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v: represent the solution fields velocity ui, and pressure p. v = [ui, p].

δv: perturbed solution fields: velocity δui, and pressure δp.

c: airfoil chord.
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R: auto-correlation coefficient.

τ : delayed time.
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uτ : friction velocity.

q∞ = 1
2
ρu2; dynamic pressure.

Cf = τw/q∞; skin friction coefficient.
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D: drag force.

L: is the lift force.
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nb: number of batches in which the signal of the aerodynamic coefficients is
divided with the intention to obtain independent samples of these coefficients.

xxvi



ni: number of samples in batch i.
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ni
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ĈL,i − CL

)
SCD

: sample standard errors for the aerodynamic drag coefficient.

SCL
: sample standard errors for the aerodynamic lift coefficient.

α: level of significance.

Operators

N (v; a): LES model. It solves for v(a) with parameters a.

R(v, νt; a): RANS model. It solves for v(a) and νt(a). It uses the eddy
viscosity constitutive model for the Reynolds stress tensor.

L(δv, δνt;v, νt, a, δa) : linearized RANS model. It solves for δv(v, νt, a, δa)
and δνt(v, νt, a, δa) using the base flow fields v(a) and the inferred eddy vis-
cosity νt(a) from N (v; a) = 0.

Subscripts

∞: Free–stream quantity

Superscripts

〈·〉 : mean quantity

〈̃·〉 : filtered quantity

xxvii



Chapter 1: Introduction

1.1 Computational methods in fluid mechanics

Computational fluid dynamics (CFD) has established itself as a useful tech-

nique in modern scientific research and engineering. The suite of CFD tools used

by researchers and engineers consists of physical models that take different assump-

tions and approximations, and can be broadly categorized as either “high-fidelity”

or “low-fidelity”. The essential characteristics of these approaches, and how they are

currently being used, are sketched in Fig. 1.1. High-fidelity models, like large eddy

simulation (LES), make use of fewer assumptions than low-fidelity models and more

accurately capture the physical phenomena, but at a higher computational cost.

Low-fidelity models, like Reynolds-averaged Navier Stokes (RANS) and unsteady

RANS (URANS), have been very successful in academia and in industry because

they are sufficiently accurate and computationally affordable, and have become the

go-to tools for the analysis of many engineering problems. Furthermore, since the

pioneering work of Jameson in 1988 [5], the engineering design process has been rev-

olutionized by integrating low-fidelity CFD tools, like the adjoint-RANS, into the

decision-making process [6, 7]. For example, significantly fewer designs were physi-

cally built and tested for the Boeing 777 than for the earlier 757 and 767 programs,

and without the inverse design CFD capabilities, the resulting design would not

have achieved customer satisfaction [6].

Currently, RANS-based models are the standard tools used to support the
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engineering design and optimization processes. Although these models are sufficient

to produce designs that are close to optimal for many purposes within the design

process, there are certain hydrodynamic phenomena, especially near the edges of the

operational envelope, that they cannot predict due to their inherent approximations

and assumptions. Consequently, these models cannot accurately predict certain

phenomena; for example, an airfoil near aerodynamic stall [8].

Analysis: single 
prediction with specific 

conditions

Design: beyond single 
prediction: optimization, 

and UQ

Low-fidelity: Potential flow, 
RANS, URANS Well-established State-of-the-art: Adjoint-

RANS

High-fidelity: DES, LES, DNS State-of-the-art Under-explored and 
computationally expensive

(a) (b)

Figure 1.1: (a) Current penetration of CFD in research and industry. DES stands
for detached eddy simulation and UQ stands for uncertainty quantification; (b) cost
vs error for each model.

On the other hand, high-fidelity models, such as LES, have gained ground as

a viable technique for flow predictions and, because of advancements in computing

processing times, are becoming the preferred tool to generate physical insight in

complex problems such as flow separation, aeroacoustics, and mixing, among others.

LES is a turbulence modeling technique that resolves the larger flow- and geometry-

dependent scales while modeling the smaller scales, which exhibit nearly universal

behavior. In contrast, RANS models most or all of the turbulent activity. If one

can resolve the larger scales that are of engineering interest, and model the key

interactions between the larger and smaller scales of the flow accurately enough to

capture the correct dynamics of the larger scales, one should be able to achieve a

higher accuracy than RANS and much closer to a direct numerical simulation (DNS)
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but at a much lower cost. For this reason, LES offers a good trade-off and would

represent a good alternative to predict the flow physics involved in conditions near

the edges of the operational envelope.

However, despite the increasing interest in high-fidelity models, their usage

has been restricted primarily to academia. In industry, their use is slowly being

adopted, but only for analysis and rarely in the actual design process. The main

obstacle preventing engineers from taking full advantage of high-fidelity tools in

the design process is that they must be able to not only assess a single design,

but must be able to incorporate high-fidelity tools into the iterative redesign and

reassessment process. That is, in order to be able to make decisions in the design

process, engineers need more than a single prediction from LES, they need to be

able to integrate LES with the tools of sensitivity analysis. Consequently, as the

design process converges, higher accuracy in predictions are required. This creates

opportunities for using the strengths of LES.

The current research is sponsored by the Predictive Science Academic Alliance

Program (PSAAP), in which one of the main goals is to create affordable methods

for uncertainty quantification (UQ) of chaotic and turbulence-resolving simulations,

like LES. One of the paths to enable UQ with LES, and the one chosen in this study,

is by using sensitivity analysis. For that reason, the main objective of this work is

to enable a computationally affordable sensitivity analysis using LES.

To define what is sensitivity, first consider Jj to be the j-th quantity-of-interest

(QoI) and NJ the number of QoIs. Also, consider ai to be i-th random parameter

and Na the number of random parameters. The sensitivity of Jj is defined as its

gradient with respect to all uncertain parameters, ai, i.e. ∂Jj/∂ai. In engineering

design, some quantities-of-interest are of practical value (e.g., drag, lift, pitching

moment, skin friction, and pressure profiles from a flow past an airfoil). Deriva-

tives of the quantities-of-interest with respect to parameters are useful not only in
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uncertainty quantification, but also in numerical optimization applications such as

machine learning, among others.

1.2 Uncertainty quantification in computational fluid dynamics

In the context of uncertainty quantification, methods to propagate uncer-

tainty applied to CFD can be divided into two main fields: probabilistic and non-

probabilistic [9]. Probabilistic methods focus on the computation of full statistics of

the QoI with the ultimate goal being to use the classical statistic estimator and the

variance to obtain the expected value (i.e. the model’s output). Probabilistic meth-

ods can be separated into two sub-categories: sampling-based and non-sampling-

based methods. A brief description of the probabilistic methods currently used in

the context of LES is shown in section 1.2.2. The most known non-probabilistic

methods are gradient-based algorithms that aim to compute the sensitivity of the

QoI without finding its probability density function [10] and they are described in

section 1.2.1.

1.2.1 Sensitivity-based methods for uncertainty quantification

The most well-known non-probabilistic method for uncertainty quantification

is sensitivity analysis. Consider Jj to be the j-th QoI and NJ the number of QoIs,

also consider ai to be i-th random parameter and Na the number of random pa-

rameters. The sensitivity of the j-th QoI, Jj, is defined as its gradient with respect

to all uncertain parameters, ai. Sensitivity analysis represents an alternative ap-

proach to the sampling-based methods. Instead of sampling the parametric space,

the method computes the local gradient ∂Jj/∂ai. Although knowledge of ∂Jj/∂ai

does not provide information about the statistics of Jj (e.g., the probability distri-

bution function), it does allow for an estimation of the variance of Jj, σJj
2, through

4



the “error-propagation formula” commonly used by experimentalists. For the most

general case, the variance of Jj can be approximated as

σJj
2 =

Na∑
i=1

Na∑
k=1

[
σ2
aiak

∂Jj
∂ai

∂Jj
∂ak

]
, (1.1)

where σ2
aiak is the covariance between parameters ai and ak. The difficulty comes

in the computation of the sensitivity gradient ∂Jj/∂ai.

The sensitivity can be computed in three different ways. The first and most

common method is finite-differencing in the parameter space. In this method, the

value of Jj is computed at two nearby points in the parametric space Jj(ai) and

Jj(ai+∆ai), in which one parameter at a time is manually perturbed. This method

costs Na+1 simulations of the governing model, one simulation at the base condition

and one at the perturbed condition for each parameter.

The second method to predict the sensitivity is called the tangent linear or

forward method. It solves the linearized equations for small perturbations of the

governing model. By using this approach, the exact derivatives of the objective

function can be calculated (in the limit of infinitesimal perturbations). The cost to

obtain the gradient of Jj using this method is Na simulations of the linear model

plus one simulation of the governing model.

The third method is also based on the linearized equations of the governing

model, however, it derives and solves for the adjoint of the linear equations instead.

Since the adjoint equation is similar to the basic flow problem (e.g., it has convec-

tion/diffusion just like the original problem, but “backward”), the computational

cost of solving the adjoint is the same as the tangent equation. This method has

enabled adjoint-based shape optimization, uncertainty estimation, grid-adaptation,

and flow control in many CFD applications over the last 30 years [5,11]. The main

reason for such success is that to compute the sensitivity gradient ∂Jj/∂ai, one only
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needs a single additional simulation for each Jj, regardless of the value of Na. In

other words, the adjoint method requires only NJ additional simulations to obtain

NJ gradients.

Overall, when computing the sensitivity there are situations in which there

are more random parameters ai than QoIs Jj and vice-versa. The tangent linear

method is more suited for situations in which there are fewer random parameters ai

than QoIs Jj (Na < NJ), while the adjoint method is optimal if the opposite is true

(Na > NJ).

1.2.1.1 Sensitivity analysis in chaotic systems

Despite the great appeal of the adjoint method, its application to date has been

for inviscid, laminar, or RANS-modeled flows. This is because the linearized and

adjoint equations of time-averaged objective functions of chaotic dynamical systems

diverge due to the “butterfly effect” [12].

Potential solutions to circumvent this divergence have been proposed. One

of the potential methods to compute derivatives of long-time-averaged functions

of chaotic dynamical systems is the least square shadowing (LSS), developed by

Wang [13]. The LSS method establishes a least square optimization problem, to

calculate a “tangent” solution to the original that does not exhibit exponential

growth (the shadow trajectory). This solution is then used for sensitivity analy-

sis. Blonigan et. al. [14] used LSS in a two-dimensional chaotic flow around an

airfoil, and found that the cost to solve LSS in such a case is at least four orders

of magnitude higher than that of the baseline CFD analysis. A non-intrusive least

square shadowing (NILSS) method was proposed as a variant of the original LSS.

The method requires only minor modifications to existing solvers to work, and the

cost is proportional to the number of positive Lyapunov exponents [15]. However,

it has been proven that methods based on shadow trajectories have a systematic
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error, which can be non-zero if the connecting map between the base and shadow-

ing trajectory is not differentiable [16]. More recently, the space-split sensitivity or

S3 method was proposed [17]. This method is another potential trajectory-based,

ergodic-averaging method to differentiate statistics in chaotic systems. For a 1-D

chaotic case the rate of convergence was found to be
√
n where n is the number of

samples.

1.2.2 Probabilistic methods for uncertainty quantification

Probabilistic methods can be separated into two sub-categories: sampling-

based and non-sampling-based methods. To carry out sampling-based methods,

one needs only a reliable deterministic simulation code that represents a physical

model, and that can be run repetitively at different parameter values. For this

reason, sampling-based methods are favored in practical applications because they

allow engineers to use their existing solvers as a “black box”. The most well-known

probabilistic, sampling-based method is the standard Monte Carlo (MC) sampling.

This method computes the expectation and the variance by performing independent

and random samples of the random variables, where every parameter has been per-

turbed in a normally distributed fashion. Besides being non-intrusive, this method

is independent of the dimensionality of the parameter space, i.e. it does not have

the “curse of dimensionality”. However, the convergence rate of the MC method is

governed by the Central Limit Theorem, being of the order of
√
n (where n is the

amount of independent samples). This convergence rate makes it prohibitively ex-

pensive, requiring O(103) to O(104) independent samples to estimate the statistics

of the QoI [9, 10, 18], something unaffordable in the context of LES.

In the realm of probabilistic, non-sampling-based methods, the primary method

is the Galerkin Polynomial Chaos (PC) method. Based on the work of Wiener

(1938), the PC method propagates the uncertainty through a model by using Galerkin
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projection to reformulate the uncertain variables in the governing equations onto a

stochastic space spanned by a set of orthogonal multi-variate polynomials, Ψi(a),

that are functions of a random variable, a [19, 20]. That is, each uncertain variable

in the model is represented using an infinite series called the polynomial chaos ex-

pansion (PCE). For example, for the Navier-Stokes equations, velocity and pressure

are considered stochastic processes, and they are represented as

u(x, t, a) =

p∑
i=0

ui(x, t)Ψi(a1, a2, ..., ad) (1.2)

where each ui is deterministic and is denoted as the random mode i of the velocity.

Here, p is the truncation order of the polynomials, Ψ, and d is the number of random

dimensions of a. One of the main advantages of reformulating the problem using

eq (1.2) is that finding the PC representation of the model output requires running

the model only once. In relatively simple cases, the PC method proves to converge

faster than the standard MC method [21]. Also, in some specific cases, the PC

method theoretically is proven to converge exponentially [21]. However, the PC

method can encounter major limitations in more complex problems. It suffers from

the “curse of dimensionality”; for example, for a polynomial chaos expansion as

shown in eq (1.2), the number of terms in the resulting PCE is (d + p)!/p!d! [20].

In addition, its implementation requires the modification of the deterministic code,

which may be inconvenient for many complex computational problems. Orszag

and Bissonete [22] concluded that truncated PCE may be unsuitable for predicting

the physics of high-Reynolds number flows, in particular because the nonlinearities

propagate energy into the higher-order terms. Wiener-Hermite expansions fail to

represent the turbulence energy cascade [23]. Consequently, the PC method is not

suitable as a tool to be used in complex turbulent problems.
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1.2.2.1 Stochastic expansion representation methods

There is a suite of probabilistic and sampling-based methods that circumvent

the intrusivity disadvantage of the PC method. They allow for the use of already

available and reliable deterministic solvers. One is the stochastic collocation (SC)

method, proposed by Mathelin and Hussaini [18]. The other is the non-intrusive

polynomial chaos expansion (NIPC) method developed by Hosder, Walters, and

Perez [19]. Both methods construct an approximated representation of a metric of

interest in the random space. The main difference between them is that, whereas the

SC method forms interpolation functions for known coefficients, the NIPC method

estimates coefficients for known orthogonal polynomial basis functions. In SC, collo-

cation points are chosen in the random space, and they have associated quadrature

weights or sparse grids (approaches based on random sampling are not suitable). In

particular, Mathelin and Hussaini [18] chose the Gauss-Legendre points and weights

and, with Lagrange interpolation, the probability distribution of the solution is

constructed. In NIPC, the basis functions are obtained from the Askey family of

hypergeometric orthogonal polynomials. To reduce the nonlinearity of the expansion

and improve convergence, the polynomial bases are chosen such that their orthog-

onality weighting functions match the probability density function of the uncertain

parameters, up to a constant. NIPC and SC methods provide a significant gain

in efficiency over Monte-Carlo sampling for low-dimensional systems. However, as

is the case with the PC method, these two methods suffer from the curse of di-

mensionality. The exponential rise in the number of quadrature points makes these

approaches inefficient for high-dimensional problems [20]. Furthermore, it is shown

that for simple design problems, the deterministic model has to be evaluated on

the order of many hundreds to a couple of thousands of times, something that is

unaffordable in the context of LES.
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1.2.2.2 Multi-fidelity methods in uncertainty quantification

In many situations, multiple models are available to predict the same output,

or QoI, with varying levels of accuracy and varying computational costs [9, 24]. An

obvious solution to reduce computational cost in uncertainty quantification is to

make use of multiple deterministic models with differing levels of fidelity; these are

called multi-fidelity methods. A multi-fidelity method combines outputs from com-

putationally cheap, low-fidelity models with outputs from the high-fidelity models.

This combination can be a good tradeoff between cost and accuracy, leading to sig-

nificant savings in CPU time and providing unbiased estimators of the statistics of

the high-fidelity model output [9]. Several multi-fidelity methods have been pro-

posed in the last few years, where the main differences lie in the low-fidelity model

and what Peherstorfer, Willcox, and Gunzburger [9] call the model management

strategy. Various types of low-fidelity models and model management strategies are

briefly described below. A detailed description can be found in [9].

The types of low-fidelity models have been classified by Peherstorfer, Willcox,

and Gunzburger into three categories: simplified low-fidelity models, projection-

based low-fidelity models, and data-fit low-fidelity models. Simplified low-fidelity

models, as the name suggests, are simplifications derived from the high-fidelity

model, which are used by taking advantage of domain expertise and in-depth knowl-

edge of the implementation details of the high-fidelity model. In CFD, RANS repre-

sents the low-fidelity model of DNS and LES. Coarse-grid approximations and early

stopping criteria are also part of the simplified low-fidelity models. Projection-based

low-fidelity models are derived from high-fidelity models by mathematically exploit-

ing the problem structure. One common method is proper orthogonal decomposition

(POD), which utilizes snapshots of the high-fidelity model to construct a basis for

the low-dimensional subspace. Data-fit low-fidelity models compute an interpolation

10



or a regression of the high-fidelity realizations. In these types of low-fidelity mod-

els, classical Lagrange polynomials can be used to derive data-fit models. Also, the

“Kriging” interpolation method or Gaussian process regression is being widely used

in CFD. Model management in multi-fidelity methods defines how different models

are employed when using the method. Three main strategies were distinguished:

adaptation, fusion, and filtering.

In short, sampling-based uncertainty quantification methods have been under

continuous development, where the main objective in recent years has been to reduce

the computational cost of sampling while maintaining accuracy. The multi-fidelity

approach may reduce the cost to only a few hundred times the cost of a single

simulation [25]. While impressive, this is still too much to be useful in practice in

the context of LES.

1.3 Objective

It is apparent that the main obstacle for integrating high-fidelity models such

as LES into the engineering design process is the unaffordable computational cost

of its sensitivity. The sampling-based, multi-fidelity, and multi-level approach is the

state-of-the-art technique, however, it is too computationally expensive for processes

that require a fast turnaround. Traditional sensitivity analysis of chaotic dynamical

systems diverges, disqualifying it as an option. The current state-of-the-art methods

for sensitivity analysis try to find a solution to the exact adjoint problem by solving

the shadow trajectory. However, the computational cost still makes them unafford-

able. For that reason, the objective of this work is to perform a first assessment

and feasibility analysis of a new - and computationally affordable - methodology

to approximate the sensitivity of a QoI from a large eddy simulation. Since the

proposed method is physics-based, it is assumed that the accuracy will be strongly
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dependent on the flow, the random parameters, and the QoIs.

The proposed multi-fidelity sensitivity analysis (MFSA) method represents

the first attempt of estimating the sensitivity of chaotic and turbulence-resolving

simulations by leveraging linearized low-fidelity models to approximate the change of

the QoI due to small perturbations in the problem parameters. This study considers

a relevant but geometrically simple case (flow over an airfoil) with a single random

parameter (Reynolds number) and four QoIs (lift, drag, skin friction, and pressure

coefficients).

Traditionally, the outcome of an LES or DNS is the prediction of the QoIs,

for instance, the aerodynamic lift coefficient. The outcome of the proposed MFSA

is not only the prediction of the aerodynamic coefficient, but also the sensitivity

of the QoI at the extra cost of only one RANS simulation. The proposed method

aims to complement, rather than replace, the fully RANS-based method, which is

the state-of-the-art in industry, in situations where sensitivities with higher fidelity

are required.

1.4 Assessment methodology and outline

The proposed MFSA method is presented in Chapter 2. However, in order

to perform a valid assessment, one needs to compare these predictions against a

benchmark. Currently, the only feasible way to compute the sensitivity of Jj from

an LES of a turbulent flow is by using finite-differencing (FD) in the random space.

Therefore, in this work, the sensitivity obtained using FD of two different large eddy

simulations is established as the true value and used to quantify the accuracy of the

MFSA’s predictions. Similarly, the sensitivity of Jj is computed using FD in the

random space, but using only RANS. This will allow a direct comparison against

the current state-of-the-art methodology in engineering. However, before computing
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the finite-difference sensitivity using LES, a series of steps need to be completed,

which are discussed next.

First, one needs to choose a test case. A turbulent flow over a NACA 0012

profile is chosen to assess the proposed method. This profile is chosen because of

the numerous studies and data published for different angles of attack and Reynolds

numbers (see, for example, [26–30]) and because it is relevant for industrial applica-

tions and engineering design. The aerodynamic drag and lift, the skin friction and

pressure coefficients, CD, CL, Cf , and Cp, respectively, are defined as the QoIs in this

work, and the uncertain design parameter is the Reynolds number, Re. Table 1.1

shows the conditions chosen. A flow past an airfoil with a Reynolds number of

4 × 105 and zero incidence is chosen to verify the in-house solver’s results against

other wall-resolved LES in literature; this case is named and referenced as Base

Case 1 from now on. A flow past an airfoil at the same Reynolds number but at

an angle of attack of 5◦ is chosen to assess the suitability of the proposed method

and to compare its accuracy against the current state-of-the-art method in industry;

this case is named and referenced Base Case 2 from now on. This angle of attack is

chosen to ensure that both aerodynamic coefficients are larger than zero in a situ-

ation in which the flow around the airfoil remains attached. A moderate Reynolds

number is chosen in order to have computationally affordable wall-resolved large

eddy simulations.

Table 1.1: Cases of study
Base Case θ Re

1 0◦ 4× 105

2 5◦ 4× 105

Second, perform a verification of the solvers, which were developed in-house.

Chapters 3, 4, and 6 show the mathematical formulations, numerical methods and

the verification processes for the LES, RANS, and linearized RANS solvers, respec-

tively.
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Third, carry out a grid convergence study and a statistical convergence study

of the time-averaged QoIs. Section 3.5 presents LES results of a turbulent flow over a

NACA 0012 airfoil, including a grid convergence study using hypothesis testing, and

the convergence of the statistical parameters. Section 4.4 presents RANS solutions

of a turbulent flow over a NACA 0012 airfoil, including a standard grid convergence

study.

Finally, the finite-difference sensitivity can be computed. Chapter 5 illustrates

the computation of (what is defined as) the true sensitivities of the QoIs. An impor-

tant question that arises when trying to compute the sensitivity using FD is what is

the optimal ∆Re to use? Section 5.3 describes the procedure followed by this study

to estimate the optimal perturbation.

Chapter 7 analyzes the predictions from the proposed methodology and sys-

tematically assess the possible sources of error. Finally, Chapter 8 presents the

conclusions, contributions and novelties of the work, and suggestions for future

work.
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Chapter 2: Proposed methodology

This chapter describes the proposed multi-fidelity sensitivity analysis (MFSA)

method for the special case of an incompressible flow with constant properties.

2.1 Mathematical background

Consider the time-averaged QoI, Jj

Jj(v, a) =

∫
T

∫
Ω

ζ (v, a) dVdt+

∫
T

∫
∂Ω

ξ (v, a) dSdt , (2.1)

where ζ and ξ represent functions that operate on the volume and boundaries of the

domain, a is a vector of design parameters a1, a2, ...an, and v is the solution vector

which satisfies the governing equation

N (v; a) = 0 . (2.2)

In the particular case of the incompressible Navier-Stokes equations, v contains

the velocity and pressure fields (v = {ui, p}) while N is the mass and momentum

conservation equations.

If one perturbs (infinitesimally) the parameter vector a by adding δa, equa-

tion (2.2) becomes

N (v + δv; a + δa) = 0 , (2.3)

where v + δv is the new solution for the perturbed parameter vector a + δa. The
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objective function for the new solution is

Jj(v+δv, a+δa) ≈ Jj(v, a)+

∫
T

∫
Ω

[
∂ζ

∂v
δv +

∂ζ

∂a
δa

]
dVdt+

∫
T

∫
∂Ω

[
∂ξ

∂v
δv +

∂ξ

∂a
δa

]
dSdt .

(2.4)

Using angular brackets 〈·, ·〉 to denote the inner products, the sensitivity of Jj can

then be defined as

δJj =

〈
∂ζ

∂v
, δv

〉
Ω

+

〈
∂ζ

∂a
, δa

〉
Ω

+

〈
∂ξ

∂v
, δv

〉
∂Ω

+

〈
∂ξ

∂a
, δa

〉
∂Ω

, (2.5)

which is the infinitesimal difference between the QoI of a perturbed solution com-

pared to the base. However, in order to find δJj it is necessary to find the perturbed

solution δv. For that, the equation (2.3) may be linearized as

N (v + δv; a + δa) ≈ N (v; a) +
∂N
∂v

δv +
∂N
∂a

δa +O(δv2, δa2) = 0 , (2.6)

obtaining the linear system

Lδv = fδa, where L ≡ ∂N
∂v

, and f ≡ ∂N
∂a

, (2.7)

where f represents the forcing term due to the perturbation of a. If a solution of

the system proposed in equation (2.7) can be found, one can compute δJj using

equation (2.5), and find the sensitivity

∂Jj
∂ai

= lim
δai→0

δJj
δai

. (2.8)

Here, the computed sensitivity would be exact in the limit of an infinitesimal per-

turbation δa.

However, it is well known that this definition of the sensitivity is not mean-

ingful for chaotic problems since the linearized dynamics are inherently unstable,
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meaning that one cannot compute the perturbed solution δv in a stable way by

solving eq. (2.7). The sensitivity δJj could instead be approximated using a finite

difference in the parameter space, i.e., by solving the LES equation for a slightly

perturbed parameter a + ∆a, computing the QoI at the perturbed condition from

eq. (2.1), and then approximating δJj using a finite difference. This is stable since

the averaging is performed prior to the differentiation. It would require one LES

solution for each parameter, which is computationally infeasible for large numbers

of parameters.

2.2 A proposed multi-fidelity sensitivity analysis (MFSA)

The proposed methodology will be described for the case of an incompressible

flow with constant properties, for which the LES governing equations are

∂uj
∂xj

= 0 ,

∂ui
∂t

+ uj
∂ui
∂xj

+
∂p

∂xi
− ∂

∂xj
[2νSij − τij(uk)] = 0 ,

(2.9)

where the full LES-resolved solution is v = {ui, p} and τij(uk) is a subgrid model;

the LES equation can then be denoted by N (v(a); a) = 0.

Many QoIs in practical applications depend only on the mean solution v, and

not on the instantaneous solution v. The QoI Jj could then be re-define as

Jj(v, a) =

∫
Ω

ζ (v, a) dV +

∫
∂Ω

ξ (v, a) dS , (2.10)

where (·) is the ensemble averaged operator, ζ and ξ are re-defined to operate on

the mean solution v. By using eq. (2.10), one can compute a point estimate of

Jj(v(a), a).
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The sensitivity of this definition is

δJj =

∫
Ω

[
∂ζ

∂v
δv +

∂ζ

∂a
δa

]
dV +

∫
∂Ω

[
∂ξ

∂v
δv +

∂ξ

∂a
δa

]
dS . (2.11)

This definition of the sensitivity is exact. As said before, one can approximate

δJj using a finite difference in the parameter space. However, this approach has a

cost of Na, which is not affordable. Trying to compute directly the instantaneous

perturbed field would require a linearization of a chaotic system which is known to

diverge when integrated over a long time period [13].

The key idea of the proposed method is to compute the perturbed mean solu-

tion δv = {δui, δp} using a lower-fidelity turbulence modeling approach, rather than

by LES. The mean LES solution v = {ui, p} satisfies the mean governing equations

∂uj
∂xj

= 0 ,

∂ui
∂t

+ uj
∂ui
∂xj

+
∂p

∂xi
− ∂

∂xj

(
2νSij − τ ij − u′iu′j

)
= 0 ,

(2.12)

to within averaging and numerical errors. This can be linearized to

∂δuj
∂xj

= 0 ,

∂δui
∂t

+ uj
∂δui
∂xj

+ δuj
∂ui
∂xj

+
∂δp

∂xi
− ∂

∂xj

(
2νδSij − δτ ij − δu′iu′j

)
= 0 .

(2.13)

These equations are still exact, but suffer from a closure problem just like

standard RANS equations. Specifically, the perturbed mean Reynolds and subgrid

stress terms need to be modeled, which is accomplished in this work using an eddy

viscosity approach.

The eddy viscosity hypothesis for the full Reynolds stress tensor is

u′iu
′
j = −2νtSij +

2k

3
δij , (2.14)
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where νt is the eddy viscosity and k = u′ku
′
k/2 is the turbulent kinetic energy.

Linearization yields

δu′iu
′
j = −2νtδSij − 2Sijδνt +

2δk

3
δij . (2.15)

The perturbed mean subgrid stress is absorbed into the model of the perturbed

Reynolds stress (or, equivalently, we neglect it), and also neglect the perturbed

turbulent kinetic energy. This requires the specification of the eddy viscosity νt

and its perturbation δνt. Using an existing RANS turbulence model for νt is not

appealing since that would produce an eddy viscosity that is inconsistent with the

LES mean solution. One of the approaches, and the one used in this thesis, is to infer

νt by minimizing the error between the deviatoric part of the Reynolds stress tensor

given by the high-fidelity model (or LES), and the deviatoric part of Reynolds stress

tensor computed using the eddy viscosity assumption as (for more details see [31])

νt = −
Siju′iu

′
j

2SklSkl
. (2.16)

This then yields equation (2.13) for infinitesimal perturbations of the mean

equations as

∂δuj
∂xj

= 0 ,

∂δui
∂t

+ uj
∂δui
∂xj

+ δuj
∂ui
∂xj

+
∂δp

∂xi
− ∂

∂xj

(
2(ν + νt)δSij + 2Sijδνt

)
= 0 .

(2.17)

The linearized equation (2.17) can then be denoted by

L(δv, δνt;v, νt, a, δa) = 0,

the eddy viscosity perturbation, δνt, is either assumed to be zero (the “frozen tur-
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bulence” assumption) or modeled. In this work, the eddy viscosity perturbation is

modeled using Prandtl’s zero-equation model

νt = κ2d2
∣∣S∣∣D(d+, A+) , (2.18)

where d is the wall-normal distance and D is the Van Driest damping function which

depends on d+ = uτd/ν and the model constant A+. Without going into details

of this model (it will be described in Chapter 6), in the particular case where the

Reynolds number is the only perturbed parameter (the case in this thesis), the eddy

viscosity perturbation is given by

δνt,P r = νt

SijδSij
SklSkl

+
d sgn(τw) exp

[
−d+
A+

]
δτw

νA+
√
D|τw|

−
d+ exp

[
−d+
A+

]
δν

νA+
√
D

 . (2.19)

The proposed methodology represents a multi-fidelity method for sensitivity

analysis, where the low-fidelity model (linearized-RANS in this particular case) is

leveraged to reduce the computational cost of computing the sensitiviy due to small

perturbations, but recoursing to the high-fidelity model to improve the accuracy of

the prediction. As previously said, the tangent equation method is more suited for

situations in which there are fewer random parameters ai than QoIs Jj, (Na < NJ).

For example, in a flow past an airfoil in which there is interest in knowing how

the uncertainty or small changes in the Reynolds numbers will affect the drag,

lift, skin-friction and pressure coefficients, the forward (or tangent) approach could

estimate the sensitivities of each of these QoI’s with respect to Reynolds numbers

by solving Na simulations of the linear model plus one simulation of the governing

model. Furthermore, since the adjoint method is derived from the linearized RANS,

the proposed method represents a feasibility study for a multi-fidelity sensitivity

analysis in which the adjoint could be used to compute the gradient ∂Jj/∂ai.
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The proposed methodology combines two different fidelity models, LES and

RANS, which may have different grid-requirements. Therefore, an interpolation

would be necessary to solve the linearized problem. The interpolation is code de-

pendent, but model constraints on the interpolated field must be enforced, e.g. the

divergence-free constraint. The algorithm 1 shows the general steps of the proposed

multi-fidelity sensitivity analysis.

Algorithm 1 Multi-fidelity sensitivity analysis (MFSA).

1: Solve the high-fidelity (LES) model at the nominal condition, N (v(a); a) = 0,
and compute ensemble average fields v and u′iu

′
j.

2: Infer the eddy viscosity field from the LES solution at the nominal condition.
3: if grid requirements between models differ then
4: Interpolate the base solution onto the low-fidelity (linearized RANS) grid.
5: Enforce the model-specific constraints on the interpolated solution, e.g.

divergence-free and the proper order in which each variable approaches the wall.

6: for i = 1 to Na do
7: Solve the linearized RANS problem for the specific perturbed parameter
δai, i.e., solve L(δv, δνt;v, νt, ai, δai) = 0, which includes the calculation of the
perturbation δνt.

8: Compute the sensitivity estimate ∂Jj/∂ai.
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Chapter 3: Large eddy simulation

3.1 Mathematical formulation

This thesis deals with the three-dimensional incompressible and constant prop-

erty flow of Newtonian fluids. Under these assumptions, the dynamics of such flow

is described by the Navier-Stokes equations

∂ui
∂xi

= 0 , (3.1)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ 2ν

∂Sij
∂xj

, (3.2)

where ui is the instantaneous velocity, p is the instantaneous pressure divided by

the constant density, Sij is the rate of strain tensor, and ν is the kinematic viscosity.

These equations, and their solutions, are formally defined in an infinite dimensional

(function) space. For numerical simulations, the equations are represented discretely

in a finite dimensional phase space. If solved directly, i.e. in a DNS, the full range

of length scales - from the integral scale down to the Kolmogorov scale - must be

resolved. The main concept of LES is to reduce the computational complexity (i.e.

the number of degrees of freedom, or the dimension, of the system) by resolving

only the flow dependent, large scales. This is typically accomplished by applying a

low-pass filter to the Navier-Stokes equations that removes the smaller, supposedly

universal, scales.

The filtered three-dimensional incompressible and density constant Navier-
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Stokes equations can be derived by applying a low-pass filter with filter width ∆̃

to equations (3.1) and (3.2) (assuming that the filtering operation commutes with

differentiation), resulting in the equations

∂ũj
∂xj

= 0, (3.3)

∂ũi
∂t

+
∂ũiuj
∂xj

= − ∂p̃

∂xi
+ 2ν

∂S̃ij
∂xj

, (3.4)

where ũi and p̃ are the low-pass filtered (or resolved) velocity and pressure, respec-

tively.

The filtering process, or the “coarse-graining”process, is in fact just a formal

way of removing (or highly attenuating) the length-scales below the filter-width ∆̃.

In practice, it can be done either implicitly when generating the grid or explicitly

by application of a low-pass filter to the equation and then using a grid that is fine

enough to solve the coarse-grained equations.

Due to the nonlinearity of the convective term in the Navier-Stokes equations,

the term ũiuj is not a function of the resolved velocity. As a result, equation (3.4)

is not in closed form. The classical approach, and the one taken in this thesis, is to

re-arrange this term by noting that

ũiuj = ũiũj + ũiuj − ũiũj (3.5)

and, using this re-arragement, equation (3.4) becomes

∂ũi
∂t

+
∂ũiũj
∂xj

= − ∂p̃

∂xi
+ 2ν

∂S̃ij
∂xj
− ∂τij
∂xj

, (3.6)

where τij ≡ ũiuj − ũiũj is called the sub-grid scale (SGS) stress term. This residual

stress term arises due to the lack of commutation between multiplication and filter-
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ing, and cannot be expressed in terms of the filtered (or resolved) velocity field ũi

and, hence, it must be modeled.

3.1.1 Closure model

The following constitutive relation closure model is used in this study

τij −
τkk
3
δij = −2νSGSS̃ij , (3.7)

where νSGS is the SGS eddy viscosity. The resolved rate-of-strain tensor, S̃ij, has

zero trace and, hence, only the deviatoric (or anisotropic) part of the residual stress

tensor can be modeled. The isotropic part (τkk/3)δij is absorbed into a modified

pressure in equation (3.6). In this study, the SGS eddy viscosity model developed

by Vreman [32] with a constant c = 0.03 is used to compute νSGS.

3.2 Numerical methods

The numerical methods used in this study are standard in the field of CFD.

They are described here for the purposes of completeness. The filtered three-

dimensional incompressible and density constant Navier-Stokes equations are solved

in conservative form using an in-house code framework, called Tortuga, based on the

finite-volume method. The numerical scheme used in this study for the spatial dis-

cretization of the convective and diffusive terms is fourth-order central. The solver

uses a collocated grid arrangement in which the approach developed by Zang et

al. [33] is used to ensure strong coupling between the pressure and velocity fields.

The spatially discretized system is integrated in time using a fractional step method

to ensure that the continuity constraint is satisfied. The time marching is a mixed

implicit/explicit scheme that follows the method developed by Wray [34], where the

wall normal diffusion is treated in a Crank-Nicolson like fashion and the remaining
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terms are treated explicitly by a three-stage Runge-Kutta scheme. The incompress-

ible solver uses the Hypre library [35] to solve the Poisson system.

3.3 Modular verification of Tortuga operators

All solvers in Tortuga were built in a modular fashion based on the object-

oriented concept. With this concept as the architectural premise, the Tortuga frame-

work was built around operators that helped to construct the numerical methods

discussed above. A good practice is to perform modular verification, in which the

results for each module are compared against an analytical solution. Additionally,

a grid convergence study should be carried out to check the order-of-convergence.

To illustrate this approach, the gradient of a scalar operator, gradC2Cscalar, using

second-order schemes is examined below. The gradient of a three-dimensional func-

tion, F (x, y, z), is computed both analytically and numerically, and the L2 norm of

the difference between both results is used to check the convergence. The function

is defined as

F (x, y, z) = cos(kXX) cos(kY Y ) cos(kZZ) ,

X(x, y) = x cos(θ) + y sin(θ) ,

Y (x, y) = y cos(θ)− x sin(θ) ,

Z(z) = z ,

where

kX =
2π

1.5
, kY =

2π

1.2
, kZ =

2π

0.7
,
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are the wavenumbers in the rotated X, Y , and Z directions. The analytical gradient

is

∂F

∂x
= −kX

∂X

∂x
cos(kZZ) sin(kXX) cos(kY Y )− kY

∂Y

∂x
cos(kZZ) cos(kXX) sin(kY Y ) ,

∂F

∂y
= −kX

∂X

∂y
cos(kZZ) sin(kXX) cos(kY Y )− kY

∂Y

∂y
cos(kZZ) cos(kXX) sin(kY Y ) ,

∂F

∂z
= −kZ sin(kZZ) cos(kXX) cos(kY Y ) .

Figures 3.1(a) to (c) show a comparison between the results obtained analyt-

ically and numerically for the gradient of F (x, y, z) for a grid of 64 volumes in each

direction. In Fig. 3.1(d) one can see that the operator has a second-order conver-

gence. The same process was carried out to verify the whole set of operators in the

Tortuga framework.

3.4 Verification: LES of a turbulent channel flow at Reτ ≈ 545

A turbulent and incompressible flow in plane channels is used as a first verifi-

cation case for the large eddy simulation solver. The flow is driven by a body force

that keeps the bulk velocity constant. The channel has a width of 2H, the stream-

wise length is Lx/H = 10, and the spanwise length is Lz/H = 3. The Reynolds

number based on friction velocity is set at Reτ ≈ 545. A grid convergence study

is carried out to verify that the solution converges to the benchmark DNS of Del

Alamo and Jimenez [1]. Table 3.1 shows the mesh resolution at the wall in viscous

units for three different grids. Figure 3.2 compares Tortuga and benchmark results.

One can see that as one refines the grid, the results converge to the DNS solution.
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Figure 3.1: Verification of the gradient of a scalar operator.

3.5 Large eddy simulation of the turbulent flow past a NACA 0012

profile

The turbulent flow over a NACA 0012 airfoil is chosen to perform the feasibil-

ity study of the proposed multi-fidelity sensitivity analysis (MFSA) method. This

flow was chosen because it is a relevant but geometrically simple case to analyze.

There is sufficient data of this profile to which the in-house solver can be verified.

Also, this case offers a transparent and straigthforward way to perform sensitivity

analysis of the aerodynamic drag, lift, and the skin friction and pressure coefficients
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Table 3.1: Grid convergence of a large eddy simulation of a channel flow at Reτ ≈
545.

Grid (dx+, dy+, dz+)
gch1= 102×44×56 (51.06, 4.53, 27.9 )
gch2= 121×50×88 (44.59, 3.39, 18.39 )
gch3= 216×72×176 (25.01, 3.22, 9.20 )
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Figure 3.2: Large eddy simulation of a channel flow at Reτ ≈ 545; (a) convergence
of the mean-velocity in inner-scaled units for grids in Table 3.1; (b) convergence of
Reynolds stress tensor components in inner-scaled units for grids in Table 3.1. The
dotted blue lines correspond to the DNS solution of Del Alamo and Jimenez [1]
for the same setup. The other colors from brightest to darkest correspond to three
grids.

due to changes on a design parameter, like the Reynolds number. Table 3.2 shows

the conditions chosen. Base Case 1 is chosen to verify the in-house solver’s results

against other wall-resolved LES in literature (see section 3.5.4). Base Case 2 is

chosen to assess the suitability of the proposed method and to compare its accu-

racy against the fully RANS-based method, which is the current state-of-the-art in

industry, in a situation in which the flow around the airfoil remains attached. A

moderate Reynolds number is chosen in order to have computationally affordable

wall-resolved large eddy simulations.
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3.5.1 Computational details

The present study uses a symmetric body-fitted O-grid block to simulate a

turbulent flow past an airfoil. All LES cases shown in this study use a computational

domain of Lη = 100c (Fig. 3.3(a)), a spanwise width of Lz = 0.1c for Base Cases

1 and 2. The NACA 0012 trailing edge is rounded as shown in Fig. 3.3(b), and

unless specified, the rounded trailing edge is the default condition when running a

turbulent flow past an airfoil. To ensure transition, the boundary layers are tripped

on both sides of the airfoil using steady suction over the region 0.05 < x/c < 0.075,

and blowing over the region 0.075 < x/c < 0.1, as shown in Fig. 3.4(a). The

magnitude of suction and blowing is constant, with |Ublowing| = |Usuction| = 0.03U∞.

The tripping is applied in the spanwise direction over the regions 0.01 < z/c < 0.04

and 0.05 < z/c < 0.09. Other configurations using uniform tripping in the spanwise

direction were tested. However, partial span tripping demonstrated better results

of boundary layer transition compared to full span tripping. A similar mechanism

with the same purpose was used in the study of Wolf et al. [36]. Figure 3.4(b) shows

the instantaneous visualization of the flow past a NACA 0012 using the referenced

tripping mechanism. One can see the coherent vortical structures identified using the

Q-criterion defined as Q = 1
2
(ΩijΩij − SijSij), where Sij and Ωij are the symmetric

and anti-symmetric part of the velocity gradient, respectively.

Table 3.2: Cases of study
Base Case θ Re

1 0◦ 4× 105

2 5◦ 4× 105
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(a) (b)

Figure 3.3: (a) Computational domain, c is the airfoil chord; (b) rounded NACA
0012 trailing edge; The black solid line is the standard NACA 0012 profile, the red
solid line is the rounded NACA 0012 profile used throughout this study.

(a) (b)

Figure 3.4: (a) Sketch of the boundary layer tripping; (b) instantaneous visualization
of the NACA 0012 case showing coherent vortical structures identified through the
Q-criterion colored by vorticity magnitude.

3.5.2 Statistical convergence of the QoIs and computation of confi-

dence intervals using the batch method

The aerodynamic drag and lift coefficients, CD, and CL, are functions of the

instantaneous flow field when predicted using large eddy simulations. However, the

proposed method makes use of ensemble average fields rather than instantaneous

ones. Computing ensemble averages for CD and CL would require solving several

LES, but, since the study cases under consideration are assumed to be ergodic

dynamical systems, the average of the time series of the coefficients is assumed to
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be equivalent to the ensemble average. In this work, the time signals of CD and CL
are treated as random variables under the framework of probability theory, which

provides the sufficient theoretical background to compute the statistical parameters.

In particular, this work is interested in the sample mean, the standard error and the

confidence interval for a QoI.

The LES outputs (of interest for this study) are continuous time signals of

CD and CL. However, to properly obtain expected values and confidence intervals

from these continuous time signals, a series of steps need to be followed. In this

section, the procedure for calculating statistical parameters and confidence intervals,

in general, is described for a random variable and for the difference of two random

variables. Next, the statistics for Base Cases 1 and 2 are shown.

3.5.2.1 Procedure to compute statistics and confidence intervals us-

ing the batch method

Consider two time-varying quantities X1(t) and X2(t) whose time series are

shown in Fig. 3.5. These two signals were artificially created using a random function

with the same mean and standard deviation, µX1 = µX2 = 0 and SX1 = SX2 = 0.1.

However, X1 and X2 were created with different autocorrelation coefficient values.

Specifically, the autocorrelation at time lag τ = 1 for X1 is 0.01 and for X2 is 0.9.

In other words, two samples of X1 taken at τ = 1 time units apart are independent

of each other, whereas two samples of X2 taken at τ = 1 time units apart show a

strong correlation.

In real-life applications, it is common to have a sample, or time series, of a QoI

whose population distribution is unknown. Luckily, under the framework of proba-

bility theory, one can calculate the statistics of a sample with unknown distribution

using the central limit theorem (CLT). The CLT states that when independent ran-

dom variables are added, their properly normalized sum tends toward a normal
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Figure 3.5: Sample time signals (top) with their auto-correlation coefficients (bot-
tom).

distribution even if the original variables themselves are not normally distributed.

In the example from above, since the distributions of X1 and X2 are unknown, the

CLT can be leveraged to compute the statistical parameters needed. The compu-

tation of confidence intervals requires the standard error to be estimated, i.e., the

standard deviation of the sample mean. This estimation depends on the degree of

autocorrelation in the signal. The autocorrelation coefficient is defined as

RX (τ) =
1

T−τ

∫ T−τ
0
X ′(t)X ′(t+ τ)dt

1
T

∫ T
0
X ′2(t)dt

, (3.8)

where X ′(t) is the signal fluctuation (zero mean), T is the length of the signal, τ
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is the lag time. Figure 3.5 shows the autocorrelation coefficient for X1 and X2.

As mentioned previously, X1 is sufficiently independent at τ = 1 while X2 has an

autocorrelation of RX2(1) = 0.9 and only shows sufficient independence at τ ≥ 20. If

one were to use the law of large numbers (i.e., that the standard error is the standard

deviation divided by the square-root of the number of samples) for the signal X1

one could use every single observation as an independent sample. However, to apply

the law of large numbers for signal X2, it would be necessary to use observations

that are separated by at least 20 units. Observations from experiments or LES look

more like the signal X2, in which there is a high degree of autocorrelation.

To facilitate the computation of confidence intervals for correlated signals, the

present work makes use of a simple batch method. First, the whole time signal is

divided into a number of batches nb. For each batch, the mean is computed as

X̂i =
1

ni

ni∑
j=1

Xj, for i = 1, 2, 3, . . . , nb , (3.9)

where ni is number of samples in batch i. One can also define the time per batch

as tb = ni∆t, where ∆t is the signal time step. Next, the sample mean is given by

the mean of the batches’ mean and is computed as

X =
1

nb

nb∑
i=1

X̂i. (3.10)

Knowing the sample mean, one can proceed to compute the sample variance of the

batches’ mean as

S2
X̂ =

1

nb − 1

nb∑
i=1

(
X̂i −X

)2

(3.11)

and finally the variance of the sample mean (the square of the standard error) is

approximated as the sample variance of the batch means divided by the number of
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Table 3.3: Statistical parameters for X1 and X2.
tb X1 SX1

CIX1
X2 SX2

CIX2

2 −8.6× 10−4 9.84× 10−4 1.92× 10−3 4.7× 10−3 1.35× 10−3 2.65× 10−3

50 −8.6× 10−4 9.76× 10−4 1.92× 10−3 4.7× 10−3 3.74× 10−3 7.38× 10−3

80 −8.6× 10−4 9.98× 10−4 1.97× 10−3 4.7× 10−3 3.81× 10−3 7.54× 10−3

batches

S2
X ≈

S2
X̂
nb

=
1

nb

1

nb − 1

nb∑
i=1

(
X̂i −X

)2

, (3.12)

in which it is assumed that the batch means are uncorrelated. With the standard

error one can compute the 1− α percent confidence interval of the sample mean as

CIX = tα/2,dfSX . (3.13)

where α is the significance level and df = nb−1 are the degrees of freedom. Figure 3.6

shows the estimated standard error as a function of the time per batch tb for signals

X1 and X2. One can see that for X1, the estimated standard error is approximately

SX1
≈ 1.0 × 10−3 for batch sizes between 2 < tb < 300. Therefore, the estimated

confidence interval is also constant, with numbers listed in Table 3.3. On the other

hand, for signal X2, the estimated standard error decreases as tb decreases, because

the batch means become increasingly correlated, which leads to an underprediction

of the standard error. An example of this is that the estimated confidence intervals in

Table 3.3 do not include the true mean for the smaller batch sizes. However, there is

a region between 40 < tb < 300 where the estimated standard error is approximately

constant at SX2
≈ 4.0× 10−3. In both signals, when tb increases beyond the plateau

region, the standard error increases and behaves erratically. The reason for this

behavior is that, when tb is sufficiently large, too few independent samples are used,

leading to large random noise in the computed SX .
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Figure 3.6: Standard error for (a) signal X1 and (b) signal X2 as a function of the
time per batch tb.

3.5.2.2 Required sampling time to compute the difference of two ran-

dom variables

In this work, there are two situations in which the difference of two random

variables is needed. During the grid convergence study using hypothesis testing,

and when estimating the true sensitivity using finite-differencing. Thus, this work

makes use of statistical inference to draw conclusions about the difference between

two independent random variables. Given two independent random variables, X1

and X2, with sample means X1 and X2, the standard error for the difference of these

two sample means is

SX1−X2
=
√
S2
X1

+ S2
X2

, (3.14)

and the 1− α confidence interval is

CIX1−X2
= tα/2,dfSX1−X2

, (3.15)

36



where df is the degrees of freedom given by

df =

(
S2
X1

+ S2
X2

)2

S4
X1

nb,1−1
+

S4
X2

nb,2−1

, (3.16)

where nb,1 and nb,2 are the sizes of each sample.

A common question that arises when comparing two independent variables is

for how long should the variables be sampled to obtain a desired value of the (1-α)

CI for the sample mean? Or, from an engineering perpective, for how long should

the experiments or the simulations be run to obtain a CI that is, at most, say 10

percent of the expected value?

To illustrate the problem at hand, consider three different and randomly

created time series, X1, X2, and X3. The mean of each signal is µX1 = 0.1,

µX2 = 0.11, and µX3 = 0.101, respectively. The standard deviation for the sig-

nal X1 is SX1 = 0.01. The standard deviations for signals X2, and X3 are the same

at SX2 = SX3 = 0.02. All signals were created with an autocorrelation coefficient at

time lag τ = 1 of 0.3. Now, for how long should these signals be sampled to obtain

a 95 percent CI that is at most 10 percent of the expected value?

Table 3.4 shows the confidence intervals for the difference of two random vari-

ables for different number of samples using equation (3.15). One can see that, first,

the statistics for the difference between signals X1 and X3 using a sample length

of 1000 show no convergence. In other words, the lower bound of the 95 percent

CI for the difference is X3 − X1 − CIX1−X2
= 1.06× 10−3, which is higher than the

difference of the true means, µX3 −µX1 = 1× 10−3. Second, a sample length of 5000

is long enough to give a 95 percent CI below 10 percent of the expected value for

the difference between signals X1 and X2. However, to obtain a 95 percent CI lower

than 10 percent of the expected value for the difference between signals X1 and X3,

the sample length should be 1×105. Overall, one can see that the smaller the differ-
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Table 3.4: Confidence intervals for the difference of two random variables for different
number of samples. True means are µX2 − µX1 = 0.01, and µX3 − µX1 = 1× 10−3.

No. of samples X2 −X1 tα/2,df
√
S2
X1

+ S2
X2

X3 −X1 tα/2,df
√
S2
X1

+ S2
X3

1× 103 0.0111 1.77× 10−3 2.75× 10−3 1.69× 10−3

5× 103 0.0100 7.97× 10−4 8.00× 10−4 7.89× 10−4

1× 105 — – 1× 10−3 1.2× 10−4

ence of the means is, the larger the sample needed to obtain statistical convergence.

This simple analysis will be useful when computing the sensitivity gradient using

finite-differencing in chapter 5.

3.5.2.3 Statistical convergence of the aerodynamic drag and lift co-

efficients for the Base Cases

Figure 3.7 presents the statistics of the aerodynamic coefficients for Base Cases

1 and 2. The dotted curves are the instantaneous aerodynamic coefficients, CD and

CL, the black square dots represent the mean for each batch, ĈD and ĈL, their running

sample mean, CD and CL are shown as the solid thick lines, and their 95 percent

confidence interval are plotted as the shadow region. These three quantities are

shown as functions of the non-dimensionalized time t∗ = tU∞/c. These results were

obtained using the grid gLES3 which is the final grid obtained in the grid sufficiency

study done in section 3.5.3.

Figure 3.8(a) shows the autocorrelation coefficient for Base Case 1. Note that

for a delayed time of τ > 0.2, both signals are weakly or not correlated, meaning

that to guarantee independent samples, the signals must be divided into batches

of length t∗b > 0.2. This guarantees that each batch is an independent sample.

Figure 3.8(b) shows the standard error for CL as a function of the time per batch

t∗b . As shown in the figure, there is a range of batch sizes 0.15 < t∗b < 0.8 where

the standard error is approximately constant, which means that batch sizes within

this range produce a reasonable estimate of the confidence interval. Some sample
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Figure 3.7: CD and CL vs t∗ for (a) Base Case 1 and (b) Base Case 2. The dash-
dotted lines are the instantaneous aerodynamic coefficients, CD and CL, the black
square dots represent the mean for each batch, ĈD and ĈL, their running sample
mean, CD and CL are shown as the solid thick lines, and their 95 percent confidence
interval are plotted as the gray shadow region.

numbers are listed in Table 3.5. As a final sanity check for this particular case of

zero incidence, the 95 percent confidence interval for the lift coefficient includes its
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Figure 3.8: (a) Autocorrelation coefficient for CD and CL; (b) standard error for CL
vs t∗b for Base Case 1.

Table 3.5: Statistics of CD and CL for Base Case 1.
nb t∗b CD CICD(95%) CL CICL (95%)
60 0.20 0.0146615 9.60× 10−6 1.366× 10−4 1.88× 10−4

27 0.45 0.0146615 9.53× 10−6 1.366× 10−4 1.84× 10−4

Table 3.6: Statistics of CD and CL for Base Case 2.

nb CD SĈD SCD CICD
655 0.0155349 1.06×10−4 4.23×10−6 8.31×10−6

nb CL SĈL SCL CICL
655 0.5050077 1.35×10−3 5.35×10−5 1.05×10−4

true mean (µCL = 0.0).

Figure 3.9(a) shows the autocorrelation coefficient for the signals from Base

Case 2. For a time delay of τ > 0.15 both signals are weakly- or un-correlated.

Figure 3.9(b) shows the standard error for CD as a function of the time per batch t∗b .

There is a region between 0.16 < t∗b < 0.7 where the standard error is approximately

constant. Thus it follows that statistics can be drawn from within the region 0.2 <

t∗b < 0.7 to guarantee uncorrelated and independent batch means for CD (a similar

region was found CL). Table 3.6 presents the statistics drawn within this region for

CD and CL.
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Figure 3.9: (a) Autocorrelation coefficient for CD and CL; (b) standard error for CD
vs tb for Base Case 2.

3.5.3 Grid sufficiency study using hypothesis testing

Large eddy simulation (LES) is clearly dependent on the computational grid

and/or the imposed coarse-graining length scale (“filter width”). Thus meaningful

predictions can only be made after having established that the quantities of interest

(QoIs) are not affected too strongly by the chosen grid or length scale. Since an

LES will never converge in the traditional numerical sense (i.e., to a specific solution

at every point in space and time), it is necessary to discuss convergence and grid

sufficiency only in the context of specific QoIs (cf. [37]). A meaningful definition

of grid sufficiency is then that all QoIs must change by less than some acceptable

tolerance between two sufficiently different grids. The chaotic nature of an LES then

implies that the assessment of grid sufficiency necessarily centers around the differ-

ence between two imperfectly computed sample means or variances, and therefore

should be viewed as a probabilistic hypothesis test.

The purpose of this section is three-fold: to make the case that the question of

grid sufficiency in LES should be viewed as a hypothesis test, to demonstrate how

this can be done using standard tools from statistics, and to illustrate how this leads

to transparent ways to both judge grid sufficiency and to make decisions about how
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much averaging time is required to make that judgment.

3.5.3.1 Problem set-up and data processing

Consider again the time-varying quantity X (t), and that Xi(t) denotes this

quantity computed from the solution on grid i. In this study, the quantity-of-interest

is the expected value of X (t). In practice, we compute the sample mean X i over an

averaging time of Ti after discarding an initial transient. Methods for determining

the length of the initial transient were proposed and assessed in the context of

turbulence simulations by, among others, [38] and [39]; the focus of the present

analysis is entirely on the signal after the initial transient has been discarded. To

facilitate a statistical treatment, the standard error of the mean, i.e., the standard

deviation of the sample mean is computed. This could be done in multiple ways,

for example with an auto-regressive model [40, 41] or the more recently proposed

method by [42]. In the present work, we use the simple “non-overlapping batch

method” which is described in section 3.5.2.1. The standard error for the difference

of two sample means is computed following the process described in section 3.5.2.2.

3.5.3.2 Judging grid sufficiency

A practically meaningful definition of grid sufficiency is that a quantity-of-

interest (QoI) must differ by less than some user-defined tolerance between two

grids that are sufficiently different in terms of resolution. Mathematically, this is a

hypothesis test that can be stated as (for a QoI that is an expected value)

H0 : |µXA
− µXB

| ≥ ∆0 (insufficient grid) ,

H1 : |µXA
− µXB

| < ∆0 (sufficient grid) ,
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where ∆0 is a tolerance that is problem- and context-specific. The P-value of this

test is

P-value = 2P

(
Z <

∣∣XA −XB

∣∣−∆0

SXA−XB

)
, (3.17)

with the probability evaluated from the normal distribution (or, alternatively, from

a Student’s T-distribution). The outcome of the test is either to declare the grid

sufficient if the P-value is less than some specified α or, if not, to declare the test

inconclusive and thus be forced to refine the grid. Note that α is the user-specified

allowed probability of a Type I error. Also note that the criterion of a P-value

< α can equivalently be stated as |XA −XB| < ∆0 − zα/2 SXA−XB
with the critical

zα/2 computed from the normal distribution. In other words, the difference between

the QoIs computed on the different grids must be less than ∆0 by some margin

determined by the standard error and the required confidence level in order to

declare the grid sufficient.

Given the high computational cost of running on a refined grid, it is important

that the hypothesis test declares the grid sufficient when it really is. Failure to do

so is a Type II error, the probability β of which can be quantified only for a specific

statement about the grid sufficiency. For example, we may require a specific value

of β when the true difference of means is some fraction γ of the allowed tolerance,

i.e., when |µXA
− µXB

| = γ∆0. The probability of a Type II error is then

β = P

(
Z < zα/2 −

(1− γ)∆0

SXA−XB

)
. (3.18)

The main value in stating the question of grid sufficiency as a hypothesis test

is the explicit acknowledgment that the conclusion carries uncertainty. Aside from

being valuable in itself, this also allows us to transparently encode our tolerance for

different types of errors. A Type I error implies erroneously trusting the results on

an insufficient grid; this is a serious error, and one should thus assign a low value
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to α. A Type II error implies unnecessarily running on a further refined grid; this

costs additional computational resources but is otherwise harmless, and one should

thus assign a relatively larger value to the required βreq.

The process is then to first choose values for the parameters ∆0, α, βreq, and

γ, and then to run simulations on grids A and B until either the P-value < α (and

thus stop and declare the grid sufficient) or β < βreq (and thus stop, declare the grid

insufficient, and proceed to create a finer grid).

3.5.3.3 Optimal averaging times

An interesting benefit of the hypothesis testing formulation outlined above is

that it allows for the optimal averaging times on the different grids to be estimated.

While many LES studies in practice have used the same averaging time on the

different grids, this is in fact not the optimal use of resources.

Suppose that we average the two simulations for T̂A and T̂B units of time.

The standard error of the mean in a single simulation is then ∼ τdecorr σ
2/T̂ , where

τdecorr is a decorrelation time and σ2 is the variance of the signal. We could then

estimate the product τdecorr σ
2 (which we label ψ2 here) as Ti S

2
X i

from prior results.

Assuming that the decorrelation time and the signal variance are approximately

equal on the different grids (which should be true as we approach grid sufficiency),

we can then estimate the standard error of the difference in sample means after

arbitrary averaging times as

ŜXA−XB

(
T̂A, T̂B

)
= ψ

√
1

T̂A
+

1

T̂B
,

with ψ2 = τdecorr σ
2 estimated from existing data as either

ψ2 ≈ TAS
2
XA
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(using data from a single previous grid; e.g., if one has not yet started running on

grid B) or

ψ2 ≈
TAS

2
XA

+ TBS
2
XB

TA + TB

(using data from two previous grids; e.g., if one has started running on both grids).

Note that the second estimate is an approximate pooled variance; this estimate

is biased without assumed knowledge of the decorrelation times, but presumably

better than not using data from both grids if available.

The optimal averaging times are those that produce a given standard error at

a minimal computational cost. Modeling this cost as cAT̂A+cBT̂B and imposing the

constraint

ŜfA−fB

(
T̂A, T̂B

)
= ŜEreq ,

the optimal solution can be found using a Lagrange multiplier as

T̂A,opt =
ψ2

ŜE
2

req

(
1 +

√
cB
cA

)
,

T̂B,opt =
ψ2

ŜE
2

req

(
1 +

√
cA
cB

)
.

(3.19)

The ratio of the optimal averaging times is thus simply T̂A,opt/T̂B,opt =
√
cB/cA.

For example, if one grid is four times more expensive than the other, the optimal

choice is to average for twice as long on the cheaper grid.

If an estimate of ψ2 is available, then the results of Eqn. (3.19) can also be

used to estimate the maximum averaging time required, by using

ŜEreq =
(1− γ)∆0

zα/2 + zβreq
, (3.20)

which is required to produce the desired power (or Type II error) in the hypothesis

test. Clearly, the optimal averaging times increase for greater desired confidence
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Algorithm 2 Grid Convergence as a hypothesis testing.

1: procedure ( α, β, ∆0, γ, Grids)

2: compute ŜEreq from Eq. (3.20)
3: Run Grid A (cheapest), compute first estimations and optimal times using

equation 3.19.
4: Run Grid B and test the null hypothesis.
5: while 2P (Z < z0) ≥ α & T ≤ T̂opt do

6: Keep running Grids A and B till the optimal times, T̂Aopt and T̂Bopt, and
7: Test the null hypothesis.

8: if 2P (Z < z0) ≤ α then
9: Conclusive test. Grid B is sufficient with a (1-α) confidence.
10: else
11: Inconclusive results. Test declared Grid B insufficient with a power of (1

-β).
12: Restart from step 2.
13: Grid B ⇒ Grid A
14: Finer Grid ⇒ Grid B

(lower α and βreq, thus larger zα/2 and zβreq), smaller allowed tolerance ∆0, and for

larger values of γ. The latter should be interpreted as follows: it is more expensive

(larger averaging times) to require a specific probability βreq of a Type II error

(unnecessarily running on a refined grid) when the true difference is close to the

tolerance ∆0 than when the true difference is closer to zero.

A computationally affordable path to find grid sufficiency is detailed in al-

gorithm 2. Before executing it the experiment has to be designed, in which the

parameters α, β, γ, and ∆0 have to be set.

3.5.3.4 Application to Base Case 2

The proposed methodology for assessing grid sufficiency is demonstrated on

Base Case 2 with the aerodynamic drag coefficient as the QoI. The flow is computed

on three different grids, with key details listed in Table 3.7. The table shows the

maximum values of the mesh resolution at the wall in viscous units and grid spacing

along the edge of the boundary layer, where ξ, η, and z denote the airfoil azimuthal,
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cells max ∆ξ+
i at wall max ∆ξi/δ at BL edge cost

Grid 1 1960×664×156 (36.1, 1.35, 17.3) (0.12, 0.019, 0.056) 1.0
Grid 2 2400×800×192 (29.3, 1.05, 14.1) (0.10, 0.016, 0.048) 2.8
Grid 3 3072×800×256 (23.0, 1.05, 11.0) (0.07, 0.015, 0.028) 7.8

Table 3.7: Details on the computational grids, with directions ordered as stream-
wise, wall-normal, and spanwise. The normalized computational cost includes the
number of time steps.

wall normal, and spanwise directions, δ is the boundary layer thickness, and all

values are after the tripping. Each grid has 1.25 times more points in each direction

than its predecessor, with the exception of the wall normal direction from gLES2 to

gLES3, since the mesh resolution at the wall, ∆η+, and at the boundary layer, ∆η/δ,

achieved values representative of good quality LES simulations.

Note that the initial transients have been discarded and t = 0 is considered

the start of the averaging, and that all times have been non-dimensionalized with

the chord and the freestream velocity.

To illustrate the method, we choose the tolerance ∆0 = 4×−4 and α = 0.01

(zα/2 = 2.58); in other words, we want to be 99% confident that the drag coefficient

differs by at most this tolerance between the final two grids. We also choose γ = 0.85

and βreq = 0.05 (zβreq = 1.65); if the true difference between the grids is 85% of the

allowable tolerance, then we want to be 95% certain of declaring the grid sufficient

and thus avoiding having to create a finer grid.

The first step in determining grid sufficiency is to run on grids 1 and 2. The

cost ratio of these grids is 2.8, and thus the optimal ratio of averaging times is
√

2.8 ≈ 1.67; we should therefore advance the simulations on grids 1 and 2 with that

particular ratio until either the P-value (Eqn. 3.17) drops below α or the Type II

error probability β (Eqn. 3.18) drops below βreq. The results are shown in Fig. 3.10

(left column). The P-value never reaches low levels (i.e., we are never close to

declaring the grid sufficient), and we thus stop the simulations when the probability

of a Type II error β reaches its required level after about T1 ≈ 18 and T2 ≈ 11.
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Figure 3.10: Results of the grid sufficiency tests, comparing grids 1-2 (left) and grids
2-3 (right). Top Figures: drag coefficient vs time for both grids (the coarser grid
has the longer signal), with the tolerance ∆0 visualized as the red errorbar. Bottom
Figures: the P-value and Type II error β computed on-the-fly and compared to their
required levels, plotted versus the time on the finer of the grids.

At this point, we are 95% confident that the grid is insufficient and we, therefore,

create grid 3.

The cost ratio between grids 2 and 3 is the same and thus the optimal ratio

of the averaging times is
√

2.8 ≈ 1.67. Since we already have results with T2 ≈ 11

we would start by running grid 3 up to T3 ≈ 11/1.67 ≈ 6.6. If neither condition has

been met, we would then advance the simulations on grids 2 and 3 at the optimal

ratio T2/T3 ≈ 1.67 until either condition is met. In the present case, this occurs

after T2 ≈ 16 and T3 ≈ 9.5, when the P-value drops below the required α = 0.01

level as can be seen in Fig. 3.10. At this point we are 99% confident that the grid

is sufficient.

In practice, a user would presumably first run on grid 1 to get an initial view

of the results before asking whether the grid is sufficient. In that spirit, imagine

that grid 1 had been averaged for a time of T1 = 25. The logical process is then to

run on grid 2 until either T2 = 25/1.67 ≈ 15 or one of the conditions before are met.

In this case, the β requirement would be met after T2 ≈ 9; earlier than the optimal

scenario due to the additional averaging of signal 1.

48



3.5.4 Verification: Comparison against the Nek5000 code

To verify the Tortuga LES solver when computing a flow past a wing, a

large eddy simulation of an incompressible flow over a NACA 0012 profile with

zero incidence and Reynolds number Re = 4 × 105 is performed. Tortuga re-

sults are compared against results of the Nek5000 code, developed by Fischer,

Lottes and Kerkemeier [43], and obtained by Tanarro et al. [2]. The boundary

layers are tripped at the same location in both studies. The grid used in this

case is gLES3, which for zero incidence has the following maximun spatial resolu-

tion at the wall in viscous units of max(∆ξ+ = 22.0,∆η+ = 1.0,∆z+ = 10.0),

where ξ, η, and z denote the airfoil azimuthal, wall normal, and spanwise direc-

tions, respectively. A maximum grid spacing along the edge of the boundary layer

of max(∆ξ/δ = 0.08,∆η/δ = 0.016,∆z/δ = 0.036), where δ is the boundary layer

thickness. All values are after the tripping. It is worth noting that, although the

tripping point is the same, the tripping mechanism between this study and the study

of Tanarro et al. [2] is different, causing some differences near the tripping region.

Important boundary layer quantities obtained by the current study are shown and

compared with the benchmark in Fig. 3.11. Here, the black solid lines are the results

of the present study, and the blue dash-dotted lines are the results of Tanarro et

al. [2]. Figures 3.11(a) -(c) show the friction velocity at the wall, uτ , the momentum

thickness, θBL, and the streamwise velocity at the edge of the boundary layer, Ue,

along the airfoil chord, respectively. Figure 3.11(d) exhibits the skin friction coef-

ficient, cf = τw/(1/2ρU
2
e ), as a function of Reθ = U∞θ/ν. Figures 3.11(e) and (f)

display the boundary layer thickness, δ, and displacement thickness, δ∗, along the

airfoil chord, respectively.

Despite the difference in the tripping mechanism, good agreement is observed

for the relevant boundary layer quantities. The main difference between the two
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studies is seen in the values of the boundary layer thickness, which is shown in

Fig. 3.11(d). The reason for this could be that the Tortuga tripping mechanism

increases the projected frontal area of the airfoil, causing a thicker boundary layer.

Figures 3.12(a) - (c) show a comparison of the velocity profiles, ut
+, at x/c =

0.3, x/c = 0.65 and x/c = 0.9, respectively. Here, black solid lines are the results

of the present study and the blue dash-dotted are the results of Tanarro et al. [2].

Figures 3.12(d) - (f) display the profiles of the Reynolds stress tensor components,

u2
t

+
, u2

n

+
, w2

+
, and utun

+, at x/c = 0.3, x/c = 0.65 and x/c = 0.9, respectively.

Good agreement is seen in these profiles.
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Figure 3.11: Boundary layer quantities along the airfoil chord for Base Case 1; (a)
friction velocity at the wall; (b) momentum thickness; (c) streamwise velocity at
the edge of the boundary layer; (d) skin friction coefficient as a function of Reθ;
(e) boundary layer thickness; (f) displacement thickness. Black solid lines are the
results of the present study, and the blue dash-dotted line are results of Tanarro et
al. [2]
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Figure 3.12: (a) - (c) Mean-velocity profiles in inner-scaled units at x/c = 0.3,
x/c = 0.65 and x/c = 0.9, respectively; (d) - (f) Reynolds stress tensor components
in inner-scaled units at x/c = 0.3, x/c = 0.65 and x/c = 0.9, respectively. Solid lines
are the results of the present study, and the dash-dotted lines are from Tanarro et
al. [2]
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Chapter 4: Reynolds-averaged Navier-Stokes

This study required the development and use of a RANS solver for several rea-

sons. First, the current state-of-the-art method to compute the sensitivity in design

and engineering is based on RANS models. Since the assessment methodology con-

siders a direct comparison against the current state-of-the-art method in industry,

the RANS solver is used to compute the sensitivity of the QoI as the finite-difference

in the parametric space. Second, the linearized problem is based on the non-linear

RANS model, therefore, the formulation and implementation of the RANS solver

facilitated the implementation of the linearized RANS. Third, one of the most com-

mon assumptions in standard sensitivity analysis using RANS is to assume the eddy

viscosity is constant when perturbing the flow (known as the “frozen eddy viscosity

assumption” or “frozen turbulence” [44–47]). In order to assess the impact of this

assumption on the sensitivity predictions, a non-linear RANS frozen eddy viscosity

solver was derived from the standard RANS solver.

The RANS solver developed by the author follows a standard approach but

its formulation and verification are shown in this document for completeness and

credibility.

4.1 Mathematical formulation

The derivation of the governing equations for RANS follows that of LES,

except for a replacement of the filter operation 〈̃·〉 with an averaging operation 〈·〉.

The Reynolds-averaged Navier-Stokes (RANS) equations for an incompressible and
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density constant flow of a Newtonian fluid in Cartesian tensor notation are

∂ui
∂xi

= 0 , (4.1)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+
∂
(
2νSij − u′iu′j

)
∂xj

, (4.2)

where the mean velocity and pressure used in RANS are represented as ui and p,

for simplicity.

4.1.1 Turbulence modeling

The current study only considers the constitutive relation (or Boussinesq as-

sumption) for modeling the Reynolds stress tensor. The Reynolds stress is modeled

as

− u′iu′j = τij = 2νtSij −
2

3
kδij , (4.3)

and equation 4.2 can be re-written as

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+
∂
[
2(ν + νt)Sij

]
∂xj

, (4.4)

where the isotropic part of the Reynolds stress tensor has been absorbed into the

pressure.

The current study uses two models to predict the eddy viscosity, the two-

equation k-ω version 2006 developed by Wilcox [3] and a zero-equation algebraic

model based on the Prandtl’s mixing length. Their formulation are shown here for

purposes of clarity and completeness.

The numerical methods used in this solver are the same as the ones used for

LES in section 3.2.
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4.1.1.1 The k-ω 2006 model

The governing equations for this model are [3]

νt =
k

ω̃
, ω̃ = max

ω,Clim
√

2SijSij
β∗

 , Clim = 7/8 , (4.5)

∂k

∂t
+ uj

∂k

∂xj
= τij

∂ui
∂xj
− β∗kω +

∂
[
(ν + σ∗ k

ω
) ∂k
∂xj

]
∂xj

, (4.6)

∂ω

∂t
+ uj

∂ω

∂xj
= α

ω

k
τij
∂ui
∂xj
− βω2 +

σd
ω

∂k

∂xj

∂ω

∂xj
+
∂
[
(ν + σ k

ω
) ∂ω
∂xj

]
∂xj

, (4.7)

where k is the turbulent kinetic energy, ω is the specific dissipation rate and σ∗, β∗, α, σd,

and σ are closure coefficients.

The k-ω RANS equations can be denoted by

R(vkω, νkωt , k, ω; a) , (4.8)

here, the superscript 〈·〉kω is used to differentiate the solution given by the the k-ω

RANS model from the one inferred using the LES model.

4.1.1.2 Boundary conditions for the k-ω model

In this work, three different configurations - a turbulent incompressible flow

in a plane channel, over a flat plate, and past an airfoil - are used to verify the

solver. Each of the three different configurations makes use of the following bound-

ary conditions for the turbulent kinetic energy: for inflow, a Dirichlet boundary

condition; for no-slip walls, a Dirichlet boundary condition equal to zero; and for

outflow, a homogeneous Neumann boundary condition. For the specific dissipation

rate: the inflow and outflow boundary conditions are similar to ui and k. How-
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ever, the boundary condition for a no-slip wall is set to be a function of the friction

velocity, as suggested by Saffman for a “slightly-rough-surface” boundary condition

ω =
uτ

2

ν
SR , (4.9)

with SR being the surface roughness factor, defined as

SR =

(
200

ks
+

)2

, k+
s ≤ 5 . (4.10)

4.1.1.3 Prandtl’s algebraic eddy viscosity model

The eddy viscosity model using Prandtl’s mixing length hypothesis is

νt = κ2d2 |S|D , (4.11)

where |S| is the magnitude of the strain rate tensor

|S| =
√

2SijSij, (4.12)

D is the VanDriest damping function given by

D =

[
1− exp

[−d+

A+

]]2

, (4.13)

κ and A+ are model constants, and d is the wall-normal distance.

4.2 Verification: RANS of plane channel flow at Reτ = 395

A turbulent incompressible flow in a plane channel at Reynolds number Reτ =

395 is used as a first verification case for the RANS solver. The channel has a

periodic boundary condition in the streamwise and spanwise directions and a no-
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Figure 4.1: Turbulent channel flow at Reτ = 395; (a) velocity profile; (b) turbulent
kinetic energy; (c) production of turbulent kinetic energy; (d) dissipation of turbu-
lent kinetic energy. All profiles are in viscous units. The black solid lines are the
results obtained from the in-house RANS solver and the blue dash-dotted lines are
the results from Wilcox [3].

slip boundary condition at the walls. The spatial resolution at the wall in viscous

units is ∆η+ = 0.1, where η denotes the airfoil wall normal direction. The k-ω

model is used and results are compared with results from Wilcox [3]. Figures 4.1

(a) to (d) show profiles in viscous units for velocity u+ = u/uτ , turbulent kinetic

energy k+ = k/u2
τ , production of turbulent kinetic energy P+ = ντij∂ui/∂xj/u

4
τ ,

and dissipation of turbulent kinetic energy ε+ = νβ∗kω/u4
τ , respectively. The black

solid lines are the results obtained from the in-house RANS solver and the blue

dash-dotted lines are the results from Wilcox [3]. One can see that the in-house

solver matches the results of the benchmark, and it captures the model’s intended

behavior.
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4.3 Verification: RANS of the flow over a flat plate at ReL = 5×106

A turbulent flow over a flatplate at Reynolds number ReL = 5 × 106 is used

as a second verification case for the in-house solver. The k-ω model is used. As a

benchmark, the results obtained from the CFL3D code published at the Turbulence

Modeling Resource (TMR) [4] are used. The boundary conditions are as follows.

The inflow uses a Dirichlet boundary condition in which a uniform flow is set, the

outflow uses a homogeneous Neumann boundary condition, the top uses a freestream

boundary condition, and the solid wall has two conditions: a symmetry, or slip,

boundary condition from the inflow (x=-0.5) to x=0, and then a no-slip boundary

condition from x=0 to the end. The spatial resolution at the wall in viscous units

is ∆η+ = 0.12, where η denotes the airfoil wall normal direction. The results are

shown and compared with the results from CFL3D in Fig. 4.2. The black solid lines

are the results obtained from the in-house RANS solver and the blue dash-dotted

lines are the results from CFL3D. Figure 4.2 (a) shows the skin friction coefficient

as a function of x. Figures 4.2 (b) to (d) show profiles in viscous units for velocity,

turbulent kinetic energy, and eddy viscosity, respectively. One can see that the in-

house solver matches the results of the benchmark. Furthermore, Figs. 4.2 (e) and

(f) show the behavior of turbulent kinetic energy and eddy viscosity in the viscous

sublayer. It can be seen that these turbulent quantities behave as

k+ =
k

u2
τ

∼ (y+)3.3, ω+ =
ων

u2
τ

∼ 1

(y+)2
, ν+

t =
νt
ν
∼ (y+)5.3 . (4.14)

The fact that these quantities goes as these particular power laws means two

things. First, it verifies the results obtained by the in-house solver, particularly

the turbulent quantities in this case, follow the originally designed behavior in the

viscous sublayer [48]. Second, it explains why the k-ω model requires a finer grid

spacing near the wall, where usually a value of η+ ≤ 0.1 is suggested.
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Figure 4.2: Turbulent flatplate flow at Rex=1 = 5× 106; (a) skin friction coefficient
profile as a function of x; (b) velocity profile at x = 1.0; (c) turbulent kinetic energy
as function of y at x = 1.0; (d) eddy viscosity as function of y at x = 1.0; (e)
behavior of the turbulent kinetic energy in the viscous sublayer; (f) behavior of
the eddy viscosity in the viscous sublayer. All profiles are in viscous units. The
black solid lines are the results obtained from the in-house RANS solver and the
blue dash-dotted lines are the results from CFL3D. The red solid line represents the
respective slope in figures (e) and (f).
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4.4 RANS of a turbulent flow past a NACA 0012 profile

4.4.1 Verification: RANS of the flow past a NACA 0012 profile at

Re = 6× 106 and two angles of attack, θ = 0◦ and θ = 10◦

Two cases are chosen to verify the RANS solver on a wing. In both cases, we

use a flow past an airfoil NACA 0012 at a Reynolds number Re = 6 × 106. In the

first case, we use an angle of attack θ = 0◦, while the second case uses an angle of

attack θ = 10◦. As a benchmark, we use results obtained from the CFL3D code

mentioned in the previous section. A symmetric body-fitted O-grid block with a

computational domain of 500 chords is used. For these two particular cases, the

NACA0012 profile used differs from the one used throughout this study. It has a

sharp trailing edge, and it uses the revised NACA 0012 formula given in [4] (https:

//turbmodels.larc.nasa.gov/naca0012_val.html). The sharp trailing edge is

used only in these two cases for purposes of comparison against benchmark results.

The boundary conditions are as follows. The outer farfield circumference uses a

freestrem boundary condition, and the solid wall is set to use a no-slip boundary

condition. Results are show and compared with results from CFL3D in Fig. 4.3.

The black solid lines are the results obtained from the in-house RANS solver and

the blue dash-dotted lines are the results from CFL3D. Figures 4.2 (a) and (b)

show the skin friction coefficient and pressure coefficient profiles as a function of x/c

for θ = 0◦. Figures 4.2 (c) and (d) show the skin friction coefficient and pressure

coefficient profiles as a function of x/c for θ = 0◦.
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Table 4.1: Grid spacing information for three different grids used in the RANS
convergence study.

Grid max(∆η+) CD CL
gRANS1: 1920×658 (0.15) 0.0153238 0.534848
gRANS2: 2400×750 (0.12) 0.0150800 0.535400
gRANS3: 3072×940 (0.095) 0.0147847 0.536801

4.4.1.1 Freestream boundary conditions for k and ω

In this work, when solving the RANS model of a turbulent flow past a NACA

0012, the farfield values of k and ω are set as

ωfarfield =
5U∞
L

, kfarfield = 1× 10−6U2
∞ (4.15)

As suggested in the TMR website, The farfield boundary condition for k in equa-

tion (4.15) corresponds to a freestream turbulence level of 0.08 [4]

4.4.2 RANS of Base Case 2: θ = 5◦ and Re = 4× 105

The in-house RANS solver is used to predict the aerodynamic coefficients for

Base Case 2 from Table 1.1. A two-dimensional and symmetric body-fitted O-grid

block is used to simulate a turbulent flow past an airfoil. The grid domain and

the airfoil trailing edge are the same as the ones shown in Figs. 3.3 (a) and (b),

respectively. A traditional grid convergence study in which the relative change

in the aerodynamic coefficients between grids is used to decide wether these QoIs

converge. The relevant information for the three finest grids used in this study is

shown in Table 4.1. The relative change seen CD and CL between gRANS1 and gRANS2

is 2.05 percent and 0.26 percent, respectively. The relative change in CD and CL
between gRANS1 and gRANS2 is 1.5 percent and 0.09 percent. If the threshold is set at

∆ = 2 percent, one can declare the aerodynamic coefficients grid converged and the

values of grid gRANS3 are used.
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Figure 4.3: Turbulent flow past an airfoil NACA 0012 at a Reynolds number Re =
6 × 106 and two angles of attack, θ = 0◦ and θ = 10◦; (a) skin friction coefficient
profile as a function of x/c for θ = 0◦; (b) pressure coefficient profile as a function of
x/c for θ = 0◦; (c) skin friction coefficient profile as a function of x/c for θ = 10◦; (d)
pressure coefficient profile as a function of x/c for θ = 10◦. The black solid lines are
the results obtained from the in-house RANS solver and the blue dash-dotted lines
are the results from CFL3D. The black square dots in figure (b) are experimental
results obtained by Gregory and O’Reilly and obtained from [4].
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Chapter 5: Finite-difference sensitivity

Finite differences (FD) in the parametric space is the method that obtains the

closest approximation to the true sensitivity of Jj in the context of LES. The sen-

sitivity ∂Jj/∂ai can be approximated by computing the difference of Jj from n+ 1

different LES runs, one at ai,b and n at ai,p = ai,b + ∆ai, where n is the order of the

finite-difference stencil, the subscripts b and p represent base and perturbed condi-

tions, respectively, and ∆ai will vary accordingly. In this research, the sensitivity

∂Jj/∂ai computed using a first-order forward finite-difference stencil, is considered

to be the true value. This FD-sensitivity is used as the benchmark against which

the results obtained by the current state-of-the-art (fully RANS-based) and the pro-

posed MFSA methods will be compared. However, when computing the sensitivity

of a time-averaged quantity using finite-differences, two types of errors are inher-

ently incurred: “TR error”, or the truncation error due to finite-differencing, and

“AV error”, or the uncertainty due to insufficient average of the QoI.

The FD-sensitivity of CD with respect to Re using a first-order forward finite-

difference stencil from LES is given by

dCD
dRe

∣∣∣∣
FD

≈ CD(v(Rep))− CD(v(Reb))

∆Re
− ∆Re

2

d2CD
dRe2︸ ︷︷ ︸

TR error

±
CICD(v(Rep))−CD(v(Reb))

∆Re︸ ︷︷ ︸
AV error

, (5.1)

The same equation applies for all other QoIs. In this chapter, the in-house LES

solver (already verified) is used to approximate the true sensitivity for Base Case

2. The RANS solver (also verified) is going to be leveraged to approximate the
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truncation error. The statistical procedure presented in section 3.5 is used to assess

the behavior of the uncertainty due to insufficient averaging of the QoI.

5.1 TR error: Truncation error due to finite-differencing

Truncating the finite-difference series expansion to the first-order results in an

error, which is a function of ∆Re. To compute the truncation error, one should

ideally run a suite of large eddy simulations at different Reynolds numbers, followed

by the statistical convergence and the computation of the sample mean of Jj for each

simulation. However, the computational cost of such an approach is prohibitively

high in this study. Instead, because the flow around the airfoil remains attached for

Base Case 2, the RANS solver is leveraged to approximate the truncation error.

A suite of RANS at θ = 5◦ with different Reynolds numbers are solved. Fig-

ures 5.1(a) and (b) show the curves of ∆CD = CD(vkω(Rep)) − CD(vkω(Reb)) and

∆CL = CL(vkω(Rep))−CL(vkω(Reb)) plotted against ∆Re = Rep−Reb, respectively.

The blue square dots represent the discrete values obtained by solving the RANS,

and the black solid line is a least-squares fit quadratic polynomial interpolated from

these square dots. This least-squares fit is leveraged to approximate the analytical

sensitivity at Reb. The approximated analytical sensitivities computed from the

least-square fit are denoted from here on as dCD/dRe|lsq and dCL/dRe|lsq and are

reported in Table 5.4.

Figures 5.2(a) and (b) show the FD-sensitivities in blue solid lines for dCD/dRe|FD
and dCL/dRe|FD, respectively. The FD-sensitivities are shown as functions of ∆Re,

and compared against the approximate analytical sensitivity (black solid line) com-

puted at Reb. One can see that, as ∆Re increases, the blue lines diverge from the

black lines. The difference between these two lines is an approximation of the trun-

cation error. Also, it is observed that truncation error behaves linearly within the

span of ∆Re shown in the plot.
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Figure 5.1: Curves of (a) ∆CD = CD(vkω(Rep)) − CD(vkω(Reb)) and (b) ∆CL =
CL(vkω(Rep))− CL(vkω(Reb)), plotted against ∆Re = Rep −Reb.
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Figure 5.2: Behavior of the sensitivity using finite-difference (blue solid line) and
analytical derivative (black solid line) computed at Reb for (a) CD and (b) CL.
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The absolute relative difference between the approximate analytical and the

finite-difference sensitivity is plotted in Figs. 5.3(a) and (b). One can see, for ex-

ample, that using a ∆Re = 1 × 105 would create a TR, or truncation, error of

approximately 10 percent and 15 percent in the sensitivity values of CD and CL,

respectively. Having an approximation of the behavior of the TR error is going to

be useful in section 5.3, in which it is discussed how to obtain an “optimal” ∆Re.
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Figure 5.3: Absolute relative difference between the analytical and finite-difference
sensitivities for (a) CD and (b) CL, respectively.

A similar analysis is done to assess the effects of the truncation error in the

sensitivity of Cf and Cp with respect to Re, and shown in Fig. (5.4). In this figure,

the sensitivities of the skin friction and pressure coefficients are computed using two

different values of ∆Re. The blue dashed lines represent the sensitivities using a

∆Re = 50 and the red dotted lines represents the sensitivities using a ∆Re = 1×105.

The most perceptible effect is observed between 0.1 < x/c < 0.25. In this region,

one can see that the larger the ∆Re, the difference in the transition point shifts

upstream with a lower value for both sensitivities. Similarly, the larger the ∆Re,

the smaller the area inside the curves of dCf/dRe and dCp/dRe.
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Figure 5.4: Effects of the truncation error in the sensitivity of the skin friction
coefficient (left), and the pressure coefficient (right), with respect to the Reynolds
number.

5.2 AV error: Uncertainty due to insufficient averaging of the QoI

Computing the FD-sensitivity of two LES requires computing the difference

between two imperfectly averaged quantities. Following the procedure explained in

section 3.5.2.2, the confidence interval of the FD-sensitivity for CD is computed as

(the same equation applies for CL)

CICD(v(Rep))−CD(v(Reb))

∆Re
=
tα/2,df

√
S2
CD(v(Rep))

+ S2
CD(v(Reb))

∆Re
. (5.2)

In order to quantify the confidence interval of the FD-sensitivity, one would need

to solve two LES. However, before running a second LES, a value of ∆Re has to

be chosen. Currently, the only term known in equation (5.2) is the standard error

for the Base Case, SCD(v(Reb)). To be able to do a prospective analysis, the sample

variance for the perturbed case, SĈD(v(Rep)), is approximated to be the same as the

one found for the Base Case 2. This approximation is made taking into account that

the perturbed case is going to be solved using the same parameters used in Base Case

2, with the only difference being the Reynolds number. With these approximations,
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equation (5.2) can be written as

CICD(v(Rep))−CD(v(Reb))

∆Re
=
tα/2,dfSĈD(v(Reb))

∆Re

√
1

nb,p
+

1

nb,b
, (5.3)

where nb,p and nb,b are the number of batches used to compute statistics for the

perturbed and base cases, respectively. In the particular case in which the number

of batches is the same in both simulations, equation (5.3) reduces to

CICD(v(Rep))−CD(v(Reb))

∆Re
=
tα/2,df
∆Re

√
2S2
CD(v(Reb))

, (5.4)

which computes the lowest confidence interval in the isosurface nb,p + nb,p = C.

In the following analysis, the equation (5.4) is used to estimate the confidence

interval for the FD-sensitivity of CD using the time series shown in Fig. 3.7(b).

Figure 5.5 shows the behavior of the confidence interval as a function of the total

simulation time T ∗s and ∆Re for the Base Case 2. The total simulation time T ∗s

is the sum of both simulation times (base and perturbed cases). In this figure,

the confidence interval estimations are divided by mCD and mCL , the approximate

analytical sensitivity using the surrogate RANS curves. Since all curves use the

same t∗b , doubling the total simulation time T ∗s doubles the number of batches nb.

For example, for a ∆Re = 4 × 104 and ∆Re = 1 × 105, the uncertainties for

different T ∗s are given in Table 5.1. If one chooses a ∆Re = 1 × 105, one would

need an estimated T ∗s = 20 to obtain an uncertainty of 9.8 percent for CD and 33.5

percent for CL. Under the current approximations, the total simulation time T ∗s is

evenly split, meaning that both simulations are required to run for 10 units of time

(the simulation time referenced in this study does not include the initial transient

simulation time).
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Figure 5.5: Confidence interval (equation 5.4) for the FD-sensitivity of (a) drag and
(b) lift coefficients with respect to Reynolds number for Base Case 2. The number
of batches is assumed to be the same in both simulations. The red dash-dotted lines
with circle symbols, the yellow dashed lines with cross symbols, the green dotted
lines with square symbols, the magenta dotted lines, the cyan solid lines with plus
sign symbols, the orange solid lines with asteric symbols, and the black solid lines
with triangle symbols represent the estimation of the uncertainty due to insufficient
averaging for T ∗s = 10, T ∗s = 20, T ∗s = 40, T ∗s = 120, T ∗s = 160, and T ∗s = 260,
respectively.

Table 5.1: Uncertainty due to insufficient averaging for the sensitivity of drag and
lift coefficients with respect to Reynolds number for Base Case 2.

T ∗s
∆Re = 1× 105 ∆Re = 4× 104

CIdCD/dRe (%) CIdCL/dRe(%) CIdCD/dRe (%) CIdCL/dRe(%)

10 13.90 40.85 34.70 102.20
20 9.57 27.02 23.87 67.64
40 6.23 19.65 15.57 48.96
80 4.30 15.58 10.83 38.94
120 3.49 14.13 8.73 35.33
160 2.94 11.38 7.33 28.44
200 2.63 9.87 6.55 24.72
260 2.35 7.64 5.88 19.00
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5.3 Finding the optimal ∆Re to compute the finite-difference sensi-

tivity from LES

To compute the finite-difference sensitivity, one needs to decide what value

of ∆Re to use. This decision affects the finite-difference sensitivity predictions, as

shown in the last two sections. Furthermore, the two types of error (truncation and

insufficient averaging) behave inversely and at different rates when ∆Re changes.

Since this is the closest approximation to the true sensitivity values, it is necessary

to understand the implications of choosing a specific ∆Re value. Figures 5.6(a) and

(b) present the estimations of the finite-difference error (blue dash-dotted line) and

the uncertainty due to imperfect averaging for CD and CL, respectively. Naively, one

could choose a ∆Re = 1×104 which would have a truncation error of 1.5 percent for

CL. However, to achieve a confidence interval of only 20 percent at the same ∆Re,

one would need an estimated total simulation time of 4230 units, which is infeasible

and computationally unaffordable. For that reason, it is pertinent to analyze the

behavior of the equation (5.1) in order to make an educated decision about what

should be the optimal value of ∆Re.

In this section, the word optimal is used to mean the most computationally

affordable approach to obtain a similar error percentage in both types of error for a

QoI. As it is going to be shown, the optimal value of ∆Re depends on which QoI,

the desired precision, and the total simulation time (or computational cost).

Initially, one needs estimations of both types of error and their behavior as

functions of the total simulation time T ∗s and ∆Re, which were presented in the last

two sections. Next, one needs to decide which is the deciding parameter: precision or

computational cost. As shown in Fig. 5.6 there is a trade-off between the uncertainty

due to insufficient averaging and T ∗s . For example, if the decision is to set a tolerable

error to be 10 percent of the true sensitivity, this would set the total estimation time
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required to achieve it. For CD the optimal value would be around ∆Re = 1 × 105

and would require an estimated total simulation time of 20 units (or running both

simulations for at least 10 units of time). However, for CL, the optimal value is

approximately ∆Re = 7.5 × 104 and it will require an estimated T ∗s = 260. A

similar procedure could be done if the computational cost is the limiting factor.

Therefore, the optimal value of ∆Re should be chosen based on the QoI, and a

trade-off between the desired precision and computational cost.

On the other hand, in this study, there is interest in understanding the impact

of each type of error on the FD-sensitivity. As it is going to be shown next, the

two types of error have different effects on the sensitivity profiles of the skin friction

and pressure coefficients. For that reason, two values of ∆Re are chosen and two

Perturbed Cases are solved. The tolerable levels of error are set to be no more

than 10.0 and 20.0 percent for CD and CL, respectively. These levels were chosen

based on the computational resources available. Based on the tolerable levels of

error, the first value chosen in this study is ∆Re = 4 × 104. This requires a total

simulation time of 260 units, evenly split. Under this condition, the second type of

error is dominant with an estimated confidence interval of 5.8 percent for CD and

19.0 percent for CL (the truncation error is 3.4 percent and 5.6 percent, respectively).

This case is named Perturbed Case 1 and the parameters are shown in Table 5.2.

The second value chosen is ∆Re = 1 × 105. This case is named Perturbed Case 2

and the conditions are listed in Table 5.2. In this case, the truncation error is 9.3

percent and 14.0 percent for CD and CL, respectively. Since the intention for this

case is to have a truncation error dominant, one would need a T ∗s > 160. However,

the simulation time for the Base Case 2 has 130 units, which is longer than needed.

In this scenario, equation (5.3) is used to find how much simulation time would be

needed from the Perturbed Case 2 to obtain a confidence interval lower than 14.0

percent for this case. Setting the confidence interval to be less than or equal to 10
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percent, one would need to run Perturbed Case 2 for 45 units of time.
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Figure 5.6: Comparison between the two types of error for (a) CD and (b) CL of
the Base Case 2. The blue dash-dotted lines with diamond symbols represent the
finite-difference error. The red dash-dotted lines with circle symbols, the yellow
dashed lines with cross symbols, the green dotted lines with square symbols, the
magenta dotted lines, the cyan solid lines with plus sign symbols, the orange solid
lines with asteric symbols, and the black solid lines with triangle symbols represent
the estimation of the uncertainty due to insufficient averaging for T ∗s = 10, T ∗s = 20,
T ∗s = 40, T ∗s = 120, T ∗s = 160, T ∗s = 200, and T ∗s = 260, respectively.

Table 5.2: Perturbed Cases
Perturbed Case θ Re

1 5◦ 4.4× 105

2 5◦ 5× 105

5.4 Statistical convergence of the aerodynamic drag and lift coeffi-

cients for the Perturbed Cases

Figures 5.7(a) and (b) show the statistics of the aerodynamic coefficients for

the Perturbed Cases 1 and 2, respectivey. The dotted curves are the instantaneous

aerodynamic coefficients, the black square dots represent the mean for each batch,

ĈD and ĈL, their running sample mean are shown as the solid thick lines, and their

95 percent confidence interval are plotted as the gray shadow region, as functions

of the non-dimensionalized time t∗ = tU∞/c. By looking at them one can see that,
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as expected, when the Reynolds number increases the aerodynamic drag decreases

and the aerodynamic lift decreases. This is confirmed when computing the expected

values of CD and CL in Table 5.3.

Figure 5.8(a) shows the autocorrelation coefficients for the signals shown for

the Perturbed Case 1. For a delayed time of τ > 0.17 both signals are weakly- or un-

correlated. Figure 5.8(b) shows the standard error for CD as a function of the time

per batch t∗b for the same case. There is a region between 0.2 < t∗b < 0.9 where the

standard error is approximately constant. This means that statistics can be drawn

from within the region 0.2 < t∗b < 0.9 to guarantee uncorrelated and independent

samples. Table 5.3 presents the statistics drawn within this region for CD and CL.

Figures 5.9(a) and (b) show the autocorrelation coefficients and the standard

error of CD for the Perturbed Case 2, respectively. Similarly, for a delayed time of

τ > 0.2 both signals are weakly- or un-correlated. Figure 5.9(b) shows the standard

error for CD as a function of the time per batch t∗b . One interesting observation

is that the autocorrelation coefficient shows a weak correlation for delayed times

τ > 0.2 in all three cases. This might be linked to the aerodynamic profile itself.

Table 5.3 presents the statistics of CD and CL for this case.

Table 5.3: Statistics of CD and CL for Perturbed Cases 1 and 2.

Case nb CD SĈD SCD CICD
1 660 0.0154204 9.57×10−5 3.72×10−6 7.31×10−6

2 242 0.0150952 1.08×10−4 6.98×10−6 1.37×10−5

Case nb CL SĈL SCL CICL
1 660 0.50565421 1.45×10−3 5.67×10−5 1.11×10−4

2 242 0.50581463 1.33×10−3 8.59×10−5 1.69×10−4
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Figure 5.7: CD and CL vs t∗ for (a) Perturbed Case 1 and (b) Perturbed Case 2.
The dash-dotted lines are the instantaneous aerodynamic coefficients, CD and CL,
the black square dots represent the mean for each batch, ĈD and ĈL, their running
sample mean, CD and CL are shown as the solid thick lines, and their 95 percent
confidence interval are plotted as the gray shadow region.
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Figure 5.8: (a) Autocorrelation coefficient for CD and CL; (b) Standard error for CD
vs tb. Results for Perturbed Case 1.
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Figure 5.9: (a) Autocorrelation coefficient for CD and CL; (b) Standard error for CD
vs tb. Results for Perturbed Case 2.
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5.5 Comparison of the mean quantities between the Base and Per-

turbed Cases

Before computing the finite-difference sensitivities, it is insightful to compare

the skin friction and pressure coefficient profiles obtained for the different cases.

Figure 5.10 shows the skin friction (upper) and pressure (lower) coefficients for

the Base and Perturbed Cases. The black dash-dotted curves are the results of

the Base Case 2, the blue dashed and red dotted curves are the results for the

Perturbed Cases 1 and 2, respectively. The curves with triangle symbols represent

the upper surface of the airfoil. Several observations are important to highlight.

First, one can see the violent effects of the tripping mechanism between 0.05 ≤ x/c ≤

0.1 illustrated by the identical spikes in the skin friction coefficient on the suction

region, between 0.05 ≤ x/c ≤ 0.075, followed by the sudden decrease in the blowing

region. Downstream near the trailing edge, where the flow is the most turbulent,

the skin friction follows the expected behavior of decreasing as the Reynolds number

increases in both surfaces. However, the most interesting difference is observed in

the region 0.1 ≤ x/c ≤ 0.4, or the transition region. In this region, the upper

surface experiences a sharp transition between 0.1 ≤ x/c ≤ 0.14. This transition

begins earliest in the Perturbed Case 2, followed by the Perturbed Case 1, and

then Base Case 2. The transition observed on the lower surface starts a bit later

and occurs more slowly than on the upper surface. The transition on the lower

surface occurs between 0.155 ≤ x/c ≤ 0.22 for the Perturbed Case 2 and between

0.18 ≤ x/c ≤ 0.26 for the Perturbed Case 1. For the Base Case 2, the transition

starts at x/c = 0.22, and smoothly extends until x/c ≈ 0.4. A similar transition

behavior is observed on the pressure coefficient. There is a sharp transition on the

upper surface between 0.1 ≤ x/c ≤ 0.125, and a slower and delayed transition on

the lower surface between 0.17 ≤ x/c ≤ 0.23.
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Figure 5.10: Skin friction (upper) and pressure (lower) coefficient along the airfoil
surface. The black dash-dotted curve is for the Base Case 2, the blue dashed curve
and red dotted curve are the results for the Perturbed Cases 1 and 2, respectively.
The curves with triangle symbols represent the upper surface of the airfoil.
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Figure 5.11 shows the profiles of the mean velocity and inferred eddy viscosity

at different locations of the airfoil with respect to the wall-normal distance. In this

figure, the black dash-dotted lines are Base Case 2 results, the blue dashed lines

and red dotted lines are the results for the Perturbed Cases 1 and 2, respectively.

The important take-aways that can be drawn from these profiles are the expected

deceleration of the flow in both surfaces and the increment of the eddy viscosity as it

goes downstream. One can observe that the major differences in the velocity profiles

are at x = 0.1 on the upper surface and x = 0.3 on the lower surface, following the

same behavior found in the skin-friction coefficient. The big sharp changes shown

in the inferred eddy viscosity, especially at x/c = 0.3 on the lower surface, are due

to the cutoff condition on the denominator of equation (2.16), in which the value

is set to be zero when SklSkl ≤ threshold, to make sure the inferred values are

well-defined.

5.6 Finite-difference (FD) sensitivity predictions at Base Case 2

Finally, after deciding what ∆Re to use, running the Perturbed Cases, and

computing the QoI’s statistics, it is possible to compute the true sensitivity for

Base Case 2. This section first presents the sensitivities of the skin friction and

pressure coefficients in order to visualize how the truncation and imperfect averaging

errors affect the predictions. Next, the sensitivities obtained by LES and RANS are

compared for the purpose of detailing the major differences between the models.

And last, the sensitivities of the drag and lift coefficients are reported.
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Figure 5.11: Mean velocity and inferred eddy viscosity profiles with respect to the
wall-normal distance, yn/c, at different airfoil locations. The black dash-dotted lines
are Base Case 2 results, the blue dashed lines and red dotted lines are the results
for the Perturbed Cases 1 and 2, respectively. The gray square on the airfoil profile
represents the suction and blowing region.
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5.6.1 Effects of the truncation and imperfect averaging errors on the

FD-sensitivity predictions

The skin friction and pressure coefficient sensitivities with respect to the

Reynolds number are shown in Figs. 5.12 and 5.13, respectively. They are shown as

functions of the airfoil chord and split in lower and upper surfaces. The airfoil sur-

face is symmetrically divided by the leading edge location. In here, the cyan dashed

curves represent the FD sensitivity using a ∆Re = 1× 105 and a T ∗s = 150, the blue

dotted, the orange dash-dotted, and the black solid curves are the FD sensitivity

using a ∆Re = 4× 104 with a T ∗s = 40, T ∗s = 80, and a T ∗s = 215, respectively. The

shadow regions around every curve represent the 95 percent confidence interval. The

gray rectangular area between 0.05 < x/c < 0.1 is the region in which the suction

and blowing is applied.

Several differences are noticeable when the sensitivity is computed using dif-

ferent values of ∆Re. First, the truncation error has a clear effect in the region

0.1 < x/c < 0.5 on both sides of the airfoil. The sensitivity of the transition point

is clearly affected by the ∆Re, having a lower magnitude and shifting upstream on

both sides of the airfoil as the ∆Re increases (the shifting being more noticeable

on the lower surface). The cyan dashed and black solid dCf/dRe curves have their

peaks on the upper surface located at (x/c, dCf/dRe) = (0.1151, 6.62± 0.16× 10−8)

and (x/c, dCf/dRe) = (0.1164, 12.61 ± 0.37 × 10−8). The difference in the peak’s

magnitude on the upper surface between the black solid and the cyan dotted curves

is of 1.9 times for dCf/dRe and 2.0 times for dCp/dRe, respectively. On the lower

surface, the curves’ peak shifts upstream 9.5 percent for dCf/dRe and 11.0 percent

for dCp/dRe. One could argue that the peak of the transition point sensitivity for

the actual dCf/dRe and dCp/dRe could be located further downstream and have a

larger amplitude. If one assumes that the peak’s magnitude and location changes
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Figure 5.12: Sensitivity of the skin friction coefficient with respect to the Reynolds
number using LES. The cyan dashed curves represent the sensitivity using a ∆Re =
1×105 and a T ∗s = 150, the blue dotted, the orange dash-dotted, and the black solid
curves are the sensitivities using a ∆Re = 4 × 104 with a T ∗s = 40, T ∗s = 80, and
a T ∗s = 215, respectively. The shadow regions around every curve represent the 95
percent confidence interval. The gray rectangular area between 0.05 < x/c < 0.1 is
the region in which the suction and blowing is applied.
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linearly with ∆Re (which might not be the case, but useful as a rough estimate), the

peak for dCf/dRe would be located around (x/c, dCf/dRe) = (0.1172, 16.59×10−8).
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Figure 5.13: Sensitivity of the pressure coefficient with respect to the Reynolds
number using LES. The cyan dashed curves represent the sensitivity using a ∆Re =
1×105 and a T ∗s = 150, the blue dotted, the orange dash-dotted, and the black solid
curves are the sensitivities using a ∆Re = 4 × 104 with a T ∗s = 40, T ∗s = 80, and
a T ∗s = 215, respectively. The shadow regions around every curve represent the 95
percent confidence interval. The gray rectangular area between 0.05 < x/c < 0.1 is
the region in which the suction and blowing is applied.

When using a ∆Re = 1 × 105 and different T ∗s values, there were no major

differences on the expected value of dCp/dRe. However, the insufficient averaging has

a noticeable effect on the expected value of dCp/dRe at the leading edge (see Fig. 5.13

lower-left) when computing the sensitivity using a ∆Re = 4×104. A less noticeable

effect is observed at the trailing edge (see Fig. 5.13 right-left). Interestingly, the
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lack of averaging did not have major effects on the transition region between 0.1 <

x/c < 0.5.

The black solid results are the definitive FD-sensitivities regarded as the true

sensitivities for the skin friction and pressure coefficients which will be used for

the remainder of this work. The cyan dashed results are going to be considered to

qualitatively estimate the truncation error.

5.6.2 Finite difference sensitivity predictions at Base Case 2 using

LES and RANS

Comparing sensitivities between the fully RANS-based method, which is the

state-of-the-art in industry, against the finite-difference LES should not be under-

stood as a direct comparison. As explained in chapter 1, one of the purposes of

the proposed method is to complement, rather than replace, the state-of-the-art

method in situations in which sensitivities with higher fidelity are required within

the design process. In other words, one of the objectives of the MFSA method is

to predict the features shown by the finite-difference LES sensitivity (which would

not be predicted by RANS) at the cost of one LES and RANS simulations. With

that clarification, Figs. 5.14 and 5.15 compare the sensitivities of the skin friction

and pressure coefficients obtained by LES and RANS. The black solid and cyan

dashed curves are the results of sensitivities using LES with a ∆Re = 4 × 104 and

a ∆Re = 1 × 105, respectively. The red dash-dotted lines are the finite difference

sensitivity obtained using RANS with a ∆Re = 50.

There are several differences worth mentioning between these predictions.

First, as expected, the sensitivity of the transition point is predicted differently

between the models. In particular, one can see that the sensitivity of the transition

point obtained by the k-ω RANS model is delayed on the suction side and pre-

dicted at (x/c, dCf/dRe) = (0.1454, 2.127 × 10−8) which is located approximately
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0.03 chords downstream when compared to LES. Overall, the largest difference be-

tween the models is seen between 0.1 ≤ x/c ≤ 0.2 on the upper surface and between

0.2 ≤ x/c ≤ 0.4 on the lower surface. Second, the LES sensitivities are approxi-

mately constant for dCf/dRe between 0.6 ≤ x/c ≤ 0.98 on both surfaces; however,

RANS predictions show a slope that becomes larger approaching the trailing edge.
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Figure 5.14: Sensitivity of the skin friction coefficient with respect to the Reynolds
number using LES and RANS. The black solid and cyan dashed curves are the results
of sensitivities using LES with a ∆Re = 4× 104 and a ∆Re = 1× 105, respectively.
The red dash-dotted curves are the finite difference sensitivity obtained using RANS
with a ∆Re = 50. The gray rectangle area between 0.05 < x/c < 0.1 is where the
suction and blowing is applied.
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Figure 5.15: FD-sensitivities for the pressure coefficient with respect to the Reynolds
number using LES and RANS. The cyan dashed and the black solid lines are the
results of the FD-sensitivity using a ∆Re = 1× 105 and ∆Re = 4× 104 using LES,
respectively. The red dash-dotted curves are the RANS FD-sensitivity and uses a
∆Re = 50. The gray rectangle area between 0.05 < x/c < 0.1 is where suction and
blowing is applied.
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Figure 5.16 shows the profiles for the variation in the mean velocity and

the inferred eddy viscosity with respect to the Reynolds number, dut,FD/dRe and

dνt,FD/dRe. The profiles are computed as the finite difference between the Per-

turbed Cases and the Base Case. The black solid and cyan dashed curves represent

the difference between the Perturbed Case 1 and Base Case 2 (∆Re = 4× 104) and

between the Perturbed Case 2 and Base Case 2 (∆Re = 1× 105), respectively. The

red dash-dotted curves are the RANS finite-difference profiles using a ∆Re = 50.The

differences in the profiles of dut,FD/dRe obtained by LES and RANS are aligned with

the differences found in dCf/dRe and dCp/dRe. However, the inferred eddy viscosity

profiles obtained by LES and RANS show some clear differences. First, near the

wall, LES predicts a larger change in the turbulence than RANS in all the pro-

files. At x/c = 0.3 the LES and RANS models predict profiles of dνt,FD/dRe with

different signs on the upper surface. The big sharp changes shown in the profiles

of dνt,FD/dRe, especially at x/c = 0.3 on the lower surface, are due to the cutoff

condition given to the denominator in equation 2.16, as explained in the previous

section.

Finally, the Table 5.4 presents the sensitivity predictions of the aerodynamic

coefficients for Base Case 2 using LES and RANS. Several trends can be observed

from this table. First, the “best available estimates” of the sensitivities of the

aerodynamic coefficients (first two rows) have a similar predictions for dCL/dRe,

with only a relative difference of 4 percent. However, they report different dCD/dRe,

where the RANS predicts a sensitivity twice of the one obtained by LES. Second,

one can see the effects of the truncation error on these sensitivities. The larger the

∆Re the dCD/dRe decreases for RANS, however, for LES increases; and the larger

the ∆Re the dCL/dRe decreases for both models. Third, the truncation error may

have a larger effect on the LES predictions than the ones obtained by RANS.
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Figure 5.16: Profiles for the variation in the mean velocity and the inferred eddy
viscosity with respect to the Reynolds number, dut,FD/dRe and dνt,FD/dRe, plotted
vs wall-normal distance, yn/c, at different airfoil locations. All profiles are computed
by taking the finite-difference between the Perturbed Cases and the Base Case. The
black solid and the cyan dashed lines represent the difference between the Perturbed
Case 1 and Base Case 2 (∆Re = 4× 104) and the difference between the Perturbed
Case 2 and Base Case 2 (∆Re = 1 × 105) using LES, respectively. The red dash-
dotted lines correspond to the difference between the Perturbed and Base cases
using RANS with a ∆Re = 50.

Table 5.4: Comparison of sensitivity predictions of the aerodynamic coefficients for
Base Case 2 using LES and RANS.

Method dCD
dRe
×109 dCL

dRe
×108

FD LES ∆Re = 4× 104 -2.86±0.27 1.61±0.38
dCD/dRe|lsq and dCL/dRe|lsq −4.994 1.687

FD LES ∆Re = 1× 105 -4.39±0.15 0.80±0.19
FD RANS ∆Re = 50 −4.990 1.678

FD RANS ∆Re = 1× 105 -4.53 1.45
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Chapter 6: Linearized Reynolds-averaged Navier-Stokes solver

This study makes use of the linearized Reynolds-averaged Navier-Stokes (LRANS)

to estimate the sensitivity ∂Jj/∂ai. As previously said, the tangent equation method

is more suited for situations in which there are fewer random parameters ai than

QoIs Jj, (Na < NJ). This approach could estimate the sensitivities of each of these

QoI’s with respect to Reynolds numbers by solving Na simulations of the linear

model plus one simulation of the governing model. Furthermore, since the adjoint

method is derived from the linearized RANS, the proposed method represents a

feasibility study for a multi-fidelity sensitivity analysis in which the adjoint could

be used to compute the gradient ∂Jj/∂ai.

In this section, the formulation, implementation and verification of the LRANS

solver is shown for clarity purposes.

6.1 Mathematical formulation

Starting from the mean LES equations (2.12), one can perturb the mean so-

lution about the base flow, i.e., ui → ui + δui, p → p + δp. Additionally, since

the Reynolds numbers is used as the random parameter, the kinematic viscosity is

perturbed as ν → ν + δν. The perturbed mean LES equations can be linearized to

∂δuj
∂xj

= 0 ,

∂δui
∂t

+ uj
∂δui
∂xj

+ δuj
∂ui
∂xj

+
∂δp

∂xi
− ∂

∂xj

[
2νδSij + 2δνSij − δτ ij − δu′iu′j

]
= 0 ,

(6.1)

89



these equations are still exact, but suffer from a closure problem just like standard

RANS equations. Specifically, we need to model the perturbed mean Reynolds plus

subgrid stress, which is accomplished in this work using an eddy viscosity approach.

The eddy viscosity hypothesis for the full Reynolds stress tensor is

u′iu
′
j = −2νtSij +

2k

3
δij , (6.2)

and k = u′ku
′
k/2 is the turbulence kinetic energy. Linearization yields

δu′iu
′
j = −2νtδSij − 2Sijδνt +

2δk

3
δij . (6.3)

We absorb the perturbed mean subgrid stress into the model of the perturbed

Reynolds stress (or, equivalently, we neglect it), and also neglect the perturbed

turbulence kinetic energy. This then yields equation (6.1) for infinitesimal pertur-

bations of the mean equations as

∂δuj
∂xj

= 0 ,

∂δui
∂t

+ uj
∂δui
∂xj

+ δuj
∂ui
∂xj

+
∂δp

∂xi
− ∂

∂xj

[
2(ν + νt)δSij + 2(δν + δνt)Sij

]
= 0 .

(6.4)

This requires the specification of the eddy viscosity νt and its perturbation

δνt. Using an existing RANS turbulence model for νt is not appealing since that

would produce an eddy viscosity that is inconsistent with the LES mean solution.

We therefore use the procedure described in [31] to compute the νt field inferred

from the LES mean solution v as

νt = −
Siju′iu

′
j

2SijSij
. (6.5)

The only term left to predict for closing the equation system (6.4) is the pertur-
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bartion of the eddy viscosity, which models the change in turbulence. In this work,

this term is either assumed to be zero (the “frozen turbulence” assumption), com-

puted as the first-order finite-difference of the eddy viscosity fields at two different

points in the parametric space as

δνt,FD
δν

=
νt(v(Rep))− νt(v(Reb))

νp − νb
(6.6)

and given as input when solving the equation system (6.4), or modeled using Prandtl’s

zero-equation model. In the particular case where the Reynolds number is the per-

turbed parameter, and κ and d are constant, the eddy viscosity perturbation is given

by

δνt = νt

SijδSij
SklSkl

+
d sgn(τw) exp

[
−d+
A+

]
δτw

νA+
√
D|τw|

−
d+ exp

[
−d+
A+

]
δν

νA+
√
D

 , (6.7)

where d is the wall-normal distance, d+ = uτd/ν, D is the Van Driest damping

function, A+ is the damping function constant, and τw is wall shear stress. The

eddy viscosity in equation (6.7) is computed as

νt = κ2d2
∣∣S∣∣D . (6.8)

The finite-difference eddy viscosity perturbation, δνt,FD, is used in two situations.

First, to verify the LRANS solver. Second, to perform the proof-of-concept of the

proposed MFSA method in chapter 7. The linearized equation (2.17) is denoted by

the operator

L(δv, δνt;v, νt, a, δa) = 0 .

The linearized RANS equation is implemented in the same software framework

as used for the LES and RANS.
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6.2 Verification: LRANS of Base Case 2

To verify the LRANS solver, its results are compared against results obtained

by the RANS solver, already verified. Two RANS at θ = 5o with different Reynolds

numbers are solved, R(v, νt; θ, Reb) = 0 and R(v, νt; θ, Rep) = 0, and the finite-

difference sensitivity for all QoIs is computed as

∂J

∂Re

∣∣∣∣
FD

=
J(v(Rep))− J(v(Reb))

∆Re
, (6.9)

and compared against the sensitivity obtained by the LRANS solver as

∂J

∂Re

∣∣∣∣
v(Reb)

= lim
δRe→0


〈
∂J
∂u

∣∣
v(Reb)

, δu
〉

δRe
+

〈
∂J
∂ν

∣∣
v(Reb)

, δν
〉

δRe

 (6.10)

6.2.1 LRANS verification: k-ω eddy viscosity model as benchmark

The sensitivities of the skin friction, pressure, drag and lift coefficients are

predicted using the k-ω eddy viscosity model. Two RANS simulations are solved

using the grid gRANS3 from Table 4.1 at θ = 5o with Reb = 4×105 and Rep = 400025.

Two LRANS simulations are solved using the same gRANS3 grid and different δRe, to

verify its linearity. A comparison of QoIs predictions using RANS k-ω and LRANS

are shown in Table 6.1 and Figure 6.1. The aerodynamic coefficients reported in

this table from the two different approaches have less than a 0.1 percent relative

difference. In Figure 6.1, the black solid lines are the FD-sensitivity from RANS k-

ω,which in this particular case represents the true values, the red dashed blue dotted

lines represent the LRANS solution using δRe = 50 and δRe = 25, respectively.

Two important observations can be noted. First, the LRANS results agree with the

finite-difference results. Second, the LRANS results (properly non-dimensionalized)

are independent of the value of the perturbation, δRe, indicating linearity.
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Figure 6.1: LRANS verification - QoI values along the airfoil chord using the Wilcox
kω eddy viscosity model. (a) sensitivity of the skin friction coefficient. (b) sensitivity
of the pressure coefficient.

Table 6.1: LRANS verification using k-ω eddy viscosity as benchmark. Sensitivity
of dCD/dRe and dCL/dRe for Base Case 2.

Method dCD
dRe

∣∣
Reb

dCL
dRe

∣∣
Reb

R(vkω, νt; θ, Rep)−R(vkω, νt; θ, Reb) = 0 ∆Re = 50 −4.990× 10−9 1.678× 10−8

Surrogate RANS (mCD
and mCL

) −4.994× 10−9 1.687× 10−8

L(δv;vkω(Reb), νt(Reb), δνt,FD, Reb, δRe) = 0 −4.993× 10−9 1.6766× 10−8

Previous results show that the LRANS solver can retrieve the correct sensitiv-

ity for all QoIs. As a clarification, in this section, the FD eddy viscosity perturbation,

δνt,FD, is used. Although it was helful, it is necessary a model to predict it.

6.2.2 LRANS Verification: Prandtl’s eddy viscosity model as bench-

mark

This thesis represents a first attempt towards the prediction of a computation-

ally affordable sensitivity in LES. In that sense, the criteria to select a first model to

predict the change in turbulence due to variations in the design parameters are that

is computationally cheap solving it and that is “simple-enough” to implementing it.

In this attempt, the eddy viscosity model based on Prandtl’s mixing length theory
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is chosen since meets the requirements. This model does not require the solution of

an extra transport equation and its implementation in LRANS, already verified, is

not instrusive.

This section presents the process to verify the eddy viscosity perturbation

model based on Prandtl’s mixing length theory. This algebraic model is going to be

used in the proposed MFSA method. A similar verification process as the one shown

in the previous section is presented here. FD-sensitivity predictions from the RANS

solver using Prandtl’s eddy viscosity model are compared against the LRANS solver

using the eddy viscosity perturbation model based on Prandtl’s. The development,

as previouly said, is for a density constant, and incompressible flow.

The eddy viscosity model using Prandtl’s mixing length hypothesis is

νt = κ2d2 |S|D , (6.11)

In the particular case where the Reynolds number is the perturbed parameter, and

κ and d are constant, the eddy viscosity perturbation is given by:

δνt,P r = νt

SijδSij
SklSkl

+
d sgn(τw) exp

[
−d+
A+

]
δτw

νA+
√
D|τw|

−
d+ exp

[
−d+
A+

]
δν

νA+
√
D

 , (6.12)

A comparison of the skin friction and pressure coefficients predictions using RANS

and LRANS is presented in Figure 6.1. Similarly, profiles of the eddy viscosity

change in the wall-normal direction are shown in Figure 6.3. In this figures, the

blue solid lines are the FD-sensitivity from RANS, and the red dashed lines are the

results obtained by the LRANS solver using the equation (6.7) to predict δνt. From

both figures one can note to observations. First, one can note that the LRANS

results agree with the finite-difference results. Second, and most importantly, the

LRANS solver correctly predicts the change of the eddy viscosity.
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Figure 6.2: LRANS verification - QoI values along the airfoil chord using the
Prandtl’s mixing length eddy viscosity model. (a) sensitivity of the skin friction
coefficient. (b) sensitivity of the pressure coefficient.
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Figure 6.3: LRANS verification - eddy viscosity perturbation model using the
Prandtl’s mixing length. (c) δνt/∆ν profile at x = 0.6. δνt/∆ν profile at x = 0.9
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Chapter 7: Results

This thesis represents the first attempt towards the prediction of a computa-

tionally affordable sensitivity of an LES using the multi-fidelity sensitivity analysis

(MFSA). For that reason, it was not fully known whether the coupling of the differ-

ent fidelity models would be able to predict the main hydrodynamic features of the

QoI’s sensitivity. Similarly, it was assumed that the inferred eddy viscosity was the

only term important in the system of equations (6.4), partly because the literature

review showed that in standard sensitivity analysis it is common to assume a con-

stant eddy viscosity when perturbing the flow, and partly because the importance

of the perturbed eddy viscosity was not fully understood.

This chapter presents the systematic approach followed in this research to

assess the proposed method. The sensitivity predictions obtained by the benchmark

and the fully RANS-based method, which is the state-of-the-art in industry, are

leveraged to: first, prove the feasibility of the MFSA; second, quantify the accuracy

of the MFSA when different models for closure are used; and third, identify the

possible sources of error.

In all plots, the black solid curves show the best available estimate of the true

sensitivity, computed using a finite-difference approximation in parameter space

from two different LES cases spaced ∆Re = 4× 104 apart. The cyan dashed curves

show the finite-difference LES sensitivity using a larger ∆Re = 1× 105, shown here

to provide a sense of the truncation error in the “true” sensitivity. The shaded

regions around these curves represent the 95 percent confidence interval due to the
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imperfect averaging.

7.1 Proof-of-concept

Mathematically, the proposed method should be able to predict the exact

sensitivities provided the exact infinitesimal perturbed mean Reynolds stress, δu′iu
′
j.

In this first attempt, δu′iu
′
j is modeled using

δu′iu
′
j = −2νtδSij − 2Sijδνt +

2δk

3
δij , (7.1)

where νt is approximated by minimizing the error between the deviatoric part of the

Reynolds stress tensor given by high- and low-fidelity models using

νt = −
Siju′iu

′
j

2SklSkl
, (7.2)

and δk is assumed to be close to zero and therefore in this analysis is neglected.

However, there is no direct solution for δνt. This section checks the feasibility of

the MFSA and asks how close its predictions are to the true values if the “best

available estimate” for the perturbed eddy viscosity is given as input. Within the

context of the eddy viscosity constitutive model, the “best available estimate” to

the infinitesimal perturbed eddy viscosity is established as the finite-difference of

the inferred eddy viscosity from the LES of Perturbed Case 1 and Base Case 2

(δνt ≈ δνt,FD), and is computed as

δνt,FD
δν

=
νt(v(Rep))− νt(v(Reb))

νp − νb
. (7.3)

This field is then given as an input to the LRANS model to solve for the solution

perturbation δv. It is important to notice that this approach also carries a truncation

error. However, it is not possible to quantify its impact because there is not access
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to the infinitesimal perturbed eddy viscosity.

Figures 7.1 and 7.2 compare the sensitivities of the skin friction and pressure

coefficients with respect to the Reynolds number using different methods. The

green solid curves are the MFSA prediction using δνt,FD for modeling closure. The

most important observation that can be drawn from these figures is that the MFSA

method is able to predict the general features shown on the true predictions in

both sensitivities. In other words, provided an accurate model for the perturbed

eddy viscosity, the proposed method predicts correctly the different regions on the

airfoil like the laminar region before the tripping mechanism, the sensitivity of the

transition point after the tripping mechanism, the approximately constant behavior

downstream between 0.4 < x/c < 0.9, and even the sharp changes due to the

suction and blowing mechanism. However, despite the use of δνt,FD, there are

some discrepancies between the MFSA and the true sensitivities. The first, and

most noticeable, difference is the delayed start in the sensitivity of the transition

point (difference between the green and black lines in the region 0.1 < x/c < 0.2

in the upper surface, and in the region 0.2 < x/c < 0.4 in the lower surface in

Figs. 7.1 and 7.2). The MFSA predictions have a sharp decrement in the sensitivity

of the skin friction before transitioning, a behavior that the black solid line shows

much less (see Fig. 7.1 lower left). Second, there is a magnitude difference in the

sensitivity of the transition point between the black and green solid lines. The MFSA

under predicts the magnitudes in three of the four points (the exception is on the

lower surface for the skin friction sensitivity in Fig. 7.1). Third, the MFSA using

δνt,FD captures the behavior and magnitude of the skin friction sensitivity at the

leading edge and trailing edge in Fig. 7.1. Fourth, although the proposed method

captures the behavior and magnitude of the pressure coefficient sensitivity on the

upper surface leading and trailing edges, the predictions on the lower surface have

differences at the leading edge and towards the end of the trailing edge in Fig. 7.2.
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However, these discrepancies between the green and black solid lines could be

due to either the limitations of the true sensitivity predictions (truncation error) or

the use of the eddy viscosity hypothesis. In order to separate both types of errors in

the differences between the green and black solid lines, the following section presents

an additional analysis. The inherent truncation error in δνt,FD might have an effect

on the predictions. However, it is not possible to quantify it and therefore is going

to be added to the imperfect modeling error.

7.1.1 Error analysis: imperfect modeling of unclosed terms

To quantify the incurred error when using the eddy viscosity model, one would

solve the MFSA provided the exact infinitesimal perturbed mean Reynolds stress,

and quantify the difference of the results obtained with the ones shown in Figs. 7.1

and 7.2. However, there is no access to the exact perturbed mean Reynolds stress.

For that reason, this term is approximated as the finite-difference from the LES of

the Perturbed Case 1 and Base Case 2 as

δu′iu
′
jFD

δν
=
u′iu
′
j(v(Rep))− u′iu′j(v(Reb))

νp − νb
, (7.4)

and given as input to the LRANS solver. Although δu′iu
′
jFD

is not exact, it is the

“best available estimate” to the infinitesimal value in this study without using any

constitutive model.

Figures 7.3 and 7.4 show similar plots of the sensitivities of skin friction and

pressure coefficients with respect to the Reynolds number. By comparing these

curves, one might be able to differentiate the errors associated to the imperfect

modeling and the inherent errors on the true sensitivities (truncation and imperfect

averaging errors). The first and most noticeable observation is that, when comparing

the green and brown curves at 0.1 < x/c < 0.2 on the upper surface, and at
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Figure 7.1: Sensitivity of the skin friction coefficient with respect to the Reynolds
number. The black solid curve is the “true” sensitivity computed using LES with a
finite-difference over ∆Re = 4× 104. The cyan dashed curve is the same sensitivity
but with a larger ∆Re = 1 × 105. The shaded region around each of these curves
represent the 95 percent confidence interval due to the imperfect averaging. The
green solid curve is the MFSA prediction using the LES-inferred δνt,FD. The gray
rectangular area between 0.05 < x/c < 0.1 is the region in which the suction and
blowing is applied.
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Figure 7.2: Sensitivities for the pressure coefficient with respect to the Reynolds.
The black solid curve is the “true” sensitivity computed using LES with a finite-
difference over ∆Re = 4 × 104. The cyan dashed curve is the same sensitivity
but with a larger ∆Re = 1 × 105. The shaded region around each of these curves
represent the 95 percent confidence interval due to the imperfect averaging. The
green solid curve is the MFSA prediction using the LES-inferred δνt,FD. The gray
rectangular area between 0.05 < x/c < 0.1 is the region in which the suction and
blowing is applied.
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0.2 < x/c < 0.4 on the lower surface for both sensitivities, one can see that the

delayed start in the sensitivity of the transition point may be due to the eddy

viscosity model approximation. Second, the sharp decrement in the sensitivity of

the skin friction before transitioning (green line in between 0.1 < x/c < 0.15 on the

upper surface in Fig. 7.3) seems to be due to the imperfect modeling.

Figure 7.5 shows the profiles for the variation in the mean velocity with respect

to the Reynolds number, dut,FD/dRe, at different airfoil locations. The color scheme

is the same as the previous plot. First, by looking at the location x/c = 0.1 on the

upper surface, the mean perturbed velocity obtained by the proposed method has

the opposite sign to the one obtained by the rest of the predictions, including the

true sensitivity. This aligns with the negative sensitivity in the skin friction on the

same location shown in Fig. 7.3. Overall, Fig. 7.5 shows that, with the exception

of the x/c = 0.1 location, the proposed MFSA method is capable of predicting the

sensitivity of the mean perturbed velocity with respect to the Reynolds number,

provided an accurate closure modeling.

7.1.2 Error analysis: true sensitivity limitations

Now, regarding the limitations of the true sensitivity, one can see make several

observations. First, by looking at the defined trend between the cyan, black, and

brown lines in Figs. 7.3 and 7.4, the magnitude of the peaks in the sensitivity of the

transition point might be underpredicted due to the truncation error. Second, the

discrepancies observed between the green and black lines at the lower surface lead-

ing edge of the pressure coefficient sensitivity may be attributed to the imperfect

averaging of the benchmark, this is based on the fact that the cyan curve shows a

similar profile, and the expected value of this profile has converged. The predictions

using δνt,FD and δu′iu
′
jFD

show a similar behavior. Third, the analysis of the differ-

ence between the green and black lines of the pressure coefficient sensitivity on the
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Figure 7.3: Sensitivity of the skin friction coefficient with respect to the Reynolds
number. The black solid curve is the “true” sensitivity computed using LES with
a finite-difference over ∆Re = 4 × 104. The cyan dashed curve is the same sensi-
tivity but with a larger ∆Re = 1 × 105. The shaded region around each of these
curves represent the 95 percent confidence interval due to the imperfect averaging.
The green solid curve is the MFSA prediction using the LES-inferred δνt,FD. The
brown solid curve is the MFSA prediction using the LES-inferred δu′iu

′
jFD

. The gray
rectangular area between 0.05 < x/c < 0.1 is the region in which the suction and
blowing is applied.
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Figure 7.4: Sensitivity of the pressure coefficient with respect to the Reynolds num-
ber. The black solid curve is the “true” sensitivity computed using LES with a
finite-difference over ∆Re = 4 × 104. The cyan dashed curve is the same sensi-
tivity but with a larger ∆Re = 1 × 105. The shaded region around each of these
curves represent the 95 percent confidence interval due to the imperfect averaging.
The green solid curve is the MFSA prediction using the LES-inferred δνt,FD. The
brown solid curve is the MFSA prediction using the LES-inferred δu′iu

′
jFD

. The gray
rectangular area between 0.05 < x/c < 0.1 is the region in which the suction and
blowing is applied.
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Figure 7.5: Profiles for the variation in the mean velocity with respect to the
Reynolds number, dut,FD/dRe at different airfoil locations. The black solid
curve is the “true” sensitivity computed using LES with a finite-difference over
∆Re = 4 × 104. The cyan dashed curve is the same sensitivity but with a larger
∆Re = 1 × 105. The green solid curve is the MFSA prediction using the LES-
inferred δνt,FD. The brown solid curve is the MFSA prediction using the LES-
inferred δu′iu

′
jFD

.
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lower surface trailing edge is inconclusive.

7.2 Importance of the perturbed eddy viscosity on the proposed

MFSA method

The previous section showed that, provided an accurate closure model, the

proposed multi-fidelity approach is able to predict the sensitivity of the flow. To

create a meaningful method, however, we must define a model that does not require

additional LES runs. The process of inferring the base eddy viscosity from the LES

data at nominal conditions is difficult to improve upon, and the main challenge lies

in the modeling of the perturbed eddy viscosity δνt. For that reason, the following

sections analyze the effects of the perturbed eddy viscosity on the MFSA predictions.

The results of stand-alone RANS finite differencing will also be shown, since this

represents the current state-of-the-art in engineering practice.

7.2.1 Frozen eddy viscosity assumption

Perhaps the easiest and one of the most common assumptions in standard

sensitivity analysis is to assume that the eddy viscosity is constant when perturb-

ing the flow (known as the “frozen eddy viscosity” or “frozen turbulence” assump-

tion [44–47]). This would imply solving the system of equations (6.4) assuming

δνt = 0. Figure 7.6 shows the results obtained when this assumption is used (blue

dotted curves). The frozen eddy viscosity assumption is insufficiently accurate.

None of the important features on the transition region are captured, the predic-

tions at the leading edge and towards the trailing edge on both surfaces for the

pressure coefficient sensitivity have different magnitude and behavior when com-

pared to the the true values. Figure 7.5 shows the profiles for the variation in the
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mean velocity with respect to the Reynolds number, dut,FD/dRe at different airfoil

locations. One can notice that after the suction and blowing region, the velocity

profiles are approximately constant throughtout the remainder of the surface.

These results show the significance of having an accurate perturbed eddy vis-

cosity model on the sensitivity predictions. In addition, and more importantly, the

results confirm that the perturbed eddy viscosity carries the information on how the

turbulence changes when design parameters are changed.
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Figure 7.6: Sensitivities of the skin friction coefficient (left) and pressure coefficient
(right) with respect to the Reynolds number. The black solid curve is the “true”
sensitivity computed using LES with a finite-difference over ∆Re = 4 × 104. The
shaded region around this curve represents the 95 percent confidence interval due
to the imperfect averaging. The green solid curve is the MFSA prediction using the
LES-inferred δνt,FD. The blue dotted curve is the MFSA prediction using the frozen
turbulence assumption, δνt = 0. The gray rectangular area between 0.05 < x/c <
0.1 is the region in which the suction and blowing is applied.

7.2.2 Modelled perturbed eddy viscosity

Having concluded that the perturbed eddy viscosity is crucial, the next natural

step is trying to model it. In this study, as previously explained in chapter 2, the

eddy viscosity perturbation is modeled using Prandtl’s zero-equation model given
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Figure 7.7: Profiles for the variation in the mean velocity with respect to the
Reynolds number, dut,FD/dRe at different airfoil locations. The black solid curve
is the “true” sensitivity computed using LES with a finite-difference over ∆Re =
4 × 104. The green solid curve is the MFSA prediction using the LES-inferred
δνt,FD. The blue dotted curve is the MFSA prediction using the frozen turbulence
assumption, δνt = 0.
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by

δνt,P r = νt

SijδSij
SklSkl

+
d sgn(τw) exp

[
−d+
A+

]
δτw

νA+
√
D|τw|

−
d+ exp

[
−d+
A+

]
δν

νA+
√
D

 . (7.5)

After the verification process shown in chapter 6, the model is used to predict

the perturbed solution δv. This model is chosen because it does not require the

solution of an extra transport equation, meaning it does not add significant cost to

the tangent equation solution, and its implementation is non-instrusive.

Equation 7.5 shows that δv is a function of the base eddy viscosity, among

other variables. In this study, two different base eddy viscosities were used: one

using the inferred eddy viscosity from LES given by equation (7.2) and another

using the standard Prandtl’s formula given by

νt = κ2d2 |S|D . (7.6)

Figure 7.8 presents the sensitivities for the skin friction pressure coefficients with

respect to the Reynolds number. The MFSA predictions using the perturbed eddy

viscosity from Prandtl’s zero-equation model, given by equation (7.5), are shown as

pink dash-dotted curve and orange dashed curves. The pink dash-dotted curves use

νt from LES given by equation (7.2) and the orange dashed curves use νt from the

standard Prandtl’s formula given by equation (7.6). One can notice in this figure

that the profiles in orange are better than the pink ones. First, when using the

inferred eddy viscosity, the sensitivity of the transition point on the lower surface

is not captured in both QoIs. Second, the sensitivity of the transition point on

the upper surface for the skin friction coefficient is three times higher than the

true value. Third, the sensitivity of the pressure coefficient on the lower surface

towards the trailing edge is clearly off. Fourth, when comparing the L2 norm for the
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difference of the skin friction and pressure coefficients sensitivities in the following

section, one can see that quantitatively the predictions using the standard Prandtl’s

formula are better than the pink ones. Thus, using the standard Prandtl’s formula

is the approach chosen for the proposed MFSA method and used to compare against

the fully-RANS based method.
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Figure 7.8: Sensitivities for the skin friction and pressure coefficient with respect to
the Reynolds number. The black solid curve is the “true” sensitivity computed using
LES with a finite-difference over ∆Re = 4 × 104. The shaded region around this
curve represents the 95 percent confidence interval due to the imperfect averaging.
The green solid curve is the MFSA prediction using the LES-inferred δνt,FD. The
pink dash-dotted curve is the MFSA prediction using Prandtl’s zero-equation δνt,P r
with νt from LES given by equation (7.2). The orange dashed curve is the MFSA
prediction using Prandtl’s zero-equation δνt,P r with νt from the standard Prandtl’s
formula given by equation (7.6). The gray rectangular area between 0.05 < x/c <
0.1 is the region in which the suction and blowing is applied.

Figures 7.9 and 7.10 present the sensitivities for the skin friction pressure

coefficients with respect to the Reynolds number. The MFSA predictions using

the perturbed eddy viscosity from Prandtl’s zero-equation model, given by equa-

tion (7.5), are shown as orange dashed curves. Additionally, the red dash-dotted

lines are the finite difference sensitivity obtained using the RANS model with a

∆Re = 50; these results would represent the current state-of-the-art in engineer-

ing practice. Figure 7.11 shows the profiles for the variation in the mean velocity

and inferred eddy viscosity with respect to the Reynolds number, dut,FD/dRe and
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dνt,FD/dRe. The main observation here is that the results of the proposed MFSA

with the perturbed Prandtl model are closer to the true sensitivities in most parts

of the airfoil and at least about the same on the lower surface leading edge when

compared against the results from the fully RANS-based method.

Comparing results from the RANS-based finite-difference method, which has

a computational cost of solving two RANS simulations (one standard forward simu-

lation and either another forward RANS, a linear RANS, or an adjoint RANS sim-

ulation), against the MFSA method, which has a cost of solving one LES and one

RANS, should not be understood as a direct comparison. As explained in chapter 1,

one of the purposes of the MFSA method is to complement, rather than replace, the

fully RANS-based method in situations in which sensitivities with higher fidelity are

required within the design process.

With this clarification, one can make several observations from the Figs. 7.9

and 7.10. First, the MFSA method significantly improves the sensitivity predictions

when compared with the fully RANS-based method on the upper surface of the

airfoil for both quantities of interest. In particular, the proposed method is able

to accurately predict both sensitivities of the transition point on the upper surface,

which would be almost neglected by the fully RANS-based method. On the lower

surface of the skin friction and pressure coefficient sensitivities the MFSA predic-

tions are qualitatively the same as the predictions of the fully RANS-based method,

except between 0.1 < x/c < 0.15, where the MFSA prediction is qualitatively worse.

Although using δνt,P r improves the predictions towards the trailing edge for both

sensitivities when compared against the frozen turbulence assumption, they show

a similar behavior to the ones obtained by the fully RANS-based method, but are

somewhat different to the behavior shown by the true sensitivities. When looking at

Fig. 7.11 one can see that both the MFSA and the RANS-based methods overpre-

dict the dut,FD/dRe by 2 and 2.4 times, respectively, on both surfaces. This could
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explain the different behavior of the skin friction and pressure coefficient sensitivities

towards the trailing edge.
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Figure 7.9: Sensitivities for the skin friction coefficient with respect to the Reynolds
number. The black solid curve is the “true” sensitivity computed using LES with a
finite-difference over ∆Re = 4×104. The shaded region around this curve represents
the 95 percent confidence interval due to the imperfect averaging. The green solid
curve is the MFSA prediction using the LES-inferred δνt,FD. The red dash-dotted
curve is the finite difference sensitivity obtained using RANS with a ∆Re = 50. The
orange dashed curve is the MFSA prediction using Prandtl’s zero-equation δνt,P r.
The gray rectangular area between 0.05 < x/c < 0.1 is the region in which the
suction and blowing is applied.
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Figure 7.10: Sensitivities for the pressure coefficient with respect to the Reynolds
number. The black solid curve is the “true” sensitivity computed using LES with a
finite-difference over ∆Re = 4×104. The shaded region around this curve represents
the 95 percent confidence interval due to the imperfect averaging. The green solid
curve is the MFSA prediction using the LES-inferred δνt,FD. The red dash-dotted
curve is the finite difference sensitivity obtained using RANS with a ∆Re = 50. The
orange dashed curve is the MFSA prediction using Prandtl’s zero-equation δνt,P r.
The gray rectangular area between 0.05 < x/c < 0.1 is the region in which the
suction and blowing is applied.
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Figure 7.11: Profiles for the variation in the mean velocity and inferred eddy viscos-
ity with respect to the Reynolds number, dut,FD/dRe and dνt,FD/dRe, at different
airfoil locations. The black solid curve is the “true” sensitivity computed using LES
with a finite-difference over ∆Re = 4 × 104. The green solid curve is the MFSA
prediction using the LES-inferred δνt,FD. The red dash-dotted curve is the finite
difference sensitivity obtained using RANS with a ∆Re = 50. The orange dashed
curve is the MFSA prediction using Prandtl’s zero-equation δνt,P r.
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7.3 Aerodynamic coefficient sensitivities

Table 7.1 shows the sensitivity predictions of the aerodynamic coefficients for

all methods analyzed. Table 7.2 shows a comparison of the L2 norm for the difference

of the skin friction and pressure coefficients sensitivities, ||dCf/dRetrue − dCf/dRe||

and ||dCp/dRetrue − dCp/dRe||, respectively. Both tables are organized showing the

method with the closest predictions to the true sensitivities first, followed by the

furthest predictions from the true sensitivity predictions. Several observations can

be drawn. First and most importantly, assessing the accuracy of proposed method

by only comparing the aerodynamic coefficients could be misleading. One can see

for example that the MFSA method with Prandtl’s model for closure modeling,

δνt,P r, outperforms all the other methods, and that after the results obtained using

the frozen turbulence assumption, predictions using the MFSA with δu′iu
′
jFD

are the

worst. Second, using the frozen turbulence assumption is clearly wrong, no matter

what metric is used, the predictions using this assumption are the worst when com-

pared to the other alternatives. Third, it seems that the MFSA arguably performs

better at predicting the quantities of interest that are viscous in nature like drag or

skin friction coefficients than the ones that are inviscid in nature like lift or pressure

coefficients. This might be because the Reynolds number is the perturbed parame-

ter. Fourth, Table 7.2 presents a better assessment of the predictions obtained by

the different closure models. It shows that the MFSA with δu′iu
′
jFD

is the most

accurate at predicting the sensitivities and that the MFSA results using the frozen

turbulence assumption is the worst.
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Table 7.1: Comparison of sensitivity predictions of the aerodynamic coefficients for
all methods analyzed.

Method dCD
dRe
× 109 dCL

dRe
× 108

FD LES ∆Re = 4× 104 -2.86±0.27 1.62±0.38
MFSA with δνt,P r -3.01 (+5%) 2.65 (+64%)

FD RANS ∆Re = 50 −4.99 (+75%) 1.68 (+4%)
FD LES ∆Re = 1× 105 -4.39±0.15 (+53%) 0.80±0.19 (-51%)

MFSA with δνt,FD -2.14 (+25%) -0.479 (-129%)

MFSA with δu′iu
′
jFD

-5.11 (+78%) 6.07 (+270%)

MFSA with δνt,FD = 0 -13.9 (+385%) 15.0 (+826%)

Table 7.2: L2 norm for the difference of the skin friction and pressure coefficients
sensitivities, ||dCf/dRetrue−dCf/dRe|| and ||dCp/dRetrue−dCp/dRe|| for all methods
analyzed.

Method ||dCf/dRetrue − dCf/dRe|| ||dCp/dRetrue − dCp/dRe||
MFSA with δu′iu

′
jFD

2.2×10−5 4.4 ×10−4

MFSA with δνt,FD 6.1×10−5 10.8×10−4

MFSA with δνt,P r 6.9×10−5 8.9 ×10−4

FD RANS ∆Re = 50 7.2×10−5 12.8×10−4

MFSA with δνt = 0 7.3×10−5 13.8 ×10−4

MFSA with δνt,P r νt from LES 1.0×10−4 7.6 ×10−4
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Chapter 8: Conclusions and suggestions for future direction

This dissertation proposes and performs the feasibility analysis of a new method-

ology to estimate the sensitivity of chaotic and turbulence-resolving simulations.

The proposed methodology represents a multi-fidelity method for sensitivity analy-

sis, where the low-fidelity model (linearized-RANS in this particular study) is lever-

aged to reduce the computational cost of computing the sensitiviy due to small

perturbations, but recoursing to the high-fidelity model to improve the accuracy of

the prediction. Traditionally, the outcome of an LES or DNS is the prediction of

the QoIs, for instance, the aerodynamic lift coefficient. The outcome of the pro-

posed multi-fidelity sensitivity analysis (MFSA) is, not only the prediction of the

aerodynamic coefficient, but also the sensitivity of the QoI at the extra cost of only

one RANS simulation. The proposed method aims to complement, rather than re-

place, the fully RANS-based method, in situations in which sensitivities with higher

fidelity are required.

Mathematically, the MFSA method should be able to predict the exact sen-

sitivities provided the exact infinitesimal perturbed mean Reynolds stress, δu′iu
′
j.

However, there is no access to this term and therefore it needs to be modeled. In

this study, δu′iu
′
j is modeled using a standard constitutive model, in which the eddy

viscosity, νt, is approximated by minimizing the error between the deviatoric part of

the Reynolds stress tensor given by high- and low-fidelity models; and the perturbed

eddy viscosity, δνt, is modeled using a simple zero-equation model.

A turbulent flow over a NACA 0012 profile at an angle of attack of 5◦ with a
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Reynolds number of 4 × 105 is chosen to assess the proposed method. This profile

is chosen because of the numerous studies and data published for different angles of

attack and Reynolds numbers, and because it is relevant for industrial applications

and engineering design. This angle of attack is chosen to ensure that both aerody-

namic coefficients are larger than zero in a situation in which the flow around the

airfoil remains attached. A moderate Reynolds number is chosen in order to have

computationally affordable wall-resolved large eddy simulations.

A proof-of-concept of the MFSA is done in which the “best available estimate”

for the perturbed eddy viscosity is given as an input to the method and its results

are compared against a benchmark. A solution verification technique based on

statistical analysis and hypothesis testing was developed and implemented to assess

the accuracy of the MFSA’s predictions. In particular, the solution verification

establishes the sensitivity obtained by computing the finite-difference of two different

large eddy simulations as the true value and used to quantify the accuracy of the

MFSA’s predictions. The proof-of-concept indicates that the proposed method is

able to capture the different hydrodynamic phenomena present along the two airfoil

surfaces, provided accurate modeling for the perturbed eddy viscosity, δνt. However,

there were differences between the true benchmark and the MFSA’s predictions.

An error analysis was carried out to identify the sources of error. It was

shown that imperfect modeling introduces errors, like a short delay in the transition

point sensitivity and a sharp decrement in the sensitivity of the skin friction before

transitioning on the upper surface. Likewise, the “best available estimate” for the

perturbed eddy viscosity introduces error because it is, after all, a finite-difference

approximation. On the other hand, some of the discrepancies were due to the

limitations on the benchmark predictions. For example, the truncation error affects

strongly the magnitude and location of the transition point sensitivity; and the

imperfect averaging affects significantly the predictions at the leading edge.
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It is common practice in literature to assume that the eddy viscosity is constant

when perturbing the flow. This study found that this assumption is insufficiently

accurate. None of the important features on the transition region are captured.

The predictions at the leading edge and towards the trailing edge on both surfaces

for the pressure coefficient sensitivity have different magnitude and behavior when

compared to the the true values. But most importantly, the analysis confirmed that

the perturbed eddy viscosity carries the information on how the turbulence changes

when design parameters are changed.

Having concluded that the perturbed eddy viscosity is crucial, the next step

is modeling it. The eddy viscosity perturbation is modeled using Prandtl’s zero-

equation model and compared against the fully RANS-based method. This com-

parison should not be understood as a direct comparison; results from the fully

RANS-based method have a computational cost of two RANS simulations, whereas

the MFSA method has a cost of one LES and one RANS. One of the purposes of the

MFSA method is to complement, rather than replace, the current state-of-the-art

method in situations in which sensitivities with higher fidelity are required within

the design process.

The MFSA method signficantly improves the sensitivity predictions when com-

pared with the fully RANS-based method on the upper surface of the airfoil for both

quantities of interest. In particular, the proposed method is able to accurately pre-

dict both sensitivities of the transition point on the upper surface, which would be

almost neglected by the state-of-the-art method.
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8.1 Publications and presentations

8.1.1 Publications

• Performed the first ever feasibility study and error analysis of the novel multi-

fidelity sensitivity analysis (MFSA) proposed in this work. A paper describing

this work will be submitted to the AIAA Journal at the end of the spring 2022.

• Developed and implemented a way to frame the question of grid sufficiency in

turbulence-resolving simulations as a hypothesis test. This work is currently

under review for the International Journal of Computational Fluid Dynamics.

8.1.2 Presentations

• Two presentations to the Predictive Science Academic Alliance Program III

(PSAAP III) committee review: first at the annual tri-lab support team (TST)

meeting in December 2020, and second at the alliance strategy team (AST)

meeting in September 2021.

• Two presentations at the APS Division of Fluid Dynamics conference in 2019

and 2021.

8.2 Future direction

Although it is clear that the MFSA method signficantly improves the sensi-

tivity predictions when compared with the fully RANS-based (the current state-

of-the-art in practice) method, its full potential would be clearly seen when used

in situations in which the different models (in this case LES and RANS) predict

different base conditions. The method could be used on situations that are close

to the edge of the operational envelope, like a turbulent flow past an airfoil near
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aerodynamic stall. It is known that the LES and RANS models predict different

stall angles. Under drastically different base flows, the proposed MFSA is expected

to outperforms the state-of-the-art method.

Based on the finding that the perturbed eddy viscosity or the perturbed

Reynolds stress are crucial to the MFSA’s predictions, it may be worthwhile ex-

ploring the possibility of developing eddy viscosity and/or Reynolds stress models

that explicitly target the perturbed turbulence quantities. It is clear that all eddy

viscosity and Reynolds stress models are tuned to predict base quantities and there-

fore might not be suited to predict changes in turbulence.

It seems that the MFSA arguably performs better at predicting the quantities

of interest that are viscous in nature like drag or skin friction coefficients than the

ones that are inviscid in nature like lift or pressure coefficients. This might be

because the Reynolds number is the perturbed parameter. It may be worthwhile

exploring the behavior of the MFSA method when an inviscid design parameter is

perturbed, for example the angle of attack for the same case studied in this thesis.
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