., 1997).  

 In the years following the discovery of the pro-survival Bcl-2 protein, several 

other proteins sharing similar domain structure were identified and grouped into the Bcl-2 

family. The Bcl-2 family of proteins is made up of anti- and pro-apoptotic proteins, all of 

which contain at least one Bcl-2 homology (BH) domain (Adams and Cory, 1998). In 

addition to Bcl-2, the anti-apoptotic family members include Bcl-XL, Bcl-w, and myeloid 

cell leukemia sequence 1 (Mcl-1). All of the anti-apoptotic Bcl-2 family members contain 
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three to four BH domains, which are required for suppression of apoptosis and are 

essential for interactions with other Bcl-2 family proteins. The pro-apoptotic Bcl-2 family 

members are sub-divided into multi-domain and single domain groups. Bax, Bcl-2 

antagonist killer 1 (Bak), and Bcl-2 related ovarian killer (Bok) each contain three BH 

domains. Bax and Bak reside in proteolipid pores at the outer mitochondria membrane 

where they function to induce mitochondrial outer membrane permeabilization (MOMP), 

triggering the release of cytochrome c from the mitochondria (Liu et al., 1996). The 

largest class of Bcl-2 family proteins is composed of several members, all of which 

contain a single BH3 domain. BH3-only proteins can induce apoptosis directly, by 

activating Bax and Bak, or indirectly, by binding to anti-apoptotic Bcl-2 proteins, 

relieving repression on pro-apoptotic Bcl-2 proteins (Chipuk and Green, 2008). 

 

B. Tumor suppressors 

Rb and p53 

 Cells require a diverse network of tumor suppressor proteins in order to 

counteract the potent growth, proliferation, and survival signals propagated by onco-

proteins. Tumor suppressors are induced in response to DNA damage, serve as 

checkpoints in the cell cycle, and maintain cell-to-cell contacts to prevent metastasis.  

 The concept of tumor suppression by genetic mechanisms was first presented in 

1969, when Harris and colleagues reported that a factor from noncancerous cells could 

prevent tumor formation when fused to cancerous cells and reintroduced into animals 

(Harris et al., 1969). The first tumor suppressor identified was the gene responsible for 

the rare ocular cancer retinoblastoma. In 1971, Knudson hypothesized that tumor 
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formation required recessive mutation in the causative gene, and characterization of the 

retinoblastoma mutation supported this “two hit” model of tumor suppression (Knudson, 

1971). The retinoblastoma gene, RB1, was later mapped and its product, pRb, was 

determined to function as a transcriptional repressor of cell cycle regulators (Hiebert et 

al., 1992). More recent studies revealed a more complex role for pRb, as it has since been 

shown to function as a regulator of apoptosis and differentiation, and has also been found 

to be mutated in cases of bladder cancer and osteogenic sarcoma (Chen et al., 2009). 

 The most commonly mutated tumor suppressor gene, tumor protein p53 (TP53), 

was discovered independently by two groups, both of whom found that it 

immunoprecipitated with the oncogenic Simian virus 40 (SV40) large T-cell antigen in 

transformed mouse cells (Lane and Crawford, 1979; Linzer and Levine, 1979). Like RB1, 

p53 functions in diverse cellular processes through transcriptional regulation of genes 

required for apoptosis, cell cycle arrest, differentiation, DNA repair, senescence, and 

metabolism (Riley et al., 2008). Disruption of any of these pathways can have oncogenic 

implications, underscoring the critical tumor suppressive function of p53. Activation of 

p53 can occur in response to DNA damage, cell stress, and hyperproliferation, and the 

cellular response to these injuries is mediated by at least 100 downstream target genes. 

Depending on the genes induced at a given time by p53, cells coordinate multiple signals 

on the way to cell cycle arrest or apoptosis. 

 

Cell polarity regulators 

 Epithelial cell cancers, known as carcinomas, are the most common type of 

cancer. Normal epithelial cells are polarized, that is they display asymmetric distribution 
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of proteins at their apical, basal, and lateral surfaces (St Johnston and Ahringer, 2010). 

Mis-localization of cell polarity proteins has been associated with over-growth (Huang 

and Muthuswamy, 2010). Among those proteins regulating epithelial cell polarity in 

mammals are Scribble (Scrib), lethal giant larvae (Lgl), and discs large (Dlg), which 

reside at the basolateral membrane. The apical membrane is home to two polarity 

complexes. Crumbs (Crb), protein associated with Lin7 1 (Pals1), and Pals associated 

tight junction protein (Patj), comprise the Crumbs polarity complex, and partitioning 

defective 3 (Par3), Par6, and atypical protein kinase C (aPKC), comprise the Par complex 

(Fig. 1-2). Additionally, structural proteins such as integrins and cadherins are essential 

to maintaining contact with neighboring cells.  
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Figure 1-2. Epithelial cell polarity complexes. In both mammalian and Drosophila epithelial cells, the 

Par and Crumbs polarity complexes are localized to the apical membrane, while the Scribble complex 

localizes to the basolateral membrane. In mammals, tight junctions (TJ) form a permeability barrier 

between neighboring cells. In both organisms, E-cadherin localizes to lateral points of cell-to-cell contact, 

known as adherens junctions (AJ). In Drosophila, Dlg is required for septate junction (SJ) structure. 

Septate junctions, like tight junctions, are important for prevention of diffusion of molecules between 

neighboring cells (modified from St Johnston and Ahringer, 2010).  
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 Lgl, Dlg, and Scrib were initially discovered in Drosophila melanogaster, where 

they were found to regulate cell proliferation, in addition to polarity. Lgl was identified as 

the first Drosophila tumor suppressor gene in 1967 (reviewed in Bilder, 2004). Five years 

later, dlg was discovered in a screen for mutations that affected morphology of the larval 

imaginal discs, which are precursors to adult epithelial tissues (Stewart et al., 1972). 

Scribble was implicated as a tumor suppressor following experiments in genetically 

mosaic follicular epithelium of Drosophila ovaries (Bilder et al., 2000). Clonal mutations 

in lgl, dlg, and scrib all produce similar phenotypes in epithelial cells. Larvae mutant for 

any one of these genes contained layered, disorganized epithelial cells, displayed loss of 

apico-basal cell polarity, and showed overgrowth of imaginal discs and brain (Bilder et 

al., 2000). These phenotypes led to the characterization of lgl, dlg, and scrib as 

neoplastic, rather than hyperplastic, tumor suppressors because mutants in these genes 

exhibit epithelial disorganization in addition to overproliferation (Bilder, 2004). Genetic 

epistasis analysis indicated that lgl, dlg, and scrib function in the same pathway, as each 

was required for proper localization of the other proteins. Despite these elegant studies of 

Drosophila cell polarity markers and their role in neoplastic tumor formation, few human 

cancers have been directly linked to misregulation of cell polarity proteins.  

 It has long been observed that cell polarity is lost in the process of transformation 

though the molecular mechanisms behind cell polarity disruption during tumorigenesis 

have been unclear (Lee and Vasioukhin, 2008). One of the hallmarks of advanced 

tumorigenesis is an epithelial to mesenchymal transition (EMT), which occurs when 

epithelial cell polarity and cell adhesion are lost, contributing to metastasis (Thiery, 

2002). Recent experiments have shown that loss of cell polarity early can contribute to 
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transformation. Analysis of breast tumors revealed reduced expression of scrib RNA and 

mislocalization of Scribble from cell-cell junctions to the cytoplasm (Zhan et al., 2008; 

Zhang et al., 2008). Furthermore, experiments in 3D breast epithelial acini, used to model 

in vivo breast acini, showed that Scribble is required for oncogene induced apoptosis, 

regulating activation of the GTPase Rac via the GEF β-PIX at adherens junctions (Zhan 

et al., 2008). These data suggest that loss of Scribble can directly contribute to, and is not 

simply a consequence of, transformation. In addition to breast cancer, some cervical and 

colon cancers also display mislocalization and/or downregulation of Scribble (Huang and 

Muthuswamy, 2010). The cervical cancer-causing human papillomavirus (HPV) targets 

Scribble and Dlg1 for degradation, mediated by the ubiquitin ligase E6 viral 

oncoproteins, which interact with Scribble and Dlg1, as well as the well characterized 

tumor suppressors p53 and Rb (Nakagawa and Huibregtse, 2000).  

 Microarray and proteomic analyses of tumors have shown variable changes to cell 

polarity regulators, depending on the stage of cancer and affected tissue (Huang and 

Muthuswamy, 2010). While Scribble, Lgl, Crumbs, and Par3 are often down-regulated in 

tumor derived cell lines and cancerous tissues, some cancers exhibit increased levels of 

polarity proteins. For example, Par6 overexpression is associated with estrogen receptor 

(ER) positive breast cancers, and Par6 contribution to transformation is likely due to its 

function as a MAP kinase activator via interaction with aPKC and the GTPase cell 

division cycle 42 (Cdc42) (Nolan et al., 2008). In addition to changes in expression 

levels, subcellular localization of polarity proteins is also altered in cancer. Lgl1 becomes 

localized to the cytoplasm during ovarian tumorigenesis, and Dlg1 is mislocalized to the 

cytoplasm in colon and cervical carcinomas, resulting in reduced Dlg1 at cell-cell 
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junctions (Humbert et al., 2008). As the epithelial polarity modules regulate multiple 

downstream signaling pathways, among them cell proliferation and death, their proper 

localization is critical to maintain control of these pathways and keep oncogenic signaling 

in check. 

 

Beclin 1, a haploinsufficient tumor suppressor 

 The Beclin 1 tumor suppressor was identified as a Bcl-2 interacting protein (Liang 

et al., 1998). Aita et al. then mapped the beclin 1 gene to a breast and ovarian cancer 

susceptibility locus on chromosome 17, and found that 41% of breast carcinoma cell lines 

screened contained a deletion of beclin 1 (Aita et al., 1999). Subsequent studies revealed 

that transfected Beclin 1 slowed proliferation of MCF7 human breast carcinoma cells, 

which display loss of heterozygosity at the 17q21 locus, and contain no endogenous 

Beclin 1 (Liang et al., 1999). Further, mice injected with MCF7 cells expressing Beclin 1 

displayed significantly lower incidence of tumorigenesis compared to mice injected with 

MCF7 cells that did not express Beclin 1 (Liang et al., 1999).   

 Functional characterization of Beclin 1 uncovered a role in the lysosomal delivery 

process known as autophagy. Human Beclin 1 shares approximately 30% amino acid 

sequence identity with the yeast Saccharomyces cerevisiae protein Vps30/Atg6 (herein 

referred to as Atg6), and Beclin 1 expression in Atg6 deficient yeast or MCF7 cells 

rescued a defect in starvation-induced autophagy in both cell types (Liang et al., 1999). 

Restoration of autophagy in breast carcinoma cells, coupled with the reduction in 

tumorigenicity, suggested that the potential tumor suppressive role of Beclin 1 might be 

attributed to its function in autophagy. 
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 Though early studies with Beclin 1 suggested that it might function in tumor 

suppression, it did not qualify as a tumor suppressor by Knudson’s two-hit model. Fifty 

percent of breast, 75% of ovarian, and 40% of prostate cancers display monoallelic 

deletion of beclin 1, but sequence analysis of breast carcinoma cells did not identify any 

“second hit” point mutations in beclin 1 (Aita et al., 1999). Knockout mouse studies 

revealed that monallelic loss of beclin 1 resulted in increased spontaneous tumorigenesis 

compared to animals with two functional copies of beclin 1 (Qu et al., 2003; Yue et al., 

2003). beclin 1+/- mice were affected by lymphomas, lung carcinomas, and liver 

carcinomas. Molecular and biochemical analyses revealed that all tumors in beclin 1+/- 

mice contained one wild type beclin 1 allele and wild type Beclin 1 protein, ruling out 

spontaneous loss of heterozygosity and demonstrating that beclin 1 is a haploinsufficient 

tumor suppressor gene (Qu et al., 2003, Yue et al., 2003).  

 

III. Autophagy regulation of cell and tissue homeostasis  

 Macroautophagy (autophagy) delivers cytoplasmic components, such as long-

lived proteins and damaged organelles, to the lysosome for degradation (Deter and De 

Duve, 1967; (Takeshige et al., 1992). In the absence of nutrients, growth arrests and cells 

adapt to the absence of either growth factors or amino acids by inducing autophagy. 

Protein turnover by the lysosome enables recycling of amino acids to be utilized for 

protein synthesis, while breakdown of damaged organelles prevents accumulation of 

toxic reactive oxygen species in the cell (Yang et al., 2006; Zhang et al., 2007). This 

highly conserved process occurs in organisms as diverse as yeast, fruit flies, and 

mammals in response to nutrient starvation and cell stress (Meléndez and Neufeld, 2008).  
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A. Discovery of autophagy genes 

 Cell morphological changes associated with autophagy were first observed in the 

liver (Deter and De Duve, 1967), but it wasn’t until a series of experiments in the 1990s 

in the budding yeast Saccharomyces cerevisiae that the mechanisms of autophagy were 

uncovered. The first study showed that defects in vacuolar proteolysis led to 

accumulation of autophagic bodies under conditions of nutrient restriction (Takeshige et 

al., 1992). These autophagic bodies, now known as autophagosomes, are composed of a 

double membrane that surrounds cytosolic components targeted for degradation in the 

vacuole, the yeast equivalent of the lysosome. This study was followed by 2 independent 

genetic screens in yeast; one for mutants defective in degradation of autophagic bodies 

(Tsukada and Ohsumi, 1993), and the other for mutants that accumulate the cytosolic 

protein fatty acid synthase (Thumm et al., 1994). These concurrent studies led to the 

discovery of the 14 autophagy (apg) genes and the 3 autophagocytosis (AUT) 

complementation groups, which are required for autophagy. Additionally, a screen for 

mutants in the cytoplasm to vacuole targeting pathway (CVT) uncovered genetic overlap 

between this pathway and autophagy (Harding et al., 1995). The CVT pathway functions 

in transport of the vacuolar protein aminopeptidase I (API). Thirty-one autophagy-related 

genes (now called Atg genes) have been discovered and most are conserved in animals 

(Klionsky et al., 2003).  

 

B. Regulation of autophagy 

 Two lipid kinase signaling pathways converge to regulate autophagy. The class I 

PI3K/insulin signaling pathway negatively regulates autophagy induction via TOR 
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regulation of Atg13 and the kinase Atg1. The class III PI3K/vacuolar protein sorting 34 

(Vps34) complex that includes p150/Vps15 and Beclin 1/Atg6 positively regulates 

autophagosome formation, and the Atg conjugation pathways regulate autophagosome 

maturation and fusion with the lysosome (Fig. 1-3).  
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Figure 1-3. Regulation of autophagy. Class I PI3K negatively regulates autophagy via TOR kinase.  

Downstream of Atg1-Atg13, a complex containing the Class III PI3K Vps34, the serine-threonine kinase 

Vps15, and Atg6 positively regulates autophagosome formation. A double membrane forms around 

proteins and organelles to be degraded. Two ubiquitin-like conjugation pathways regulate elongation of the 

autophagosome membrane. Atg7 activates Atg12 and Atg8 in an ATP-dependent manner. This is followed 

by covalent conjugation of Atg12 to Atg5 and Atg8 to the lipid phosphatidylethanolamine (PE). Atg5 binds 

noncovalently to Atg16 and Atg8-PE becomes anchored in the autophagosome membrane. The outer 

membrane of the autophagosome fuses with the lysosome, releasing the inner membrane and sequestered 

contents into the lysosome for degradation (From Hill and Baehrecke, 2009). 
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Atg1, the first Atg gene characterized in yeast, encodes a protein kinase. Mutant 

analysis showed that Atg1 kinase activity is required for autophagosome formation and 

viability during starvation (Matsuura et al., 1997). Atg1 binds to Atg13 and this complex 

functions early in autophagosome formation. Regulation of the Atg1-Atg13 complex is 

under control of TOR. Under nutrient rich conditions, TOR hyperphosphorylates Atg13, 

reducing its binding affinity for Atg1. In response to nutrient starvation, TOR becomes 

inactivated, alleviating repression of Atg13 (Kamada et al., 2000).   

Regulation of autophagy by TOR is more complex in multicellular eukaryotes, 

where the class I PI3K pathway signals upstream of TOR to induce cell growth and 

inhibit autophagy. The mechanisms of PI3K/TOR regulation of autophagy have been 

largely elucidated from genetic studies in the fruit fly, Drosophila melanogaster. 

Mutations in either tor or dp110, the catalytic subunit of PI3K, lead to reduced cell 

growth and induction of autophagy in well fed Drosophila larvae, while ectopic 

expression of either class I PI3K or TOR in Drosophila larvae inhibits starvation-induced 

autophagy (Scott et al., 2004). In addition to its requirement for starvation-induced 

autophagy, Atg1 activity is also vital in Drosophila development, as animals lacking Atg1 

function die before completing development (Scott et al., 2004).     

Studies in yeast identified 2 ubiquitin-like conjugation pathways that function 

downstream of Atg1 activity. These conjugation pathways are composed of several Atg 

proteins, all of which are required for autophagosome formation. Atg7 was identified as 

an E1-like enzyme that activates Atg12 and Atg8 in 2 distinct conjugation pathways 

(Ichimura et al., 2000; Mizushima et al., 1998; Tanida et al., 1999). Atg12 and Atg8 are 

then covalently conjugated to the E2-like proteins Atg10 and Atg3 (Ichimura et al., 2000; 
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Shintani et al., 1999). This is followed by conjugation of Atg12 to Atg5 and lipidation of 

Atg8 with phosphatidylethanolamine (PE) (Ichimura et al., 2000; Mizushima et al., 

1998). The Atg5-Atg12 complex interacts with multimerized Atg16 (Mizushima et al., 

1999). These protein conjugation reactions occur in the membrane of the forming 

autophagosome, mediating membrane expansion around cytosolic components destined 

for degradation. Both conjugation pathways are conserved in higher eukaryotes and 

components of these pathways are required for autophagy in Drosophila, C. elegans, and 

mammals (Meléndez and Neufeld, 2008).   

A third complex of autophagy related genes recovered from yeast screens were 

first identified in a screen for mutants defective in vacuolar protein sorting (Bankaitis et 

al., 1986). First identified as Vps30, Atg6 was found to interact in 2 distinct complexes, 

both of which include the class III PI3K, Vps34, and the protein kinase Vps15 (Kihara et 

al., 2001b). Vps15 activity is required for Vps34 function. The single known target of 

Vps34 is the lipid phosphatidylinositol (PI), which is converted to PI(3)P upon 

phosphorylation by Vps34. PI(3)P functions in recruitment of proteins to membranes, 

supporting a general role for Vps34 in intracellular membrane trafficking. A complex 

including Atg6, Vps34, Vps15, and Vps38 is required for vacuolar protein sorting, while 

a second complex containing Atg6, Vps34, Vps15, and Atg14 localizes to the 

preautophagosomal structure (PAS) and is required for autophagosome formation (Kihara 

et al., 2001b).  

Similar Vps34 complexes have been described in mammalian cells, where several 

additional proteins have been shown to interact with Vps34 and Atg6 (Beclin 1 in 

mammals). In addition to interacting with the anti-apoptotic protein Bcl-2, biochemical 
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experiments confirmed that Beclin 1 also interacts with Vps34 and p150, the mammalian 

homolog of Vps15, and that this complex is required for starvation-induced autophagy 

(Kihara et al., 2001a; Liang et al., 1999; Liang et al., 1998; Petiot et al., 2000). 

Additionally, the tumor suppressors UVRAG and Bif-1, and the previously 

uncharacterized Ambra1, have been shown to interact physically with Beclin 1 (Fimia et 

al., 2007; Liang et al., 2006; Takahashi et al., 2007). An Atg14 homolog was recently 

discovered and UVRAG was determined to be the homolog of Vps38 (Itakura et al., 

2008). Both interact with Beclin 1, but never in the same complex.  These results suggest 

a mechanism similar to yeast where 2 distinct complexes function in autophagy and 

endocytosis.  

 

C. Physiological Functions of Autophagy  

Cell stress-induced autophagy   

 The best characterized function of autophagy is recycling of macromolecules 

under conditions of nutrient restriction. Experiments in model organisms have provided 

valuable information about the physiological implications of autophagy impairment 

during starvation. If restricted from feeding during development, the nematode 

Caenorhabditis elegans enters a period of quiescence known as the dauer stage, and it 

remains there until environmental conditions improve (Klass and Hirsh, 1976). Dauer 

entry can also be induced by inhibition of the insulin signaling pathway (Kimura et al., 

1997). Utilizing temperature sensitive alleles of the C. elegans insulin-like receptor gene 

daf-2 and RNAi against bec-1, the homolog of beclin 1, Mélendez et al. showed that 

autophagy is required for dauer formation, as animals with reduced bec-1 expression 
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suffered abnormal dauer formation and eventual death (Meléndez et al., 2003). In 

Drosophila, autophagy is induced in the larval fat body, analogous to the liver, in 

response to starvation (Scott et al., 2004). This organ is essential for nutrient storage, and 

induction of autophagy in response to starvation may promote survival by providing 

essential macromolecules to maintain vital cellular processes.  

 This pro-survival function is conserved in mammals, where cell culture studies 

have shown that autophagy is induced following growth factor withdrawal, prolonging 

survival of cells for up to 20 weeks (Lum et al., 2005). Furthermore, autophagy is 

required for these cells to survive, as RNAi-mediated knockdown of autophagy genes 

resulted in cell death within four days following growth factor withdrawal. Autophagy is 

also essential for survival of neonatal mice, which endure a short period of starvation 

following birth before they begin suckling from their mothers (Kuma et al., 2004).  

 In addition to recycling macromolecules to enable a cell to survive starvation, 

autophagy also comes to the rescue in the face of other cell stresses, such as hypoxia. 

Reactive oxygen species (ROS) are generated by mitochondria in response to low levels 

of oxygen (hypoxia). Zhang et al. showed that mitochondrial autophagy is induced in 

embryonic fibroblasts (MEFs) grown under hypoxic conditions. This mitochondrial 

turnover blocked ROS accumulation and prevented cell death (Zhang et al., 2008). 

 

Developmental autophagy 

 Studies in Drosophila revealed a developmental function for autophagy. Several 

tissues in the developing fruit fly, including the larval fat body, midgut, and salivary 

glands, utilize autophagy. This programmed autophagy differs from starvation-induced 
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autophagy in that it is regulated by steroid hormone signaling. Wandering third instar 

larvae undergo programmed autophagy in the fat body before metamorphosis to the adult. 

The steroid hormone 20-hydroxyecdysone (ecdysone) has been shown to induce 

autophagy in this tissue, and expression of a dominant negative ecdysone receptor in the 

fat body strongly inhibits autophagy (Rusten et al., 2004). Like starvation-induced 

autophagy, developmental autophagy can be blocked by class I PI3K activation, and gain 

of function studies showed that ecdysone signaling induced autophagy by down-

regulating PI3K activity (Rusten et al., 2004).   

Similarly, an ecdysone pulse at the end of the third instar triggers autophagy and 

eventual elimination of the larval midgut. Destruction of this tissue occurs as the adult 

midgut forms around the larval structure. The ecdysone responsive transcription factor, 

E93, is required for proper formation of autophagosomes, and E93 mutants show 

evidence of incomplete midgut degradation (Lee et al., 2002). As the larval midgut is 

inaccessible to phagocytes once the adult midgut is formed, autophagy is induced, in the 

presence of active caspases, to degrade the tissue (Denton et al., 2009). RNAi-mediated 

knockdown of Atg1, but not RNAi targeting the effector caspase decay, led to inhibition 

of midgut degradation (Denton et al., 2009).  

 

Cell Death  

 The larval salivary glands also undergo programmed autophagy before 

degradation and subsequent formation of adult salivary glands. Histological analysis has 

shown that autophagic vacuoles begin to form within the salivary glands a few hours 

before they are completely degraded (Lee and Baehrecke, 2001). Though dying salivary 
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gland cells exhibit DNA fragmentation and caspase activity, two hallmarks of apoptosis, 

they are eliminated in the absence of phagocytic cells. This led to the classification of 

salivary gland cell death as autophagic cell death.  

Like midgut cell death, salivary gland cell death requires expression of ecdysone 

responsive genes. A developmentally regulated pulse of ecdysone induces expression of 

the transcription factor E93. While direct targets of E93 have yet to be identified, 

microarray analysis of dying salivary glands showed that several Atg genes and caspases 

were induced immediately prior to cell death with autophagy, and that the response of 

several of these genes was attenuated in salivary glands of E93 mutants (Lee et al., 2003).  

Genetic experiments showed that caspases and autophagy are required for salivary gland 

cell death, and that ectopic expression of Atg1 is able to induce early gland degradation 

independent of caspase activation (Berry and Baehrecke, 2007; Martin and Baehrecke, 

2004). In the latter study, autophagy induction was linked to growth arrest through down-

regulation of class I PI3K signaling, and ectopic PI3K induction was sufficient to prevent 

normal gland degradation.   

Caspases have also been shown to regulate autophagy and cell death in 

Drosophila ovaries, where starvation can trigger death of egg chambers prior to their 

normal developmental cell death during late stage oogenesis. An RNAi based assay was 

used to identify known cell death genes that regulate starvation-induced autophagy in a 

larval blood cell line and the function of these genes in autophagy was tested in vivo (Hou 

et al., 2008). Death caspase-1 (Dcp-1) and Bruce, an inhibitor of apoptosis (IAP), were 

among the known cell death regulators found to function in autophagy in ovaries. Dcp-1 

is required for induction of autophagy in degenerating egg chambers, while Bruce plays 
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an inhibitory role under nutrient rich conditions. Consistent with caspase activity, 

degenerating egg chambers also show evidence of DNA fragmentation, and this requires 

autophagy, as knock down of Atg1 or Atg7 leads to reduced DNA fragmentation (Hou et 

al., 2008). Autophagy was also recently implicated in developmental programmed cell 

death in the egg chamber during mid-oogenesis and in nurse cell death during late 

oogenesis (Nezis et al., 2009; Nezis et al., 2010). This cell death occurred in the presence 

of caspases and was characterized by DNA fragmentation. Interestingly, Bruce was 

degraded by autophagy in the nurse cells, and this process required functional Vps34 and 

Atg1 (Nezis et al., 2010). This result was the first example of cell death regulation by 

autophagic degradation of an apoptosis regulator.  

A recent model of neuronal cell death in C. elegans has linked autophagy to 

necrosis. Gain of function alleles of mec-4(d), which encodes an ion channel subunit, are 

neurotoxic in early larval stages and this cell death is necrotic (Hall et al., 1997).  

Neuronal cell death in mec-4(d) requires expression of the Atg1 ortholog UNC-51, and a 

time course revealed that autophagy is highly induced in neurons during the early stages 

of necrosis, but is down-regulated in later stages (Samara et al., 2008). The authors 

hypothesize that high levels of autophagy trigger necrotic cell death and propose that 

inhibition of autophagy might protect neurons from cell death after ischemic stroke. 

Autophagy genes were first shown to regulate cell death in mammals in 2004. Treatment 

of fibroblast-derived L929 cells with the caspase-8 inhibitor zVAD induced autophagic 

cell death within 2 days (Yu et al., 2004). Regulation of this autophagic cell death was 

under control of the death domain containing receptor interacting serine-threonine kinase 

(RIP), and this cell death required Atg7 and Beclin 1 expression (Yu et al., 2004). The 
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Bcl-2 protein family, known for its role in regulation of apoptosis, also functions to 

regulate autophagy. Cells double mutant for the pro-apoptotic Bcl-2 family members Bax 

and Bak died by autophagic cell death when treated with the apoptosis inducing drug 

etoposide (Shimizu et al., 2004). This cell death required Beclin 1 expression, and was 

further enhanced by overexpression of anti-apoptotic Bcl-2 or Bcl-XL after etoposide 

treatment of Bax/Bak double mutant cells. These studies suggest that autophagy can 

compensate for a lack of apoptosis to induce cell death when survival is no longer an 

option.  

 

V. The Beclin 1 Complex  

 Since the implication of Beclin 1 in tumor suppression, multiple studies have 

sought to identify other proteins with which it might interact in order to ascertain the 

mechanism of Beclin 1 function in the cell. The Beclin 1/Vps34/Vps15 complex is 

evolutionarily conserved from yeast to mammals. Despite their seemingly stable 

interaction with Beclin 1, Vps34 and Vps15/p150, have so far not been ascribed any 

tumor suppressor function. In yeast, the core complex functions in autophagy and 

vacuolar protein sorting, and the proteins Atg14 and Vps38 confer specificity of the 

complex to one process or the other. Mammalian homologs of Atg14 and Vps38 have 

recently been identified, and their functions suggest an increasingly complex role for 

Beclin 1 in the cell. Details gleaned from studying the specificity of Beclin 1 signaling in 

different tissues under variable conditions are likely to lead to more clues about the tumor 

suppressor function of Beclin 1. 
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A. UVRAG 

 The mammalian Vps38 homolog, also known as ultraviolet radiation resistance-

associated gene (UVRAG), was not recognized as such when it was first discovered. 

UVRAG was identified as a member of the Beclin 1 complex in mammalian 293T cells 

expressing glutathione S-transferase (GST)-tagged viral Bcl-2, where it was purified 

along with Beclin 1 and Vps34 (Liang et al., 2006). UVRAG was previously identified in 

xeroderma pigmentosum cells that exhibited partial UV-resistance, and it was mapped to 

a region of human chromosome 11 that is mutated in breast and colon cancers (Perelman 

et al., 1997). Like Beclin 1, UVRAG is monoallelically mutated in colon cancer cells 

(Ionov et al., 2004). Expression of UVRAG in HCT116 colon carcinoma cells resulted in 

suppression of tumorigenicity when the cells were injected into nude mice (Liang et al., 

2006). Furthermore, overexpressed UVRAG induced autophagy in mouse fibroblasts, and 

this activity required interaction with Beclin 1 via coiled-coil domains within both 

proteins (Liang et al., 2006). Liang et al. also observed reduced autophagosome 

formation in MCF7 cells expressing wild type Beclin 1 and UVRAG lacking the coiled 

coil Beclin 1 binding domain, indicating that interaction between these proteins is critical 

for autophagy induction (Liang et al., 2006). PSI-BLAST sequence analysis later 

identified UVRAG as a homolog of yeast Vps38 (Itakura et al., 2008). The function of 

UVRAG in autophagy was thus surprising, as yeast Vps38 is not required for autophagy, 

but associates with the Beclin 1 complex exclusively to regulate vacuolar protein sorting 

(Kihara et al., 2001b).  

 Further characterization of UVRAG revealed a role in endocytic trafficking. 

Affinity purification of GST-tagged C-terminus of UVRAG from 293T cells and mass 
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spectrometry analysis identified two class C complex Vps proteins, Vps16 and Vps11, as 

UVRAG-interacting proteins (Liang et al., 2008). Originally identified in yeast, the class 

C Vps proteins regulate homotypic vacuole formation, protein sorting, and tethering of 

endosomes to the vacuole/lysosome (Nickerson et al., 2009). UVRAG colocalizes with 

C-Vps proteins at early endosomes and facilitates trafficking of endocytic cargo to 

lysosomes for degradation (Liang et al., 2008). Binding to C-Vps proteins is critical for 

this function, as cells expressing a UVRAG protein lacking the Vps16 binding site had 

displayed a decreased rate of endocytosis compared to cells expressing wild type 

UVRAG, measured by degradation of fluorescent EGF (Liang et al., 2008). 

 C-Vps proteins and UVRAG also regulate autophagic intracellular traffic. 

UVRAG facilitates recruitment of Vps16 to autophagosomes and promotes maturation to 

the late endosome/lysosome compartment. RNAi-mediated knockdown of UVRAG 

resulted in reduced colocalization of Vps16 with the autophagy marker LC3 in HeLa 

cells, while overexpression of UVRAG in HCT116 cells doubled the rate of 

autophagosome to lysosome fusion (Liang et al., 2008). While interaction with Beclin 1 

is required for autophagosome formation, it is not required for UVRAG-induced 

maturation. Conversely, interaction between C-Vps proteins and UVRAG are required 

for autophagosome maturation, but not UVRAG-induced autophagosome formation. 

These results indicate that UVRAG regulates autophagy at two independent steps, and its 

function in the cell depends on its binding partners.   
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B. Atg14  

 Simultaneous publications reported the identification of the mammalian ortholog 

of Atg14 (Matsunaga et al., 2009; Sun et al., 2008; Zhong et al., 2009) Atg14 like protein 

(Atg14L), shares only 15% sequence identity with yeast Atg14. Taking an affinty 

purification approach, Zhong et al. found that Atg14L interacted with the Beclin 1/Vps34 

complex in vivo. A complex containing Beclin 1, Vps34, Vps15, and an Atg14L was 

purified from mouse liver, brain, and thymus expressing green fluorescent protein (GFP)-

tagged Beclin 1 in place of endogenous Beclin 1 (Zhong et al., 2009). Similar affinity 

purification and co-IP experiments were carried out in human cells lines and yielded 

similar results (Itakura et al., 2008; Matsunaga et al., 2009). Like yeast Atg14, Atg14L is 

required for autophagosome formation and it localizes to early autophagosomal 

precursors known as isolation membranes (Itakura et al., 2008). 

 

C. Rubicon 

 In addition to identification of Atg14L, the experiments described above also 

identified a novel Beclin 1 interacting protein. Rubicon was identified by both Zhong et 

al. and Matsunaga et al. in biochemical pull down experiments. Both groups observed 

Rubicon interaction with Beclin 1, Vps34, Vps15, and UVRAG, but not with Atg14L, 

suggesting the presence of at least two distinct Beclin 1 complexes in mammals (Zhong 

et al., 2009; Matsunaga et al., 2009). Rubicon is a negative regulator of autophagy, as 

RNAi-mediated knockdown of Rubicon led to increased turnover of LC3 and a higher 

rate of autophagosome maturation, measured by quantification of lysosomal associated 

membrane protein (LAMP)-1-positive, GFP-LC3 positive puncta following lysosomal 
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inhibitor treatment (Matsunaga et al., 2009). Like UVRAG, Rubicon also regulates 

endosome maturation, albeit negatively. Overexpression of Rubicon prevents fusion of 

the endocytic machinery with the lysosome, resulting in enlarged endosomal structures 

with accumulated internalized EGF receptors (Matsunaga et al., 2009).  

 

D. Proteins that transiently interact with Beclin 1 

 A third tumor suppressor, Bax-interacting factor 1 (Bif-1) was found to interact 

with the Beclin 1 complex in a study investigating the function of this Endophilin B 

family protein in intracellular membrane formation (Takahashi et al., 2007). Bif-1 was 

originally identified as a regulator of the pro-apoptotic Bcl-2 family member Bax 

(Cuddeback et al., 2001; Takahashi et al., 2005). Bif-1 interacts with the Beclin 1 

complex via binding to UVRAG, and it localizes to autophagosomes in simian derived 

COS7 cells during nutrient withdrawal (Takahashi et al., 2007). Regulation of autophagy 

by Bif-1 is at the step of autophagosome formation, and specifically PI(3)P formation, as 

starvation-induced Vps34 lipid kinase activity was reduced in Bif-1-/- MEFs compared to 

wild type cells. Generation of knock out mice revealed a tumor suppressive function for 

Bif-1, as Bif-1-/- mice had an 89.7% incidence of tumor formation by 1 year, compared to 

14.3% incidence for wild type mice (Takahashi et al., 2007). Despite the proposed tumor 

suppressive function of Bif-1 via regulation of autophagy, subsequent Beclin 1 affinity 

purification experiments in mouse tissues failed to identify Bif-1 as a member of the 

Beclin 1 complex (Zhong et al., 2009). This suggested that the interaction between Bif-1, 

UVRAG, and Beclin 1 described by Takahashi et al. was transient in nature and cell 

type/condition dependent.  
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 A similar phenomenon was observed for the autophagy/Beclin 1 regulator 1 

(Ambra 1) protein. Ambra 1 was identified in a mouse screen for regulators of nervous 

system development, and a yeast two-hybrid screen isolated Beclin 1 as a binding partner 

of Ambra 1 (Fimia et al., 2007). Co-immunoprecipitation experiments showed that 

Ambra 1 interacts with both Beclin 1 and Vps34 in 2FTGH cells, derived from human 

fibroblasts, and in developing mouse brain. RNAi-mediated knockdown of Ambra 1 

expression in 2FTGH cells resulted in reduced autophagosome formation following 

rapamycin treatment or nutrient withdrawal, and overexpression of Ambra 1 led to an 

increase in basal and rapamycin-induced autophagy, in a Beclin 1 dependent manner 

(Fimia et al., 2007). Homozygous disruption of Ambra 1 via gene trap led to embryonic 

lethality, preceded by overproliferation of cells in the neuroepithelium. Ambra 1 

overexpression rescued this proliferative phenotype in a Beclin 1 dependent manner, and 

Ambra 1 was proposed to regulate neural tube development via autophagic control of cell 

proliferation. However, like Bif-1, Ambra 1 was not identified in in vivo affinity 

purification experiments (Zhong et al., 2009). This could suggest a neuronal tissue 

specific function for Beclin 1/Ambra 1 complexes in regulating cell proliferation during 

development, and does not account for the widely observed tumor suppressive function 

of Beclin1 in other tissues.   

 

E. Regulation of intracellular trafficking by specific Beclin 1 complexes 

 Like yeast, mammals contain multiple Beclin 1 complexes, which regulate 

different intracellular trafficking pathways based on which proteins interact with the core 

complex members, Beclin 1, Vps34, and Vps15. The Beclin 1/Atg14L complex function 
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in autophagosome formation is conserved from yeast to mammals. A second Beclin 1 

complex, containing the Vps38 homolog UVRAG but not Atg14, regulates endocytic 

trafficking at the stage of vesicle fusion (Liang et al., 2008). While initial experiments 

with UVRAG suggested that it is required for autophagosome formation, others have 

provided evidence that it functions exclusively in endocytosis and does not regulate 

autophagy (Itakura et al., 2008). Rubicon can also interact with a Beclin 1, Vps34, 

Vps15, and UVRAG to form a third complex. When present, Rubicon inhibits maturation 

of autophagosomes and endosomes. As UVRAG, like Beclin 1, is a tumor suppressor, its 

function in endocytosis suggests that the tumor suppressive function of this complex may 

not solely be attributed to autophagy. 

 

VI. Drosophila models of overgrowth 

 Several Drosophila tumor suppressor genes have been identified (Hariharan and 

Bilder, 2006). Most of these genes were identified in genetic screens, and 

characterization of these genes has revealed diverse functions such as regulation of cell 

polarity and endocytosis. Drosophila tumor suppressors are divided into two types. 

Hyperplastic tumor suppressors cause over-proliferation of epithelial cells when 

inactivated, but these cells maintain normal shape, polarity, and the ability to 

differentiate. Mutations in neoplastic tumor suppressors cause loss of epithelial 

organization, in addition to cell over-proliferation and invasion of neighboring cells. 

Additionally, cells with mutations in neoplastic tumor suppressors are unable to 

terminally differentiate (Hariharan and Bilder, 2006).  
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A. Hyperplastic tumor suppressor genes 

 Among the hyperplastic tumor suppressor genes are the class I PI3K pathway 

regulators, Tsc1, Tsc2, and pten, all of which are also human tumor suppressor genes. As 

these genes negatively regulate cell growth via inhibition of PI3K pathway signaling, 

inactivating mutations result in increased cell growth, increased rate of cell proliferation, 

and increased tissue growth (Gao et al., 2000; Gao and Pan, 2001; Ito and Rubin, 1999). 

A second group of hyperplastic tumor suppressors function in the Hippo (Hpo) signaling 

pathway, which controls organ size. Hpo is a kinase, which regulates apoptosis and cell 

proliferation via negative regulation of the transcription factor Yorkie (Yki) (Harvey et 

al., 2003; Huang et al., 2005; Wu et al., 2003). When bound to its adaptor protein 

Salvador (Sav), Hpo phosphorylates the kinase Warts (Wts), which in turn 

phosphorylates Yki, preventing its binding to target genes in the nucleus (Wu et al., 2003; 

Dong et al., 2007). Downstream target genes of Yki include Drosophila inhibitor of 

apoptosis I (diap1), cyclin E (cycE), and the microRNA bantam (Huang et al., 2005; 

Nolo et al., 2006; Thompson and Cohen, 2006). Flies mosaic for mutations in hpo, sav, or 

wts display large epithelial overgrowths, which are the result of apoptosis resistance, an 

increased growth rate, and a corresponding increase in proliferative rate of mutant cells 

over wild type cells (Tapon et al., 2002; Wu et al., 2003).  

 

B. Neoplastic tumor suppressor genes 

 Neoplastic tumor suppressors are subdivided into two types: junctional scaffold 

regulators and endocytic regulators (Hariharan and Bilder, 2006). The junctional scaffold 

neoplastic tumor suppressors, Lgl, Dlg, and Scrib, regulate epithelial cell polarity. Larvae 
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mutant for any one of these genes contain layered, disorganized epithelial cells, exhibit 

loss of apico-basal cell polarity, and display massive overgrowth of imaginal discs and 

brain (Bilder et al., 2000). Genetic epistasis analysis indicated that lgl, dlg, and scrib 

function in the same pathway, as each is required for proper localization of the other 

proteins (Bilder et al., 2000). Scrib and Dlg co-localize at septate junctions, which are the 

basal points of lateral cell-to-cell contact (Bilder and Perrimon, 2000); Bilder et al., 

2000). Lgl localization is more diffuse. While some Lgl co-localizes at septate junctions 

with Scrib and Dlg, its overall distribution spans the entire lateral plasma membrane 

surface (Bilder et al., 2000). Loss of function mutations in scrib result in mis-localization 

of adherens junctions proteins to the basolateral membrane (Bilder and Perrimon, 2000). 

Thus, the Scrib polarity module maintains cell polarity by regulating formation and 

dictating localization of proteins at cell-to-cell junctions. There is also evidence that these 

cell polarity regulators function as negative regulators of cell proliferation. Clonal loss of 

scrib or lgl in the developing eye induces expression of Cyclin E and ectopic cell 

proliferation in larvae (Brumby and Richardson, 2003; Grzeschik et al., 2007).  

 The endocytic neoplastic tumor suppressors avalanche (avl), Rab5, erupted (ept), 

and vps25 regulate different steps of endocytosis, but loss of function mutations in these 

genes results in accumulation of undegraded signaling molecules that regulate cell 

proliferation pathways. An avl mutant was isolated in a mosaic screen for genes that 

regulate epithelial morphogenesis in ovarian follicle cells (Lu and Bilder, 2005). Within 

the mosaic follicular epithelium, avl mutant follicle cells are multilayered and display 

altered apico-basal polarity. A similar phenotype was also observed in the eye imaginal 

disc epithelium, where avl cells also displayed mislocalization of adherens junctions and 
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formed tumorous overgrowths (Lu and Bilder, 2005). These phenotypes were attributed 

to a defect in endocytic turnover of the apical determinant Crumbs and the Notch 

receptor, which accumulated at the surface of avl mutant cells (Lu and Bilder, 2005). 

Mosaic loss of Rab5, which regulates formation of early endosomes, resulted in a similar 

phenotype in eye discs and follicle cells, and accumulation of Notch and Crumbs (Lu and 

Bilder, 2005).  

 Ept and Vps25 function at later steps in the endolysosomal degradation pathway. 

Ept is a subunit of ESCRT I, and Vps25 is a subunit of ESCRT II, both of which function 

in fusion of multivesicular bodies with lysosomes. Clonal loss of function mutations in 

ept or vps25 result in non-autonomous cell proliferation in the eye (Moberg et al., 2005; 

Vaccari and Bilder, 2005). These phenotypes are associated with cell autonomous 

disruption of apico-basal polarity and Notch accumulation in endosomal compartments 

(Moberg et al., 2005; Vaccari and Bilder, 2005). In the case of ept, Notch accumulation 

in endosomes resulted in increased expression of the Janus kinase (JAK)- Signal 

transducer and activator of transcription (STAT) pathway ligand Unpaired (Upd), a 

cytokine which can induce non-autonomous proliferation of neighboring cells (Moberg et 

al., 2005). Furthermore, ept mutant cells, in the background of apoptosis inhibition, 

exhibit activation of the transcription factor STAT92E, which induces cell autonomous 

proliferation and tissue overgrowth (Gilbert et al., 2009). In vps25 mosaic eye discs, 

accumulation of Notch in mutant cells led to increased Upd expression. In apoptosis 

competent tissue, secreted Upd signals neighboring cells to proliferate, while cell 

autonomous signals induce death of mutant cells (Herz et al., 2006; Thompson et al., 
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2005). Like ept mutant cells, vps25 mutant cells can overgrow and form epithelial tumors 

when apoptosis is inhibited in neighboring cells (Thompson et al., 2005).  

 Though Drosophila tumorigenesis can be induced by a single gene mutation, a 

phenomenon not observed in human cancers, the fly represents a good model for studying 

tumor suppressors nonetheless. Genetic mutagenesis screens have been essential to 

identifying a number of growth and proliferation regulators with functional homologs in 

mammals. The ability to study the cell biological effects of mutations in multiple genes in 

mosaic tissues provides an advantage over a knockout mouse approach.  

 

VI. Drosophila autophagy genes 

A. Regulation of autophagy induction by Atg1 and Atg13   

 Following the discovery of the Atg genes in yeast, several homologs were 

identified in other organisms, including Drosophila. Seventeen autophagy gene homologs 

have been identified in Drosophila, and most have been characterized as autophagy 

regulators in the fly (Chang and Neufeld, 2009, 2010). At the step of autophagy 

induction, homologs of the kinases Atg1 and Atg13 have been identified. Both Atg1 and 

Atg13 are required for starvation induced autophagy and development, as Atg1 and Atg13 

mutants die prior to metamorphosis (Scott et al., 2004; Chang and Neufeld, 2009). Their 

function as activators of autophagy has been conserved as Atg1 overexpression is 

sufficient to induce autophagy in the larval fat body (Scott et al., 2007). The fact that 

Drosophila Atg1 and Atg13 constitutively interact suggests a different regulatory 

mechanism than in yeast, where the two proteins only interact under conditions of 

nutrient deprivation (Kamada et al., 2000). In yeast, phosphorylation of Atg13 by TOR 
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prevents interaction with Atg1 under nutrient rich conditions. TOR also negatively 

regulates autophagy induction in Drosophila via phosphorylation of Atg1 and Atg13, but 

Atg1 overexpression is sufficient to relieve this repression and induce autophagy under 

nutrient rich conditions (Chang and Neufeld, 2009; Scott et al., 2007). Furthermore, Atg1 

kinase activity is required for autophagy induction in Drosophila, though the mechanism 

of induction is unknown (Chang and Neufeld, 2009).  

 

B. Autophagosome nucleation by Atg6, Vps34, and Vps15 

 Early autophagosome formation/ vesicle nucleation is regulated by the Atg6 

complex in yeast. The core members of this complex, Atg6, Vps34, and Vps15, are 

conserved in Drosophila. Drosophila Atg6 shares 20% amino acid identity with yeast 

Atg6 and 49% overall identity, including 71% identity within the evolutionarily 

conserved domain, with human Beclin 1. Vps34 shares 30% amino acid identity with 

yeast Vps34 and 53% identity with human Vps34. Finally, Drosophila Vps15, also 

known as immune response deficient 1 (Ird1), shares 22% identity with yeast Vps15 and 

40% identity with human Vps15. Sequence analysis has also identified putative homologs 

of UVRAG, Rubicon, and Atg14. 

 

C. Atg conjugation pathways  

 The Atg conjugation pathway regulators, which function in autophagosome 

membrane expansion, are the most well characterized Drosophila autophagy genes. 

RNAi-mediated knockdown of Atg5, Atg7, and Atg12 in the larval fat body revealed a 

defect in starvation-induced autophagy, indicating functional conservation of these genes 



 

  39 

in Drosophila (Scott et al., 2004). Moreover, sub-cellular localization experiments with 

epitope tagged proteins revealed co-localization of Atg5 with human LC3 and 

Drosophila Atg8, and of LC3/Atg8 with lysosomes, further indicating conservation of 

cellular function (Rusten et al., 2004; Scott et al., 2004). Loss of function mutants of 

Atg7, the E1-like protein that activates Atg12 for conjugation to Atg5 and Atg8 for 

conjugation to PE, have a defect in starvation-induced autophagy in the fat body and 

developmental autophagy in the midgut (Juhász et al., 2007). However, unlike Atg1 

mutants, Atg7 mutants survive to adulthood. These animals are short lived and sensitive 

to oxidative stress (Juhász et al., 2007). These results suggest that autophagy is not 

absolutely necessary during development and other developmentally lethal Atg mutations 

may affect other processes in the organism.  

 The Atg8 conjugation pathway is also conserved in Drosophila. Two Atg8 

homologs, Atg8a and Atg8b, exist in Drosophila, and both localize to autophagosomes 

(Scott et al., 2007). Because of the availability of mutants, most autophagy studies have 

focused on Atg8a. Like Atg7 mutants, Atg8a mutants have autophagy defects during 

starvation and development, but survive to adulthood (Berry and Baehrecke, 2007; Scott 

et al., 2007). Tissue specific RNAi experiments and mutant analysis showed that Atg3, 

whose yeast homolog is an E2 like protein that participates in conjugation of Atg8 to PE, 

is required for autophagy in Drosophila, as knockdown of Atg3 resulted in impairment of 

starvation-induced autophagy (Juhász et al., 2003; Scott et al., 2007). 

 When this study was initiated, few Drosophila autophagy genes had been 

functionally characterized, due to the lack of mutant alleles for many of the genes. There 

were no existing mutants for any of the Atg6 complex components. Because of the 
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function of mammalian Beclin 1 in tumor suppression, functional characterization of this 

pathway in the context of a whole organism is essential to understanding the complex 

genetic interactions with other pathways in the cell. As a genetically tractable organism 

that provides the ability to observe mutant cells next to wild type cells in the same tissue, 

Drosophila melanogaster is an excellent system for investigating the complex Beclin 1 

functions in a physiological context.   
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Chapter 2 
 
 
 

Induction of autophagy by the Vps34 complex in Drosophila 
 

 

Abstract 

The phosphatidylinositol (3)-kinase Vps34 has been implicated in vacuolar protein 

sorting and autophagy in the budding yeast Saccharomyces cerevisiae. Vps34 functions 

in these processes by generating PI(3)P, a phospholipid that recruits proteins to assemble 

at nascent intracellular membrane structures. Vps34 is present in at least 2 distinct 

complexes in yeast, where different binding partners dictate its function in autophagy or 

vacuolar protein sorting. In addition to Vps34, all known Vps34 core complexes are 

composed of the serine-threonine kinase Vps15 and autophagy protein 6 (Atg6). The 

binding of either Vps38 or Atg16 to this core complex specifies function in either 

vacuolar protein sorting or autophagy. The Drosophila melanogaster genome encodes 

orthologs of Vps34, Vps15 and Atg6, but their functions in intracellular signaling 

pathways were previously uncharacterized. Here we describe functional characterization 

of the Vps34 complex in Drosophila, where biochemical and cellular analyses show that 

these proteins form a complex in vivo and regulate autophagosome formation. 

 

Introduction 

 The process of autophagy is initiated by formation of an isolation membrane, or 

phagophore, the source of which is unclear (Kirisako et al., 1999). Some studies have 
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suggested that this structure forms de novo in the cytoplasm, while others have concluded 

that nucleation occurs from membranes of existing organelles, such as the endoplasmic 

reticulum, Golgi, or mitochondria (Axe et al., 2008; Hailey et al., 2010; Hayashi-Nishino 

et al., 2009; van der Vaart et al., 2010). Recent data even suggest that the plasma 

membrane is involved in autophagosome biogenesis (Ravikumar et al., 2010). 

Phagophore formation is followed by double membrane expansion and sequestration of 

cytoplasmic contents to be degraded (Hamasaki and Yoshimori, 2010). Upon completion 

of vesicle formation, the outer membrane of the autophagosome fuses with the lysosomal 

membrane, depositing the inner autophagosomal membrane and engulfed contents into 

the lysosome for degradation.  

 The regulators of each step of autophagy were initially identified in genetic 

screens in yeast (Klionsky et al., 2003). Upstream of autophagosome formation, a 

complex consisting of Atg1 and Atg13 is required for autophagy induction (Kamada et 

al., 2000). This complex is negatively regulated by TOR phosphorylation of Atg13 in the 

presence of nutrients (Kamada et al., 2010). In yeast, Atg1 and Atg13 interact only under 

starvation conditions, but this interaction is constitutive in Drosophila (Chang and 

Neufeld, 2009). In response to starvation, TOR is inactivated, leading to activation of 

Atg1, which phosphorylates Atg13. Atg1 kinase activity is required for autophagy 

induction in yeast and flies (Matsuura et al., 1997). However, the biochemical mechanism 

of Atg1-Atg13 complex activity on autophagosome formation is unknown.   

 A second complex, containing Vps34, Vps15, and Atg6, is required for 

autophagosome formation. This complex was initially identified in a yeast screen for 

mutants in vacuolar protein sorting and was later isolated in another screen for mutants 
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defective in autophagosome formation (Bankaitis et al., 1986; Tsukada and Ohsumi, 

1993). Through phosphorylation of phosphatidylinositol (PI) to generate PI(3)P, Vps34 

activity regulates intracellular membrane formation, and this function is dependent on its 

serine-threonine kinase cofactor, Vps15 (Stack et al., 1993). PI(3)P is critical to vesicular 

trafficking, as it recruits proteins containing FYVE (conserved in Fab1, YOTB, Vac1, 

and EEA1) and Phox homology (PX) domains to nascent membranes (Ellson et al., 2002; 

Stenmark et al., 2002). These membranes include autophagosome isolation membranes, 

which serve as precursors to double membrane autophagosomes prior to membrane 

expansion (Kirisako et al., 1999; (Simonsen et al., 2004). In yeast, Vps34 and Vps15 

form a stable complex with Atg6. This complex is required for autophagy and trafficking 

of hydrolases to the vacuole, the functional equivalent of the lysosome in animal cells. 

Specificity of function is conferred by alternative binding partners. When bound to 

Atg14, the Vps34 complex regulates starvation-induced autophagy, while binding to 

Vps38 dictates function in vacuolar protein sorting (Kihara et al., 2001a). While studies 

in yeast have been critical to elucidating the details of genetic regulation of autophagy, a 

genetic and biochemical approach in a multicellular organism is essential to 

understanding autophagy regulation in a physiological context, as this will enhance our 

understanding of the role of this complex in diseases.  

 Drosophila melanogaster is an excellent system to carry out genetic experiments 

investigating the function of the Vps34 complex in a developing animal model. 

Autophagy is induced in the larval fat body in response to starvation, and also contributes 

to histolysis of the larval fat body, midgut, and salivary glands during metamorphosis 

(Scott et al., 2004; Rusten et al., 2004; Lee and Baehrecke, 2001; Lee et al., 2002). To 
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determine the function of the Vps34 complex in vivo, we generated transgenic flies that 

ectopically express Vps34, Vps15, and Atg6. Utilizing both genetic and biochemical 

approaches, we found that these proteins physically interact, and the function of this 

complex in autophagy is conserved in Drosophila. Furthermore, in addition to regulating 

autophagosome formation, Vps34 was also found to regulate endocytosis. 

 

Results 

Co-expression of Vps34 complex components induces autophagy in the larval fat 

body 

 The fat body is the Drosophila equivalent of the mammalian liver, which 

functions in metabolism and nutrient storage (Canavoso et al., 2001). Prior to 

metamorphosis, Drosophila develop through three larval instars. The first, second, and 

early third instars are characterized by periods of feeding, which provide the developing 

animal with energy to support growth. Further, nutrient stores are built during the larval 

instars, and this helps to sustain the animal through the non-feeding stages of 

metamorphosis. If a larva is deprived of nutrients, the cells of the fat body undergo 

autophagy, promoting survival until restoration of nutrients (Scott et al., 2004). To test 

whether the Vps34 complex was sufficient to induce autophagy independent of nutrient 

availability, Vps34, Vps15 and Atg6 were ectopically expressed in the fat body using the 

Gal4 upstream activating sequence (UAS) expression system (Brand and Perrimon, 

1993).  

Several transgenic lines were generated to enable ectopic expression of wild type 

and epitope tagged Atg6 and Vps34 in a tissue specific manner. Among the constructed 
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lines are 19 different UAS-Vps34 lines and 54 UAS-Atg6 lines. Included in those lines 

are 9 N-terminal and 10 C-terminal TAP-tagged UAS-Vps34 lines, 9 N-terminal and 10 

C-terminal GFP-tagged UAS-Atg6 lines, and 9 N-terminal and 10 C-terminal Myc-

tagged UAS-Atg6 lines (Fig. 2-1). I have also obtained untagged and FLAG-tagged 

UAS-Vps15 transgenic flies (provided by L.Wu).   
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Figure 2-1: Transgenic constructs for cellular and biochemical characterization of the Vps34 

complex. Atg6 cDNA was cloned into the vector pUAST for ectopic expression of the wild type proteins. 

Atg6 cDNA was cloned into the Gateway vectors pTGW (N-term GFP), pTWG (C-term GFP), pTMW (N-

term 6xMyc), and pTWM (C-term 6xMyc), which allowed Gal4-driven tissue specific expression of 

epitope tagged Atg6. Vps34 cDNA was cloned into pUAST-NTAP and pUAST-CTAP, which provide a 

tandem affinity purifcation tag. All plasmid constructs were utilized in P-element mediated transformation, 

to generate transgenic flies. 
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 Autophagosome formation was monitored by GFP-Atg8a localization. Atg8a is 

conjugated to phosphatidylethanolamine (PE) and localizes to the autophagosome 

membrane through fusion with the lysosome (Ichimura et al., 2000). Under nutrient rich 

conditions, Atg8a localization is diffuse and cytoplasmic. Upon autophagy induction, 

Atg8a localizes in puncta, which mark autophagosomes (Kirisako et al., 1999). Fat body 

autophagosome number increased in control larvae, which expressed heat shock 

inducible GFP-Atg8, from an average of 13 GFP-positive puncta per field under nutrient 

rich conditions to an average of 58 puncta per field following 4 hours of starvation (Fig. 

2-2A, E, M). When either Atg6, Vps34, or Vps15 was individually over-expressed in the 

fat body of feeding larvae, via the larval serum protein 2 (Lsp2)-Gal4 driver, single 

transgene expression was not sufficient for significant induction of autophagy (Fig. 2-2A-

H, M). However, co-expression of either Atg6 and Vps34 or Vps15 and Vps34 resulted 

in a significant increase in GFP-Atg8a puncta formation in feeding larvae (Fig. 2-2I, J, 

M).  
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Figure 2-2. Ectopic co-expression of Vps34 complex members induces autophagosome formation in 

the larval fat body. Animals were raised at 25°C, then third instar larvae were shifted to 37°C for 1 hour, 

followed by a 3-hour recovery incubation at 25°C. Larvae were subjected to 4 hours of starvation, 

including the 1 hour heat shock period. Following incubation, the fat body was dissected and mounted in 

Slowfade Gold reagent (Invitrogen) for imaging with a Zeiss LSM confocal microscope. (A-L) Third instar 

larval fat body expressing heat shock driven GFP-Atg8a. (M) Quantification of GFP-Atg8 puncta in 

feeding larvae compared to control feeding and starved larvae. GFP-positive puncta were counted in 3 

fields of view per fat body from 10 animals and the average number of spots per field per animal was 

calculated. Statistical significance was determined by a paired t-test, and bars represent standard error. For 

control samples, “F” denotes feeding larvae and “S” denotes starved larvae. Genotypes: (A, E) Hs-GFP-
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Atg8a/+; Lsp2-Gal4/+ (B, F) w; UAS-Atg6/Hs-GFP-Atg8a; Lsp2-Gal4/+, (C, G) w; Hs-GFP-Atg8a/+; 

Lsp2-Gal4/UAS-Vps34-TAP, (D, H) w; Hs-GFP-Atg8a/UAS-Vps15; Lsp2-Gal4/+, (I, K) w; UAS-Atg6/Hs-

GFP-Atg8a; UAS-Vps34-TAP/Lsp2-Gal4, (J, L) w; UAS-Vps15/Hs-GFP-Atg8a; UAS-Vps34/Lsp2-Gal4. 
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 Next, we utilized the acidomotropic dye, Lysotracker Red, to monitor formation 

of acidic structures in the fat body, including multivesicular bodies and lysosomes. 

Consistent with GFP-Atg8a experiments, Lysotracker positive puncta appeared 

throughout the fat body of both feeding and starved larvae co-expressing either Vps34 

and Atg6 or Vps34 and Vps15, but not in animals expressing either Vps34, Atg6, or 

Vps15 individually (Fig. 2-3). Taken together, the GFP-Atg8a and Lysotracker results 

indicate that Vps34 complex function in autophagy is conserved in Drosophila, and these 

proteins are capable of inducing autophagy in non-starved conditions when co-expressed 

together.  
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Figure 2-3. Co-expression of Vps34 complex members induces autophagy in the larval fat body. 

Lysotracker Red staining, which labels acidic structures including autolysosomes, of fat body from third 

instar larvae. Fat body was dissected from feeding or starved larvae, expressing Vps34 complex transgenes 

driven by Lsp2-Gal4, and stained with Lysotracker Red. Tissue was mounted in phosphate buffered saline 

and imaged with the 40X objective of a Zeiss Axiophot. Genotypes: (A, F) w; UAS-Atg6; Lsp2-Gal4, (B, 

G) w; UAS-Vps34-TAP/+; Lsp2-Gal4/+, (C, H) w; UAS-Vps15; Lsp2-Gal4, (D, I) w; UAS-Atg6/UAS-

Vps34-TAP; Lsp2-Gal4/+, (E, J) w; UAS-Vps15/UAS-Vps34-TAP; Lsp2-Gal4/+.  
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Atg6 redistributes to punctate structures in the fat body following starvation 

 Studies in mammalian cells have shown that Beclin1/Atg6 localizes to the 

endoplasmic reticulum and trans-Golgi network (TGN) (Kihara et al., 2001a). While 

Vps34 is co-localized with Atg6 in the ER and TGN, it also localizes to late endosomes 

independently of Atg6 (Kihara et al., 2001a). Transgenic UAS-Atg6-GFP-flies were 

generated for protein localization experiments (Fig. 2-1). It is important to note that the 

UAS-Atg6-GFP transgene rescues Atg6 null mutants (Chapter 3), indicating that this 

protein functions in vivo. Atg6-GFP localization was diffuse in the fat body of feeding 

larvae, consistent with low basal autophagy levels in fed animals (Fig 2-4A). Following 

starvation, Atg6-GFP localized in puncta of variable sizes in the fat body, and most of 

these puncta were exclusive of the acidic Lysotracker-stained structures whose formation 

was induced by starvation (Fig. 2-4F). The redistribution of Atg6-GFP into punctate, 

non-lysosomal structures following starvation suggests that it localizes to 

autophagosomes prior to fusion with the lysosome.  
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Figure 2-4. Atg6 redistributes to punctate structures following starvation. Lysotracker Red staining of 

fat body from feeding or starved (4h) larvae expressing Atg6-GFP. Following starvation, fat body was 

dissected, mounted in phosphate buffered saline, and imaged with the 40X objective of a Zeiss Axiophot. 

Genotype: w; UAS-Atg6-GFP/+; Lsp2-Gal4/+. 
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Vps34 binds to Atg6 and Vps15 in vivo 

 A biochemical approach was taken to determine whether Vps34, Atg6, and Vps15 

physically interact in a complex in Drosophila. Due to the lack of antibodies that 

recognize these proteins in Drosophila, epitope tags were utilized to isolate these proteins 

from cell lysates (Fig. 2-1). Tandem affinity purification (TAP)-tagged Vps34 was co-

expressed with FLAG-tagged Vps15 and Myc-tagged Atg6 in larvae. Transgenes were 

driven via the UAS/Gal4 system, using heat shock (hs)-Gal4 to drive ubiquitous 

expression. Utilizing an antibody against human Vps34, which recognizes the Drosophila 

protein, Vps34 complexes were immunoprecipitated from whole animal protein extracts, 

collected from feeding and starved larvae. Myc-Atg6 co-immunoprecipitated with both 

endogenous Vps34 and Vps34-TAP, and this interaction was independent of nutrient 

availability (Fig. 2-5A). Furthermore, Vps15-FLAG interacted with Vps34-TAP under 

starved conditions, but not in well-fed animals (Fig. 2-5B). By contrast, Vps15-FLAG did 

not co-immunoprecipitate with Myc-Atg6 in either condition (Fig. 2-5B). Vps15-FLAG 

levels appeared very low and could only be detected when immunoprecipitated with 

Vps34 under starvation conditions (Fig 2-5B). These results suggest that Vps34 and Atg6 

constitutively interact, while Vps15 interacts with this complex via Vps34 in a nutrient 

dependent manner.   
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Figure 2-5. Vps34 interacts biochemically with Atg6 and Vps15 in vivo. Vps34, Atg6, and Vps15 were 

epitope tagged and ectopically expressed via the UAS/GAL4 system. UAS-transgenes were induced 

ubiquitously by heat shock (hs)-Gal4. Larvae were heat shocked for one hour at 37°C, followed by a 3 hour 

incubation at 25°C. During this 4-hour time course, larvae were raised in the presence or absence of food. 

(A) Co-immunoprecipitation of Myc-Atg6 with Vps34. Vps34 was immunoprecipitated with an antibody 

raised against human Vps34, in feeding or starved third instar larvae co-expressing Myc-Atg6 and Vps15-

FLAG in the presence or absence of Vps34-TAP. Atg6 was detected via Western blot with an α-Myc 

antibody. (B) CoIP of Vps15 with Vps34-TAP or Myc-Atg6. Vps34 was immunoprecipitated with an 

antibody raised against human Vps34, and Myc-Atg6 was immunoprecipitated with an α-c-Myc antibody, 

in feeding or starved third instar larvae co-expressing Vps34-TAP, Myc-Atg6, and Vps15-FLAG. Vps15-

FLAG was detected with an α-FLAG antibody. Genotypes: (A) “+Vps34-TAP” w; UAS-Myc-Atg6/UAS-

Vps15-FLAG; UAS-Vps34-TAP/Hs-Gal4, “-Vps34-TAP” w; UAS-Myc-Atg6/UAS-Vps15-FLAG; Hs-

Gal4/+, (B) w; UAS-Myc-Atg6/UAS-Vps15-FLAG; UAS-Vps34-TAP/Hs-Gal4. 
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Discussion 

 While the genes regulating autophagy have been known for more than a decade, 

the functions of these genes in other pathways are yet to be characterized in multicellular 

eukaryotes. In particular, the Vps34 complex functions in the CVT pathway, vacuolar 

protein sorting, and autophagy in yeast, and its specificity of function depends on which 

proteins are bound to the core components. The function of the Drosophila Vps34 

complex was previously uncharacterized. Although Vps15 was identified in a screen for 

regulators of NFκB signaling in response to bacterial infection, its function in the Vps34 

complex was not studied (Wu et al., 2007).  

 We investigated the functions of Vps34, Atg6, and Vps15 in autophagy using a 

genetic approach. Over-expression of either Vps34, Atg6, or Vps15 alone was not 

sufficient to induce autophagy in the fat body of fed third instar larvae. This suggests that 

a stoichiometric ratio of these proteins is required for autophagosome formation. It is 

possible that over-expressed Vps34 is unable to generate additional PI(3)P in the absence 

of ectopic Vps15 activity. Similarly, PI(3)P may be limiting when Atg6 or Vps15 are 

individually over-expressed in the fat body of fed larvae containing endogenous levels of 

Vps34. Co-expression of either Vps34 with Atg6 or Vps34 with Vps15 induced high 

levels of autophagy in feeding larvae, as visualized by GFP-Atg8a localization and 

lysotracker staining (Fig. 2-2 and 2-3). Due to Vps34 over-expression, one would expect 

higher levels of PI(3)P, and the presence of over-expressed Atg6 or Vps15, in addition to 

Vps34, may be sufficient for recruitment of other proteins to the nascent autophagosome. 

I did not test whether co-expression of Vps15 and Atg6 was sufficient for autophagy 

induction in fed larvae. However, this experiment, in addition to mutant analysis, may 
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allow us to determine whether PI(3)P is limiting for ectopic autophagy induction. 

Furthermore, we confirmed that Vps34 and Atg6 constitutively interact in vivo, while 

Vps15 binds only to Vps34 under starvation conditions (Fig. 2-5). Constitutive 

interaction of Vps34 with Atg6 suggests a possible role for these proteins in cellular 

processes other than autophagy.  

 In support of a non-autophagic function for the Vps34 complex, our collaborator 

found that Vps34 is required for both autophagy and endocytosis in Drosophila (Juhász 

et al., 2008). Functional Vps34 generates PI(3)P, which recruits FYVE-domain 

containing proteins to intracellular membranes. Clonal loss of Vps34 blocked GFP-FYVE 

perinuclear puncta formation in the larval fat body. These puncta were identified as early 

endosomes due to their co-localization with Rab5. Starvation of larvae resulted in 

redistribution of FYVE to cytoplasmic puncta that co-localized with GFP-Atg8a, 

indicating that PI(3)P is involved in formation of both autophagosomes and endosomes 

(Juhász et al., 2008). Further, the function of Vps34 in endocytosis was confirmed by 

observing endocytic uptake of a Texas Red (TR)-avidin conjugate by Garland cells, 

which are highly endocytic nephrocytic cells. Vps34 mutant cells failed to endocytose the 

TR-avidin tracer (Juhász et al., 2008).  

 Endocytosis regulators have previously been shown to function in autophagy. 

Specifically, subunits of the endosomal sorting complex required for transport (ESCRT) 

pathway are required for autophagy in Drosophila (Rusten et al., 2007). The ESCRTs 

regulate formation of multivesicular bodies and sorting of endocytosed proteins to the 

lysosome for degradation. There are three ESCRT complexes, and all are required for 

autophagy, as cells mutant for vps22 (ESCRT I), vps25 (ESCRT II), or vps32 (ESCRT 
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III) accumulate un-degraded GFP-Atg8a puncta in the fat body (Rusten et al., 2007). This 

phenomenon occurs in both starved and fed larvae, and is due to a defect in fusion of 

autophagosomes with the endolysosomal machinery (Rusten et al., 2007). To test whether 

Vps34 function in autophagy was related to its function in endocytosis, our collaborators 

generated flies with mutations in both Vps34 and the ESCRT II subunit vps28. While 

GFP-Atg8a puncta accumulated in Vps28 mutant larval fat body cells, they never formed 

in Vps34 mutant cells (Juhász et al., 2008). Like vps28 mutant cells, vps28, Vps34 double 

mutant cells accumulated autophagosomes in fed and starved larvae, albeit at much lower 

levels than vps28 single mutant cells (Juhász et al., 2008). These results indicated that the 

function of Vps34 in autophagy, at the step of autophagosome formation, was distinct 

from its role in endocytic trafficking. Further, though autophagosomes fuse with the 

endocytic machinery, Vps34 does not appear to be a rate-limiting factor in this event. 

 Significant questions remain about differential regulation of intracellular 

trafficking pathways by the Vps34 complex. While Vps15 and Atg6 are required for 

autophagy and vacuolar protein sorting in yeast, early studies of the Vps34 complex in 

mammalian cells suggested that Beclin 1/Atg6 did not participate in endocytic trafficking 

(Furuya et al., 2005; Zeng et al., 2006). This was supported by cellular localization 

experiments, which indicated that only 50% of intracellular Vps34 interacted with Atg6 

at the trans-Golgi network, while the other 50% was localized to late endosomes (Kihara 

et al., 2001a). Despite this early model for Beclin 1-independent regulation of 

endocytosis by Vps34, the identification of a Vps38 homolog, UVRAG, as a Beclin 1-

interacting protein in mammals, suggested that Beclin 1 functions in endocytosis after all 

(Liang et al., 2008). Thoresen et al. recently provided additional data in support of Beclin 
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1 function in endocytic trafficking (Thoresen et al., 2010). Using an RNAi-mediated 

knockdown approach in mammalian cells, the authors found that the core Vps34 

complex, composed of Vps34, Vps15, and Beclin 1, was required for endocytosis of 

ligand-bound EGFR. The Beclin 1-interacting proteins UVRAG and Bif-1 were also 

required for EGFR endocytosis and degradation, but the autophagy specific protein 

Atg14L was not (Thoresen et al., 2010).  

 Experiments in mammalian cell lines have so far provided contradictory models 

of Vps34 complex regulation of endocytic trafficking. In order to advance our 

understanding of complex function in vivo, these proteins must be investigated in whole 

animal models. Research on the Beclin 1-interacting tumor suppressor protein UVRAG 

indicated that the function of this complex in endocytosis might contribute to tumor 

suppression (Liang et al., 2008). Drosophila melanogaster is an ideal animal model for 

investigating the cellular functions of the Vps34 complex. While the aforementioned 

experiments indicated functional conservation of Vps34 in Drosophila, full functional 

charcterization of its binding partner, Atg6, is necessary to fully understand now 

autophagy and endocytosis function together in the cell. By generating a mutant in the 

Beclin 1 ortholog Atg6, we can utilize elegant genetic tools, such as the ability to make 

tissue mosaics, to study both autophagy and endocytosis in the context of a developing 

animal.  
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Materials and Methods 

Generation of Transgenic Flies 

UAS-Atg6: Atg6 cDNA (CG5429) was cloned from the pOT2 vector (LD35669) into 

pUAST, using XhoI and EcoRI restriction sites. The resultant construct, pUAST-Atg6 

was sent to Duke University Model Systems Genomics for P-element transformation into 

w1118.   

Myc-Atg6: Atg6 cDNA was cloned into pENTR/D-TOPO (Invitrogen) using the primers 

5’CACCATGAGTGAGGCGGAA 3’ and 5’ TCACGGTGACACAAACTGTG 3’. Atg6 

cDNA was then recombined into the Drosophila Gateway vector pTMW using LR 

clonase (Invitrogen). The resultant construct, pTMW-Atg6 was sent to Best Gene, Inc. 

for P-element transformation into w1118. 

Atg6-GFP: Atg6 cDNA was cloned into pENTR/D-TOPO (Invitrogen) using the primers 

5’CACCATGAGTGAGGCGGAA 3’ and 5’CGGTGACACAAACTGTGAAG 3’. Atg6 

cDNA was then recombined into the Drosophila Gateway vector pTWG using LR 

clonase (Invitrogen). The resultant construct, pTWG-Atg6 was sent to Best Gene, Inc. for 

P-element transformation into w1118.  

PI3K-TAP: TOPO-TA cloning was used to clone the PI3K59F cDNA (CG5373), using 

the primers 5’ GGGGTACCCCAAAAATGGACC 3’ (introduce 5’ KpnI site) and 

5’CTAGGATTACTCGCTCCTCC 3’ for N-terminal fusion and 

5’GCAGATCTGATATCATCGCC 3’ and 5’GGGTACCCTTCCGCCAGTAT 
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(introduce 3’ KpnI site) for C-terminal fusion. To generate N-terminal UAS-TAP-PI3K, 

PI3K59F was cloned from TOPO-PI3K(N) into pUAST-NTAP (from A.Veraksa) using 

the KpnI and XbaI restriction sites. C-terminal UAS-PI3K-TAP was generated by cloning 

PI3K59F from TOPO-PI3K(C) using the EcoRI and KpnI restriction sites. pUAST-

NTAP-PI3K and pUAST-PI3K-CTAP were sent to Best Gene, Inc. for P-element 

transformation into w1118.   

 

GFPAtg8 Quantification 

Crosses were carried out at 25°C and adults were removed from vials 24h after cross was 

set up. Larvae were heat shocked for 1h at 37°C, then incubated at 25°C for 3 hours 

under feeding or starvation conditions. For starvation experiments, incubations were done 

in a dish with wet tissue paper. For feeding experiments, feeding larvae were scooped, 

along with food, into a dish for incubations. Larval fat body was dissected in 1X 

phosphate buffered saline, 3 hours after completion of heat shock, and mounted in 

SlowFade Gold antifade reagent (Invitrogen). Fat body samples were imaged with a Zeiss 

Confocal Laser Scanning Microscope using a 40X objective. For each animal, 3 fields 

per fat body were imaged and punctate GFP spots were counted. Quantification 

represents average number of punctate GFP positive spots per field per animal (n=10).   

 

Lysotracker staining 

Fat body was dissected from larvae in 1X PBS, and incubated with Lysotracker Red 

(Invitrogen), diluted 1:10,000 in 1X PBS, for 2 minutes at room temperature. Tissue was 

rinsed with 1X PBS, then mounted for immediate imaging with a Zeiss Axiophot.  
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Immunoprecipitation and Western Blot 

(Heat shock/starvation conditions same as for GFPAtg8 analysis) Larvae were 

homogenized in lysis buffer [50mM HEPES, pH 7.4, 150mM KCl, 6.5% glycerol, 

0.5mM DTT, 0.1% Triton X-100, complete protease inhibitor tablet (Roche)] and 

incubated on ice for 15 minutes. Samples were spun at 10,000 x g for 10 minutes at 4°C 

to collect protein, which was stored at -80°C.  For each IP, 300µg of protein was 

precleared with 50uL of Protein A sepharose 4B 50% slurry (Zymed) on ice for 1h.  

Precleared lysate was incubated with 2µg of antibody at 4°C for 1h [mouse α-c-Myc 

(9e10): sc-40 Santa Cruz Biotechnology, mouse α-FLAG M2 (Sigma), rabbit α-hVps34 

(Jonathan Backer)]. 50ul of Protein A sepharose was added, followed by an additional 1h 

incubation at 4°C. Beads were collected by centrifugation (10,000 x g) for 30 seconds, 

washed with lysis buffer, and resuspended in 25ul of Laemmli buffer. Antigen-antibody 

complexes were released from beads with a 10 minute incubation at 95°C, followed by 

centrifugation at 10,000 x g for 5 minutes at 4°C. Protein was separated by SDS-PAGE 

on a 7.5% acrylamide gel and transferred to an Immobilon-P PVDF membrane 

(Millipore). Membranes were blocked in 3% milk/Tris-buffered saline + 0.1% Triton-X 

100 (TBST) for 1h at room temperature and washed 3 x 10 minutes in TBST. Blots were 

incubated with primary antibody for 1h at room temperature, followed by 3 10-minute 

washes in TBST [α-c-Myc 1:200 in 2% BSA/TBST, α-FLAG M2 1:2000 in 3% 

milk/TBST, α-hVps34 1:1000 in 3% milk/TBST]. Blots were incubated in goat α-mouse-

HRP or goat α-rabbit-HRP secondary antibody, diluted 1:2000 in 3% milk/TBST, for 1h 

at room temperature. Blots were washed in TBST, then incubated with ECL reagent 

(Amersham) and exposed with Hyperfilm ECL (Amersham).     
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Chapter 3 
 

Loss of Atg6 causes defects in endocytosis and autophagy, and leads to cell 

overgrowth 

Abstract 

Beclin 1, the mammalian homolog of the autophagy related protein 6 (Atg6), functions in 

autophagy and endosomal trafficking. Mutations in beclin 1 are associated with sporadic 

breast, ovarian, and prostate cancers. These pathologies have been attributed to a defect 

in autophagy that leads to protein stress, p62 accumulation, activation of NFκB, 

accumulation of reactive oxygen species, and genome instability. In order to study the 

physiological defects and cellular phenotypes associated with beclin 1 loss, we generated 

an Atg6 null mutation in Drosophila. This model system allowed us to characterize the 

function of Atg6 in the context of a developing animal, and use genetic approaches to 

identify interactions with other signaling pathways. We found that Atg6 is required 

during development, as mutant larvae died at the end of larval development with excess 

blood cells. Furthermore, mosaic analyses in epithelial tissues showed that Atg6 mutant 

cells displayed a loss of cell polarity and invaded neighboring wild type cells. These 

defects appear to be independent of autophagy and the lipid kinase Vps34, as cells mutant 

for autophagy gene Atg1 or Vps34 did not display similar phenotypes. 

 

Introduction 

 Autophagy is a catabolic process that sequesters proteins and organelles into 

double-membraned autophagosomes for delivery to the lysosome, and has been linked to 
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cancer (Kisen et al., 1993). In particular, the mammalian tumor suppressor Beclin 1 

functions in autophagy (Liang et al., 1999). Monallelic loss of beclin 1 in mice resulted in 

increased spontaneous tumorigenesis compared to animals with two functional copies of 

beclin 1 (Qu et al., 2003; Yue et al., 2003). beclin 1+/- mice were affected by lymphomas, 

lung carcinomas, and liver carcinomas. Initial studies suggested that the autophagy-

promoting function of Beclin 1 might be tumor suppressive, as Beclin 1 expression in 

MCF7 breast carcinoma cells rescued an autophagy defect and reduced tumorigenicity 

(Liang et al., 1999). 

 Beclin 1 functions in a complex with the class III PI3-kinase Vps34 and its 

cofactor p150/Vps15 to regulate autophagosome formation (Kihara et al., 2001b; (Sun et 

al., 2008). In addition to the core members of this complex, several other proteins interact 

with Beclin 1 to regulate later steps in autophagy and endocytosis. Among these proteins 

are the anti-apoptotic Bcl-2 and Bcl-XL, the autophagy protein Atg14L and autophagy 

inhibitor Rubicon, tumor suppressors UVRAG and Ambra-1, and the endocytosis related 

protein Bif-1 (Liang et al., 1998; Itakura et al., 2008; Matsunaga et al., 2009; Zhong et 

al., 2009; Liang et al., 2006; Fimia et al., 2007; Takahashi et al., 2007). 

 Investigation of the tumor suppressive function of autophagy has shown that 

autophagy is induced in response to metabolic stress in tumor cells overexpressing Bcl-2 

or deficient in Bax and Bak (Degenhardt et al., 2006). Furthermore, autophagy 

impairment in beclin 1+/- immortalized baby mouse kidney (iBMK) epithelial cells 

overexpressing Bcl-2 resulted in sensitivity to ischemic metabolic stress and increased 

tumorigenesis (Degenhardt et al., 2006). These cells possess genome instability, 

including elevated levels of DNA double-stranded breaks, abnormal centrosomes, and 
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aneuploidy (Mathew et al., 2007). In the absence of Bcl-2 expression, however, apoptosis 

was functional and beclin 1+/- cells did not accumulate these genome irregularities 

(Mathew et al., 2007). Similarly, Atg5 deficient iBMK cells expressing Bcl-2 were also 

more sensitive to metabolic stress and exhibited increased genome damage compared to 

Atg5+/+ cells, suggesting that the process of autophagy, and not simply Beclin 1 function 

in an alternative pathway, suppresses tumorigenesis by protecting cells from genome 

damage induced by metabolic stress (Mathew et al., 2007).  

 Experiments in mouse models of mammary epithelial tumorigenesis also support 

a role for autophagy in tumor suppression via protection from metabolic stress-induced 

genome instability (Karantza-Wadsworth et al., 2007). beclin+/-, Bcl-2 expressing 

immortalized mouse mammary epithelial cells (iMMECs) formed mammary tumors 

when injected into immune-compromised nude mice at a faster rate than beclin 1+/+ 

iMMECs. Tumors that formed from beclin 1+/- cells displayed reduced autophagy levels, 

DNA damage, and gene amplification, suggesting that metabolic stress leads to genome 

damage and tumor progression in the absence of autophagy and apoptosis (Karantza-

Wadsworth et al., 2007).   

 Mathew et al. (2009) presented a possible biochemical mechanism for 

transformation of autophagy defective cells, which involved accumulation of and 

signaling by the cell stress protein p62 (Mathew et al., 2009). p62 is an adaptor protein, 

which binds to atypical protein kinase C (aPKC) and modulates binding to other proteins 

that control diverse signaling pathways including tumor necrosis factor alpha (TNF-α) 

receptor interacting protein (RIP), TNF receptor-associated factor 6 (TRAF6), LC3, and 

ubiquitin (Moscat et al., 2006). In autophagy, p62 functions as an adaptor, which binds to 
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the autophagosome-associated protein LC3/Atg8 and brings ubiquitinated proteins to the 

autophagosome for degradation by the lysosome (Komatsu et al., 2007). However, in 

autophagy defective cells, p62 accumulates and appears to contribute to either 

transformation or death (Komatsu et al., 2007; Mathew et al., 2009). 

 p62 was first linked to tumorigenesis in studies focusing on its regulation of the 

nuclear factor kappa-B (NFκB) pro-survival pathway, which is activated by oncogenic 

Ras during cell transformation (Duran et al., 2008; Mayo et al., 1997). p62 is required for 

Ras-induced lung cancer, and it promotes tumor formation in response to Ras signaling 

through activation of IκB kinase (IKK) (Duran et al., 2008). Specifically, p62 expression 

is induced by oncogenic Ras via the PI3K pathway, and it mediates activation and self- 

ubiquitination of the E3 ligase TRAF6. This leads to activation of IKK by an unknown 

mechanism, followed by degradation of the NFκB inhibitor IκB. The NFκB transcription 

factor family, which includes five proteins in mammals, promotes cell survival and 

proliferation through a myriad of downstream targets (Pahl, 1999). Murine gene targeting 

studies revealed hematopoietic hyperplasia as a result of loss of function mutations of the 

NFκB gene RelB or deletion of the C-terminal transcriptional transactivation domain of 

the c-Rel protein (Carrasco et al., 1998; Weih et al., 1995) 

 Consistent with early p62 studies, Mathew et al. (2009) observed elevated p62 

levels in autophagy deficient tumor cells (Mathew et al., 2009). Under metabolic stress 

conditions, autophagy was required for turnover of p62. Heterozygous disruption of 

beclin 1 or deletion of Atg5 in iBMK cells overexpressing Bcl-2 resulted in elevated p62 

levels, ROS accumulation, and genomic instability (Mathew et al., 2009). In vivo, the 

lungs, heart, and liver of beclin 1+/- mice, as well as spontaneous tumors from these 
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animals, displayed p62 accumulation. Overexpression of p62 in Atg5-/- iBMK cells led to 

increased tumor growth in nude mice and DNA damage pathway induction compared to 

Atg5-/- cells overexpressing GFP. Gene expression analysis of Atg5-/- tumors 

overexpressing p62 showed down-regulation of immunity pathways, including Toll-like 

receptor signaling, compared to Atg5-/- tumors expressing GFP. Surprisingly, the NFκB 

pathway was suppressed by p62 expression in Atg5-/- tumors, and this was confirmed in 

both beclin 1+/- and Atg5-/- cells with an IL-6-luciferase reporter (Mathew et al., 2009). 

This suggested an alternate model for suppression of tumorigenesis by autophagy, 

whereby autophagy is required for turnover of p62 under conditions of metabolic stress, 

and failure to do so leads to p62 accumulation and inhibition of NFκB signaling 

downstream by an unknown mechanism. Inhibition of canonical NFκB activation by this 

mechanism may then lead to tumorigenesis because of inflammation associated with 

accumulating cell stress and tissue damage. 

 Drosophila has a single Beclin 1 ortholog, Atg6, which shares 71% amino acid 

identity with the evolutionarily conserved domain of mammalian Beclin 1, and 50% 

overall identity. Atg6 interacts with the Class III PI3K Vps34 in vivo, and co-expression 

of Atg6 with Vps34 or Atg6 with the Vps34-interacting serine-threonine kinase Vps15 is 

sufficient to induce autophagy in the developing larva (Juhász et al., 2008; Chapter 2). 

Autophagy is induced in the larval fat body, a nutrient storage organ, in response to 

starvation (Scott et al., 2004). Histolysis of the larval fat body and salivary glands 

involves steroid regulated autophagy, which clears these tissues before adult structures 

are formed during metamorphosis (Rusten et al., 2004; Lee and Baehrecke, 2001). Both 

Vps34 and Vps15 are required for autophagy and adult viability in Drosophila (Juhász et 
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al., 2008; Lindmo et al., 2008; Wu et al., 2007). However, the lack of a null Atg6 mutant 

has precluded full functional analysis of the Vps34 complex in the context of a 

developing animal. 

 Here we characterize a Drosophila Atg6 null mutant. We used ends-out gene 

targeting to knock out the open reading frame of Atg6 (Rong and Golic, 2000). Animals 

lacking Atg6 die prior to metamorphosis and contain melanotic blood cell tumors. 

Consistent with the role of Beclin 1 as a tumor suppressor, loss of Atg6 causes over-

production of blood cells (hemocytes). Furthermore, clonal loss of Atg6 in the follicular 

epithelium leads to altered cell polarity and invasion of neighboring cells. These 

phenotypes are not present in Vps34 or Atg1 mutant cells, suggesting a novel, autophagy 

independent function for Atg6 in maintenance of cell architecture. 

 

Results  

Generation of Atg61 mutant animals  

 Flybase reports a P-element allele of Atg6, P{PZ}Atg600096(Fig. 3-1A), which is 

located in the 5’ untranslated region (UTR), in a region that overlaps with another gene 

on the opposite strand. Preliminary experiments showed that autophagy function is 

maintained in these animals (data not shown). Based on this result, and the fact that the 

transposable element does not disrupt the open reading frame, it was necessary to 

generate a true null mutant for Atg6 for further functional characterization. To generate 

strong loss of function mutations in Atg6, we utilized the ends-out gene targeting 

approach (Rong and Golic, 2000). With this method, homologous recombination was 

used to target the genomic locus and remove the sequence of interest, replacing it with a 
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w+ minigene eye-color marker carried on a donor construct that also includes 3.5 kb of 

homologous sequence on each side of Atg6 (Fig. 3-1A). Flip (FLP) recombinase and I-

Sce I endonuclease were used to induce DNA double stranded break and homologous 

recombination at the Atg6 locus. The resultant line, Atg61, has a complete deletion of the 

Atg6 open reading frame (ORF), replaced with w+ (Fig. 3-1A and B). Reverse 

transcription (RT)-PCR confirmed the absence of Atg6 expression in homozygous third 

instar larvae (Fig. 3-1C). Flanking gene expression was unperturbed in Atg61 

homozygous larvae (Fig. 3-1C). Animals homozygous for Atg61 die during the late third 

instar/early pupal stage of development (Fig. 3-1D). Atg61 is also associated with late 

larval lethality when crossed in trans with the Df(3R) Exel 6197 deficiency for this 

region. The majority (85%) of animals lacking Atg6 die during the third larval instar, 

while 15% pupariate, but die during prior to eclosion (Fig. 3-1D). Expression of a GFP-

Atg6 transgene, via ubiquitously expressed actin-Gal4 rescued lethality of Atg61. 
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Figure 3-1. Ends out targeting of Atg6. (A) Atg6 genomic locus and donor targeting construct. The donor 

construct consisted of a w+ minigene flanked by 3.5 kb of genomic sequence (blue) from each side of Atg6. 
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Flip recombination target (FRT) sites and I-Sce I endonuclease recognition sites were present on each side 

of flanking sequence, to facilitate double stranded break and homologous recombination at the target site. 

The resultant flies contained the w+ minigene (red) in place of the Atg6 ORF (white). (B) PCR to confirm 

insertion of w+ at the Atg6 genomic locus. N= no template control, w= w1118, +/- = Atg61/+, -/- = 

Atg61/Atg61. Genomic DNA was collected from third instar larvae. Primers A-D, pictured in (A), were used 

in PCR. (C) RT-PCR of Atg6 and flanking gene transcripts and ribosomal protein 49 (rp49), which served 

as a positive control for loading, and absence of rp49 in w1118 sample likely due to human error. RNA was 

collected from third instar larvae. (D) Lethal phase analysis of Atg6 mutant animals. Genotypes: w; 

Sp/CyO; Atg61/TM6B (n=337), w; Sp/CyO; Atg61/Atg61 (n=145), w; Actin-Gal4{25FO1}/UAS-GFP-Atg6; 

Atg61/Atg61 (n=119). 
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Atg6 is required for autophagy and endocytosis  

 Atg6, when co-expressed with either Vps34 or Vps15, is sufficient to induce 

autophagy in the third instar larval fat body (Juhász et al. 2008). To determine whether 

Atg6 is required for starvation-induced autophagy, localization of the autophagosome 

marker GFP-Atg8 was monitored. Atg8a, the Drosophila homolog of mammalian LC3, 

displays diffuse cytoplasmic localization in feeding larvae, but becomes incorporated into 

autophagosome membranes during starvation and is visualized as intracellular puncta 

(Scott et al., 2004). Quantification of GFP-Atg8a puncta in the fat body of starved third 

instar larvae showed that control animals, expressing GFP-Atg8a in the fat body, 

contained an average of 86 puncta per field per animal (Fig. 3-2A and C), while Atg61 

larval fat body contained an average of 22 puncta per field per animal (Fig. 3-2B and C).  

 In addition to its function in autophagy, Vps34 also has a well-characterized 

function in endocytosis. Vps34 phosphorylates the lipid phosphatidylinositol (PI) to 

generate PI(3)P. PI(3)P then recruits FYVE domain containing proteins to form 

intracellular membranes. Vps34 activity can be monitored using a transgenically 

expressed protein consisting of GFP fused to the FYVE domain of hepatocyte growth 

factor regulated tyrosine kinase substrate (Hrs), an early endosome specific protein 

(Gillooly et al., 2000). We utilized FLP recombinase-mediated recombination at FLP 

recombination target (FRT) sites to generate Atg61 mitotic clones in the fat body, 

resulting in tissue composed of phenotypically wild type (control) and Atg6 mutant cells. 

When expressed in the larval fat body of control cells (marked by red), GFP-FYVE 

localized to perinuclear puncta that are presumed to be endosomes (Fig. 3-2 D-F). By 

contrast, homozygous Atg6 mutant cells (marked by the absence of red) did not have 
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GFP-FYVE puncta (Fig. 3-2 D-F). To test whether Atg6 functions in endocytosis, uptake 

of a Texas Red (TR)-avidin endocytic tracer was monitored in larval fat body. Following 

a 20-minute pulse with TR-avidin and 10-minute chase, control cells (lacking GFP) 

contained TR-avidin throughout, while homozygous Atg6 mutant cells (GFP positive), 

did not incorporate the tracer (Fig. 3-2I). These results indicate that Atg6 is required for 

both autophagy and endocytosis in vivo.   
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Figure 3-2. Atg6 is required for starvation-induced autophagy and endocytosis in the larval fat body. 

(A-B) GFP-Atg8 localization in the fat body of control (A) and Atg6 mutant (B) larvae subjected to 

starvation for 4 hours at 25°C. GFP-Atg8 expression was driven by the fat body driver Collagen (Cg)-Gal4. 

(C) Quantification of GFP-Atg8 puncta in control and Atg6 mutant fat body. Control= Cg>GFP-Atg8, 

Atg61 = Atg61/Atg61 Fat body was dissected from starved larvae, fixed in 4% formaldehyde, and processed 

for imaging with a Zeiss LSM 510 confocal microscope. GFP-positive puncta were counted in 3 fields per 

animal and averaged. For both genotypes, n=9, bars represent standard error, and P= 0.0015. A two tailed 

student’s t-test was used to calculate statistical significance. (D-F) GFP-FYVE localization in Atg6 fat body 

clones. (D) Mitotic clones were induced in the larval fat body by heat shock (hs)-FLP expression. Wild 
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type cells are marked by the presence of mCherry, while homozygous Atg6 mutant cells are marked by the 

absence of mCherry. (E) GFP-2xFYVE is a reporter of Vps34 activity and marks PI(3)P structures. (F) 

Overlay of D and E, showing GFP-FYVE puncta at a perinuclear compartment in wild type cells. (G-I) 

Texas Red-avidin uptake in Atg6 mosaic fat body. (G) Atg61 clones were induced using the mosaic analysis 

with a repressible cell marker (MARCM) approach ((Lee and Luo, 1999). Atg6 mutant cells are marked by 

the presence of GFP, while WT cells are marked by the absence of GFP. (H) Fat body was dissected from 

third instar larvae and incubated ex vivo with TR-avidin (80µg/mL) for 20 minutes, then chased with 

phosphate buffered saline (PBS) + 0.5% bovine serum albumin (BSA) for 10 minutes prior to fixation in 

4% formaldehyde. (I) Overlay of G and H, showing TR-avidin uptake in wild type, but not Atg6 mutant 

cells. Genotypes: (A) w; UAS-GFP-Atg8a/Cg-Gal4;+, (B) w;UAS-GFP-Atg8a/Cg-Gal4; Atg61/Atg61. (D-

F) y,w,hs-FLP; Cg-Gal4 UAS-GFP-2XFYVE/+; FRT82B UAS-mCherry/FRT82B Atg61, (G-I) y,w,hs-FLP; 

Actin-Gal4{25F01}/UAS-GFP; FRT82B Tubulin-Gal80/FRT82B Atg61.  
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Loss of Atg6 leads to blood cell over-production and melanotic mass formation 

 We analyzed Atg6 mutants for defects. While the parental w1118 and heterozygous  

Atg61 animals exhibited no obvious phenotypes (Fig. 3-3 A,B), homozygous Atg61 

mutant larvae displayed striking melanotic mass blood cell tumors before death (Fig. 3-

3C). Significantly, this blood cell tumor phenotype was rescued by ubiquitous expression 

of Atg6 (Fig. 3-3D). 

Melanotic mass formation has been associated with mutations in pathways that 

regulate hematopoeisis, as over-production of hemocytes, the Drosophila equivalent of 

macrophages, can lead to melanotic mass formation (Minakhina and Steward, 2006). To 

investigate whether hemocytes are the source of melanotic masses in Atg61 larvae, the 

hemocyte and lymph gland specific hemolectin (hml)Δ-Gal4 driver was used to drive 

GFP expression in control and Atg61 mutant larvae. Immunohistochemical analyses of 

paraffin sections with a GFP antibody revealed that these masses were indeed composed 

of hemocytes (Fig. 3-3G), and suggested that homozygous Atg61 mutant larvae contained 

more blood cells than either parental w1118or heterozygous Atg61 larvae (Fig. 3-3 E,F).  

Quantification of larval hemocytes revealed that homozygous Atg61 mutant larvae 

contained nearly ten times as many hemocytes as parental w1118 larvae, while 

heterozygous Atg61 larvae contained about twice as many hemocytes as control w1118 

larvae (3-3D). These data indicate that Atg6 functions to control hemocyte numbers in 

the developing animal.  
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Figure 3-3. Atg6 mutant larvae contain melanotic masses and an excess of hemocytes. (A-D) White 

light images of wandering third instar larvae. (E-G) Hemocytes were visualized by immunohistochemistry 

in third instar larvae expressing GFP, driven by hmlΔ-Gal4. Wandering third instar larvae of similar age 

(+/- 3 hours) were fixed and embedded in paraffin wax for histological analysis. Sections were stained with 

a rabbit α-GFP antibody (Novus) and the signal (brown) was detected colorimetrically. Counterstaining 

with Weigert’s hematoxylin allowed visualization of other tissues. (H) Quantification of hemocytes from 

wandering third instar larvae of similar age (+/- 3 hours). Individual larvae were bled into 20µL of 1X PBS, 

and 10µL was loaded into a hemacytometer. For each genotype, n= 20 animals and bars represent standard 
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error. A one tailed t-test was used for statistical analysis and the P-values relative to w1118 are: Atg61/+, 

P= 0.004; Atg61/Atg61, P= 2.6 x 10-6. Genotypes: (A) w1118, (B) w; +; Atg61/+, (C) w; Sp/Cyo; 

Atg61/Atg61, (D) w; UAS-GFP-Atg6/Actin-Gal4{25F01}; Atg61/Atg61, (E) w; hmlΔ-Gal4, UAS-GFP/+, (F) 

w; hmlΔ-Gal4, UAS-GFP/+; Atg61/+, (G) w; hmlΔ-Gal4, UAS-GFP; Atg61/Atg61. 
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Atg6 mutant cells accumulate cell stress markers and display activation of the NFκB 

proteins Relish and Dif 

 Autophagy deficient cells and tumors have previously been shown to accumulate 

endoplasmic reticulum (ER) stress protein markers, and it has been hypothesized that cell 

stress in autophagy deficient cells can contribute to transformation (Mathew et al., 2009). 

To test whether Atg6 mutant cells exhibited signs of ER stress, we generated mitotic 

mutant clones of cells in the larval fat body. We stained this tissue with an antibody 

against the ER chaperone heat shock cognate 3 (Hsc3), the Drosophila homolog of 

GRP78/BiP that is up-regulated in response to ER stress during the unfolded protein 

response (Ryoo et al., 2007). Homozygous Atg61 mutant fat body cells (lacking GFP) 

accumulated high levels of Hsc3, while neighboring control cells (GFP positive) did not 

accumulate Hsc3 (Fig. 3-4A). To investigate whether the accumulation of Hsc3 was due 

to a defect in autophagy, we generated clones of homozygous mutant vps15 and Atg1 

cells. Vps15 functions in autophagosome formation by interaction with Vps34, while 

Atg1 regulates induction of autophagy upstream of the Vp34 complex. Though Hsc3 

levels were slightly higher in homozygous vps15 mutant cells than in neighboring control 

cells, there did not appear to be a significant induction of ER stress (Fig. 3-4B). 

Similarly, homozygous Atg1 mutant cells did not display elevated levels of Hsc3 (Fig. 3-

4C). These results suggest that ER stress induction in cells lacking Atg6 is independent of 

autophagy impairment.  
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Figure 3-4. Atg6 is required to mitigate ER stress, independent of its function in autophagy. Induction 

of the ER chaperone Hsc3 was monitored in mitotic clones, induced by hs-FLP expression, in the larval fat 

body. Clones were induced by 1hr heat shock of embryos at 37°C. Fat body was dissected from 3rd instar 

larvae and fixed for staining with guinea pig α-Hsc3 antibody. Genotypes: (A) y,w, hs-FLP;+; FRT82B 

Atg61/FRT82B Ubiquitin-GFP, (B) y,w hs-FLP;+; FRT82B vps15/FRT82B Ubiquitin-GFP, (C) y,w hs-

FLP; +; Atg1Δ3D FRT80B/Ubiquitin-GFP FRT80B. 
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 The adaptor protein p62 has been implicated as the culprit in tumorigenesis 

caused by mono-allelic loss of beclin 1 (Mathew et al., 2009). Like its mammalian 

ortholog p62, Drosophila Ref(2)P is an autophagy substrate that accumulates in cells 

when autophagy is inhibited (Nezis et al., 2008). Homozygous Atg61 mutant fat body 

cells (lacking GFP) accumulated large Ref(2)P puncta in the cytoplasm, while 

neighboring control GFP-positive cells failed to express Ref(2)P (Fig. 3-5A). Similarly, 

cells with reduced function in either vps15 (Fig. 3-6B), Atg1 (Fig. 3-5C), or vps34 (Fig. 

3-5D) accumulated Ref(2)P, while neighboring control cells did not contain any Ref(2)P 

puncta.  
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Figure 3-5. Disruption of autophagy in cells lacking Atg6, Vps15, Atg1, or Vps34 leads to 

accumulation of Ref(2)P. Fat body clones were generated in third instar larvae, and tissues were stained 

with rabbit α-Ref(2)P antibody. Images were collected on a Zeiss LSM 710 confocal microscope. (A-C)  

Atg61, vps15, and Atg1Δ3D clones were induced in the third instar larval fat body with hs-FLP. Clones were 

marked by the absence of GFP. (D) vps34 expression was knocked down clonally via RNAi. Vps34-IR “flip 

out” clones were generated by FLP-mediated removal of the CD2 cassette, resulting in Vps34-IR clones 

expressing DsRed. Genotypes: (A) y,w, hs-FLP;+; FRT82B Atg61/FRT82B Ubiquitin-GFP, (B) y,w hs-



 

  83 

FLP;+; FRT82B vps15/FRT82B Ubiquitin-GFP, (C) y,w hs-FLP; +; Atg1Δ3D FRT80B/Ubiquitin-GFP 

FRT80B. (D) y,w hs-FLP; UAS-Vps34-IR/Actin>CD2>GAL4 UAS-DsRed; +. 
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 p62 regulates NFκB signaling, and whether this regulation is positive or 

inhibitory depends on the tissue (Duran et al. 2008, Mathew et al., 2009). Drosophila has 

3 NFκB proteins, Relish, Dif, and Dorsal, which regulate innate immune defense against 

pathogen infection. In response to infection, NFκB proteins translocate to the nucleus of 

fat body cells to induce transcription of downstream target genes (Ip et al., 1993; 

Lemaitre et al., 1995; Stöven et al., 2000). Control larval fat body cells (GFP positive) 

expressed Relish and Dif exclusively in the cytoplasm, while homozygous Atg61 mutant 

cells (lacking GFP) displayed nuclear localization of both Relish and Dif (Fig. 3-6A, 3-

7A). Dorsal was localized to the nucleus in both control and Atg6 mutant cells (data not 

shown). To determine whether the nuclear localization of Relish and Dif was related to 

the disruption of autophagy in Atg6 mutant cells, we generated either vps15, or Atg1 

mutant fat body cells. Relish and Dif were localized in the nucleus of homozygous vps15 

mutant fat body cells (Fig. 3-6B, 3-7B), but were localized in the cytoplasm of Atg1 

mutant cells (Fig. 3-6C, 3-7C). These data suggest that the Vps34 complex, made up of 

Vps34, Atg6, and Vps15, functions in a non-autophagic process to control the activation 

of NFκB signaling.  
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Figure 3-6. The NFκB protein Relish localizes to the nucleus of Atg6 mutant fat body clones. Staining 

of mosaic third instar larval fat body with rabbit α-Relish antibody. Mitotic clones were induced with hs-

FLP. Mutant cells were marked by the absence of GFP. DAPI labels nuclei. Genotypes: (A) y,w, hs-

FLP;+; FRT82B Atg61/FRT82B Ubiquitin-GFP, (B) y,w hs-FLP;+; FRT82B vps15/FRT82B Ubiquitin-

GFP, (C) y,w hs-FLP; +; Atg1Δ3D FRT80B/Ubiquitin-GFP FRT80B. 
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Figure 3-7. The NFκB protein Dif localizes to the nucleus of Atg6 mutant cells. Staining of mosaic 

third instar larval fat body with rabbit α-Dif antibody and DAPI. Mitotic clones were induced with hs-FLP. 

Mutant cells were marked by the absence of GFP. Genotypes: (A) y,w, hs-FLP;+; FRT82B Atg61/FRT82B 

Ubiquitin-GFP, (B) y,w hs-FLP;+; FRT82B vps15/FRT82B Ubiquitin-GFP, (C) y,w hs-FLP; +; Atg1Δ3D 

FRT80B/Ubiquitin-GFP FRT80B. 
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 The current model for Beclin 1 function during tumor progression suggests that 

ectopic p62 signaling and down-regulation of tumor necrosis factor alpha (TNFα)-

induced NFκB activation promote cell over-growth through activation of non-canonical 

NFκB signaling (Mathew et al., 2009). To determine whether Ref(2)P and NFκB proteins 

are required for blood cell tumor/melanotic mass formation in homozygous Atg6 mutant 

larvae, mutant alleles of relish, Dif, and ref(2)p were combined with Atg61 for double 

mutant analysis. Due to an inability to generate animals that possess mutations in both 

Atg6 and dorsal (dl), the third Drosophila NFκB, we ubiquitously expressed a dl inverted 

repeat (IR) to knock down expression via RNA interference (RNAi). Double mutant 

analyses showed that despite Ref(2)P accumulation and NFκB activation in Atg6 mutant 

cells, these proteins are not required for melanotic mass formation in Atg6 mutant larvae 

(Fig. 3-8A-E). These results suggest that while Ref(2)P accumulation and nuclear NFκB 

expression in the fat body are consequences of loss of Atg6, these events are not the cause 

of melanotic mass formation.  

 To determine how Atg6 deficiency might contribute to melanotic mass formation, 

we tested several additional pathways for their ability to suppress melanotic mass 

formation in Atg61 larvae. Using an RNAi-mediated approach to knockdown potential 

regulators of cell proliferation, we expressed gene specific inverted repeats (IR) either 

ubiquitously (Actin-Gal4) or in a tissue-specific manner, in the hemocytes (Croquemort 

(Crq)-Gal4, HmlΔ-Gal4), lymph gland (HmlΔ-Gal4), or fat body (Cg-Gal4) (Table 3-1). 

Many of these genes are essential for embryonic development, so ubiquitous Actin-Gal4 

driven knockdown led to embryonic lethality in many cases. We knocked down 

expression of the JAK/Stat pathway transcription factor Stat92E, the cell cycle regulators 
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Myc and Cyclin E, the growth factor signaling proteins EGFR and Pvf1, and the 

apoptosis inhibitor IAP2. RNAi-mediated knockdown of these proteins in the fat body, 

embryonic hemocytes, larval hemocytes, or larval lymph gland did not suppress 

melanotic mass formation or lethality of Atg61 (Table 3-1). Furthermore, we 

overexpressed the potent cell death inducer Rpr in the larval hemocytes and lymph gland 

of Atg61 larvae, but did not observe suppression of melanotic mass formation. Thus, we 

were unable to pinpoint the pathways required for hemocyte overproliferation and 

melanotic tumor formation in Atg6 mutant larvae.  
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Figure 3-8. Ref(2)p and NFκB proteins are not required for melanotic mass formation in Atg6 

mutant larvae. NFκB mutations were combined with Atg61 animals and ref(2)p; Atg6 double mutant 

animals were generated. Dorsal expression was knocked down ubiquitously by RNAi. Wandering third 

instar larvae were observed for the presence of melanotic masses. Genotypes: (A) w; Sp/Cyo; Atg61/Atg61, 

(B) w; Sp/Cyo; relE20Atg61/ relE20Atg61, (C) w; Dif1/Dif1;Atg61/Atg61, (D) w; Actin-Gal4{25F01}/UAS-

Dorsal-IR; Atg61/Atg61, (E) w; ref(2)pod3/ref(2)pod3; Atg61/Atg61. 
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Transgene 
expressed 

Human homolog Cellular function Gal4 Driver 

Dif-IR  NFκB transcription 
factor 

Actin 

Stat92E-IR Stat5A Transcription factor, 
differentiation, cell 
division 

Cg 
HmlΔ 
Crq 

dm-IR c-Myc Transcription factor, 
cell cycle regulator 

Cg 
HmlΔ 
Crq 

CycE-IR Cyclin E Cell cycle regulator Cg 
HmlΔ 
Crq 

Egfr-IR EGF receptor Tyrosine kinase, 
growth factor 
signaling 

Cg 
HmlΔ 
Crq 

Pvf1-IR PDGF, VEGF Growth factor 
signaling 
 

Cg 
Crq 

Iap2-IR BIRC3 
(Baculoviral IAP 
repeat-containing 
3) 

Inhibitor of apoptosis Cg 
HmlΔ 
Crq 

HepAct MAP2K7 Kinase, activator of c-
Jun N-terminal kinase 
(JNK) 

Cg 
HmlΔ 
Crq 

Rpr  Inducer of apoptosis HmlΔ 
 

Table 3-1. Transgenes tested for suppression of melanotic mass formation in Atg61 larvae. The 

UAS/Gal4 system was used to drive transgene expression ubiquitously or in the larval fat body (Cg-Gal4), 

larval lymph gland and hemocytes (HmlΔ-Gal4), or embryonic hemocytes (Crq-Gal4). “IR” denotes 

inverted repeat, used to knockdown expression of the endogenous gene via RNAi.  
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Loss of Atg6, but not autophagy, leads to tissue overgrowth 

 The Drosophila eye is an excellent model for studying tissue growth, as mosaic 

clonal analysis can be used to study mutations that lead to differences in eye cell growth 

without killing the adult (Tapon et al., 2001). Mutant cells can be identified by the 

presence or absence of eye color markers, and cell size/number and overall tissue size can 

be easily observed. In order to determine how loss of Atg6 may lead to altered growth 

and/or proliferation, homozygous mutant cell clones were generated in the adult eye. 

Induction of wild type clones, marked by the red eye color marker w+, during eye 

development resulted in an adult eye with an equal distribution of red and white eye 

subunits (called ommatidia) (Fig. 3-9A). When Atg6 mutant cell clones, marked with w+ 

(red) (Fig. 3-1), were induced during development, the adult eye was made up almost 

entirely of red cells (Fig. 3-9E). No wild type cells, which would have been white due to 

the absence of w+ red pigment, were observed. Because of the strength of expression of 

the w+ transgene carried with the Atg61 allele, we were unable to distinguish whether the 

eye was made entirely of homozygous Atg6 mutant cells, or heterozygous cells that did 

not undergo mitotic recombination. The mosaic Atg6 adult eye also contained dark 

patches that we assume are dead cells.  

 To determine whether this phenotype could be attributed to the function of the 

Atg6/Vps34/Vps15 complex, vps34 and vps15 clones were induced in the eye. Neither 

vps34 nor vps15 mutant ommatidia were over-represented compared to control 

ommatidia (Fig. 3-9F, G). While loss of vps34 did lead to a slightly rough eye phenotype 

(Fig. 3-9F), there was an even distribution of wild type and vps34 mutant cells. Loss of 
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vps15 in the eye during development was lethal to the animal. A small number of adults 

eclosed, and those animals had small eyes with equal portions of control and mutant 

ommatidia (Fig. 3-9G). Finally, Atg1 mosaic eyes were normal with no morphological 

defects and an equal distribution of mutant and control ommatidia (Fig. 3-9H). Together, 

these results suggest that loss of Atg6 in the eye leads to a reduction in the number of 

wild type ommatidia that compose the adult eye. Significantly, the Atg6 phenotype is 

distinct from mutations in other core components of the Vps34 complex (Vps34 and 

Vps15). Furthermore, mutations in the essential autophagy gene Atg1 fail to exhibit an 

abnormal phenotype that is similar to Atg6. Therefore, Atg6 appears to function in a 

Vps34 complex and autophagy-independent manner in the regulation of growth. 
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Figure 3-9. Atg6 mutant cells outcompete wild type cells in the mosaic developing eye. Eyeless-FLP 

was expressed to induce mitotic recombination in the developing eye, generating eyes mosaic for Atg6, 

Vps34, Vps15, or Atg1 mutations. (A and C) Wild type (w+) clones induced in w- background using the 

third chromosome FRT site, FRT82B. (B) Wild type (w-) clones induced in a w+ background using the 

second chromsome FRT site, FRT42D.  (D) Wild type (w+) clones induced in w- background using the 

third chromosome FRT site, FRT80B. (E) Atg61 clones, which carry a w+ transgene and are red in color, 

were induced in a w- background. (F) vps34Δm22 clones (w-) induced in a w+ background. vps34 mutant 

cells are white, and wild type cells are orange. (G) vps15/vps15 clones, which are w-, induced in a w+ 

genetic background. Vps15 mutant cells are white, wild type cells are red. (H) Atg1 clones (w-) induced in a 

w+background. Atg1 mutant cells are white and wild type cells are orange. Genotypes: (A and C) y,w ey-

FLP GMR-lacZ; +; FRT82B w+/FRT82B, (B) yw ey-FLP GMR-lacZ; FRT42D/FRT42D lac25 {w+}51D,  

(D) yw ey-FLP GMR-lacZ; +; Ubi-GFP {w+}61EF FRT80B/FRT80B, (E) ey-FLP GMR-lacZ; +; FRT82B 

Atg61{w+}/FRT82B, (F)  yw ey-FLP GMR-lacZ; FRT42D vps34Δm22/FRT42D lac25 {w+}51D, (G) yw ey-

FLP GMR-lacZ; +: FRT82B w+/FRT82B vps15, (H) yw ey-FLP; +; Atg1Δ3D FRT80B/Ubi-GFP {w+}61EF 

FRT80B.  
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Discussion 

 Since Beclin 1 was identified as a tumor suppressor, several studies have sought 

to determine how autophagy dysfunction can lead to tumorigenesis. The most recent 

model suggests that loss of Beclin 1 promotes tumorigenesis by preventing autophagy, 

leading to accumulation of ROS, protein stress, failure in degradation of the adaptor 

protein p62, and accumulation of DNA damage (Mathew et al., 2009). Furthermore, the 

model suggests that down-regulation of the canonical NFκB pathway, caused by p62 

accumulation, triggers oncogenesis via activation of the non-canocial NFκB pathway and 

down-regulation of tumor necrosis factor alpha (TNFα) signaling (Mathew et al., 2009).  

 In order to understand the physiological functions of Beclin 1, we generated a null 

allele of the Drosophila ortholog, Atg6. This approach allowed us to observe the in vivo 

consequences of Atg6 deficiency and to investigate genetic interactions with other 

pathways at the cellular level. Strikingly, loss of Atg6 resulted in larvae with an excess of 

hemocytes, the Drosophila equivalent of macrophages, and formation of melanotic  

blood cell tumors prior to death (Fig. 3-3). The fact that these phenotypes could only be 

rescued by ubiquitous expression of Atg6 (Fig. 3-3D), and not by expression in the fat 

body or hemocytes (data not shown), suggests that hemocyte over-production could 

either be the result of a tissue non-autonomous effect of Atg6 deficiency, or a defect in 

the cell lineage before the activation of the promoters that were used to attempt rescue of 

this phenotype. Melanotic tumor masses are thought to be caused by at least 2 possible 

mechanisms: (1) tissue damage that recruits blood cells to encapsulate the unhealthy 

tissue and potentially protect the organism, or (2) over-proliferation of the blood cell 

lineage due to a defect in the hematopoietic stem cell niche (Minakhina and Steward, 
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2006). In support of the latter possibility, a recent study showed that hemocytes with 

decreased autophagy have an impaired ability to be recruited to epidermal wounds 

because of impaired cortical remodeling of blood cells (Kadandale et al., 2010). RNAi-

mediated knockdown of autophagy genes, including Atg6, impaired the remodeling of 

blood cells. Though hemocytes clearly surround the melanotic masses in Atg6 mutant 

larvae, it is undetermined whether the masses themselves are composed strictly of 

hemocytes and whether the masses result from hemocyte over-proliferation, or if 

hemocytes are induced to proliferate by the presence of melanotic masses. The lack of 

overgrowth in other larval tissues suggests a tissue specific tumor suppressor function for 

Atg6 in blood cells. It is possible that an Atg6-regulated pathway controls hemocyte 

number prior to pupal development, when hemocytes are mobilized for tissue 

remodeling. Further studies are needed to empirically test if loss of Atg6 causes defects in 

blood cell progenitors because of possible defects in the hematopoietic stem cell niche.  

 While heterozygous Atg61 larvae also had significantly more hemocytes than 

controls, heterozygous adult flies did not display any obvious morphological defects or 

melanotic tumors. It is possible that Drosophila Atg6 is not haploinsufficient as its 

mammalian homolog beclin 1. This could be due to differences in function between the 

fly and mammalian proteins. Beclin 1 interacts with anti-apoptotic Bcl-2 proteins in 

mammals, via an N-terminal BH3 domain. Atg6 and Beclin 1 shares less than 40% 

sequence identity in this domain, and it is not yet known whether the Drosophila Bcl-2 

homologs, Buffy and/or Debcl, interact with Atg6. This functional difference in oncogene 

interaction could potentially account for the lack of haploinsufficiency in Atg6 mutants. 

Finally, it is possible that subtle hemocyte-associated phenotypes may have been 
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overlooked in adult flies. A more thorough histological study of heterozygous Atg6 adult 

flies may reveal additional phenotypes.   

 At the cellular level, Atg6 mutant larvae had a defect in starvation-induced 

autophagy in the larval fat body (Fig. 3-2B and C), which resulted in accumulation of 

Ref(2)P, the Drosophila homolog of p62 (Fig. 3-5A). Ref(2)P accumulation also 

occurred in fat body cells lacking either Vps15, Vps34, or Atg1 (Fig. 3-6). Accumulation 

of Ref(2)P correlated with nuclear localization of the NFκB proteins Relish and Dif in 

Atg61 and vps15 mutant fat body clones, but not in Atg1 fat body clones (Fig. 3-7, 3-8), 

suggesting that modulation of NFκB activity in cells lacking Vps34 complex components 

is not dependent on p62 accumulation. Interestingly, we saw nuclear localization that is 

indicative of activation of NFκB proteins in Atg6 mutant cells, whereas Mathew et al. 

observed down-regulation of NFκB signaling in beclin 1+/- cells overexpressing p62 

(Mathew et al., 2009). One explanation for this difference is that accumulated Ref(2)P in 

Atg6 mutant fat body cells may be inactive due to protein aggregation, while 

transgenically over-expressed p62 in beclin 1+/- cells might retain function that 

aggregated p62 does not. Alternatively, Mathew et al. (2009) did all of their experiments 

in the context of over-expression of the strong oncogene Bcl-2, and this may lead to 

differences in NFkB signaling from the otherwise wild type genetic background where all 

of our studies were conducted. Finally, one cannot exclude the possibility that fly cells 

may be different from those of mammals, but the conservation of the Vps34 complex and 

Atg6 from yeast to humans may be considered evidence against this possibility. 

 Our data suggest that defects in cell quality control that cause protein and 

organelle stress are not the sole reason for over-proliferation of Atg6 mutant cells. 
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Although we observed accumulation of Ref(2)P (p62) and the ER stress protein Hsc3, a 

loss of function allele of ref(2)p did not suppress melanotic mass formation in Atg6 

mutant larvae (Fig. 3-8E). These data suggest that Ref(2)P accumulation is not required 

for over-proliferation of cells lacking Atg6.  

 Due to the difficulty of studying cell-cell interactions in circulating hemocytes, 

we further investigated Atg61-associated over-growth in two adult tissues, the eye and the 

ovarian follicle cells. Atg6 mutant cells were over-represented compared to neighboring 

control cells in the mosaic eye. Experiments in the third larval instar eye imaginal disc, 

the precursor tissue to the adult eye, revealed the presence of both wild type and Atg6 

mutant cells (data not shown). Whether Atg6 mutant cells simply over-proliferate enough 

to outcompete wild type cells or they “win” by inducing apoptosis of wild type cells is 

undetermined.  

 Experiments in the ovarian follicular epithelium have revealed a novel defect in 

Atg6 mutant cells. When homozygous Atg61 mutant cell clones are induced in follicle 

cells, they form multilayered epithelia and invade neighboring cells (Shravage, Hill, 

Baehrecke, data not shown). This invasiveness is associated with decreased levels of the 

adherens junction protein E-cadherin and septate junction protein Discs Large (Dlg). 

Altered E-cadherin and Discs Large have been implicated in invasive cells including the 

epithelial to mesenchymal transition that has been associated with cancer metastasis and 

poor clinical outcome (Pagliarini and Xu, 2003; Thiery, 2002). Significantly, Atg6 has 

not previously been shown to regulate epithelial cell polarity. Whether this disruption of 

polarity is either a cause of or a secondary effect of Atg6 mutant cell invasion is 

unknown. Loss of function mutations in other autophagy genes, such as Vps34 or Atg1, 
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do not cause similar phenotypes in the follicular epithelium, but homozygous vps15 

mutant cell clones do display reduced levels of both E-cadherin and Dlg, as well as 

invasion of neighboring cells. The fact that vps15 follicle cell clones exhibit a phenotype 

distinct from Vps34 follicle cell clones is surprising, as Vps15 activity regulates Vps34 

activity. Furthermore, Vps15 interacts directly with Vps34 in immunoprecipitation 

experiments, but not with Atg6. It is possible that Vps15 and Atg6 function in a Vps34 

independent pathway to regulate cell architecture. Vps15 encodes an understudied protein 

kinase; it is possible that it could have numerous substrates and that Atg6 could influence 

Vps15 activity in a Vps34-independent manner. Both Atg6 and vps15 mutant cells exhibit 

nuclear localization of the NFκB proteins Relish (Fig. 3-6) and Dif (Fig. 3-7) in the fat 

body, and this phenotype seems to be independent of autophagy. We hypothesize that 

NFκB activation does not contribute to overgrowth phenotypes associated with loss of 

Atg6, as vps15 mutant cells are not over-represented compared to control cells in the eye. 

In fact, vps15 mosaic eyes are very small.  

 We have presented several results which suggest that autophagy dysfunction in 

Atg6 mutant cells is not responsible for over-proliferation phenotypes that we observe. 

We also showed that Atg6 is required for endocytosis (Fig. 3-2I). Multiple Drosophila 

tumor suppressor genes function as endocytic regulators. Rab5, Avalanche (Avl), Erupted 

(Ept), and Vps25 function at different steps of endocytic trafficking, but mutations in the 

genes encoding any of these proteins results in disruption of cell polarity and overgrowth 

of epithelial cells (Herz et al., 2006; Herz et al., 2009; Lu and Bilder, 2005; Moberg et al., 

2005; Vaccari and Bilder, 2005). These phenotypes were attributed to ectopic Notch 

signaling due to a defect in endosomal maturation of internalized Notch to the lysosome. 
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It is possible that Atg6 similarly regulates growth and/or proliferation signaling through 

its function in endocytosis, and Atg6 mutant proliferative phenotypes result from a defect 

in endocytosis of signaling receptors. Consistent with this possibility, Notch signaling is 

important in ovarian follicle cells at the stage where Atg6 mutants have defects (Xu et al., 

1992). However, it should be noted that Atg6 mutant fat body cells had little if any 

endocytosis (Fig. 3-2I). These data suggest that the Atg6 mutant defect in Notch signaling 

may be different from vps25 mutants, which exhibit partial endocytosis and traffic Notch 

to multivesicular bodies where they signal and fail to be degraded by never reaching the 

lysosome (Herz et al., 2006). 

 This study has shown that loss of Atg6 results in dysregulation of growth in three 

different tissues. In a physiological context, Atg6 regulates hemocyte number. The 

increase in hemocyte number in Atg6 mutant larvae does not appear to be associated with 

overgrowth of other larval tissues, and the cellular signaling pathways that induce 

hemocyte over-production have not been identified. Mosaic analyses in the eye allowed 

us to follow Atg6 mutant cells through development, and we observed that Atg6 mutant 

cells are overrepresented relative to wild type cells in the adult eye. Though the cellular 

pathways which regulate this phenomenon are yet to be determined, we propose that the 

function of Atg6 in cell competition is independent of its function in autophagy. Finally, 

clonal experiments in the follicular epithelium revealed a novel function for Atg6 in 

regulating epithelial cell architecture. Future studies will focus on investigating the 

cellular pathways involved in E-cadherin and Dlg down-regulation in Atg6 mutant cells, 

and determining whether similar pathways contribute to overproliferation of blood cells 

in Atg6 mutant larvae. 
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Materials and methods 

Generation of Atg6 targeting construct 

Following the “ends-out” gene disruption approach (Rong and Golic, 2000), a targeting 

construct containing genomic sequence flanking the open reading frame of Atg6, 

separated by a white mini-gene, was created. This construct, engineered from pW35 

(DGRC) also contained recognition sites for the yeast enzyme I-SceI and FRT sites to 

enable FLP-induced recombination. Restriction endonuclease recognition sites for BsiWI 

and KpnI were engineered into the upstream polylinker of pW35 between BamHI and 

AvrII sites. This linker was created using the oligonucleotide primers 

5’GATCCACGTACGAGGTACCAC 3’ and 5’CTAGGTGGTACCTCGTACGTG 3’, 

which were annealed in equal amounts (500ng) using T4 DNA ligase. The double 

stranded linker was then ligated into the existing polylinkers of pW35. 3288bp of 

genomic sequence flanking the 5’ end of the Atg6 ORF was cloned into the TOPO-TA 
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vector using the PCR primers 5’GTACGTACGTACCAGAGTTG 3’, which contains a 

BsiWI recognition site, and 5’GGGGTACCCCTGATAAGTTCAACGAACA 3’, which 

contains a KpnI recognition site. This sequence was subcloned from TOPO-TA into the 

pW35 upstream polylinker using the BsiWI and KpnI restriction sites, to generate pW35-

Atg6up.  

3267bp of genomic sequence flanking the 3’ end of the open reading frame of 

Atg6 was cloned into the TOPO-TA vector (Invitrogen) using the PCR primers 5’ 

ACATGCATGCATGTTAACCAACCTGAAATGGGGAT3’, includes an SphI 

recognition site, and 

5’ATAAGAATGCGGCCGCTAAACTATTTGCTTAACGCTGAGG 3’, which includes 

a NotI recognition site. This sequence was subcloned, using the SphI and NotI restriction 

sites, from the TOPO-TA vector into the downstream polylinker of pW35-Atg6up. The 

resultant construct, pW35-Atg6, was sent to Best Gene, Inc. for injection and P-element 

mediated transformation of w1118 flies. 

Ends-out targeting of Atg6 

Isogenic w1118 animals were transformed with the targeting construct following standard 

procedures (Rubin and Spradling, 1982), resulting in integration into the genome. The 

resultant strain is known as the “donor” line. Donor flies, carrying the targeting construct 

on the second chromosome, were mated with flies containing heat shock-inducible FLP 

(hs-FLP) recombinase and I-SceI endonuclease, which induce double-stranded break 

followed by homologous recombination. FLP and I-SceI expression were induced in 

progeny of this cross by subjecting larvae to a one-hour heat shock in a 37°C circulating 

water bath. Recombination occurred between the targeting construct and the endogenous 
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genomic DNA sequence flanking the Atg6 open reading frame, and the white mini-gene 

was inserted into the chromosome within the ORF of Atg6. Female recombinants were 

selected based on mosaic eye color, to eliminate solid white or red-eyed flies in which 

targeting did not occur, and were crossed with males carrying hs-FLP. These crosses 

were set up in several vials containing 3 females and 5 males. This step enabled selection 

of potential mutants based on eye color, as FLP recombinase only excised DNA flanked 

by FRT sites. Therefore, targeting events, which lack FRT sites after recombination, had 

solid red eyes, while flies in which the donor construct did not excise contained mosaic 

eyes at this step. Approximately 86,000 flies were screened, and 48 individuals had solid 

red eyes. Each individual was out-crossed to flies containing phenotypic markers of 

known genetic location in order to ensure that the mini-white gene mapped to the third 

chromosome. Two out of 5 lines mapped to the third chromosome, and PCR was used to 

confirm deletion of Atg6 and insertion of mini-white.  

 

Molecular confirmation of Atg6 targeting 

Genomic DNA was collected from 7-15 wandering third instar larvae of the following 

genotypes: w1118, Atg61/TM6B, Atg61/Atg61. The standard Berkeley Drosophila Genome 

Project (BDGP) protocol for genomic DNA isolation from flies was followed. PCR was 

used to confirm targeting of the Atg6 genomic locus. The PCR primers 

5’ACTCTGAGATTGACCATCCG 3’ and 5’GTTTGTCCAGCTGCTGTTTC 3’  

which amplify a 408bp region of Atg6, were used to confirm the absence of Atg6 in 

targeted lines. The primers 5’ GAGTAGCCGACATATATCCG 3’, within w+, and 

5’GCAATCAAATCGGTTACCATG 3’, upstream of Atg6, were used to verify the 
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presence of the w+ at the Atg6 locus. The primers 5’ CTTACTCTCGGCTTGGCTTG 3’, 

which is downstream of Atg6, and 5’ CACATGTACTACTCACATTG 3’, within w+, 

were also used in PCR to confirm insertion of w+ at the correct genomic location.  

 

Reverse Transcription (RT)-PCR 

RNA was collected from third instar larvae (n=10) using Trizol Reagent (Invitrogen) and 

was treated with DNase to remove genomic DNA contamination. cDNA was generated 

from 1µg of RNA, using Superscript II Reverse Transcriptase (Invitrogen), following 

standard protocols. cDNA was used as PCR template, using the following primers to 

amplify rp49 (control), Atg6, and flanking gene sequence: rp49: 

5’AAGATCGTGAAGAAGCGCAC 3’ and 5’ATCTCCTTGCTTCTTGGAGG 3’, Atg6: 

5’CGAGCAGCTGGAGAAGATTAG3’ and 5’GCGTTGATCTCTGACCAGTC3’ 5’, 

CG5991-RA: 5’CATTGCCTAATTGTGTCCGC 3’ and 

5’GGAGAATTGGCGCAAGTGAC 3’, CG5991-RB: 

5’GCACAGCGATACGGAAGCAA 3’ and 5’GGAGAATTGGCGCAAGTGAC 3’, 

CG5991-RC: 5’GCCTCTTCGCATTTGACGAC 3’ and 

5’GGAGAATTGGCGCAAGTGAC 3’, CG5986: 5’ GGCGATAACGCTTGCATCAC 

3’ and 5’CGTTGATATCCCGCAAACGG3’. 

 

GFP-Atg8 Quantification 

Quantification of GFP-Atg8 puncta was done as described previously (Juhász et al., 

2008). 
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Endocytosis assay 

Fat body was dissected from third instar larvae and incubated ex vivo with Texas Red-

avidin (Invitrogen), diluted in Schneider’s media to a concentration of 80µg/mL, for 20 

minutes, then chased with cold PBS +0.5% BSA for 10 minutes prior to overnight 

fixation in 4% formaldehyde. The tissue was washed 3x10 min in PBS + 0.1% Tween-20 

and mounted in Slow Fade (Invitrogen). Images were collected on a Zeiss LSM 510 

confocal microscope. 

 

Immunohistochemistry 

Third instar larvae were fixed and dehydrated for histology according to published 

methods (Muro et al., 2006). Histological sections were de-waxed with a series of Xylene 

washes, then rehydrated through a series of decreasing percentage ethanol washes. 

Following rehydration, antigen retrieval was performed by heating slides in 10mM 

sodium citrate, pH 6.0. Specimens were blocked in 5% non-fat dry milk + 1% bovine 

serum albumin (BSA) + horse serum (Vector Laboratories). Rabbit α-GFP (Novus) 

antibody was used at a 1:500 dilution. The Vectastain Elite ABC kit (Vector 

Laboratories) was used for immunohistochemical detection, and the signal was visualized 

by diaminobenzadine staining. Tissue was counterstained with Weigert’s hematoxylin 

and Permount mounting media was applied. Images were collected on a Zeiss Axiophot 

microscope.  

 

Hemocyte quantification 

Individual third instar larvae of similar age (+/- 3h) were bled into 20µL of 1X PBS. 
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10µL was loaded onto a standard hemocytometer and the average number of cells per 

milliliter was calculated for 20 animals per genotype. A one tailed student’s t-test was 

used to determine statistical significance. 

 

Antibody staining of tissues 

Tissues were dissected in 1X PBS and fixed 30 minutes in 4% formaldehyde. Following 

fixation, tissues were washed with PBS + 0.1% Tween-20 (PBST), then blocked in PBST 

+ 0.5% BSA (PBSBT) for 1.5-2h. Antibody incubations were done overnight at 4°C, then 

followed by washes in PBSBT. Secondary antibody was added at a dilution of 1:200, and 

tissues were incubated for 2h at room temperature. Following a series of short PBSBT 

washes, tissues were mounted in Slowfade (Invitrogen) or Prolong + DAPI (Invitrogen). 

The following primary antibodies were used: rabbit α-Relish (T. Ip), 1:1000; rabbit α-Dif 

(D. Ferrandon) 1:1000, rabbit α-Ref(2)p, 1:1000, Guinea pig α-Hsc3 (H. Ryoo), 1:50. 

The following secondary antibodies from Invitrogen were used: Goat α-rabbit Oregon 

Green 488, Goat α-rabbit Alexa Fluor 546. Goat α-guinea pig Alexa Fluor 546. 
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Chapter 4 

 
Summary and Future Directions 

 

 Beclin 1 gene function is essential for development of animals that are as diverse 

as nematodes, fruit flies, and mice (Qu et al., 2003; Takacs-Vellai et al., 2005; Yue et al., 

2003). As a central regulator of autophagy in the Vps34 protein complex, Beclin 1 is 

required for cell survival during nutrient restriction and oxidative stress. Unmitigated 

genome damage, brought on by a failure to remove misfolded proteins and damaged 

organelles, is thought to contribute to tumorigenesis in autophagy defective beclin 1+/- 

tissues (Degenhardt et al., 2006; Mathew et al., 2007). These studies also suggest that 

defective autophagy is tumorigenic due to a failure to degrade p62, an adaptor protein 

that regulates growth related signaling pathways (Mathew et al., 2009). While attributing 

tumor suppressor activity of Beclin 1 to its function in autophagy, this model does not 

account for the fact that other autophagy gene mutants, particularly in the Vps34 

complex, do not display overgrowth/proliferation phenotypes. We sought to characterize 

the function of the Vps34 complex in Drosophila melanogaster, from a physiological 

context in the developing larva, and using a loss of function approach in adult epithelial 

tissues. We generated a null allele of the beclin 1 homolog, Atg6, and found that it is 

required for autophagy and endocytosis. Further, we demonstrated that Beclin 1 also 

controls blood cell proliferation, and discovered a novel function for Beclin 1 in 

regulation of epithelial cell polarity. As cancer cells often display loss of epithelial cell 
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polarity, this finding represents an important contribution to the field of Beclin 1 

research. 

 

Regulation of autophagy by the Vps34 complex in Drosophila 

 I investigated whether the Vps34 complex functions in autophagy induction in 

Drosophila, using a cell biological approach to monitor autophagy induction in the larval 

fat body and a biochemical approach to investigate the physical interactions between 

Vps34, Vps15, and Atg6. Towards this goal, I generated several transgenic fly lines that 

enabled ectopic expression of Vps34, Atg6, and Vps15 (gift of L. Wu) (Fig. 2-1) via the 

UAS/Gal4 system (Brand and Perrimon, 1993). I found that co-expression of either Atg6 

and Vps34 or Vps15 and Vps34 was sufficient for autophagy induction in the fat body of 

fed larvae (Fig. 2-2 and 2-3). However, expression of individual components of the 

Vps34 complex was not sufficient for autophagy induction in this tissue.  

 The Vps34 complex is known to act at early steps in the autophagy pathway to 

regulate formation of autophagosomes. These overexpression results suggest that a 

stoichiometric ratio of Vps34, Vps15, and Atg6 is required for ectopic autophagosome 

formation. It is possible that PI(3)P, generated by Vps34 PI3-kinase activity, is the 

limiting factor at this step of autophagy and thus overexpressed Atg6 is unable to induce 

autophagosome formation without additional PI(3)P. The only autophagy protein that is 

known to induce autophagy ectopically in Drosophila is Atg1, a kinase that regulates 

autophagy induction upstream of autophagosome formation via phosphorylation of TOR 

(Scott et al., 2007). In fact, ectopic Atg1 expression in the fat body induces cell death via 

a caspase-dependent pathway (Scott et al., 2007). As co-expression of Vps34 complex 
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proteins can also induce autophagy, future experiments could determine whether the 

Vps34 complex is required for Atg1-induced autophagy and cell death. Though these 

pathways have been genetically ordered in yeast, these experiments have not been done 

in flies and would significantly contribute to our understanding of autophagy regulation 

within an animal. Further, it is essential to demonstrate colocalization of Vps34, Vps15, 

and Atg6 inside the cell. Our results show that transgenically expressed Atg6-GFP forms 

intracellular puncta in the fat body during starvation (Fig. 2-4). For the most part, these 

puncta are distinct from lysosomes. Due to a lack of antibodies for immunofluorescence 

experiments, we were unable to assess sub-cellular localization of Vps34 and Vps15. 

Future efforts should focus on generating Drosophila specific antibodies, which will 

enable characterization of sub-cellular localization of these proteins in wild type animals. 

As Vps34, vps15, and Atg6 mutant lines have now been constructed, the requirement of 

each for intracellular complex assembly under variable nutritional conditions could be 

assessed.  

 To study biochemical interactions between Vps34, Atg6, and Vps15, we 

generated flies that ectopically express epitope-tagged Vps34 and Atg6 and acquired flies 

that ectopically express tagged Vps15 (L. Wu). Biochemical analysis of the Vps34 

complex confirmed that Vps34 and Atg6 physically interact in vivo. This interaction was 

independent of nutrient availability, as Vps34 and Atg6 co-immunoprecipitated in both 

fed and starved animals (Fig. 2-5A). Interestingly, Vps34 and Vps15 did not co-

immunoprecipitate in fed animals and only weakly interacted in starved animals (Fig. 2-

5B). Vps15 is thought to be the catalytic cofactor for Vps34, and the absence of Vps34-

Vps15 interaction in fed animals suggests that Vps34 and Atg6 may interact to regulate 
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an alternative cellular process in the absence of Vps15. Vps15 is required for starvation-

induced autophagy in the fat body (Lindmo et al., 2008). However, given these results, it 

would be interesting to test whether Vps15 is required for Vps34-Atg6 induced 

autophagy in fed larvae.  

 Vps34 was tagged with a tandem affinity purification (TAP) tag with the long- 

term goal of identifying novel interacting proteins via mass spectrometry analysis 

(Veraksa et al., 2005). TAP consists of two affinity purification steps in order to enrich 

true interactors and eliminate artifacts of immunoprecipitation. The UAS-Vps34 N- and 

C-terminal TAP-tagged flies can be utilized for a number of experiments. By utilizing 

tissue-specific Gal4, one could potentially identify different Vps34 complexes and 

determine which binding partners dictate specificity between autophagic and endocytic 

pathways. This approach could launch a multitude of functional studies, where mutant 

analyses could be used to functionally characterize the interactions between Vps34 and 

binding partners. These analyses would be a major contribution to the intracellular 

trafficking field, as we are only beginning to understand how the autophagic and 

endocytic machinery merge. 

 

Atg6 function in autophagy and development 

 Due to the lack of an Atg6 null mutant, we used an ends-out gene targeting 

approach to generate Atg6 mutant flies. We found that Atg6 is required for development, 

as homozygous Atg61 animals die during the third larval instar. This lethality was rescued 

by ubiquitous expression of an Atg6 transgene. Atg6 is likely required in multiple tissues, 

as transgenic expression in either the fat body, embryonic hemocytes, or larval hemocytes 
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did not rescue lethality associated with Atg61. The cause of lethality in Atg6 mutant 

larvae is unclear. It is possible that it is related to the function of Atg6 in autophagy. In 

addition to starvation-induced autophagy, Drosophila also undergoes steroid hormone-

induced autophagy in the fat body, salivary glands, and midgut during larval and pupal 

development (Rusten et al., 2004; Lee and Baehrecke, 2001; Lee et al., 2002). We 

observed a defect in autophagosome formation in the fat body of Atg6 mutant wandering 

larvae (data not shown), the stage at which steroid-triggered autophagy occurs (Rusten et 

al., 2004). It is possible that a failure to remove larval tissues via autophagic degradation 

contributes to lethality associated with loss of Atg6. Due to the larval lethality of Atg61, 

we are unable to study pupal development of these animals. However, mosaic analysis 

would allow the simultaneous observation of mutant and wild type cells during pupal 

development. Future studies could focus on determining whether developmental 

autophagy in the midgut and salivary glands depends on Atg6 function in these tissues. 

Specifically, we could generate Atg61 clones in the salivary gland and use histological 

techniques to monitor histolysis. RNAi could also be used to knockdown Atg6 expression 

tissue specifically to determine where its function is required for viability. This approach 

would also allow simultaneous tissue specific knockdown of Vps34 and vps15, enabling 

investigation of the role of the Vps34 complex in developmental autophagy. 

 Alternatively, Atg61-associated lethality could be due to the defect in endocytosis. 

Endocytosis function is important in regulation of growth and differentiation signaling 

pathways, as internalized receptors can signal from within an endosome, or alternatively 

be down-regulated by maturation through the endolysosomal pathway (Zwang and 

Yarden, 2009). One example is the receptor Notch, which, along with its ligand Delta, is 
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endocytosed and trafficked to different cellular compartments for activation of 

downstream growth signaling pathways, including TGFβ. The exclusion of TR-avidin 

from Atg6 mutant fat body cells (Fig. 3-2) suggests that the endocytic defect occurs at 

internalization. It is possible therefore that receptors essential for developmental 

signaling, such as Notch and EGFR, are not internalized by Atg6 mutant cells. In turn, 

defects in endosomal Notch activation could lead to developmental defects that prevent 

the animal from developing into an adult. To test this possibility in the future, antibodies 

for these receptors and their ligands could be utilized in immunofluorescence studies of 

mosaic Atg6 tissues.    

 Finally, it is also possible that Atg6 regulates an essential Vps34-independent 

process. A recent proteomic study identified a number human Vps34 complex-interacting 

proteins, 20 of which share some sequence identity with Drosophila proteins (Table 4-1) 

(Behrends et al., 2010). The functions of these proteins include chromosome 

maintenance, fatty acid transport, binding to damaged DNA, and growth factor signaling. 

Available mutant lines could be collected in order to test genetic interactions with Atg6. 

Specifically, mutants could be screened for suppression of Atg61-associated lethality 

and/or melanotic tumor formation. This approach could possibly lead to the discovery of 

a new cellular function for Atg6. 
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Human Protein 
 

Function Drosophila 
homolog 
(putative) 

% amino acid 
identity 

PTOV1  CG13609 30% 
C13orf18    
GSPT1 Eukaryotic peptide chain 

release factor GTP 
binding (translation 
termination) 

Elf (CG6382) 75% 

ZWINT    
TBC1D87 Rab GTPase activator? CG6182 32% 
AFG3L2 ATPase, 

metalloendopeptidase 
CG6512 63% 

SMC1A DNA binding, structural 
maintanence of 
chromosomes 

SMC1 49% 

TRABD    
SLC27A4 Fatty acid transport 

protein 
Fatp 
CG30194 

48% 
46% 

I1L Nuclearporin (cell size, 
Pvf pathway) 

Nup44a 58% 

CPVL Serine carboxypeptidase 
activity 

CG4572 44% 

TP53BP2 Tumor protein, p53 
binding 

  

NRBF2 Nuclear receptor binding 
factor 

  

KIAA0831 Atg14/Barkor CG11877 28% 
PTPRA Protein tyrosine 

phosphatase 
  

TGFBRAP1 TGF-beta receptor 
associated 

  

VPS33A  Carnation  43% 
SMC3 Chromosome associated 

protein 
Cap 53% 

VPS18  Deep orange 
(dor) 

34% 

UVRAG    
DDA1    
DDB1 Damaged DNA binding 

protein 
piccolo 60% 

ATG4B    
KIAA0226/Rubicon    
PIK3R4/p150 Kinase, immune response Vps15/Ird1 40% 
PIK3C3/Vps34 Class III PI3K Vps34 63% 
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AMBRA1    
ATG3  Aut1 63% 
MAP1B Microtubule associated 

protein 
futsch 31% 

CLPTM1L  CG4332 47% 
USP11 Ubiquitin specific 

peptidase 
  

TSC1 Growth inhibition Tsc1 32% 
DZIP3 DAZ interaction protein, 

zinc finger 
  

 

Table 4-1. Human proteins that interact with Beclin 1 and their putative Drosophila homologs. 

Behrends et al., identified Beclin 1-interacting proteins using affinity purification of epitope tagged-Beclin 

1 and mass spectrometry (Behrends et al., 2010). The putative functions of these genes, as assigned by 

NCBI, are listed in the second column. Putative Drosophila homologs were identified by Homologene 

(NCBI) search and BLASTp analyses.  
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Growth phenotypes associated with Atg6 deficiency 

Increased hemocyte numbers 

 Our results showed that Atg6 mutants possess excess blood cells in the developing 

larva. Atg61 larvae contained nearly 10 times as many hemocytes as wild type larvae (Fig. 

3-4D). This is consistent with knockout mouse studies, which showed that mono-allelic 

loss of beclin 1 resulted in increased incidence of lymphoma compared to beclin 1+/+ 

mice (Yue et al., 2003; Qu et al., 2003). Atg61 larvae also contained hemocyte-associated 

melanotic tumors (Fig. 3-3C). Mutations in genes that regulate the cell cycle, chromatin 

structure, cell death, and immunity pathways have been associated with melanotic mass 

formation (Minakhina and Steward, 2006). These include loss of function mutations in 

the inhibitor of kappa B (IκB), cactus, and activating mutations in the Janus kinase (JAK) 

gene hopscotch (hop) and in the gene that encodes the transmembrane receptor Toll 

(Hanratty and Dearolf, 1993; Qiu et al., 1998; Zettervall et al., 2004). These signaling 

pathways can contribute to melanotic mass formation by inducing precocious 

differentiation of blood cell precursors in the lymph gland (Avet-Rochex et al., 2010).  

 As we have yet to determine which signaling pathway(s) is involved in 

overproliferation of hemocytes and melanotic mass formation in Atg61 larvae, future 

studies should focus on that goal. Specifically, a genetic modifier screen could be 

initiated to identify mutants that suppress melanotic mass formation in an Atg6 mutant 

background. We could utilize two approaches: either a classic dominant or recessive 

modifier screen of second or third chromosome mutations, or a tissue specific RNAi 

screen, using UAS/Gal4 driven inverted repeat sequences to knockdown gene expression 
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in the hemocytes. The benefit of a classic mutant screen is that it would enable isolation 

of mutations that may have a tissue non-autonomous effect on melanotic mass formation. 

However, we might also miss genes that are lethal prior to the third larval instar, when 

melanotic tumor formation occurs in Atg6 mutant animals. On the other hand, an RNAi 

screen would be inclusive of genes required for embryonic and early larval development, 

as knockdown would only be targeted to hemocytes. However, it is possible that the 

melanotic tumor phenotype is caused by a defect in a non-hematopoietic tissue.  

 In addition to screening for modifiers of the melanotic tumor phenotype in Atg6 

mutant larvae, future studies should also focus on determining the impact of Atg6 

deficiency on the hematopoietic stem cell niche. Hemocytes originate from two distinct 

lineages. One pool of hemocytes originates in the embryo and persists through larval 

stages, while the other pool originates in the larval lymph gland (Holz et al., 2003; Tepass 

et al., 1994). In the absence of infection, hemocytes made by the larval lymph gland are 

released into circulation during pupal development (Holz et al., 2003). Therefore, the 

overproliferation of hemocytes in Atg6 mutant larvae could occur as early as 

embryogenesis, or it could be the result of ectopic early release of hemocytes from the 

lymph gland. Hemocyte quantification at earlier developmental stages may shed light on 

the kinetics of hemocyte overproliferation. RNAi could be used to knock down Atg6 in 

embryonic hemocytes, followed by quantification of larval hemocytes. These studies 

would provide valuable information about the timing of hemocyte proliferation in Atg6 

mutants.  

 In addition to determining the kinetics of hemocyte overproliferation, cell 

biological characterization of the lymph gland is essential. Interestingly, E-cadherin is 
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highly expressed in the immature, undifferentiated cells of the secondary lobe of the 

lymph gland, and is down-regulated in cells that express markers of mature hemocytes 

(Jung et al., 2005). Given our data showing reduced E-cadherin in Atg6 epithelial cell 

clones, it is possible that down-regulation of E-cadherin induces precocious 

differentiation of hemocyte precursors in the lymph gland of Atg6 mutant animals. We 

could test this hypothesis by generating Atg61 lymph gland clones and staining the 

mosaic tissue with an antibody against E-cadherin and the mature hemocyte markers 

hemolectin or lozenge.  

 

Ectopic overgrowth induced by mosaic loss of Atg6 

 Consistent with whole animal mutant analysis, our mosaic adult eye model 

suggests that loss of Atg6 confers a growth advantage to cells. We showed that FLP 

mediated induction of Atg61 clones in the eye resulted in an adult eye composed almost 

entirely of mutant cells. We have so far been unable to determine when Atg61 cells 

become over-represented in the developing eye. Our studies have focused on the third 

instar imaginal disc, the larval precursor of the adult eye. Future experiments will 

examine Atg61 mosaic discs during pupal development, utilizing GFP to mark wild type 

cells, which will allow us to determine the precise stage where Atg61 mutant cells 

dominate the eye. After determining that time point, cell proliferation and cell death 

assays can be used to explore the possibilities of Atg61 cell over-proliferation or wild type 

cell death. It is possible that both occur. In addition, these experiments should allow us to 

distinguish if either Atg6 homozygous or heterozygous cells are responsible for 

displacing wild type cells in the developing eye. Further, as the adult eye phenotype is 
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easily distinguishable, a genetic screen for modifiers of this phenotype could be utilized 

to find mutants that enhance or suppress the phenotype. A screen of this nature would 

identify genes that potentially interact with Atg6 in growth control and the screen could 

be followed by functional characterization of modifiers.  

 Follicle cell clone experiments have provided a novel potential mechanism for 

Atg61-associated growth phenotypes. Down-regulation of E-cadherin and Dlg contribute 

to invasiveness of Atg61 cells in the follicle cell egg chamber (Shravage, Hill, Baehrecke, 

data not shown). Current studies are investigating whether these epithelial cell polarity 

defects are associated with defects in endocytosis of activated signaling proteins, such as 

Notch. Notch signaling is required for differentiation and migration of follicle cells 

during oogenesis (Deng et al., 2001; González-Reyes and St Johnston, 1998). At 

oogenesis stage 10, where the aforementioned experiments were conducted, Notch 

signaling is required for adherens junction remodeling (Grammont, 2007). The 

implication of Atg6 in endocytosis regulation may indicate that a potential non-

autophagic process is responsible for overgrowth and proliferation phenotypes seen in 

beclin 1+/- tissues. In the long term, a genetic screen for modifiers of the Atg61 follicle 

cell invasion phenotype may provide more clues about how Atg6 regulates cell polarity.  

 In conclusion, our studies highlight the complexity of Atg6 function in the cell. 

We have shown that like its mammalian homolog Beclin 1, Atg6 is required for 

development and autophagy induction. Using Drosophila to study the consequences of 

Atg6 loss in a whole animal, we generated a null allele of Atg6, and showed that Atg6 is 

required to restrict blood cell over-production. Mosaic mutant cell analyses in the larval 

fat body allowed us to investigate pathways previously implicated in beclin 1+/--
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associated tumorigenesis, and we found that Atg6 mutant cells accumulated cell stress 

markers and display nuclear localization of NFκB proteins. However, we do not attribute 

blood cell overproduction and melanotic tumor formation to activation of these pathways, 

as loss of function mutations in NFκB genes do not suppress melanotic tumor formation 

in Atg6 mutant larvae. Mosaic analysis in the adult eye and ovarian follicle cells provided 

additional evidence that Atg6 mutant cells might have a proliferative advantage over wild 

type cells, as they entirely compose the adult eye and form multi-layered invasive 

growths in the follicular epithelium. As yet, we have not identified the signaling 

pathways involved in Atg61-associated phenotypes. However, we identified a novel role 

for Atg6 in regulation of epithelial cell polarity. This function seems to be independent of 

the function of Atg6 with Vps34, and it would be interesting to test if Vps34 activity is 

required for disruption of cell polarity in Atg6 mutant follicle cells. Collectively, these 

data suggest a novel mechanism by which loss of Atg6 might contribute to mis-regulation 

of cell proliferation pathways. 
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