
ABSTRACT

Title of dissertation: UNDERSTANDING, DISCOVERING AND
LEVERAGING A SOFTWARE SYSTEM’S
EFFECTIVE CONFIGURATION SPACE

Charles Song
Doctor of Philosophy
2011

Dissertation directed by: Professor Adam Porter
Department of Computer Science

Many modern software systems are highly configurable. While a high degree of

configurability has many benefits, such as extensibility, reusability and portability,

it also has its costs. In the worst case, the full configuration space of a system is

the exponentially large combination of all possible option settings and every config-

uration can potentially produce unique behavior in the software system. Therefore,

this software configuration space explosion problem adds combinatorial complexity

to many already difficult software engineering tasks.

To date, much of the research in this area has tackled this problem using black-

box techniques, such as combinatorial interaction testing (CIT). Although these

techniques are promising in systematizing the testing and analysis of configurable

systems, they ignore a system’s internal structure, which we think is a huge missed

opportunity. We hypothesize that systems are often structured such that their

effective configuration spaces – the set of configurations needed to achieve a specific

goal – are often much smaller than their full configuration spaces. If we can efficiently

identify or approximate the effective configuration spaces, then we can use that

information to greatly improve various software engineering tasks.

To understand the effective configuration spaces of software systems, we used

symbolic evaluation, a white-box analysis, to capture all executions a system can take

under any configuration. The symbolic evaluation results confirmed that the effec-

tive configuration spaces are in fact the composition of many small, self-contained

groupings of options. We also developed analysis techniques to succinctly charac-

terize how configurations interact with a system’s internal structures. We showed

that while the majority of a system’s interactions are relatively low strength, some

important high-strength interactions do exist, and existing approaches such as CIT

are highly unlikely to generate them in practice.

Results from our in-depth investigations serve as the foundation for developing

new approaches to efficiently discover effective configuration spaces. We proposed a

new algorithm called interaction tree discovery (iTree) that aims to identify sets of

configurations that are smaller than those generated by CIT, while also including

important high-strength interactions missed by practical applications of CIT. On

each iteration of iTree, we first use low-strength covering arrays to test the system

under, and then apply machine learning techniques to discover new interactions that

are potentially responsible for any new coverage seen. By repeating this process,

iTree builds up a set of configurations likely to contain key high-strength interac-

tions. We evaluated iTree and our results strongly suggest that iTree can identify

high-coverage sets of configurations more effectively than traditional CIT or random

sampling.

We next developed an interaction learning approach that estimates the con-

figuration interactions by building classification models for iTree execution results.

This approach is light-weight, yet produces accurate estimations for the interac-

tions, making leveraging effective configuration spaces practical for many software

engineering tasks. Using this approach, we were able to approximate the effective

configuration space of the ∼1M-LOC MySQL at very low cost, something that is

infeasible using existing techniques.

UNDERSTANDING, DISCOVERING AND LEVERAGING
A SOFTWARE SYSTEM’S

EFFECTIVE CONFIGURATION SPACE

by

Charles Song

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:
Dr. Adam Porter, Chair/Advisor
Dr. Jeff S. Foster
Dr. Hal Daume’ III
Dr. Rance Cleaveland
Dr. David Barbe

c© Copyright by
Charles Song

2011

Dedication

This dissertation is dedicated to my loving and supportive parents:

Huafu Song and Mingxun Cai

ii

Acknowledgments

This dissertation and my graduate career would not have been possible without

the assistance and support of many. I would like to extend my thanks to all of them.

First, I would like to thank my advisor, Adam Porter. The research presented

in this dissertation was only possible because he taught me how to do research,

write papers, and give talks. I admire his ability to develop new ideas and to

explain complex concepts in such elegant ways. Adam has been one of the most

important mentors in my life and I thank him for teaching me essential lessons that

I will need not only in research but in life as well.

I also would like to thank Jeff Foster. It has been my pleasure to collaborate

with Jeff on my research. I am grateful for his ready willingness to provide guidance

and I value his astute observations on research problems that helped me focus my

research agenda.

I thank Hal Daume’ III for providing his expertise in machine learning to

my research. Whenever I needed help, Hal has always been there patiently giving

valuable information that ultimately improved my work.

I thank the members of my committee: Adam Porter, Jeff Foster, Hal Daume’

III, Rance Cleaveland and David Barbe. I am very grateful for your support and

effort. Your insightful feedback helped me improve and refine this dissertation.

I would like to give special thanks to Elnatan Reisner and Kin Keung Ma for

their collaboration on a vital part of my research. I am fortunate to have had the

experience of working with these intelligent and inquisitive researchers.

iii

I would like to thank Mikael Lindvall and Chris Ackermann from Fraunhofer

USA CESE for being great colleagues and friends. It has been wonderful working

with both of them and I have learned a great deal from conversations with them.

I would like to thank Vibha Sazawal. In the beginning of my graduate career,

I had the pleasure of working with Vihba and her encouraging words motivated me

to pursuit a doctorate degree and academic research.

Finally, I thank my parents, Huafu Song and Mingxun Cai, for their support

and encouragement throughout my life. Their words of encouraging pushes for my

pursuits and progress still ring in my ears. I am forever in debt to their sacrifices,

and I know I would not have many accomplishments in life without their love and

support.

iv

Table of Contents

List of Figures viii

1 Introduction 1
1.1 Research Hypotheses and Contributions 3
1.2 Organization . 6

2 Background and Related Work 7
2.1 Highly Configurable Systems . 8
2.2 Combinatorial Interaction Testing . 9
2.3 Symbolic Evaluation . 12
2.4 Machine Learning . 14

3 Understanding the Effective Configuration Space 18
3.1 Using Symbolic Evaluation to Study Configurable Software 21

3.1.1 Configurable Software . 21
3.1.2 Symbolic Evaluator . 25

3.1.2.1 Otter’s Design and Implementation 25
3.1.2.2 Example Symbolic Evaluation 29

3.1.3 Configuration Space Study . 30
3.1.3.1 Subject Systems . 31
3.1.3.2 Symbolic Evaluation Results 33

3.2 Understanding the Configuration Interactions 37
3.2.1 Guaranteed Coverage Analysis 38

3.2.1.1 Analysis Results . 41
3.2.2 Execution Conditions Analysis 47

3.2.2.1 Analysis Results . 49
3.3 Understanding Configuration Space Sampling 51

3.3.1 Analysis of Existing Approaches 51
3.3.1.1 Experimental Design 53
3.3.1.2 Structural Coverage Evaluation 53
3.3.1.3 Interaction Coverage Evaluation 56

3.3.2 Minimal Covering Sets . 59
3.3.2.1 Data and Analysis 60

3.4 Summary . 62

4 Discovering the Effective Configuration Space 64
4.1 Using iTree to Discover Effective Configurations 66

4.1.1 iTree Design Motivation . 67
4.1.2 Algorithm and Implementation 71

4.2 Evaluating iTree Parameters . 80
4.2.1 Subject Systems . 80
4.2.2 iTree Parameters . 82

4.2.2.1 Covering Array Strengths 82

v

4.2.2.2 Decision Tree Algorithms 82
4.2.2.3 Iteration Retries . 84

4.2.3 Initial Evaluation . 85
4.2.3.1 Data and Analysis 85

4.2.4 Composite Proto-Interactions 88
4.2.4.1 Data and Analysis 90

4.2.5 Adaptive Approach . 91
4.2.5.1 Data and Analysis 92

4.3 Performance Evaluation . 93
4.3.1 Comparing iTree to Other Approaches 93

4.3.1.1 Experimental Design 93
4.3.1.2 Data and Analysis 94

4.3.2 Scalability Evaluation . 97
4.3.2.1 Subject System . 98
4.3.2.2 Experimental Design 99
4.3.2.3 Data and Analysis 101

4.4 Minimized iTree Sets . 102
4.4.1 Data and Analysis . 103

4.5 Estimating Configuration Interactions 105
4.5.1 Interaction Learning Approach 106

4.5.1.1 Experimental Design 108
4.5.1.2 Data and Analysis 110

4.5.2 Analyzing Configuration Interactions of MySQL 113
4.6 Summary . 115

5 Leveraging the Effective Configuration Space 118
5.1 iTree-based Automated Distributed Framework 119

5.1.1 Skoll Overview . 121
5.1.2 iTree Integration With Skoll 123
5.1.3 Discussion . 125

5.2 Configuration-Aware Regression Testing 127
5.2.1 Regression Testing Analysis 128

5.2.1.1 Replicating Qu et al. 130
5.2.1.2 Further Analysis with Interactions 137

5.2.2 Targeted Regression Set . 140
5.2.2.1 Data and Analysis 142

5.3 Summary . 143

6 Conclusions and Future Work 145
6.1 Contributions . 145

6.1.1 Scientific Understanding of Configuration Spaces 146
6.1.2 The iTree Algorithm . 147
6.1.3 Practical Applications of the Effective Configuration Space . . 148

6.2 Future Work . 149
6.2.1 Extending Studies . 149

vi

6.2.2 Improving iTree with Static Analysis 150
6.2.3 Configuration Documentation 151
6.2.4 Recommendation Systems . 153

Bibliography 156

vii

List of Figures

3.1 Examples of configuration options being used in our subject systems. 23
3.2 Example symbolic evaluation using Otter. 28
3.3 Program statistics for vsftpd and ngIRCd for the symbolic evaluation

experiments. 31
3.4 Summary of the symbolic evaluation experiments. 34
3.5 Number of paths executed by each test case during symbolic evalua-

tion (L/B/E=line/block/edge, C=condition). 36
3.6 Number of configuration interactions at each t strength for line, block,

edge and condition coverage criteria. 42
3.7 Configuration interactions shared among the different coverage criteria. 43
3.8 vsftpd and ngIRCd’s cumulative guaranteed coverage at each inter-

action strength. 44
3.9 Number and strength of configuration interactions discovered using

the execution conditions analysis. 49
3.10 Percentage of effective configurations for every reachable line of code

in various configuration samples. 54
3.11 Percentage of configuration interactions covered by various configu-

ration samples. 57
3.12 Additional coverage achieved by each configuration in the minimal

covering sets. 60

4.1 A simplified snippet of vsftpd’s source code and its configuration
interactions. 68

4.2 An interaction tree for the example program in Figure 4.1. 72
4.3 Pseudocode for the interaction tree discovery algorithm. 73
4.4 Example 2-way covering arrays generated during an iTree run. 76
4.5 Recap of relevant program statistics of vsftpd and ngIRCd for the

iTree experiments. 81
4.6 Classification models generated using C4.5 and CART decision trees. 83
4.7 Interaction tree experiments using various iTree parameters and heuris-

tics. 86
4.8 Comparing the number of configurations needed to reach complete

coverage using iTree versus using covering arrays and random sampling. 95
4.9 Program statistics of MySQL. 98
4.10 Comparing the number of configurations and coverage achieved using

iTree against those achieved using other approaches. 100
4.11 Comparing additional coverage achieved by each configuration in the

minimized iTree sets against those in the minimal covering sets. . . . 104
4.12 Cumulative coverage of MySQL’s minimized iTree set. 105
4.13 Accuracy of vsftpd and ngIRCd’s estimated configuration interactions

measured in three metrics. 110
4.14 Number and strength of MySQL’s estimated configuration interactions.113

viii

4.15 MySQL’s cumulative guaranteed coverage at each interaction strength.114

5.1 The automated distributed testing framework created by integrating
iTree with the Skoll DCQA framework. 121

5.2 iTree’s API for implementing adapters for different execution frame-
works. 123

5.3 Results of regression testing of vsftpd using 2-way and 3-way covering
arrays. 132

5.4 Comparing regression testing effectiveness of covering arrays and ran-
dom samples. 134

5.5 Size of TRCSs generated for vsftpd and ngIRCd during regression
testing simulations. 142

ix

Chapter 1

Introduction

As modern software systems grow in size and complexity, they are increasingly

designed and built as flexible combinations of components that can be configured in

a multitude of different ways. The ability to configure a software system to run in

various environments, to include specific feature sets and to have certain quality of

service makes the system more portable, reusable, and extensible. For example, the

most popular web server on the Internet, the Apache HTTP Server, has hundreds

of both run-time and compile-time options to configure it to run on a number of

different operating systems, to include various optional features, and to tune it for

specific performance requirements.

While it is clear that a high degree of configurability offers many benefits, it

also greatly complicates the tasks of designing, building, and maintaining config-

urable software. The complication stems from the fact that developers are no longer

dealing with a single system anymore; instead the system is a family of related con-

figured instances. The sheer number of possible configurations can be tremendous,

as in the worst case, the full configuration space of a system is the exponentially

large combination of all possible option settings. Every configuration can potentially

produce unique behavior in the system. We call this the software configuration space

explosion problem, and it adds combinatorial complexity to many already difficult

1

software engineering tasks. For instance, during software testing, since any configu-

ration might harbor a distinct error, each configuration should, in theory, be tested

separately — something that is impossible in practice.

To alleviate this problem, researchers have proposed combinatorial interaction

testing (CIT) [15, 8, 46]. In the context of configurable systems, CIT typically

involves developers manually modeling the system’s configuration space — all the

ways in which it can be configured — and then using the resulting model to define

coverage criteria which then drive the configuration-aware testing processes. For

example, with one CIT approach, developers choose an interaction strength t and

compute a covering array, which is a set of configurations such that all possible t-way

combinations of option settings appear at least once. The assumption underlying

CIT is that configuration sets constructed in this way are small in size while pro-

viding good coverage of the system’s behavior. Thus this approach cost-effectively

increases the likelihood of finding faults.

Covering arrays and other interaction testing techniques have been used in

organizations such as Microsoft [17], Phillips [70] and NASA [71]. Although a num-

ber of research results show these techniques produce good structural coverage and

detect software faults [8, 19, 42], there is only weak scientific understanding of why

and how well they work in a more absolute sense. For instance, a covering array

parametrized by a single integer strength t is clearly a gross approximation of a

software system’s internal structure.

2

1.1 Research Hypotheses and Contributions

This dissertation challenges CIT’s assumptions. We think that configura-

tion interactions, which are conjunctions of configuration option settings needed

to achieve specific behavior in the software systems, are rare. The structure of a

software system limits the ways that configuration options can interact with each

other. More specifically, we think that systems are often structured such that their

effective configuration spaces — the set of configurations needed to achieve a specific

goal — are often much smaller than their full configuration spaces. For example,

complete line coverage might be achievable by running only a small number of care-

fully chosen configurations. If our hypothesis is true, then we can greatly improve

various software engineering tasks for a given configurable system by leveraging its

effective configuration space appropriate for the specific software engineering task.

We have identified three primary research hypotheses:

1. For many practical tasks, a system’s effective configuration space is a small

subset of its full configuration space.

2. We can efficiently discover or approximate the effective configuration space of

a software system.

3. We can greatly improved numerous software engineering tasks by leveraging

a system’s effective configuration space.

The research work in this dissertation is conducted in three parts, each part ad-

dressing one of the primary research hypotheses.

3

In the first part, we undertook a series of thorough studies on the configuration

spaces of some medium-sized subject systems. We first used symbolic evaluation [40,

33, 12], a white-box analysis, to generate all the executions our subject systems can

take under any configuration under a given test suite. The symbolic evaluation

results showed that the total number of paths executed is dramatically smaller than

the number of all possible configuration option combinations. We next developed

techniques to calculate the configuration interactions of these systems under the

test suite. In our case, the testing goal was particular forms of coverage (line, block,

edge, and condition). We found that the interactions were quite rare; only a handful

of specific option setting combinations had to be exercised to maximize coverage,

even under a comprehensive criteria, such as the path coverage. This suggests CIT’s

insistence on testing every t-way combination of option settings may be unnecessarily

expensive. We also found that for our subject systems and test suites, most of the

interactions needed to achieve maximum coverage were low strength (involved 4

option settings or fewer), and the very few largest interactions needed to achieve

maximum coverage were higher strength (involved 7 option settings). These findings

suggest CIT approaches, which are typically applied at t = 2 or t = 3 [17], are likely

missing key high-strength interactions. Finally, we observed that higher strength

interactions were usually just lower strength interactions with one or more additional

constraints.

In the second part of this work, we created a new algorithm that addresses

the shortcomings of traditional CIT. Our algorithm aims to discover sets of con-

figurations to test that are smaller than those chosen by CIT, while also achieving

4

higher coverage. To achieve this aim, we developed iTree, an interaction tree dis-

covery algorithm that combines low-strength covering arrays, runtime instrumen-

tation, and machine learning (ML) techniques to construct an interaction tree for

the software system. An interaction tree is a hierarchical representation of what

we call proto-interactions, which are potential interactions or subsets of potential

interactions. The key intuition behind iTree stems from our observation that higher

strength interactions were usually build on top of the lower strength ones. iTree

exploits this observation by performing an iterative, search-based process in which

the current iteration’s sampled configurations are based on the last iteration’s proto-

interactions. In this way, the sets of configurations constructed as iTree executes

have the potential to provide higher coverage than correspondingly sized configu-

ration sets produced from traditional CIT. We compared iTree against traditional

CIT and against similarly sized sets of randomly selected configurations. Our results

show that iTree is more likely to find high-coverage configuration sets, and it does so

more rapidly than the other approaches. We also found that iTree can easily scale

up to large software systems such as the ∼1M-LOC MySQL database and was again

more efficient and effective than either CIT or random sampling. We then developed

a technique that can efficiently and accurately estimate configuration interactions

using the iTree execution results with decision tree classifiers. Using this technique,

we were able to approximate the configuration interactions of MySQL in minutes.

Finally, in the third part of this work, we developed tools and techniques

that can leverage the knowledge of effective configuration spaces to improve testing

of configurable systems. We created an iTree-based automated distributed testing

5

framework that parallelizes the execution of highly effective configurations selected

by iTree on distributed computing resources. We also studied configuration-aware

regression testing and developed an algorithm that can generate a small set of con-

figurations that, for a given set of program changes, execute every change under

all configurations affected. Our results demonstrated that leveraging the knowl-

edge of effective configuration space can greatly improve the cost-effectiveness of

the development and maintenance of configurable software systems.

1.2 Organization

The following outlines the organization of this dissertation. Chapter 2 dis-

cusses works that are related to our research; we consider works on configurable

software, CIT, symbolic evaluation, and machine learning. Chapter 3 presents our

studies on software systems’ configuration spaces. Chapter 4 describes in detail our

iTree approach to discover effective configurations for specific software engineering

goals. Chapter 5 demonstrates tools and techniques for practical applications of

effective configuration spaces. Chapter 6 presents contributions and future work.

6

Chapter 2

Background and Related Work

In this research, we address the problem of testing highly configurable software

systems. Our work uses and improves upon many ideas and techniques from existing

research work across several areas of computer science. We have categorized this

existing work into four broad categories. In the sections below, we describe each

category in more detail. Section 2.1 presents the concepts of highly configurable

software systems. We discuss work related to the design, implementation and ver-

ification of such systems and the challenges they present to software engineering,

specifically to software testing. Section 2.2 discusses work related to combinatorial

interaction testing CIT. We introduce CIT techniques and discuss their applica-

tions in the development, testing and maintenance of configurable software systems.

Section 3.1 discusses work related to symbolic evaluation. We present the differ-

ent designs and implementations of various symbolic evaluators and their intended

applications. As far as we know, we are the first to use symbolic evaluation to

study configurable systems. Section 2.4 discusses work related to machine learning

techniques and their application to dynamic analysis of software systems.

7

2.1 Highly Configurable Systems

Today’s software systems are increasingly shifting from individual programs

to families of related programs, but the concept of program families is not new.

Parnas defined program families in his 1976 paper [50] as: “Sets of programs whose

common properties are so extensive that it is advantageous to study the common

properties of the programs before analyzing individual members.” Significant reuse

can be achieved by implementing the set of common properties of these systems as

one integrated highly configurable system. The process of configuration then binds

the optional properties (or variations) of a program family to configure the instances

in order to produce a specific software system.

There are numerous techniques that can be used to implement variability

in program families [28], including conditional compilation, dynamic class loading,

design patterns, aspect-oriented programming (AOP) [75], etc. These techniques

differ in both the code-level mechanisms used and the exact binding time of the

configurable features. At one extreme, there are dynamically reconfigurable sys-

tems [67, 21] in which the feature binding steps may repeatedly take place at run-

time. At the other extreme, there are software product lines (SPLs) [14] that define

an architectural model to implement a family of software products that share com-

mon features while allowing for variability in functionality, performance and level of

service. But the most common configurable software systems are programs such as

desktop applications, web servers, and databases, that allow users to modify a set

of pre-defined configuration options via the command-line or configuration files and

8

then run the programs with the user specified option settings.

Highly configurable systems lower the overall development and maintenance

costs of multiple systems with commonly sharable capabilities [4], but they also

present significant challenges for their design, development and testing processes.

In this dissertation, we focus on software testing. The already challenging problem

of testing a single software system has been replaced with an even harder problem of

testing a set of configured instances that can be produced by all of the different pos-

sible combinations of features. The software configuration space explosion problem

arises because the number of possible configured instances of such a system can be

tremendous. In the worst case, the configuration space is exponentially large combi-

nation of all possible option settings. Many research results suggest that faults can

appear in some configured instances but not in others [43, 82, 57]. Therefore, during

software testing, each configured instance should be tested, but that is impossible

in practice.

Instead, researchers and practitioners opt to sample a subset of all the possible

configured instances of a system in order to provide some confidence in software

quality. One of the most prominent configuration space sampling techniques used

is CIT.

2.2 Combinatorial Interaction Testing

CIT [15, 8, 46] was originally designed for testing traditional program inputs.

It computes a small set of test inputs guaranteed to contain certain combinations of

9

the input values. In the context of configurable systems, CIT typically involves de-

velopers manually modeling the system’s configuration space — all the ways in which

it can be configured — and then using the resulting model to define coverage criteria

which then drive the configuration-aware testing processes. One popular implemen-

tation of CIT takes a parameter t, called the interaction strength, and computes

a covering array – a small set of configurations such that all possible t-way com-

binations of the configuration option settings appear in at least one configuration.

Testing and analysis are then done on each of the covering array’s configurations.

For software testing, several studies have shown that high statement and

block coverage can be achieved with low strength covering arrays (t=2 or 3), while

slightly higher strengths may be needed for edge or path coverage or for fault de-

tection [8, 19, 42]. Therefore, even at low strength, covering arrays should be an

effective selection technique based on structural coverage. Qu et al. [57], stud-

ied whether 2-way covering arrays could effectively support regression testing on

configurable systems. Their basic findings were that individual program changes

affected different configurations differently, and therefore, systematically covering

system configurations was an effective heuristic for configuration-aware regression

testing. Yilmaz et al. [82] and Fouche et al. [25] extended covering array test results

to fault characterization. That is, they used covering arrays to generate test data

and then fed this data to machine learning algorithms to automatically classify the

likely causes of failure. Both efforts were able to detect failures and to accurately

determine which specific option settings were responsible for inducing the failures.

Several research have suggested the application of CIT approaches to software

10

product lines (SPLs) [16]. SPLs can instantiate enormous number of valid software

product instances, which creates many challenges for selecting product instances for

validation and testing. Oster et al. [49] used SPL feature models to extract valid

feature pairs. Then product instances are generated such that any feature pair is

covered by at least one product instance. Their selection algorithm allowed pre-

selection of product instances and built additional product instances to cover the

uncovered feature pairs. Perrouin et al. [51] defined product instance generation

as a Constraint Satisfaction Problem (CSP) and focused on using SAT solvers to

generate valid product instances that satisfies all t feature interactions.

There are numerous existing techniques developed to address the cost-effectiveness

of CIT techniques. Garvin et al. [30] developed on a meta-heuristic algorithm for

covering array generation called simulated annealing. By reorganizing the search

space base on the CIT problem structure, their algorithm reduces both the running

time of the generation process as well as the resulting sample size. Bryce et al. [10]

developed an optimization framework for constructing prioritized covering arrays.

Given a user-defined objective function, they construct covering arrays whose con-

figurations are ordered so that the more “important” configurations can be tested

before less important ones. Fouche et al. [24] created an incremental covering array

technique that incrementally builds covering array schedules. This approach relieves

the developers from picking the correct t-strength; it begins at a low strength, and

then iteratively increases strength as resources allow. At each stage the previously

tested configurations are reused in the higher strength covering arrays, thus avoiding

duplication of work.

11

To date, much of the research on CIT has taken a black-box approach. While

these efforts has produced promising results, there is only a weak scientific under-

standing of how well CIT really works. We feel this is a huge missed opportunity to

improve the testing of highly configurable software systems.

2.3 Symbolic Evaluation

For our research work, we use symbolic evaluation to undertake white-box,

code-level analyses of configurable systems to discover detailed information about

how their configuration spaces are structured.

Symbolic evaluation has been around for more than 30 years. In the mid

1970’s, King was one of the first to propose symbolic evaluation as an aid to pro-

gram testing [40]. Theorem provers at that time, however, were fairly simple, limit-

ing the approach’s practical potential. Recent years have seen remarkable advances

in Satisfiability Modulo Theory and SAT solvers, which has enabled symbolic evalu-

ation to scale to more practical problems. Some recent symbolic evaluators include

DART [33], CUTE [69], KLEE [12], Pex [74], Splat [80], and Java PathFinder [1]

etc. There are important technical differences between these systems, however, at a

high level, the basic idea is the same: The developer marks values as symbolic, and

the symbolic evaluator explores all possible program paths reachable under arbitrary

assignments to those symbolic values.

DART uses concolic execution [68, 45], which mixes concrete execution and

symbolic evaluation. This system associates each symbolic input to a concrete value,

12

and the program is executed as usual with these values. At the same time, DART

collects a list of symbolic constraints over the symbolic inputs, one at each branch

point (i.e., if-statement) along the concrete execution path. After the execution

finishes, DART carefully picks a branch point and replaces the symbolic constraint

it generates with the negation. The new list of symbolic constraints is then solved

by a constraint solver to get a satisfying assignment that will direct the program to

another path whose prefix is the same as the previous one, but branches differently

at the chosen branch point. This process is repeated until all branch points have

been chosen, or the maximum number of allowed iterations has been reached.

EXE [13] instruments the program by adding code that maintains constraints

along execution paths, consults the constraint solver when a conditional is hit, and

calls fork() to branch the execution if the conditional is unresolvable. The instru-

mented program is then compiled and run natively. When there is an assertion

failure, the constraint solver will yield a set of concrete inputs, based on the current

path condition, that will drive the uninstrumented program along the same path

and hit the assertion failure. KLEE [12], the successor to EXE, performs symbolic

evaluation in a similar manner. However, instead of instrumenting the program and

running it natively, KLEE interprets it. The main advantage of this over calling

fork() is that the latter requires duplication of memory, which is expensive in both

time and space (although fork() does copy-on-write, it is likely that any branch will

modify the memory which triggers the copy). KLEE avoids this by modeling mem-

ory as a persistent map so that portions of the heap can be shared among multiple

executions efficiently.

13

To address the path explosion problem during symbolic evaluation, Xie et

al. [79] proposed a search strategy called Fitnex. This approach uses a fitness func-

tion to measure the distance from an already discovered execution path to the target

branch. The fitness value generated by this function is used to guide the future ex-

ploration of execution paths. In thir work, they implemented Fitnex in the Pex [74]

tool and found their approach to be effective for achieving high code coverage faster

than existing search strategies. Person et al. [52] addresses the scalability issue of

symbolic evaluation with a technique called differential symbolic execution. This

technique exploits the fact that structures of changed programs are mostly the same

as the previous versions. Therefore, instead of performing full symbolic evaluation

on the programs each time, they efficiently calculate deltas (or changes) in program

behaviors after modifications and perform partial symbolic evaluation on part of the

program.

Symbolic evaluation is not limited to program variables either. Hu et al. [37]

used symbolic evaluation to study conditional compilation using C/C++ preproces-

sor directives. In this work, they were able to use their tool to analyze the Linux

kernel source code to find the simplest directive conditions to enable the compilation

of a line of code.

2.4 Machine Learning

Several researchers have applied machine learning techniques to testing and

analysis of software systems.

14

Wegener et al. [76] created a tool environment to apply evolution testing to

C programs. Their approach uses evolutionary computation algorithms to generate

test data that fulfils a given structural testing criteria using fitness functions that

are based on branching conditions of uncovered program paths. Bueno et al. [11]

used genetic algorithms to identify potentially infeasible program paths; they pro-

posed that monitoring the progress of genetic search could identify an infeasible

path. They developed a “path similarity metric” fitness function that uses control

and data flow information to guide the search. Kasik et al. [39] focused on gener-

ating graphical user interface (GUI) test cases that mimicked novice user behavior.

They used genetic algorithms as a repeatable technique to generate unexpected user

events. The fitness values are assigned to the events according to how much they

resemble novice-like behavior using a special reward system that was built based on

observations.

Podgurski et al. [54] used cluster analysis and random sampling to improve the

accuracy of software reliability estimates. Their approach involved collecting exe-

cution profiles and applying automatic cluster analysis to these profiles to partition

the executions based on dissimilarity. A stratified random sample of executions is

then selected to reduce the number of program executions that need to be checked

manually for conformance to requirements. Dickinson et al. [18] presented a tech-

nique called cluster filtering that takes a choice of dissimilarity metric, cluster count,

and sampling method to filter failure predicting test cases. Podgurski et al. [53] pre-

sented a semi-automated strategy for classifying software failures. They applied

both supervised and unsupervised pattern classification techniques and multivariate

15

visualization techniques to execution profiles in order to prioritize software failure

reports. Francis et al. [26] developed two tree-based strategies to group together soft-

ware failures with similar causes. Their first approach used dendrograms [72], which

are tree-like diagrams used to represent the results of hierarchical cluster analysis,

to refine an initial failure clustering. Their second approach applied classification

trees to classify failures and to refine the classification of these failures.

Haran et al. [35] developed three techniques – association trees, random forests

and adaptive sampling association trees – to automatically classify fielded software

system executions. The general approach of association trees is to collect execu-

tion data from lightly instrumented instances and models from both in-house and

in-the-field training sets to predicted execution outcomes. Random forests lowered

instrumentation requirements and improved prediction accuracy by building numer-

ous lightweight association trees to vote on the execution outcome. Also, adaptive

sampling uses earlier execution data to determine which data to collect in future

instances, thus improving the quality of execution data collected while reducing the

instrumentation overhead. Burn et al. [9] developed a fault invariant classifier based

on two different machine learning techniques. Their decision tree approach uses an

external invariant detector, Daikon [23], to isolate faults revealing properties within

the test subjects. Bowring et al. [5] used Markov models to build a classifier for

program executions. Their approach used instrumentation of all branches within

the subject programs and model a particular class of branches – event transitions –

to improve the accuracy of the classifiers.

Our research work uses machine learning techniques to select configurations

16

that should be tested. This mostly involves classification learning techniques, and

we are specifically interested in techniques that enable the extraction of knowledge

from the classification models [61].

17

Chapter 3

Understanding the Effective Configuration Space

In this chapter, we look at our first research hypothesis: For many practical

tasks, a system’s effective configuration space is a small subset of its full configu-

ration space. To help us explore this hypothesis we formed four general research

questions:

1. How does configuration affect the behavior of software systems?

2. How can we characterize systems’ effective configuration spaces?

3. Are the existing approaches effectively sampling the configuration spaces?

4. Can we improve configuration space sampling using knowledge of effective

configuration spaces?

To provide answer to the first question, we used symbolic evaluation, a white-

box analysis technique, to empirically study and understand the configuration spaces

of two subject systems. Symbolic evaluation enables us to capture all executions a

system can take under any configuration. The data captured from symbolic evalua-

tion are execution trees that contain all possible paths executed under any combina-

tions of configuration option settings. By definition, each path in the execution trees

is distinct from all other paths, thus every configuration option combination given

by a path is unique. We found that, for our subject systems, the total number of

18

paths executed is dramatically smaller than the number of all possible configuration

option combinations. These results indicate that the effective configuration spaces

are indeed much smaller than the full configuration spaces.

To answer the second question, we developed new analysis techniques to char-

acterize the relationship between configuration and system behavior. Without fur-

ther analysis, the execution paths from symbolic evaluation tell us only a little

about the a system’s effective configuration space. Therefore, we next developed

two analysis techniques, the guaranteed coverage and the execution conditions anal-

yses, that can project the execution paths onto different types of structural coverage.

These techniques allowed us to calculate the configuration interactions, which suc-

cinctly characterize the relationship between configuration options and the internal

structures of a software system. We found that, if the goal of a specific software

engineering task is measured by more abstract properties, then the execution paths

are no longer unique, and the effective configuration space collapses further. For

example, to reach complete line coverage during testing, the most of the execution

paths are actually redundant.

Using the configuration interaction data, we can answer the third research

question. To understand how well existing configuration space sampling approaches

worked, we evaluated two techniques, the covering arrays and the random sampling,

on their ability to achieve high structural coverage during software testing. Although

these techniques produce relatively good results in practice, we found that the cov-

ering arrays are doing too much work covering all interactions of a set t strength,

but at the same time, they often miss higher strength interactions needed to achieve

19

the software engineering goals. And random sampling, lacking a systematic way to

determine the sample size, depends on the probability of including the right interac-

tions in the configuration samples. Based on our evaluation results, we think a more

effective sampling approach should focus on the coverage of actual interactions of a

software system instead all potential interactions in the full configuration space.

Finally, to provide the answer to the forth question, we investigated whether we

can use the configuration interactions to generate small configuration sets that are

more effective than those generated by existing sampling approaches. We developed

a greedy algorithm that packs the interactions together, aiming to find a minimal

configuration set that still achieves the same structural coverage as the full set of

execution paths. For our subject systems, the resulting minimal covering sets range

in size from only 5 to 10 configurations regardless of the coverage criteria, which is

much smaller than the covering arrays and the random samples. This suggests the

effective configuration space looks more like a union of disjoint interactions rather

than a monolithic cross-product of all configuration option settings.

The remainder of this chapter is organized as follows. Section 3.1 describes our

experiments using symbolic evaluation to study systems’ configuration space. Sec-

tion 3.2 describes the two analysis techniques we used to calculate the configuration

interactions. Section 3.3 presents our evaluations of existing sampling approaches

using the configuration interaction data and the implications on more effective sam-

pling approaches. Section 3.3.2 describes our new sampling approach that generates

a small set of configurations called the minimal covering set using a greedy algorithm

to pack together configuration interactions.

20

We note that some material in this chapter is collaborative work from a pre-

vious publication [62] with Elnatan Reisner and Kin Keung Ma. Specifically, Sec-

tion 3.1, Section 3.2.1 and Section 3.3.2. In Section 3.1, the symbolic evaluator

used during our empirical studies was built by Kin Keung Ma. Elnatan Raisner and

Kin Keung Ma also prepared the two subject systems for symbolic evaluation and

created their test suites. In Section 3.2.1, the algorithm of the guaranteed coverage

analysis was implemented by Elnatan Raisner with the assistance of Kin Keung

Ma. In Section 3.3.2, Elnatan Raisner implemented the algorithm for minimal cov-

ering set generation. We shared the responsibility of analyzing the results in these

sections.

3.1 Using Symbolic Evaluation to Study Configurable Software

3.1.1 Configurable Software

In this dissertation, we define a configurable software system as a generic code

base and a set of mechanisms for implementing pre-planned variations in the code

base’s structure and behavior. These variations are wide-ranging, covering hard-

ware and operating system platforms (e.g., Windows vs. UNIX), run-time features

(e.g., enable/disable SSL encryption), performance tuning (e.g., maximum number

of concurrent clients) and many others. In practice, these pre-planned variations can

be implemented using a variety of programming constructs, such as run-time con-

ditional expressions (e.g., if-then statements), conditional compilation (e.g., C++

preprocessor directives), dynamic executable loading (e.g., Java Reflection). In this

21

chapter, we focus on the run-time configuration options, which are usually given via

configuration files and have their values read into program variables.

We also define a configuration as a mapping of the configuration options to

their settings. Every combination of option settings is a distinct configuration, and

all possible configurations a software system can take on make up the system’s

configuration space.

To understand the internal structures of these software systems with respect to

configuration, we need to first capture the affects configuration has on the run-time

behavior of the systems under all configurations. However, due to the configuration

space explosion problem, we cannot get this information by directly executing the

software systems under every possible configuration. Instead, we opted to undertake

white-box, code-level analyses to discover details about software systems’ internal

structures with respect to their configurations.

Figure 3.1 illustrates several ways that run-time configuration options can be

used in the source code, and explains why understanding their usage requires fairly

sophisticated technology. All of these examples are taken from our subject systems

and the configuration options are shown in boldface.

The example in Figure 3.1(a) shows a section of vsftpd’s command loop, which

receives a command and then uses a long sequence of conditionals to interpret the

command and carry out the appropriate actions. The example shows two such

conditionals that also depend on boolean configuration options. In this case, the

configuration options enable certain commands, and the enabling condition can

either be simply the current setting of the option (as on line 2) or may involve an

22

1 ...
2 else if (tunable pasv enable &&
3 str equal text(&p sess−>ftp cmd str, ”EPSV”)) {
4 handle pasv(p sess, 1);
5 }
6 ...
7 else if (tunable write enable &&
8 (tunable anon mkdir write enable || !p sess−>is anonymous) &&
9 (str equal text(&p sess−>ftp cmd str, ”MKD”) ||

10 str equal text(&p sess−>ftp cmd str, ”XMKD”))) {
11 handle mkd(p sess);
12 }

(a) Boolean configuration options (vsftpd)

13 if ((Conf MaxJoins > 0) &&
14 (Channel CountForUser(Client) >= Conf MaxJoins))
15 return IRC WriteStrClient(Client,
16 ERR TOOMANYCHANNELS MSG,
17 Client ID(Client), channame);

(b) Integer-valued configuration options (ngIRCd)

18 else if(Conf OperCanMode) {
19 /∗ IRC−Operators can use MODE as well ∗/
20 if (Client OperByMe(Origin)) {
21 modeok = true;
22 if (Conf OperServerMode)
23 use servermode = true; /∗ Change Origin to Server ∗/
24 }
25 }
26 ...
27 if (use servermode)
28 Origin = Client ThisServer();

(c) Nested conditionals (ngIRCd)

29 remote fd = vsf sysutil accept timeout(p sess−>pasv listen fd, p accept addr, tunable accept timeout);
30 ...
31 vsf sysutil accept timeout(int fd, struct vsf sysutil sockaddr∗ p sockaddr, unsigned int wait seconds) {
32 ...
33 if (wait seconds > 0) {
34 ...
35 }
36 }

(d) Options being passed through the program (vsftpd)

Figure 3.1: Examples of configuration options being used in our subject systems.

23

interaction between multiple options (as on lines 7–8).

Not all options need to be booleans, of course. Figure 3.1(b) shows code from

ngIRCd in which Conf MaxJoins is an integer option that, if positive (line 13), gives

the maximum number of channels a user can join (line 14). In this example, error

processing occurs if the user tries to join too many channels.

Figure 3.1(c) shows a different example in which two configuration options

are tested in nested conditionals. This illustrates that it is insufficient to look at

tests of configuration options in isolation; we also need to understand how they

may interact based on the system’s structure. Moreover, in this example, if both

options are enabled then use servermode is set on line 23, and its value is then tested

on line 27. This shows that the values of configuration options can be indirectly

carried through the state of a system.

Figure 3.1(d) shows another example of using configuration options indirectly.

Here wait seconds in the vsf sysutil accept timeout function is assigned the value of a

configuration option through one of its parameters, and the value of this parameter

is then used in the conditional (lines 33) to control the execution of some lines of

code.

As we saw above, simple approaches such as searching for the option names

will be insufficient, because configuration options can be used in complex ways in

the systems’ source code. Instead, we propose to use symbolic evaluation to capture

all executions that a system can take under any configuration.

24

3.1.2 Symbolic Evaluator

There existing a bevy of symbolic evaluators built for vast number of different

applications. The choices of their designs and implementations greatly impact their

applicability to our specific use case. Many of these evaluators include techniques

to guide the evaluator to “interesting” execution paths, under the assumption that

if arbitrary program inputs are made symbolic, then there are too many paths to

explore in a reasonable amount of time [32]. In contrast, for our studies we need

to explore all execution paths. The symbolic evaluator we picked for our studies,

Otter, was designed and built by the University of Maryland programming language

group with the application of studying configurable software systems in mind.

3.1.2.1 Otter’s Design and Implementation

Otter is essentially a C source code interpreter, with one key difference; it

allows some data to be designated as symbolic, meaning their values represent un-

knowns that may take on any value. Otter tracks these values as they flow through

a program, and conceptually forks execution if a conditional depends on a symbolic

value. Thus, if it runs to completion, Otter will have simulated all execution paths

through the program that are reachable for any values that the symbolic data can

take on. For our work, we treat only the configuration options as symbolic, therefore

on successful exit, Otter would have simulated all paths reachable by the systems

under any possible configuration.

Otter’s general approach closely mimics the implementation of KLEE [12],

25

which performs pure symbolic evaluation, as oppose to concolic execution used by

DART [33]. Otter’s simulated environment, which models memory as a persistent

map so that portions of the heap can be shared among multiple executions efficiently,

allows it to search through the configuration space of a software system much faster.

But the lack of real execution also means, Otter does not perform actual testing of

the software systems.

Otter is written in OCaml, it uses CIL [47] as a front end to parse C programs

and transform them into an easier-to-use intermediate representation. In addition,

the use of CIL also enables easy instrumentation and measurement of the symbolic

evaluation results. As Otter executes, it records the execution paths explored so

that we can later compute the structural coverages such as line, block, edge, and

condition. Note that the definitions of these metrics are for CIL’s representation of

the input program, which is simplified to use only a subset of the full C programming

language. However, the precision of these metrics is sufficient for our investigations.

To compute line coverage, we record which CIL statements Otter executes

and project that back to the original source code lines using a mapping maintained

by CIL. For block and edge coverage, we group CIL statements into basic blocks,

which are sequences of statements that start at a function entry or a join point; do

not contain any join point after the first statement; end in a function call, return,

goto, or conditional; or fall through to a join point. Normally, CIL expands short-

circuiting logical operators && and || into sequences of branches. However, for line,

block, and edge coverage, we disable that expansion as long as the right operand

has no side effect, so that both operands are computed in the same basic block.

26

Then to compute block coverage, we record which basic blocks are executed, and to

compute edge coverage, we compute which control-flow edges between basic blocks

are traversed. Lastly, for condition coverage, we enable expansion of && and ||, so

that each part of a compound condition is always in its own basic block. We then

compute how many conditions — that is, how many branches — are taken in the

expanded program.

A symbolic value in Otter represents a sequence of untyped bits, e.g., a 32-bit

symbolic integer is treated as a vector with 32 symbolic bits in Otter. This low-level

representation is important because many C programs perform bit manipulations

that must be modeled accurately. When a symbolic expression has to be evaluated,

Otter invokes STP [29], an Satisfiability Modulo Theory (SMT) solver optimized for

bit vectors and arrays. These implementation choices allow us to model most types

of configuration options used by our subject systems.

Otter supports all features of C we found necessary for the investigations of

the configuration spaces of our subject systems, including pointer arithmetic, ar-

rays, function pointers, variadic functions, and type casts. Loops, which can cause

symbolic evaluation to “get stuck” as it tries to unroll the loop an unbounded or

extremely large number of times, were not a major obstacle in our investigations:

Configuration options almost never influence loop bounds, so all loops were exe-

cuted in the usual way, with the concrete test cases determining the number of loop

iterations. Otter currently does not handle dereferencing symbolic pointer values,

floating-point arithmetic, in-line assembly or multiple processes. In all cases, these

features either do not appear in our subject systems or do not affect the results of

27

1 int a=α, b=β, c=γ, d=δ; // symbolic
2 int input=...; // concrete
3 int x = 0;
4

5 if (a) {
6 /∗ L1 ∗/
7 } else if (b) {
8 /∗ L2 ∗/
9 x = 1;

10 if (!input) {
11 /∗ L3 ∗/
12 }
13 }
14

15 int y = c || d;
16

17 if (x && input) {
18 /∗ L4 ∗/
19 if (y) {
20 /∗ L5 ∗/
21 }
22 }

x = 0

a
L1 b

x = 1

L2

input = 1

x && inputx && input

(A) (D)

x = 0

a
L1 b

x = 1

L2

x && input

x && inputx && input

(E) (G)

(F)

input = 0

!input

x && input

L4

y

L5

(B)

(C)

!input

(left branch = true,
 right branch = false)

y = c || d

y = c || d

y = c || d y = c || d y = c || d y = c || d

L3

(a) Example program (b) Full execution trees

Figure 3.2: Example symbolic evaluation using Otter.

our investigations.

All of our subject systems interact with the operating system in some way.

Thus, we developed “mock” libraries that simulate a file system, network, and other

needed operating system components in Otter’s symbolic evaluation environment.

Our libraries also allow test cases to control the contents of files, data sent over the

network, and so on. These mock library functions are written in C and are executed

by Otter just like any other code.

28

3.1.2.2 Example Symbolic Evaluation

To illustrate how Otter performs configuration space investigation, consider

the example C code in Figure 3.2(a). This program includes input variables a, b, c,

d, and input. The first four are intended to represent run-time configuration options,

and we initialize them on line 1 with symbolic values α, β, γ, and δ, respectively.

The last variable, input, represents program inputs other than configuration options.

Thus we leave it concrete, and it must be supplied by the user (e.g., as part of argv

(not shown)).

We have indicated five lines, represented by comments /* L1–L5 */ , whose

coverage we are interested in. Figure 3.2(b) shows the sets of paths explored by

Otter as execution trees for the two concrete “test cases” for this program: The

tree for input=1 is on the left, and the tree for input=0 is on the right. Here nodes

correspond to program statements, and branches represent places where Otter has a

choice and hence “forks,” exploring both possible paths. For the sake of simplicity,

we will assume that all symbolic values may only represent 0 and 1, but Otter fully

models symbolic integers as arbitrary 32-bit quantities.

For example, consider the tree with input=1. All executions begin by setting x

to 0 and then testing the value of a, which at this point contains α. Since there are

no constraints on α, both branches are possible. Otter forks its execution at the test

of a. First, it assumes α = 1 and reaches L1 (left branch). It then falls through to

line 15 (the assignment to y) and performs the test on line 17 (x && input). This test

is false, since x was set to 0 earlier, hence Otter does not fork. We label this path

29

through the execution tree as (A). Notice that as Otter explored path (A), it made

some decisions about the settings of symbolic values, specifically that α = 1. We

call this and any other constraints placed on the symbolic values a path condition.

Here, path (A) covers L1 , and so any configuration that sets a=1 (correspond-

ing to α = 1), with arbitrary choices for β, γ, and δ, will cover L1 . This is what

makes symbolic evaluation so powerful: With a single predicate we characterized

the behavior of many possible concrete choices of symbolic inputs. Otter continues

by returning to the last place it forked and tries to explore the other path. In this

case, it returns to the conditional on line 5, adds α = 0 to the path condition, and

continues exploring the execution tree. Each time Otter encounters a conditional, it

calls the SMT solver to determine which branches (possibly both) of the conditional

are possible based on the current path condition.

In total, there are four paths that can be explored when input=1, and three

paths when input=0. However, there are 25 possible assignments to the 5 input

variables. Hence using symbolic evaluation for these test cases enables us to gather

full coverage information with only 7 paths, rather than the 32 runs required if we

had tried all possible combinations of symbolic and concrete inputs.

3.1.3 Configuration Space Study

Using Otter, we explored the configuration spaces of two subject systems:

vsftpd, a widely used secure FTP daemon and ngIRCd, the “next generation IRC

daemon”. Both subject systems are written in C and each has multiple configuration

30

vsftpd ngIRCd

Version 2.0.7 0.12.0

Lines (sloccount) 10,482 13,601

Lines (executable) 4,112 4,387

Basic Blocks 4,584 6,742

Edges 5,033 7,374

Conditions 2,528 3,432

Test Cases 64 142

Symbolic Config Opts 30 13

Boolean/Integer 20/10 5/8

Concrete Config Opts 65 16

Full Config, Test Space 1.4× 1011 4.2× 107

Figure 3.3: Program statistics for vsftpd and ngIRCd for the symbolic evaluation

experiments.

options that can be set in system configuration files.

3.1.3.1 Subject Systems

Figure 3.3 gives descriptive statistics for each subject system. The top two

rows list the system version numbers and lines of code as computed by sloccount [78].

The next group of rows lists the number of executable lines, basic blocks, edges, and

conditions; these four metrics are the structural coverages we measure in our inves-

tigations. To get more accurate measurements, we removed some unreachable code.

31

For example, we eliminated 3 files in vsftpd that are reachable only in two-process

mode, which we disabled because Otter does not support multiprocess symbolic

evaluation.

We note that, all these statistics except for sloccount metric are based on the

CIL representation of the program after preprocessing. We also note that there are

more basic blocks than executable lines of code in both subject systems. This occurs

because, in many cases, single lines form multiple blocks. For example, a line that

contains a for loop will have at least two blocks (for the initializer and the guard),

and lines with multiple function calls are broken into separate blocks according to

our definition.

The next row in Figure 3.3 lists the number of test cases. In creating these

test cases, we attempted both to cover the major functionality of the systems and

to maximize overall line coverage. Neither subject system come with its own test

suite. For vsftpd, we developed test cases to exercise its major functionality such as

logging in; listing, downloading, and renaming files; asking for system information;

and handling invalid commands. For ngIRCd, we created test cases based on the

IRC functionality defined in RFCs 1459, 2812 and 2813. Our test suite for ngIRCd

cover most of the client-server commands and a few of the server-server commands,

with both valid and invalid inputs.

We stopped creating new test cases when we reached a point of diminishing

returns for our efforts. For example, much of the code left uncovered by our test

suites handles system call failures, such as malloc() returning NULL; modeling these

failures would have greatly increased the number of execution paths (and hence

32

analysis time) without shedding extra light on the configuration spaces of these

systems. Other uncovered code would have required significantly extending Otter

— e.g., to handle asynchronous signals — which was beyond of the scope of these

studies.

Figure 3.3 next shows the counts of the configuration options. We give the

total number of analyzed configuration options and also break them down by type,

boolean or integer. We also list the number of configuration options we left as

concrete. We decided to leave some options concrete based on two criteria: Whether

the option was likely to expose meaningful behavior, and our desire to limit total

analysis effort.

Finally, Figure 3.3 shows how many executions would be required if we ran

every test case under every possible configuration, given the number of distinct

values each symbolic option could take. We will contrast these extremely large

numbers with the results of symbolic evaluation.

3.1.3.2 Symbolic Evaluation Results

We ran the subject systems using our test suites in Otter, with symbolic

configuration options. Figure 3.4 summarizes these symbolic evaluation runs. The

first two rows show the number of paths executed by Otter, summed across all test

cases. Clearly, this is dramatically smaller than the number of executions that would

have been necessary had we instead naively run each test case under all possible

configuration option combinations: Only 0.0001% of the naive count for vsftpd and

33

vsftpd ngIRCd

Paths

Line, Block, Edge 30,304 53,205

Condition 136,320 95,637

Average # Paths

Line, Block, Edge 474 375

Condition 2,130 674

Coverage

Line 62% 73%

Block 63% 66%

Edge 56% 61%

Condition 49% 57%

Examined / Total Opts

Line, Block, Edge 22/30 13/13

Condition 24/30 13/13

Figure 3.4: Summary of the symbolic evaluation experiments.

0.2% for ngIRCd. Also, recall that these are actually all possible execution paths

for these test suites under any settings of the symbolic configuration options, given

Otter’s simulated environment.

Notice that condition coverage, which has logical operators expanded into

sequences of conditionals as discussed above, has many more execution paths. This

effect is most pronounced for vsftpd, which more than quadruples the number of

34

paths because it contains many logical expressions that test multiple configuration

options at once. For example, if (x || y || z) would yield at most two paths before

expansion, but four paths after.

To aid comparison across our subject systems, we next show the total number

of execution paths averaged over all test cases.

Figure 3.4 then lists the coverage achieved by these paths, the maximum cov-

erage achievable by these test suites considering all possible configurations using

the options and settings we analyzed. If we adjust for the error handling and un-

reachable code, our test suites’ line coverage is near or exceeds 80% for both subject

systems. Covering the remaining code would in many cases have required adding

new mocked libraries, adding more symbolic configuration options, etc. Overall,

however, based on our analysis of these systems, we believe that the test cases

are reasonably comprehensive and are sufficient to expose much of the configurable

behavior of the subject systems.

The next group of rows shows the number of configuration options that appear

in at least one path condition (i.e., were constrained in at least one path and thus

distinguish different execution paths) versus the total number of options set sym-

bolic. Notice that Otter constrains two more options with condition coverage than

under the other metrics. This occurs because of the expansion of logical operators

into sequences of conditionals. For example, under line, block, and edge coverage,

the condition if (x || 1) would be treated as a single branch that Otter would treat

as always true. But under condition coverage, the conditional would be expanded,

and Otter would see if (x) first, causing it to branch on x.

35

Figure 3.5: Number of paths executed by each test case during symbolic evaluation

(L/B/E=line/block/edge, C=condition).

Figure 3.5 plots the number of paths executed by each test case for each

system, both with unexpanded logical operators (line/block/edge) and expanded

(condition). The x-axis is sorted from the fewest to the most paths, and the y-axis

is the percentage of execution paths relative to the highest number of paths seen in

any test case for the expanded (condition) version of the system.

In Figure 3.5, we see that majority of the test cases did not execute anywhere

near the maximum number of paths. This means that test cases also limit the

possible configuration option combinations; many of vsftpd and ngIRCd’s options

are not necessarily used in every test case. This can be seen clearly in the figure:

Only a handful of vsftpd and ngIRCd’s test cases exercise more than 25% of the

execution paths.

36

One interesting feature of Figure 3.5 is that, for vsftpd, the numbers of paths

of different test cases cluster into a handful of groups (indicated by the plateaus

in the graph). This suggests that within a group, the test cases branch on the

configuration options in essentially the same manner (most likely because the vsftpd

employs common segments of code to test the configuration options). In ngIRCd,

this clustering also appears but is less pronounced.

The data from symbolic evaluation offers strong support for our first hypothe-

sis. We found that, to achieve high structural coverage, the total number of execu-

tion paths executed is dramatically smaller than the number of all possible configu-

ration option combinations. This suggests that, our subject systems are structured

in ways that not only limits how configuration options can combine, but also limits

the number of options that can combine to exercise new behavior. In other words,

the effective configuration spaces of these systems are indeed much smaller than

their full configuration spaces.

3.2 Understanding the Configuration Interactions

The raw output from symbolic evaluation are execution trees containing all

paths executed under all configuration option settings for a given test suite. Without

further analysis, however, these paths tell us only a little about our subject systems.

By definition, each execution path explored is distinct from all other paths. Thus

with no abstraction, every configuration option combination given by an execution

path is unique. However, if the testing goals are measured by more abstract proper-

37

ties of the system, such as structural coverage, then the paths are no longer unique,

and the effective configuration space collapses further. To better understand the ef-

fective configuration spaces of our subject systems, we chose to project the execution

paths onto line, block, edge, and condition coverage to succinctly characterize the

relationship between the configuration options and these abstract system properties.

3.2.1 Guaranteed Coverage Analysis

One technique that we developed to do this is the guaranteed coverage analysis.

Definition 1 Given a test suite and a coverage criterion, we say that a predicate p

over the (initial settings of the) configuration options guarantees coverage of program

entity X if there exists some test case in the test suite such that any configuration

satisfying p is guaranteed to cover X.

For example, from Figure 4.1(b) we can see that any configuration satisfying

α = 0 ∧ β = 1 (i.e., a=0, b=1) is guaranteed to cover L2 , no matter the choice of γ

and δ.

We can use symbolic evaluation’s output to compute the guaranteed coverage

for a predicate p, which we will write as Cov(p). We first find CovT (p), the coverage

guaranteed under p by test case T , for each test case; then, Cov(p) =
⋃

T CovT (p).

To compute CovT (p), let pTi be the path conditions from T ’s symbolic evaluation,

and let CT (pTi) be the covered lines, blocks, edges, or conditions that occur in that

path. Then CovT (p) is

38

ConsistentT (p) = {pTi | SAT(pTi ∧ p)}

CovT (p) =
⋂

q∈ConsistentT (p)C
T (q)

In words, first we compute the set of path conditions pTi such that p and pTi are

consistent. If this holds for pTi , the items in CT (pTi) may be covered if p is true.

Since our symbolic evaluator explores all possible execution paths, the intersection

of these sets for all such pTi is the set guaranteed to be covered if p is true.

For our example program in Figure 4.1, below are some predicates and the

coverage they guarantee given the test cases input=1 and input=0. We abbreviate

α = 1 as α and α = 0 as ¬α.

p Consistent(p) Consistent(p) Cov(p)

(input = 1) (input = 0)

α (A) (E) {L1}

β (A), (B), (C) (E), (F) ∅

¬α (B), (C), (D) (F), (G) ∅

¬α ∧ β (B), (C) (F) {L2, L3, L4}

¬α ∧ β ∧ γ (B) (F) {L2, L3, L4, L5}

We can also use the guaranteed coverage to find interactions among the configuration

options.

Definition 2 An interaction is a conjunction of option settings S =
∧

i(xi = vi)

that guarantees coverage that is not guaranteed by any subset of (the conjuncts of)

S.

39

For example, Cov(α = 0∧β = 1) is a strict super set of Cov(α = 0)∪Cov(β =

1), so α = 0 ∧ β = 1 is an interaction. Informally, interactions indicate option

combinations that are “interesting” because they guarantee some new coverage.

Definition 3 The strength of an interaction is the number of option settings it

contains.

For example, α = 0 ∧ β = 1 has strength 2. Lower-strength interactions

place fewer constraints on configurations, whereas higher-strength interactions re-

quire more options to be set in particular ways to achieve their coverage.

Using the definition of Cov(p), we performed the guaranteed coverage analysis

on the symbolic evaluation outputs of our two subject systems. First, we computed

Cov(true), which we call guaranteed 0-way coverage. These are coverage elements

that are guaranteed to be covered for any choice of options. Here, when we refer to

t-way coverage, t is the interaction strength. Then for every possible option setting

x = v, we computed Cov(x = v). The union of these sets is the guaranteed 1-way

coverage, and it captures what coverage elements will definitely be covered by 1-

way interactions. Next, we computed Cov(x1 = v1 ∧ x2 = v2) for all possible pairs

of option settings, which is guaranteed 2-way coverage. Similarly, we continue to

increase the number of options in the interactions until Cov(x1 = v1∧ x2 = v2∧ ...)

reaches the maximum possible coverage.

For boolean options, the possible settings are clearly 0 and 1. For integer-

valued options that we constrained, we used those chosen values; for the remaining

integer options, we solved the path conditions discovered by symbolic evaluation and

40

manually inspected the code to find appropriate concrete settings. For example, if

the path condition was x>=0, then the solver might choose x = 0 as a possible

concrete setting. Because there are multiple path conditions, we sometimes found

that different concrete settings were generated by the SMT solver for the same

options. In these cases we used our judgement and code examination to select

appropriate values. On the other hand, ranges for some integer options depend on

how the system is executed. In these cases we examined the test suites to determine

the possible values for such options in our test runs.

3.2.1.1 Analysis Results

The results from the guaranteed coverage analysis allow us to explore which

configuration interactions are actually required to achieve the line, block, edge, and

condition coverage reported in Figure 3.4.

Figure 3.6 shows the number of configuration interactions at each interaction

strength. The first thing to notice is that the maximum interaction strength is

always seven or less. This is significantly lower than the number of options in each

subject system. We also see that the number of interactions is quite small relative

to total number of interactions that are theoretically possible. This observation

supports our hypothesis that the interactions between configuration options are not

complete; only small groups of options interact and only with subset of the values.

For ngIRCd, there are significantly more interactions at higher strength than

for vsftpd. This is because almost all of ngIRCd’s integer options can take on

41

t=1 t=2 t=3 t=4 t=5 t=6 t=7

vsftpd

Line 7 4 3 16 5 6 2

Block 7 4 3 16 6 6 2

Edge 9 4 4 27 7 7 2

Condition 9 4 4 32 14 9 2

ngIRCd

Line 11 19 33 117 144 111 -

Block 15 25 33 118 147 111 -

Edge 17 29 37 125 159 111 -

Condition 17 33 37 131 174 111 -

Figure 3.6: Number of configuration interactions at each t strength for line, block,

edge and condition coverage criteria.

many different values across our test suite, magnifying the number of interactions.

This is an artifact of the integer-valued options we chose for ngIRCd; there are

many cases where several different integer values for a particular option interact

identically with other options, thereby increasing the number of interactions by a

multiplicative factor.

Also notice that there is little variation across different coverage criteria —

they have remarkably similar numbers of interactions. We investigated further and

found that the majority of interactions are actually identical across all four criteria.

This is encouraging, because it indicates that many interactions are insensitive to

42

vsftpd ngIRCd

Line & Block & Edge & Cond 43 427

Line & Block & Edge - -

Block & Edge & Cond 1 17

Block & Edge - -

Edge & Cond 15 22

Edge 1 -

Cond 15 25

Total 78 493

Figure 3.7: Configuration interactions shared among the different coverage criteria.

the particular coverage criterion.

Figure 3.7 shows the number of configuration interactions shared by just one,

two, three or all of the coverage criteria. There are interactions that differ among the

coverage criteria. Line coverage has the least amount of interactions; almost all of the

interactions for line coverage were also present in the other three coverage criteria.

Block coverage’s interactions were almost a subset of those of edge and condition

coverage. And condition coverage required the most number of interactions. This

data is consistent with the relative complexity of each coverage criterion. Despite

the differences in number of interactions, interactions shared by all coverage criteria

make up the majority of all the interactions for all subject systems. This shows that

the more complex coverage criteria did not significantly alter the way configuration

options interact with each other.

43

Figure 3.8: vsftpd and ngIRCd’s cumulative guaranteed coverage at each interaction

strength.

Next, we looked at the amount of coverage guaranteed by the interactions

of each coverage criterion. We found for all subject systems, the interactions that

contributed the most amount of coverages were shared among all coverage criteria.

The interactions required by the more complex coverage criteria guaranteed very

little coverage. In fact, all interactions that guaranteed more than 0.6% of total

coverage for any coverage criterion were shared among all coverage criteria. For

our subject systems at least, the important interactions for the least demanding

coverage criteria, is also important for the most demanding ones.

Figure 3.8 presents the configuration interactions in terms of cumulative cov-

erage. The x-axis is the t-way interaction strength, and the y-axis is the percentage

of the maximum possible coverage. Note that higher strength interaction coverage

44

always includes the lower strength coverage, e.g., if a line is covered no matter what

the settings are (0-way), then it is certainly covered under particular settings (1-way

or higher). As it turns out, the trend lines for line, block, edge or condition coverage

criteria are essentially the same for a given subject system, and so the plot shows a

region enclosing each data set. In ngIRCd, with some slight variation, line coverage

corresponds to the upper boundary of the region, and edge, block, and condition

coverage to the lower boundary.

We also notice in this figure that the right-most portion of each region adds

little to the overall coverage. Thus, for these subject systems and test suites, high

strength interactions are not needed to cover most of the code. We can also see that

vsftpd gains coverage slowly but then spikes with 3-way interactions. This suggests

the presence of enabling options, which must be set a certain way for the system to

exhibit large parts of its behavior. For example, for vsftpd (in single-process mode),

the enabling options must ensure local logins and SSL support are turned off, and

anonymous logins are turned on. ngIRCd also has enabling options that account

for the increasing coverage up to interaction strength three, but the effect of these

options are less pronounced. In ngIRCd, setting Conf ListenIPv4 = 1 ensures some

amount of coverage, then setting Conf PongTimeout >= 20 ensures more coverage,

and finally setting Conf MaxNickLength >= 5 ensures yet more coverage. This chain

accounts for the coverage of ngIRCd up to interaction strength three.

These enabling options also show up in Figure 3.6. In that figure we can see

that the number of interactions peak around t = 4 for vsftpd, and t = 4 or t = 5

for ngIRCd. For both systems, most of the interactions that are strength t = 4 or

45

greater generally involve the enabling options plus additional options.

Examining the configuration interactions in detail, we observed that certain

option settings reappear in multiple interactions. In fact, many of the higher

strength interactions actually subsume lower strength ones. For example, vsftpd’s

enabling options, ssl enable = 0, local enable = 0 and anonymous enable = 1 each ap-

peared in 37, 32 and 30 out of the 43 line coverage interactions, respectively. More

interestingly, these 3 option settings appeared together in 30 interactions. NgIRCd’s

interactions had the similar behavior. Since ngIRCd’s options have numerous pos-

sible values, however, we grouped multiple values of some options during our in-

vestigation. We found that PongTimeout > 1, ListenIPv4 = 1, MaxNickLength > 5 and

MaxConnectionsIP != 1 each appeared in 410, 404, 351 and 243 out of the 435 line

coverage interactions respectively. PongTimeout > 1 and ListenIPv4 = 1 appeared to-

gether in 398; PongTimeout >1, ListenIPv4 = 1 and MaxNickLength > 5 appeared to-

gether in 343; and all 4 option settings appeared together in 222 interactions.

We think these patterns in the interactions are due to the structure of the

systems’ source code. Because certain interactions, especially the enabling options,

are combined with a small number of option settings to form other higher strength

interactions, the interactions of our subject systems form hierarchical structures that

resembles trees.

The results from the guaranteed coverage analysis explained why the effec-

tive configuration spaces are much smaller than the full configuration spaces. The

reasons are:

46

1. The number of actual interactions is very small relative to theoretically pos-

sible interactions and the interactions involves only small number of options

and subsets of their values.

2. Most of the coverage was accounted for by the lower-strength interactions.

3. Higher strength interactions were usually just lower strength interactions with

one or more additional constraints.

3.2.2 Execution Conditions Analysis

The guaranteed coverage was a powerful tool to study the configuration spaces

of software systems, however, it also has a major drawback. This analysis uses a

brute force algorithm to calculate the coverage guaranteed to be covered by each

potential interaction. This is extremely expensive, and thus not practical for most

software engineering tasks. For vsftpd and ngIRCd, it took 40 machines running

for several days to compute the configuration interaction data for each coverage

criterion.

To address this drawback, we developed a more efficient technique, called

the execution conditions analysis, that outputs a set of predicates defined over the

configuration options for each test case such that whenever any one of predicates is

true for a given configuration, the test case is guaranteed to execute certain coverage.

To illustrate the operations of the execution conditions analysis, we describe

the process of computing the interactions of a system’s line coverage. For each line of

code and test case, we collect from the symbolic evaluation data, the path conditions

47

associated with every path that executes the line. Next, we compute all satisfying

assignments for these path conditions. For this we created a tool that exhaustively

queries the STP theorem prover for these values from a system’s configuration space

model.

Once we have computed all the satisfying assignments we treat them as a truth

table for describing the operation of a digital logic circuit. Each option setting can

be either On (the path condition has this setting), Off (the path condition does not

have this setting) or Don’t Care (the path condition does not reference this option

setting). The circuit’s output is then either True (line of code was executed) or False

(line of code was not executed). We then feed this truth table to a boolean logic

minimization tool, called Espresso [64], which produces an logically equivalent, but

minimized logical expression that succinctly captures the conditions under which a

given test case executes a given line of code.

The output of the analysis is a logical formula in disjunctive normal form,

where each disjunction expresses a unique interaction – a predicate over configu-

rations that when true implies that the given test case will execute the given line

of code. For example, consider the simple program in Figure 3.2, running the test

case where input=1. Our analysis determines that L4 is executed by the given test

cases whenever a = 0 ∧ b = 1. The values of c and d, which do appear in the

path condition for the one path leading to L4 , are removed by Espresso during the

minimization because they have no influence on whether L4 will be executed.

48

Configuration Interactions vsftpd ngIRCd

Strength 1 7 11

Strength 2 4 21

Strength 3 3 33

Strength 4 16 112

Strength 5 5 138

Strength 6 6 111

Strength 7 2 90

Total 43 516

Figure 3.9: Number and strength of configuration interactions discovered using the

execution conditions analysis.

3.2.2.1 Analysis Results

To demonstrate the speed advantage of the execution conditions analysis, we

performed the process described above to calculate the configuration interactions

needed for line coverage for both vsftpd and ngIRCd. We forgo the block, edge and

condition coverage criteria because we have determined that all four had mostly the

same interactions.

Where the guaranteed coverage analysis needed multiple machines running for

days to compute the configuration interaction data, the execution conditions analysis

took only hours on a single machine to produce the equivalent data. This drastic

improvement in speed not only improves the studying of configuration software

systems, but also makes leveraging the knowledge of effective configuration spaces

49

more practical for numerous software engineering tasks.

Figure 3.9 summarizes the configuration interactions generated using the ex-

ecution conditions analysis. This figure shows the number of unique interactions

at each strength. We compare these interactions against the ones calculated using

guaranteed coverage analysis (Figure 3.6). For vsftpd, the number of interactions

matched exactly. But for ngIRCd, the number of interactions differed slightly at

strength 2, 4, 5 and 7.

To explain the differences in results, we compared the interactions of the same

lines of code generated by the two analysis techniques. We found that for most lines,

the interactions matched exactly, but on rare occasions, the execution conditions

analysis can produce interactions that are not minimum; some extra option settings

might be attached to the actual interactions.

To ensure the configuration interactions generated using the execution condi-

tions analysis are still safe in terms of guaranteeing coverage, we performed verifi-

cations for both vsftpd and ngIRCd. Since we have the complete execution paths

information obtained through symbolic evaluation for these systems, we verified

whether every path consistent with the interactions actually executes the lines of

code guaranteed by the interactions. Our verification confirmed that every line is

indeed executed if these interactions are present in a configuration.

50

3.3 Understanding Configuration Space Sampling

To cope with the software configuration space explosion problem, a lot of re-

search has been done to develop configuration space sampling techniques. However,

most of the previous research took the black-box approach. While black-box ap-

proaches have many strengths, they also have real limitations. One key problem is

that their assumptions about the configuration spaces may not accurately reflect the

structure of the software systems. When this occurs developers will expend valuable

resources in inefficient ways, testing and analyzing configurations that don’t expose

new behavior or failing to consider configurations that do.

As far as we know, we are the first to apply white-box techniques to study a

software system’s configuration space. And our analysis techniques take into account

of a system’s internal structure, therefore, should be able to provide more accurate

assumptions about its configuration space. In this section, we compare our analysis

results against the commonly accepted assumptions about the configuration spaces

that the existing configuration space sampling approaches are based on.

3.3.1 Analysis of Existing Approaches

There are numerous configuration space sampling approaches. One such ap-

proach is the CIT which systematically generate t-way covering arrays, in which

all possible t-way combinations of option settings appear in at least one configura-

tion in the samples. Studies have suggested that testing with even relatively low

interaction strength (2- or 3-way) covering arrays tends to yield good structural

51

coverage and good fault detection [8, 19, 42]. Another popular approach is to ran-

domly select configuration samples from a system’s full configuration space. Even

though, random sampling does not have a constructive method for choosing the size

of the configuration samples, it has proven itself as an effective testing technique in

practice [20].

However, not much research was done to scientifically understand how well

these approaches really work or if their assumptions about the underlying configu-

ration spaces are correct. So far our analysis results have confirmed some of what

researchers and practitioners have long suspected, that a software system’s effective

configuration space is much smaller than its full configuration space and that low

strength interactions can achieve good coverage. However, our results do not com-

pletely agree with all of existing assumptions either. For instance, we found that

the configuration interactions are actually rare and that the configuration options

do not fully interact with each other at a set t strength. We hypothesize that, for

many practical tasks, these existing sampling approaches are both inefficient and

ineffective at generating configuration samples that can achieve complete coverage

during testing.

To support our hypothesis, we leverage the symbolic evaluation and configu-

ration interaction data to perform two studies for evaluating the cost-effectiveness

of covering arrays and random sampling. Knowledge gained from these evaluations

can serve as the foundation for developing more effective sampling approaches.

52

3.3.1.1 Experimental Design

For each subject system, we generated multiple samples of the configuration

space, which define the concrete configurations that are used to execute the system

under. Multiple samples ensure that any one good or bad sample will not skew our

analysis results. For covering array sampling, we generated 30 sets of 2- and 3-way

covering arrays at each t strength, for the configuration options we analyzed earlier,

using the Covering Arrays by Simulated Annealing (CASA) [30] tool. Normally,

when using covering arrays, the possible settings of non-enumerated (i.e., integer)

options are manually selected by developers. However, the settings we used came

from our symbolic evaluation results in which we determined key settings that max-

imized path coverage for our subjects systems and test suites. This may make our

covering array samples more cost-effective than those used in practice. The covering

arrays we generated for vsftpd had 10–12 configurations for the 2-way samples and

32–35 configurations for the 3-way samples. For ngIRCd, the 2- and 3-way cover-

ing arrays contained 32 and 128–132 configurations, respectively. For each covering

array we generated, we also generated an equally-sized randomly sampled set of

configurations.

3.3.1.2 Structural Coverage Evaluation

In our first study we analyze the line coverage achieved by the sampling ap-

proaches for both subject systems. For this study we collected execution information

for every line of code reachable by our test suites under any configuration. We want

53

0 500 1000 1500 2000 2500

0
20

40
60

80
10

0

vsftpd (2−way)

Lines of Code

E
ffe

ct
iv

e
C

on
fig

ur
at

io
ns

 (
%

)

CAs
Random

0 500 1000 1500 2000 2500

0
20

40
60

80
10

0

vsftpd (3−way)

Lines of Code

CAs
Random

0 500 1000 1500 2000 2500 3000

0
20

40
60

80
10

0

ngIRCd (2−way)

Lines of Code

E
ffe

ct
iv

e
C

on
fig

ur
at

io
ns

 (
%

)

CAs
Random

0 500 1000 1500 2000 2500 3000

0
20

40
60

80
10

0

ngIRCd (3−way)

Lines of Code

CAs
Random

Figure 3.10: Percentage of effective configurations for every reachable line of code

in various configuration samples.

to count the average number of effective configurations, configurations that are able

to execute any given line in at least one test case, for each sample size. Figure 3.10

depicts this data.

From the figure, we clearly see that the data sets in subplots are practically

identical regardless of the sampling approach used. Next we note that, for every

54

sampling set, some lines had an effective configuration set size of zero. That means

there are some lines of code, that are reachable in at least one configuration, but

were not covered by the configuration samples. Vsftpd’s covering arrays and random

samples missed an average of 1.18% of the reachable lines. NgIRCd’s covering arrays

and random samples missed on average 0.44% of the reachable lines. Through

manual inspection we verified that these lines of code can only be executed when

4 or more configuration options take on specific settings. These settings are not

guaranteed to appear in a 2- or 3-way covering array and in this case did not occur

by chance either in the samples. On the other extreme, there are 13.18% and 23.15%

of the reachable lines that are always executed regardless of configuration for vsftpd

and ngIRCd, respectively.

The remaining lines lie somewhere in the middle; they are covered by some,

but not all configurations. Moreover, the observed sizes tend to be small. For vsftpd,

almost 80% of the reachable lines had effective configuration set smaller than 20%

of the sampling set. And for ngIRCd, 65% of the reachable lines of code had the

effective set smaller than 40% of the sampling set. A likely explanation for this is

that the patterns in the underlying configurations, many involving a few specific

option setting, are guarding the execution of these lines.

We see in the figure that these lines cluster into groups with the same effective

configuration set size – this creates the “stairstep” pattern in the graph. For vsftpd,

almost half of the lines had the same effective configuration size. We think these

lines of code all required the crucial 3-way interaction which enabled the major

functionality of vsftpd. The plots for ngIRCd had a distinctive laddering effect for

55

both t-strengths. This also can be explained by ngIRCd’s enabling options that

iteratively enable more behavior as additional option settings are included.

The data on a system’s actual configuration interactions is important because,

for example, if there are many unique interactions then a covering-based approach

might be cost-effective. On the other hand, if there are very few unique interactions,

then a more selective approach might be warranted. Using only the coverage data,

we cannot determine the exact interactions involved in the configuration samples,

thus, we turn to the configuration interaction data.

3.3.1.3 Interaction Coverage Evaluation

In our second study, we analyze the covering arrays and random samples for

the configuration interactions they covered. For this study we measured the effec-

tiveness of the sampling approaches by the degree they included the subject systems’

configuration interactions.

Figure 3.11 shows the percentage of unique configuration interactions that are

covered by each of the sampling methods for vsftpd and ngIRCd. These results

can be explained by observing that the t-way covering array samples guarantee

to cover the t-way interactions but may cover some more complex interactions by

chance. For vsftpd, roughly 55% of the configuration interactions are covered by the

2-way samples and 80% are covered by the 3-way samples. However, for ngIRCd,

which has more complex configuration interactions, the coverage is lower; slightly

higher than 20% for the 2-way samples and about 40% for the 3-way samples. The

56

vsftpd

C
on

fig
ur

at
io

n
In

te
ra

ct
io

ns
 C

ov
er

ed
 (

%
)

20

40

60

80

t2_CA t2_Rand t3_CA t3_Rand

● ●

●

●

●
●

●

ngIRCd

20

40

60

80

t2_CA t2_Rand t3_CA t3_Rand

●
●

●
●

●

●

Figure 3.11: Percentage of configuration interactions covered by various configura-

tion samples.

random samples, having the same size as the covering array samples, covered similar

percentages of the interactions for both subject systems. This is consistent with the

results from our previous study on coverage.

Even though both sampling methods covered similar percentage of the config-

uration interactions, however, our findings suggest both covering arrays and random

sampling are inefficient at doing so for our subject systems. Due to the sparseness

of configuration interactions, covering arrays, which are designed to cover all inter-

actions of a given strength, covered the actual interactions only occasionally. And

random sampling, lacking a systematic technique, depended on luck. And unless

specific interaction patterns, especially the enabling options, are included by the

configuration samples, majority of the lines cannot be executed. We confirmed that

57

most of the sampled configurations did not include the crucial enabling options of

vsftpd and ngIRCd. This explains why covering arrays are inefficient at covering

the required interactions.

We also see that, the 3-way samples covered significantly more of the inter-

actions for both systems. Since the 3-way samples did not have significantly more

overall coverage, we can conclude that many of the configuration interactions are ac-

tually redundant when projected to line coverage. However, even at 3-way strength,

none of the sampling sets covered all of the interactions. This result again shows

that configuration interactions can be redundant for line coverage.

In order to reach full coverage using covering arrays, the number of configu-

rations would increase exponentially as the t strength increases. However, we know

that the number of higher strength interactions do not increase exponentially as t

strength increases; in fact, there are fewer actual interactions when t = 4 or higher

for our subject systems. This suggests that covering arrays are doing too much work

covering all interactions of a set t strength, and at the same time, they are not doing

enough work covering some higher strength interactions.

The results from these studies is partially consistent with existing research

results, that even relatively low interaction strength covering arrays yielded good

structural coverage for our subject systems, but, they do not always guarantee

the execution of every line of code. The random samples with similar sampling

sizes performed on par with the covering arrays. However, random sampling which

lacks the systematic method to determine the sampling size would rely on developer

intuition in practice. From these results we conclude that a more effective sampling

58

method should focus on the coverage of actual interactions of the software systems

instead all potential interactions in the full configuration spaces.

3.3.2 Minimal Covering Sets

Next, we want to investigate whether we can use the configuration interac-

tions to generate more effective configuration samples that are also smaller than the

samples generated by the covering arrays and random sampling.

To do this, we developed a greedy algorithm that packs interactions together

to form a minimal set of configurations that achieves the maximum possible cov-

erage of our subject systems. We want to pack consistent interactions together to

form complete configurations, which assign values to all configuration options. For

example, 1-way interactions a=0 and b=0 are consistent and can be packed into the

same configuration, but a=0 and a=1 are contradictory and must go in different

configurations.

We begin with the empty list of configurations. At each step of the algorithm,

we pick the interaction that (if we also include the coverage of all subsets of that

interaction) guarantees the most previously uncovered lines, blocks, etc. Then, we

scan through the list to find a configuration that is consistent with our pick. We

merge the picked interaction with the first such configuration we find in the list, or

append this interaction to the list as a new configuration if it is inconsistent with

all existing configurations. This algorithm will always terminate and cover all lines,

blocks, etc., though it is not guaranteed to find the actual minimum configuration

59

Config # 1 2 3 4 5 6 7 8 9

vsftpd

Line 2,521 18 8 1 1 - - - -

Block 2,853 25 9 1 1 - - - -

Edge 2,731 50 17 6 1 1 1 - -

Condition 1,132 71 14 9 2 1 1 1 1

ngIRCd

Line 3,148 30 6 6 1 1 1 - -

Block 4,401 50 8 7 4 1 1 - -

Edge 4,390 62 14 8 6 2 2 2 -

Condition 1,881 27 23 5 4 1 1 1 1

Figure 3.12: Additional coverage achieved by each configuration in the minimal

covering sets.

set.

3.3.2.1 Data and Analysis

Figure 3.12 summarizes the results of our algorithm. The column labeled 1

shows how many lines, blocks, edges, or conditions are covered by the first configu-

ration in the list. Then column n (for n > 1) shows the additional coverage achieved

by the nth configuration over configurations 1..(n−1). Notice that minimal covering

sets range in size from 5 to 10, which is much smaller than the number of possible

configurations. We inspected these minimal covering sets and, for some coverage

60

metrics, we discovered that the results were in fact minimum. For the others, we

simply verified that there was no obvious way to generate smaller configuration sets.

This suggests that when we abstract in terms of coverage, in fact the configu-

ration space looks more like a union of disjoint interactions (that can be efficiently

packed together) rather than a monolithic cross-product. Our algorithm was able to

generate configuration sets with such small sizes because many of the interactions

are consistent with others. These consistent interactions exist because of two main

reasons:

1. The configuration options do not interact fully; there are clusters of options

interact independently of each other.

2. Many of the higher strength interactions actually subsumes the lower strength

ones, therefore, their values do not contradict.

We can also see that each subject system follows the same general trend,

with most coverage achieved by just the first configuration. And the last several

configurations often add only one additional coverage element. This last finding

again confirms that not every interaction offers the same level of coverage.

Finally, we also used this algorithm to compute a set of configurations which

ensures that every realizable path is executed at least once. These effective con-

figuration spaces of vsftpd and ngIRCd contained 3,092 and 3,518 configurations,

respectively. While significantly larger than for the simpler coverage criteria, these

numbers are still far smaller than the size of the full configuration space.

61

3.4 Summary

In this chapter, we performed several empirical studies to understand the con-

figuration spaces of two medium-sized subject systems and confirmed our first re-

search hypothesis that for many practical tasks, the effective configuration space of

a software system is much smaller then its full configuration space.

First, we used symbolic evaluation, a white-box analysis technique, to generate

all execution paths these subject systems can take on under any configuration. The

symbolic evaluation results showed that the possible execution paths are only tiny

subsets of these systems’ full configuration spaces. We also found evidence that

suggest systems are structured in ways that not only limits how configuration options

can combine, but also limits the number of options that can combine to exercise new

behavior.

Next, we developed two techniques, the guaranteed coverage analysis and the

execution conditions analysis, and calculated the interactions between the config-

uration options of these subject systems. We did this by projecting the execution

paths, obtained via symbolic evaluation, onto different structural coverage crite-

ria and found that when using more abstract properties, the effective configuration

spaces can be collapsed even further. We gained three key insights about the effec-

tive configuration spaces:

1. Configuration interactions were quite rare; only a handful of specific options

setting combinations had to be exercised to maximize coverage.

2. Most of the interactions needed to achieve maximum coverage were of low

62

strength but higher strength interactions are needed to achieve the maximum

coverage.

3. Higher strength interactions were usually just lower strength interactions with

one or more additional constraints.

Then, we used the configuration interaction data and performed empirical

evaluations on two popular configuration space sampling approaches, the covering

arrays and the random sampling. We showed that these two sampling approaches

are quite inefficient and ineffective at achieving full coverage because they do not

precisely cover the required configuration interactions. What we found suggests that

a more effective sampling approach should focus on the coverage of actual interac-

tions of the software systems instead all possible interactions in the configuration

spaces.

Finally, we developed a more selective sampling approach that uses a greedy

algorithm to pack the configuration interactions into small configuration samples

we call minimal covering sets. The minimal covering sets generated for our subject

systems are very small (with only 5-10 configurations) but they can more effectively

achieve full coverage during software testing than the existing approaches.

63

Chapter 4

Discovering the Effective Configuration Space

The results from our analyses in the previous chapter gave us great insights

to the effective configuration spaces of software systems. We can exploit these anal-

ysis results to dramatically improve the effectiveness of many configuration-aware

software engineering tasks. However, the techniques we developed to generate these

results are computationally very expensive. For most practical tasks, the developers

need more cost-effective and time-sensitive techniques to analyze a system’s config-

uration space. In this chapter we look at our second research hypothesis: We can

efficiently discover or approximate the effective configuration space of a software

system. We aim to provide answers to the following two research questions:

1. Can we discover effective configurations using cost-effective and time-sensitive

techniques?

2. Can the configuration interactions be discovered or estimated without the

complete execution paths of a software system?

To address the first question, we developed an new approach that is much

lighter-weight than symbolic evaluation, yet still effectively explores the configura-

tion space of a software system. This approach, we call iTree – an interaction tree

discovery algorithm, can discover sets of configurations that achieve better coverage

64

during software testing while also has fewer configurations than those chosen by tra-

ditional CIT. The iTree approach combines low-strength covering arrays, runtime

instrumentation, and machine learning (ML) techniques to construct an interaction

tree for the software system. An interaction tree is a hierarchical representation of

what we call proto-interactions, which are potential interactions or subsets of poten-

tial interactions. And the iTree performs an iterative, search-based process in which

the current iteration’s configuration samples are based on the proto-interactions in

the interaction tree. We conducted several experiments designed to evaluate the

performance of the iTree algorithm and found that this new approach can quickly

achieve full coverage. We also evaluated the scalability of iTree to a large-scale

system, specifically the ∼1M-LOC MySQL database system, for which symbolic

evaluation is infeasible. The evaluation results show that iTree can easily scale up

to practical industrial systems.

To address the second question, we developed the interaction learning ap-

proach that can quickly estimate the configuration interactions of a software system.

This approach uses decision tree classifiers to “learn”, from the execution results of

the configurations discovered by iTree, the likely option setting combinations re-

sponsible for the coverage of the program entities. We evaluated the accuracy of

the estimated configuration interactions of vsftpd and ngIRCd by comparing them

to the interactions calculated using the symbolic evaluation data, we found that the

estimations are almost exactly the same as the actual interactions. We then used

this approach to estimate the configuration interactions of the much larger MySQL

database system and showed that it can easily scale to large software systems; in

65

fact, the entire process took just minutes to complete on a single machine.

The following sections describe these new approaches in more detail. Sec-

tion 4.1 illustrates the observations on effective configuration spaces that motivated

the iTree’s design and presents the implementation choices of the iTree discovery

algorithm. Section 4.2 presents a series of experiments we conducted to improve

the performance of iTree by fine tuning its parameters and heuristics. Section 4.3

presents several empirical evaluations of iTree’s performance by comparing it to ex-

isting configuration space sampling approaches, including a scalability evaluation

experiment using the MySQL database. Section 4.4 discusses an approach to ex-

tract an even smaller configuration set from an iTree run for subsequent testing

tasks. Section 4.5 describes the interaction learning approach and analyzes the

estimated configuration interactions for vsftpd, ngIRCd, and MySQL.

4.1 Using iTree to Discover Effective Configurations

Although we began our work focusing on exploring a hypothesis, our ultimate

goal is to use the knowledge of a system’s effective configuration space to make soft-

ware engineering tasks more cost-effective in practice. Symbolic evaluation, which

all of our configuration space analysis techniques from Chapter 3 relied on has several

practical limitations:

1. The existing implementations can only be used to analyze run-time configu-

ration options, not compile-time options. This would severely limit the types

of systems and configuration spaces that can be analyzed.

66

2. The approach is computationally expensive and does not scale. As an example,

our subject systems vsftpd and ngIRCd were both about 10K LOC and had

no more than 30 configuration options. The analysis of these systems, each

required 40 client machines running for several days. For practical systems

with 100K to 1M LOC and 100+ configuration option, symbolic evaluation

will simply be infeasible.

3. Symbolic evaluation analyzes the software systems in a simulated environment.

It requires special modifications to the systems to run in that environment and

it does not perform actual testing of the systems. Therefore, after the analysis

steps, additional steps must be taken to perform testing.

In this chapter, our goal is to create a more practical approach that can ad-

dress these limitations. This approach should efficiently discover a software sys-

tem’s effective configuration space without the reliance on developer intuitions. To

reach this goal, we opted to use dynamic analysis, which can handle both run-time

and compile-time configuration options, to perform actual execution of the systems

without special environments or modifications to the source code. The result of our

efforts is the iTree, an interaction tree discovery algorithm.

4.1.1 iTree Design Motivation

The key motivation and intuition behind the iTree approach stem from our

observations of the configuration interactions that we made in the previous chap-

ter. To better understand these observations that motivated the design of such

67

1 int∗ dsa cert file=NULL; /∗ test input ∗/
2 int one process mode=1;
3

4 if (tunable listen} {
5 if (tunable accept timeout) {
6 /∗ L1: tunable listen ∧ tunable accept timeout ∗/
7 } else {
8 /∗ L2: tunable listen ∧ ¬tunable accept timeout ∗/
9 }

10 } else {
11 /∗ L3: ¬tunable listen ∗/
12 }
13

14 if (tunable ssl enable) {
15 if (!dsa cert file)
16 die();
17 }
18 /∗ L4: ¬tunable ssl enable ∗/
19

20 if (one process mode) {
21 if (tunable local enable || tunable ssl enable)
22 die();
23 }
24 /∗ L5: ¬tunable ssl enable ∧ ¬tunable local enable ∗/
25

26 if (!tunable local enable && !tunable anonymous enable)
27 die();
28 /∗ L6 (lots of code) : ¬tunable ssl enable ∧ ¬tunable local enable
29 ∧tunable anonymous enable ∗/
30

31 if (tunable dual log enable) {
32 /∗ L7: ¬tunable ssl enable ∧ ¬tunable local enable
33 ∧tunable anonymous enable ∧ tunable dual log enable ∗/
34 } else {
35 /∗ L8: ¬tunable ssl enable ∧ ¬tunable local enable∧
36 tunable anonymous enable ∧ ¬tunable dual log enable ∗/
37 }

Figure 4.1: A simplified snippet of vsftpd’s source code and its configuration inter-

actions.

an approach, we illustrate them using the example program in Figure 4.1. This

example contains a highly simplified snippet of vsftpd’s server startup code. The

code includes two traditional program variables, dsa cert file and one process mode,

68

which are initialized on lines 1 and 2. In practice, dsa cert file is a program input

whose value would come from a test case, but we have hard-coded its value here

for simplicity. This example program also contains six binary configuration options,

highlighted in bold, whose values depend on the system’s runtime configuration.

Figure 4.1 includes eight regions of code, marked /* L1–L8 */ , in whose coverage

we are interested in. The coverage of these regions, of course, depends on the

values of the configuration options and the program variables. For each region,

we list the configuration interaction that controls the coverage of that line for this

particular test case. For example, at the beginning of the program, the coverage

of L1–L3 depends on the values of the configuration variables tunable listen and

tunable accept timeout.

More interestingly, for the execution to reach the large amount of code in L6 ,

several options must be set in specific ways. First, to reach L4 and any code there-

after, tunable ssl enable must be set to 0, because this test case sets dsa cert file to be

NULL. Next, consider reaching L5 . Since one process mode is set to true, to reach L5

the condition on line 21 must be false; and since as just discussed tunable ssl enable

is 0 if we reach this line, then tunable local enable must also be 0. Finally, to

continue on to reach L6 , we need the condition on line 26 to be false, and since

tunable local enable is 0 if we reach that line, we must set tunable anonymous enable

to 1. Putting this together, any configuration that reaches L6 for this test case needs

at least tunable ssl enable = 0, tunable local enable = 0, and tunable anonymous enable

= 1, the enabling options of vsftpd. Finally, the coverage of L7 and L8 also depends

on the value of tunable dual log enable.

69

Note that although in this example we were able to reach all of the code

regions, and coverage of each region was guaranteed by a distinct interaction, in

practice this is not usually the case. In actual systems some regions are unreachable

with the given test suite, and some regions have more than one interaction that

guarantees their coverage.

We found that the configuration option patterns just described are common

in both vsftpd and ngIRCd. From these patterns, we make three observations:

1. Configuration interactions are relatively rare. The code shown in Figure 4.1

includes six binary options, so in the worst case there could be 639 different

interactions; computed as 1+
∑6

i=1C(6, i) ·2i, i.e., the sum of all ways of pick-

ing option subsets times the number of settings, plus the interaction true. In

the example program, however, there are only eight interactions. Since some

of these interactions can be simultaneously satisfied in a single configuration,

only three configurations are needed to cover all eight code regions. We ob-

served that, for vsftpd and ngIRCd, there were only 43 and 435 configuration

interactions respectively.

2. Most coverage can be explained by lower-strength configuration interactions.

In the example program, five of the eight interactions involve only one or

two option settings. One more interaction involves three settings, and the

remaining two involve four option settings each. While this example is highly

simplified, we found the same trend in the actual systems. For the subject

systems and test suites we examined, over 94% of the achievable coverage

70

could be achieved with lower-strength configuration interactions (i.e., with

four or fewer option settings). Full coverage, however, required a handful of

higher-strength interactions (up to strength seven).

3. Higher-strength configuration interactions tend to be built on top of lower-

strength ones. As shown in the example, the higher strength interactions

guaranteeing coverage of L7 and L8 are refinements of the interaction at L6 ,

which is itself a refinement of L5 ’s interaction. In implementation terms,

interactions tend to arise because control-flow guards effectively stack up on

each other, not because complex guards appear directly in the source code.

That is, the higher-strength interactions often add additional constraints to

the existing lower-strength interactions.

4.1.2 Algorithm and Implementation

Based on the observations just discussed, we developed the interaction tree

discovery algorithm (iTree). iTree’s goal is to automatically discover and execute

a small set of highly effective (e.g., high coverage) configurations. iTree works as

follows. First, it instruments the system under test to measure some desired type

of coverage. This chapter focuses on line coverage, but the algorithm should apply

to any type of coverage — it only requires that coverage of a configuration can be

expressed as a mapping between a program entity and a boolean indicating whether

it has been covered or not. Next, iTree repeats the following steps until a stopping

criteria is met. First, it computes a small sample of configurations under which to

71

true

¬local_enable ^
¬ssl_enable

¬local_enable ^
ssl_enable

local_enable

¬dual_log_enable dual_log_enable

Figure 4.2: An interaction tree for the example program in Figure 4.1.

test the system. As we shall see later, the goal of using a sampling approach is to

select configurations that are likely to execute previously uncovered program entities.

Next, iTree runs the system’s test suite on each of the sampled configurations and

captures coverage information from those runs. Using this coverage data, iTree

then attempts to discover proto-interactions — conjunctions of option settings —

that cause the new coverage and that may warrant further exploration in the future

iterations of iTree.

We represent iTree’s behavior as an interaction tree, which is a hierarchical

representation of the proto-interactions it discovered. The nodes of the interaction

tree represent proto-interactions rather than interactions because they may not, in

fact, be full-fledged interactions; because iTree is heuristic in nature, some nodes may

represent only portions of interactions, or some nodes may represent full interactions

with additional constraints. Figure 4.2 shows the interaction tree for the example

program from Figure 4.1. Each node is labeled with a set of option settings, with

72

1 iTree = /∗ tree containing root ’true’ ∗/
2 runs = ∅ /∗ (config × coverage) set ∗/
3

4 do {
5 node = findBestLeafNode(iTree, runs);
6 configSet = generateConfigSet(node.proto interaction);
7

8 newruns = executeConfigSet(configSet);
9 if cov(newruns) ⊆ cov(runs)

10 continue;
11 runs = runs ∪ newruns
12

13 interactions = discoverProtoInters(node.proto interaction, runs);
14 if !(interactions.empty())
15 /∗ Add newly discovered interactions to tree ∗/
16 updateTree(iTree, node, interactions);
17

18 } while (!stoppingCriteriaMet());

Figure 4.3: Pseudocode for the interaction tree discovery algorithm.

true at the root node (corresponding to the empty setting). A node represents the

proto-interaction that is the conjunction of settings along the path from the root to

the node.

For example, the proto-interaction ¬tunable local enable∧¬tunable ssl enable∧

tunable dual log enable is represented by the left node on the lowest level of the tree.

We also see that ¬tunable local enable ∧ tunable ssl enable is in the interaction tree,

but does not correspond to an actual interaction that guarantees coverage of any

particular line of code. Thus, in this case, iTree has created a proto-interaction that

will not lead to useful higher-strength interactions.

Figure 4.3 gives the pseudocode for the iTree algorithm. iTree runs in a loop,

iterating until a particular stopping criteria is met (e.g., no more coverage is achieved

or a developer-specified time limit has expired). The iTree algorithm begins with an

73

interaction tree iTree containing just one node, true. As the iTree progresses, it also

records in runs the set of all configurations executed so far and their corresponding

coverage information. At the beginning of each iteration, findBestLeafNode() selects

from the interaction tree a leaf node to explore next. Since we might not be able to

fully explore an interaction tree (which would be too expensive), findBestLeafNode()

uses various heuristics to pick the most promising node, according to the coverage

information in runs, to explore.

Next, the proto-interaction represented by the path to the selected node is

passed into generateConfigSet(). This method creates a sample set of configurations

in which every configuration is consistent with the proto-interaction represented

by the selected node, while the set of configurations broadly samples all the other

options not participating in the proto-interaction. In our implementation, iTree

leverages CIT for this step, but other sampling techniques could be substituted.

After this, executeConfigSet() compiles, instruments, and executes the sys-

tem’s test suite under each configuration in the sample. The data from the resulting

executions is then added to runs. Then runs and node.proto interaction, the proto-

interaction represented by node, are passed to discoverProtoInters(), which uses ma-

chine learning techniques to identify further proto-interactions that account for any

newly-covered program entities. Note that, by design, any proto-interactions discov-

ered at this step must include the option settings in node.proto interaction. Finally,

updateTree() adds the newly discovered proto-interactions to the interaction tree as

children of the currently selected node. We now discuss each step of the algorithm

in more detail.

74

findBestLeafNode(): Since iTree aims to find high-coverage configurations, this

function prioritizes nodes by the amount of coverage achieved by the configurations

containing the node’s proto-interaction. The assumption is that proto-interactions

corresponding to high-coverage configurations are more likely to lead to previously

uncovered code with further exploration. iTree computes a node’s priority as follows.

First, let Conf(runs, node) be the subset of runs whose configurations are consistent

with node’s proto-interaction. For a run r ∈ Conf(runs, node), define Cov(r) as the

number of program entities covered by r. Then each node’s priority is given by:

priority(node) =

∑
r∈Conf(runs,node) Cov(r)

|Conf(runs, node)|+ 1

and the highest-priority node is chosen. The formula simply computes a slightly

biased average coverage for all configurations that are consistent with the node’s

proto-interaction. The bias of adding one in the denominator means that nodes cor-

responding to fewer runs will have lower priority than their average coverage, but it

has little effect on nodes corresponding to many runs (since then |Conf(runs, node)| is

high). We found this adjustment to be useful in that it leads to a slight, but benefi-

cial, preference for nodes that correspond to multiple, high-coverage configurations,

over nodes which correspond to fewer, high-coverage configurations.

generateConfigSet(): This function generates a sample set of configurations,

each of which is consistent with its parameter node.proto interaction. To do this

we use a CIT tool called CASA [30] to generate a low-strength covering array over

only the remaining options. We then combine those partial configurations with the

75

ssl local listen accept anonymous dual log

C1 1 1 0 1 0 1

C2 1 0 1 1 1 1

C3 0 0 0 1 0 0

C4 0 1 1 0 0 0

C5 0 0 0 0 1 1

C6 1 1 1 0 1 0

(a) Initial covering array

ssl local listen accept anonymous dual log

C7 0 0 1 1 0 0

C8 0 0 0 0 0 1

C9 0 0 1 0 1 1

C10 0 0 0 0 1 0

C11 0 0 0 1 1 1

(b) Covering array with ssl = 0 and local = 0

ssl=tunable ssl enable local=tunable local enable listen=tunable listen

accept=tunable accept timeout anonymous=tunable anonymous enable dual log=tunable dual log enable

Figure 4.4: Example 2-way covering arrays generated during an iTree run.

settings from node.proto interaction. In our experiments, we used both 2- and 3-way

covering arrays in this step, and found the performance was not very sensitive to

this choice.

76

Figure 4.4 shows two covering arrays created by generateConfigSet() as iTree

discovered the interaction tree in Figure 4.2. In this case we chose to generate

2-way covering arrays. Figure 4.4(a) gives the covering array picked in the first

iteration of iTree. Interestingly, our 2-way covering array happened to include both

the 3-way interaction (see Figure 4.1) ¬tunable ssl enable ∧ ¬tunable local enable ∧

tunable anonymous enable (in C5) needed to reach L6 and beyond, and the 4-way

interaction ¬tunable ssl enable ∧ ¬tunable local enable ∧ tunable anonymous enable ∧

tunable dual log enable (also in C5) needed to reach L7 . After the coverage data

from these configurations was analyzed, iTree added the three children of the true

node shown in Figure 4.2.

The next iteration of iTree expanded the middle of the three leaf nodes, which

has the highest priority score (since this node covered L6 that contains many lines

of code), and generateConfigSet() then created the 2-way covering array shown in

Figure 4.4(b). Note that in this covering array, the values of tunable ssl enable and

tunable local enable are fixed. As a result, this 2-way covering array of the remaining

options is very effective, and includes both 4-way interactions (the one mentioned,

plus the one needed to reach L8 , in C7 and C10). At this point, iTree has covered

all the marked lines of the example program.

executeConfigSet(): This function instruments the system under test, executes

its test suite under each configuration in the sample and collects the coverage infor-

mation. Different implementations can be developed to handle different programing

languages, instrumentation tools, and execution environments. In our implementa-

77

tion, we compute the line coverage with gcov [31], the GNU coverage profiling tool

for C and C++. We execute the instrumented systems on Skoll [55], a distributed,

continuous quality assurance system running on a grid comprising 120 machines. As

we will discuss in Section 5.1, using Skoll allowed us to easily scale up iTree to test

and analyze large scale software systems under many configurations at once.

discoverProtoInters(): Finally, we use a two step process to discover proto-

interactions to add to the interaction tree: First, we statistically cluster config-

urations according to their coverage data, and second, we try to find the proto-

interactions responsible for the differences in execution.

In the first step, we find all runs involving configurations consistent with the

proto-interaction that iTree is exploring. Note that we extract this subset of con-

figurations from all of runs, not just those newly explored in the current iteration

— this way we get better information as iTree progresses. We then cluster these

runs using Weka’s [34] implementation of CLOPE [81], a clustering algorithm that

groups together similar transactional data records with high dimensionality. Thus,

we translate line coverage data from each run into an appropriate form: Every line

of code is a boolean attribute, set to true if covered in a run and false otherwise.

Then we use CLOPE to cluster together configurations that executed many of the

same lines.

In the second step, we use decision tree classifiers [65] to discover commonalities

of option settings among the configurations in each of the clusters. These common

patterns are the proto-interactions that are responsible for the differences between

78

the clusters. In our implementation, each configuration option is an attribute, and

the cluster that a configuration belongs to is the class. The decision tree algo-

rithm then builds a model for classifying the cluster that a configuration belongs

to based on its option settings. If the resulting model identifies specific option set-

tings that predict cluster membership, then we treat them as new proto-interactions

and append them to the interaction tree to form higher-strength proto-interactions.

Otherwise no new proto-interactions are added, and exploration of this interaction

tree path stops. In our experiments we evaluated several decision tree algorithms

and found each to be adequate for this task.

In the previous step we used CLOPE for clustering the configurations. CLOPE

requires a special parameter called repulsion, which ranges from 0.5 to 4.0, to con-

trol the ease with which clusters form. To make iTree completely automated, we

implemented a voting system to adaptively select an appropriate repulsion value.

Each time discoverProtoInters() is called, CLOPE is run multiple times with repul-

sion values ranging from 0.5 to 4.0 in increments of 0.5. We perform the second

step of the interaction discovery process using the clusters generated under each

repulsion value. At the end of discoverProtoInters(), we keep the most frequently

occurring set of proto-interactions generated under the range of repulsion values.

stoppingCriteriaMet(): iTree allows its users to plug in their own stopping cri-

teria for determining when to halt execution. Our default is to halt execution when

the interaction tree has no more unexplored proto-interactions. The experiments in

the following sections include other criteria as well, e.g., in some experiments, we

79

stop execution when a maximum number of configurations have already been tested.

Another possibility is to use wall clock time as a stopping criteria, e.g., when doing

nightly testing.

4.2 Evaluating iTree Parameters

We explored iTree’s cost-effectiveness in a series of experiments, described in

this section. Our first experiment, presented next, aims to determine two key pa-

rameters to the algorithm: the covering array strength to use in generateConfigSet(),

and the decision tree implementation to use in discoverProtoInters(). Our second

experiment explores techniques that can reduce the size of the configuration set

generated by an iTree run. And our third experiment explores modifying iTree to

adaptively select configuration sample size and use multiple decision tree classifiers

simultaneously to improve effectiveness.

4.2.1 Subject Systems

For these experiments, we use the two subject systems we have studied exten-

sively in Chapter 3: vsftpd, and ngIRCd. In these experiments, we use the same test

suites for these systems and detailed information about the systems’ configuration

spaces with respect to those test suites.

Figure 4.5 recaps the program statistics relevant to the current experiments.

These systems have roughly 10-13K LOC, written in C. The figure details the

total number of configuration options we analyzed, and the counts broken down

80

vsftpd ngIRCd

Version 2.0.7 0.12.0

Lines (sloccount) 10,482 13,601

Run-time Opts 30 13

Boolean/Enum 20/10 5/8

Full Config Space 2.1× 109 2.9× 105

Test Cases 64 141

Max Coverage 2,549 3,193

Figure 4.5: Recap of relevant program statistics of vsftpd and ngIRCd for the iTree

experiments.

by type (boolean or integer); this is the same set of options and settings that we

used in Chapter 3. The values we used for the integer options also came from

the analysis results of the previous chapter, and were chosen to maximize path

coverage for these subject systems and their test suites. Finally, the last rows list

the size of the full configuration space for the options (the total number of different

possible configurations); the number of test cases in our test suite; and the maximum

possible number of lines covered if we execute every test case under every possible

configuration.

81

4.2.2 iTree Parameters

4.2.2.1 Covering Array Strengths

Each iTree iteration begins by creating a sample of configurations, derived

from a t-way covering array. The value of t determines the size of each sample, but

may also influence the speed with which iTree terminates. In this study, we use

either t = 2 or t = 3 at each iteration of the algorithm. In Section 4.2.5, we explore

other ways to tweak the sizes of the configuration samples.

4.2.2.2 Decision Tree Algorithms

Many different decision tree classifiers have been proposed in the machine

learning literature. We used two algorithms in our experiments: The C4.5 [59],

an extension to the earlier ID3 [58] decision tree, that uses heuristics to attempt to

generate simpler (smaller) decision trees; and the Classification and Regression Trees

(CART) [7], which generates regression trees by finding rules based on variables

values to split the data instances and prunes the resulting trees if possible. We picked

these classifiers because they are the most popular decision tree implementations and

they were designed to produce compact classifications, which may be well-suited to

iTree’s incremental search approach. We use Weka’s [34] implementation of both of

these decision tree algorithms.

The classification models generated by these two decision trees have important

differences. Figure 4.6 shows the C4.5 and CART classification models generated

for ngIRCd using the Waka implementations. As we can see the C4.5 model creates

82

1 Conf ListenIPv4 = 1

2 | Conf PongTimeout = 1: class0 (10.0)

3 | Conf PongTimeout = 20: class1 (13.0/4.0)

4 | Conf PongTimeout = 3600

5 | | Conf MaxNickLength = 0: class0 (0.0)

6 | | Conf MaxNickLength = 4: class0 (3.0)

7 | | Conf MaxNickLength = 5: class0 (1.0)

8 | | Conf MaxNickLength = 6: class1 (1.0)

9 | | Conf MaxNickLength = 8: class0 (0.0)

10 | | Conf MaxNickLength = 9: class1 (3.0)

11 | | Conf MaxNickLength = 10: class0 (0.0)

12 | | Conf MaxNickLength = 100: class0 (0.0)

13 Conf ListenIPv4 = 0: class2 (33.0)

(a) C4.5 Decision Tree

1 Conf ListenIPv4=(0): class2(33.0/0.0)

2 Conf ListenIPv4!=(0)

3 | Conf MaxNickLength=(4)|(5)|(0): class0(13.0/0.0)

4 | Conf MaxNickLength!=(4)|(5)|(0)

5 | | Conf PongTimeout=(3600)|(20): class1(13.0/0.0)

6 | | Conf PongTimeout!=(3600)|(20): class0(5.0/0.0)

(b) CART Decision Tree

Figure 4.6: Classification models generated using C4.5 and CART decision trees.

a unique path for every option setting, even if some settings lead to the same clas-

sification. The CART model, on the other hand, branches on rules for the options’

settings rather than the individual values of the options.

These differences affect the process of extracting proto-interactions from the

classification models. From the C4.5 models, we simply parse for distinct paths and

each path is treated as a proto-interaction. For the CART models, however, we must

first reference the system’s configuration space model to solve the inequalities in the

branching rules. For example, Conf MaxNickLength! = (4)|(5)|(0) would transform

83

to Conf MaxNickLength = (6)|(8)|(9)|(10)|(100) using ngIRCd’s configuration space

model. We then generate one proto-interaction for every unique combination of

option settings in a decision tree path.

4.2.2.3 Iteration Retries

An iTree iteration may fail to discover any proto-interaction for a number of

reasons. For instance, the decision tree algorithm failed to generate a classification

model as a result of poor performing configuration samples. Failing to discover a

real interaction will cause iTree to improperly abandon the currently selected node

and to continue with a proto-interaction with lower priority score. This can delay

or even prevent the coverage of some necessary higher strength interactions.

The obvious solution to deal with failed iterations is to perform a retry, that is,

to generate more configuration samples and performed the classification again. How-

ever, not all failed iterations should be retried either, since some proto-interactions

do not lead to actual interactions. Retrying every iteration can dramatically increase

the number of configurations tested.

For our initial experiments, our iTree implementation only allows for retries on

the very first iteration because without any proto-interactions the algorithm cannot

proceed. In Section 4.2.5, we explore other conditions under which retries should

be performed.

84

4.2.3 Initial Evaluation

In practice, software testing gets limited time budget and computing resources

that might prevent iTree from explore all proto-interactions in the interaction tree.

Therefore, the goal of these initial experiments is to determine the iTree parameters

that direct the testing efforts to the most important proto-interactions first and yield

a set of configurations that can achieve high coverage quickly. In this experiment, we

ran iTree 30 separate times on both subject systems under each possible combination

of decision tree and covering array t strength. For each run, we continued the

execution until we reached the maximum possible coverage (as determined from

our prior analysis results). The number of configurations executed is our metric for

finding the best parameter settings — the lower the number, the faster the algorithm

achieves full coverage. Note that in these experiments, rather than actually running

the executeConfigSet() step, we instead used the line coverage data we had already

computed from the previous chapter (which gave us a mapping from configurations

to their line coverage).

4.2.3.1 Data and Analysis

Figure 4.7 shows the results of our experiments for vsftpd and ngIRCd. The

data is depicted using box and whisker plots. The left half of each chart shows the

results of the decision trees under covering array strength t = 2, and the right half

shows the results for t = 3. The y-axis reports the number of configurations tested

to achieve full coverage. The number in parentheses under each plot indicates the

85

vsftpd

(24) (25) (21) (22) (30) (30) (29) (30)

N
um

be
r

of
 C

on
fs

100

200

300

400

c4.5 c4.5_c cart cart_c

●
●

●
●

●

●

●

●

t=2

c4.5 c4.5_c cart cart_c

● ● ● ●

●

●

●

●

● ●

●●

●

●

●

●

t=3

(30)

vote_adapt

●

●

●

●

t=adapt

ngIRCd

(24) (22) (27) (22) (30) (30) (30) (30)

N
um

be
r

of
 C

on
fs

100

200

300

400

c4.5 c4.5_c cart cart_c

●

●

●

●

●

t=2

c4.5 c4.5_c cart cart_c

●

●

●

●

t=3

(28)

vote_adapt

●

●
●
●

t=adapt

Figure 4.7: Interaction tree experiments using various iTree parameters and heuris-

tics.

number of iTree runs, out of 30, in which full coverage was achieved. We defer

discussion of c4.5 c, cart c and vote adapt to Section 4.2.4 and Section 4.2.5.

Covering Array Strengths: We see in Figure 4.7 that increasing the t strength

of the covering arrays did not greatly change the cost of running iTree for vsftpd.

86

It did have some effect for ngIRCd, where the average size of the configuration sets

increased across all decision tree algorithms. However, we also see that the number of

runs in which the iTree algorithm reached maximal coverage is substantially higher

when t = 3 than when t = 2, for both subject systems. We looked in more detail

at the individual runs, and observed that both the likelihood of discovering proto-

interactions and the accuracy of the discovered proto-interactions at each iteration

dramatically improved as t increased. However, this resulted in a trade off. While

increased sample size means more cost at each iteration, it also resulted in fewer

overall iterations for our subject systems. In the end, the total cost did increase for

ngIRCd.

We note that variance in the number of configurations tested appears unrelated

to covering array strength. Instead, it seems more tied to the system tested. In

particular, for vsftpd, the range of the number of configurations tested is fairly

stable, while for ngIRCd, it fluctuates considerably. Based on further analysis, we

believe this occurs because the configuration space model for ngIRCd, taken from

our previous analysis results, contained many redundant option settings from the

perspective of line coverage. This resulted in many equivalent proto-interactions

being used to redundantly explore the same part of its effective configuration space

and can delay iTree from reaching complete coverage. On the other hand, this also

means ngIRCd’s 2-way covering arrays experiments already enjoyed the benefits of

larger configuration samples.

87

Decision Trees: In Figure 4.7, the c4.5 and cart columns for each t-value show

the effect of the C4.5 and CART decision trees on iTree. The data shows no sys-

tematic differences in performance across the two classifiers. Looking at the in-

dividual iterations of iTree, however, we did find some differences: CART fail to

discover any proto-interactions in the configuration samples more often than J48

does. Fortunately, this situation occurs mostly during the very first iteration and

our retry heuristic guarantees that some proto-interactions will be discovered even-

tually, therefore, it does not impact the performance of iTree greatly.

In some of the runs, we find that both C4.5 and CART can discover proto-

interactions that are not quite accurate. This usually results in poor iTree perfor-

mance. We explore ways to improve the situation in Section 4.2.5.

4.2.4 Composite Proto-Interactions

Our iTree implementation so far treats every unique combination of option

settings as a proto-interaction that should be explored further. However, it is ev-

ident from the ngIRCd’s runs that some proto-interactions can be redundant and

exploring them one at a time can dramatically increase the number of iTree itera-

tions and the number of configurations tested. For example, to cover majority of

ngIRCd’s code, Conf ListenIPv4 must be set to 1, but Conf MaxNickLength can be

set to either 20 or 3600, and Conf MaxNickLength can be set to 6, 8, 9, 10, or 100;

treating these proto-interactions individually would result in 10 iTree iterations.

We cannot simpling ignore some of the option settings either, for instance, in order

88

to reach complete coverage for ngIRCd the 4-way interaction Conf ListenIPv4 = 1∧

Conf MaxNickLength = 6∧Conf PongTimeout = 3600∧Conf PredefChannelsOnly = 0

must be covered by at least one configuration.

To efficiently handle multiple equivalent proto-interactions in a safe and ef-

ficient way, we created the composite proto-interactions. In a composite proto-

interaction, each option can have more than one setting to represent all of the

equivalent combinations. We modified generateConfigSet() to use a composite proto-

interaction to generate covering array samples; instead of fixing every option that ap-

peared in the proto-interaction to a single setting, the composite proto-interactions

are used to reduce each option’s possible settings that a CIT technique must cover.

This way, a single iTree iteration can sample all t-way combinations of all the rele-

vant option settings.

Some decision tree classifiers, such as the C4.5, create a unique path in its clas-

sification model for every equivalent branching value. To extract composite proto-

interactions from such classification models, we use the following algorithm: First,

we extract all the proto-interactions from the decision tree model and group them by

their classifications. Then for each classification, we merge all the compatible proto-

interactions. Proto-interactions are compatible if they constrain the exact same set

of options. The merging process creates a composite proto-interaction by including,

for each option, all the settings that appear in the compatible proto-interactions.

We note that, using this algorithm, the resulting composite proto-interactions

can include combinations of option settings that do not actually belong to the same

classification. But these composite proto-interactions are still safe for our use case

89

and do not occur frequently in practice.

4.2.4.1 Data and Analysis

Columns c4.5 c and cart c in Figure 4.7 shows the performance of C4.5 and

CART decision trees under each t-value using the composite proto-interactions. For

vsftpd, using composite proto-interaction did not significantly change the perfor-

mance of the iTree runs; this is understandable since most vsftpd’s configuration

options are boolean. But for ngIRCd, we see that both the number of iterations and

the number of configurations needed to reach complete coverage decreased under

both t = 2 and t = 3, this is especially significant for the t = 3 runs. This shows

that using composite proto-interactions increased the likelihood of iTree covering all

the interactions needed to reach complete coverage during an earlier iteration.

However, we also see that when t = 2, slightly fewer runs reached complete

coverage for ngIRCd. We found the cause to be that a covering array generated (with

the CASA tool) in a single iteration using a composite proto-interaction contains

fewer configurations than several covering arrays generated in numerous iterations

using several equivalent proto-interactions. In the case of t = 2, the smaller con-

figuration samples were not as effective for executing new coverage and accurately

discovering proto-interactions. The t = 3 runs, with larger samples, were not af-

fected.

Overall, we find that using composite proto-interactions improved the perfor-

mance and practicality of the iTree approach.

90

4.2.5 Adaptive Approach

When we examined the worst-performing runs from the previous experiments,

we found that they suffered from inaccurate proto-interaction discovery. Both C4.5

and CART sometimes produce inaccurate classifications — they include option set-

tings in the proto-interactions that are not part of the actual interactions. This

situation can have great negative consequences, especially during the early stages of

the iTree discovery, because the inaccuracies can propagate through an iTree path.

This would effectively send iTree on a wild goose chase. Specifically, inaccurate

proto-interactions may restrict configuration sampling to unimportant parts of the

configuration space, thus preventing iTree from covering the interactions needed for

complete coverage.

There are two main causes to the inaccurate proto-interaction discovery. The

first cause is insufficient training examples provided to the decision tree classifiers.

From our previous experiments we see that increasing the t-value improved the

accuracy of the discovered proto-interactions. However, increasing the t-way also

increased testing efforts. So, to increase the size of the configuration samples without

dramatically increasing the test obligations, we decided to use two 2-way covering

arrays for every iteration of iTree (with the CASA tool, 2-way covering arrays are

about one third the size of 3-way covering arrays).

The second cause is inherent in the design of the decision tree classifiers. These

classifiers are designed to minimize errors in classifying the training examples and

this can cause the decision tree models to be overfitted for the configurations used

91

to discover the proto-interactions. We noticed, however, that C4.5 and CART uses

different heuristics to reduce the error rate, and that the inaccuracies often involved

different option settings. Thus, we developed an aggregation classifier, similar to

bagging [6, 60], that creates an ensemble classifier out of C4.5 and CART decision

trees. This aggregation classifier filters out option settings from proto-interactions

unless both C4.5 and CART decision tree models produce them as classifiers. The

assumption is option settings that appear in both models are more likely to be part

of the actual interactions.

However, this aggregation classifier is also more likely to fail to discover proto-

interactions; if the decision trees do not agree on any option setting during an

iteration then iTree would be forced to abandon the current path. To alleviate this

problem, iTree performs a retry of the current iteration if new coverage was executed

during this iteration but not proto-interactions were discovered.

With the combination of aggregation classifier and the new retry condition,

the iTree essentially produces either lower strength proto-interactions with option

settings it is confident about or it increases the configuration sample size to produce

more accurate classifications.

4.2.5.1 Data and Analysis

The results using the adaptive approach along with composite proto-interactions

are shown in Figure 4.7’s vote adapt column. We can see from the figure that

vote adapt is an attractive choice overall — its average cost is lower or only slightly

92

worse than the best of the other algorithms, and it yields full coverage on every or

almost every run.

4.3 Performance Evaluation

4.3.1 Comparing iTree to Other Approaches

We now compare the performance of iTree against both traditional CIT and

random sampling. As mentioned earlier, CIT and random sampling are popular

approaches that produce relatively good results in practice. CIT generates a set

of configurations that includes all possible interactions at a given t strength, and

random sampling depends on the probability of including the right interactions in

the configuration samples. To better understand how iTree compares with these

existing approaches, we conducted a series of experiments.

4.3.1.1 Experimental Design

For these experiments, we again used vsftpd and ngIRCd and ran each ap-

proach 30 times. One problem with CIT and random sampling is that developers

cannot know a priori how large a sample is necessary. For CIT, developers must

pick a t value, and for random sampling developers must guess a sample size based

on their experience or time constraints. In this experiment, we created covering

arrays using a range of different t strengths. For each strength, testing ran until no

more configurations remained in the sample sets. Using 5-way and 4-way covering

arrays for vsftpd and ngIRCd, respectively often achieved the maximal coverage, so

93

we used those as our largest sample sizes. We next tested the systems with random

samples sized equal to the average size of these largest covering arrays.

We also tested these systems using iTree. For these experiments, we used

vote adapt as described in the previous section. Also, iTree is using its default

stopping criteria. Using this stopping criteria does not require any inputs from the

developers; iTree determines how much testing to perform by automatically stopping

the process when no more proto-interactions are left unexplored in the interaction

tree. We measure performance using two criteria: (1) whether complete coverage

was reached by each approach and (2) if so, the number of configurations needed to

reach the complete coverage.

4.3.1.2 Data and Analysis

Figure 4.8 shows the results of these experiments. The x-axis is the number of

configurations tested so far in each run and the y-axis is the median number of lines

covered at that point across all 30 runs. Here we are assuming that configurations

are tested in the order they are generated by the respective approaches, although

in actuality the testing process can be done in parallel across multiple CPUs. The

10 data points plotted in each figure divide the time line into equal epochs, corre-

sponding to 36 or 53 configurations tested for vsftpd and ngIRCd, respectively. We

note that the largest covering arrays and random samples for vsftpd and ngIRCd

contains on average 340 and 400 configurations respectively and the vote adapt runs

executed on average 255 and 345 configurations for vsftpd and ngIRCd respectively.

94

●

●
● ● ● ● ● ● ● ●

50 100 150 200 250 300 350

24
60

24
80

25
00

25
20

25
40

vsftpd

Number of Configurations

C
um

ul
at

iv
e

C
ov

er
ag

e

108 324288

● iTree (30)
Rand (28)
5wayCA (29)
4wayCA (9)
3wayCA (0)

●

● ● ● ● ● ● ● ● ●

100 200 300 400 500

31
65

31
70

31
75

31
80

31
85

ngIRCd

Number of Configurations

C
um

ul
at

iv
e

C
ov

er
ag

e

106 424371

● iTree (28)
Rand (30)
4wayCA (30)
3wayCA (16)

Figure 4.8: Comparing the number of configurations needed to reach complete cov-

erage using iTree versus using covering arrays and random sampling.

95

Therefore, the iTree runs can terminate before executing the number of configura-

tions of the other approaches. In that case, we simply treat subsequent time points

as unchanged from the previous time point. The figures also include a vertical line

indicating the epoch in which 90% of the runs achieved maximal coverage. The

numbers in parentheses in the legend indicate the total number of runs, out of 30

each, that reached full coverage for each approach.

We see that for vsftpd, iTree, 5-way covering arrays, and random sampling

eventually reached full coverage in almost all runs (30, 28, and 29, respectively),

but 4-way only reached full coverage in a third of the runs, and 3-way never reached

full coverage. Moreover, looking at the vertical lines, we see that 90% of the iTree

runs reached full coverage with almost a third of the number of configurations,

on average, of 5-way covering arrays, which themselves did noticeably better than

random sampling. We see a similar trend for ngIRCd, for which iTree, 4-way covering

arrays, and random sampling achieved full coverage in all or almost all runs (28,

30, and 30, respectively), but 3-way covering arrays only reached full coverage in

just over half the runs (16). Again, 90% of the iTree runs reached full with just a

fraction of the number of configurations of 4-way covering arrays, which reached full

coverage faster than random sampling. We note, because 2 of the iTree runs did

not reach full coverage when it was terminated by the default stopping criteria, the

median number of lines executed by these runs was 1 shy of the full coverage.

Overall, these results showed the iTree performing better than t-way covering

arrays and random sampling, at substantially lower cost. This conclusion, of course,

depends on how those approaches are actually used. For example, if developers

96

used high strength covering arrays or large random samples, they would be likely

to get most of the available coverage, but would do so at large cost. As we know

from the previous chapter, this is not a very efficient approach, because few of

those configurations are really necessary to achieve specific types of coverage, such

as line coverage. For instance, it would require 7-way and 6-way covering arrays

with thousands of configurations to guarantee complete line coverage for vsftpd

and ngIRCd respectively. If developers instead used a low-strength, 2-way covering

array, the cost would be much lower, but so would the coverage.

4.3.2 Scalability Evaluation

Using iTree, we were able to achieve maximal coverage while executing on

average about 100 configurations for both vsftpd and ngIRCd. This is encouraging,

but after all, we had already solved this problem using symbolic execution, albeit

at a far higher cost. However, ultimately our goal is to handle much larger systems,

written in a variety of languages, with compile-time as well as run-time configuration

options. None of these issues can currently be addressed using symbolic execution,

but we believe that iTree may be the right tool for this problem.

To better understand this issue, we evaluated the scalability of iTree by running

it on MySQL, a popular open source database. We are not aware of any current

symbolic execution system that can fully handle this system. MySQL has more

than 900K LOC as computed by sloccount [78]. It is written in a combination of

C and C++, and its configuration space includes a large number of run-time as

97

MySQL

Version 5.1

Lines (sloccount) 939,842

Compile-time Opts 8

Boolean/Enum 8/0

Run-time Opts 8

Boolean/Enum 4/4

Full Config Space 5.9× 105

Test Cases 1244

Figure 4.9: Program statistics of MySQL.

well as compile-time configuration options. As in our experiments in the previous

section, our evaluation compare iTree against covering arrays and randomly sampled

configurations.

4.3.2.1 Subject System

Figure 4.9 gives descriptive statistics for MySQL. The top two rows list the

version we used and the lines of code it contains as computed by sloccount [78].

Next, the figure lists the number and types of configuration options we selected

for our experiment. We give the numbers of compile-time and run-time configura-

tion options separately, and each number is also broken down by type (boolean or

enumeration). All told, we are focusing on 16 configuration options. We selected

configuration options and settings that enabled the test suite to exercise the major

98

configurable features of MySQL, such as default storage engines, SQL modes, and

transaction isolation modes. All other MySQL options were left with their default

values.

The next row in Figure 4.9 lists the number of unique configurations that

can be generated given the number of distinct settings of the configuration options;

the full configuration space given the subset of MySQL options we are considering

includes roughly 600K configurations.

Finally, the last row in the figure lists the number of test cases (1244) com-

prising the regression test suite that comes with MySQL’s source tree, which we

used for our experiment. We should note that not every test case runs in every

configuration.

4.3.2.2 Experimental Design

Our experimental design is similar to that of Section 4.3. Specifically, we

compare 3-way covering arrays, 4-way covering arrays, random sampling, and iTree.

On average, 3-way coverings contained 58 configurations, 4-way covering arrays

contained 190 configurations, and random sampling also selected 190 configurations.

We executed each approach 30 times and computed how much line coverage was

achieved under each. For iTree we again used the vote adapt approach. One key

difference between this experiment and the last is that we cannot know the maximal

possible coverage achievable by MySQL’s test suite, and so we only discuss observed

line coverage.

99

●

●

●

●
●

● ● ● ● ●

50 100 150 200

95
50

0
96

50
0

97
50

0
98

50
0

MySQL

Number of Configurations

C
um

ul
at

iv
e

C
ov

er
ag

e

● iTree
Rand
4wayCA
3wayCA

Figure 4.10: Comparing the number of configurations and coverage achieved using

iTree against those achieved using other approaches.

We executed the experiment on the Skoll cluster using up to 90 CPUs at a time.

Executing the MySQL test suite takes approximately 1.5 hours for each configured

instance. The process involves downloading the MySQL source tree from source code

repository; compiling an instance according to the compile-time option settings for

the configuration to be tested; instrumenting the instances with gcov [31]; starting

the instance with the run-time option settings dictated by the configuration to be

tested; running the test suite; and collecting the execution data.

100

4.3.2.3 Data and Analysis

Figure 4.10 summarizes the experimental results. The figure shows the growth

in median coverage over time under each of the four approaches used, measured at

10 equally spaced intervals. The y-axis is the number of covered lines, and the

x-axis indicates the number of configurations tested so far. We can see from these

results that iTree covered more lines of code on average than the other methods after

running the same number of configurations. Interestingly, the traditional methods

have very similar performance profiles. Thus, with respect to this data, it appears

that at every level of effort, iTree-selected samples that included configurations with

unique coverage patterns that were not found by the more traditional approaches.

The absolute difference in line coverage ranges from a high of around 0.5%

(∼ 500 LOC) early on down to about 0.1% (∼ 132 LOC) near the end of the ex-

periment. To better understand why these lines were found by iTree, but not by

the other methods, we manually inspected MySQL’s source. We observed that the

extra lines covered with iTree involved many small pockets of code scattered across

numerous files, methods, and code blocks and are apparently only executed in very

specific circumstances. We further attempted to determine what interactions con-

trol the lines that are covered by iTree and not the other approaches, but were

unable to decide this because of MySQL’s size and complexity. However, we gener-

ated a 5-way covering array and executed its configurations, we found that none of

these configurations covered those lines, either. This implies that the interactions

controlling the lines in question are of strength 6 or higher.

101

The MySQL experiments once again showed that the iTree approach performs

better than t-way covering arrays and random sampling. But more importantly,

these experiments showed that iTree can handle large scale industry systems im-

plemented in heterogeneous programming languages with configuration spaces that

include both compile- and run-time configuration options.

4.4 Minimized iTree Sets

Next, we want to investigate whether we can generate even smaller config-

uration samples using the knowledge gained from the iTree’s configuration space

exploration process.

In Chapter 3, we developed a greedy algorithm that takes the configuration in-

teractions of a system and packs them together to form a small set of configurations

that can still achieve full coverage. We called these configuration sets the minimal

covering set. In this algorithm, we greedily select an interaction that executes the

most uncovered code at each iteration and pack it together with a consistent inter-

action already selected by a previous iteration. This process generates a small set

of complete configurations, which assign values to all options, that can achieve high

coverage.

On a high level, the iTree discovery algorithm is performing a similar algorithm

to pack together configuration interactions. During each iteration of iTree, a high

coverage proto-interaction is selected for further exploration. Configuration samples

are generated by iTree to sample other combinations of option settings that can be

102

merged with this proto-interaction to achieve higher coverage. If some sampled

configurations execute previously uncovered code, then new higher strength proto-

interactions are generated for future iterations to explore in the same way. In this

way, the process continuously packs together effective interactions to form higher

strength ones until full coverage is reached or no more proto-interactions are left to

explore.

We believe that a small configuration set, similar to the minimal covering set,

can be generated by selecting a subset of the iTree execution. We call this set the

minimized iTree set. To generate the minimized iTree set, we developed another

greedy algorithm: Starting with no lines of code covered, the algorithm iteratively

chooses the next configuration from the iTree execution data that covers the most

currently uncovered lines and adds it to the set. The algorithm continues until every

line of code executed by the iTree run is covered.

4.4.1 Data and Analysis

We performed the greedy algorithm on the vote adapt iTree runs. For vsftpd,

the minimized iTree sets contained between 5-8 configurations; very close to the

size of the minimal covering set for line coverage (5 configurations). For ngIRCd,

the minimized iTree sets contained between 5-6 configurations; interestingly, the

minimized iTree sets are actually smaller than ngIRCd’s minimal covering set (7

configurations). We think this is because the iTree’s sampling approach makes

many more attempts to merge potential interactions together, and thus it can be

103

Config # 1 2 3 4 5 6 7 8

vsftpd

Mini iTree Sets (avg) 2,455 71 12 6 1 1 <1 <1

Mini Cov Set 2,521 18 8 1 1 - - -

ngIRCd

Mini iTree Sets (avg) 3,135 30 9 6 1 <1 - -

Mini Cov Set 3,148 30 6 6 1 1 1 -

Figure 4.11: Comparing additional coverage achieved by each configuration in the

minimized iTree sets against those in the minimal covering sets.

more effective than the minimal covering set greedy algorithm.

Figure 4.11 compares the average additional coverage achieved by each con-

figuration in the minimized iTree sets to those in the minimal covering sets. As in

Figure 3.12, the column labeled 1 shows how many lines are covered by the first

configuration in the configuration set. Then column n (for n > 1) shows the addi-

tional coverage achieved by the nth configuration over configurations 1..(n−1). We

can see that both minimized iTree sets and minimal covering sets follow the same

general trend, with most coverage achieved by just the first configuration and the

last several configurations often add only one additional line.

We also used this algorithm to generate the minimized iTree sets for MySQL’s

vote adapt runs. These configuration sets contained between 41-65 (on average 60)

configurations. Figure 4.12 shows the cumulative coverage (averaged over all sets)

achieved by each additional configuration. We see that, for MySQL, almost all of

104

Mini iTree Set Configurations

C
um

ul
at

iv
e

C
ov

er
ag

e

90
00

0
92

00
0

94
00

0
96

00
0

98
00

0

Figure 4.12: Cumulative coverage of MySQL’s minimized iTree set.

the achieved coverage was covered by just the first configuration and the next few

configurations added some more coverage. But the rest of the configurations in the

set added very little additional coverage, in fact, the last 35 configurations added

less than 10 lines each. This confirms that, MySQL’s effective configuration space

is also union of disjoint interactions. Its configuration options do not interact fully

and many of the higher strength interactions subsumes the lower strength ones.

4.5 Estimating Configuration Interactions

So far we used the iTree discovery algorithm to efficiently discover high cov-

erage configurations for software testing. Now we investigate whether iTree can be

used to estimate a software system’s configuration interactions. Knowing the in-

105

teractions of a system enables many applications such as configuration selection for

regression testing and tool support for program understanding tasks.

4.5.1 Interaction Learning Approach

Even though the iTree algorithm already generates proto-interactions during

it’s discovery process, however, we cannot extract these proto-interactions directly

from the interaction tree as full-fledged configuration interactions. As mentioned

above, the proto-interactions do not always represent actual interactions because of

two main reasons:

1. The proto-interactions are generated using only the sampled configurations

available during each iteration of an iTree run.

2. The heuristic nature of iTree causes any inaccuracies to be propagated to the

higher strength proto-interactions.

Instead, we developed an approach, we call interaction learning, that uses machine

learning algorithms to “learn”, from a full set of sampled configurations from an

iTree run, the interactions required to execute any part of a system.

To illustrate the operations of this approach, we describe the process of learn-

ing the interactions of a system’s line coverage. For each line of code, we create both

positive and negative learning examples using the sampled configurations; each con-

figuration option is an attribute and the class is either hit (line of code was executed

under this configuration) or not hit (line of code was not executed under this config-

uration). In our implementation, we use decision trees to build models for classifying

106

whether a configuration can execute the line of code based on its option settings.

The resulting classification models identify specific option settings that predict the

coverage of the specified line of code.

There is an obvious optimization that can speed up this interaction learning

process. As we have seen in the analysis data from Chapter 3, numerous lines of code

can have the same configuration interactions. The lines with the same interactions

would be executed by the same subset of sampled configurations as well, and this

means their interactions can be classified by the same models. Therefore, we do not

need to generate a classification model for each line, instead we can group together

the lines executed by the same configurations and learn the interactions for each

group.

The use of decision trees in the interaction learning approach could cause it

to run into the imbalance data problem [38]. For example, lines of code with hard

to cover, high strength interactions can have number of positive examples that are

dwarfed by the number of negative examples. In such cases, the decision tree algo-

rithms designed to meet a set error rate would simply generate classification models

that only predict negative outcomes. The reverse can be true with overwhelming

positive examples as well.

To deal with the imbalance data problem we used a technique called boost-

ing [27, 60] to balance the examples by adding a weight value for each instance,

the higher the weight the more an instance influences the decision tree model. In

our implementation, the weight for each instance is calculated as follows. First, let

|negative| be the number of negative instances and |positive| be the number of pos-

107

itive instances in the learning examples. Then the weight of each instance is given

by:

weightnegative =


1, if |negative| >= |positive| ;

|positive|
|negative| , if |negative| < |positive| .

weightpositive =


1, if |negative| <= |positive| ;

|negative|
|positive| , if |negative| > |positive| .

This way we always ensure that the total weight of positive instances is roughly

equal to the total weight of the negative instances.

4.5.1.1 Experimental Design

To evaluate the effectiveness of the interaction learning approach, we used vs-

ftpd and ngIRCd since we can compare the estimated interactions against the con-

figuration interactions calculated using symbolic evaluation runs. First, we wanted

to see if the configuration set discovered by iTree using our adaptive heuristics can

be used to produce accurate interaction estimations. We ran the interaction learn-

ing process on the 30 vote adapt runs terminated by the default stopping criteria.

These runs, which ran until there are no more proto-interactions in the interaction

tree, on average analyzed 255 and 345 configurations for vsftpd and ngIRCd respec-

tively. We experimented with using either C4.5 or CART decision trees to “learn”

the interactions.

Next, we wanted to see if iTree runs using a slightly different set of heuristics

108

that generate bigger configuration sets would produce more accurate estimations.

For these runs, we used the same aggregation classifier and default stopping criteria

as the vote adapt runs, but we generated a 3-way covering array for every iTree

iteration. The resulting vote t3 runs analyzed on average 375 and 672 configurations

each for vsftpd and ngIRCd respectively; more configurations than the vote adapt

runs. For these experiments we also used either C4.5 or CART decision trees for

the learning process.

We defined three metrics for evaluating the accuracy of the estimated config-

uration interactions:

• Exact matches, measures the number of lines which had estimated interactions

that matched the actual interactions exactly. We note that for lines with

multiple interactions, the estimations must match all interactions exactly.

• Reachables, measures the number of lines that did not have the exact esti-

mated interactions, but the estimations still guaranteed the execution of these

lines. For instance, at least one of the estimated interactions matched the

actual interactions and/or the estimated interactions added additional option

settings.

• Unreachables, measures the number of lines which had estimated interactions

that cannot guarantee the execution of these lines. For instance, an estimated

interaction that only included 4 out of the 6 specific option settings of the

actual interaction.

109

vote adapt vote t3

C4.5 CART C4.5 CART

Exact Matches 2426(95.17%) 2427(95.21%) 2425(95.14%) 2426(95.17%)

Reachables 118 (4.63%) 118 (4.63%) 118 (4.63%) 119 (4.67%)

Unreachables 4 (0.16%) 2 (0.08%) 4 (0.16%) 5 (0.20%)

(a) vsftpd

vote adapt vote t3

C4.5 CART C4.5 CART

Exact Matches 3052(95.58%) 3007(94.17%) 3082(96.52%) 2980(93.33%)

Reachables 108 (3.38%) 152 (4.76%) 83 (2.60%) 180 (5.64%)

Unreachables 22 (0.69%) 22 (0.69%) 17 (0.53%) 22 (0.69%)

(b) ngIRCd

Figure 4.13: Accuracy of vsftpd and ngIRCd’s estimated configuration interactions

measured in three metrics.

4.5.1.2 Data and Analysis

We ran the interaction estimation experiments as described above. Figure 4.13

shows the three metrics, averaged across all 30 runs, for each experiment. The

tables show the metrics, both the number of lines and its percentage out of the

2549 and 3193 achievable line coverage for vsftpd and ngIRCd respectively. First,

we see that, for vsftpd and ngIRCd, the interaction learning approach was quite

successful, regardless of the decision tree algorithm used. For these subject systems,

110

this approach generated the exact configuration interactions for about 95% of the

source code. About 5% of the source code is still reachable using the estimated

interactions and only less than 1% of the source code cannot be guaranteed to be

executed using the interaction estimations.

Next, we see that the accuracy of the estimated interactions is almost the

same using the different iTree heuristics. But we do notice a slight advantage for

the vote t3 runs; for vsftpd, a few more runs had 0 unreachable lines of code and for

ngIRCd, on average fewer lines were unreachable using the estimated interactions.

But all in all, the vote adapt runs, despite having many fewer configurations in the

configuration sets, estimated the configuration interactions with about the same

level of accuracy as the the vote t3 runs. This means that our adaptive heuristics is

practical for both software testing and configuration space analysis tasks.

We examined the estimated interactions in more detail. We found out that,

for the reachable lines, the extra option settings were mostly byproducts of the

decision tree classification models. For instance, numerous lines of code from vsftpd

had three 1-way interactions of tunable local enable, ¬tunable anonymous enable, and

tunable ssl enable. But the estimated interactions included:

• tunable local enable

• ¬tunable local enable ∧ ¬tunable anonymous enable

• ¬tunable local enable ∧ tunable anonymous enable ∧ tunable ssl enable.

The extra option settings were used to branch on the different classifications in the

decision tree models.

111

We also found out that some of the lines are unreachable because were not

executed by the iTree runs. But for most of the unreachable lines, the estimated in-

teractions included some but not all option settings of the actual interactions.For in-

stance, a few of ngIRCd’s lines required the 6-way interaction Conf ListenIPv4 = 1∧

Conf MaxNickLength = 8∧Conf PredefChannelsOnly = 1∧Conf PongTimeout = 20∧

Conf PingTimeout = 3600 ∧ Conf MaxConnectionsIP = 2 and the estimated interac-

tion was a 4-way interaction containing 4 of the 6 specific option settings.

Comparing to the techniques we developed in Chapter 3 to analyze the con-

figuration interactions, the configuration interaction learning approach’s speed im-

provement is incredible. For vsftpd and ngIRCd, it took several days of runtime on

40 machines to complete the guaranteed coverage analysis and a few hours on one

machine to complete the execution conditions analysis. But the interaction learning

process takes just a few seconds on one machine to analyze one iTree run, with close

to perfect accuracy.

We also note that the optimization we implemented by grouping together lines

of code executed by the same configurations was quiet effective as well. Of the 2549

and 3193 lines of code for vsftpd and ngIRCd respectively, there were only 52 and 61

distinct groups on average that the approach needed to build classification models

for.

112

Configuration Interactions C4.5 CART

Strength 1 17 47

Strength 2 126 149

Strength 3 477 333

Strength 4 970 364

Strength 5 1294 369

Strength 6 1234 259

Strength 7 429 143

Strength 8 60 57

Strength 9 1 11

Strength 10 0 3

Total 4608 1735

LOC Covered 98759(100%) 97981(99.21%)

Figure 4.14: Number and strength of MySQL’s estimated configuration interactions.

4.5.2 Analyzing Configuration Interactions of MySQL

To estimate the configuration interactions of MySQL, we applied the configura-

tion interaction learning approach on one of the vote adapt iTree runs that achieved

the highest coverage. Of the 98759 lines of code this iTree run executed, only 1616

groups needed to be classified. Figure 4.14 summarizes the estimated configuration

interactions using either C4.5 or CART decision trees.

First, we see that the number of interactions are quite different between these

two classifiers. C4.5 estimated many more interactions than CART and these inter-

113

Interaction Strength

C
um

ul
at

iv
e

C
ov

er
ag

e

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

0%
20

%
40

%
60

%
80

%
10

0%

C4.5
CART

Figure 4.15: MySQL’s cumulative guaranteed coverage at each interaction strength.

actions accounted for 100% of vote adapt run’s coverage. But, even though CART

estimated ∼ 62% fewer interactions, the coverage accounted for by these interactions

is still over 99%. This shows that many of the missing interactions do not execute

many lines of code. With further analysis, we determined that using the CART

decision tree, there were 77 groups that could not be classified, while all groups

were classified by C4.5. These results suggest that C4.5 decision tree produces more

complete and accurate configuration interaction estimations for MySQL.

Next, we see that the number of interactions at each t strength, while more

than vsftpd and ngIRCd, is still very small compare to MySQL’s full configura-

tion space and theoretically possible configuration interactions. This observation

114

is consistent with our conjecture that the effective configuration spaces are quite

small.

In Figure 4.15, we plotted the cumulative coverage that can be achieved at

each interaction strength. In terms of line coverage, plots for both classifiers looked

similar. We clearly see the effects of enabling options at t = 2. Examining the data,

we found that the interactions which contributed the most coverage at this strength

involved various combinations of settings for two options: default storage engine and

event scheduler.

The configuration interaction learning approach handled this much larger sub-

ject system with ease. Even with ∼1M LOC, this approach took around 30 minutes

to complete on a single machine. And we note that, a major portion of the analysis

time was spent on extracting the line coverage information from the zipped log files

created by the Skoll execution framework.

4.6 Summary

In this chapter, we developed a new sampling approach, the interaction tree

discovery algorithm or iTree, that leverages the structures of the effective config-

uration spaces to discover highly effective configurations. This approach uses the

interaction tree to divide up a software system’s configuration space and iteratively

searches for high coverage configurations. In this way, the configuration sets con-

structed as iTree executes have the potential to achieve high coverage during testing.

We conducted several experiments designed to evaluate the performance of

115

the iTree algorithm and to improve the heuristics that guide its iterative search

process. Using the symbolic evaluation results for vsftpd and ngIRCd, we measured

iTree’s performance under various combinations of ML algorithms, covering array

t strengths and other parameters. In each case, our experimental results showed

that this new approach can efficiently achieve full coverage during testing. And

we found that the best choice for iTree is to use a voting protocol to combine

multiple ML classifiers, and to use an adaptive sampling approach that generates

more configuration samples as needed by the classifiers during each iteration.

We then empirically evaluated iTree by comparing it against traditional CIT

and similarly sized sets of randomly selected configurations. For vsftpd and ngIRCd,

our results show that iTree is more likely to find high coverage configuration sets,

and it does so more rapidly than the existing sampling approaches. In another

experiment, we evaluated the scalability of iTree to a large scale system for which

symbolic evaluation is infeasible, specifically the ∼1M-LOC MySQL database sys-

tem. We found that iTree easily scaled up to MySQL and was again more efficient

and effective than correspondingly sized configuration sets produced by either tra-

ditional CIT or random sampling.

We next used a greedy algorithm to select from an iTree run, a small config-

uration set, the minimized iTree set, that still achieves all of the coverage of the

full iTree run. For all our subject systems, these sets are quite small and the first

configuration can achieve most of the maximum coverage. This confirms that the

effective configuration spaces looks more like a union of disjoint interactions rather

than a monolithic cross-product of all configuration option settings.

116

Finally, We developed the interaction learning approach to estimate a software

system’s configuration interactions. This approach uses decision tree classifiers and

iTree’s execution results, to quickly and accurately estimate the interactions. For

our subject systems, vsftpd and ngIRCd, it correctly estimated the interactions for

over 95% of their source code. The estimated interactions of these systems can

guarantee the execution of over 99% of their source code. This approach is also very

light-weight. For vsftpd and ngIRCd, it took just seconds to analyze one iTree run.

We then used the interaction learning approach to estimate MySQL’s configuration

interactions; sometime that’s not possible using previous tools and techniques. Even

with ∼1M LOC, our approach only took around 30 minutes to complete the analysis

on one machine. The estimated configuration interactions of MySQL are consistent

with our conjectures about the effective configuration spaces.

117

Chapter 5

Leveraging the Effective Configuration Space

In the Chapter 4, we took another major step toward our ultimate goal of

leveraging effective configuration spaces to improve software engineering for con-

figurable systems. We developed the iTree algorithm to efficiently discover highly

effective configurations to test and analyze. In addition, we developed an interaction

learning approach that can accurately estimate configuration interactions using the

execution data of an iTree run. In this chapter, we look at our third research hypoth-

esis: We can greatly improved numerous software engineering tasks by leveraging

a system’s effective configuration space. Specifically, we want to develop tools and

techniques to improve the testing of highly configurable systems. We can formulate

these objectives in the following two research questions:

1. Can the iTree algorithm work with today’s development processes to effectively

ensure quality of software systems?

2. Can the knowledge of effective configuration space be used to dramatically

improve software testing tasks?

To address the first question, we developed an iTree-based automated dis-

tributed testing framework to address the needs of ever shorter development cycles.

We explain how iTree is designed to ease the integration with existing quality assur-

ance (QA) processes and infrastructures. To demonstrate, we integrated iTree with

118

Skoll [55], a distributed continuous quality assurance (DCQA) process and frame-

work that enables the parallelization of configuration-aware software testing. We

also discuss our implementation choices and lessons learned while developing this

testing framework for MySQL, a modern open source database system.

To address the second question, we performed an extensive study on regression

testing of configurable software. Using the study results, we then developed a tech-

nique that can select very small sets of highly productive configurations that target

the modified code during regression testing. Our evaluation shows that, by lever-

aging the configuration interactions calculated or estimated from previous testing

sessions, we greatly reduced the time and cost of the configuration-aware regression

testing.

This chapter is organized as follows. Section 5.1 details the design and imple-

mentation of the iTree-based automated distributed testing and analysis framework.

Section 5.2 presents our study on regression testing of configurable software and the

technique we developed to improve regression testing.

5.1 iTree-based Automated Distributed Framework

Today’s software development processes are moving towards more iterative and

incremental cycles to encourage rapid responses to changes and uncertainties [3, 66].

This new trend presents many challenges to developers, including the challenge

of adequately performing QA tasks with increasingly shorter development cycles.

In addition, QA processes themselves require ever more sophisticated and flexible

119

control mechanisms to meet the QA goals of today’s complex and rapidly changing

systems. These challenges are especially great for configurable software systems

because of the explosion of their QA task spaces; these systems often run on multiple

hardware and OS platforms and have many options to configure the systems at

compile- and run-time.

iTree was designed to tackle the challenges of testing configurable systems; it

reduces the otherwise infeasible configuration spaces by selecting only the effective

configurations to test. However, even with iTree’s promising performance, the QA

task spaces are still magnified by the numerous configured instances that the existing

QA processes must handle. Fortunately, with ever cheaper commodity computing

resources and the advent of cloud computing [2], there should be plenty of cost-

effective CPU cycles that can be directed towards configuration-aware QA activities.

But, coordinating these CPU cycles, which might be distributed across different

physical locations and operating environments, brings about a new set of challenges.

For example, a configuration-aware QA space must be well understood and modeled

in order to be divided to run in parallel.

Encouraged by iTree’s performance, we decided to create an iTree-based, auto-

mated distributed testing framework to tackle these challenges. To avoid reinventing

the wheel, iTree was designed to be loosely coupled with the underlying QA processes

and can easily plug into existing test frameworks. To demonstrate, we integrated

iTree with Skoll [55], a distributed continuous quality assurance (DCQA) process

and framework developed and housed at University of Maryland. Figure 5.1 show

the architecture diagram of this integrated framework. In this framework, iTree in-

120

Skoll DCQA Framework

iTree Skoll Clients
(Remote Computing Resources)

API Calls

QA Task Queues

Skoll Server

Figure 5.1: The automated distributed testing framework created by integrating

iTree with the Skoll DCQA framework.

telligently assigns the configurations that need to be analysis as Skoll QA tasks, and

the Skoll framework distributes these QA tasks to available computing resources for

massive parallel execution.

5.1.1 Skoll Overview

The Skoll DCQA process was developed to coordinate and control feedback-

driven testing for configurable software systems. Specifically, it was designed to

leverage distributed computing resources in a continuous manner to significantly and

rapidly verify configurable software quality. The Skoll framework is implemented

using a client/server architecture, in which clients request QA tasks from a server

that is responsible for planning and coordinating the testing process.

121

The operation of the Skoll DCQA process involves numerous decisions such

as, what are the sub-tasks needed to complete the QA tasks (e.g., compiling the

source code and running the test suite), which artifacts are required by the QA

sub-tasks (e.g., a specific version of source tree), which available clients have the

required environments to test configuration specified by the QA tasks (e.g., Linux

environment with GCC compiler), and how the test results will be collected and

interpreted (e.g., collect gcov coverage data and test results). To help developers

implement these decisions, Skoll provides flexible models for the system under test

and its QA processes, including a configuration space model that supports both

compile-time and run-time configuration options and settings.

The Skoll server is where the developers implement the configuration space and

process control models, and it is the central controller of the entire DCQA process.

To do this, the server has an Intelligent Steering Agent (ISA) that maintains the

progress of the QA process (already analyzed configurations and test results). Based

on the QA progress, the ISA uses various adaptation strategies, such as nearest

neighbor or adaptive sampling, to selectively choose which configurations to test

next. The server then generates the QA tasks for the selected configurations and

bundles up all necessary artifacts and scripts according to the developer-specified

models.

The Skoll clients are remote computing resources that elected to participate

in a virtual computing grid dedicated to the Skoll DCQA processes. When a client

decide it is available to perform QA activities, it requests for QA tasks from the

server. At each request, the client sends to the server information that describes

122

1 interface executeConfigSet {
2 boolean configResultExists(Configuration id)
3 boolean isConfigScheduled(Configuration id)
4 boolean scheduleConfig(Configuration id)
5 ExecutionData getConfigResult(Configuration id)
6 }

Figure 5.2: iTree’s API for implementing adapters for different execution frame-

works.

its environment, including its OS, hardware specifications, compiler versions, etc.

The server then uses this information to assign a QA task that the client has the

appropriate environment for its successful execution. Once the execution of a QA

task is completed, the client then sends the test results back to the server where the

ISA analyzes the data and updates the progress of the QA process.

5.1.2 iTree Integration With Skoll

iTree’s executeConfigSet() is actually an Application Programing Interface (API).

We designed this API to allow developers to provide adapter implementations that

can tap into various execution frameworks.

Figure 5.2 shows the interface needed to integrate iTree with different ex-

ecution frameworks. The API is designed to control the execution of individual

configurations. The configResultExists() and isConfigScheduled() methods check if

the specified configuration has been executed or is already scheduled for execution

by the underlying framework, respectively. The scheduleConfig() method schedules

the specified configuration for execution, and the getConfigResult() method retrieves

the execution results of the specified configuration.

123

In our iTree-based testing framework, the iTree algorithm essentially replaces

one of Skoll’s existing adaptation strategies implemented in the ISA. ISA offers

an API to add new strategies for configuration selection. However, to make iTree

decoupled from Skoll, we chose to interface with Skoll in a more generic fashion.

During our previous efforts to improve the flexibility of the Skoll DCQA frame-

work, we made several modifications that proved to have simplified the iTree inte-

gration process. These improvements include:

1. An API that allows direct manipulation of Skoll server’s QA task queues

(scheduled and running tasks). These queues are implemented as MySQL

tables and the API is implemented using MySQL stored procedures.

2. A standalone tool and a Java library that simplifies the scheduling of Skoll

QA tasks via the API. This tool checks the QA tasks against the modeled

configuration space and QA process for potential errors.

These improvements allowed us to implement the first three methods of executeConfigSet()

using the adapter design pattern.

Since Skoll is designed to support a wide range of software systems and QA

processes, it requires customization before it can be used with a new software system

and QA process. Given a QA task, the first step for configuring Skoll is to create

configuration and QA process models that specify how the QA tasks are divided

into several sub-tasks. These models are also implemented as MySQL tables.

iTree’s configuration space model, which is an one-to-many mapping of con-

figuration options to their settings, can directly map onto the Skoll configuration

124

space model. The QA process model, on the other hand, is system specific. For

MySQL, we designed the Skoll QA task to download a specified version of source

code from MySQL’s Bazaar version control system; compile an instance according

to the compile-time option settings for the configuration selected for testing; in-

strument the instance with the gcov [31] profiling tool; run the regression test suite

provided in by the MySQL source tree; and collect the execution data and upload

it to a location where iTree can access. The last step allowed us to implement the

getConfigResult() method in the iTree’s API.

Once integrated, this iTree-based Skoll framework can easily take advantage

of a research cluster composed of over 120 CPUs dedicated entirely to our research

work. The Skoll’s client/server architecture also allows us to easily scale up this

execution framework with various computing resources (e.g., Amazon EC2), as long

as the environment allows the Skoll Client software (implemented in Java and Perl)

to be installed.

5.1.3 Discussion

The goal of this iTree-based framework is to parallelize the testing and analysis

of configurations. However, there are practical limitations on how much paralleliza-

tion can be achieved using the iTree algorithm.

The iTree approach uses an iterative search algorithm, in which the test results

from the previous iteration must analyzed entirely before the next iteration can

begin. In our current implementation, a Skoll QA task involves compiling and

125

testing a single configuration. This means that adding more CPUs than the number

of configurations sampled by iTree during an iteration will not speed up the testing

process; each iteration completes only after the configuration that takes the longest

time to test and analyze completes.

For MySQL, using similar hardware and software environments, the difference

in runtime between the fastest and slowest configurations can be more than an

hour. This is because the the slowest configurations usually have failing test cases

that cause the MySQL server to restart during the testing phase. However, this

limitation can be mitigated by designing the Skoll QA tasks to be more divisible.

For instance, we can allow individual test cases to be executed on different CPUs

for better parallelization.

There are ways to conserve CPU cycles as well. For instance, our current

implementation treats different combinations of compile-time and run-time option

settings as unique configurations. But some of these unique configurations can share

the same compiled instances for the testing phase. If we design the Skoll QA tasks

to share compiled instances, then savings can be gained. For MySQL, we analyzed

the configuration sets discovered by the vote adapt iTree runs. On average there are

131 unique compiled instances in a set of 190 configurations, which is about 31%

savings in compile time.

Overall these optimizations depend on the underlying QA processes and the

execution frameworks, not the iTree approach itself. Thus, we will leave the analysis

and development of these optimization techniques as future work.

126

5.2 Configuration-Aware Regression Testing

Thus far our efforts have been focusing on testing an entire system when

there is no prior knowledge about its configuration space. However, as software

development moves toward more iterative cycles, performing this type of testing

every time the system is modified is unnecessary and can be prohibitively expensive.

In this section, we look to address regression testing for configurable systems.

Regression testing is one of the necessary but expensive maintenance activities

– the process of validating modified software systems to provide confidence that the

modifications are correct and to detect whether any errors were introduced into

the previously tested code. Regression testing, which should be performed each

time a system is modified, accounts for as much as one half of the cost of software

maintenance [44], which is itself a major portion of the overall cost of software

production. The impact of configurability can significantly magnify the cost of this

task.

To date, most regression testing research has primarily focused on techniques

for regression test case selection or test case prioritization [63, 73, 48, 56]. Much less

attention, however, has specifically been paid to regression testing for highly config-

urable systems. In the one example we are aware of, Qu et al. [57] studied whether

CIT could effectively support regression testing on a single configurable system, the

vim text editor. In that work, Qu et al. used 2-way covering arrays to regression test

the modified system and measured how block coverage and fault detection effective-

ness varied across system configurations for a given test suite and a set of program

127

changes. Their basic findings were that individual program changes affected dif-

ferent configurations differently, and that, therefore, systematically covering system

configurations was an effective heuristic for regression testing.

Intrigued by Qu et al.’s work, we decided to conduct a series of follow-on

empirical investigations on configuration-aware regression testing. We believe that

the knowledge of effective configuration spaces may provide valuable information for

selecting the configuration / test case pairs that should be executed during regression

testing.

5.2.1 Regression Testing Analysis

Qu et al. examined 4 general research questions:

1. Do program changes affect different configurations differently?

2. Does test case selection depend on configuration?

3. Is covering array sampling more cost-effective than random sampling?

4. Can the historical behavior of individual configurations be used to prioritize

configurations to find faults more quickly?

To address the first two questions, Qu et al. measured how block coverage

and fault detection effectiveness varied across system configurations for a given

test suite and set of program changes. They observed considerable variation. For

example, some faults were detectable in every configuration while other faults were

detectable only in some configurations. Similarly, individual test cases had differing

128

fault detection abilities under different configurations. These findings suggest the

potential to improve regression testing cost-benefits because many configuration /

test case pairs cannot detect faults and therefore need not be executed.

To address the third question they examined whether CIT approaches im-

proved cost-effectiveness compared to testing with randomly sampled configurations.

Specifically, they compared the fault detection ability of a 2-way covering array to

that of an equal number of randomly-selected configurations. Here they found only

a small difference between the two approaches, with CIT samples showing higher av-

erage fault detection effectiveness. We note, however, that CIT approaches provide

a constructive method for choosing the size of the configuration sample, whereas

random selection, in practice, would depend on developer intuition.

Finally, to address the fourth question they examined whether CIT techniques

could be used to effectively prioritize the order in which configurations are tested,

thus finding more failures with limited resources or detecting bugs earlier in the

testing process. They used two CIT-based techniques: pure prioritization and re-

generation. For both techniques, they used a covering array to test an initial version

of the system and then calculated an interaction benefit for each configuration op-

tion setting, based on the coverage or the fault detection ability observed in the

initial testing. They then used these interaction benefits to guide the testing of a

subsequent system version. With the pure prioritization approach, they assigned

an execution order to the covering array configurations based on the interaction

benefits of each configuration’s option settings. With the regeneration approach,

they constructed a new covering array for the current testing session by selecting

129

configurations that constituted a covering array, but that also had configuration op-

tion settings with the highest interaction benefits. Their results showed that both

techniques detected faults earlier than the unordered configurations, and the regen-

eration technique gave the best results. That is, historical information could be used

to learn which configurations had higher fault detection ability over time and that

executing higher fault detection configurations before lower fault detection ones led

to earlier fault detection.

5.2.1.1 Replicating Qu et al.

Our first set of studies partially replicates Qu et al.’s earlier studies on configuration-

aware regression testing using covering arrays. For these studies we focused on our

subject system vsftpd. We acquired two consecutive versions of vsftpd (2.0.6 and

2.0.7), and determined that 12 lines of code were both modified between the two

versions and reachable by our test suites. We treat these 12 lines of code as the

complete set of modifications that need to be regression tested in the later version

of vsftpd.

We generated multiple samples of the configuration space, which define the

concrete configurations that are executed during a regression testing session. Again,

we used two sampling approaches: covering arrays and random sampling. For cov-

ering array sampling, we used the CASA [30] to generate 30 sets of 2- and 3-way

covering arrays at each t strength, based on our configuration space model defined

for vsftpd. The covering arrays we generated had 10–12 configurations for the 2-way

130

samples and 32–35 configurations for the 3-way samples. For each covering array

we also generated an equally sized randomly sampled set of configurations.

Using vsftpd, its test suite, and the 2- and 3-way covering arrays we generated,

we then performed several new studies, aimed at revisiting Qu et al.’s four research

questions.

RQ1: Effect of Configuration on Regression Testing To address this first

question, we measured the number of configurations in each covering array that

executed each change. To do this we executed vsftpd on each of the 30 sets of the

2-way and the 30 sets of the 3-way covering arrays. Figure 5.3(a) depicts some of

our results.

First we see that across all changes, most were executed by well fewer than

40% of the covering array configurations. That is, for each change, many of the

selected configurations were unnecessary as they could not exercise the change.

Next, we observed that across all changes, different changes were executed in

different numbers of configurations. For example, with both the 2-way and 3-way

covering arrays, change 6 was rarely executed, while changes 8, 9, 11 and 12 were

executed in roughly one third of the configurations. These results suggest that some

modifications are reachable in more configurations than are other modifications.

Finally, we observed that, across individual changes, the change execution

rates for the 2- and 3-way covering arrays were essentially identical (remember that

the resolution of the measurements is quite coarse). This suggests that coverage of

the change may be correlated with the characteristics of the underlying configura-

131

Program Changes

C
on

fig
s

E
xe

cu
tin

g
C

ha
ng

es
 (

%
)

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12

● ● ● ● ●

●

●

● ●

●

● ●●

2−way

1 2 3 4 5 6 7 8 9 10 11 12

● ● ● ● ●

●

●

● ●

●

● ●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

3−way

(a) Configurations that executed each program change.

Program Changes

Te
st

s
E

xe
cu

tin
g

C
ha

ng
es

20

40

60

1 2 3 4 5 6 7 8 9 10 11 12

● ●
● ● ●

●

●

● ●

●

● ●

2−way

1 2 3 4 5 6 7 8 9 10 11 12

● ● ● ● ●

●

●

● ●

●

● ●

●● ●●

●●

3−way

(b) Test cases that executed each program change.

Figure 5.3: Results of regression testing of vsftpd using 2-way and 3-way covering

arrays.

132

tions. For 2- and 3-way covering arrays those characteristics are likely to be the

specific pairs or triples of option settings found in a given configuration.

RQ2: Test Selection for Configurable Systems Different configurations exe-

cute different program changes. Similarly, different test cases may execute changes

in some configurations, but not in others. To better understand this issue we mea-

sured the number of test cases (out of the 64 in total) that executed each change

when using the covering arrays. This information is presented in Figure 5.3(b).

First, we observed striking similarities between the 2- and 3-way covering arrays,

although the variation was greater for the 2-way covering arrays because more of

them failed to execute all of the changes. Across all changes, we observed that

some were executed by the entire test suite and some were executed by only a small

fraction of it. For example, change 6 was always executed by very few test cases,

while changes 8, 9, 11 and 12 were always executed by all test cases under all of the

covering arrays.

Overall we see that even when a program change can be executed in a specific

configuration, the number of specific test cases in which that happens can vary

considerably. Additionally, putting this data together with that of RQ1, we see that

better test selection techniques based on both configuration and test cases might

greatly improve cost-effectiveness. For example change 6 is executed by very few

configurations, but even in those configurations very few test cases exercise this

change. Therefore, for change 6 many configuration / test case pairs can be safely

skipped during regression testing.

133

P
ro

gr
am

 C
ha

ng
es

 E
xe

cu
te

d

5

10

t2_CA t2_Rand t3_CA t3_Rand

●

● ● ●

●●●●●●

●● ●●●●

E
ffe

ct
iv

e
C

on
fig

ur
at

io
ns

 (
%

)

20

40

60

80

t2_CA t2_Rand t3_CA t3_Rand

●

●
●

●

●

●●●●

Figure 5.4: Comparing regression testing effectiveness of covering arrays and random

samples.

RQ3: Covering Arrays vs. Random Sampling To better understand cov-

ering array effectiveness, we next compared the performance of the 2- and 3-way

covering arrays to that of 60 equally sized, but randomly-sampled sets of configura-

tions. For each set we measured two outcomes:

1. Total coverage – the number of program changes executed in at least one

configuration.

2. Effective configuration set size – the number of configurations in which at least

one program change was executed.

The data appears in Figure 5.4. First, we see that both sampling approaches

were capable of exercising all 12 program changes. Next, we see that the perfor-

mances of 3-way covering arrays were essentially identical to the equally-sized ran-

134

dom samples. In contrast, 2-way covering arrays had more low-performing samples

than did random sampling.

Figure 5.4 also shows the size of the effective configuration sets. Here we ob-

served that, for both sampling approaches, few configurations exercise the changes.

Overall, the results for both approaches were similar, however, the number of effec-

tive configurations for the 3-way sized random sets had somewhat more variability.

Overall, we see that covering arrays themselves added little over random sam-

pling. However, we note again that covering arrays are constructive but random

sampling has no built-in way to determine the sample size and thus may be less

reliable in practice.

RQ4: Improvements with Prioritization and Regeneration To partially

replicate Qu et al.’s studies on the effectiveness of prioritization, we first measured

the line coverage achieved by each configuration in every 2- and 3-way covering

array. For each covering array, we then created an execution order using a greedy

algorithm. Starting with no lines covered, the algorithm iteratively chooses the next

configuration that covers the most currently uncovered lines (ties broken randomly).

This continues until all changed lines executed by the covering array have been

covered. All remaining configurations are then added at the end in random order.

We then measured, for both ordered and unordered samples, the number of

configurations needed to cover the maximum amount of program changes executed.

We found that, for these changes, line coverage correlates well with regression test-

ing performance. For the unordered samples, some needed as many as the entire set

135

of configurations. For the ordered samples, however, the 2-way covering arrays need

no more than 3 configurations and the 3-way needed no more than 2 configurations.

The 3-way covering arrays executed maximum amount of program changes sooner

because of the larger sample size increased the number of high coverage configura-

tions in each covering array.

We noticed that, for both 2- and 3-way covering arrays, a small portion of

configurations had exceptionally high coverage compared to the rest. With further

investigation, we found that these high coverage configurations all included vsftpd’s

enabling options while the others did not. We believe that regenerating configura-

tions using important interactions such as the enabling options, instead of Qu et al.’s

regeneration with important individual option settings, could yield configurations

with even better regression testing effectiveness.

Study Results: When using covering arrays as a sampling mechanism, our find-

ings were generally consistent with Qu et al.’s. We observed that regression testing

performance varied by configurations. That is, some changes were unreachable in

some configurations, but reachable in others. Next, we observed that the effect of

configurability is intertwined with the behavior of individual test cases (and the loca-

tion of the changed code). Some test cases execute a change in some configurations;

others in all configurations.

Next, we observed that covering arrays and equally sized random samples had

comparable performance, and both approaches create sampling configuration sets

that are inefficient during regression testing. Finally, we observed that prioritiza-

136

tion / regeneration could lead to full coverage of the changes earlier than if no

prioritization / regeneration were done.

On the other hand, we also observed variations disappeared when using 3-way

instead of 2-way covering arrays. Therefore, we suspect that Qu et al.’s findings

may be somewhat specific to their use of 2-way covering arrays as the configuration

sampling approach. Thus, their results might or might not extend to other sampling

approaches or to configurable systems in general.

5.2.1.2 Further Analysis with Interactions

To deepen our understanding of regression testing for configurable systems, we

conduct further analysis, this time taking advantage of the configuration interactions

we calculated in the Chapter 3. The main goal of these analyses was to examine

how configuration relates to regression testing performance – independent of any

particular sampling approach or change location.

The configuration interaction data can help us determine the exact set of

configuration / test case pairs that execute each line of code in the subject systems,

for the given test suites. With this information we can compute which test cases

need to be run, in which configurations, should a given set of changes occur. Now

we examine Qu et al.’s research questions using the configuration interaction data.

RQ1: Effect of Configuration on Regression Testing With the configuration

interaction data, we can better explain the effect of configuration on regression

testing.

137

Across the 12 lines of code changed between the 2 versions of vsftpd, we

found that there are only 3 unique configuration interactions; one involving 2 option

settings, one involving 3, and one involving 4. These interactions were only present

in a small number of configurations, which explains why the effective configuration

set sizes were so small. In particular, the interaction for change 6 involves 4 specific

option settings. Since these option settings will only appear by chance in a 2- or

3-way covering array, therefore, that change was rarely executed.

It is clear that source code’s interaction strengths play an important role in

determining their coverage by the sampled configuration sets. Using the analysis

results from Chapter 3, we know that 77.56% for vsftpd and 83.35% for ngIRCd, can

be executed with interactions of strength 3 or less. But to thoroughly regression test

lines of code with higher strength interactions would require much larger covering

array samples (up to 7-way for vsftpd and 6-way for ngIRCd). Therefore, the

regression testing effectiveness of a set of configuration is different for lines of code

at different locations in the system.

RQ2: Test Selection for Configurable Systems The configuration interaction

data also shows that some test cases will not execute certain lines of code in any

configuration. This is in some ways analogous to previous findings on regression

test selection for single configuration systems. That is, some test cases can be

safely skipped because the test case is not affected by the changed code. With the

interaction data, we have a more nuanced picture. Here we see that the same line of

code can have different configuration interactions for different test cases. We found

138

28% and 35% such lines of code for vsftpd and ngIRCd respectively.

Changing these lines of code implies executing different configuration / test

case pairs during regression testing. This means a configuration that executed a

change in one test case might not be able to execute the same change in a different

test case, thus unsafely skipped necessary testing due to configuration. Therefore,

the notion of test suite level coverage or fault detection might actually be incomplete.

Without the configuration interaction data to pin point these configuration / test

case pairs, bugs can potentially lie undetected.

RQ3: Covering Arrays vs. Random Sampling It is obvious that the ef-

fectiveness of regression testing using a sampling approach depends on the degree

to which the sampled configurations include the interactions for the changed code.

Using the comparison results from Chapter 3, we know that the random samples

and the covering array samples covered similar percentages of the interactions at

any given sample size.

However, the analysis results from Chapter 3 also concluded that both cover-

ing arrays and random sampling are inefficient at covering actual interactions of a

software system. For example, most of our configuration samples did not include the

enabling options of our subject systems, thus these configurations cannot regression

test majority of the source code.

RQ4: Improvements with Prioritization and Regeneration In our attempt

to replicate Qu et al., we greedily prioritized configurations according to the number

139

of lines they covered. We observed that this scheme achieved maximum line coverage

after only 2 or 3 configurations. Looking at the configuration interaction data, we

observe that this approach achieves maximum coverage quickly because each high

priority configuration simultaneously satisfies multiple configuration interactions,

i.e., they pack multiple interactions into a single configuration. Since there were

relatively few total configuration interactions, maximum line coverage is achieved

quickly. And since maximum line coverage implies coverage of the program changes,

even a simple prioritization scheme can improve fault detection time.

5.2.2 Targeted Regression Set

Our findings so far suggest that configuration interactions may provide valu-

able information for selecting the configurations / test case pairs that should be

executed during the regression testing of highly configurable systems. Specifically,

for a test case and a set of program changes, we can determine the interactions

under which each test case executes any program change. Using this information we

can then generate, one for each test case, a hopefully small set of configurations that

covers all such interactions. We call this set of configurations a targeted regression

configuration set (TRCS).

We implemented a prototype system for generating the TRCSs. At a high

level, the algorithm works as follows. First, we use the configuration interaction

data to determine all the unique interactions for the set of program changes. We

then use a divide and conquer algorithm we developed to compute a small set of

140

configurations that covers all of these configuration interactions. It is important to

note that TRCS aims to guarantee execution of each program change using all of the

interactions that exercise this change, which is a much stronger coverage criterion

than the one used by the minimal covering set or the minimized iTree set.

The divide and conquer algorithm works as follows. First it partitions the

set of configuration interactions into multiple small groups. For these studies we

restricted each group to having no more than 10 interactions, but other sizes might

be more cost-effective. Next, within each partition, the algorithm then attempts to

merge multiple non-conflicting interactions into larger compound interactions. Two

configuration interactions are non-conflicting if they are simultaneously satisfiable.

The algorithm uses dynamic programming to determine the merging operations lead-

ing to the fewest possible compound interactions. If in any of the partitions at least

one merge occurred, the algorithm repeats itself on the current set of compound in-

teractions; otherwise it terminates. Next, we compute, the TRCS – a set of concrete

configurations that satisfies the compound interactions.

We generated a TRCS for the 12 changes made to vsftpd, and the number

of configurations in the set is 3. Not only did the total coverage of the TRCS

include all 12 changes, every configuration in the TRCS was effective as well. This

preliminary experiment suggest that configuration interactions does provide valuable

information for selecting the configurations / test case pairs for regression testing of

configurable systems.

141

Levels of Change Activity

N
um

be
r

of
 C

on
fig

s
in

 T
R

C
S

s

5

10

15

20

25

0.5% 1.0% 5.0% 10.0%

● ●
●

●

●

●

●

●●●●●●●
●

●●

●

●

●●

●

●●

●

●

vsftpd

0.5% 1.0% 5.0% 10.0%

●

●

●

●

●
●

●

●
●

ngIRCd

Figure 5.5: Size of TRCSs generated for vsftpd and ngIRCd during regression testing

simulations.

5.2.2.1 Data and Analysis

To further evaluate our prototype system, we ran a series of regression testing

simulations on both vsftpd and ngIRCd. In these simulations, we randomly selected

0.5%, 1%, 5% or 10% of the overall source code to be changed between the previous

and current versions of the systems. Using each subject system’s configuration

interaction data, we then generated TRCSs for the program changes under every

test case. For each level of change activity, we ran the simulation 30 times for every

test case. Figure 5.5 shows the average size of the TRCSs generated for each test

case.

Not surprisingly, as the number of program changes increases, the size of these

142

TRCSs increased as well. However, even at 10% of source code changes, the size of

the TRCSs remained relatively small for both subject systems. On average, each

test case’s TRCS contained no more than 5 and 27 configurations, for vsftpd and

ngIRCd, respectively, at all levels of change. This means regression testing using

TRCSs would execute fewer configuration / test case pairs than those executed

when testing with 2-way covering arrays. Using 2-way covering arrays, each test

case would need to be executed under 11 and 32 configurations, for vsftpd and

ngIRCd respectively. Moreover, the TRCSs guarantee the execution of all changes

under all configuration interactions. For our subject systems, this guarantee would

require 7-way covering arrays with order of magnitude more configurations to satisfy.

These simulation results showed that our TRCS technique can indeed generate

efficient sampling sets that provide full coverage for program changes under all

affected configuration interactions.

5.3 Summary

In this chapter, we developed tools and techniques that can leverage the effec-

tive configuration spaces to improve the testing and analysis of configurable software

systems, and can do so practically during today’s increasingly iterative and incre-

mental development cycles.

We first showed that our iTree algorithm can be integrated with existing qual-

ity assurance processes and infrastructures. We discussed the design and implemen-

tation choices that we made to easy the integration process. We then presented

143

an iTree-based automated distributed testing framework that was built on top of

Skoll, a distributed continuous quality assurance (DCQA) process and framework.

Using the Skoll framework, the execution of highly effective configurations selected

by iTree can be parallelized on multiple distributed computing resources.

We next turned our attention to improving the regression testing of config-

urable software systems. We conducted an extensive study on how program changes

affect different configuration / test case combinations. Our analysis results showed

that only a few carefully selected configurations are needed to exercise the changes

made to most parts of a system. We then developed an algorithm that uses the

configuration interaction data to generate a targeted regression set, a small set of

configurations that, for a given set of program changes, can execute every change

under every interaction that exercise the change. Our experiments showed that

the targeted regression sets for our subject systems are indeed very small for most

system changes.

144

Chapter 6

Conclusions and Future Work

In this dissertation, we challenged the widely accepted assumptions used to

deal with the software configuration space explosion problem and took several major

steps toward improving the testing and analysis of highly configurable software sys-

tems. In this chapter, we conclude this dissertation by summarizing its contributions

and discuss future work.

6.1 Contributions

This dissertation has yield several contributions to the area of software engi-

neering. We identified and provided support for three primary research hypotheses:

1. For many practical tasks, a system’s effective configuration space is a small

subset of its full configuration space.

2. We can efficiently discover or approximate the effective configuration space of

a software system.

3. We can greatly improved numerous software engineering tasks by leveraging

a system’s effective configuration space.

The following sections discuss how we addressed these research hypotheses.

145

6.1.1 Scientific Understanding of Configuration Spaces

To date, as far as we know, no study has been done to scientifically under-

stand the effects of configuration on software systems’ behavior using a white-box

approach. We developed new analytical techniques to perform empirical studies

that uncovered new knowledge of software configuration previously not possible to

obtain.

In Chapter 3, we first used symbolic evaluation to calculate the effects of con-

figuration on the behavior of software systems. The evaluation results suggest that

the effective configuration spaces are much smaller than what developers previously

assumed. We next developed techniques to abstract the interactions between con-

figuration option settings. Keeping existing threats to validity in mind, we were

able to draw several conclusions. First, we found that configuration interactions

were quite rare in the systems we studied; only a handful of specific options set-

ting combinations are needed to exercise all of the system behavior. Second, most

of the interactions needed to achieve good structural coverage were low strength,

but higher strength interactions are needed to achieve maximum coverage. Finally,

the higher strength interactions were usually just lower strength interactions with

additional constraints.

Using the configuration interaction data, we were able to evaluate the existing

configuration space sampling approaches. We found out that existing approaches,

such as CIT or random sampling, are quite ineffective. For example, CIT techniques

does too much work trying to cover all interactions of a certain t strength, but at

146

the same time, they often missed higher strength interactions needed to achieve

maximum coverage. Based on our evaluation results, we concluded that a more

effective sampling approach should focus on the coverage of effective configuration

interactions. We experimented with packing the interactions into configurations

using a greedy algorithm and found that it took only five to ten configurations to

achieve the maximal coverage for our subject systems.

6.1.2 The iTree Algorithm

The insights from our studies of configuration spaces and existing sampling ap-

proaches led us to create a new heuristic-based dynamic approach called iTree, an

interaction tree discovery algorithm. This scalable approach combines low-strength

covering arrays, runtime instrumentation, and machine learning techniques to effi-

ciently navigate through enormous configuration spaces in search of highly effective

configurations. The evaluation results strongly suggest that iTree, running with

the optimizations and heuristics we developed, can achieve higher coverage at lower

cost than any existing sampling techniques. The results of our scalability evalua-

tion, which applied iTree to the ∼1M-LOC MySQL database, suggest that iTree is

a promising technique that can scale to practical industrial systems.

We next developed the interaction learning approach to estimate, using the

execution results of iTree runs, the configuration interactions of software systems.

Analysis results showed that this approach is not only light-weight, but also produces

very accurate interaction estimations, making leveraging knowledge of effective con-

147

figuration spaces practical for many software engineering tasks. Using these new

techniques, we were able to approximate MySQL’s effective configuration space at

very low cost, something that is infeasible using any existing technique.

6.1.3 Practical Applications of the Effective Configuration Space

Encouraged by the performance of our new effective configuration space dis-

covery approaches, we built an automated framework for the testing of highly con-

figurable software systems. We integrated the iTree algorithm with the Skoll [55]

continuous distributed quality assurance process and framework. This integrated

testing framework allows iTree to scale up to practical industrial software systems

by parallelizing its configuration space search process across multiple distributed

computing resources. This is a first step towards building a practical testing envi-

ronment for configurable systems.

Finally, we analyzed the affects of program changes have on configuration /

test case selection for regression testing. We developed an algorithm that selects

a small, targeted set of configurations, using the configuration interaction data, to

execute all of the program changes under only the affected configuration / test case

combinations. This way the cost of configuration-aware regression testing is much

lower than testing with CIT.

148

6.2 Future Work

In this section, we present a research vision that extends beyond this disser-

tation. We have also identified shortcomings of our approaches that may be the

subject of future research. We envision an integrated suite of tools that together

provide a complete environment for designing, developing and testing configurable

software systems. Specific ideas for the future work are as follows.

6.2.1 Extending Studies

All of the conclusions from the empirical studies of this dissertation are specific

to our subject systems, test suites, and configuration spaces; further work is clearly

needed to establish more general trends.

First, we plan to extend our studies to include more subject systems. In

this work we used 3 subject systems, vsftpd, ngIRCd and MySQL. Each is widely

used server software, but not representative to all industrial applications. We plan

to include other types of systems ranging from desktop applications to operating

systems.

Next, we plan to use larger and more complex configuration spaces for our

subject systems to get more complete information. In order to keep our analyses

tractable, we focused on sets of configuration options that we determined to be

important. The size of these sets was substantial, but did not include every possible

configuration option. And we will improve and optimize our tools and techniques

to better handle the analysis efforts required for these studies.

149

In addition, we plan to extend our analysis to other types of program behaviors.

The program behaviors we studied in this dissertation included different structural

coverage criteria. Other program behaviors such as fault detection or data flows

might lead to different results.

Finally, we would like to augment the test suites both in quantity and quality.

The individual test cases we used tend to be focused on specific functionality, rather

than combining multiple activities in a single test case. Taken together, they have

reasonable coverage, but they were not designed for extensive testing of the systems;

these test suites are more like typical regression suites than customer acceptance or

functional test suites.

6.2.2 Improving iTree with Static Analysis

Our iTree approach, in its current implementation, uses pure dynamic analysis.

We believe that combining iTree’s dynamic analysis with even simple static analysis

can greatly improve its performance.

Aside from some obvious optimizations and general heuristics, iTree essentially

treated every program entity independent of each other. However, as we have seen

in the example program from Section 4.1, the structure of a system’s source code

greatly influences how configuration interactions relate to one another. For instance,

the higher strength interactions of a system tend to be refinements of its lower

strength ones with additional option setting constraints. By adding some light-

weight static analysis of the source code, we can provide iTree with more accurate

150

estimation of each proto-interaction’s priority score during execution and direct the

discovery process towards interactions that can execute paths with more potential

to find previously uncovered code.

We can also use control-flow analysis to discover the relationships amongst

the program entities. Using the relationship data, we can improve the interaction

learning approach to generate more accurate configuration interaction estimations

and/or reduced the sample size needed for the interaction learning process.

Currently, iTree requires a configuration space model to be provided before the

testing process can start. This can be tricky, especially determining the values for the

integer configuration options. For vsftpd and ngIRCd, we used symbolic evaluation

to determine some of the option settings in our configuration space models. We can

implement other light-weight static analysis to extract, from a system’s source code,

good option settings to include in its configuration space model.

6.2.3 Configuration Documentation

Configurability of software systems is not always well documented, and it is

rarely linked to the software artifacts. Therefore, details of configuration such as

implementation choices tend to be lost after the development stage. In the previ-

ous chapters we spent tremendous effort to recover these lost details, but we argue

that information about a system’s configuration must be carefully documented and

maintained just like other artifacts such as the system’s source code. Therefore, we

propose to create the configurability annotations, a tool to facilitate the documen-

151

tation of a software system’s configurability.

These configurability annotations augment a system’s source code, much like

the JavaDoc [41] tool, to include configuration information. There are two main

advantages to maintaining configuration information along with the source code.

First, for most tasks, the source code is the most natural medium for the developers

to interact with the software systems. Second, modifications made to the configura-

bility of the systems are either implemented in the source code or reflected in the

execution of the source code.

Since developers know best how the configurability of a system is implemented,

annotations made by the developers are the most effective way to gather information

about the configuration space. This developer input is also a valuable resource that

can be leveraged to speed up our iTree discovery process. However, it might be im-

practical to expect the developers to provide all of the configuration details, and the

information provided by developers could be incomplete or inaccurate. Therefore,

we plan to supplement the developer annotations with the estimated configuration

interaction data. Combining both the developer inputs and interaction data forms

a powerful framework for configurable software tool support. We envision Inte-

grated Development Environment (IDE) integration of configurability annotations

at different granularities of the source code such as files, methods or lines.

The following two scenarios demonstrate how this tool could aid program

understanding tasks for configurable systems:

• Scenario 1 : When the developer annotates the source code, the IDE can use

152

the developer input to pre-populate the interaction tree to quickly verify the

annotated information with actual execution data. The results from the verifi-

cation process can either improve developer’s confidence of their understanding

of the system or provide corrections to any wrong assumptions the developer

had about the system’s configuration space.

• Scenario 2 : If no detailed configuration information is available to the de-

veloper, then the estimated configuration interactions available from previous

iTree runs (or configurations executed on-demand) can help the developer un-

derstand the system and aid with development and maintenance tasks. Since

iTree is heuristic in nature, we cannot guarantee 100% accuracy, and the IDE

could display support values for the configuration interactions (e.g., in the

mouse-over pop-up balloons) and show the configuration execution results that

provided the interactions.

6.2.4 Recommendation Systems

Finally, we plan to explore tool support for configurable software’s develop-

ment and maintenance tasks. Specifically, we plan to develop tools such as a rec-

ommendation system to guide the developers through the complex structures of a

configurable software system.

There has been work on numerous recommendation systems for software en-

gineering [84, 83, 36]. These systems support developers in their decision making

while performing development and maintenance tasks that involve information seek-

153

ing. They often use data mining to extract predictive information from large data

sets, such as source code, version history or bug reports, to find relationships between

software artifacts the developers are working with. We believe that a recommen-

dation system using the configuration interaction data can improve modification,

debugging or refactoring tasks for configurable systems.

For instance, making changes to configurable systems is difficult due to the

complications brought about by configuration. Understanding where to modify soft-

ware features related to a particular option or group of options without affecting

others can be a difficult task. Locating these features and their dependencies in

a system’s source code is not always trivial [22]; the implementation of a feature

might be scattered throughout the source code or might be intertwined with the

implementation of other features. Instead of relying on often poorly maintained

documentation or manually inspecting the source code, we propose a recommen-

dation system that can aid this program understanding task. Weiser et al. [77]

suggested that experienced developers reduce programs to minimal forms that still

produce specified behavior. This recommendation system would use the configu-

ration interaction data to extract configuration slices that contain the interested

features.

Configuration-aware recommendation systems can also help with preventing

accidental bugs by detecting configuration option settings that are associated with

a set of program changes. Such a recommendation system identifies potential omis-

sions of other necessary changes that are related in terms of configuration but are

structurally distant in the source code. Another recommendation system can iden-

154

tify potential architectural improvements for the system and facilitate refactoring

tasks. For example, this recommendation system can identify candidate aspects in

the source code that implementation cross-cutting features.

While this dissertation presented significant steps toward understanding, dis-

covering and leveraging the effective configuration spaces of software systems, we

hope it paves the way for many more initiatives to explore opportunities for improv-

ing software engineering tasks for highly configurable software systems.

155

Bibliography

[1] Saswat Anand, Corina S. Păsăreanu, and Willem Visser. Jpf-se: a symbolic
execution extension to java pathfinder. In Proceedings of the 13th international
conference on Tools and algorithms for the construction and analysis of systems,
TACAS’07, pages 134–138, Berlin, Heidelberg, 2007. Springer-Verlag.

[2] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
and Matei Zaharia. Above the clouds: A berkeley view of cloud computing.
Technical report, UC Berkeley Reliable Adaptive Distributed Systems Labora-
tory, February 2009.

[3] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley Professional, 2000.

[4] G. Bockle, P. Clements, J.D. McGregor, D. Muthig, and K. Schmid. Calculating
roi for software product lines. Software, IEEE, 21(3):23 – 31, May-June 2004.

[5] James F. Bowring, James M. Rehg, and Mary Jean Harrold. Active learning for
automatic classification of software behavior. SIGSOFT Software Engineering
Notes, 29:195–205, July 2004.

[6] Leo Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.
10.1007/BF00058655.

[7] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone.
Classification and Regression Trees. Wadsworth International Group, Belmont,
California, 1984.

[8] R. Brownlie, J. Prowse, and M. S. Phadke. Robust testing of AT&T PMX/S-
tarMAIL using OATS. AT&T Technical Journal, 71(3):41–7, 1992.

[9] Yuriy Brun and Michael D. Ernst. Finding latent code errors via machine
learning over program executions. In Proceedings of the 26th International
Conference on Software Engineering, ICSE ’04, pages 480–490, Washington,
DC, USA, 2004. IEEE Computer Society.

[10] R. Bryce and C. Colbourn. Prioritized interaction testing for pair-wise coverage
with seeding and constraints. Journal of Information and Software Technology,
pages 960–970, 2006.

[11] Paulo Marcos Siqueira Bueno and Mario Jino. Identification of potentially
infeasible program paths by monitoring the search for test data. Automated
Software Engineering, International Conference on, 0:209, 2000.

156

[12] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems programs. In
OSDI, pages 209–224, 2008.

[13] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Daw-
son R. Engler. Exe: Automatically generating inputs of death. Information
and System Scurity, ACM Transactions on, 12:10:1–10:38, December 2008.

[14] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2002.

[15] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C.
Patton. The AETG system: an approach to testing based on combinatorial
design. Software Engineering, IEEE Transactions on, 23(7):437–44, 1997.

[16] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Coverage and adequacy
in software product line testing. In Proceedings of the ISSTA 2006 workshop
on Role of software architecture for testing and analysis, ROSATEA ’06, pages
53–63, New York, NY, USA, 2006. ACM.

[17] J. Czerwonka. Pairwise testing in real world, practical extensions to test case
generators. In PNSQC, 2006.

[18] William Dickinson, David Leon, and Andy Podgurski. Finding failures by
cluster analysis of execution profiles. In Proceedings of the 23rd International
Conference on Software Engineering, ICSE ’01, pages 339–348, Washington,
DC, USA, 2001. IEEE Computer Society.

[19] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, and A. Iannino.
Applying design of experiments to software testing. In ICSE, pages 205–215,
1997.

[20] Joe W. Duran and Simeon C. Ntafos. An evaluation of random testing. Software
Engineering, IEEE Transactions on, SE-10(4):438 –444, July 1984.

[21] D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks. Software architecture
themes in jpl’s mission data system. In Aerospace Conference Proceedings,
2000 IEEE, volume 7, pages 259 –268 vol.7, 2000.

[22] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating features in
source code. Software Engineering, IEEE Transactions on, 29:210–224, 2003.

[23] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen Mccamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. The daikon system for dynamic
detection of likely invariants. In Science of Computer Programming, 2006.

[24] Sandro Fouché, Myra B. Cohen, and Adam Porter. Towards incremental adap-
tive covering arrays. In Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The

157

foundations of software engineering, ESEC-FSE ’07, pages 557–560, New York,
NY, USA, 2007. ACM.

[25] Sandro Fouché, Myra B. Cohen, and Adam Porter. Incremental covering array
failure characterization in large configuration spaces. In ISSTA ’09: Proceedings
of the eighteenth international symposium on Software testing and analysis,
pages 177–188, 2009.

[26] Patrick Francis, David Leon, Melinda Minch, and Andy Podgurski. Tree-based
methods for classifying software failures. Software Reliability Engineering, In-
ternational Symposium on, 0:451–462, 2004.

[27] Yoav Freund and Robert E. Schapire. Experiments with a New Boosting Al-
gorithm. In International Conference on Machine Learning, pages 148–156,
1996.

[28] Critina Gacek and Michalis Anastasopoules. Implementing product line vari-
abilities. In Proceedings of the 2001 symposium on Software reusability: putting
software reuse in context, SSR ’01, pages 109–117, New York, NY, USA, 2001.
ACM.

[29] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and
arrays. In CAV, July 2007.

[30] Brady J. Garvin, Myra B. Cohen, and Matthew B. Dwyer. An improved meta-
heuristic search for constrained interaction testing. Search Based Software En-
gineering, International Symposium on, 0:13–22, 2009.

[31] GNU GCC. Gcov – a test coverage program, 2009.

[32] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-based
whitebox fuzzing. SIGPLAN Not., 43:206–215, June 2008.

[33] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated
random testing. In PLDI, pages 213–223, 2005.

[34] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The weka data mining software: an update. SIGKDD
Explor. Newsl., 11:10–18, November 2009.

[35] M. Haran, A. Karr, M. Last, A. Orso, A.A. Porter, A. Sanil, and S. Fouche.
Techniques for classifying executions of deployed software to support software
engineering tasks. Software Engineering, IEEE Transactions on, 33(5):287 –
304, May 2007.

[36] Reid Holmes, Robert J. Walker, and Gail C. Murphy. Approximate structural
context matching: An approach to recommend relevant examples. Software
Engineering, IEEE Transactions on, 32:952–970, December 2006.

158

[37] Ying Hu, Ettore Merlo, Michel Dagenais, and Bruno Lag252;e. C/c++ condi-
tional compilation analysis using symbolic execution. Software Maintenance,
IEEE International Conference on, 0:196, 2000.

[38] Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A sys-
tematic study. Intelligent Data Analysis, 6:429–449, October 2002.

[39] David J. Kasik and Harry G. George. Toward automatic generation of novice
user test scripts. In Proceedings of the SIGCHI conference on Human factors in
computing systems: common ground, CHI ’96, pages 244–251, New York, NY,
USA, 1996. ACM.

[40] James C. King. Symbolic execution and program testing. Communications of
the ACM, 19(7):385–394, 1976.

[41] Douglas Kramer. Api documentation from source code comments: a case study
of javadoc. In Proceedings of the 17th annual international conference on Com-
puter documentation, SIGDOC ’99, pages 147–153, New York, NY, USA, 1999.
ACM.

[42] D. Kuhn and M. Reilly. An investigation of the applicability of design of
experiments to software testing. In NASA Goddard/IEEE Software Engineering
Workshop, pages 91–95, 2002.

[43] D.R. Kuhn, D.R. Wallace, and Jr. Gallo, A.M. Software fault interactions and
implications for software testing. Software Engineering, IEEE Transactions on,
30(6):418 – 421, June 2004.

[44] H.K.N. Leung and L. White. Insights into regression testing. In Software
Maintenance, 1989., Proceedings., Conference on, pages 60–69, Oct 1989.

[45] Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In ICSE ’07:
Proceedings of the 29th international conference on Software Engineering, pages
416–426, Washington, DC, USA, 2007. IEEE Computer Society.

[46] R. Mandl. Orthogonal Latin squares: an application of experiment design to
compiler testing. Communications of the ACM, 28(10):1054–1058, 1985.

[47] George C. Necula, Scott McPeak, Shree P. Rahul, and Westley Weimer. CIL:
Intermediate language and tools for analysis and transformation of C programs.
In CC, pages 213–228, 2002.

[48] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. Scaling regression
testing to large software systems. In Proceedings of the 12th ACM SIGSOFT
twelfth international symposium on Foundations of software engineering, SIG-
SOFT ’04/FSE-12, pages 241–251, New York, NY, USA, 2004. ACM.

[49] Sebastian Oster, Florian Markert, and Philipp Ritter. Automated incremental
pairwise testing of software product lines. In SPLC, pages 196–210, 2010.

159

[50] David L. Parnas. On the design and development of program families. Software
Engineering, IEEE Transactions on, 2:1–9, 1976.

[51] Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves le Traon.
Automated and scalable t-wise test case generation strategies for software prod-
uct lines. Software Testing, Verification, and Validation, 2008 International
Conference on, 0:459–468, 2010.

[52] Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S.
Pǎsǎreanu. Differential symbolic execution. In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of software engineering,
SIGSOFT ’08/FSE-16, pages 226–237, New York, NY, USA, 2008. ACM.

[53] Andy Podgurski, David Leon, Patrick Francis, Wes Masri, Melinda Minch,
Jiayang Sun, and Bin Wang. Automated support for classifying software failure
reports. Software Engineering, International Conference on, 0:465, 2003.

[54] Andy Podgurski, Wassim Masri, Yolanda McCleese, Francis G. Wolff, and
Charles Yang. Estimation of software reliability by stratified sampling. Software
Engineering Methodology, ACM Transactions on, 8:263–283, July 1999.

[55] Adam Porter, Cemal Yilmaz, Atif M. Memon, Douglas C. Schmidt, and Bala
Natarajan. Skoll: A process and infrastructure for distributed continuous qual-
ity assurance. Software Engineering, IEEE Transactions on, 33(8):510–525,
August 2007.

[56] Xiao Qu, M.B. Cohen, and K.M. Woolf. Combinatorial interaction regression
testing: A study of test case generation and prioritization. In Software Mainte-
nance, 2007. ICSM 2007. IEEE International Conference on, pages 255 –264,
Oct. 2007.

[57] Xiao Qu, Myra B. Cohen, and Gregg Rothermel. Configuration-aware regres-
sion testing: an empirical study of sampling and prioritization. In ISSTA ’08:
Proceedings of the 2008 international symposium on Software testing and anal-
ysis, pages 75–86, New York, NY, USA, 2008. ACM.

[58] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
10.1007/BF00116251.

[59] J. R. Quinlan. c4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

[60] J. R. Quinlan. Bagging, boosting, and c4.5. In Proceedings of the thirteenth
national conference on Artificial intelligence - Volume 1, AAAI’96, pages 725–
730. AAAI Press, 1996.

[61] J.R. Quinlan. Simplifying decision trees. International Journal of Man-Machine
Studies, 27(3):221–234, 1987.

160

[62] Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S. Foster, and Adam
Porter. Using symbolic evaluation to understand behavior in configurable soft-
ware systems. In ICSE ’10: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, pages 445–454, New York, NY, USA,
2010. ACM.

[63] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression test se-
lection technique. Software Engineering Methodology, ACM Transactions on,
6:173–210, April 1997.

[64] Richard L. Rudell. Multiple-valued logic minimization for pla synthesis. Tech-
nical Report UCB/ERL M86-65, UC Berkeley, 1986.

[65] S.R. Safavian and D. Landgrebe. A survey of decision tree classifier method-
ology. Systems, Man and Cybernetics, IEEE Transactions on, 21(3):660 –674,
May/June 1991.

[66] Raghvinder Sangwan, Neel Mullick, and Matthew Bass. Global Software De-
velopment Handbook. CRC Press, 2006.

[67] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The design of the
tao real-time object request broker. Computer Communications, 21(4):294 –
324, 1998.

[68] Koushik Sen. Concolic testing. In ASE ’07: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering, pages
571–572, New York, NY, USA, 2007. ACM.

[69] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing
engine for C. In FSE-13, pages 263–272, 2005.

[70] Rajendra Singh Sisodia and Vijaykumar Channakeshava. Combinatorial ap-
proach for automated platform diversity testing. In Proceedings of the 2009
Fourth International Conference on Software Engineering Advances, ICSEA
’09, pages 134–139, Washington, DC, USA, 2009. IEEE Computer Society.

[71] Ben Smith and Martin S. Feather. Challenges and methods in testing the
remote agent planner. In In Proc. 5th Int.nl Conf. on Artificial Intelligence
Planning and Scheduling (AIPS, pages 254–263, 2000.

[72] Robert R. Sokal and F. James Rohlf. The comparison of dendrograms by
objective methods. Taxon, 11(2):pp. 33–40, 1962.

[73] Amitabh Srivastava and Jay Thiagarajan. Effectively prioritizing tests in devel-
opment environment. In Proceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analysis, ISSTA ’02, pages 97–106, New
York, NY, USA, 2002. ACM.

161

[74] Nikolai Tillmann and Jonathan De Halleux. Pex: White box test generation
for .net. In Proceedings of the 2nd international conference on Tests and proofs,
TAP’08, pages 134–153, Berlin, Heidelberg, 2008. Springer-Verlag.

[75] Markus Voelter and Iris Groher. Product line implementation using aspect-
oriented and model-driven software development. Software Product Line Con-
ference, International, 0:233–242, 2007.

[76] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test environment for
automatic structural testing. Information and Software Technology, 43(14):841–
854, 2001.

[77] Mark Weiser. Programmers use slices when debugging. Communications of the
ACM, 25:446–452, July 1982.

[78] David Wheeler. Sloccount, 2009.

[79] Tao Xie, Nikolai Tillmann, Peli de Halleux, and Wolfram Schulte. Fitness-
guided path exploration in dynamic symbolic execution. In Proc. the 39th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN 2009), pages 359–368, June-July 2009.

[80] Ru-Gang Xu, Patrice Godefroid, and Rupak Majumdar. Testing for buffer
overflows with length abstraction. In ISSTA, pages 27–38, 2008.

[81] Yiling Yang, Xudong Guan, and Jinyuan You. Clope: a fast and effective
clustering algorithm for transactional data. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data mining,
KDD ’02, pages 682–687, New York, NY, USA, 2002. ACM.

[82] Cemal Yilmaz, Myra B. Cohen, and Adam Porter. Covering arrays for efficient
fault characterization in complex configuration spaces. Software Engineering,
IEEE Transactions on, 31(1):20–34, 2006.

[83] Annie T. T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll.
Predicting source code changes by mining change history. Software Engineering,
IEEE Transactions on, 30:574–586, September 2004.

[84] Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller.
Mining version histories to guide software changes. In Proceedings of the 26th
International Conference on Software Engineering, ICSE ’04, pages 563–572,
Washington, DC, USA, 2004. IEEE Computer Society.

162

