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Abstract

We propose a learning-based method for detecting car-
ried objects that generates candidate image regions from
protrusion, color contrast and occlusion boundary cues,
and uses a classifier to filter out the regions unlikely to
be carried objects. The method achieves higher accuracy
than state of the art, which can only detect protrusions from
the human shape, and the discriminative model it builds
for the silhouette context-based region features generalizes
well. To reduce annotation effort, we investigate training
the model in a Multiple Instance Learning framework where
the only available supervision is “walk” and “carry” labels
associated with intervals of human tracks, i.e., the spatial
extent of carried objects is not annotated. We present an
extension to the miSVM algorithm that uses knowledge of
the fraction of positive instances in positive bags and that
scales to training sets of hundreds of thousands of instances.

1. Introduction
In the field of visual surveillance one of the important

problems that has received increased attention in recent
years is the detection of objects carried by people. The
train bombings carried out in Madrid and London in recent
years are strong incentives for a computer vision solution,
but there are also other applications, especially military,
that require awareness of object presence. While signifi-
cant progress has been made in detecting and tracking hu-
mans, the variability in the appearance of the objects people
can carry makes carried object detection a very challenging
problem. It is doubtful that one can train a model for general
“carried” objects based on their appearance alone. Captur-
ing the relationships of the object with the human silhouette
is also hard, as objects may or may not have color contrast
with clothing; may occupy a small fraction of the human
silhouette or can be comparable in height with the human;
may be carried by hand, under the arm, with both arms, or
on the back. Finally, objects may be swung or kept in the

same position relative to the body and they may be occluded
in some of the frames in which the human is observable.

The most successful approaches so far to finding carried
objects have extracted a foreground mask of the human and
then matched and subtracted a generic body template (either
2D [10] or 3D [23]), returning the protrusions as objects.
While this approach is intuitively appealing, it cannot detect
objects in the frequent case when they are mostly inside the
human silhouette, in the 2D setting, and it requires a stereo
camera moving among people, in the 3D setting. Directly
using other cues such as color and motion to find carried
objects is bound to produce numerous false alarms corre-
sponding to the head, feet, hands, or just noise, but for hu-
man vision it is easy to distinguish body parts from carried
objects when displayed together with the human silhouette.
We propose a method to detect carried objects that applies
three types of low level detectors inside human bounding
boxes (based on protrusions, color contrast and occlusion
boundaries) and models the resulting image regions as car-
ried objects with a kernel SVM on features related to the
human silhouette context.

As the performance of the classifier is directly related to
the size of the training set, and as the object annotation pro-
cess is time consuming (roughly 40,000 precise bounding
boxes are needed for one of the datasets in this work), we in-
vestigated using a multiple instance learning (MIL) frame-
work. MIL, introduced by [11], departs from the classic su-
pervised learning setting by making labels available for sets
of instances (bags) rather than individual instances; in each
positive bag there is at least one positive instance while all
the instances in negative bags are negative. In our setting,
instances are image regions produced by low level detec-
tors and bags are sets of instances from intervals of human
tracks annotated as “walk” (no carried object) or “carry” (at
least one object), and we focus on instance level classifica-
tion. Most MIL approaches are computationally intractable
for our datasets (our problems range from approximately
12,000 to 192,000 instances), and the few that are tractable–
miSVM [3] and sbMIL [7]–can have significantly lower test
set accuracy than a fully supervised classifier. Observing
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that our low level detectors produce a roughly constant frac-
tion of correct regions when the human is carrying an ob-
ject, we extend miSVM to adjust the fraction of positive
labels in positive bags accordingly at each iteration.

Our contribution is two fold: (1) we propose a novel
learning-based method for carried object detection with ac-
curacy exceeding state-of-the-art and with good generaliza-
tion capability; (2) we extend the miSVM algorithm to ac-
count for an expected positive bag density, achieving im-
proved accuracy for virtually the same computational cost.

2. Related Work
The majority of papers on carried object detection fol-

low the pattern of estimating the pixel mask of the person
and object, subtracting from it a human template (either ab-
stract or learned from data) and returning the remaining re-
gions. Haritaoglu et al. [17] used background subtraction,
averaged human masks temporally, and relied on the sym-
metry of the walking human silhouette around a principal
axis and on the periodic nature of limb motions. Lee and
Elgammal [19] proposed a generative silhouette appearance
model parameterized by viewpoint, body proportions and
gait phase, and iteratively estimated these parameters to-
gether with holes in the foreground mask and outlier regions
(carried objects). Noting the sensitivity of Haritaoglu et al.’s
method to the principal axis estimate, Damen and Hogg [10]
matched and subtracted synthetically rendered templates of
unencumbered humans. To select the correct template, they
require a ground plane homography and an estimate of the
walking direction. Senst et al. [24] avoided the use of back-
ground subtraction by constructing human masks and a high
resolution motion model from optical flow. The most re-
cent work related to carried objects utilized a cylindrical 3D
shape representation of humans both in a tracking-before-
detection framework and for carried object detection [23].
2D template subtraction approaches are limited to discov-
ering objects that significantly protrude from the silhouette
and their accuracy is dataset dependent - the results section
shows Damen and Hogg’s method [17] performing poorly
when people wear robes. To improve both the recall and the
precision of 2D carried object detection, we propose using
multiple sources of candidate object regions and then prun-
ing these candidates in the context of the human silhouette.

A complementary line of work focuses on deciding
whether people carry something or not, without providing
an actual location for the object [28] [25]. While know-
ing carrying status is valuable, precise object masks are di-
rectly usable in important higher level tasks like detecting
abandoned objects, theft or object exchange. Unfortunately,
much more annotation effort is involved in learning-based
methods that explicitly localize objects, but we adopt a MIL
framework and still require only weak supervision in the
form of carry status.

The Multiple Instance Learning literature is extensive,
covering aspects as varied as discovering a single concept
shared by positive but not negative bags [22], finding the
most appropriate exemplar embedding [9], explicitly fac-
toring in the cost of false positives in the classification task
[31] [16], or treating positive bags as infinite query sources
[4], to give just a few examples. As Li et al. [21] noted,
most approaches that can classify instances have prohibitive
training cost. An exception is the miSVM framework of
Andrews et al. [3], who cast MIL as a mixed integer pro-
gram involving the labels of instances in positive bags and
the parameters of the separating hyperplane, and solved it
with an iterating heuristic with good performance in prac-
tice. Gehler and Chappelle [14] added to the SVM formu-
lation of [3] a term correlated to label uncertainty that al-
lows finding better local minima of the objective function.
However, this leads to very high computational cost if the
number of instances in positive bags is large, since the SVM
solver sees these instances duplicated as both positive and
negative. The approach most directly applicable to our set-
ting is due to Bunescu and Mooney [7], who loosened a
constraint in their SVM formulation so that as few as one
instance per positive bag can be labeled positive. The re-
sults of their approach are inferior to miSVM [3] in our
problems, which we believe is because too few of the ac-
tual positive instances are labeled positive.

A few researchers used MIL to cope with noisy labels
when learning from images retrieved with search engines
[30] [21] [20]. Li et al. [21] leveraged the constraint that
the fraction of positives in a positive bag is relatively large
(0.6) and proposed an iterative scheme that trained on an in-
creasingly larger number of bags. In [20], they reduced the
high computational cost of the optimization run in each it-
eration and updated a separating hyperplane incrementally.
It is very unlikely that these two methods would be applica-
ble to our problem setting, as the positive bag density varies
from 0 to 0.5 and the decision surface has to make multiple
local distinctions between various objects and body parts.

Lastly, two papers bear superficial resemblance to our
work. Fathi et al. [12] used egocentric video to learn to
discriminate between object appearances with little super-
vision. While both works learn to classify image regions in
a MIL framework, the problems considered are significantly
different: [12] employs multi-class MIL for relatively small
training sets, while we use two class MIL for large amounts
of data. Ghanem and Davis [15] also adopted a learning
approach in connection to carried objects, but could only
predict object appearance/disappearance events holistically.

3. Low Level Detectors
Our method assumes that human tracks are available

and runs background subtraction [18] and optical flow [26].
Compared to the input of Damen and Hogg’s method [10],
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Figure 1: Sample output of low level detectors: (a) opti-
cal flow-based protrusion (b) segmentation-based color con-
trast (c) occlusion boundary-based moving blob. Each of
these is too noisy as a carried object detector, but human
silhouette context can be used effectively to filter its output.

we additionally require optical flow, which is expensive
to compute, but recent developments [29] hold promise to
greatly reduce this burden. Next, three types of image re-
gion detectors are run: an optical flow-based protrusion de-
tector, a segmentation-based color contrast detector and an
occlusion boundary-based moving blob detector, see Figure
1. The three detectors are simple but have high probabil-
ity of finding carried objects if they exist; if none of the
detectors fires during an interval in which a person is carry-
ing an object, then most likely the object does not protrude,
has poor contrast, and is static with respect to the body - an
extremely hard target to detect. We ignore such cases and
instead address the problem of disambiguating between im-
age regions corresponding to body parts/noise versus those
that are carried objects, using the human silhouette context.
Our approach pushes the semantic understanding of image
regions at a higher conceptual level where context can be ef-
fectively leveraged. From low level detectors we only need
reasonable recall and output that is not completely random,
so that the negatives they produce do not complicate the task
of learning a classifier.

3.1. Optical Flow-based Protrusion Detector

The optical flow-based protrusion detector builds a prob-
abilistic mask for each human bounding box that reflects
how close the motion of a pixel is to the average translation
in the box. We call this the carried probability mask (CP)
and we define it by assuming that the projection of a pixel’s
velocity on the average translation is normally distributed:

CP (p) ∝ exp

− w(p)·w̄
|w̄|22

− 1

2σ2

 (1)

where w(p) = (u(p), v(p)) is the optical flow vector at
pixel p = (x, y) and w̄ is the mean optical flow of the points

in the human bounding box with magnitude above a thresh-
old of 1. (To compensate for camera motion, the average
optical flow over the image is subtracted from all optical
flow vectors.) We find that σ = 0.4 is a reasonable choice
for all the videos we process. Limbs swinging opposite to
the walking direction tend to be removed, which is advanta-
geous over using background subtraction masks as in [10],
since the temporal aggregation for noise reduction can be
done effectively on a smaller time interval, e.g. 9 frames
as opposed to 50 needed by [10]. We aggregate the CP
masks by simply translating them in the reverse direction
of the average optical flow vector and call the thresholded
resulting mask “average carrying shape” (ACS). The ACS’s
of unencumbered pedestrians tend to be urn-shaped regard-
less of viewpoint, which allows to match against a single
urn+head template with shape contexts [5] and then retrieve
protrusions. Compared to our protrusion detector, Damen
and Hogg [10] incur the disadvantage of needing a ground
plane homography and an estimate of the walking direction
to select the proper template.

3.2. Segmentation-based Color Contrast Detector

The color contrast detector runs mean shift clustering on
the foreground mask obtained with background subtraction.
Foreground pixels are represented with [0, 1] normalized
rgb and x, y (x and y are normalized with respect to the
human bounding box). The clustering bandwidth is set to
0.2 for all videos in all datasets. This detector is designed
for situations when the object’s color clearly stands out from
the colors of the human silhouette, as in Figure 1b. As the
figure shows, many false positives occur, but a large portion
are meaningful parts of the silhouette e.g., body and head.

3.3. Occlusion Boundary-based Moving Blob De-
tector

If the person moves the carried object with respect to
the body or changes viewpoint while walking, occlusion
boundaries will likely appear around the object. To detect
them we employ criteria from [27]: boundaries are pixels
where the flow forward from a frame is inconsistent with the
flow back into the frame or where the flow gradient has large
magnitude. With respect to [27], we tighten the first condi-
tion and loosen the second, requiring more consistency but
allowing for larger gradient magnitudes:

|w(p) + w′(p′)|22 > 0.01(|w(p)|22 + |w′(p′)|22) + 0.01 (2)

|∇u(p)|22 + |∇v(p)|22 > 0.01|w(p)|22 + 0.01 (3)

where p′ = p + w(p) and w′ is the backward optical flow
field. Superimposing the boundary mask on the foreground
mask from background subtraction segments the latter into
candidate regions. Empirically we observe this detector fre-
quently finds people’s heads and feet.



4. Learning a Carried Object Model using Sil-
houette Context

The candidate image regions retrieved by the low level
detectors are filtered to remove noise: regions less than 10
pixels in width or height, or greater than half the size of
the human mask are eliminated. We also use a compact-
ness filter requiring a region to occupy at least half its min-
imum area (not necessarily axis aligned) enclosing rectan-
gle. The method might miss some types of objects (e.g.
semi-automatic weapons), but since compactness is one of
the features we compute for regions, the choice can be re-
verted by simply removing this filter. The cost is introduc-
ing more types of negatives and making learning harder.
Twelve features are computed and a Gaussian kernel SVM
is used for classification.

4.1. Region Features

Three features characterize region shape and nine cap-
ture human silhouette context (to clarify, we use the term
silhouette to denote all points contained by a shape as op-
posed to just its contour.) A morphological “open” is per-
formed on the silhouette prior to feature computation to re-
duce the noise of the estimated vertical silhouette span. The
features are:

• compactness: ratio of the region size to the area of its
enclosing rectangle

• orientation: the angle of the largest side of the enclos-
ing rectangle with the vertical direction (∈ [0, π2 ])

• aspect ratio: the ratio of the larger side of the enclosing
rectangle to the smaller side

• relative size: the ratio of the region size to the silhou-
ette size

• relative x: the absolute difference between the x of the
region centroid and the x of the silhouette centroid,
normalized by silhouette height (the width is too noisy)

• relative y 1: minimum y of the region normalized with
respect to vertical silhouette span

• relative y 2: maximum y of the region normalized with
respect to vertical silhouette span

• fraction of horizontal occupancy: the ratio of the re-
gion size to the silhouette area between the region’s
smallest and largest y

• fraction of vertical occupancy: the ratio of the region
size to the silhouette area between the region’s smallest
and largest x

• fraction of contour points 1: the fraction of points on
the region contour that are at most 5 pixels away from
the silhouette contour

• fraction of contour points 2: the fraction of points on
the silhouette contour that are at most 5 pixels away
from the region contour

• local color contrast: χ2 distance between the color his-
togram of the region and the color histogram of the sil-
houette pixels in a bounding box four times larger than
the region bounding box (like the CC cue from [2] but
projected on the silhouette)

5. A Multiple Instance Framework for Learn-
ing a Carried Object Model

One of the typical ways to apply MIL to computer vi-
sion is to treat images as bags and their segments as in-
stances. In our framework, the instances are still image re-
gions but the bags are sets of regions produced by the low
level detectors in human track intervals annotated as “carry”
or “walk”. The label “carry” means that the walking human
has at least one visible object in some frames of the interval
and “walk” means no object visible. The annotations are
independent of region detector output, so a slight complica-
tion arises that some bags labeled positive may not contain
any positive instances at all due to low-level detectors fail-
ing to retrieve carried objects. However, a more important
aspect is problem size: the smallest problem in this work
has approximately 12, 000 instances, about twice more than
the well known MIL dataset MUSK-2, and the largest is ap-
proximately 192, 000, two orders of magnitude larger. An-
other difficulty is that the union of positive bags has 51%
to 85% of the training instances while the fraction of actual
positives is between 7% and 14% of the training instances.
(Note that the latter is different from the expected fraction
of actual positives in each positive bag, 25%.) Learning an
instance level classifier requires overriding bag labels for
large numbers of instances in positive bags with the support
of a limited number of known negatives.

Numerous MIL methods assume the existence of a few
prototypical positive instances common to many positive
bags and/or a meaningful Euclidian distance, assumptions
which do not hold for our datasets. The most suitable ap-
proach is miSVM [3], which iterates two steps: (1) compute
the separating hyperplane given all instance labels (initial-
ized with bag labels) and (2) relabel the instances in pos-
itive bags according to the current separating hyperplane,
correcting so that each positive bag has at least one posi-
tive instance. A characteristic of our problem is that the low
level detectors produce a fraction of correct regions close to
α0 = 0.25 when the person carries an object, so we adapt
miSVM to reflect an expectation of the fraction of posi-
tives in positive bags, see Algorithm 1. The relabeling is



Algorithm 1 miSVM-Positive Fraction Shift

input : instances, bags, bag labels; T , α0, θ
label all instances with their bag labels
for i = 1→ T do

compute separating hyperplane with SVM solver
compute decision values for instances in positive bags
for each positive bag do

α← fraction of instances with decision value≥ 0
order the instances by decision values
relabel top (1− θ)α+ θα0 instances as positive
relabel rest of bag instances as negative

end for
end for
return separating hyperplane computed with SVM
solver for current labels

now done so that the fraction of positive instances shifts to-
wards α0 and we call this extension miSVM-Positive Frac-
tion Shift (miSVM-PFS).

The algorithm minimizes the modified SVM objective

L (w, b, y1..N+
) =

1

2
||w||22

+C1

N∑
i=1

max(0, 1− yi(wxi + b))

+C2

n+∑
j=1

∣∣∣∣∣∣
∑
k∈Bj

yk + 1

2
− α0nj

∣∣∣∣∣∣ (4)

where y1..N+
are the labels of the instances in positive bags,

N is the total number of instances (N+ in positive bags,N−
in negative bags), n+ is the number of positive bags, Bj are
the indexes of instances in the j-th (positive) bag and nj =
|Bj |. In each iteration, the SVM training minimizes the
sum of the first two terms over w and b, and the subsequent
instance relabeling minimizes the sum of the second and
third over y1..N+ . To see why the latter is true, consider the
change in the second loss term when label yk switches:

∆L2k =

{
yk · 2dvk |dvk| < 1

yk · (dvk + sign(dvk)) |dvk| ≥ 1
(5)

where dvk = wxk + b. For each positive bag, minimiz-
ing the second term is achieved by switching the labels of
instances with decision values of opposite sign to the old
labels (∆L2k < 0). Any set of label changes can be com-
posed as a set that minimizes the second term of the ob-
jective and then some other set of changes. The other set
will strictly increase the second term while potentially de-
creasing the third, so to minimize their sum, it must include
only instances with dv between 0 and a threshold depend-
ing on α0 and C2

C1
(smallest |dv|’s). This is because ∆L2k is

monotonically increasing in dvk and the third loss term does
not depend on which labels are switched but on how many.
The algorithm implements the two sets of label changes to-
gether, by sorting instances by dv and relabeling them in
relation to a threshold between 0 and the dv of the top α0-th
instance. Parameter θ equivalently models the effect of C2

C1
.

We observe that the algorithm changes very few labels
after 20 iterations in all problem settings, so we fix T to
this value. We also set θ to 0.333. Note that θ = 0 does
not make our algorithm equivalent to miSVM but makes
it overfit (miSVM counters overfitting by switching a label
when no positives are left in a positive bag). By relabel-
ing instances in positive bags in a controlled manner, with
θ > 0 bias towards fraction α0, miSVM-PFS smoothes the
trajectory in label space and so is less likely to find local
minima. The ALP-SVM version of Gehler and Chapelle’s
deterministic annealing approach [14] has a similar smooth-
ing effect and employs a similar objective function, but it in-
curs far higher computational cost in the SVM training step
because it duplicates the instances in positive bags as both
positive and negative. The way problem specific knowledge
about positive bag density is incorporated in miSVM-PFS
also allows it to achieve smoothing, but our algorithm is
tractable, with computational demands essentially the same
as miSVM.

6. Experimental Results
We ran experiments on three datasets: Pets2006, Cd2a

and Towncenter, see Figure 2 for representative images.
Pets2006 [13] is a well known visual surveillance bench-
mark that contains videos of people walking with luggage
in a busy train station. For comparison with the method of
Damen and Hogg [10], we ran our system on the 7 videos
from the third camera. These videos range from 2,371 to
3,401 frames in length, with an average of approximately
25 people in the scene. Cd2a consists of 16 videos we se-
lected from a corpus collected to highlight carry and ex-
change actions [1]. The Cd2a videos show people in var-
ied viewpoints in two types of outdoor scenarios: a country
road and a safe house. There are few object types (small
packets, large boxes, duffel bags and backpacks), but peo-
ple wear robes and head scarves, which complicate silhou-
ettes. The videos are between 2,430 and 18,023 frames and
show an average of approximately 14 people. The Town-
center dataset [6] consists of a single high resolution video
of a busy pedestrian-only zone near store fronts. We evalu-
ate our approach on the first 4500 of the 7500 video frames,
for which [6] provide (noisy) ground truth human bounding
boxes; we annotate the objects carried by the 230 people.

We manually annotate the human tracks which are input
to our method and perform training and testing on image
regions detected in the parts of the tracks where humans
move. These are annotated as “walk” or “carry” according



(a) Pets2006 (b) Cd2a

(c) Towncenter

Figure 2: Datasets used in the paper.

to object presence and also used by the MIL version of our
approach. Note that these two settings reflect the scope of
our method: given human tracks, the goal is to detect ob-
jects carried by walking people, as is done in prior work
[10] [17]. Each region feature is normalized by subtract-
ing its training set mean and dividing by standard deviation.
For classification, we use libsvm [8] with a Gaussian kernel
with σ the mean of pairwise distances between instances in
the training set.

Damen and Hogg [10] evaluate carried object detections
with a criterion requiring that the bounding box of an im-
age region overlap at least 15% with a ground truth object
bounding box. The threshold is much lower than typically
used in human detection (50%) in order to recognize correct
matches when the protruding part of an object is small, but
given the fact that most people in Pets2006 carry objects,
this favors methods that simply return large parts of the hu-
man silhouette whether an object is present or not. To de-
fend against this type of errors, we use a stricter match crite-
rion: a region is correct if its pixel mask covers at least 20%
of a ground truth object bounding box and at least 66.6% of
the pixels are inside the box. We measure the performance
of carried object detection methods in terms of region pre-
cision and of object track recall. Precision is defined as the
fraction of regions (out of all regions eventually returned)
that match ground truth and recall as the fraction of object
tracks (out of all object tracks) for which there are correct
detections in at least 10% of the frames. We perform non-
maximum suppression by removing any region that has high
pixel mask overlap with another region with higher detec-
tion score. The low recall threshold allows detections to
be sparse in time (3 per s), but because our method has high
precision, extending it with blob tracking will likely achieve
both good frame level recall and good frame level precision.

(a) Pets2006 (b) Cd2a

(c) Towncenter

Figure 3: Pairs of representative precision-recall curves for
the fully supervised version of our method in black and the
curve for [10] in grey. The solid black curve has largest area
among the curves obtained on the 10 training-test splits,
dashed black smallest. The curves for [10] do not extend
right more than shown; in particular, on Pets2006 [10] does
not obtain more than 0.57 recall.

6.1. Fully Supervised Learning

Precisely annotated object bounding boxes determine la-
bels for the image regions from the low level detectors: a re-
gion is positive if and only if it matches a box by the criteria
in the preceding paragraph. In the fully supervised setting,
the label of each training region is given. We perform cross
validation experiments on all three datasets. We randomly
divide the sets of videos 10 times into roughly half for train-
ing and half for testing; for Towncenter, the split was on
persons. For each of the three datasets, Figure 3 shows two
precision-recall curves: the curve with the smallest and the
largest area among the 10 splits. The curves were obtained
with C = 100 for the kernel SVM for all datasets; values
10 and 1000 virtually did not change any of the Pets2006
curves and two curves of Cd2a, showing no need for cross
validation. The Towncenter video is especially hard because
people walk in all directions, wear very diverse clothing,
have vastly different body builds, and carry many types of
baggage, all while the number of training regions is about
twice that for Pets2006. Also, it is difficult to obtain accu-
rate foreground masks as the scene is densely populated.

To compare against Damen and Hogg’s [10] full method
(using spatial prior and continuity) we modify the code
made public by the authors to return correctly aligned car-
ried object pixel masks for all video frames. As was done



in [10], we vary parameter λ representing the pairwise cost
in an MRF-based segmentation and trace the PR curves dis-
played in grey in Figure 3. Their method tends to return
large parts of the human silhouette together with the carried
object, which is significantly less precise than our method.

Given large differences between the three datasets in the
appearance of people and objects, it is legitimate to doubt
that a model learned on one dataset would work well on the
other two, but experiments in which we train on a complete
dataset and test on the others highlight the generalization ca-
pability of our models, see Figure 4. The PR curves are be-
low those obtained when training and testing on subsets of
the same dataset (Figure 3), but good precision-recall values
are achieved when we train on people wearing tight cloth-
ing and test on people wearing robes (Pets2006→Cd2a) or
when we train with 4 object types and then test on more
than 10 object types (Cd2a→Pets2006), for example. The
models learned on Pets2006 and on Cd2a (Figure 4, e and
f) perform poorly on Towncenter but there is strong reason
to believe this is because Towncenter is more complex than
Pets2006 and Cd2a: the model learned on the former tests
well on both latter datasets (Figure 4, b and d).

6.2. Multiple Instance Learning

In this setting, the only supervision is labels “carry” and
“walk” associated with intervals of human tracks, partition-
ing the image regions retrieved by low level detectors into
positive and negative bags. We compare the peformance of
miSVM [3], our extension miSVM-PFS (α0 = 0.25), sMIL
and sbMIL [7] in Table 1, which includes the results of a
fully supervised SVM (labels available for each image re-
gion) for reference. We use the same 10 training-test splits
as in the fully supervised experiments and report the mean
area under the PR curve. In many of the splits the total num-
ber N+ of instances in positive bags is larger than the total
number N− of instances in negative bags (sometimes dras-
tically so), biasing classifiers towards false positives. In the
SVM formulations of both miSVM and miSVM-PFS, we
kept the weights of the instances in positive bags 1 and as-
signed weights N+

N−
to instances in negative bags. We set C

to 1 for both miSVM and miSVM-PFS; other values pro-
duce little change in the relative peformance of the two.
Note that since some positively labeled bags may not ac-
tually contain any positive instances due to low level detec-
tors failing to find any object regions, it is inappropriate to
set C by bag-based cross validation. For sMIL and sbMIL,
we report the best mean area under PR curve over a number
of parameter combinations. In particular, η in sbMIL for
the expected positive bag density (α0 in our work) varied
in the set {0.1, 0.25, 0.5}. Table 1 shows the effectiveness
of miSVM-PFS compared to other approaches on Pets2006
and Cd2a. All approaches perform poorly on Towncenter,
confirming the difficulty of this dataset. sbMIL is slightly

(a) Pets2006 (Cd2a) (b) Pets2006 (Towncenter)

(c) Cd2a (Pets2006) (d) Cd2a (Towncenter)

(e) Towncenter (Pets2006) (f) Towncenter (Cd2a)

Figure 4: Precision-recall curves when training and testing
on different datasets. Format: test dataset (training dataset).

Pets2006 Cd2a Towncenter
SVM (fully
supervised) 0.5238 0.9410 0.2488

miSVM 0.3526 0.8158 0.0881
miSVM-PFS 0.4098 0.8496 0.0971

sMIL 0.1413 0.3031 0.0507
sbMIL 0.3086 0.6878 0.1019

Table 1: Mean area under PR curve for different learning
methods. The second row of the table shows results when
object bounding boxes are available, while for the other
rows only “carry” and “walk” information is given.

better on Towncenter; we attribute this to imbalance in posi-
tive bag densities (many more values close to 0 and 0.5 than
to α0 = 0.25) due to errors in background subtraction.

The training times for miSVM and miSVM-PFS are very
similar, with a slight advantage for miSVM-PFS. On Cd2a,
the largest dataset, the training time averaged over the 10
splits was 20.7 minutes for miSVM-PFS and 16.3 minutes
for miSVM-PFS; the average training set size over the 10



α0 0.1 0.2 0.3 0.4 0.5
mAUPR 0.2481 0.3791 0.4298 0.4159 0.3933

Table 2: Mean area under PR curve for Pets2006 when the
expected positive bag density in miSVM-PFS is varied.

splits was 154,000 instances. The two algorithms both took
about 1 minute on Pets2006 and about 10 minutes on Cd2a
per training set respectively. The machine used was an Intel
Core2 Quad at 3GHz.

Because the positive bag density is only approximately
known, we also characterize the sensitivity of miSVM-PFS
to parameter α0. Table 2 shows good mean area under the
PR curve on Pets2006 for a range of α0’s.

7. Conclusion
We proposed a learning-based method for carried object

detection that finds objects even when they do no protrude,
achieves high accuracy, and has good generalization capa-
bilities. Our method obtains candidate image regions from
three cues (protrusions, color contrast and occlusion bound-
aries) and selects the plausible object regions with a kernel
SVM classifier on features characterizing the context of the
human silhouette. To avoid annotating tens of thousands
of carried object bounding boxes, we investigated training
the classifier in a MIL framework which only required hun-
dreds of “walk” and “carry” labels for intervals of human
tracks. We extended the miSVM algorithm [3] to effectively
account for a known fraction of positive instances in posi-
tive bags and this extension consistently improved accuracy
while keeping computational cost low.
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