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In these days of increasing traffic congestion, increasing energy prices, and 

decreasing transportation funding it is imperative that efficient, alternate 

transportation be maintained.  It is therefore the goal of this thesis to propose an 

Integer Program model for optimizing train consists (the number of cars assigned to a 

particular passenger train) to lower the operational costs while still meeting demand.  

Further benefits are the increased utilization of the existing car fleet of the service 

optimized and the reduction of the overall car fleet required.  All of these goals are 

met by the model contained here-in, and validated through an optimization of 

Amtrak’s Northeast Operations.  The model shows distinct improvements in lowering 

operational costs, reducing the overall fleet required, and increasing car utilization for 

all cases optimized.  These include cases to determine sensitivity analysis, where a 

minimum train length is imposed and where a maximum terminal capacity is 

imposed.  
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Chapter One: Introduction 

With increasing environmental conscience and recent volatility in energy 

prices, the world has been reminded both morally and financially to pursue efficient 

transportation.  According to an Oak Ridge National Laboratory report inter-city rail 

is only surpassed by motorcycles and vanpools in energy efficiency for passenger 

transport (Davis et. al. p.2-14).  This would leave inter-city rail as the logical choice 

for transporting large numbers of people long distances whilst minimizing energy 

usage. 

However, passenger rail is “subsidized throughout the world” (Karush).  It is 

therefore in the best interest of the government agency or operating company to 

minimize costs in order to reduce subsidies and remain competitive within a 

government’s budget.  Since the capital costs of a railroad (tracks, signals, etc.) 

require more time to change than current operations, it is of interest to study the 

operational costs up front.  The operational costs of a railroad are largely driven by 

the number of trains and the consists (number of cars) of each train operated. 

It is with this in mind that this thesis casts a more detailed look unto 

consisting and ridership, so that efficiency might be maximized.  This is proposed to 

be accomplished by better fitting the consists of individual trains to their demand, 

whether it be reducing the consist on a low demand train or increasing the consist on 

a high demand train.  By doing this there will be less unused capacity on each train 

operated.  A train with fewer cars will then operate with lower operational costs than 

the existing train.  By making these adjustments across an entire service area, 

significant cost savings can then be realized. 
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The actual approach utilized is a Mixed Integer Program to match the consists 

to the demand while still balancing the flow of cars across the system.  The balancing 

of car flows is a necessary feature of any approach utilized to this problem since it is 

inappropriate to assume otherwise.  This program utilizes several assumptions to 

accomplish its goals.  These assumptions allow a lean model to be utilized, making its 

implementation feasible for intercity passenger rail agencies and operators without 

intensive resources. 

The proposed model is then applied to source data from Amtrak for the month 

of October, 2005.  Though October, 2005 is not recent data, it is still useful for 

comparative purposes.  Specifically, it is used to compare the model’s proposed car 

assigments to existing car assignments on an intercity passenger rail system.  These 

are compared in terms of operating costs, fleet requirements, and car utilization.  

These are all common measures to determine the costs and efficiency of a passenger 

rail service. 

Finally, a set of conclusions and further recommendations is offered.  The 

conclusions summarize the presented model and its usefulness to an intercity 

passenger rail operator.  The recommendations are offered in order to facilitate 

further research and expansion of the model presented here, as well as to guide the 

implementation of this model within industry. 
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Chapter Two: Literature Review 

2.1 Overview 

Though passenger rail has existed for over a century, research relating to 

passenger rail optimization is a much younger field.  Cordeau et al. (1998) cites 

“early research” as occurring in 1957 for locomotive assignment, though he also 

explains that, “Very little work has been accomplished concerning the assignment of 

locomotives and cars in the context of passenger transportation” (Cordeau 1998 

p.380).  This may be attributable to the fact that passenger trains have existed far 

longer than the study of integer programming and linear programming.  Whatever the 

case may be, there are few passenger-rail specific research papers that may be directly 

referenced here.  Even when the topic is expanded to include transferable freight-rail 

research, the research field remains narrow. 

2.2 Existing Passenger Rail Assignment Research 

Cordeau et al. (2001) and Cordeau et al. (2000) both discuss simultaneous 

locomotive and car assignment heuristics.  However, both of these problems are for 

VIA Rail (the Canadian equivalent of Amtrak) which has a smaller service density 

with far less route overlap.  This makes the model inappropriate for use on the 

network presented here that does feature high service densities and significant route 

overlaps.  Furthermore, VIA Rail had a greater heterogeneity to their locomotive and 

car fleet at the time of both these papers’ publications.  This prevented certain 

assumptions from being made that are made here, such as universal inter-operability.  
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Amtrak’s modern fleet is more homogeneous, allowing the more generalized 

approach proposed here that does feature universal interoperability.  Finally, these 

papers also consider locomotive assignment.  Locomotive Assignment has been 

omitted from this paper to allow a better focus upon coach-car operations.  We 

believe that this focus will allow an intercity railroad to more easily apply the model 

and produce cost savings with utilization improvements. 

Ramani et al. 1992 proposes a Decision Support System (DSS) for Indian 

Railways that could be of use.  However, their approach analyzes links instead of 

trains.  In order to deal with links the system requires accounting for maintenance 

intervals and other periodic occurrences not dealt with here.  Further, the focus on 

links for sizing consists leads to far longer runs for each train set.  Since a longer run 

will most certainly feature greater variations in ridership than a simple train would, 

this approach would allow more operations with lower load factors.  This translates to 

lower utilization, which is an integral part of what this thesis is attempting to 

improve. 

Hong et al. presents an interesting set partition approach to solve train-set 

assignment in Korea.  Train sets are essentially a fixed set of cars, so this is a similar 

problem to the one contained here.  However, Hong et al. approach the problem as a 

weekly-repeating problem with specific equipment requirements.  It therefore 

becomes their goal to minimize the total in-service fleet on a given day, while the 

model approached here is concerned with minimizing operating costs first. 
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Similarly, Cacchiani et al. proposes a model for Train-Units.  However, 

Cacchiana et al. limit any train to a maximum of 2 TUs and incorporate a 

maintenance constraint into their model.  Similar to Hong et al., this model is also 

built to minimize the total number of TUs required across the modeled area. 

Bussieck et al. describes a similar problem to the one contained here, except 

on a single line (rather than a network).  In Bussieck et al.’s model the demand for 

separate classes of service is accounted for, but the simplicity of a single, cyclic line 

hampers the applicability of this model. 

2.3 Existing Engine Assignment Research 

Kuo et al. present an interesting mixed integer linear program to model freight 

engine allocation.  Though a freight model for locomotives, the approach and actual 

model used is fairly similar to the one proposed here-in for passenger coaches.  

However, Kuo et al. uses a fairly simplistic service area (three nodes) for testing and 

validation, making its implementation less rigorous than the model contained here 

(nine nodes). 

Florian et al., as well as Ziarati et al. 1997 propose a similar model for freight 

locomotive assignment for application on Canadian National.  However, both models 

utilize multiple engine classes, which must be appropriately matched to the route and 

tonnage of a particular train.  This reflects a heterogeneous equipment fleet, which 

differs from the services modeled here.  Furthermore, Ziarati et al. 1997 splits the 

model into several smaller overlapping problems to make a solution feasible, a move 

that is inappropriate to the problem size proposed here. 
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Ziarati et al. 2005 revisits the work of Ziarati 1997 (freight locomotive 

assignment on Canadian National) with a Genetic Algorithm approach.  However, 

this approach assumes cyclic trains (all trains are matched by a similar train in the 

reverse direction).  This approach would is inappropriate for the model proposed here 

since it would mute the effectiveness of the model’s matching of consists to ridership. 

Likewise, Wright and Forbes et al. each propose a model to assign 

locomotives to a daily-repeating schedule.  However, this assumption (of a daily-

repeating schedule) is not utilized here.  But both of these models do assume a single 

locomotive class for assignment, similar to the homogeneous single car class utilized 

here. 

Ahuja et al. define each train individually (as opposed to recurring daily or 

weekly with identical assignments), a useful approach which is repeated here.  

However, their model for freight locomotive assignment is still inappropriate when 

compared to this problem.  This is because their model allows deadheading.  Though 

common in freight locomotive assignment, deadheading is highly undesirable for 

passenger car assignment, as it represents wasted capacity.  Furthermore, since the 

operating cost of a passenger train is based upon the consist length this approach 

would still incur greater operational costs for deadheaded equipment despite the 

potential for crew cost savings.  This is because deadheaded cars would not require 

additional crew members, but their weight would still be a part of the train and 

therefore still add to the fuel costs to operate the train. 
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Charnes et al. propose to minimize the operational costs of a terminal railway 

operation.  This is accomplished through a model to assign work to various crews and 

engines, with the timing of shipments accounted for.  The model does consider 

numerous constraints beyond those incorporated here, such as crew ability and engine 

type.  Further, it differs by allowing deadheading, similar to Ahuja. 

2.4 Other Existing Research 

Booler presents and solves a simplistic model to schedule railway locomotives 

(though not explicitly stated, this appears to be a passenger railway oriented model).  

The approach used is similar to the one presented here despite being a locomotive 

assignment problem.  However, Booler’s model does incorporate multiple locomotive 

classes with restrictions on the work each class can perform.  This restriction is not 

present in the model proposed here. 

Ramani 1981 proposes an alternate approach to quantify passenger coach 

utilization.  They propose utilizing the ratio of time a car spends in service rather than 

utilizing a distance or a passenger load based system.  Though appropriate for an 

extremely high-density situation (such as on Indian Railways, where Ramani is 

modeling), this approach is wholly inappropriate for application to an intercity system 

with varied ridership levels.  This is because the time approach would encourage each 

car to be operated as much as possible, a useful approach in response to 

overwhelming demand.  However, on an intercity line this would assign too many 

cars to most trains, driving up operational costs. 
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Chapter Three: Formulation 

3.1 Background 

3.1.1 Assumptions 

Several assumptions were needed in order to formulate the Mixed Integer 

Program.  A basic, initial assumption is that all trains will continue their existing 

schedules and motive power assignments.  This allows the model to simply focus 

upon coach assignments without crew scheduling and locomotive assignment 

considerations.  This assumption does force the Integer Program to assume that all 

trains operate, no matter the ridership.  However, an alternate case (discussed below) 

was studied that identify low ridership trains for possible consolidation/elimination.  

This was done to determine if benefits could be obtained through violating this 

constraint. 

 Since the existing schedules are assumed to remain, this also allows for 

existing terminal operations to be assumed.  With existing terminal operations 

assumed, the model does not need to consider turn-around times for returning cars to 

service or other constraints on terminal operations. 

3.1.2 Parameters Used 

The following is a list of parameters used in development and application of 

the model.  It was the intent of the listed parameters that the minimum amount of 

detail be used to describe each train so that the model can function flexibly.  In order 

to allow this, features such as route mileage and route time have been indexed to 
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origin-destination stations so that the information can be reused for multiple trains 

that use that segment.  This leaves ticket sales, fuel costs, and crew costs indexed to 

specific trains and dates.   

 

d = day 

t = time 

S = total station list 

i = origin of segment, from S 

j = destination of segment, from S 

k = train # 

p = car capacity 

Fk = Fuel costs of train k ($/car-mile) 

Uij = Mileage of i to j (miles) 

Ckd = crew costs of train k on day d ($/mile) 

Ckd’ = additional crew costs of train k on day d ($/mile) 

Tij
dt = Demand (Ticket Sales) at time t, day d for i to j 

Nij = Time to operate i to j  

M = A very large number 

 

3.1.3 Variables Used 

The following is a list of variables used in the development and 

implementation of the model.  The key decision variable is the consist length (Ykd).  It 

is this variable that gives the length of each train, matched to its specific ridership, 
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and it is upon this value that the individual crew costs and fuel costs of each train are 

determined.  Ii
dt is another variable that is determined by the consist length.  This 

variable tracks inventories (the number of cars available for immediate service) at 

terminal stations, so that no train is assigned a consist for departure that is more than 

the available cars. 

 

Ykd = Consist length of train k on day d 

δkd =  1 if Ykd > cutoff length 

 0 otherwise 

Ii
dt = Inventory of cars at i, day d, time t 

 

3.2 Development 

The model was approached as a traditional Minimization Integer Program 

problem.  This entailed generating a cost function with various parameters to limit the 

reduction of values.  This took shape in a cost function based upon operating costs.  

Operating costs was broken down into Crew Costs (Engineer, Conductor, and 

Assistant Conductors) and Fuel Costs (Diesel Fuel or Electricity).  The value of the 

fuel varies directly with the consist length (more cars requires more fuel), while the 

crew costs are a step-wise function related to consist length.   

The constraints began with the assumption that train capacity must meet or 

exceed demand for all trip segments.  When applied to sample data, this would 

require a minority of trains to receive an increase in cars to accommodate existing 
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ridership due to overcrowding, but the vast majority of trains’ ridership will allow the 

consist to be reduced.  A further constraint was then added that all trip segments must 

have the same consist (i.e. – that the train cannot change consist enroute).  This 

restricted any switching activities to terminal stations once a train has terminated its 

revenue run.  This constraint is in line with the assumption that existing schedules and 

terminal operations will be maintained. 

It was at this point that a need for tracking cars at terminal stations was 

noticed.  This tracking has been dubbed “inventories” within this thesis.  It is 

necessary to track car inventories so that enough cars are on hand to allow the 

prescribed consist to operate for a train.  Constraints were then added to the model 

that allow tracking of inventories across each day.  Since the inventories vary 

significantly across a service day at each station, it was also at this point that time 

elements were added to the model.  Utilizing the time element of the inventory 

tracking, it was then possible to add constraints to track the arrival and departure of 

trains from terminals stations.  This was accomplished by subtracting the consist of a 

train from the appropriate terminal’s inventory upon its departure, and likewise 

adding the consist to another terminal’s inventory upon arrival after the appropriate 

time interval for a train to traverse its route.  Between the arrival and departure of 

trains the inventory is simply carried over to the next time slot.  Though the 

incorporation of a time element complicates the model, it is necessary in order to 

ensure an inventory is available to originate each train. 

As discussed above, crew costs are represented as a step-wise function.  New 

constraints were added to the model as a final step of development that allow for the 
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crew costs to be calculated in a step-wise fashion to better reflect reality.  This was 

accomplished by breaking crew costs into a base crew cost (Ckd) and an additional 

crew cost (Ckd’).  The additional crew cost is only added when a consist length 

exceeds the cutoff value.  It is once a consist length exceeds this cutoff value that 

operating rules and union agreements require an additional crew member to be added. 

3.3 Completed Form 

3.3.1 Objective Function 

The model’s objective function is as follows: 

(1) Min. ΣiΣjΣdΣk Yij
kd·Fk·Uij + ΣiΣjΣdΣk Ckd ·Uij + ΣiΣjΣdΣk Ckd’ ·δkd·Uij 

The first part of Term (1) sums all car-miles accrued within the model then 

multiplies it by the fuel costs to give a total fuel cost.  The fuel costs are uniquely set 

for each train to account for diesel or electric operations.  The mileage is determined 

by the unique route of each train.  The consist length (Yij
kd) is the decision variable of 

the model, largely determined by demand (ridership).  The second part of Term (1) 

sums all train-miles accrued within the model, then multiplies it by the base crew 

costs.  This is then added to the third part (1) which gives the additional crew costs 

incurred by each train with a consist longer than the cut off length. Together, both the 

second and third parts provide the total crew costs of the modeled services. 

Together, (1) represents the direct operational costs of the trains modeled.  It 

is considered appropriate practice within industry to solely model the operational 

costs of a train, leaving the accounting of infrastructural costs for elsewhere.  These 
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costs include trackage, overhead power systems, vehicle maintenance facilities, and 

stations.  It is appropriate to leave their accounting for elsewhere since it is difficult to 

assign costs and “necessity” of these individual pieces to the various trains that 

service them.  Further, the majority of the physical plant within the area modeled is 

also extensively used by commuter and freight rail railroads and agencies.  Since 

these additional operations were omitted from this study, their impacts and use of 

facilities would be difficult to quantify here-in. 

3.3.2 Constraints 

The following constraints are included in the model: 

(2) p·Ykd ≥ Σj Tij
dt  for all i, d, t,  j <{destinations of k beyond i}  

(3) ΣjYij
td ≤ Iij

dt, for all d, t, i  

(4) Ii
d,t+1 = Ii

d,t - ΣjYij
td 

(5) Ij
d,t+N = Ij

d,t+N-1 + ΣiYij
td  

(6) Ii
d,max t = Ii

d+1,min t  

(7) Ykd - M · δkd <= cutoff 

(8) Ykd – M · δkd >= (cutoff – M) + 1 

Constraint (2) establishes that any consist must be greater than the demand for 

that particular train.  This constraint is written such that the consist must 

accommodate the peak demand segment of the train’s route.  Though certain trains 
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have demand greater than their existing capacity, this constraint was set as a 

requirement by the case data provider (Amtrak).  This means that a minority of trains 

will have their consist length increased in order to accommodate ridership demand 

that exceeds existing capacity.  But the overwhelming majority of trains will have 

their consist length reduced because the demand is less than existing capacity, in 

some cases significantly so. 

Constraint (3) establishes that the consist of a departing train must be less than 

the available inventory at that terminal.  The following two constraints then allow for 

the tracking of departures and arrivals.  Constraint (4) accomplishes this by 

subtracting the consist of a departing train from the inventory, then setting this as the 

value of the following time slot’s inventory.  Likewise, Constraint (5) adds a consist 

into the inventory of the terminal station after a train has completed its run of N time-

slots length.  Constraint (6) then forces the initial inventory of a day to equal the final 

inventory of the previous day. 

Finally, Constraints (7) and (8) allows for crew costs based upon consist 

length.  This works by using a binary variable (δkd) to track whether the consist length 

(Ykd) is greater than, or less than/equal to the cutoff value.  The δkd term is then 

incorporated into the objective function where it triggers the inclusion of the 

additional cost incurred by the additional crew member necessary for the additional 

car(s). 
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Chapter Four: Case Study Data 

In the United States of America inter-city passenger rail service is provided by 

the National Railroad Passenger Corporation, doing business as Amtrak.  Amtrak was 

created by Congress in 1970 with operations commencing in 1971 to relieve freight 

railroads of required passenger service, as it was seen as a burden to their 

profitability.  Though established as a for-profit corporation, Amtrak has never turned 

a profit and has instead been reliant upon subsidies from various levels of 

government.  It is therefore useful to minimize the operating cost and to maximize 

efficiencies of the services offered.  The minimized operating costs shall allow 

Amtrak to operate with less government subsidies, while maximized efficiencies shall 

better make the case for those subsidies to continue. (Amtrak p.6) 

Though Amtrak’s routes and equipment at inception were a hodge-podge of 

various heritages and conditions, the system has now largely stabilized and 

standardized.  Within the study area (detailed below), the trackage is now built to 

consistent standards that allow reliable, high-speed operation.  The equipment is now 

primarily equipment that was built for Amtrak (as opposed to inherited) with few 

barriers to interoperability.  Figure 4.1 shows a typical train within the study area.  It 

is these facts that now allow a study of this nature to even be possible. 
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Figure 4.1 – Typical Amtrak train 

 

4.1 Northeast Network 

The Northeast Corridor (NEC) is the backbone of Amtrak’s operations.  

Utilizing this corridor, Amtrak’s Regional, Inland, Keystone, and Tidewater Services 

operate approximately 97 trains on weekdays, 57 on Saturdays, and 62 on Sundays.  

These services carry approximately 10 million passengers annually.  The timetable is 

currently organized into “Weekdays,” “Saturdays,” and “Sundays.”   

The existing corridor consists of several important rail lines (distances shown 

in Table 4.1).  The Northeast Corridor mainline (NEC) runs from Boston, MA to 

Washington, DC, a distance of 457 miles.  The Tidewater Route extends beyond 

Washington, DC to Newport News, VA for 187 miles.  From Philadelphia, PA the 

Keystone Corridor extends 104 miles to Harrisburg, PA, while the Inland Route 

extends 58 miles from New Haven, CT to Springfield, MA. This network can be seen 
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in diagram form in Fig. 4.2.  All trackage is electrified except for the Tidewater Route 

and the Inland Route. 

  
Table 4.1 - Amtrak Northeast Network Distances (miles) 
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Figure 4.2 – Diagram of Amtrak’s Northeast Corridor 
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Amtrak has assigned a three-letter station code to each station that their trains 

serve, to allow for speedy and accurate station identification.  The following is a list 

of the station codes and locations for the terminal stations utilized here: 

BOS – South Station, Boston, MA 

HAR – Transportation Center, Harrisburg, PA 

NHV – Union Station, New Haven, CT 

NPN – Newport News, VA 

NYP – Penn Station, New York City, NY 

PHL – 30th Street Station, Philadelphia, PA 

RVR – Staples Mill Road Station, Richmond, VA 

SPG – Union Station, Springfield, MA 

WAS – Union Station, Washington, DC 

4.2 Ridership/Demand Data 

4.2.1 Background 

Ridership data (to be specific, ticket-sales) has been used for all analysis 

contained in this report.  This is because no true demand data is known to exist, and it 

is beyond the scope of this study to generate such.  So it has been assumed that 

existing ridership is the demand.  For most trains the ticket sales is indeed the 

ridership.  However, this does present a problem in relation to sold-out trains, as 

ridership has been artificially limited.  However, we believe that overall the impact of 

this limitation is minimal. 
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The specific data provided by Amtrak gives basic information for each 

existing train for the month of October, 2005.  For each train it gives the ridership and 

capacity (seats) on each segment of the route.  A separately provided timetable then 

gives data on each train’s origination and termination times and stations, and the 

mileage of each route.  These sources can then be combined to give an overall picture 

of ridership amounts, times, and locations across the system modeled. 

4.2.2 Analysis 

Ridership varies wildly across the study schedule.  This revelation was 

anticipated, since Amtrak’s practice of running an identical schedule each weekday 

would produce variations when applied to ridership demands that vary across the 

week.  Figure 4.3 exemplifies this phenomenon through Train #198 (daily, 8:30pm 

New York Penn departure, 11:53pm Washington Union Station arrival).  The chart 

displays tickets sold (Riders) and total capacity.  It is easy to notice that the ridership 

varies from a high of 498 on Friday, October 7th to a low of 93 on Monday, October 

31st.  When analyzed individually, the data still shows distinct variations.  If only 

Mondays on Train #198 were to be studied (Oct. 3, 10, 17, 24, 31), ridership still 

varies from 184 to 93 riders.   
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Fig 4.3 - Train #198 Ridership vs. Capacity 

 

Though the data does appear to vary in a cyclic fashion both weekly (a 

relative low on Monday, increasing to a high on Friday) and daily (highs during rush-

hours, lower mid-day and late-night), the data does still vary considerably.  This 

would lead to an analysis approach that treats each instance of a train (by date and by 

number) individually, rather than treating them solely by train number.  An analysis 

that treats ridership solely by train number would have to assume that ridership 

demands do not vary significantly enough to warrant modifying a consist on different 

days.  This idea obviously does not reconcile easily with the existing ridership data.  

This approach appears appropriate, since the source data shows that the existing 

approach practiced by Amtrak is based on a similar assumption.  
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4.3 Existing Service 

4.3.1 Rolling Stock Utilized 

Existing service is provided by a fairly homogeneous fleet of coaches, café 

cars, and locomotives.  For the purposes of this study, locomotive and café car 

assignments are assumed to remain unchanged.  Since café cars are not counted in 

train capacities under Amtrak’s existing practices, their omission will not affect the 

model’s results.  This allows the model to strictly focus upon coach assignment. 

The portion of the network studied is served almost exclusively by Amfleet 

coaches, a fairly homogenous fleet of cars.  Amfleet is a class of cars built in the 

1970s and 80s to upgrade and modernize Amtrak’s fleet.  Though these cars were 

constructed in two sets and come in both coach and lounge varieties, they are wholly 

compatible with one-another.  The Amfleet coach car capacities vary from 55 to 84 

seats per car.  At the directive of Amtrak, an assumed value of 72 seats per car is used 

for all modeling. 

Further, the existing engine fleet is also fairly homogeneous within the study 

area.  From the existing car assignment data provided, it appears that significant inter-

mixing of various car-types and engine-types in use within the study area is already 

practiced.  This means that any engine is allowed to couple to any car in use, and that 

the cars are capable of operation in any order. 

4.3.2 Service Patterns 
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Existing service in the study area provides dense service coverage.  Figure 4.4 

shows a schematic of the services modeled here.  It is important to note their overlap 

along the NEC mainline, particularly between NYP and PHL.  This is due to that 

stretch having the highest ridership of the entire area modeled. 
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Figure 4.4 – Graphic of Amtrak’s Northeast Services 

The existing Regional and Core Regional service operates approximately 

hourly along the Northeast Corridor mainline.  Figure 4.5 shows the existing consist 

length distribution for these services.  As can be seen, 7-car consists largely dominate 
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this service, but 5 and 6-car consists are seen.  A maximum length of 11-cars occurs 

eleven times in the month-long period. 
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Fig 4.5 – Existing Regional Service Consist Distribution 

 

Tidewater Service operates approximately hourly during rush-hour.  Figure 

4.6 shows the existing consist length distribution for these services.  As can be seen, 

7-car consists largely dominate this service, but 5-car consists are also prevalent.  A 

maximum length of 9-cars occurs once in the month-long period. 
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Fig 4.6 – Existing Tidewater Service Consist Distribution 

 

Much as the Tidewater Service, the Inland Route Service also operates hourly 

during rush-hour. Figure 4.7 shows the existing consist length distribution for these 

services.  As can be seen, 7-car consists largely dominate this service, with other 

consist lengths occurring rarely.  A maximum length of 10-cars occurs once in the 

month-long period. 
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Fig 4.7 - Existing Inland Route Service Consist Distribution 

 

Keystone Service operates approximately hourly with half-hourly rush-hour 

service.  Figure 4.8 shows the existing consist length distribution for these services.  

As can be seen, 3- and 4-car consists largely dominate this service, with 2-car consists 

also prevalent.  A maximum length of 9-cars occurs five times in the month-long 

period. 
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Fig 4.8 - Existing Keystone Service Consist Distribution 

These multiple services mesh to provide frequencies up to a train every 15-

minutes along certain stretches of the corridor, notably between Philadelphia and 

New York City.  Figure 4.9 shows the existing consist length distribution for the 

entire study area.  As can be seen, 7-car consists largely dominate all services.  A 

maximum length of 11-cars occurs eleven times in the month-long period, all on the 

Regional Service. 
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Fig 4.9 - Existing Overall Consist Distribution 

 

4.3.3 Load Factors 

Though the data is provided and detailed elsewhere, it is important to discuss 

LDF or Load Factors here.  This is a measure of utilization commonly used in the 

transit industry.  There are two approaches to calculating LDF (Vuchic 13), both of 

which are used throughout this thesis.  Peak LDF is an approach where the maximum 

ridership along a route is used, to give the peak utilization of the available capacity (in 

this case, seats).  Though useful to determine the maximum loading, this approach does 

not explain utilization along an entire route.  That is where LDF-Miles comes in handy.  

In this approach the seat-miles of each train is calculated to give available capacity, 

then compared to rider-miles of the riders.  The results give a better picture of 

utilization across the entire route, but omit any consideration of peaks in the loading.  
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Hence, both approaches must be presented to give a complete analysis.  Figure 4.10 

illustrates these differences for Train #95 on October 4th.  Note that the existing Peak 

LDF is 42.94%, but the existing LDF-Miles is 28.49%.  This discrepancy is easily 

visible given the variation in the ridership (blue line) across the route, versus the 

constant capacity (green line proposed, red line existing). 
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Fig 4.10 – Train #95 LDF Comparison 

4.4 Existing Crewing Patterns 

Existing trains are crewed based upon consist lengths.  A train of 7 revenue 

cars or less has a crew consisting of a conductor and an assistant conductor in the 

passenger cars and an engineer in the locomotive.  Beyond 7 revenue cars another 

assistant conductor is added to the crew.  An extra crew member is required for the 

longer consists by union operating agreements to assist in handling the extra cars and 
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ridership.  Assuming that all trains have a diner or cafe car assigned (as discussed 

above), this leaves the cutoff at 6 coaches for use within this thesis.  Therefore, all 

trains up to and including 6 coaches have a smaller crew than a train with more than 6 

coaches in the coding implementation.  This important point is used to implement the 

stepwise crew-costing element of the Integer Program proposed. 

4.5 Assumptions Validity 

As assumed in the formulation, all existing schedules are to remain.  This 

allows the model to work strictly on coach assignments with existing locomotive and 

crew assignments to remain. 

As assumed in the formulation, all existing terminal operations are to remain 

unchanged.  Since all terminals studied (see p. 19) allow for some form of car storage, 

this is deemed appropriate.  The major terminals (BOS, NYP, PHL, and WAS) also 

have switchers to provide consist make-up and break-down services, but these 

services could be provided by the mainline engine and train crew at other terminals as 

well.  Though terminal capacity is assumed unconstrained for the Full Model Run, an 

alternate case was performed to determine the sensitivity of the results to terminal 

capacity limits. 

4.6 Summary 

Amtrak’s Northeast Operations represent the epitome of rail passenger 

transport in the United States, but there is still room for improvement.  The presented 

data represents the existing operations of this service area for October 2005 – a dense 

network of trains with varied consist lengths.  The existing network and coach 
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assignments reflect a heritage approach to coach assignment that does leave excess 

capacity.  It utilizes an assignment method that is based upon historic practices rather 

than a programmed approach.   

However, the ridership in this area presents a varied picture.  By nature the 

ridership varies with the time of day and day of the week, but it also varies across the 

month.  Though the existing coach assignments do somewhat mimic the rise and fall 

of ridership, they do not closely match the actual demand.  It is because of this that 

the existing trains have excess capacity and room for improvement. 

The existing crewing patterns are based upon a stepwise function determined 

by the consist length.  This leads to crew levels linked, but not linearly determined by 

the consist length.  Though the crews are determined by revenue cars, a basic 

assumption can adapt the model to correctly cost the crew levels. 
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Chapter Five: Case Study Implementation and Results 

In order to test the efficacy of the proposed model, it was applied to the real 

world Case Study data as presented in Chapter 4.  Though not projections of future 

ridership, this still allows the model to be compared against existing assignment 

practices to determine the magnitude of potential savings possible.  The actual 

mechanics of this implementation and the results it produces are detailed here. 

The application is specifically applied to several unique cases.  The first is a 

Base Case, simply intended to determine the existing car flows and inventories to 

establish a baseline for comparison.  The Full Model is then optimized unconstrained 

to determine the largest possible improvements accomplished by this model.  To 

determine sensitivity the model is then rerun with constraints added.  In the first case 

a Minimum consist length of 3 is applied (MIN 3), with ridership reassigned from 

dropped trains to determine savings possible with consolidation.  The second case 

returns the consists to unconstrained and applies a maximum inventory to each station 

(Term Cap) to determine the effects of a real-world constraint.  Finally, other ideas 

that were deemed infeasible (and therefore un-implemented) are also discussed. 

For each of the cases optimized results are presented in both discussions and 

graphs.  Since all cases discussed provide improvements over the Base Case, 

comparisons between the various cases are also offered.  This allows for 

determination of the model’s sensitivity to other factors and full consideration of the 

assumptions utilized prior to implementation.
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5.1 Parameter Values 

Since the model is being applied to Amtrak’s Northeast Operations, the values 

of the parameters were directly dictated by Amtrak.  It should be noted that the last 

train arrival within the modeled area occurs at 2:00am (there are no overnight trains 

modeled).  To allow the model to properly account for arrivals at precisely 2:00am, 

the model’s time frame is then extended to 2:15am.  The time slots from 5am to 

2:15am are treated as a single service day, despite straddling midnight.  Below is a 

list of values for each parameter as used in all of the cases discussed: 

d = 1 to 31 (Day of the month of October) 

t = 0 to 93 (5am to 2:15am in 15-minute increments) 

S = 9 total stations (See p.18 for Stations) 

p = 72 seats 

Fk = $0.9141/car-mile electric traction, $1.1246/car-mile diesel traction 

Uij = See chart on p.2 

Ckd = $1.57/train-mile 

Ckd’ = $0.50/train-mile 

5.2 Initial Validation 

As an initial validation of concept, the model was initially tested in LINDO.  

Though the actual model formulation was in flux, this validation was undertaken in 

April 2008.  Because of its high frequency and variation of demand, the Keystone 

Service between Harrisburg, PA and Philadelphia, PA was chosen for validation.  

This choice necessitated the truncation of any train operations beyond Philadelphia, a 
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choice that likely stilted the results.  However, it was considered an appropriate 

validation at the time that the model did indeed show improvements both in cost 

function and utilization (through Peak LDF).  LINDO required 1132 iterations with 

53 branches to produce a solution.  This solution lowered the objective function from 

$74,214 to $41,792 and improved the Peak LDF from 30.7% to 54.8%.  With this 

“Proof of Concept,” development continued and programmed proceeded with 

CPLEX. 

5.3 Coding Implementation 

The model was programmed in a multi-step process.  First, the source data 

(provided in Excel and Access format) was converted into a text file.  Within this file 

each line of input is considered a train, with various parameters in a predetermined 

order.  This data was then read-in by a C++ program created to synthesize and 

properly interpret the source data into an actual IP file for CPLEX input.  The C++ 

program then wrote this model to a second output text file.  This file was then read 

into CPLEX and optimized.  From CPLEX, a log file was produced detailing the 

optimization process and listing all non-zero variables.  All post-processing was 

accomplished by importing this log file into Excel. 

As can be seen in Table 5.1, the Full Model Optimization input file 

encompassed 4,310 lines of data.  This file length was repeated for all input files 

except the MIN 3 cases since the number of trains modeled only changed for those.  

This was processed by a C++ file of approximately 270 lines length (321 lines in the 

case of the Term Cap case) to produce a C++ Code.  The length of the CPLEX Code 
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varied from 39,021 for the MIN 3 case to 60,725 for the Base Case and Full Model 

Optimization to 86,953 for the Term Cap case.  As can be seen in Table 5.2, the C++ 

programs had a typical runtime of 7 minutes.  The MIN 3 case had a shorter run time 

due to the consolidation eliminating several trains from processing.  CPLEX had a 

typical runtime of a half second for all cases except the Term Cap Case.  Even then, 

all run times remained under 1 second. 

Input File C++ Code CPLEX Code
Base Case 4310 269 60725
Full Model Opt 4310 269 60725
MIN 3 Opt 1597 274 39021
Term Cap 4310 321 86953  

Table 5.1 – Lines of Code 
 

C++ 
Runtime

CPLEX 
Runtime

Base Case 406 s 0.47 s
Full Model Opt 440 s 0.58 s
MIN 3 Opt 155 s 0.38 s
Term Cap 425 s 0.84 s  

Table 5.2 – Run Times 

5.4 Base Case Results 

5.4.1 Purpose 

The purpose of the Base Case is to establish the existing service attributes for 

comparison of all proposed cases.  Though the existing consists were provided by 

Amtrak, this analysis was conducted to determine inventories at terminal stations and 

operational costs (the objective function value).   
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5.4.2 Implementation 

The Base Case was implemented through the standard model.  However, the 

restraint to ensure capacity is greater than ridership was changed to force the consist 

to be greater than or equal to that given by Amtrak.  The use of “greater than or equal 

to” allowed deadheaded cars to appear in order to balance inventories.  The capacities 

given by Amtrak were still used to calculate load factors, but the inventories given by 

this model were used to calculate fleet requirements. 

5.4.3 Results 

The model returned an objective function value of $3,173,269.06 to operate 

the trains for a month.  This cost is a base value to compare all further models for cost 

improvement.  Based upon the inventories returned by the model, the existing service 

requires 799 coaches to operate.  The inventories required across the entire month can 

be seen in Figure 5.1.  This number will also be used for all future comparisons to 

determine fleet reductions achieved. 
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Fig 5.1 – Base Case Inventory Chart 

5.5 Full Model Optimization 

5.5.1 Purpose 

The purpose of the Full Model Optimization was to evenly apply the proposed 

model to all of the existing trains within the study limits.  This run then produces a 

full set of optimized trains throughout the study limits for further analysis.  Existing 

schedules were assumed to remain. 

5.5.2 Implementation 

The Full Model Optimization was implemented through the standard model 

with no changes.  The constraints on consist length were not modified to allow the 

model to freely propose whatever consist length was appropriate to the given input 
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data.  Constraints on Inventories at terminal stations were also left unconstrained to 

allow the model to freely modify inventories and consists to match the ridership. 

5.5.3 Results 

The Full Model Optimization returned a more varied distribution of consist 

lengths than the Base Case.  This can be observed in Figure 5.2.  Whereas the Base 

Case was dominated by consists of 7 coaches, the model has proposed distribution 

featuring far more consist of 2 through 5 coaches.  It should also be noted that based 

upon source data of zero ridership for three trains, the model has proposed these 

trains receive consist lengths of 0.  This is assumed to mean that the train does not 

operate, and that the train is dropped from further analysis, such as load factors, for 

this case. 
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Fig 5.2 – Full Model Optimization Consist Distribution 
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For a true understanding of what the model has proposed, it is also useful to 

study Proposed Deltas.  Proposed Deltas are the difference between the existing 

consist length and the proposed consist length.  Therefore, a plot of the distribution of 

deltas for all trains can show how many trains are having a certain number of cars 

removed or added from their existing consists.  This is shown in Figure 5.3.  The 

distribution produces an apparent bell curve about -2.  This means that the most 

common occurrence is for an existing train to loose 2 coaches from its consist.  It is 

also interesting that +5 and +6 both have values of 1, meaning that there are 2 

existing trains that require a significant increase in consist length. 
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Fig 5.3 –Full Model Optimization Deltas Distribution 

 

The Full Model Optimization returned an objective function value of 

$2,484,920.98 to operate all trains within the study area for a month.  This represents 
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a $688,348.07 or 21.7% reduction in cost from the Base Case.  If projected to an 

annual savings, this totals approximately $8.2 million. 

Further, after analysis the total fleet required to operate all trains is 564 

coaches.  This represents a 29.4% (235 coaches) reduction compared to existing 

requirements.  The inventory chart across the entire month modeled can be observed 

in Figure 5.4. 
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Fig 5.4 –Full Model Optimization Inventory Chart 

 

Load Factor, or LDF was also improved by the Full Model Optimization.  The 

Peak Load Factor improved from an overall average value of 60.48% to 84.35%.  As 

can be seen in Figure 5.5, the distribution also improved from a series of low peaks 

between 40% and 70% to two higher peaks at 90% and 100%.  This represents a 

marked improvement in utilization of the peak capacity. 
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Likewise, LDF-Miles showed marked improvement from 48.53% to 66.90%.  

A distribution of LDF-Miles can be seen in Figure 5.6.  This figure shows an 

improvement from an even distribution around a peak near 40% to several peaks near 

70%.   
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Fig 5.5 –Full Model Optimization Peak LDF Distribution 



 

 43 
 

LDF-Miles Distribution
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Fig 5.6 – Full Model Optimization LDF-Miles Distribution 

5.6 MIN 3 Case Optimization 

5.6.1 Purpose 

The initial Full Model Optimization proposes 405 trains with a consist of 2 or 

less cars (including 3 with a consist of 0).  Since a train of less than 3 cars is 

considered uneconomical, this model was run to determine benefits of a “Minimum 3 

Car” case.  This was applied by assuming that any train with 144 (two cars) ridership 

or less at any point would be dropped, while any train with greater than 144 ridership 

at any point would operate.  An algorithm was applied to the ridership demand to 

transfer ridership from the dropped trains to the next available train on that route at 

75% and 100% retention rates.  If no later train was available, then the previous train 

was utilized.  If no other train existed on the route for that date, then the ridership was 
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considered lost (this did not occur in the application though).  The approach of the 

algorithm is: 

k = train # 
kprev / klater = previous / later train to transfer ridership to 
i = origin station of train k 
j = destination station of train k 
T = ticket sales of train k 
P = percentage transferred (75% or 100%) 
 
If Train k has low ridership (T <= 144) 
 { 
 Find next train (t > tk) on route or longer (klater includes i,j of k) 
  { 

Transfer p*T to klater  
  } 
 Else, find previous (t < tk) on route or longer (kprev includes i,j of k) 
  { 
   Transfer p*T to kprev  
  } 
 Else, if no other train that includes i, j on d 
  { 
   Consider Ridership lost 
  } 

5.6.2 Implementation 

Once the ridership data had been modified by the algorithm, the MIN 3 Case 

was implemented through the standard model.  To allow counting of dropped trains, 

they were left in the model with a ridership of zero.  The model did not propose that 

any of the trains with ridership zero receive any cars. 

5.6.3 Results 

The model returned consist results notably different from the Full Model 

Optimization.  Due to the consolidation algorithm, the 75% retention rate resulted in 

305 trains assigned a consist length of zero, meaning they were dropped from 
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operation.  Since the Base Case had 3 trains with consist zero (meaning zero 

ridership), it can be derived that 302 trains were consolidated out of the schedule due 

to low ridership.  The consist counts for 75% retention are shown in Fig. 5.7.  It can 

also be observed that all consist counts except 1 and 2 coaches have higher values 

than the Full Model Optimization to account for the shifted ridership. 
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Fig 5.7 – MIN 3 – 75% Consist Distribution 

 

The 100% retention rate produced similar results to the 75% retention rate.  

The largest change realized is the decrease of 3-car consists by 13.  The rest of the 

changes in consist counts are less than 10 trains.  These results can be seen in Figure 

5.8. 
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Fig 5.8 – MIN 3 – 100% Consist Distribution 

 

It is also useful to study the Deltas Distribution.  The Deltas for 75% retention 

can be observed in Figure 5.9.  Though still an approximate bell curve, there is now 

an increase in the larger reduction values (notably -6 and -7), and a decrease in the 

lower reduction values (notable -2 and -1).  Figure 5.10 shows the Delta Distribution 

for a 100% retention rate.  Following the similarities of the Consist Counts, this figure 

is also similar to the 75% retention rate’s Delta Distribution.  There are only minor 

decreases in the negative deltas and minor increases in the positive deltas present.  

The shifts in either retention rate compared to the Base Case are logical since 

dropping shorter consists would favor increases to the larger reduction values from 

lower ridership trains, while shorter deltas would lower due to more cars needed on 

the remaining trains. 
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Fig 5.9 – MIN 3 – 75% Deltas Distribution 
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Fig 5.10 – MIN 3 – 100% Deltas Distribution 
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The model returned an objective function of $2,687,483.99 for 75% retention 

and $2,705,761.82 for 100% retention to operate the remaining trains within the 

month long period.  This represents a $485,785.07 or 15.31% and $467,507.23 or 

14.73% (respectively) savings over the existing the Base Case operational costs.  If 

projected out to an annual cost savings, the savings could reach approximately $5.5 to 

$6 Million for either retention rate. 

After analysis, the overall inventory requirement for the 75% retention case 

was determined to be 407 coaches.  This represents a 49.1% (392 coaches) reduction 

over the Base Case. This chart can be seen in Figure 5.11. 

The overall inventory requirement for the 100% retention case was found to 

be similar at 395 coaches.  This represents a 50.6% (404 coaches) reduction over the 

Base Case.  It is interesting to note that this case produced the largest reduction in 

inventory of any of the cases studied.  This is likely due to slightly more trains 

operating than the other retention rates leaving more opportunities to balance cars 

between terminals, while still consolidating low demand trains.  This chart can be 

seen in Figure 5.12. 
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Fig 5.11 –MIN 3 – 75% Inventory Chart 
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Fig. 5.12 – MIN 3 – 100% Inventory Chart 
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Additionally, any of the retention rates studied provides the greatest 

improvement in utilization of any case analyzed.  As can be seen in Figure 5.13, the 

Peak LDF improves from 60.48% (Base Case) to 88.54% for 75% retention rate.  In 

Figure 5.14 it can be seen that the 100% retention rate further improves the Peak LDF 

to 88.80%.  Both of these are a larger improvement than the 84.35% achieved by the 

Full Model Optimization.  Similarly to the Full Model Optimization, the proposed 

Peak LDFs peak between 85% and 100%. 

An LDF-Miles Distribution was not prepared for the MIN 3 Case.  This is due 

to the complexities of the algorithm’s reassignment of ridership.  In order for LDF-

Miles to be calculated the algorithm would need to reassign ridership for each 

individual leg of a train’s route rather than reassign the total ridership from one train 

to another (with a retention rate applied). 
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Fig 5.13 – MIN 3 Peak LDF – 75% Distribution 
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Fig 5.14 – MIN 3 Peak LDF – 100% Distribution 
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Since the 100% retention variation assumes all riders will transfer to another 

train, there is no ridership lost.  However, under the 75% retention variation 6,116 or 

1.50% of existing ridership is assumed lost.  This assumed loss may occur due to 

inflexibility of schedule, inconvenience of fewer trains running (and therefore fewer 

options for travel), or other reasons. 

Since any loss of ridership may affect the economic viability of a service, it 

useful to further examine the revenue versus operating costs of the remaining trains.  

The retention rates of 0%, 25%, 50%, 75%, and 100% were analyzed for ridership 

lost and revenues in order to generate enough data for proper analysis.  As can be 

seen in Figure 5.15 as the Retention Rate is increased the ticket revenues increase far 

faster than operational costs increase.  This means that the additional ridership 

generates more revenue than the additional costs to accommodate it.  The data was 

generated by utilizing the Objective Function value as the operational costs.  The 

revenue was generated by multiplying an average ticket revenue of $58.915 ($1.52 

billion revenue divided by 25.8 million ridership, Amtrak p.10) by the ridership 

served. 
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Fig 5.15 – MIN 3 Retention vs. Costs 

The count of dropped trains is unevenly distributed amongst the various 

services.  The overwhelming majority of the trains dropped from the schedule are 

from the Keystone Service, with 229 trains with 75% retention, 220 trains with 100% 

retention.  This represents 75.08% and 74.32% respectively of all trains proposed for 

dropping, and in fact represents 44.21% and 42.47% of all the Keystone Service 

trains.  The algorithm primarily recommends the elimination of westbound trains in 

the morning, the elimination of eastbound trains in the evening, and the sporadic 

elimination of trains in either direction during the mid-day.  These recommendations 

are logical since the eastbound-AM, westbound-PM flows represents the logical 

commuter flows along the route (into and out from Philadelphia respectively).  

However, enough trains in the reverse direction and terminal inventories remain to 

allow the inventory balance constraint to be satisfied. 
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A smaller portion of the trains proposed for dropping are Regional Service (66 

or 8.06% for both retention values).  These trains represent 21.64% of all dropped 

trains for 75% retention and 22.30% of all dropped trains for 100% retention.  

Primarily the trains recommended for elimination are sporadic occurrences of early 

morning or late evening services in either direction.  The only train that the algorithm 

outright eliminated is Train #151, the first train of the morning from NYP to WAS.  

This appears logical since the train has a 4:40am departure, 8:10am arrival – a very 

early time that gives it limited appeal to riders.  

A small number of the Tidewater Service (10 or 5.43% for either retention 

value) trains are proposed for dropping.  These dropped trains represent 3.28% of all 

trains proposed for dropping under 75% retention or 3.38% of trains proposed for 

dropping under 100% retention.  The only train proposed for outright elimination by 

the algorithm is a Friday night train between Newport News, VA and Richmond, VA.  

It is assumed that this train is currently operated in order to balance cars, a maneuver 

that is determined unnecessary under this model.  This theory is given credence by 

the existing ridership data – 3 riders on Oct. 7th, 0 riders on Oct. 14th, 4 riders on Oct. 

21st, and 0 riders on Oct. 28th.  It is interesting to note that all trains selected for 

elimination are northbounds.  The model did not select any southbound trains for 

elimination as they all have a higher ridership level. 

There are no trains on the Inland Service proposed for removal from the 

schedule.  In fact, only 10% of Inland Service trains are proposed to operate with a 

consist of 3, the minimum under this case.  The rest operate with longer consists due 

to higher ridership. 
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5.7 Term Cap Case 

5.7.1 Purpose 

Since the Full Model Optimization uses unconstrained terminal inventory 

capacity, it is logical to test the sensitivity of the results to imposing terminal 

capacities.  This was accomplished by measuring existing trackage capacities for each 

terminal, then dividing the length by 85’ (length of a typical passenger car) to arrive 

at the capacity.  These capacities are shown in Table 5.3. 

# Code Full Description Cap Length Cap Cars
1 SPG Union Station, Springfield, MA 2,407' 28
2 BOS South Station, Boston, MA 7,862' 92
3 NHV Union Station, New Haven, CT 5,600' 65
4 NYP Penn Station, New York City, NY 25,200' 296
5 HAR Transportation Center, Harrisburg, PA 5,200' 61
6 PHL 30th Street Station, Philadelphia, PA 10,400' 122
7 WAS Union Station, Washington, DC 7,400' 87
8 RVR Staples Mill Road Station, Richmond, VA 2,000' 23
9 NPN Newport News, VA 2,000' 23

Overall Total 68,069' 797  
Table 5.3 – Terminal Capacities 

5.7.2 Implementation 

The Terminal Capacity Case was implemented through the standard model 

with constraints added to the inventory terms.  These constraints limited the inventory 

to being less than or equal to the capacity as measured in Table 5.3.  Otherwise, no 

changes were made. 
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5.7.3 Results 

The model returned consist results similar to the Full Model Optimization, but 

with lower counts for consists less than or equal to 6 cars and greater counts at longer 

consist lengths.  The Consist Length Distribution can be observed in Figure 5.16.  

This is due to the model needing to send more cars through the system to avoid 

violating terminal capacities. 
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Fig 5.16 – Term Cap Consist Distribution 

 
 

It is also useful for this case to study the Deltas Distribution.  The Deltas can 

be observed in Figure 5.17.  The figure bears a striking resemblance to the Full Model 

Delta Distribution, though with a slightly higher peak, and lower values at the 

outlying deltas.  These shifts are logical, since a case with Terminal Capacities 

enforced would tend to stay closer to the existing car assignments than an 

unconstrained case would. 
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Fig 5.17 – Term Cap Deltas Distribution 

 
 

The model returned an objective function of $2,540,471.48 to operate the 

trains within the month long period.  This represents a $632,797.58 or 19.9% savings 

over the existing the Base Case operational costs.  If projected out to an annual cost 

savings, the savings could reach approximately $7.6 Million.  This is a smaller cost 

savings than the Full Model Optimization. 

After analysis, the overall inventory requirement was determined to be 503 

coaches.  This represents a 37.0% (296 coaches) reduction over the Base Case.  This 

reduction is larger than the reduction produced by the Full Model Optimization.  This 

chart can be seen in Figure 5.18. 
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Fig 5.18 –Term Cap Inventory Chart 

 

Also, this case does provide an improvement in utilization smaller than the 

Base Case.  As can be seen in Figure 5.19, the Peak LDF improves from 60.48% to 

82.77%.  This is a smaller improvement than the 84.35% achieved by the Full Model 

Optimization.  Similarly to the Full Model Optimization, the proposed Peak LDFs 

peak between 80% and 100%. 

Likewise, the LDF-Miles Distribution (shown in Figure 5.20) shows an 

improvement.  This factor improves from 48.53% overall to 65.18% overall, with the 

peak of the distribution now occurring between 65% and 75%.  This is a slightly 

lower result than the Full Model Optimization’s 66.90% overall LDF-Miles. 
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Fig 5.19 –Term Cap Peak LDF Distribution 

 

LDF-Miles Distribution

0

10

20

30

40

50

60

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 120% 130% 140% 150% 160%

LDF

C
ou

nt Existing
Proposed

48.53%
Existing

65.18% 
Prop.

 
Fig 5.20 – Term Cap LDF-Miles Distribution 
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5.8 Other Attempted Cases 

5.8.1 MIN 3 MAX 6 

Since the minimum consist length considered economical is 3 cars, and the 

maximum number of coaches before another crew member is added is 6 cars, it is 

logical to attempt a case where consist lengths only within these limits are allowed.  

However, this case does disadvantage trains with high ridership.  These longer, 

higher-demand trains require longer consists to meet demand, and under this case that 

demand would either be lost, or multiple trains would need to be operated.  Since 

multiple trains is far less economical than adding an additional crew member to an 

existing train, the logical solution appears to be simply to add cars to existing trains.  

The added ridership gained by this additional capacity should offset the added 

ridership garnered.  A more detailed analysis of revenue versus ridership could 

provide an answer as to exactly how many seats must be filled before a car breaks 

even. 

5.8.2 Terminal 0 

Though the Full Model Optimization assumed unconstrained capacity at 

Terminal stations for storing coaches, the purpose of this run was to determine the 

effects of limiting overnight capacity at Terminal Stations located outside the NEC 

Mainline.  Therefore, the terminal stations at HAR, RVR, NPN, and SPG were 

modeled with an overnight capacity of zero.  CPLEX immediately returned that the 

model is infeasible.  Upon more detailed inspection, it was observed that at each 

station a morning outbound train originates before a morning train terminates at the 

given station.  This does not allow any chance for a train to arrive and provide the 
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needed inventory to commence outbound service in the morning.  Without adding 

additional inbound morning trains, it is therefore impossible to hold any of these 

stations to a zero overnight inventory.  The addition of inbound morning trains to 

each of these terminals would distinctly modify the existing service patterns and 

require ridership generation modeling.  In consideration of these issues, it was 

determined that this case should therefore not be pursued further. 

5.9 Summary 

As shown, each Optimization Case attempted does offer improvements over 

the Base Case results.  These improvements vary based upon which specific 

assumptions and constraints are utilized.   

Based upon the objective function (operational costs) alone, the MIN 3 Case 

offers the most improvement.  However since this is at the inconvenience of travelers 

(through the modification of the schedule), it should be noted that the Full Model 

Optimization offers the second highest savings.  These results are shown in Table 5.4. 

Obj Function % Diff Proj Monthly Proj Annual
$3,173,269.06
$2,484,920.98 -21.69% -$688,348.07 -$8,260,176.89

00% Retention $2,609,577.34 -17.76% -$563,691.71 -$6,764,300.56
25% Retention $2,644,958.64 -16.65% -$528,310.42 -$6,339,725.06
50% Retention $2,669,560.23 -15.87% -$503,708.82 -$6,044,505.90
75% Retention $2,687,483.99 -15.31% -$485,785.07 -$5,829,420.79
100% Retention $2,705,761.82 -14.73% -$467,507.23 -$5,610,086.80

$2,540,471.48 -19.94% -$632,797.58 -$7,593,570.95Term Cap

M
IN

 3

Full Model
Base Case

 
Table 5.4 – Objective Function Comparisons 

 

Based upon the overall car fleet required to operate the service, the MIN 3 

Case once again generates the largest savings.  Without modifying the existing 
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schedule, the next largest savings is accomplished under the Term Cap Case.  These 

results are seen in Table 5.5. 

Max Inv Cnt Diff % Diff
799
564 -235 -29.4118%

00% Retention 464 -335 -41.9274%
25% Retention 403 -396 -49.5620%
50% Retention 396 -403 -50.4380%
75% Retention 407 -392 -49.0613%
100% Retention 395 -404 -50.5632%

503 -296 -37.0463%Term Cap

Base Case
Full Model

M
IN

 3

 
Table 5.5 – Car Fleet Comparisons 

Based upon the Load Factor of the entire system, the Full Model Optimization 

Case offers the most improvement without modifying the existing schedule.  Once 

again, if the schedule is allowed to be modified, then the MIN 3 Case produces large 

increases. 

Peak LDF LDF-Miles
60.48% 48.53%
84.35% 66.90%

00% Retention 88.63% -
25% Retention 88.56% -
50% Retention 88.77% -
75% Retention 88.54% -
100% Retention 88.80% -

82.77% 65.18%Term Cap

Base Case
Full Model

M
IN

 3

 
Table 5.6 – Load Factor Comparisons 

 

Since there is a different optimum case if the existing schedule is maintained, 

it is difficult to select a specific case for sole recommendation.  If the schedule is 

allowed to be modified, then it becomes obvious that the MIN 3 Case produces 

superior results.  However, since all cases show improvement over the Base Case 

then any of the cases analyzed are appropriate for implementation.  It is likely that in 

a real-world situation a hybrid of all the cases analyzed may need to be developed for 
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actual implementation.  But the overall results are clear, that the model proposed is 

indeed effective at generating improvements over the existing car assignment 

approach. 
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Chapter Six:  Conclusions and Recommendations 

 

6.1 Conclusions 

As demonstrated, the model can generate distinct improvements over existing 

car assignments.  These improvements are present even when additional constraints 

(such as a minimum consist length and maximum terminal capacities) are added to 

the model beyond its basic form.  These improvements take the form of lowered 

operating costs (varying from 19.9% to 71.0% reduction), reduced overall fleet 

requirements (varying from 29.4% to 52.7% reduction), and improved car utilization. 

The model itself represents a basic approach to car assignment for simplified 

application.  This is seen in the assumptions that allow the model to focus upon 

strictly coach assignment, which led to the development of a sparse model for coach 

assignments.  This can allow quick modeling for optimization, but is inappropriate for 

longer-term planning because of the omitted considerations.  One important omitted 

consideration is motive power assignment.  A more thorough optimization model 

would need to consider the assignment of motive power as well as cars in order to 

properly consider the utilization of all equipment, not just the passenger coaches.  

Also, the model assumes that there is no cost for car storage, which is simply not the 

case.  In a real world situation, there are inspection and maintenance cycles that 

generate costs, as well as the infrastructure costs of the storage facilities.  The 

implications for the results presented here are felt to be minor, but a model with a 

larger modeled area or longer planning horizon would need to account for the costs of 



 

 65 
 

equipment storage as well as equipment operation.  These assumptions do narrow the 

applicability of the model, but it is still a useful tool for minor changes and 

readjustments due to shifting ridership patterns.  

It is the hope of this thesis that the simplicity of the model presented assists in 

either the quick adoption of this model, or its continued development for application.  

With the simplified form of the model an intercity passenger rail operator could 

easily, quickly, and cheaply implement the model on their services.  It is conceivable 

that the specific implementation could be adapted to a more widely available program 

than CPLEX, perhaps even into EXCEL through the use of macros, to reduce barriers 

to its use at operators or agencies with limited resources. 

6.2 Amtrak Recommendations 

6.2.1 Service Changes 

It is apparent from the conducted work that through the application of a 

ridership/demand based model efficiencies can be realized.  These efficiencies would 

amount to lower operational costs, fewer equipment needed overall, and better 

utilization of the existing fleet.   

A specific approach to realize these improvements is to reduce consist lengths 

as recommended by the model.  If doubt remains as to its efficacy, then it would be 

beneficial to target those trains with particularly large negative deltas.  It is these 

trains that have significant excess capacity and therefore would produce noticeable 
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improvements to the system as a whole if modified.  Once the efficiencies are proven, 

the modification of the consists of a wider number of trains can then proceed. 

6.2.2 Data 

A specific recommendation is that Amtrak develops a comprehensive demand 

survey for their service area.  This would be able to generate far more reliable source 

data for models such as this one.  Consisting and car optimizations could then be 

based upon predicted ridership and accurate predictions of true demand rather than 

historic ridership data.  Reliable demand data would also be useful in determining 

sensitivity to timetable changes and pricing changes, particularly those pursued under 

the MIN 3 Case described in the Implementation and Results Chapter. 

It is particularly important to note that all of the work presented here is 

conducted on historic ridership data.  Though the model shows improvement over the 

existing approaches, it is of little use to improve previously occurring services.  

Therefore, an accurate ridership prediction model would provide the needed future 

ridership data to input into the proposed model, allowing it to correctly propose future 

consists.   

6.3 Further Optimization 

6.3.1 Amtrak 

It is recommended that Amtrak continue to re-optimize its car assignments in 

order to ensure their matching to current ridership.  These re-optimizations would 

need to occur periodically, possibly as a second step after the results of an updated 
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demand survey are available.  That way the consists are updated to match the 

demands of the travelling public.   

6.3.2 Other Applications 

Obviously the model developed here can be easily applied to any application 

with regularly scheduled service and uniform capacity vehicles.  This means that 

within rail applications, the model could be applied to any other passenger system 

easily (both transit and commuter), as well as to freight rail applications.  For 

example, the model could be utilized to model coal cars assigned to service between a 

network of coal mines and a network of power plants.  The model could also be 

applied to high-demand bus operations where multiple vehicles per timetable slot are 

required.  However, there is a limit to the size network that the model can be 

implemented on, due to the assumptions about car maintenance, motive power 

assignment, and crew scheduling.  A larger network would necessitate the addition of 

maintenance planning to ensure cars and motive power are at the maintenance facility 

when inspections are due.  Crew movements would also need to be incorporated to 

ensure adherence to service limits and required rest periods. 

However, a less obvious application would be to motive power operations.  As 

cited in the Literature Review, Kuo utilizes a very similar model to approach freight 

locomotive assignment.  This could also be utilized for application to freight 

locomotive assignment, but care must be exercised when assessing the homogeneity 

of the locomotive fleet in use.   
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6.4 Further Research 

6.4.1 Amtrak 

Further research into the time-sensitivity of Amtrak’s ridership would be 

beneficial.  This would allow decisions to be made as to how much of a time change 

for departure would be acceptable to the ridership.  This knowledge could then drive 

the allocation of cars and trains to increase efficiency.  Specifically, this knowledge 

would allow a better analysis of the MIN 3 Case presented above and its specific 

effects upon ridership.  If the ridership is willing to shift departure/arrival times, the 

effects of train elimination upon the ridership could be minimized.  This would then 

further increase the efficiencies of the trains that would benefit from ridership 

increases from eliminated trains. 

An interesting wrinkle to the optimization problem requiring more research is 

the State Sponsored Corridor.  Amtrak operates several services through funding from 

States (including the Keystone Service discussed above).  This funding dictates that a 

certain number of trains must be operated on a route, no matter their inefficiency.  It 

therefore would be of great use to conduct further research into appropriate methods 

to schedule and assign cars to these trains while still meeting the requirements of the 

Sponsor State. 

6.4.2 Academia 

Obviously Academia would be of great assistance in the further Amtrak 

Research recommended above.  This includes extending and expanding the model 
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proposed here to model a national rail network.  This would entail adding constraints 

for crew scheduling, motive power assignment, and accommodations for multiple, 

unique car-types.  Academia would also be instrumental in collecting and analyzing 

data to determine attributes necessary to generate an expanded model.  This is 

particularly true for a ridership demand model, but would also be necessary to 

determine the effects of train consolidation upon ridership.   

In addition to this work, there is further research that academia could conduct 

independently.  This research would need to be of a network nature, targeted at the 

overall transportation system rather than a specific mode.  Therefore, a beneficial 

study would be the total passenger demand between various metropolitan areas.  This 

demand could then be used to determine inter-city passenger rail’s current mode split.  

With the knowledge of existing mode splits, consist extensions could then be targeted 

to underserved markets, while consist reduction could be targeted to over-served 

markets. 
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Glossary 

 
α (Load Factor) or LDF – A measure of utilization, calculated by dividing the 

ridership by the available capacity. 

 

Amtrak – Business name of the National Railroad Passenger Corporation, a for-profit 

state related passenger railroad company. 

 

Consist – the set of equipment that forms a train.  For this study, the term merely 

means the set of coaches assigned to each train. 

 

Couple – the connecting of 2 pieces of rail equipment. 

 

Deadheading – The practice of operating equipment in nonrevenue service.  This 

could be as a separate train, or as part of a train that is in revenue service (i.e. 

– a closed car on the end of a passenger train) 

 

(Train) Links – A linked series of train #s operated by the same consist. 

 

NEC – Northeast Corridor, Amtrak’s highest ridership and service corridor, primarily 

between Boston, MA and Washington, DC. 

 



 

 71 
 

Terminal Station – A major station where infrastructure exists to modify consists and 

store unused coaches.  
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