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Biological systems are remarkably precise in a lot of different ways. Not only

do organisms have the capacity to reproduce, they also have the capacity to de-

fend themselves from external factors. The capability to fight diseases, in particular

the immune system, is an integral part of the evolution and natural selection in all

plants and animals. For most species there are multiple layers of defense, which are

adaptive and provide mechanisms (or adaptive immunological memory) to remem-

ber previous attacks and successively improve the response. From reproduction to

defense and maintenance, each organism constantly monitors its internal and exter-

nal environments at several different levels. Several crucial constituent factors are

required to be maintained at close tolerances. A deviation, or a push, away from

equilibrium could prove fatal to an individual cell or the whole organism. These

deviations also have a shared history with our evolution in the form of diseases like

cancer.

In this study, we present some of our efforts to understand the origin and



control of this biological noise at four different levels from a physical sciences per-

spective.

The entire study of this dissertation has its origins linked to a proto-oncogene

called c-myc, which is believed to regulate about 10% of mammalian genes. It

controls all major decisions of cells, including cell division and cell death, and it is

known to be deregulated in most types of cancers. Noisy c-myc transcription can

have disastrous effects, thus its expression levels must be controlled very tightly by

cells.

At the DNA level, we examine a dynamic feedback mechanism where DNA

supercoils during transcription, and dynamic torsional stresses are mechanically

coupled with ongoing transcription to control the transcriptional noise. DNA su-

percoiling has been previously shown to regulate the c-myc proto-oncogene. We have

developed genome-wide maps of transcription generated dynamic DNA supercoiling

in vivo. We observe, experimentally, that most of the torsional stress is located

within about ±2000 bp of transcription start site, and is differentially regulated by

topoisomerases I and II.

At the RNA level, we have made an attempt to define the state of the cell using

the expression levels of a sub-network of differentially expressed human kinases.

Based on this definition, we have been successfully able to cluster together different

molecular subtypes in lung cancer cell lines. We were able to identify and confirm

previously known deregulated kinases. Many kinase genes are also identified as

novel therapeutic targets. Currently we are testing these predictions, and working

towards defining the complete state of a cell by getting a digital count of mRNAs



at the single cell level.

At the protein level, we studied the dynamics of protein decay to test the

hypothesis that protein decay is a one step stochastic process. In several cases we

have observed potentially multi-step decay processes in the ubiquitin proteasome

system, however more experiments are needed before making any inferences.
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Preface

“So there is DNA inside the nucleus of the cell,” Dave1 was explaining me the

project, “and we want to. . . ”

“Wait a minute!,” I pleaded, “You said three things, DNA: I have heard about

it, but have no clue of what it is, nucleus : the only nucleus I know is that of the

atom, and cell : the only cell I know is my cellphone. Lets start from there!”

This was our first discussion, when I first met Dave, my thesis advisor, late in

the Spring of 2006. It has been a long but beautiful journey.

Dave had been looking for help with analysis of microarray data for some

time. He had earlier taken help from one of the senior bioinformatic professional in

another reputed lab, who performed some of the routine exploratary analysis and

concluded that the data was junk.

Dave found it difficult to believe that the data was junk. “When we looked at

the data in the genome browser, everytime the data wiggled in interesting places,” he

said, “it was difficult to believe that this was junk.” So he approached Dr. Wolfgang

Losert at UMD seeking help with the analysis. Dr. Losert passed on this opportunity

(along with others) to first and second year physics graduate students who were

looking for summer positions. My journey had started taking shape.

By the end of the summer, we realized that data had significant information,

and was not junk. Several new sets of experiments were performed, and eventually,

as described in chapters 5 and 6, we found that the data was actually of very good

quality, but needed careful attention and a novel approach.

1i.e. my advisor, Dr David L Levens, who prefers that everyone in lab call him Dave.
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The reason why the exploratory analysis, performed previously, didn’t work

was that that analysis was developed for a different kind of experiments where the

signal to noise ratio (SNR) is much higher. Our experiments had very low SNR,

so they needed special attention and hence new special methods. Also, apart from

computational approaches, a reasonable understanding of DNA physics and cell

biology was needed.

If we look at it in a larger context, we see that biology is going through un-

precedented changes. Last decade has seen tremendous efforts in moving biology

from a qualititive science to a quantitative science.2 On one hand, single molecule

techniques (like confocal microscopy) and tools (like optical/magnetic tweezers)

are putting numbers on physical properties (like rigidity/strength) of biological

molecules (like proteins/nucleic acids). On the other, high-throughput techniques

(like microarrays, next-generation sequencing) are enabling the amassing of massive

amount of information that allows the deciphering of gene and interaction networks.

We are no longer talking about only two or three fold enrichments, but pay-

ing attention to smaller variations and corresponding statistical errors. Instead of

talking about one gene, or one transcription factor, we are now probing about the

gene networks (or sub-networks) of the whole organism with 100 s to 1000 s of con-

stituents.

The field of Systems Biology has emerged, and is destined to revolutionize

2Between the announcement of the first draft of the human genome in year 2000, to comple-

tion of this thesis work (in year 2012 ), this project started right in the middle of this massive

revolutionary movement (in year 2006 ).
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every aspect of biology we have known since the word biology was coined in the year

1802.3

This movement from an individual to the network of individuals is not exclusive

to the field of biology. A new age has begun - the network age, and the buzz words

cloud-mobile-social are its clarion calls heard in our daily conversations. The first

big step towards this was taken with the establishment of the world wide web in

the year 1990. The web reached a point of inflexion in the years 1998-2000 with

Google literally becoming the common man’s crystal ball for the massive network

of webpages.

Massive amounts of new data are being generated everyday, data that is much

larger in content than that of the Library of Congress. To analyze these massive

datasets, a new field of data science is also taking shape at the boundaries of physics,

computer science and mathematics.

Interestingly, the advent of the network age for biology had a similar timeline.

Arguably the first gigantic step, marked also in year 1990, was the announcement of

the Human Genome Project and then its completion in year 2000. The field has not

looked back ever since. One after the other, high-throughput techniques are being

developed, outpacing the theoretical developments.

When new techniques are developed, or when old techniques are used for new

or customized experiments, it is desirable to develop analysis techniques to meet the

computational challenge.

3By John-Baptiste Lamarck and, independently in the same year, by Gottfried Reinhold Tre-

viranus and Lorenz Oken [1].
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In this report, we have examples of both the cases.

The first part (chapter 2 to 6), deals with the project to develop genome-wide

maps of DNA supercoiling. To generate these maps we used the old technique of

microarray hybridization, but instead of ChIP-chip we used psoralen intercalation

to mark superoiling of DNA (in vivo) and hybridized the DNA from gel purication.

Psoralen has a slightly higher affinity for binding to negatively supercoiled DNA as

opposed to the relaxed DNA; as a result the data is very noisy. We have developed

a method to charaterize this noise, and were able to extract signal. This data was

used to make inferences that were tested by an independent set of experiments. For

more details see chapter 5.

In the second part (chapter 7), we have used a totally new technique, NanoS-

trings, to analyze the mRNA expression of human kinases in lung cancer patients.

We developed a novel method to analyze the data, and were successfully able to

predict the cancer types of unknown samples based on the known samples. We were

also able to identify a couple of hundred new genes that were previously not known

to contribute towards oncogenesis.

Both these projects demanded a lot of knowledge not only about the biology

and physical systems, but also computational and programming skills. I believe

that as biology becomes more quantitative, this trend will become more and more

common. Just like physicists had to start learning a lot of mathematics and com-

putational methods during last 3 centuries, the same will become a mandate for

biologists in this new emerging era.

For me the journey was in the other direction, towards biology. Now when I
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remind Dave about our first conversation, he recalls, “My heart just sank”. But he

also says that he is pleasantly surprised and happy with the progress I have made

over last few years. From that first conversation in the Spring of 2006, to the writing

of this dissertation (Spring 2012 ), it has been a long journey, with a steep learning

curve. In retroscpect, it has been an exhilarating experience of learning and growth

and I hope to continue this journey in the future.

Ashutosh Gupta

April 4th, 2012
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Chapter 1

Introduction

1.1 Noise in biological Systems

Biological systems are remarkably precise in a lot of different ways. It is

very evident from the fact that all biological entities, uni-cellular or multi-cellular,

reproduce (themselves) by the very definition. In any cohort of a given type, there

are remarkable large scale structural and functional commonalities that are very

obvious. For example, if we consider a synchronous population of any given cell

type, we will notice that they are not only structurally similar, but can respond to

remarkably different stimuli in more or less similar ways. All human beings (and

animals) have a certain proportion to their body parts, and are remarkably similar in

the functioning of their bodies which are gigantic biological machines with trillions

of living cells.1

Not only does the body2 have the capacity to reproduce, it also has the capacity

to defend itself from external factors. The capability to fight diseases, in particular

the immune system, is an integral part of the evolution and natural selection in all

plants and animals [3]. For most species there are multiple layers of defense, which

1Each of these cells running on a different time in their cell cycle, but somehow connected to

the central circadian rhythm of the body [2].
2Body of any living entity, from a living human being to single bacterial or plant cell.
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is adaptive and has mechanisms to remember previous attacks and successively

improve the response (adaptive immunological memory) [4].

Healing or repair of damages is another peculiar hallmark of precision in bi-

ological systems. From repair of damaged DNA [5] in any single cell to healing

of wounds in any part of the body, there is a constant and seemingly autonomous

system of surveillance and servicing.3

One remarkable example of repair is liver regeneration which has been known

for ages. E.g. the ancient Greeks seem to have recognized liver regeneration in the

myth of Prometheus. When Prometheus steals the secret of fire from the gods of

Olympus, he was punished to having a portion of his liver eaten daily by an eagle.

His liver would be regenerated overnight, thus the eagle will have food eternally

and Prometheus will have eternal suffering [6, 7]. It has been shown by partial

hepatectomy in rats, in which specific liver lobes (amounting to about two-thirds of

the liver) of a rat is removed, with the lobes left behind being intact. Within five to

seven days, the residual lobes grow to make up for the mass of the removed lobes,

while the removed parts of lobes do not grow [8]. When the liver from large dogs is

transplanted into small dogs, the liver size gradually decreases until the size of the

organ becomes proportional to the new body size [9].

From reproduction to defense and maintenance, each organism constantly

monitors its internal and external environment at several different levels. Several

crucial constituent factors are required to be maintained at close tolerances. A devi-

ation, or a push, away from the equilibrium could prove fatal to an individual cell or

3From a nano-meter scale to meter scale, i.e. about 10 orders of spatial magnitude.
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the whole organism. These deviations also have a shared history with our evolution

in the form of diseases like cancer [10].

So how is that balance maintained?4 With the cytoplasm of every single cell

being a soup of molecules interacting stochastically, how do we get such remarkable

precision at cellular and organism level? How can such seemingly improbable events

occur so ubiquitously that most of us fail to even notice?

There are several known and (mostly) unknown mechanisms that govern the

stochastic interactions of bio-molecules. Layered and highly integrated circuitry of

various constituents (DNA, RNA, proteins, water, lipids, metals, acids, bases etc.)

regulate various aspect of cellular and organismal life cycles. In this study, we

present some of our efforts to understand the origin and control of this biological

noise at four different levels:

1. DNA level : Developed genome-wide maps of DNA supercoiling

2. RNA level : Developed algorithm to predict cancer cell and tumor type, and

predicted novel therapeutic targets from analysis of mRNA expression using

NanoString technology (experiments and analysis)

3. Protein level : Studied dynamics of protein decay to test the hypothesis of one

step random decay of proteins

4Well, for the most part of most living organisms, and for all organisms before dying, i.e. before

going off balance. One may argue that death is also a part of life, but as an optimistic scientist, I

would like to remind them of the famous Woody Allen quote, “I don’t want to achieve immortality

through my work. . . I want to achieve it by not dying.”[11]
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4. Cellular level : Explored the possibility of cell competition in mammalian cells

The entire study of this dissertation has its origins linked to a proto-oncogene

called c-myc, which is one of the main focuses of our lab. Myc5 is believed to

regulate about 10% of entire mammalian genome.6 It controls all major decisions

of cells, including cell division and cell death, and it is known to be deregulated

in most types of cancers. A noisy Myc transcription can have disastrous effects,

and cells must control Myc levels very tightly. (A comprehensive review of Myc’s

functionality can be found here [13].)

The following sections provide a brief overview of our approach, which is ex-

panded in subsequent chapters.7

1.2 Case for DNA supercoiling

DNA for long has been considered a passive storage house of genetic infor-

mation that is acted upon by other bio-molecules. As soon as the helical structure

of DNA had been drawn, understanding how the DNA strands, which intertwine

around each other, are separated during DNA replication or transcription was an

open and fundamental question. This task appeared to be even more challenging

after the discovery of circular DNA molecules [15]. The solution used by the cell to

overcome the topological problem was revealed with the discovery of DNA topoiso-

5Conventionally, ‘c-myc’ refers to the gene, while ‘Myc’ referes to the protein.
6Our lab has recently discovered that Myc is a universal amplifier of gene expression [12].
7For a beautiful overview of the evolution of research in the realm of DNA, RNA and proteins

during last century, see the magnum-opus [14].
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merases that catalyze changes in the linkage of DNA strands and modulate DNA

topology [16]. It is now certain that all DNA transactions involve alterations in

the structure of DNA. The structural changes that distort the double helix through

overtwisting/undertwisting and associated loop-like plectoneme structures are re-

ferred to as DNA supercoiling or DNA torsional stress8 [17]. In vitro and in silico

studies have shown that DNA supercoiling modulates the probability of DNA melt-

ing,9 affects DNA-protein interactions, and increases the local concentration of distal

DNA sites [18]. Consequently, the activities that induce DNA supercoiling may be

exploited in regulatory pathways.

To understand the effect of supercoiling it is important to first place the cor-

responding energies and forces in the context of the other well known quantities.

By means of several experimental measurements, we know that biologically relevant

forces vary over a large range [19]. Thermal fluctuations and entropic forces are

in pN range (energy is about 1kT = 4pN.nm).10 Some powerful molecular motors

produce forces in the range of tens of pN (corresponding energies are e.g. >5 pN.nm

(i.e. about 1–2 kT ) for Escherichia Coli11 RNA polymerase, ∼2–3 kT for phage T7

DNA polymerase) [19]. Noncovalent interactions are in the hundreds of pN (for

various hydrogen bonds, energy is about 3–12 kT ) while covalent bonds have forces

of thousands of pN (and energies in 100s of kT s) [19, 20, 21]. The energy currency

of biology is ATP hydrolysis, which corresponds to about 7–10 kcal/mol (about

8Chapter 2 reviews the basic concepts involving DNA supercoiling.
9Separation of the duplex DNA strands is referred to as melting.

10At room temperature 25 ◦C (298K), 1kT is equivalent to 2.479 kJ/mol or 0.593 kcal/mol.
11Commonly referred to as E. Coli, a bacteria.
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11–16 kT ).

The energy content of supercoiled DNA can vary tremendously. For plasmid

DNA12, it increases parabolically with increasing positive or negative supercoiling

(see equation 2.4). As DNA becomes more and more supercoiled, it takes increasing

amounts of energy to introduce more supercoiling. To better understand this, let us

consider a specific example of a 3000 bp long plasmid with a superhelical density σ =

−.05,13 or a ∆Lk = −15.14 Using equation 2.4 we can find out the corresponding

free energy ∆G∆Lk=−15 = 52.5 kcal/mol. If the linking number was to increase to

∆Lk = −16 (or decrease to ∆Lk = −14), the corresponding free energy would be

∆G∆Lk=−16 = 59.7 kcal/mol (or ∆G∆Lk=−14 = 45.7 kcal/mol). This corresponds to

a change of about 7 kcal/mol (∼12 kT ), which is equivalent to hydrolysis of an ATP

molecule. This shows that DNA supercoiling can store energy, and small changes

(such as ∆Lk/N = ±1/3000 above) in supercoiling can serve as the necessary energy

source / sink when coupled with other reactions.15

Note that this energy 7 kcal/mol (or 12 kT ) is distributed over the entire plas-

mid at about 2 cal/bp/mole (or 4 × 10−3 kT/bp), which seems very small. During

transcription, however, if the translocation proceeds without pauses, then the RNA

polymerase could generate up to 10 supercoils per second and up to 3000 supercoils

for a typical 30 kbp gene [19, 23]. For actively transcribing genes, tandem initiations

12Plasmids are closed circular DNA molecules. Much of the earlier research was done in artificial

plasmids or natural plasmids (such as E. Coli chromosome).
13This is typical superhelical density observed in the E. Coli bacterial genome [22].
14The quantities like superhelical density and linking number are defined in chapter 2 in detail.
15Fig. 2.9 plots the free energy, ∆G∆Lk, as a function of ∆Lk for this example.
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can create large enough torsional stresses to melt the DNA. The variation in AT and

GC basepairs’ H-bond pairing energies (4–9 kcal/mol) and base stacking energies

(4–15 kcal/mol) can facilitate the melting of DNA in a sequence dependent manner.

It takes about −9 pN.nm torque to melt the DNA [24, 25, 26].

Specific melting sequence(s) could be strategically located in regions upstream

(or downstream) of the transcription start sites (TSS) which can have a transcription

dependent conformational change. These changes could elicit further action from

other activating or repressing factors, providing a very powerful dynamic control

mechanism for regulating transcriptional noise in a transcription dependent manner.

As stated before, Myc is a crucial regulator of a large number of cellular

processes and a noisy Myc transcription can have disastrous effects, and cells must

control Myc levels very tightly. It has been reported that a variation in c-myc

levels could induce cell competition in drosophila melanogaster, where cells with

slightly higher copy number of Myc could cause apoptosis in nearby cells with lower

copy numbers [27]. In a series of papers [28, 29, 30, 31] our lab has shown that

transcription generated dynamic supercoiling plays a crucial role in the regulation

of the Myc proto-oncogene. (See section 3.6 for more details.)

We anticipated that the same could be true for other proto-oncogenes and

regulators. As a first step in understanding the behavior of large number of genes,

we decided to generate genome-wide maps of DNA supercoiling in vivo on ENCODE

regions [32]. These regions are selected with an aim of collecting all functional

elements in the human genome, and constitute about 1% of the entire genome with

representation from a wide variety of gene networks and pathways. We were able
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to make inferences about the large scale distribution of DNA supercoiling as well

as its regulation by means of topoisomerases I and II. We were also able to show

that most of the transcription generated supercoiling is confined to within about

±2000 bp of the TSS. We were able to separate the effects of transcription generated

supercoiling from the inherent supercoiling of chromatin.

However, these maps had only about 900 genes. Many of these genes were

overlapping or were poorly covered on microarray, bringing down the number of

total analyzed genes to about 450. We are now planning to repeat this experiment

on high density promotor arrays containing all the known genes on human genome.

This will give a complete picture of the role of transcription generated dynamic

supercoiling in all the genes. We would like to pay particular attention to the key

regulators and oncogenes.

It is possible to generate a basepair resolution genome-wide map of DNA

supercoiling on the entire genome using the 2nd generation sequencing. However,

currently these high throughput experiments are prohibitively expensive for the task.

With advances in technology [33, 34, 35] these costs are expected to come down and

we hope to be able to develop very high resolution maps of DNA supercoiling, which

will enable us to more closely examine this crucial regulator of biological noise.

DNA supercoiling research constitutes a majority of this dissertation.
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1.3 Case for mRNA expression

RNAs are the link between the transcription and translation processes. Noise

at the transcription level is propagated to translation level by means of RNAs.

Transcription level noise can be introduced in several steps during the process of

transcription, e.g. chromatin opening, initiation, pausing / stalling / promotor es-

cape, elongation and termination. Apart from these, splicing, pre-processing and

stability of mRNA are other critical factors for translational noise.

The second part of this dissertation focuses on this aspect of biological noise.

To study these effects, once again we started with the focus on Myc. The

importance of holding Myc to close tolerances was stated in the previous section.

Our aim was to get a digital count of the number of c-myc mRNAs at single cell level.

We developed a transcript counting scheme to get a digital count of the number of

Myc mRNAs in a single cell. Using some statistical methods, and advent of second

generation sequencing techniques, we were able to expand our transcript counting

scheme for all mRNAs at single cell level.

This is a powerful method for understanding transcriptional / translational

noise as well as for probing the origins of the noise by inferring functional relations

among various genes. The complete transcritome can also serve as the definition of

the state of a single cell, or a population of cells. These states can then be compared

between diseased and healthy cells / populations.

The project has many challenges, e.g. isolating single cells, extracting mRNA

from single cells, maintaining enzyme activities for various reaction buffers etc. Dur-
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ing our pilot studies we were able to extract Myc from single cell levels. Preparations

are now on for completing these experiments.

For this dissertation, we will present a small scale variant of the transcript

counting experiment described above. Instead of counting all the mRNA transcripts

from a single cell, we can get an estimate of mRNA copies of a set of pre-selected

transcripts using the NanoString nCounterTM assay system [36].

The highly sensitive NanoString nCounter system is useful for a variety of

applications, such as digital counting of miRNA and mRNA transcripts across a

dynamic range and measuring copy number variation of DNA. However, the high

sensitivity may cause large distortions in data due to experimental variables such as

small variation in sample preparations and loading, as well as non-specific binding

of some probes. A novel normalization and error correction approach was developed

utilizing the built in “stable” house-keeping genes along with the positive and neg-

ative controls. In this preliminary report, analysis of NanoString data is presented

using the novel protocol to normalize data for a set of 22 lung cancer cell lines (con-

trols and treatments) on Human Kinase codeset.16 The data is analyzed in various

ways to get significant and useful insights about the clustering of the various molec-

ular subtypes of lung cancer and the functional information about various targeted

drugs and kinase genes that are affected.

16Kinases are a type of transfer enzymes that catalyze the transfer of phosphate groups from high-

energy donors, such as ATP, to specific acceptor molecules (a process known as phosphorylation)

[37]. This codeset had markers for 519 (out of a total of > 2000) human kinases.
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1.4 Case for protein decay

Just like the transcriptome, the proteome17 can define the state of the given cell

or organism. Noise in the proteome is originated during transcriptional and trans-

lational processes, and this noise is fed back to the transcriptional / translational

processes. Once the protein is made, variation in its activity, mode of movement

(e.g. diffusive, distributive, processive), stability, and decay are key contributors

that cause variation in its functional output in the pathways downstream.

One of the central contributing factors to this process is protein stability and

decay. It has been believed for a long time that protein decay is a one step stochastic

process. We believe that a one step stochastic protein decay would be very noisy and

could have many undesirable effects. This would be particularly true for the case

of proteins like Myc that have small number of copies18, < 500 in resting fibroblast

cells, and a small half-life, t 1
2
∼ 30min. As discussed in the previous section, it

has been reported that cells with slightly higher copy number of Myc could cause

apoptosis in nearby cells with lower copy numbers [27]. This means if a cell has too

many more copies than its neighbors, it will start killing them. Or, if it has less

copies than the neighbors, then it might get killed.

So random disappearance of crucial ‘life support field workers’, like Myc, could

be fatal to the cell or its neighbors, and to the organism for sure. Cells must have

processes to prevent this from happening. One such possibility is a multi-step decay

process, with some sort of signaling or feedback indicating nearing ‘resignation’ of

17Proteome is the set of all the proteins expressed by the genome of a cell or organism.
18Just like stability is important in case of mRNA transcripts in previous section.
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Figure 1.1: Studying protein decay: Experiments were done in triplicates (see text
for more details) (a) One step stochastic decay (b) Multi-step stochastic decay

the field worker and need for a new ‘recruit’.

To test the dogma of one step stochastic protein decay, we performed experi-

ments at single cell levels, on Myc which decays using ubiquitin proteasome system

(UPS) [38]. It is a pulse-chase experiment19 on florescently tagged Myc fusion pro-

teins, transfected in a mammalian cell line (HeLa cells, a cancer cell line). If the

decay is indeed a one step process, we should see an exponential decay in the flores-

cence. However, if the decay is not a one step process, we should observe a plateau

before the decay starts. The number of kinetic rate limiting steps in the decay

process can be inferred from the shape of the decay curve.

During our pilot experiments, the results showed high variability. In some

cases we observed a one step decay (Fig. 1.1a), while in several cases we do observe

a multistep decay - as per our prediction (Fig. 1.1b). However, a large number of

the experiments showed cell death during the study. The data is not in conclusive

19i.e. to study the decay of a protein following the pulse of production.
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or presentable format yet and more experiments are needed before making any

significant inferences.

We believe that this variability is a result of extended exposure of nucleus (as

Myc is a nuclear protein) to UV radiation causing DNA damage, and potentially

activating apoptosis pathways. We are now planning to do more experiments using

cytoplasmic proteins, which would not need exposure of the nucleus to UV radiation.

1.5 Case for cell competition

Lastly, at the cellular level, we studied the cellular implications of noise in

DNA, RNA and Protein levels in a phenomenon known as cell competition. Cell

– cell interaction is important for all stages of growth, maintenance and disease in

any organism [39, 40]. Resource allocation, distribution, and inter-cellular commu-

nication are crucial for survival of all cells. Competition is an integral part of the

dialogue that determines the survival as well as the status of cells. Cell competition

is the phenomenon where two metabolically different populations, within the same

growing tissue, confront each other and the fittest survives [40].

As stated in previous sections, Myc has been implicated in cell competition

in drosophila melanogaster [27, 41]. So continuing with our theme of focusing on

Myc to study the biological noise, we examined the possibility of Myc mediated cell

competition in mammalian cell line (mouse fibroblast 3T3).

To study the effect, we used two cell populations. One population of cells had

stable transfections of tamoxifen inducible Myc-ER fusion proteins, while the other
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population had a florescent reporter protein (GFP). Myc-ER fusion proteins lose

Myc functionality due to Estrogen Receptor (ER). Tamoxifen is an antagonist of

estrogen receptor, and in presence of tamoxifen the Myc activity is regained. This

reversible process gives us a way to generate an instantaneous pulse of high Myc

levels in Myc-ER cells. This cell population while mixed with the GFP population

can generate conducive environment for cell competition. Upon addition of tamox-

ifen, the Myc-ER cell line will have a much higher level of activity as compared to

the GFP cell line. If cell competition is occurring, GFP cells should have a much

higher death rate than the Myc-ER cells.

During our experiments, we observed that the cells with higher levels of Myc

do have a higher proliferation rate (which has been reported before [42]) while the

GFP cells, with lower levels of Myc activity, were growing at a much slower pace.

However, beyond the differential proliferation rate, we did not observe any cell

competition.

More experiments are needed to test the possibility of cell competition in

mammalian cells. (Cell competition has not been reported in mammals so far.)

1.6 Outline of Thesis

A majority of our focus in this thesis remains DNA supercoiling. We start with

a brief review of DNA as a molecule, DNA supercoiling and other key players in

chapter 2. Chapter 3 discusses biological relevance of DNA supercoiling and gives an

overview of the current literature. Chapter 4 discusses some insights into possible
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ways of measuring DNA supercoiling using microarrays. Chapter 5 discusses the

results and inferences from our experiments and analysis. Chapter 6 summarizes

the analysis methods used in chapter 5.

Following this, chapter 7 summarizes the mRNA expression analysis and in-

ferences using the NanoString technique on Human Kinase codeset.

Protein decay and cell competition projects need more work and are not in-

cluded in this dissertation.
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Chapter 2

Introduction to DNA mechanics and topology

In this chapter we will review some basic facts and concepts about DNA, DNA

supercoiling and some of the key players that play an important role in generation

and regulation of DNA supercoiling. The purpose is to have a basic familiarity

with these concepts. For a detailed understanding it is advisable to see some of the

standard texts [22, 43].

Most of the material in this chapter was prepared for and presented as an

introductory lecture on “DNA, Torque and Cancer” at UMD, College Park (invited

talk for the biophysics course PHYS 818, May 2010).

2.1 Introduction

DNA (or DeoxyriboNucleic Acid) is a type of nucleic acid that contains the

genetic code for the respective species’ growth and functioning. The genetic infor-

mation stored in DNA is copied to another type of nucleic acids - mRNAs (mes-

senger RiboNucleic Acid), which are blue-prints for manufacturing of the molecular

machines, i.e. proteins. The regions with genetic information are known as genes.

Other regions have regulatory, functional or structural purposes, and it is believed

that about 98% of mammalian genome doesn’t code for proteins [44].
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DNA is made up of two conjugate strands of nucleic acids, each with a sugar

phosphate back bone that has a 5′ to 3′ directionality. There are four bases (A-

adenine, T-thymine, G-guanine and C-cytosine), one of which hangs from each sub-

sequent sugar of the sugar phosphate backbone. The strands are held together due

to the hydrophobic nature of the bases, and the 2-3 hydrogen bonds between the

conjugate bases (2 H-bonds for A-T, and 3 H-bonds for G-C).

2.2 DNA supercoiling and linking number

The two strands of DNA are coiled together to make a double helix or a coil.

When this coil is overtwisted or undertwisted from its relaxed form, it is called a

supercoil. Overtwisting or tightening is referred to as positive supercoiling, while

undertwisting or loosening is known as negative supercoiling.

To understand the idea of supercoiling let us consider a very simple example.

Fig. 2.1a shows two circles standing alone. As they are not connected, i.e. not

linked, their linking number, Lk = 0. Now if one of them is broken and resealed

interlocking the other circle, we will get a configuration similar to Fig. 2.1b. As it

takes one breaking / resealing of one circle to unlink the two circles, we say that the

circles are linked once, or their linking number Lk = 1.

Further, note that it doesn’t make any difference which of the strands were

broken here. Since there is no sense of directionality to the strands, the representa-

tion in Fig. 2.1b is good enough for describing the configuration of linking number,

Lk = 1. The other configurations are plotted in Fig. 2.2b. Both these configurations
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(a) (b)

Lk = 0 Lk = 1

Figure 2.1: Two circles (a) When unconnected, linking number, Lk = 0, (b) When
connected once, Lk = 1.

have same linking number, i.e. Lk = 1.

(a) (b)

Lk = 1

Lk = 0

Lk = 1

Figure 2.2: In absence of directionality different configurations of the linked circles
in Fig. 2.1b are superimposable, and have the same linking number.

As stated in the previous section, DNA strands do have a sense of directionality

to them. In the duplex (double helix) form, the two strands are running in opposite

directions. See Fig. 2.3. Conventionally the direction from 5′ to 3′ is considered

positive.

Due to directionality on both the circles, it is important to keep track of the
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crossings. The two configurations of Fig. 2.3b are no longer superposable to each

other, see Fig. 2.4.

The linking numbers of the two configurations in Fig. 2.4 have linking numbers

of +1 and −1 respectively. Fig. 2.5 summarizes the rules to determine the linking

number of linkage of directional strands from a 2D representation.

The rules can be summarized as follows. After moving over the crossing, start

from the strand on top and draw an angular arrow (mentally or literally):

1. If the arrow is drawn anti− clockwise,⇒ Lk = +1/2,

2. If the arrow is drawn clockwise,⇒ Lk = −1/2.

After putting a number on all the cross-overs, a sum total of the these numbers

gives the linking number of the overall assembly.

Note that a mere rotation of the 2D representation (or looking from the other

side of the paper) will not change the rule. Also see Fig. 2.6.

These simple rules are suffice to understand the basic concepts of supercoiling

we need for this dissertation. If the circles are linked more than once, as in Fig. 2.7,

the linking numbers can be computed accordingly.

Now let us move to the specific implications of these for DNA.
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3’ 5’(a) (b)

VV
5’ 3’

VV

Figure 2.3: Directionality of the two strands of DNA. (a) When unconnected link-
ing number Lk = 0, (b) In the duplex form two strands have opposite directions.
Conventionally 5′ to 3′ is considered positive.

V V

(a) (b)

VV

V V

Lk = +1

V VLk = 0
Lk = –1

V V

Figure 2.4: In presence of directionality the configurations of the linked circles in
Fig. 2.2b have different linking numbers.
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Lk = 0

VV

From top arrow to bottom arrow:
• Anti-clockwise fl Lk = + ½

VV• Clockwise fl Lk = - ½

Lk = +1
V

+½

V V V
+½

½Lk = -1

V

V
V V

-½

V
-½

Figure 2.5: Summary of rules to determine the linking number in linked domains of
directional strands from a 2D representation as shown in Fig. 2.4.
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Lk = 0

VV

From top arrow to bottom arrow:
• Anti-clockwise fl Lk = + ½

VV• Clockwise fl Lk = - ½

When looking from 

Lk = +1 +½

g
the other side

V V
+½

½Lk = -1

V V

-½

-½

Figure 2.6: Uniqueness of rules to determine the linking number of linked domains
of directional strands from a 2D representation.

Figure 2.7: Higher linkages in directional strands as compared to Fig. 2.6. (Figure
reproduced from [45] under free public license)
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2.3 Topology of relaxed and supercoiled DNA

Fig. 2.8 shows a schematic representation of relaxed DNA at 25◦C. The relaxed

form of DNA is usually referred to as B-DNA.1 Note that here the strands are

running in the opposite direction in a ‘structural’ (or biolchemical) sense, however,

topologically they are assumed to be running in the same direction. Hence the

linking number is to be computed assuming same directionality.

10.5 bp

5’

3’

5’

3’

3.4 nm

2 nm

+1/2

+1/2
Lk = 13 x 1/2 = 6.5

Figure 2.8: Schematic diagram of DNA with dimensions (at 25◦C) along with linking
number calculation.

At 25◦C, one helical turn (or pitch, h) of DNA constitutes about 10.5 bp, i.e.

every 10.5 bp, linking number increases by one. So for an N bp long piece of relaxed

DNA, the linking number is given by:

Lk◦ =
N

h
(2.1)

If the DNA is tightened or loosened, the linking number would change to a

new value, Lk, and the corresponding change is given by:

1There are several other types of structural variants DNA configuration that are physiologically

present [43, 46].
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∆Lk = Lk − Lk◦ (2.2)

Our ultimate goal of this study is to be able to generate a genome-wide map of

the linking number change (from relaxed DNA) due to various processes. However,

we will use a more commonly used variant of ∆Lk, known as superhelical density,

σ, which is defined as:

σ =
Lk − Lk◦
Lk◦

=
∆Lk

Lk◦
(2.3)

Note that tightening of DNA duplex squeezes more turns for the same length

of DNA, i.e. Lk > Lk◦, therefore ∆Lk is positive, and hence tightening is known as

positive supercoiling. Similarly, for loosening Lk < Lk◦, therefore ∆Lk is negative,

and hence the name negative supercoiling.

2.4 Free energy associated with DNA supercoiling

The specific free energy, ∆g∆Lk, associated with the change in linking number,

∆Lk (or superhelicity, σ), in a plasmid of N bp, can be given by [22, 47]:

∆g∆Lk = ∆G∆Lk/N

= NK(∆Lk/N)2

=
NK

h2
σ2

(2.4)

∆Lk is the change in linking number between supercoiled and relaxed state

[22], h is the helical repeat for relaxed DNA (or pitch i.e. 10.5 bp/turn, and NK
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is also a constant which is confirmed experimentally for N > 2000 bp as 1200RT

(or 700 kcal/mol at 20 ◦C), to within about ±10%, and for N ≈ 200 bp as 3900RT

(or 2275 kcal/mol) [47]. Note that free energy (∆G) has a squared dependence on

supercoiling density (σ), which means any deviation from relaxed state (positive or

negative) would cost energy, as expected.

As discussed in chapter 1, the energy content of the supercoiled DNA increases

parabolically with increasing positive or negative supercoiling. As DNA becomes

more and more supercoiled, it takes increasing amounts of energy to introduce more

supercoiling. To better understand this, let us consider a specific example of a

3000 bp long plasmid with a superhelical density σ = −.052, or a ∆Lk = −15.

Using equation 2.4 we can find out the corresponding free energy ∆G∆Lk=−15 =

52.5 kcal/mol. If the linking number was to increase to ∆Lk = −16 (or decrease to

∆Lk = −14), the corresponding free energy would be ∆G∆Lk=−16 = 59.7 kcal/mol

(or ∆G∆Lk=−14 = 45.7 kcal/mol). This corresponds to a change of about 7 kcal/mol

(∼ 12 kT ), which is equivalent to hydrolysis of an ATP molecule.

This shows that DNA supercoiling can serve as a storage of energy, and small

changes in supercoiling can serve as the necessary energy source / sink when coupled

to other reactions.

Fig. 2.9 plots the free energy, ∆G∆Lk, as a function of ∆Lk for this case. Note

that this energy (12 kT ) is distributed over the entire plasmid at about 2 cal/bp/mole

or 4 × 10−3 kT/bp, which seems very small. During transcription, however, if the

translocation proceeds without pauses, then the RNA polymerase could generate

2This is typical superhelical density observed in the E. Coli bacterial genome.
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up to 10 supercoils per second and up to 3000 supercoils for a typical 30 kbp gene

[19, 23]. For actively transcribing genes, tandem initiations can create large enough

torsional stresses to melt the DNA. The variation in AT and GC basepairs’ H-bond

pairing energies (4 − 9 kcal/mol) and base stacking energies (4 − 15 kcal/mol) can

facilitate the melting of DNA in a sequence dependent manner. It takes about

−9 pN.nm torque to melt the DNA [24, 25, 26].3
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Figure 2.9: Free energy, ∆G∆Lk, as a function of ∆Lk for a 3000 bp long plasmid at
20 ◦C. See equation 2.4 for more details.

Specific melting sequence(s) could be strategically located in regions upstream

(or downstream) of the transcription start sites (TSS) which can have a transcription

3Note that the parabolic model will break down as the material (i.e. DNA) goes through a

phase transition. It will break soon for the negative supercoiling because DNA will start to melt

at about −9 pN.nm, while for positive supercoiling a torsion of about 20 pN.nm would be needed

for a transition to P-DNA form (P stands for Pauling) [24, 25, 26].
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dependent conformational change. These changes could further elicit action from

other activating or repressing factors, providing a very powerful dynamic control

mechanism for regulating transcriptional noise in a transcription dependent manner.

2.5 Key players for generation and relaxation of DNA supercoiling

Although almost all DNA – protein interactions cause the DNA to deviate

from its relaxed B-DNA form, there are two types of enzymes that require special

attention, namely polymerases and topoisomerases.

Polymerases are enzymes that copy the DNA content for replicating DNA

(hence the name DNA polymerase) or for RNA transcription (hence the name RNA

polymerase). Since they thread through the DNA, without making a break, they

introduce positive supercoiling downstream (i.e. in the direction of translocation)

and negative supercoiling upstream. In case of fluent translocation polymerases can

introduce supercoiling at about 9 − 10 ∆Lk/sec and up to 3000 supercoils for a

typical 30 kbp gene [19, 23].

Topoisomerases on the other hand are enzymes that relax the supercoiled

DNA. They achieve this by nicking, or breaking, one strand of DNA (hence the

name topoisomerase I) and passing over the other strand or by nicking both the

strands of DNA (hence the name topoisomerase II), and passing of another region

of double stranded DNA. For a detailed description of topoisomerases, see chapter

5 of [22].
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2.6 Modeling DNA mechanics

As discussed in the previous sections, most DNA–protein interactions involve

alterations of DNA structure from its relaxed state to a greater or lesser degree.

The in vivo diffusion, through DNA fibers, of torsional stress generated during the

process of transcription have been a matter for speculation for several decades [48].

Recent developments in single molecule techniques have confirmed that DNA does

not behave like a rigid rod, in fact, not even like a plumbers snake [49]. These

results suggest that even though DNA doesn’t behave like a rigid rod, it might (as

speculated in [43]) still need to be anchored to a structure or to be closed upon itself –

so as to form a precisely bounded topological domain (otherwise in case of an open

domain, the other end might rotate freely). It was proposed and experimentally

shown [50] that the frictional drag acting upon DNA in a viscous aqueous medium

could increase the capacity of DNA to absorb the torsional stresses and retard their

diffusion.

In a closed topological domain the linking of DNA is given by:

Lk = Tw +Wr (2.5)

where Lk is the linking number (defined earlier in section 2.2), Tw is twist –

representing the coiling of the individual strands about each other (as described in

section 2.2), and Wr is writhe – representing the over all undulations, in 3 dimen-

sions, of the central helical axis of duplex DNA.4 In a relaxed DNA circle sitting on

a plane, the writhe contribution is zero, and linking comes from twisting the two

4For a detailed discussion please see chapter 2 of [22].
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DNA strands about each other. However, when the DNA is supercoiled, writhing

provides a way to release (or redistribute) the torsional stress:

∆Lk = ∆Tw + ∆Wr (2.6)

At very low levels of supercoiling the torsional stress can be accommodated

as small changes in twist (reflected in slight lengthening or shortening of the helical

pitch). However, with increasing levels of supercoiling the duplex begins to fold on

itself with the helical axis asymmetrically shifting from the plane of relaxed DNA

(anchored linear DNA or plasmid DNA), i.e. introducing writhe into the duplex.

It has been shown that RNA polymerase bound on DNA bends the duplex

by 90 degree [51]. During transcription, the positive supercoiling downstream (i.e.

in the direction of motion) is mainly introduced as twist. However, due to the

aforementioned 90 degree bend, the negative supercoiling generated upstream of

RNA polymerase is first manifested in writhe and later repartitioned partially as

twist. It is easy to model torsional stress distributed in twist, however developing

an analytical mathematical model for writhing is a bit challenging, although there

have been several attempts to simulate the effect of supercoiling in naked plasmid

DNA [18, 52, 53, 54]. In vivo, in the setting of chromatin where the trajectory of

the chromatin fiber and the boundaries of stable and flickering topological loops are

ill-defined, it is unclear what assumptions may be made to simplify the modeling.

This is a critical roadblock for our capacity to analytically model the DNA

supercoiling and more work is needed to expend our understanding of the process.
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Chapter 3

Overview: DNA supercoiling and regulation of dynamic processes

This chapter serves as literature review for the field of DNA supercoiling. The

chapter was published as a review paper [55], for which I was a minor author.

3.1 Summary

Through dynamic changes in structure resulting from DNA-protein interac-

tions and constraints given by the structural features of the double helix, chromatin

accommodates and regulates different DNA-dependent processes. All DNA trans-

actions (such as transcription, DNA replication and chromosomal segregation) are

necessarily linked to strong changes in the topological state of the double helix

known as torsional stress or supercoiling. As virtually all DNA transactions are in

turn affected by the torsional state of DNA, these changes have the potential to

serve as regulatory signals detected by protein partners. This two-way relationship

indicates that DNA dynamics may contribute to the regulation of many events oc-

curring during cell life. This chapter summarise the current literature and gives an

overview of how DNA supercoiling plays an important role in the cellular processes,

with particular emphasis on transcription. Besides giving an overview on the multi-

plicity of factors involved in the generation and dissipation of DNA torsional stress,
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we will discuss recent studies which give new insight into the way cells use DNA

dynamics to perform functions otherwise not achievable.

3.2 Introduction

DNA for long has been considered a passive storage house of genetic infor-

mation that is acted upon by other bio-molecules. As soon as the helical structure

of DNA had been drawn, understanding how the DNA strands, which intertwine

around each other, are separated during DNA replication or transcription was an

open and fundamental question. This task appeared to be even more challenging

after the discovery of circular DNA molecules [15]. The solution used by the cell to

overcome the topological problem was revealed with the discovery of DNA topoiso-

merases that catalyze changes in the linkage of DNA strands and modulate DNA

topology [16]. It is now certain that all DNA transactions involve alterations in the

structure of DNA. The structural changes that distort the double helix through over-

twisting/undertwisting and associated loop-like plectoneme structures are referred

to as DNA supercoiling or DNA torsional stress (Fig. 3.1a) [17]. In vitro and in

silico studies have shown that DNA supercoiling modulates the probability of DNA

melting, affects DNA-protein interactions, and increases the local concentration of

distal DNA sites [18]. Consequently, the activities that induce DNA supercoiling

may be exploited in regulatory pathways.

In bacteria, the genomic DNA is maintained in an undertwisted state which fa-

cilitates localized melting of the double helix at origins of replication or transcription
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Figure 3.1: Basics of DNA topology and its relevance to DNA transaction: The
DNA topology is described quantitatively by the twist of double helix and by the
number of times the helix crosses over on itself (plectoneme). Plectonemic structures
are typically formed by bacterial plasmids. B) A graphical illustration showing the
generation of supercoiling during transcription and replication. If polymerases are
moving without rotation, then due to its helical structure, the DNA must be screwed
through the protein complexes. In this case, the templates rotate around its axis as
indicated by curved arrows.
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initiation sites, contributes to the formation of the nucleoid structure and promotes

recombination events [56, 57, 58]. The concerted activities of topoisomerases and

gyrases (DNA supercoiling enzymes) are determinant for maintaining the supercoil-

ing homeostasis necessary to optimize these key genetic processes [59]. Eukaryotic

organisms lack enzymes such as DNA gyrase that directly introduce supercoils into

DNA, but statically their genome is supercoiled to a similar degree of bacterial

genome [60]. Each nucleosome of the chromatin is wrapped by DNA 1.8 times and

constrains approximately one negative supercoil which cannot diffuse to remote ar-

eas until released by nucleosome removal [61, 62]. Thus, as a consequence of the

chromatin organization, the net of DNA supercoils is fixed in the eukaryotic genome

and is known as constrained supercoils. The unconstrained supercoils must be ac-

commodated within the linker DNA (regions separating the nucleosomes) which in

average represents only 20% of the genomic DNA in higher eukaryotes and decreases

up to 6% in the yeast [63, 64]. Dynamic interplay between broadly distributed con-

strained supercoils and the local unconstrained supercoils in the eukaryotic genome

complicates the assessment of the DNA torsional state in the cells [65, 66, 67]. Only

recently the experimental approaches have advanced to the point where it is feasible

to interrogate the role of DNA topology in gene regulation.

3.3 Origin of DNA supercoiling

Cellular processes dynamically change DNA topology. According to the su-

percoiled domain model the activities that force DNA to revolve around its axis
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generates a local domain of DNA supercoiling (Fig. 3.1b). This hypothesis applies

with minor modification to the movement of transcription and replication complexes

as well as for some helicase and restrictase activities [48, 68, 69, 70]. Currently, the

best investigated example is transcription-generated supercoiling. Due to the over-

whelming molecular mass of the RNA polymerase and given the arguments in favor

of immobilization of RNA polymerase in transcription factories, the DNA template

is forced to rotate around its axis as the double helix threaded through the transcrip-

tional machinery [71, 72, 73, 74]. The upstream DNA becomes untwisted, while the

downstream DNA becomes overtwisted which is referred to as negatively and pos-

itively supercoiled, respectively. If the translocation proceeds without pauses then

the RNA polymerase could generate up to 10 supercoils per second and up to 3000

supercoils for a typical 30 kbp gene [19, 23]. This enormous torsional stress might

be inhibitory for efficient transcription [48, 75, 76]. Consequently, it is relieved by

DNA topoisomerases which transiently break and rejoin the backbone of DNA [69].

Another source of DNA supercoiling is provided by the reorganization of eu-

karyotic chromatin: the disassembly or assembly of nucleosomes releases or absorbs

DNA superhelicity. Special protein complexes called chromatin remodelers are able

to remove or slide nucleosomes in an ATP-dependent fashion [77, 78]. Notably, in

vitro experiments have shown that these chromatin remodeling activities directly

generate torsional stress of DNA in the presence of nucleosomes [79]. While the

remodeling of the chromatin structure is a broad phenomenon that could involve

sometimes entire loci, it is very difficult to assess and measure in vivo the extent

of generated unconstrained supercoiling due to the transient nature of this process
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which could be unsynchronized in a population of cells [80, 81]. Consequently, direct

evidence is still needed.

In addition to DNA-tracking activities and chromosome remodelers, the ex-

istence of nuclear actins and myosin in principle may allow mechanical forces to

be applied directly to chromatin fibers [82, 83]. Single DNA molecule experiments

in vitro have demonstrated a dynamic coupling between twisting-untwisting of the

double helix and stretching forces, a possibility which remains largely unexplored in

vivo [84].

3.4 Tuning of transcription-generated DNA supercoling

The level of supercoiling depends on two opposite processes: how fast torsional

stress is introduced into the DNA, and how fast it is relaxed or diffused into remote

regions of the genome. The supercoil generation in the DNA flanking RNA poly-

merase complexes depends on the rate of transcriptional elongation which may be

relatively invariant in the absence of specific RNA polymerase pausing or stalling

and on the rate of transcriptional initiation [48, 85, 86]. Thus low level transcrip-

tion produces a pulse of torsional stress followed by DNA relaxation, while high level

transcription, due to repetitive initiation, may establish stable dynamic supercoiling

upstream of transcription start sites [28, 31]. In the transcribed unit of highly active

genes the DNA regions between RNA polymerases transcribing in tandem contain

supercoils of opposite polarity that could annihilate each other. Other important

parameters include the distribution of promoters which, in divergent orientation,
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could reinforce DNA supercoiling upstream transcription start sites by untwisting

the double helix as well as by inducing directly plectonemes [87], and the presence

or absence of barriers to diffusion of torsional stress [88]. The dynamics of supercoil

diffusion should depend on the behavior of chromatin fibers: in principle, the po-

sition of individual nucleosomes, the interactions between them, the linker binding

proteins and the nucleosome modifications will govern supercoil propagation. We

still do not know much about these important properties of chromatin, but single

nucleosome array experiments in vitro reveal high torsional flexibility of chromatin

compared to naked DNA [66, 89]. Successively, it has been found that chromatin

fiber behaves qualitatively similar to the nucleosome arrays, probably due to the

conformational flexibility of nucleosomes [90]. If the same observation will be con-

firmed in vivo, then the chromatin might act as a buffer which transiently absorbs

torsional stress to keep the chromatin environment comfortable for DNA-tracking

complexes [89, 91]. Comparison of the expression profiles of cells - wild type or mu-

tant - for different topoisomerase, revealed that these enzymes play an important

role during transcription [69, 92, 93]. According to their capability to cut and re-

seal one or two DNA strands, topoisomerases are divided broadly into two families:

type I enzymes transiently break one DNA strand; type II topoisomerases cleave

and rejoin both strands [92]. The ability of the two types of enzyme to efficiently

remove both positive and negative supercoiling in eukaryotes reflects a mechanical

and functional redundancy between different topoisomerases [69, 92]. Since super-

coils generated in front of the transcribing RNA polymerase have a different effect

on transcription and reside in a different molecular environment compared to those
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generated behind it, different solutions of topological problems and specialized roles

of topoisomerases may occur in each circumstance. Indeed, in yeast, positive tor-

sional stress in front of the RNA polymerase I is largely resolved by topoisomerase

II (Topo II), while topoisomerase I (Topo I) is responsible for the removal of the

negative torsional stress behind the polymerase [94]. Topo II is the main relaxase on

chromatin fibers in vitro but it binds primarily to the nucleosome-free regions in vivo

[95, 96]. Notably, under the same experimental conditions, naked DNA was relaxed

by Topo I much faster than by Topo II [96]. This finding suggests that Topo I is a

more processive and rapid enzyme which probably works near the regions stripped

of nucleosomes with a high demand for relaxation, i.e., close to RNA polymerase.

In support of this idea, magnetic tweezers experiments also revealed Topo I to be

a torque-sensitive enzyme as the mean number of relaxed supercoils increases with

the torque stored in the DNA [97].

The complexity of the processes involved in the twist diffusion through the

chromatin and their transient nature, as well as the absence of a clear explanation

as to how topoisomerases are recruited to active genes have made it very difficult

to predict the extent of supercoiling at each particular genomic locus. Our under-

standing of this multi-factor mechanism is still rudimentary and requires extensive

experimental efforts.

As part of this work we are have developed some new insights into understand-

ing of how topoisomerases are recruited to active and inactive genes. See chapter 5

for more details.
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3.5 Methods to assess the DNA supercoiling

The first techniques to study the torsional state of DNA relied on DNA super-

coiling mediated changes in the compaction and the geometry of DNA (Fig. 3.1a)

observable by equilibrium and velocity sedimentation, by electron microscopy and

by electrophoretic separation [98, 99, 100]. Currently these methods are mostly used

for determining supercoiling in populations of circular DNA, i.e. plasmids. These

techniques report the average behavior of many DNA molecules and do not char-

acterize the dynamics of structural transitions. During the last one and one-half

decades, controlled mechanical manipulation of single DNA molecules or chromatin

fibers has been developed to study supercoil-diffusion, the behavior of nucleosome

arrays under torsional stress and the active removal of supercoils by topoisomerases

[101, 102]. These in vitro methods have improved our understanding of DNA me-

chanics but do not allow monitoring the mechanics and dynamics of the response of

DNA to torsional stress in an in vivo context.

The degree of supercoiling in intracellular DNA has been estimated most of-

ten using a strategy that relies on the binding of various psoralen derivatives to

DNA (Fig. 3.2a). The psoralens are cell membrane-permeable molecules with a pla-

nar, aromatic structure that allows them to intercalate into B-DNA. The extent of

psoralen intercalation is linearly related to the level of negative superhelicity and

provides a measure of DNA topology in vivo [103, 104]. Such experiments have

revealed that although the bulk of genomic DNA is relaxed, supercoiled DNA does

exist at a few loci of mammalian cells [105, 106]. In Drosophila polytene chromo-
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somes, the pattern of psoralen binding has been used to directly visualize torsionally

stressed DNA which appeared to localize at active genes [107]. In a recent modifica-

tion of the psoralen-based technique, binding of the compound to the yeast genome

in vivo was examined genome-wide using DNA arrays [108]. It was shown that

large chromosomal compartments have different levels of DNA superhelicity but the

experiment failed to detect transcription-induced supercoiling, probably due to the

high density of genes in yeast and very short linker DNA which together require a

method with a higher resolution.

The first direct measure of transcription-generated supercoiling in vivo in hu-

man cells was made by using a site-specific Cre-recombinase to excise a chromatin

fragment upstream of an inducible promoter [31]. Recombinase-mediated circu-

larization of the fragment enabled the trapping of negative supercoils that were

diffusing through the chromatin (Fig. 3.2b). This experiment showed that DNA

supercoiling dynamically elicits the relaxation potential of topoisomerases [31]. The

transmission of negative supercoils upstream of the actively transcribed regions has

been demonstrated to occur even on linear DNA in vitro, showing that the genera-

tion of supercoiling is much faster than the free DNA twist diffusion [28]. In addition,

since many promoters are sensitive to DNA supercoiling, indirect studies have been

used to monitor the pattern of transcriptional activity to obtain information about

DNA topology [76, 109, 110]. DNA topoisomerases also provide a valuable tool to

investigate the topology of DNA and could function as in vivo probes to measure the

level of torsional stress. Given their specialized functions, the mapping of the exact

position of topoisomerases along the genome should enable an in vivo assessment of
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Figure 3.2: Strategies to assess the DNA topology inside of the cells: A) Psoralen
intercalates preferentially into undertwisted DNA and, upon exposure to UV-light,
crosslinks its strands. DNA supercoiling in vivo can be monitored through the
extent of photo-crosslinking between different loci in the cell. B) Dynamic torsional
stress propagating from an activated promoter between the loxP sites is trapped
in the DNA circle excised by Cre-recombinase. Two-dimensional electrophoresis
of the circles gives an accurate accounting of DNA supercoiling generated during
transcription.
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the supercoils distribution [94, 95, 111, 112].

3.6 DNA supercoiling in regulatory pathways

In a eukaryotic cell, basal chromatin organization not only prevents access of

the RNA polymerase to promoters but also restricts transcription elongation along

the DNA. Because of the strong binding energy between nucleosomes and DNA,

transcription requires chromatin remodelers to disrupt or to slide nucleosomes, pro-

viding a means for transcription regulation. There is substantial evidence from in

vivo experiments to indicate that nucleosome disruption is needed for proper elon-

gation; importantly, this disruption propagated along the gene faster than the rate

of RNA polymerase II translocation [113]. Positive DNA supercoiling promotes un-

wrapping of DNA from the histones and modifies nucleosome structure in vitro;

in contrast nucleosomes rapidly form on negatively supercoiled DNA [67]. Conse-

quently, it was suggested that at each round of transcription, the positive super-

coiling is pushed ahead of RNA polymerase. Accumulated positive torsional stress

induces structural modification of nucleosomes and creates conditions in which poly-

merase efficiently elongates through the nucleosomal array [90, 114]. Negative stress

in the wake of the transcription machinery facilitates rapid re-formation of nucleo-

somes behind the elongating complex. Thus, by variation in intensity and polarity,

supercoiling may directly modulate the conformation of chromatin to satisfy the

demand of transcription in real-time (Fig. 3.3a). Indeed, it was shown that treat-

ment of cells with a Topo II inhibitor results in perturbation of chromatin structure,
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which seems to indicate that DNA supercoiling mediates chromatin rearrangement

[115].

The double helix which is the predominant B-form, could adopt, depending

on the sequence composition, a variety of alternative structures [30]. A prereq-

uisite for the formation of these structures is duplex destabilization sponsored by

high level of negative supercoiling [116]. In fact, dynamic supercoiling was indi-

rectly measured through the identification of non-B DNA structures in susceptible

sequences upstream to active promoters both in vitro and in vivo [28, 31]. Non-

B DNAs bind a diversity of DNA conformation-sensitive proteins some of which

have regulatory function, suggesting that these unusual DNA structures are more

than mere by-products of genetic activity [30, 117]. Accordingly, in silico analyses

showed an enrichment of supercoil-sensitive sequences at regulatory loci [118, 119].

To date, the most complete investigation showing the important role of non-B DNA

in gene regulation was conducted on the human c-myc proto-oncogene. Upstream

of the main promoter of MYC it is located a supercoil-sensitive sequence called

FUSE. During the transition from the basal level of expression to the full expression

in response to activating signals, FUSE starts to melt due to increasing levels of

negative supercoiling [29]. Partly melted FUSE binds the transcription activator

FUSE-binding protein (FBP), which increases the promoter activity by interacting

with the general transcription factor TFIIH and drives the transcription of MYC

to peak output. FBP-interacting repressor (FIR) binds FBP and FUSE which is

fully melted due to high level of DNA supercoiling. The binding of FIR abolishes

the effect of FBP, and the gene transcription is restored to basal levels. Thus, co-
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Figure 3.3: Long range regulatory events due to transcription-generated DNA super-
coiling: A) Torsional stress modulates the conformation of chromatin, promoting un-
wrapping of DNA from the histones ahead of RNA polymerase (RNAP) and rewrap-
ping behind it. B) During transcription of c-myc gene the melting of the supercoil-
sensitive sequence FUSE promotes the recruitment of factors that enhance (FBP)
or repress (FIR) the transcription. C) According to the level of torsional stress,
the CT-element located upstream of the c-myc promoter can flip between different
conformations (double-stranded, single-stranded and G-quadruplex/ i-motif) which
dictate the binding of specific transcription factors. D) The chromatin remodeling
in the promoter of CSF1 favors the formation of Z-DNA which stabilizes the open
chromatin structure. (-) means negative supercoils, (+) means positive supercoils.
E) Single-stranded structures in supercoiled region provide the flexibility needed to
juxtapose distal elements.
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operation between supercoil-induced non-B DNA and DNA conformation-sensitive

proteins provides a real-time feedback mechanism for controlling gene expression

(Fig. 3.3b).

Another important conformationally plastic sequence involved in c-myc reg-

ulation is the CT-element (also known as NHE III1) located 250 bases upstream

of the main promoter [120, 121]. It was observed that this element adopts non-B

DNA structures in supercoiled DNA in vitro as well as in its endogenous location

in vivo [122, 123]. In normal B-DNA structure, the CT-element is bound by the

transcriptional factor Sp1 which activates transcription. It was suggested, that as a

result of supercoil accumulation due to activated transcription, the element flips into

the single-stranded conformation and the transcription factors hnRNPK and CNBP

bind the purine-rich and pyrimidine-rich strands, respectively, to maintain the ac-

tive state [121, 124, 125]. Besides the single-stranded conformation, CT-element can

adopt stable non-B DNA structures, a G-quadruplex on the purine-rich strand and

an i-motif on the pyrimidine-rich strand [126]. These globular structures sequester

the transcription factor binding sites and consequently silence transcription. Differ-

ent sets of binding proteins associate with different conformations of CT-element;

consequently, gene specific responses could be achieved using ubiquitous transcrip-

tional factors. Thus the local flipping between different DNA conformations induced

by torsional stress plays as a switch in selecting which transcriptional factor to em-

ploy according to the physiological demands on the cell (Fig. 3.3c).

One more sequence 1.8 kb upstream of the c-myc promoter has been predicted

to assume a left-handed double helical structure called Z-DNA. The region is rec-
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ognized in vitro by anti-Z-DNA antibodies in permeabilized cells under conditions

of active transcription [127]. The function of this sequence in c-myc transcription

is currently unknown, although proteins able to specifically interact with Z-DNA

have been described [128]. Besides serving as targets for binding, supercoil-induced

non-B DNA structures could modify chromatin structure by exclusion of nucleo-

somes [129, 130, 131]. It was shown that activation of the CSF1 gene by chromatin

remodeling activities, results in formation of Z-DNA at the sequence located within

the promoter which, in turn, stabilizes the open chromatin structure in the area

critical for efficient transcription (Fig. 3.3d). The elastic properties of non-B DNA

are different from those of B-DNA. Double helix is a stiff polymer and cells should

overcome its rigidity to facilitate DNA-protein-DNA interactions which are playing

an important role in many cellular processes [132]. Non-B conformations expose

flexible single-stranded segments that together with plectoneme formation may fa-

cilitate DNA transaction between flanking sequences (Fig. 3.3e) [133, 134].

MYC deregulation is just one of several crucial hallmarks of cancer. It was sug-

gested that cancer genotypes are set up by eight essential alterations in single cells

that dictate malignancy: sustaining proliferative signaling, evading growth suppres-

sors, resisting cell death, enabling replicative immortality, inducing angiogenesis, ac-

tivating invasion and metastasis, reprogramming of energy metabolism and evading

immune destruction [135]. Each of these physiologic changes is manifested by alter-

ations in expression of key genes, with many of them containing supercoil-sensitive

sequences in the core or proximal promoter. Given the importance of these genes,

including MYC, KRAS, RB1, BCL2, VEGFA, TERT and PDGFA, additional layers
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of tight regulation may be imposed at their promoters. The response of CT- and

FUSE-like elements to transcription-generated supercoiling reflects the intensity of

ongoing transcription, and DNA conformation-sensitive proteins close the real-time

feedback loop to provide regulatory adjustment necessary to synchronize the output

of gene expression within the population of cells [117, 121].

3.7 Summary and Conclusions

In the early days much effort was expended to understand the interplay be-

tween the genetic code and chromatin structure: DNA primary structure was found

to contain signals that participate in the regulation of DNA metabolism [136, 137].

In the recent years there is a growing body of experimental evidence supporting the

idea that DNA mechanics are responsible for a variety of regulatory functions: DNA

supercoiling modulates the dynamic rearrangement of chromatin to control the final

output of the specific DNA processes [29, 31, 117, 121].

The assembly of multi-protein complexes allows a precise spatio-temporal con-

trol of DNA metabolism and particularly of gene expression. By representing the

targets of transcriptional factors, cis-regulatory modules provide the essential in-

structions to coordinate genetic processes. The constellation of factors, both acti-

vators and repressors, bound to each module sequence depends on their expression

levels. Thus, the variation in the local concentration of transcriptional factors de-

termines the transcriptional outcome, which is a common way to regulate transcrip-

tion. At the same time, the delay imposed by multiple events necessary to change
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the relative concentration of the factors (transcription, translation, protein modifi-

cation, etc) results in the danger of low synchronization between the physiological

requirement and the acute response of important genes such as proto-oncogenes.

In contrast, propagation of torsional stress on the DNA is fast and may serve as

an efficient long-range signal. The signal could restrict or promote the enrollment

of DNA conformation-sensitive proteins at the regulatory module, or could favor

the proper arrangement of protein-DNA interaction over long distances. The same

regulatory outputs could be reached by adjustment in transcription factor synthe-

sis, but only DNA supercoiling has the capacity to govern the specific transaction

moment-to-moment, according to the demands of a DNA-dependent processes.

Our understanding of this phenomenon is still elusive. Although chromatin

biology has been gaining much more interest, the associated torsional state of DNA

remains neglected since it is less amenable to analysis. Exploring the phenomenon

requires the aggressive development of new techniques for measuring of DNA tor-

sional stress with high sequence resolution and preferably at the single-cell level.
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Chapter 4

Understanding Different Measures for DNA Supercoiling in

Microarray Hybridizations

This chapter develops the mathematical framework that enables choosing the

correct measure for inference of DNA supercoiling using microarray experiments.

All the simulations were performed by me, and they proved very important in our

final choice where we decided to drop some of the cross-hybridization experiments

that were thought to be good measures of DNA supercoiling earlier.

4.1 Overview

Psoralen intercalation has been used as a marker for in vivo DNA supercoiling

for over three decades now. Combined with microarrays, it becomes an even more

useful tool. In section 3.5 we reviewed how various groups have used different mea-

sures to estimate supercoiling levels, and make inferences from their observations.

Each measure gives us information about DNA supercoiling in slightly different way,

and it is important to choose the correct measure to make appropriate inferences.

In this chapter, we examine these various measures of DNA supercoiling, in the

context of microarray hybridizations, and discusses relations between them.
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4.2 Psoralen intercalation

As a direct measurement of the supercoiling level is not yet possible for various

reasons, we use an indirect method of psroalen intercalation, commonly known as

PUVA (or Psoralen + UV Activation).

We know that the intercalation drug psoralen has only a slightly higher pref-

erence for intercalation in negatively supercoiled DNA than it has for relaxed DNA.

Let us assume that we have a 20% chance of psoralen intercalation in relaxed DNA,

which increases to about 35% in negatively supercoiled DNA [43].

To better understand the different measures of supercoiling, let us consider a

hypothetical case where we have two distinct sets of experiments, with two distinct

levels of negative DNA supercoiling1 in some region of the DNA.2

Note that in principle, we are comparing the same regions of DNA under

conditions with different levels of supercoiling, they may come from the same ex-

periment or a different experiment. A schematic diagram is shown in Fig. 4.1. The

symbolic reference to DRB here is to give a realistic example.3 DRB is an elongation

inhibition drug, and hence causes the polymerase to stop transcribing. As a result

we will loose the transcriptionally generated negative supercoiling but retain the

supercoiling due to the inherent chromatin structure, hence two levels of negative

supercoiling.

1Negative, since we are using psoralen crosslinking as the probe of this supercoiling.
2We’ll not consider the ideas of positive supercoiling here, as they can be easily extrapolated

from this understanding.
3As the level of supercoiling in some region upstream to a transcriptionally active gene compared

between DRB treated and untreated samples.
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Figure 4.1: Schematic profiles of two different levels of negative supercoiling in the
same region of genome between two different experiments.
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Figure 4.2: Psoralen intercalation probability profiles for the different levels in
Fig. 4.1.

The resultant psoralen intercalation probability should look something like

Fig. 4.2. Note that as per our previous knowledge, the relaxed regions have a basal

level of psoralen intercalation at about 20%, while the regions with increasing levels

of negative supercoiling increases the probability of intercalation in the correspond-

ing genomic regions.

4.3 Microarray hybridization

After psoralen intercalation and photo-binding, DNA is extracted, denatured

and sonicated.4 Then sonicated DNA is gel-purified to separate the crosslinked

(XL) and non-crosslinked (nXL) DNA. These XL and nXL DNA samples are

then hybridized to microarrays. The resultant four hybridizations yield something

4For exact details of the experiment refer to section 5.8.
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like Fig. 4.3.

0

500

1000

1500

Chosen region of DNA

In
te

n
s
it

y

XL

XLHDRBL
nXL

nXLHDRBL

Figure 4.3: Hybridization profiles of the XL and nXL DNA from psoralen interca-
lation probability profiles in Fig. 4.2.

Here the nXL profiles are obtained using the mass conservation equation on

total DNA (i.e. XL + nXL = const).5 In general, the microarray intensities may

vary depending on the system, here we are using a maximum intensity of 1024 (i.e.

210).

4.4 Choosing the correct measures

Our ultimate goal is to make inferences about the relative levels of supercoil-

ing in these two regions.6 In order to make inferences from these hybridizations,

5For more details see equation 4.1 in section 4.6.
6These hybridizations give us the level of supercoiling in arbitrary units. We also want to

estimate a conversion factor to calibrate the units. See section 4.5 for more details.
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we’ll have to choose a correct measure of supercoiling. There are several measures

possible. Let us start the discussion with primary measures, which are computed

from utmost one occurrence of the direct intensities:7,8

1. Direct intensity ratios

• XL
XL(DRB)

: The ratio of XL intensities from the two hybridizations. A

varient of this has been traditionally used as a measure by Richard Sin-

den.

• nXL
nXL(DRB)

: The ratio of nXL intensities from the two hybridizations.

Counterpart of the previous one.

• XL
XL(DRB)

− nXL
nXL(DRB)

: The difference of the two direct intensity ratios.

2. Direct intensity differences

• XL−XL(DRB): The direct difference between XL intensities from the

two hybridizations.

• nXL−nXL(DRB): The direct difference between nXL intensities from

the two hybridizations.

• (XL−XL(DRB))− (nXL−nXL(DRB)): The difference of two direct

intensity differences.9,10

7For a discussion on secondary measures, see section 4.4.4.
8For a discussion on best choice of measures, see section 4.4.5.
9Same as: (XL− nXL)− (XL(DRB)− nXL(DRB)).

10The ratio XL−XL(DRB)
nXL−nXL(DRB) is another possibility but its magnitude should equal one, as the

direct intensity differences are expected to be equal to each other in magnitude. See equation 4.1

(section 4.6) for more details.
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3. Normalized intensities ratios

• XL
nXL
− XL(DRB)

nXL(DRB)
: The difference between the normalized XL intensities

(normalized by much higher nXL intensities).

• XL
nXL

/ XL(DRB)
nXL(DRB)

: The ratio of the normalized XL intensities (normalized

by much higher nXL intensities).11

Let us look at these one by one.

4.4.1 Ratios of XL and nXL intensities

The ratio of XL and nXL intensities from the two sets of hybridizations, i.e.

XL
XL(DRB)

and nXL
nXL(DRB)

, give a conventional measure of relative DNA supercoiling.

(The ratio of XL intensities was used by Richard Sinden for his pioneering studies.)

The argument is very simple to understand: If the relative enrichment of XL

intensities is higher in the DRB untreated sample, it means that this sample is more

negatively supercoiled than the DRB treated sample.12 By a similar argument for

nXL intensity ratios, a higher nXL intensity in untreated sample would mean lower

crosslinking and hence lower negative supercoiling. So the nXL ratio profile should

look opposite to the XL ratio profile.

Fig. 4.4 shows the cross-hybridization ratios for the hybridizations profiles in

Fig. 4.3. As expected the two ratios have opposite nature, although the shapes

of the profiles look very different. The XL ratio profile looks considerably flatter

11Same as: XL
XL(DRB)/

nXL
nXL(DRB) .

12Higher XL implies higher crosslinking, which implies relatively higher negative supercoiling.
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in comparison to the original supercoiling profile (Fig. 4.1) as well as the psoralen

intercalation probability profile (Fig. 4.2). (cf. Fig. 4.5 and Fig. 4.7.)13
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Figure 4.4: Comparing the cross-hybridization ratios (and their difference) for the
hybridizations corresponding to Fig. 4.3 profiles. (cf. Fig. 4.5 and Fig. 4.7.)

4.4.2 Differences of XL and nXL intensities

The differences of XL and nXL intensities from the two sets of hybridizations,

i.e. XL−XL(DRB) and nXL− nXL(DRB), give two direct measures of relative

DNA supercoiling. This method is traditionally not used owing to the convention of

normalizing to the background in hope of improving the signal to noise ratio (SNR).

However, as shown in Fig. 4.5, it turns out that this is the most sensitive method

for estimation of supercoiling levels. The issues of SNR can be tackled by taking

13See section 4.4.5 for more discussion.
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average multiple replicates and by using better smoothing techniques than available

before.

Since this is a direct difference, the argument is same as before: If the relative

enrichment of XL intensities is higher in the DRB untreated sample, it means that

this sample is more negatively supercoiled than the DRB treated sample. Higher

XL implies higher crosslinking, which implies relatively higher negative supercoiling.

By a similar argument for nXL intensity ratios, a higher nXL intensity in untreated

sample would mean lower crosslinking and hence lower negative supercoiling. So the

nXL difference profile should look opposite to the XL difference profile.

Fig. 4.5 shows the differences for the hybridizations profiles in Fig. 4.3. As

expected the two ratios have opposite nature. The shapes of both the profiles look

almost identical to the original supercoiling profile (Fig. 4.1) as well as the psoralen

intercalation probability profile (Fig. 4.2). (cf. Fig. 4.4 and Fig. 4.7. See section 4.4.5

for more discussion.)

4.4.3 Normalized intensities ratios XL
nXL and XL(DRB)

nXL(DRB)

The normalized intensities ( XL
nXL

and XL(DRB)
nXL(DRB)

) also give us two measures of

DNA supercoiling, i.e. XL
nXL
− XL(DRB)

nXL(DRB)
and XL

nXL
− XL(DRB)

nXL(DRB)
.

Before discussing the measures, let us have a look at Fig. 4.6 which shows the

profiles of the normalized intensities - XL
nXL

and XL(DRB)
nXL(DRB)

.

Since these profiles looks similar to the original supercoiling profile (Fig. 4.1)

as well as the psoralen intercalation probability profile (Fig. 4.2), we can use their
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(cf. Fig. 4.1 and Fig. 4.2.)
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ratios and differences also as measures of the supercoiling (just like in previous two

sections). The justfication is also unchanged, and both measures are expected to be

similar to the two supercoiling profiles (Fig. 4.1).

Fig. 4.7 shows the difference and ratio measures of the normalized intensities,

along with the logarithm of normalized intensity ratio (on base 2). As expected

the two measures have similar profile, although their baseline is different. The

difference in baseline is one, and is expected (1 comes from the ratio, and 0 comes

from difference). (cf. Fig. 4.4 and Fig. 4.5. See section 4.4.5 for more discussion.)

Fig. 4.7 also shows the logarithm (on base 2) of the ratio profile. Note that

it looks similar to the difference profile, but has a larger range. From equation 4.8

(section 4.6), we can see that the log of ratio intensities, i.e. log2
XL
nXL
−log2

XL(DRB)
nXL(DRB)

is related to the direct intensity ratio measure in section 4.4.1, and is equal to

log2
XL

XL(DRB)
− log2

nXL
nXL(DRB)

.

4.4.4 On secondary measures

So far we have considered the primary measures, i.e. measures which are com-

puted from utmost one occurrence of the direct intensities. It is possible to generate

infinitely many new measures by combining the primary measures. In some cases, it

might be beneficial to use secondary measures as they can be carefully constructed

to increase the dynamic range. However, in most cases they will be redundant.

(Note that the log difference plotted in Fig. 4.7 is not a secondary measure, it is

just the ratios replotted after taking the logarithm.)
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4.4.5 Best choice

Comparing the dynamic ranges and shapes of three pairs of measures in

Fig. 4.4, Fig. 4.5 and Fig. 4.7, it seems that the direct intensity differences in

Fig. 4.5 give the best measure. We expect this to be true in general because of

the wide range of intensities of microarray optical reader.14 However, owing to the

sensitivity of different drugs and specific experimental conditions, it is advisable to

test all six measures for specific experimental parameters. (Also see section 4.6.1) In

particular, ratios will be better measures when the variance in the direct intensities

of hybridization data is very small.

During our experiments the XL and nXL parts of DNA were not loaded in

14NimbleGen uses a range of (0− 32, 768)
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the 1 : 3 ratio that they were extracted. Instead, to minimize noise and to compare

with previous methods [103], equal quantities of XL and nXL DNA were loaded on

the microarray chips. Based on the discussion above, and analysis of our data we

find that log2
XL(DRB)
nXL(DRB)

− log2
XL
nXL

is a very good measure of supercoiling, provided

appropriate sequence dependent corrections are done. (See section 6.5.2 for more

details.)

4.5 Calibration to estimate ±∆Lk

The hybridizations in Fig. 4.3 as well the various measures (in Fig. 4.4, Fig. 4.5

and Fig. 4.7) give us the level of supercoiling in arbitrary units. We also want to

estimate a conversion factor to calibrate the units and get the corresponding change

in linking number (±∆Lk). We can use the various observations in literature de-

pending on the corresponding measure used there. Section 4.6 gives various relations

between these measures.

4.6 Mathematical relations among measures

4.6.1 Word of caution

This section deals with relations among various measures considered in this

report. The first part is dependent on mass conservation and the second part isn’t

(although the same relations can be derived using mass conservation also).

One must be aware of the following while using these relations to test the

data quality: The relations derived using mass conservation may be exact in theory,
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but they will be more prone to systematic errors, and very sensitive to sample

preparation. The assumption is that total DNA content is same, but this would in

principle be very difficult to achieve because DNA might be lost selectively during

various steps (e.g. sonication, gel purification). This means that one can still expect

the profiles to look similar, but the values may not match exactly.

On the other hand, the relations derived without using mass conservation will

be more robust. The fact that this equation holds true in general, means that these

relations can be expected to hold at tighter bounds. They should be very suitable

for internal controls, and calibration.

4.6.2 Mass conservation dependent relations

We are hybridizing the crosslinked (XL) and non-crosslinked (nXL) DNA to

microarrays. Since the total amount of DNA in the DRB treated and untreated

cells is the same, we can write the mass conservation equation 4.1.

XL+ nXL = XL(DRB) + nXL(DRB) (4.1)

By simply rearranging the two sides, we get the relation between the direct

differences:

XL−XL(DRB) = nXL(DRB)− nXL (4.2)

Again, by dividing both sides of Eq. 4.1 by nXL or by nXL(DRB), we get

equations 4.3 and 4.4.
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XL

nXL
+ 1 =

XL(DRB) + nXL(DRB)

nXL
(4.3)

XL+ nXL

nXL(DRB)
=

XL(DRB)

nXL(DRB)
+ 1 (4.4)

Now let us multiply equation the left side of 4.3 by the left side of 4.4 and

the right side of 4.3 by the right side of 4.4 then substitute (utilizing equation 4.1).

This gives us equation 4.5.

(
XL

nXL
+ 1

)
1

nXL(DRB)
=

1

nXL

(
XL(DRB)

nXL(DRB)
+ 1

)
(4.5)

Equation 4.5 simplifies to equation 4.6.

(
XL

nXL
+ 1

)
nXL

nXL(DRB)
=

(
XL(DRB)

nXL(DRB)
+ 1

)
(4.6)

Note that ratio XL/nXL represents the relative enrichment of crosslinked

DNA. Taking logarithm on both sides, we get equation 4.7.

log2

(
XL

nXL
+ 1

)
+ log2

nXL

nXL(DRB)
= log2

(
XL(DRB)

nXL(DRB)
+ 1

)
(4.7)

Note: Taking the logarithm makes it easy to visualize relative enrichment

(or depletion) of intercalation. The unaffected regions fall on the x axis

(as they will have a ratio of 1, and log2(1) = 0). We are taking the

logarithm base as 2, as it has been previously demonstrated that the

maximum change in the level of supercoiling (in vivo) is approximately
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two-fold [103, 31]. On log2 scale, two fold enrichment/depletion comes

up in a conveniently readable window of +1/− 1.

Note: These ratios are calculated for each individual probe of microarray.

4.6.3 General relations

Let us consider the following relation:

(
XL(DRB)

nXL(DRB)

)(
nXL

XL

)
=

(
XL(DRB)

nXL(DRB)

)(
nXL

XL

)
The two sides are identical, and such a relation is always true.15 Now let us

rearrange the right hand side (RHS) numerator slightly:

(
XL(DRB)

nXL(DRB)

)(
nXL

XL

)
=

(
nXL

nXL(DRB)

)(
XL(DRB)

XL

)
Now, let us take logarithm on both sides (using our convention of base 2):

log2

XL(DRB)

nXL(DRB)
− log2

XL

nXL
= log2

nXL

nXL(DRB)
− log2

XL

XL(DRB)
(4.8)

Equation 4.8 gives a relation between the direct ratios of XL and nXL in-

tensities with the normalized ratios of XL intensities. We could also use it as

the verification rule and internal control, by means of four separate hybridizations.

(Also, see section 4.6.1, c.f. Fig. 4.4 and 4.7.)

15We could have invoked the mass conservation law (eq. 4.1) to derive this, but it’s not necessary.
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Chapter 5

Differential tuning of dynamic supercoiling by topoisomerases I and

II across the genome

This chapter serves as the main results and discussion section of the first part

of this dissertation, i.e. role of DNA supercoiling in gene regulation and control of

biological noise. The chapter has been submitted for publication [138]. I am co-first-

author on this paper along with Dr. Fedor Kouzine. Other authors were Dr. Laura

Baranello, Dr. Khadija Ben-Aissa and Dr. David L. Levens. F.K., K.B. and D.L. de-

signed research, F.K. and L.B. performed all the wet-lab experiments, A.G. devel-

oped the mathematical frame work (see chapter 4 and 6) and performed all the

bio-informatics analysis, A.G., F.K., L.B. and D.L. analyzed data and wrote the

paper.

5.1 Overview

Dynamic interplay between DNA, chromatin and the transcription machinery

is fundamental for the proper regulation of gene expression. The mechanical forces

imparted onto the template and its embracing chromatin have the potential to mod-

ify directly the topological state and structure of the DNA and the arrangement of

nucleosomes. Though this is a consequence of gene activity, these modifications are
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increasingly recognized as a means to provide real-time feedback to the transcrip-

tion apparatus and to modify gene expression. To disentangle the mostly theoretical

connection between transcription and DNA dynamics, we charted an ENCODE map

of transcription-generated dynamic supercoiling in human cell line using psoralen

photobinding to probe DNA topology in vivo. Dynamic supercoils reside within

∼ 2 kb of transcription start sites of almost all active genes. This torsional stress is

handled differently between low and high output promoters as shown by experiments

using inhibitors of RNA polymerase and topoisomerases, as well as by chromatin

immunoprecipation studies of topoisomerase I and II. High output promoters recruit

topoisomerase II to upstream regions whereas low levels of dynamic supercoiling are

managed by topoisomerase I. The functional coupling between transcription and

DNA topology emphasizes the importance of DNA supercoiling for gene regulation.

5.2 Introduction

Chromatin is a highly dynamic structure; the panel of bound regulatory pro-

teins, nucleosome composition, DNA and histone modifications, linker histones etc.

all may vary temporally across a gene and its cis-regulatory elements. In addition,

the structure and topology of DNA may change according to the nature and inten-

sity of nearby genetic transactions [19]. Translocation of RNA-polymerases along

the double-helix necessary creates torsional stress, which results in strong changes

in the topological state of DNA known as supercoiling [48]. These changes have the

potential to facilitate or impede virtually all DNA-dependent processes or to serve
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as regulatory signals detected by molecular partners [55]. Thus, beyond serving as

a passive repository of information, DNA could actively participate in the real-time

regulation of genetic processes [89]. Most of what we know about the dynamics

of transcription derives from investigations focused on the roles played by the pro-

teins. Though these protein-centric experiments have been crucial in defining the

factors involved in transcription, they have tended to neglect a potential role for

DNA structure and topology in gene regulation.

Transcription and DNA topology are inexorably linked. As DNA is screwed

through the transcription machinery, it follows a helical path dynamically driving

positive supercoils ahead and trailing negative supercoils behind the translocating

RNA polymerase [70]. Negative supercoiling untwists while positive supercoils over-

twist DNA. If translocation proceeds without pause, then RNA polymerase would

generate ∼ 7 supercoils per second [23], and unless dissipated this torsional stress

would rise to enormous levels disruptive to all genetic processes [19, 75]. Positive

and negative supercoils are relieved by DNA topoisomerases that transiently break

and then rejoin the DNA backbone [139]. Depending on the intensity of ongoing

transcription and the disposition of topoisomerases, the amount of supercoiling gen-

erated locally might exceed the relaxation capacity of nearby DNA topoisomerases

leaving the residual DNA torsional stress to propagate through the embracing chro-

matin [140]. This stress might influence the binding of regulatory proteins to the

DNA, change the mobility of nucleosomes and reorganize the architecture of chro-

matin fiber [55]. Supercoiling may also drive duplex B-DNA into single-stranded or

other non-B DNA conformations [121]. Such changes in DNA structure may alter
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the ability of DNA and chromatin to loop and twist and so modify the function of

enhancers and other cis-control elements [30]. Non-B DNA segments may enable

the binding of proteins specific for alternative structures, and because non-B DNA

is incompatible with nucleosome binding, these structures may help to sustain nu-

cleosome free regions [130]. Since the magnitude and distribution of supercoiling

forces throughout the genome are not known, the extent to which any or all of

these potential regulatory mechanisms are realized in vivo has been a matter for

speculation.

The accumulation and propagation of torsional stress along a DNA fiber should

depend on many factors including the rate of transcriptional elongation, the length

of the transcribed unit, and the spatial arrangement of promoters (for example,

divergent promoters, a common motif in mammalian cells, would generate mutu-

ally reinforcing upstream negative supercoils) [85, 141, 142]. How torsional stress

is transmitted through DNA will depend on the topological domains formed by

protein-DNA interactions or by the anchoring of DNA to immobile nuclear struc-

tures [88]. Such domains may concentrate or exclude supercoils from selected zones

within the chromatin fiber. The binding of other proteins, nucleosome positioning,

and histone modifications might all influence the transmission of torsional stress or

the activity of topoisomerases. Fundamental to elucidate the role and the control

of torsional stress in gene regulation is the understanding of its disposition within

chromosomes.

Although in bacteria, chromosomes are organized into domains, in which

DNA supercoiling is maintained within precise limits by the balance of supercoil-
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modulating activities, in metazoans, whether DNA torsional tension is regulated or

is regulatory is less clear and remains controversial [60, 143]. Recent studies in the

yeast and fly have provided a coarse-grain view of the distribution of torsional stress

along chromosomes, but low resolution has hampered the analysis of the factors

that govern the generation, relaxation, and transmission of DNA supercoiling at in-

dividual genes in vivo [107, 108]. In mammalian cells supercoiling has been studied

at only a handful of genes [106, 105]. Torsional stress has been measured by mon-

itoring the supercoiling of plasmids/episomes recovered directly from cells or after

excision from chromosomes, and has been inferred from supercoil-dependent struc-

tural transitions in DNA or from the activity of supercoil-dependent recombinases

[88, 31, 76, 144]. The degree of crosslinking of the intercataling agent psoralen has

also been exploited to measure torsional stress; intercalators in general insert be-

tween the bases of underwound DNA more easily than of more tightly wound helices

where the bases are squeezed together [103]. The low resolution or low throughput

of these methods have provided a limited view of the interplay between the factors

determining the generation, relaxation, and transmission of DNA supercoiling in

vivo.

To address this issue, genomic oligonucleotide microarrays were probed with

psoralen photo-crosslinked, labeled DNA to chart a genome-scale map of tran-

scription generated dynamic supercoiling in vivo. These studies demonstrate that

transcription-generated negative supercoiling near the promoters is a common char-

acteristic of virtually every transcribed gene and is transmitted through chromatin

as far as 2 kb upstream from the transcription start site. High levels of transcrip-
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tion support higher levels of supercoiling that are balanced by the recruitment of

topoisomerases. Both topoisomerase I (Topo I) and topoisomerase II (Topo II )

are differentially recruited and distinctly deployed illustrating the interconnection

between DNA supercoiling and gene regulation.

5.3 Overview of the approach

Our approach exploits the well-established preferential binding of psoralen to

supercoiled DNA both in vitro and in vivo (Fig. 5.1). This cell membrane-permeable

molecule intercalates preferentially into undertwisted double helix and crosslinks

the complementary DNA strands upon exposure to UV- light [145]. In addition

to supercoil dependence, psoralen intercalation is favored by high A-T content and

is sterically inhibited by nucleosomes or other DNA-protein interactions [108]. The

influence of DNA sequence and chromatin affects the proper estimation of supercoil-

ing. To quantify transcription-generated torsional stress—dynamic supercoiling—,

the extent of in vivo psoralen intercalation was compared between cells sustaining

normal transcription and cells in which transcription was specifically inhibited just

prior to crosslinking. The comparison of these datasets intrinsically normalized for

the effects of sequence and for the perdurance of DNA-protein interaction (such as

nucleosomes), represents the effect of dynamic supercoiling on psoralen crosslinking.

To measure the extent of crosslinking throughout the genome, the human

B-cells Raji were treated with psoralen and UV-light. To minimize the influence

of DNA replication or mitosis on DNA topology only cells in G1 were assayed
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Figure 5.1: Overview of the approach: a scheme for using DNA crosslinking me-
diated by psoralen photobinding as a genome-probe for DNA supercoiling in vivo.
Treatment of cells with psoralen followed by UV irradiation produces DNA inter-
strand crosslinks. Thermal denaturation of genomic DNA fragments results in the
formation of two fractions (left). The highly cross-linked fraction (XL) migrates
slowly in denaturation gels, while the uncross-linked (non-XL) population is com-
posed of rapidly migrating single-stranded DNA (center). After electrophoretic
separation these fractions are purified, fluorochrome labeled and hybridized with
densely tiled oligonucleotide arrays (right). The genomic distribution of the ratio
of cross-linked and uncross-linked DNA (log 2 scale being 0 at the global mean)
represents the efficiency of psoralen intercalation.
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[31, 146]. Genomic DNA was recovered, sonicated, denatured and electrophoret-

ically fractionated to resolve the slowly migrating crosslinked population from the

faster mobility un-crosslinked one. The crosslinked fraction is enriched with DNA

negatively supercoiled in vivo at the moment of UV-irradiation (Fig. 5.1). The

separated DNA fractions were labeled with Cy5 or Cy3 and hybridized to a high-

density oligonucleotide DNA microarrays spanning ENCODE regions [147]. The log

ratio (crosslinked/un-crosslinked) of the resulting fluorescent signals which is named

CrossLinking level (CL) provides a continuous picture of psoralen intercalation as a

function of the genome coordinate. Exemplary results from two genes are shown as

a curve smoothed by sliding window averaging (Fig. 5.2a).

In agreement with expectation, promoter areas of gene show markedly dif-

ferent CLs compared with intergenic regions reflecting their enrichment in CpG

islands, specialized chromatin structures, and DNA topology. Because physiologi-

cally achievable levels of negative supercoiling increase the probability of psoralen

intercalation only about two fold relative to relaxed DNA [103], the resulting sig-

nal to noise ratio necessitates the use of experimental replicates in order to achieve

statistical significance. As described in the methods sections 5.8 and 6.5, three

biological replicates were used to generate the CL and other maps analyzed here.

The resulting data were averaged across the replicas and the high frequency noise

was filtered by Fourier convolution smoothing [148] (supercoiling levels would be

expected to fluctuate on the scale of the torsional (∼300 bp) and bending (∼150

bp) persistence lengths of DNA and not base pair-to base pair). To observe the

distribution of transcription-generated supercoiling, the CL maps of untreated cells
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and DRB (an inhibitor of transcription elongation)-treated cells were compared.

Computational subtraction allowed the separation of the effects of chromatin and

sequence to reveal directly the component of crosslinking reflecting torsional stress.

Similarly, to reveal the dynamic character of DNA supercoiling and to examine its

regulation, untreated versus topoisomerase inhibitor treated cells were compared.

Because different inhibitors act at different points in the topoisomerase reaction cy-

cle, the changes in DNA topology subsequent to treatment would reflect their modes

of action [149].

To relate supercoiling with transcription, nuclear RNA was hybridized with

the same microarrays used to assess supercoiling. To correlate the pattern of pso-

ralen intercalation with gene expression, genes were ranked according to their RNA

output: from the highest (100%) to the lowest (0%) abundance. We classify genes

in three categories: low (0-40%), medium (40-60%), high (80-100%) (see chapter 6).

Because closely situated transcriptional start sites (TSSs), especially divergent pro-

moters, could complicate the analysis of DNA supercoiling [31], the set of the EN-

CODE genes was filtered to remove from the analysis promoters located in close

proximity to each other (see section 6.5 for definitions).

5.4 Dynamic supercoils upstream of promoters

The dynamic range of gene expression is very large, so mechanistic and struc-

tural differences between genes at the extremes of this range might obscure visu-

alization of the basic elastic response of chromatin to applied torque. Therefore,
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Figure 5.2: Topography of psoralen crosslinking around transcription start sites
(TSSs). (a) Representative examples of the psoralen crosslinking map shows pe-
culiarities near TSSs. Composite analysis of psoralen crosslinking levels (CL) near
the transcription start sites of medium- (b) and low- (c) expressed ENCODE genes
before and after treatment of cells with DRB.
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first we compared the smoothed CL profiles of 8 kb windows surrounding TSSs of

low (0-20%) and medium expressed (40-60%) genes to see if we could detect modest

differences in torsional stress. Meta-analysis of the data for both sets of promot-

ers revealed troughs of overall CL (Fig. 5.2c) at TSSs as expected because these

sites reside in psoralen unfriendly CpG islands, heavily laden with transcription

and chromatin complexes. The CL profiles were generated also for the cells treated

with DRB. DRB specifically inhibits CDK9-mediated phosphorylation of the RNA

polymerase II to inhibit transcription elongation [23]. After a short interval of DRB-

treatment, the dynamic supercoiling decays as result of topoisomerase activity or

diffusion of the torsional stress away from the active promoters. In contrast, DRB

should have only small effect on the low-expressed or silent genes with little resident

torsional stress. Consequently, after DRB-treatment, the CL-profile reflects only

sequence and chromatin, but not dynamic supercoiling. Indeed, the differences in

the CL between DRB-treated and untreated cells is maximal near transcriptional

start site and gradually declines up to ∼2 kb upstream for medium expressed genes

(Fig. 5.2b). DRB-inhibition of transcription has little effect, if any, on CL at the

TSSs of low expressed genes just as predicted (Fig. 5.2c).

To generate a metric of dynamic supercoiling, we define a parameter called

CrossLinking Difference (CLD) from the simple equation: CLD = CL(+DRB) −

CL(−DRB) . Thus, CLD is the computational difference between CL values de-

rived from DRB-treated and DRB-untreated cells and is a measure of transcription-

dependent psoralen crosslinking. This difference should cancel effects due to DNA-

protein interactions and sequence composition. To explore the relationship between
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Figure 3
a

b

Figure 5.3: DNA topology around TSS as a function of gene expression. (a) Tran-
scription generated supercoils are transmitted up to 2 kb from TSSs. The CrossLink-
ing Difference (CLD) curves of low- and high- expressed genes in a 4 kb window
centered at the TSS. Negative CLD values reflect a higher propensity of psoralen
to intercalate into the DNA due to transcription-generated supercoiling. (b) 3-D
representation of CLD profiles averaged according to the level of gene expression in
a 4 kb window surrounding the TSS.

75



CLD and the transcriptional activity, we compared the average experimental CLD

profiles of low and high active genes in 4 kb window surrounding the TSS (Fig. 5.3a).

This comparison reveals that during transcription, negative supercoiling is transmit-

ted upstream decaying to baseline about 2 kb from the TSS. As expected from the

twin-supercoiled-domain-model, the CLD is diminished within gene bodies where

RNA polymerases constitute a moving node between positive and negative super-

coils, and because on genes with multiple elongating RNA polymerases, the positive

and negative supercoils annihilate each other in inter-RNA polymerase region [48].

At the same time, our analysis was restricted to upstream regions in order to miti-

gate potential confounding complications. Passage of elongation complexes through

gene bodies is necessarily associated with a moving boundary between positive and

negative torsional stress, and with the dynamic disruption and subsequent reassem-

bly of nucleosomes and with histone modificatons. Each of these processes affected

by DRB treatment has the potential to dramatically alter the type of torsional stress

(positive or negative), as well as the degree and distribution of downstream psoralen

intercalation and crosslinking. Upstream regions in contrast would be anticipated

to subjected mainly to negative supercoiling forces emanating from downstream

sources (although the intensity of these forces might fluctuate).

The CLD value reflects a differential psoralen crosslinking derived from the

presence of dynamic DNA supercoiling at the upstream promoter region as result of

active transcription. Consequently it allows us to make an estimation of supercoiling

density. Based on the calibration of psoralen intercalation into the plasmids with

defined topology, DNA supercoiling density due to transcription could reach the
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σ = −0.08 near the TSS and then gradually decline into the upstream region.

5.5 Parameters controlling the level of dynamic supercoiling

If the twin-domain-model adequately describes the mechanics of transcription,

then three major factors define the DNA topology of regions upstream of promoters:

1) the rate of supercoil generation by RNA polymerase; 2) how efficiently torsional

stress is transported to remote chromatin locations by twist-diffusion or en-bloc

rotation of chromatin segments; and 3) the rate of supercoil removal by topoiso-

merases [55]. Additional experiments and analyses were conducted to examine the

contributions of these parameters to the level of upstream supercoiling.

Transcription-generated supercoiling should increase as gene expression in-

creases unless topoisomerase activity increases in parallel; at steady state, tran-

scriptionally generated torsional stress will be balanced by topoisomerase activity.

If torsional stress is freely transmitted through DNA fibers, then increased super-

coiling near transcription start sites will be propagated to more upstream regions,

unless there are barriers to twist/writhe diffusion. To examine DNA supercoiling as

a function of gene expression, CLD signal were averaged for 0-20%, 20-40%, 40-60%,

60-80% and 80-100% expressed genes. CLD strongly correlated with transcriptional

activity as predicted by the twin-domain model [48]. Low expressed genes have

only a small perturbation of DNA topology in close proximity to the TSS, but as

RNA production intensified, the CLD signal spread from 1kb to 2 kb upstream TSS

(Fig. 5.3b). The dependence of CLD on gene expression is linear from 0 to 60%
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of maximal expression. As RNA production further intensified, DNA supercoiling

ceased spreading and declined near TSSs. This result suggests that above the 60th

percentile, special mechanisms are marshaled to contend with the highest levels of

torsional stress.

The meta-analysis employed above reveals the overall trends in large set of the

genes but does not indicate the spectrum of supercoil changes across the ENCODE

set of genes. To confirm the unexpected decrease in dynamic supercoiling at the

highest levels of expression, genes were ranked in order of promoter output and

graphed against the window average of their TSS to -800 bp associated CLDs to

display the relationship between expression and torsion (Fig. 5.4a). Indeed, higher

output promoters were less supercoiled than medium expressed genes (Fig. 5.4b). In

contrast, the CLDs of the -4000 to -4800 bp region were not related to the expression

levels. Thus, upstream negative supercoiling is a general feature of transcribed

promoters, but the plateau associated with the most active genes indicates that

distinct mechanism of DNA relaxation is required to support maximal promoter

output.

One simple mechanism to reduce supercoiling near the high output promot-

ers would be to recruit Topo I and/or Topo II more effectively. For validation of

this hypothesis, the upstream promoter areas of genes in selected regions across the

expression spectrum (0-5%; 55-60%, and 95-100%) were analyzed by chromatin im-

munoprecipation and qPCR in order to measure their relative levels of associated

topoisomerases I and II (Fig. 5.4c). To enhance the detection of catalytically ac-

tive enzymes, we specifically trapped Topo I and Topo II covalently bound to the
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Figure 5.4: Differential patterns of supercoils generation and topoisomerases activi-
ties for low-to-medium versus high transcribed genes. (a) Schematic representation
describing the calculation used to determine the relationship between expression and
DNA topology. (b) The CLD signal of upstream promoters regions was averaged
over 800 bp for each single gene and plotted against the level of gene expression
(black curve). Smoothing of the curve was done by sliding window average. The
CLD signal between -4800 bp and -4000bp (red curve) was graphed for compari-
son. Gray-scale bars indicate gene expression-ranges from which genes were chosen
for ChIP analysis (below). (c) Chromatin from CPT or β-LAP treated cells was
incubated respectively with anti-Topo I or -Topo II antibodies, and the recovered
DNAs were analyzed by qPCR using sets of primers spanning promoters versus
non-transcribed regions. (d) Average relative enrichment of the genes representing
different expression levels analyzed by ChIP for Topo I (blue bar) or Topo II (red
bar). Relative enrichment for topoisomerases I and I for each individual gene is
shown in Fig. 5.9.
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DNA by very brief treatments with camptothecin (CPT) and β-lapachone (β-LAP),

respectively. CPT is a highly selective drug that inhibits strand religation during

Topo I catalytic cycle while β-LAP poisons Topo II during the formation of the DNA

cleavage complex and inhibits Topo I prior to the strand cleavage [150, 151, 152].

The low transcribed genes (0-5%) show very small enrichment relative to the control

region for both topoisomerases (Fig. 5.4d). The recruitment of Topo II was dramat-

ically enhanced at the highly active genes. In contrast Topo I was most efficiently

recruited to the promoter proximal regions of medium expressed genes (Fig. 5.4d).

These results suggest that Topo I and Topo II are differentially recruited to pro-

moters according to their output levels.

Dynamic supercoiling appears to be balanced by topoisomerase action accord-

ing to their specific distribution and kinetics. To confirm the relationship between

DNA-relaxing activities of Topo I and Topo II with gene expression, the CLDs

in promoter regions were compared between cells treated with or without topoi-

somerase inhbitors. Topo I removes DNA supercoils by cleaving a single DNA

strand. Torsional stress drives the uncoiling about the intact DNA strand. After

the removal of a random number of supercoils, a ligation reaction restores the DNA

backbone. Camptothecin intercalates into the nick generated by Topo I and signif-

icantly hinders topoisomerase-mediated DNA relaxation [153, 154]. Consequently,

in the presence of CPT, the negative supercoiling should increase at the upstream

promoter regions bound by the enzyme. If the relationship between transcription

and supercoiling is as hypothesized, then the CLDs of the upstream regions from

medium expressed genes that depend on Topo I should be more sensitive to CPT
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than the CLDs of the highly expressed genes that recruit Topo II. Indeed, treatment

of cells with the drug for 5 minutes scaled-up the CLD at the TSS and through-

out the upstream region indicating that Topo I activity is generally recruited at

promoter regions to control dynamic supercoiling (Fig. 5.5a). The effect of CPT

was especially strong for low and medium expressed genes in comparison with high

expressed genes (Fig. 5.5b,c and data not shown). The short time of drug admin-

istration insures that the CLD profile is the reflection of changes in DNA topology

and it is not result of secondary effects [155].

To observe the composite influence of topoisomerases in solving topological

problems of transcription, β-LAP was used. This drug inhibits both Topo I and

Topo II, although via different mechanisms. The interaction of β-LAP with Topo

I inhibits the reaction cycle prior to strand cleavage leaving both strands intact

[150]. In contrast, poisoning of Topo II by β-LAP results in the accumulation of

covalent DNA-topoisomerase complexes [151]. The precise mechanism by which

enzyme inhibitor accomplishes this action is not well understood [156]. The current

model postulates that in order to produce a double-stranded DNA breaks [157,

69]. Thus, at low drug concentration (short time treatment) each individual β-

LAP molecule is stabilizing a strand-specific nick rather than a double-stranded

DNA break, and diffusion of torsional stress off these nicks should result in the

relaxation of the regions served by the Topo II enzyme. Indeed, after 5 minutes

of treatment with β-LAP, the upstream DNA was uniformly relaxed as evidenced

by the minimization of the CLD from the TSS to all upstream points (Fig. 5.6a).

Therefore, Topo II action is focused in close proximity to the TSSs and helps to
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Figure 5

a b 60-80%

c
80-100%

Figure 5.5: Perturbing the distribution of supercoils with camptothecin reveals the
pattern of Topo I recruitment to TSSs. (a) 3-D representation of the CLD profiles
of genes ranked according to their level of expression in the absence of inhibitors
(green surface) and after treatment of cells with CPT (blue surface). (b) Comparison
of CLD curves of 60-80% (b) and 80-100% (c)expressed genes in a 4 kb region
around the TSS in the absence or presence of CPT. CLD(+CPT) = CL(+DRB)
CL(+CPT).
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relax negatively supercoiled DNA.

These results show that both topoisomerases are semi-redundantly involved

in the relaxation of negative DNA supercoiling upstream of promoters. However, it

appears that Topo II is the dominant topoisomerase at the upstream regions of the

highly active genes, while Topo I is the dominant topoisomerase at medium output

promoters.

5.6 Fine tuning of DNA supercoiling with topoisomerase

To conceptualize the role of topoisomerases activity in the steady-state regula-

tion of dynamic supercoils, two scenarios may be hypothesized. In the first, negative

torsional stress generated during transcription spreads into the upstream promoter

regions (Fig. 5.7a, solid line) where the combined actions of randomly recruited

Topo I and Topo II relieve the stress. Because the odds that an upstream region

remains topoisomerase-free fall exponentially as distance from the TSS increases,

the level of supercoiling should decline in parallel. Alternatively, if topoisomerases

are recruited directly to the most dynamically stressed DNA, i.e. TSSs (Fig. 5.7a,

dashed line), then level of supercoiling would reduced right at the TSS, but beyond

this zone, any residual supercoiling would decay only gradually. The CLD patterns

were compared between sets of genes with different expression levels to provide ev-

idence supporting one or the other of these possibilities. Whereas the CLD level

in the upstream regions of medium transcribed genes decays exponentially, as ex-

pected for the diffuse recruitment of topoisomerases, for high output promoters, the
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Figure 6

a b 60-80%

c 80-100%

Figure 5.6: Perturbing the distribution of supercoils with β-lapachone reveals the
pattern of Topo II recruitment at TSSs. (a) 3-D representation of CLD profiles over
genes ranked according to their level of expression in the absence of inhibitors (green
surface) and after treatment of cells with β-LAP (b - pink surface). Comparison
of CLD curves of 60-80% (b) and 80-100% (c) expressed genes in a 4 kb region
around the TSS in the absence or presence of drug. CLD(+β-LAP) = CL(+DRB)
CL(+β-LAP).
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CLD declines linearly (Fig. 5.7b). The observed relationship between the rate of

transcription, supercoiling intensity, and the response to topoisomerase inhibition

suggests that highly active genes require the targeting of a DNA relaxation activity

to their TSSs, whereas weakly expressed genes have no such a requirement.

Applying the same logic to experiments using inhibitors selective for one topoi-

somerase or the other, would allow an estimation of the relative contributions of

each topoisomerase to DNA relaxation as a function of gene activity. Camptothecin

strongly increased the extent of supercoiling within the upstream regions, but pre-

served the pattern of CLD distribution: at medium expressed genes it was expo-

nential, and at highly expressed genes it was linear (Fig. 5.5). In the presence of β-

lapachone, the linear decay of supercoiling for highly active genes was preserved, but

reduced. At medium active genes the Topo II contribution to upstream supercoiling

was inferred from the linear decay of the residual CLD (Fig. 5.6). We conclude that

topoisomerases I and II act redundantly within the upstream promoter regions of

medium expressed genes (Fig. 5.8a), but when transcription increases, the relief of

upstream torsional stress is executed by Topo II targeted right to transcription start

sites (Fig. 5.8b).

5.7 Discussion

The role of dynamic supercoiling in the regulation and execution of genetic

transactions has been incompletely described. Although the existence of torsional

stress in actively transcribed DNA and chromatin in vitro and in vivo has been
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Figure 5.7: Models for topoisomerase recruitment to upstream promoter regions. (a)
The focal model (dashed line) hypothesizes that the topoisomerases work close to the
TSS and yield a linear decay of superhelical density from the point of topoisomerase
binding to DNA. The dissipative model (solid line) postulates that topoisomerases
are randomly distributed over the upstream promoter regions, consequently the
decay of supercoiling is exponential. (b) Comparison of CLD curves of 60-80% and
80-100% expressed genes in a 4 kb region around TSS.
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Figure 5.8: Differential topoisomerase I and II utilization in the regulation of
transcription-induced torsional stress. (a) From the present results, dynamic su-
percoiling near low-active genes is managed by topoisomerase I which is distributed
over a broad upstream promoter region; (b) whereas highly active promoters recruit
topoisomerase II to the focal region near the TSS.
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definitively confirmed in systems employing naked or episomal DNAs, respectively,

the pervasiveness and significance of dynamic supercoiling for most chromosomal

genes has not been established [31, 28]. Recent studies using psoralen as a probe for

supercoiling in yeast have revealed variation across large chromosomal territories,

but lacked sufficient resolution to relate topology to gene activity because 1) yeast

genes and the yeast genome are too compact to confine torsional stress to single

targets, and 2) the DNAs immobilized on the microarrays were insufficiently short to

enable finer mapping [108]. A genome-wide study of psoralen binding to Drosophila

polytene chromosomes was limited by the optical resolution of conventional light

microscopy [107]. In the present work, the set of ENCODE genes was studied in

their normal chromosomal context, and in the presence of functional topoisomerases.

The resolution of high-density oligonucleotide arrays allows us to visualize the fine-

grain distribution of dynamic supercoiling near promoters and to reveal its control by

topoisomerases. The analysis of these data shows that transcription-generated DNA

supercoiling is transmitted locally upstream of promoters, but that highly expressed

genes rely upon topoisomerase II to dissipate dynamic supercoiling whereas low-

expressed genes depend on topoisomerase I.

5.7.1 Modulation of DNA supercoiling

The level of supercoiling depends on two opposing processes: the rapid in-

troduction of torsional stress into DNA, and its removal by topoisomerases or by

diffusion into remote regions of the genome [55]. The dynamics of supercoil diffu-

88



sion should depend on the behavior of chromatin fibers: in principle, the position

of individual nucleosomes, the interactions between them, the inter-nucleosomal

linker-binding proteins and the nucleosome modifications could all influence super-

coil propagation. The data in our analysis reveal that torsional stress is dissipated

over a relatively short-range and provide no evidence that dynamic supercoiling

butts up against fixed boundaries in chromatin. In such an instance the level of

negative supercoiling would be constrained to be a fixed value, decreasing abruptly

when crossing the domain border [88]. Alternatively, topological domain boundaries

for each particular gene may be heteromorphous or transient in nature, resulting

in high variation of domain size between different cells in a population. Although

such boundaries would be missed in this analysis, the simplest interpretation of

our data is that DNA supercoiling upstream of the active promoter is established

mostly by frictional restriction to DNA twist diffusion along the chromatin. Even

without fixed boundaries, other architectural features of chromatin could modify the

generation and propagation of dynamic supercoils. For example, divergent closely

set promoters (which were excluded from this analysis) would drive mutually rein-

forcing negative DNA supercoils between them. Though the small number of such

genes in the ENCODE set does not allow us to investigate in detail the contribution

of co-expression on the level of DNA supercoiling in the region between the pro-

moters of divergent genes, the mechanical properties intrinsic to this arrangement

suggest that dynamic supercoiling may be an important parameter contributing to

co-expression [31].

As suggested by the inhibition of transcription in cells mutant for topoiso-
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merases, the relaxation of torsional stress is a prerequisite for efficient transcription

[69, 92, 93]. Topo I and Topo II, which can relax both positive and negative su-

percoiling, are fully redundant for loss of the other in yeast, so only their combined

absence severely impairs transcription elongation. However, this is not the case of

mammalian cells where Topos can only partially compensate each other suggest-

ing the existence of specific and peculiar functions in the context of transcription.

Different topological problems arising during gene activity may dictate specialized

roles of each topoisomerase since the positive and negative supercoils generated by

transcribing RNA polymerase distort DNA differently and reside in different molec-

ular environments [158]. Accordingly, the differential recruitment of topoisomerases

to active genes may be context dependent [141, 94]. The results of this study re-

veal two characteristics of the relaxation of transcription-induced DNA torsional

stress by topoisomerases. First, both Topo I and Topo II prevent the buildup of

negative supercoiling in the upstream promoter region. Since Topo I is a torque-

sensitive topoisomerase with low activity on the nucleosomal template [96, 97], we

infer that it operates mainly downstream of the elongating RNA polymerase where

accumulated positive torsional stress and histone modifications make nucleosomes

labile [114]. Topo I is well suited for the relief of positive torsional stress that might

otherwise stall transcription in vivo because it is a processive and “rapid” enzyme

that should work well in regions with a high demand for relaxation. Evidently,

these regions are downstream of transcription start sites where topoisomerase in-

hibition can drastically reduce the rate of elongation in vivo [75]. Previous results

suggest that in yeast Topo II binds to nucleosome-free regions near the transcription
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start sites of active genes [95], whereas in mammalian cells binding of the enzyme

is enriched near the promoter region of Topo II sensitive genes [159]. In addition,

the activity of Topo II would be favored by the crossing of DNA segments [160] as

occurs when plectonemes form in DNA with unrestrained negative supercoils that

cannot be buffered by chromatin rearrangement [66, 161]. Because all elongating

transcription complexes impose a 90-degree bend in the template, as downstream

DNA is twisted into the RNA polymerase active site, the upstream DNA exits, it

is translationally rotated generating writhe [162, 163]. Therefore, Topo II would be

more efficient in relaxing negative supercoiling produced behind of the transcribing

RNA polymerase. The twin-supercoiled-domain model predicts that dynamic neg-

ative supercoiling is highest at the promoter [48]. Accordingly, the activity of Topo

II should be localized near the TSSs of highly active genes as demonstrated in our

experiments.

Second, besides draining negative supercoils, it may be important to sustain a

steady-state level of torsional stress in upstream regions to manage supercoil-driven

structural transitions that serve as a gauge of ongoing transcription [121, 31, 28, 29].

We find that the activity of processive, fast but difficult to control [97], Topo I is

reduced at promoters of highly active genes relative to Topo II. DNA relaxation at

these genes is accomplished by the step-by-step DNA transport activity of Topo II

in which ATP-driven conformational changes of enzyme implement a very transient

DNA breaking step [164]. Thus for highly active genes the transient nature of

DNA-topoisomerase complexes and topological homeostasis could be enforced by

the preferential use of Topo II. Coordinating the rates of transcription and DNA
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relaxation adjusts the particular level of DNA supercoiling of many different genes.

This conclusion suggests that in contrast to the current paradigm, the relaxing

activity is essential not only for solving the severe topological problems arising during

transcription but it is required to establish a sturdy level of negative supercoiling

within the regulatory regions of active genes.

5.7.2 DNA supercoiling in regulatory pathways

In the recent years much evidence has accumulated to support the idea that

DNA mechanics serve a variety of regulatory functions [55, 30]. In vitro studies

suggest that chromatin structure is functionally coupled to DNA topology [114].

DNA supercoiling may assist chromatin remodeling and, by influencing chromatin

structure or DNA conformation, may modify DNA-transcription factor interactions

[19]. Propagation of torsional stress through DNA may serve as an efficient long-

range signal by changing the energy landscape of the chromatin fiber [165]. This

signal could restrict or promote the enrollment of DNA conformation-sensitive pro-

teins at regulatory modules [31, 29], or could facilitate protein-DNA interaction over

long distances [114]. The same overall regulatory outputs could be achieved only

slowly by adjusting the concentrations of particular transcription factors, but DNA

supercoiling has the capacity to govern a local specific transaction in real time. Our

results reveal that transcription-generated supercoiling has sufficient amplitude and

prevalence throughout the genome to modify cis-element structure and chromatin

conformation to support previously postulated gene regulatory mechanisms.
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Finally, we emphasize that because the structure and mechanics of cellular

RNA polymerase is conserved across eukaryotes and prokaryotes, then many of the

DNA topology-sensitive regulatory mechanisms of transcription in bacteria may also

operate in higher organisms. Despite differences in the number and complexity of

accessory transcription regulatory components between kingdoms, both of them are

forced to contend with the same polymer physics: the requirement to strongly bend

DNA for pre-initiation complex formation and the need to locally melt DNA during

transcription initiation [163, 166]. Negative supercoiling facilitates both bending

and melting [167, 168, 169]; consequently, this fundamental linkage between DNA

topology and transcription is maintained in both prokaryotes and eukaryotes [60]. In

gyrase-containing bacteria, genomic DNA is globally maintained in an undertwisted

state to optimize the transcription of many genes [170], but in higher eukaryotes

where genes are often separated by large segments of inactive DNA, each gene may

contribute to topological homeostasis at its own promoter. By coordinating the

relaxing activity of topoisomerases with the rates of transcription, gene regulatory

regions are kept at the constant, but still dynamic, level of DNA supercoiling. As a

consequence of this functional supercoiling the early rate-limiting steps in the tran-

scription process might be modified to allow more efficient production of RNA [166].

The complexity of transcriptional regulatory processes in eukaryotes in comparison

with bacteria and the short range of torsional stress propagation insure indepen-

dent topological regulation of different genes. As costs decline, this psoralen-based

procedure for the analysis of DNA topology may adapted for NextGen sequenc-

ing and may help to uncover other DNA topology-related mechanisms in genome
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functioning.

5.8 Methods

5.8.1 Cell culture

Raji cells were synchronized in early G1 phase of the cell cycle by treat-

ment with 1.5% (v/v) DMSO for 96 hours. Cells were released from DMSO in

fresh medium and experiments were conducted 6 hours later. When indicated,

the gene transcription was inhibited using 40µM of DRB (or 5,6-dichloro-1-β-D-

ribofuranosylbenzimidazole) for 30 minutes. To inhibit topoisomerases, cells were

exposed to 10µM β-lapachone or camptothecin for 5 min.

5.8.2 Psoralen photobinding assay

2× 107 cells per 10 ml of media were treated with 140 µL of a saturated solu-

tion of 4,5’,8-trimethylpsoralen in ethanol for 4 min at 37◦C. To photocross-link the

DNA strands, plates with cells were exposed to 3.6kJ/m2 of 365 nm light (ultravi-

olet lamp, model B-100 A, Ultra-Violet Products). crosslinked genomic DNA was

isolated by RNase and Proteinase K treatment in lysis buffer (10 mM Tris-Cl pH

8.0, 100 mM EDTA, 0.5% SDS), followed by repetitive phenol/chloroform extrac-

tion and ethanol precipitation. Purified DNA was sonicated (Sonicator, Ultrasonic

processor XL, MISONIX Inc. at 15% of power) to produce 250 bp average-size

DNA fragments. DNA was then heat-denaturated and incubated at 55◦C for 1 hour

in glyoxal buffer. Glyoxylated non-crosslinked and crosslinked DNA fragments were
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separated by electrophoresis (3% agarose gel electrophoresis in 10 mM sodium phos-

phate buffer (pH 7.0) at 2 volt/cm for 12 hours). With this protocol, the ratio of

non-crosslinked DNA to crosslinked fragments is 3 to 1. After electrophoresis, the

gel was incubated with denaturing solution (0.5 M NaOH, 1.5 M NaCl) at 65◦C for 3

hours to reverse psoralen crosslinks and stained with SYBR-green [107]. Crosslinked

and non-crosslinked DNA fragments were purified by electroelution and hybridized

in different combination to Nimblegen ENCODE arrays (50-mer probes tiled with

12-bp overlap across non-RepeatMasked regions of ENCODE, plus 100 kb region

around c-myc gene). Three biological replicates with hybridization to new array for

each were conducted for all experiments. DNA labeling, hybridization, detection,

data extraction and quality assessment were performed at NimbleGen.

5.8.3 Gene expression assay

Nuclear RNA was prepared using the Qiagen RNeasy kit. RNA was isolated

from the nuclear pellets resuspended in the kit lysis buffer and processed according

to the protocol. RNA was converted into double-stranded DNA by using Super-

Script Choice System for cDNA synthesis (Invitrogen). cDNAs were sonicated to

average fragments of 250 base pairs and hybridized to Nimblegene ENCODE ar-

rays together with genomic DNA sonicated to similar size. In total, three biological

replicates with a new array for each were performed. Data were generated at Nim-

bleGen. Expression levels were defined as the average signal at the annotated gene,

normalized by the number of probes (see section 6.4 for more details).
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5.8.4 Chromatin Immunoprecipitation (ChIP) for microarray

ChIP assays were performed with Raji cells as described with minor changes

[171]. Briefly, 5× 107 cells were crosslinked with 1% formaldehyde and sonicated in

TE to produce chromatin fragments of 800 bp on average. Immunoprecipitations

were carried out using 4 µg of antibodies. For qPCR detection, the percent of

IP enrichment as compared to input was calculated using FastStart DNA Master

SYBR Green I kit (Roche Diagnostics) and data are presented as the fold change

with respect to a negative region of drug treated cells. Nine genes were analyzed

in total; three genes in each group ranked according to the RNA production: 0-5%;

55-60%; 95-100%. All detection primers are listed in table 5.1 and complete protocol

are presented in section 5.8.5.

5.8.5 Chromatin Immunoprecipitation (ChIP) & QPCR for Topo

treatments

Chromatin Immunoprecipitation (ChIP) samples were prepared from Raji cells

following Barsky et al. protocol with minor changes [171]. Briefly, 5×107 cells were

cross-linked with 1% formaldehyde for 10min at 37 ◦C. Cross-linking was stopped

by the addition of glycine to 125mM final concentration and cells were washed

twice with PBS. After harvesting cells by scraping, the pellet was washed once with

PBS plus 0.5% BSA and resuspended in TE (10mM Tris-HCl pH 8.0, 1mM EDTA

pH 8.0) to a final concentration of 1 × 106 cells/ml. Samples were sonicated 20

times with 20 sec pulses, 30 sec resting, using the Ultrasonic Processor XL (HEAT
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Table 5.1: List of all detection primers used for ChIP and QPCR

Name Fw Primer 5÷>3÷ Rv Primer 5÷>3÷

CKMT1A GCATTCATTCTCCTTGCTACC GAGAGTAAAGGCGAGTGGTGTA

TUFT1 TAAGGCAATGTGTCCCGC GAAAGGCAGGCACCAAGG

CTAG2 CTGGGTTCGGCAGTATCAGT CCTTTCCTGTGGATCTGACC

PFTK1 CAAAATAAGGCACCCTACATCTG GAGTCCAGTTGTTTGAGCGG

HISPPD2A CTTGATGCTCCCTTCCTTTG GCACAAACTCTGCCTCTTCC

MIER3 AGGAATGGGAGATGGAGACC TTCTCTGCCCTGTCGATCTT

MYC GGACTCAGTCTGGGTGGAAGG AAGGAGGAAAACGATGCCTAGA

IRF1 GGGAGGGTTTCAGTCCTAGC CCATCACAGCAAACCATCAA

UQCRQ TGTGGCTGAAACTGACGAAAC AGCACCAAAATCAGGGACAC

NT GCAGTTCAACCTACAAGCCAATAGAC CACAAATTAGCGCATTGCCTGA

System) to produce chromatin fragments of 800 bp on average. After clarification

by centrifugation, sonicated extracts were adjusted to the conditions of RIPA buffer

by adding 1% Triton X100, 0.1% Na-Deoxycholate, 0.1% SDS and 200mM NaCl.

4µg of anti-Topo I and Topo II were mixed with Dynabeads Protein A (Invit-

rogen) and incubated at 4 ◦C for 6hr with rotation. Chromatin from 5×106 cells was

added to the Protein A-antibody complexes and incubated overnight at 4 ◦C with

rotation. Immunoprecipitates were washed twice with RIPA buffer (10mM Tris-

HCl pH 8.0, 1mM EDTA pH 8.0, 1% Triton X100, 0.1% Na-Deoxycholate, 0.1%

SDS, 200mM NaCl); twice with RIPA buffer plus 300mM NaCl; twice with LiCl

buffer (10mM Tris-HCl pH 8.0, 1mM EDTA pH 8.0, 250mM LiCl, 0.5% NP40,

0.5% Na-Deoxycholate); and twice with TE.

The beads were then resuspended in TE plus 0.25% SDS supplemented with
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Figure 5.9: Relative enrichment of topoisomerases in promotor regions of genes after
treatment with CPT or β-Lap.

proteinase K (500µg/ml, Roche) and incubated overnight at 65 ◦C. The DNA was

recovered from the eluate by phenol chloroform extraction followed by ethanol pre-

cipitation in the presence of 4µg of glycogen (Roche) and dissolved in TE.

Real-time PCR was performed by using the LightCycler 480 and the SYBR

Green I Master kit (Roche Diagnostics). At least four dilutions of genomic DNA

were run to generate the standard curve. Quantification and melting curve analyses

were performed using the Roche LightCycler software by the crossing point method

as indicated by the supplier. For Topo I and Topo II antibodies the DNA recovered

values were around 100-fold more enriched than non-immune control. Data in the

Fig. 5.9 are presented as relative enrichment of topoisomerases in promotor regions

of genes after treatment with CPT or β-Lap. All detection primers are listed in

Table 5.1.
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Chapter 6

Time series analysis and novel noise prediction methods

This chapter provides details of the mathematical framework developed for

signal extraction from our data. I performed all the bioinformatic analysis presented

in this chapter.

6.1 Overview

In this chapter we’ll discuss the various aspects of our microarray data, and

the underlying principle / controls. We’ll summarize various definitions, analysis

methods and test the mathematical model discussed in section 4.6.

First we will discuss some general principals for analysis of time series data

that were developed as part of this dissertation. Since our data is noisy, first step

is to understand reproducibility of experiments.

6.2 Reproducibility

Microarrays have been routinely used for the ChIP-chip experiments, where

the enrichment of bound sequences is often 10–100 fold higher than the background.

However, for the current series of experiments, namely psoralen intercalation, this is

not the case. The maximum observed relative enrichment of psoralen photobinding
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under physiological conditions is approximately two fold [103], as the free energy of

intercalation of psoralen in negatively supercoiled DNA is much smaller than the

corresponding binding energies of typical antibodies. There is also a finite, although

smaller, free energy of intercalation in relaxed DNA. Psoralen binding sites are not

focal, but are continuously distributed across the genome. As a result the unpro-

cessed data have a very low signal-to-noise ratio (SNR)1, and conventional methods

and standards for mapping molecules bound to DNA are inadequate without mod-

ification.

Here we present a method developed to study such low energy / low specificity

effects. This method is capable of extracting signal from low SNR data (as low as less

than 15−2), it is unsupervised and has been calibrated.2 The underlying assumption

is that the noise is of much higher frequency than the real signal and it’s uncorrelated

to the real signal (which in this case is psoralen-binding3).

As an example, we define a hypothetical (low frequency) function and overlay

increasing levels of white noise4 (6 replicates). The function was designed so that

it has a low frequency signal (based on what we observed from our datasets) and

distinctive features of different amplitudes (various peaks and valleys of different

amplitudes). For this simulation, the chosen noise levels were in a range that was

1See section 6.4.1 for definition.
2See section 6.3 for calibration details.
3Because we don’t expect psoralen intercalation (and level of supercoiling) to change abruptly

from one base-pair to next, while the microarray data does show high variation.
4Note that although white noise has a flat frequency spectrum (i.e. all frequencies are present)

the net frequency component (power) for any given frequency is much smaller than the signal

frequency.
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much wider than than the observed noise level from the experiment (see section 6.5.1

for more).

The noisy data is then smoothed using Fourier Convolution Smoothing [148],

and plotted in Fig. 6.1 along with the raw data, and the original function. We

observe that as the noise level increases, the 6 replicates look increasingly different

although they are all derived from the same starting function modified by same

level of noise. This suggests that when noise levels are high, we cannot ask for

reproducibility from individual experiments.5

To achieve reproducibility/reliability we need to repeat the experiment several

times.6 The number of replicates required depends on the level of noise. If the noise

levels are low one or two more experiments suffice. For higher noise levels, higher

numbers of replicates are needed.

Let’s say that we start with four replicates. These can be subdivided into four

subsets of three replicates (by dropping one of them). Now if the average profiles of

each subset are similar, then there are enough replicates to make a reliable inference

from the data. If the averages are not comparable, that means more replicates are

required, and so on.

This is the prescription for a generic case where the actual behavior is not

known. For the simulation under discussion we have a direct benchmark for com-

5Reproducibility is a fundamental demand of any scientific experiment, and is key for its ac-

ceptability and validity. However, under certain stochastic conditions the system can have high

degree of variability and exact reproducibility can’t be achieved.
6Just like one will have to toss a coin several times to test whether it’s a fair coin or not, just

one or two tosses won’t be able to give a definitive answer.
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parison, i.e. the original function which was corrupted with different levels of noise.

The law of large numbers guarantees an accurate result.

Fig. 6.1 suggests that with the average of 6 replicates, we are able to qualita-

tively regenerate the original function for SNR as low as 15−2 (i.e. noise amplitude

∼15 times that of the signal amplitude).7

If it is not possible to do enormously large number of replicates (due to say

economic reasons), the average of all the replicates done is a better measure than

the individual experiments. It may seem that a large number of replicates might be

needed, but that is not true. For high noise experiments like microarrays, even for

our low free energy effect, 3–4 replicates are sufficient to achieve an adequate level

of accuracy (with meta-analysis this number comes down to 2–3 experiments).

6.3 Calibration for SNR extraction from a given data

The method described in the previous section can be evolved to generate a cal-

ibration for estimation of signal-to-noise ratio (SNR) (or noise levels)8 from a given

data provided that the data meets the criterion described in the previous section. To

calibrate, we first define a characteristic function based on known features of data.

Then we overlay different levels of white noise on this data, which are equivalent to

different replicates. At low noise each replicate closely mimics the original function.

But as the noise levels go up, the replicates are averaged in different combinations

7This is a conservative estimate, as we were able to recover good correlation for up to about 50

times noise with only 6 replicates.
8See definition of noise level in section 6.4.2.
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of increasing numbers until we get a close fit to the original profile (see Fig. 6.1).

Several thousand simulations were run for various noise levels9 (ranging be-

tween 1 to 100) on unit signal amplitudes10 with a mix of various small frequencies

(which were chosen based on our experimental data). Each of these noisy data

set is then smoothed for various window sizes ranging from 400 to 700 (see Ta-

ble 6.1). The standard deviation of the differences between original noisy dataset

and smooth datasets gives a metric for the preselected window sizes. By averaging

a large number of entries, coefficient table 6.1 was generated.

Table 6.1: Calibrated correction coefficients for various window sizes.

Window Size Coeff

400 3.46323

500 3.46300

600 3.46295

700 3.46295

This coefficient table is then used to predict the noise levels of any given

dataset. This prediction algorithm was tested on several thousands of simulated

datasets11 generated for various noise levels (ranging between 1 to 103) on various

signal amplitudes (ranging between 10−4 to 10) with a mix of various small frequen-

9See section 6.5.3 for the protocol used for simulating noisy data.
10Signal amplitude is defined as half of the difference between max and min values of all ampli-

tudes.
11Each dataset is used alone, no replicates.
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cies (which were much larger then experimental data). Table 6.2 summarize the

prediction results.

Note that when we have some knowledge about the noise levels, we are able to

successfully predict a much broader range, i.e. up to about noise level 40. However,

when we have absolutely no knowledge about the noise level, we can still successfully

predict the noise levels up to 23. Our meta-analysis data in Fig. 2 and 3 has a noise

level of about 13, which is well within the successful prediction range.

The method presented here gives an unsupervised prediction of noise level. A

supervised prediction (i.e. with more information about the data) will give better

results, but the unsupervised method is sufficient for the present analysis.

This analysis can help predict the number of replicates needed, for a noisy

experiment, up to a desired reproducibility-confidence-interval from just one exper-

iment. A simulation on replicates shows that for noise levels at least up to 46,

average of three replicates gives high enough noise reduction so that a fourth repli-

cate doesn’t add much improvement. This is a reconfirmation that for the purpose

of this work 3 replicates are sufficient.

While generalizing this technique, the following facts must be kept in mind.

The calibration (and smoothing) is a function of data size and density, frequency

spectrum of the data, noise amplitude12 and frequency etc. Although a complete

analytical understanding of the calibration is beyond the scope of this paper, one

can safely say that this method will work for very high noise levels for high frequency

data also if the sampling frequency is sufficiently high.

12The dependence is only on the noise amplitude and not on the signal amplitude.
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Table 6.2: Errors in prediction of noise for datasets with known or unknown noise
levels.

Known
Noise
Level

Stdev HΣL of
Prediction

Errors

Unknown
Noise
Level

Stdev HΣL of
Prediction

Errors

1 0 1 0

2 0 2 0

3 1 3 0

4 1 4 1

5 1 5 1

6 1 6 1

7 1 7 1

8 1 8 1

9 2 9 1

10 2 10 1

11 2 11 1

12 2 12 2

13 2 13 2

14 3 14 2

15 2 15 2

16 2 16 3

17 3 17 3

18 2 18 5

19 3 19 4

20 3 20 4

21 3 21 6

22 3 22 7

23 3 23 16

24 4 24 257

25 4 25 1190

26 3

27 4

28 4

29 6

30 5

31 5

32 6

33 6

34 10

35 8

36 8

37 9

38 7

39 10

40 12
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6.4 General Definitions

6.4.1 Signal-to-Noise Ratio

The signal-to-noise ratio is a commonly used term to describe the signal cor-

ruption by noise, and is defined as the ratio of signal power to the noise power, see

Eq. 6.1, where A is the root mean square amplitude. For more details please see

[172].

SNR =
Psignal

Pnoise

=

(
Asignal

Anoise

)2

(6.1)

6.4.2 Noise Level

The signal-to-noise ratio, as defined in the previous section, has it’s origins in

electrical engineering where it relates to the ratio of powers in signal and noise. For

the convenience of remembering, and ease of intuitive understanding, we define a

new term noise level. Eq. 6.2 defines the noise level in terms of the signal and noise

amplitudes (a), which are given by the difference between max and min values of

the amplitudes.

nl = 2
anoise
asignal

' 2√
SNR

(6.2)

Eq. 6.2 suggests that, a noise level of 10 would mean that the noise amplitude

is 5 times larger than the signal amplitude.13 In other words, one unit of signal is

burried in 5 units of noise.

13See methods section 6.5.3 for how this definition is used to simulate noisy data.
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6.4.3 Definition of Sets

Ratio Short Description Equivalence

XL

nXL
CL ® log2H XL

nXL
L

Relative enrichment of

cross-linked DNA Hor psoralen

intercalationL in untreated Hno

drug treatmentL Raji B cells

Psoralen binding due

to a combined effects of

sequence, inherent chromatin

structure and transcriptionally

generated dynamic supercoiling

XL HDRBL
nXL HDRBL CLHDRBL ® log2H XL HDRBL

nXL HDRBL L
Relative enrichment of cross-linked

DNA Hor psoralen interercalationL
in DRB treated cells

Psoralen binding mainly due

to sequence and inherent

chromatin structure HDRB

would inhibit transcription,

so no dynamic supercoilingL

CLD ® CLHDRBL - CL
Transcription generated

dynamic DNA supercoiling

Hdue to ongoing transcriptionL

XL HCPTL
nXL HCPTL CLHCPTL ® log2H XL HCPTL

nXL HCPTL L
Relative enrichment of cross-linked

DNA Hor psoralen intercalationL
in camptothecin treated cells

CLDHCPTL ®

CLHDRBL - CLHCPTL

Transcription generated

dynamic DNA supercoiling

in cells treated with CPT

XL H Β LapL
nXL H Β LapL CLH Β LapL ® log2H XL H Β LapL

nXL H Β LapL L
Relative enrichment of cross-linked

DNA Hor psoralen intercalationL
in Β-lapachone treated cells

CLDH Β LapL ®

CLHDRBL - CLH Β LapL

Transcription generated

dynamic DNA supercoiling

in cells treated with Β Lap

6.4.4 Meta Analysis

During meta-analysis we average multiple transcribed regions by aligning tran-

scribed regions at the transcription start sites (±8000 bp). For all our analysis, we

have averaged the raw data, and smoothed only the final average. The ratios are

calculated for each individual probe of microarray.
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6.4.5 Expression Levels

Expression levels were defined as the average of the scores (or signal) for all

probes of an annotated gene body.14 We had 3 replicates of the expression array

hybridizations, and average of expression levels from these three experiments were

used for further calculations. The expression level is calculated from raw data which

was baseline shifted (no smoothing).

6.4.6 Expression Level Classes

Once the expression levels were defined, we classified data in several groups

(decades, quintiles, quartiles, tertiles etc.). After looking at these different groups,

it was apparent that at the level of resolution of our experiments, the data is best

viewed in quintiles. For simplicity of explanation, transcribed regions were classified

in three categories (based on the expression levels): Low (0–20%, 20–40%), medium

(40–60%, 60–80%), high (80–100%).

6.4.7 Baseline Shifting

Since we expect ratios to be small,15 we normalize the entire hybridization

experiment so as to bring the overall baseline across the chromosome to zero. This

is achieved simply by averaging the ratios of all probes across the chromosomes, and

14In other words the total score, normalized by the number of probes.
15Because psoralen has a small free energy corresponding to interaction in negatively supercoiled

DNA. Moreover, it does have some affinity for intercalation in relaxed DNA as well. Also, see

supplementary discussion section 6.2.
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subtracting the average from all the probes.

We also used the same concept baseline shifting to remove the sequence de-

pendent bias of psoralen for DNA intercalation.16

6.5 Analysis Methods

6.5.1 Data Analysis

Owing to the small free energy of intercalation of psoralen, the hybrization data

was noisy, and had a very small signal to noise ratio.17 The appearance of the raw

data (for all regions) suggested that there was significant high frequency noise (i.e.

large variations over short lengths along the DNA). Considering the magnitude of the

bending and torsional persistence lengths for DNA ∼50–100nm (about 150–300 bp)

[19], variation in supercoiling occurring on a much shorter scale is unlikely unless

accompanied by a dramatic structural transitions, almost certainly an infrequent

phenomenon. Therefore the high frequency fluctuations were attributed to noise.

In order to suppress this noise, we used a technique called Fourier Convolution

Smoothing (FCS) to smooth the data. The technique was presented in [148], and is

briefly summarized here (for more details please refer [148]).

FCS takes the data set T ordered by abscissa t, performs the smoothing on or-

dinates d and reattaches the abscissa values to the corresponding smoothed ordinate

values. Consider an ordered time series data set with N pair of data:

16Also see section 6.5.2.
17See section 6.2.
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T = {(ti, di) : ti < tj ∀ i < j ∈ [1, N ]} (6.3)

The ordered set of ordinate values (d) in T are given by:

D = {di : (ti, di) ∈ T ∀ i ∈ [1, N ]} (6.4)

Here are some functions that we’ll use:

Ceiling(x): greatest integer less than or equal to the number x,

RotateLeft(L): cycle elements in list of numbers L n-positions to the left,

Sum(L): sum of all the numbers in the list L.

We now define another N membered ordered list, k(S), for a positive integer

S as:

k(S) = {exp(−2−Sn
2

) : ∀ n ∈ [Ceiling

(
N

2

)
, N − 1− Ceiling

(
N

2

)
]} (6.5)

Now we define the convolution kernel of index S:

K(S) =
RotateLeft

(
k(S), Ceiling

(
N
2

))
Sum (k(S))

(6.6)

Now we convolve the ordered ordinate list D with the kernel K(S), using the

discrete Fourier transform and inverse transform, to get the new smooth ordered

list:
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D ∗K(S) = InverseFourier(sqrt(N) Fourier(N) Fourier(K(S))) (6.7)

Combining the ordered list 6.7 with the original ordered abscissae:

T (S) = {(ti, d∗i) : d∗i ∈ D ∗K(S) ∀ i ∈ [1, N ]} (6.8)

T (S) in 6.8 represents the smoothed time series data. The original data can

be smoothed for a range of the values of the parameter S, and the corresponding

smooth data sets T (S) can be obtained. Now the error norm of these ordered data

sets are computed w.r.t. moving window average of T with a pre-decided window-

size (ws), which is the only parameter used for smoothing. The T (S) corresponding

to the smallest error is the desired smoothing of T .

The benefit of FCS is that it dampens the high frequency noise much more

than the low frequency noise. The technique uses moving window average as a

reference, as a result of which the local features are not lost during an unsupervised

noise reduction.

Our microarrays are designed with each probe having 50 bp and a 12 bp overlap

(i.e. 38 bp are unique between successive probes). So for any given region of genome

or an individual transcribed region, we have a data density of 38 bp per data point

(i.e. per probe). While doing the meta-analysis,18 we align all the transcribed regions

on the transcription start sites (TSS). Since the TSS are randomly distributed with

respect to probes, for the meta-analysis the data density increases to 1.4 bp per data

18See section 6.4 for definition.
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point. The meta-analysis presented in this study uses a window size of 400 data

points (equivalent to 561 bp).

Based on the DNA properties, we improvised upon the previously described

FCS technique to fit it for our data. The ENCODE data on Nimblegen microarrays

was not continuous, so whenever we had a break of 600 bp or more (i.e. abt 15 probes),

those data points were separated into distinct groups, and smoothed individually.

Continuous regions with less than 400 probes were also dropped from individual

transcribed regions.

Our Nimblegen ENCODE (hg18) microarrays had usable data for a total of

855 transcribed regions. Since many of these regions were overlapping, there was a

possibility of over-representing a specific gene. In order to avoid this we identified

clusters of transcripts/genes that were overlapping or had a TSS within 50 bp of each

other; and used only the largest of “transcribed region” from each of these groups.

This brought down the total number of transribed regions to 445 (with 415 unique

genes). See the list of these transcribed regions in Table A.1.

6.5.2 Sequence Dependent Background Correction

These 445 transcribed regions were sorted based on the expression levels19 and

segregated in various quantiles (decades, quintiles, quartiles, tertiles etc.). When

meta-analysis20 was performed for all 445 transcribed regions in these quantiled

datasets, we observed a graded difference in baselines for each quantile.21

19See definition in section 6.4.
20See definition in section 6.4.
21The low expression quantiles had a higher baseline than the high expressing quantiles.
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We wanted to understand this difference, and explain it. It is well known that

psoralen has a sequence dependant bias for intercalation in DNA. So we sorted the

transcribed regions based on the AT content within ±3000 bp of TSS (instead of

sorting them by expression). In the meta-analysis, it was very obvious that the

AT-rich transcribed regions had a much higher psoralen intercalation, irrespective

of expression level. So we have decided to do an AT content dependent baseline shift

for different transcribed regions. To reduce systematic errors, these 445 transcribed

regions were divided in 10 groups (each having about 44–45 transcribed regions).

Now a correction term, for each of the decades, was calculated by averaging the

raw ratios in the flanking regions of (−8000,−2000) bp and (2000, 8000) bp (about

TSS) of the constituent transcribed regions.22 The data for each of the constituent

transcribed regions is then baseline shifted using this correction term to get the

corrected data, which is used for further analysis.23

6.5.3 Addition of Noise Levels in Simulations

There are several ways one could add noise on a pure signal. For our simu-

lations, we used the following protocol for noise addition: For a given dataset and

noise level (say nl) we generate dataset of equal length such that each point is the

22If we had enough data points for all the transcribed regions, we could in principle do a baseline

shift based on the flank psoralen profile of each individual gene, but due to lack of continuous data

points, we have decided to use the the flanks: (−8000,−2000) bp and (2000, 8000) bp (about TSS).
23All the processing was done on raw data, and smoothing was applied only in final step to

remove the high frequency noise.
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product of nl and a (pseudo) random number in the range of −1
2

and +1
2
.24

6.6 Conclusions

This chapter presented the analysis technique that were used for analyzing the

data presented in chapter 5. We started with the idea that for highly noisy data

reproducibility can be achieved by averaging multiple data sets. Then we presented

the calibration of the FCS for our data which allows us to predict the noise level

of an unknown time series data set (with noise levels upto 21). For datasets which

are known to have low noise level the prediction is good for even higher (i.e. upto

about 80). This allowes us to predict the number of desired replicates to achieve

statistically significant reproducible results. This is useful as it can potentially save

money in repeating costly experiments.

24Another possibility could be to use a Gaussian distribution with mean, µ = 0, and standard

deviation, σ = nl.
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Chapter 7

Novel Normalization And Clustering Analysis of NanoString Data

The results presented in this chapter were part of my collaboration with

Dr. Avi Rosenberg (from Dr. Mark Raffeld’s lab). The experiments were done

either by Avi or post docs from other labs. My contribution is all the data analysis

presented in this chapter, including the development of the new normalization and

error correction protocol, the clustering analysis to identify similar cancer types,

and the significance tables to identify genes that are significantly affected in various

treatment and control groups.

7.1 Overview

RNAs are the link between the transcription and translation processes. Noise

at the transcription level is propagated to translation level by means of RNAs.

Transcription level noise can be introduced in several steps during the process of

transcription, e.g. chromatin opening, initiation, pausing / stalling / promotor

escape, elongation and termination. Apart from these, splicing, pre-processing and

stability of mRNA are other critical factors for translational noise.

In order to study these effects, it is important to have a reliable estimate of

the number of mRNAs of the entire genome, or at least of a sizable subnetwork.
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Such an estimate would be a powerful method for understanding transcriptional

/ translational noise, as it can potentially define the state of a single cell, or a

population of cells. These states can then be compared between diseased and healthy

cells / populations.

With developments in scientific research, therapeutic cures (or at least pallia-

tive drugs) are becoming available for various cancer molecular subtypes, and we

are inching towards personalized medicine [173]. However, for many diseases with

genetic disorders, one of the greatest challenges for personalized medicine is a reli-

able prediction of the specific molecular subtype of the specific disease. If the state

of the cell can be defined, like described above, in whole or in part, it would be a

great help when sub-classifying patients for a specific type of treatments. While the

state defined by complete transcriptome would have much more information, and

would be more useful, under current technology it costs a lot of time and money.

However, if we are able to identify an appropriate signature set of gene, pathway or

subnetwork, that would enable us to classify the molecular subtype of the disease

of the specific patients.

For this dissertation, we will present some results from our pilot experiments.

Instead of counting all the mRNA transcripts from a single cell / cell population /

tumor, we can get an estimate of mRNA copies of a set of pre-selected transcripts

using the NanoString nCounterTM assay system [36].

Based on our test of the NanoString system, using a subnetwork of 519 human

kinases1 (out of about > 2000 total kinases), we are able to successfully predict the

1Kinases are enzymes that transfer phosphate groups from high-energy donor molecules, such
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molecular subtypes in a set of 22 lung cancel cell lines (control and treatments). We

are also able to identify a large number of significant contributor genes deregulated

due to the disorder. The most significant contributors have been widely reported

in previous studies in the literature, however we have identified a large number of

novel gene targets that have not been reported previously. We are currently testing

these predictions.

7.2 Introduction

Kinases are present in numerous critical, activated pathways in cancer in gen-

eral. In particular, for lung cancer, multiple such pathways have been identified.

These include EGFR, PDGFR and ALK [174]. Changes in these pathways have

been proven to be critical in patient care as therapeutics targeting specific activities

have become available (e.g. imatinib [175], crizotinib [176]). Therefore comprehen-

sive understanding of these targets and their expression patterns may prove critical

in the next generation of clinical trials of these potent drugs.

In this preliminary report we present analysis of 22 lung cancer cell lines

(control groups and treatment groups) analyzed on Human Kinase codeset from

NanoString nCounter assay system. The normalized data is analyzed in various

ways to get significant and useful insights about clustering of various molecular

subtypes of lung cancer, and the functional information about various drugs and

their target genes. Here is a brief description of the technology and the methods.

as ATP, to specific substrates, a process referred to as phosphorylation.
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7.2.1 Summary of NanoString assay

NanoString assay is a very sensitive technique, which can detect RNA tran-

scripts at concentrations as low as 1 copy per 5 cells [177].2 NanoString can measure

as little as 1.2-fold changes of a single transcript at 20 copies per cell (10 fM) with

statistical significance (p < 0.05) [178].3

Such high sensitivity is a great asset for detection of low copy number tran-

scripts as well as small variation in transcript counts. However, due to high sensitiv-

ity, the reproducibility of experiments becomes a problem as the experiment is very

sensitive to small variation in sample preparations and handling, as well as to non-

specific binding of some probes. Thus, small variations in any of these parameters

may cause large distortions in the data.

One of the significant advantage of NanoString assay is that an ampli-

fication step is not required. In traditional RNA library preparation

techniques, an amplification step is present [179] which introduces se-

quence specific bias, and hence the results are skewed.

The exact details of the assay are proprietary, but here is a brief summary [177,

180, 181]. See Fig. 7.1. The assay has a predefined set of molecular barcodes that

enable the detection and counting of mRNA molecules in complex biological samples.

Spatial permutations of florescent probes create a huge diversity of color codes, each

attached to a single target specific probe, so each different code represents a different

2Based on an input of 100ng of total RNA.
3For genes expressed at levels between 0.5 and 20 copies per cell, detction of 1.5-fold differences

in expression levels with the same level of confidence is reported [178].
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Digital mRNA profiling
Paolo Fortina & Saul Surrey

Color-coded probe pairs enable multiplexed gene expression analysis with a sensitivity that rivals PCR-based methods.

High-throughput RNA expression profiling is 
generally carried out using microarrays1,2 and 
real-time reverse transcriptase (RT)-PCR to 
validate differentially expressed genes3. Ideally, 
however, one would like a method that provides 
a direct digital readout of each mRNA and its 
relative abundance using a small amount of 
total RNA (100 ng) and without requiring 
cDNA synthesis or enzymatic reactions. In this 
issue, Geiss et al.4 describe a new approach that 
goes a long way toward achieving these goals. 
Their NanoString nCounter System has a sen-
sitivity that is higher than that of microarrays 
and about equal to that of TaqMan RT-PCR4. 
Potential applications include DNA copy num-
ber determination, microRNA profiling and 
even protein detection.

The method involves mixing total RNA with 
pairs of capture and reporter probes tailored to 
each mRNA, hybridizing, washing away excess 
probes, immobilizing probe-bound mRNAs on 
a surface and scanning color-coded bar tags on 
the reporter probes (Fig. 1). This solution-phase 
hybridization scheme is expected to minimize 
background signal and improve detection of 
low-abundance mRNAs, providing higher sensi-
tivity—at or below a single mRNA molecule per 
cell—compared with microarrays. The approach 
bridges the gap between genome-wide and tar-
geted mRNA expression profiling. It provides 
high sensitivity (500 attomolar), digital data 
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mRNA Reporter and capture probes
for different transcripts
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Figure 1  Overview of the digital mRNA profiling technology. (a) Total RNA is mixed directly with 
nCounter reporter and capture probes. No cDNA synthesis or amplification of the target is required.  
(b–d) After hybridization (b), excess reporters and capture probes are removed (c) and the purified 
ternary complexes are bound to the imaging surface, elongated and immobilized (d). (e) Reporter 
probes, representing individual copies of mRNA, are tabulated for each gene. In this report, over 500 
different genes are multiplexed in a single reaction.
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Figure 7.1: Overview of the digital mRNA profiling technology. (a) Total RNA
is mixed directly with nCounter reporter and capture probes. No cDNA synthesis
or amplification of the target is required. (b–d) After hybridization (b), excess
reporters and capture probes are removed (c) and the purified ternary complexes
are bound to the imaging surface, elongated and immobilized (d). (e) Reporter
probes, representing individual copies of mRNA, are tabulated for each gene. For our
experiment, 519 different genes are multiplexed in a single reaction. (Reprinted by
permission from Macmillan Publishers Ltd: Nature Biotechnology [180], copyright
2008.)
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type of target molecule. Because these probes will bind to the target mRNAs in

a one to one ratio, the corresponding barcodes are sorted by their respective code,

individually counted and cross referenced to a target identity, yielding a digital

count of the target molecules present in the given sample. There are additional

gene specific capture probes that work together with reporter probes (attached to

barcodes) to increase sensitivity and specificity. After washing away the excess

probes, purified probes are loaded into a sample cartridge where they randomly

bind to a surface. Current passing through the conducting surface aligns them to

the surface. Using a microscope and CCD camera, the data is collected for hundreds

of thousands of bound barcodes. (A more detailed description can be found here

[177, 180, 181].)

7.2.2 Cell line subgroups

Having cancer is like having a car accident. Each accident is different, and

could result in injuries of different kinds. Although, for communication purposes,

these injuries are usually classified in broad subgroups, e.g. head injury, leg injuries

etc., each of these broad categories can mean a number of things depending on the

details of the specific injury or patient. Same is true for cancer. When someone

develops a tumor (i.e. an “injury”) in some part of the body, say lung, this can

happen due to mutations (i.e. “accidents”) in one or more underlying pathways

[182, 183].

Our studies mainly focused on tumors of the lung. We are dealing with a few
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specific molecular subtypes:

EGFR mutants: EGFR (epidermal growth factor receptor) is a cell surface recep-

tor of the extracellular protein ligands4 [184]. Mutations resulting in upregu-

lation (i.e. overexpression) of EGFR has been implicated in various types of

cancers, including lung cancer [185]. Based on several studies using multiple

drugs, it has been found that patients positive for EGFR mutation have a

staggering 60% response rate to the known treatments (which is very high

when compared to the conventional chemotherapy alone) [186].

Kras mutants: Kras is a GTPase (i.e. cleaves of the terminal phosphastes from

GTP) which also acts as an on/off switch for recruitment and activation of

growth factors and receptor signals. Mutation resulting from a single nu-

cleotide substitution causes permanent activation, resulting in various malig-

nancies [185]. It has been found that Kras mutations are present in EGFR

negative patients [187]. Although trials are running, but presently there are

no drugs effective in treatment of Kras tumors.

EML4− ALK fusion mutants: The fusion of EML4 and ALK genes, results in a

fusion protein EML4−ALK, which was recently identified and implicated in

lung cancer [188]. Screening of EML4−ALK has not been standardized yet

[189].

Cripto− 1 mutatnts: Cripto − 1 is an EGF related gene that codes for a peptide

4Ligands are messenger molecules that trigger specific signals by binding to specific sites in the

receptor molecules.
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growth factor [190]. In human genome, the gene is situated very close to a

region that is routinely deleted in a variety of cancers, including lung cancer

[191].

Here is a list of the various lung cancer molecular subtypes used in our exper-

iment:

1. Kras mutants:

• A549

• H358

• H2122

2. EGFR mutants:

• H3255

• H827

• H1975

3. EML4− ALK:

• H2228

• BEAS2B

4. EGFR/Kras wild-type:

• H322

• H1703
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5. EGFR mutant ±Cripto:

• H827Cripto

Some of these molecular subtypes of lung cancers have been known for some-

time, and already have known drugs targetting them. The list below summarizes

the drugs used in our study:

Crizotinib: Crizotinib (or Criz) is an inhibitor of ALK and functions by “com-

petitive binding within the ATP-binding pocket of target kinases” [192]. It is

currently undergoing clinical trials for lung cancer in adults and children.

NMS: NMS is a novel drug that inhibits kinase PLK1, which causes apoptosis in

cancer cell lines via a potent mitotic cell-cycle arrest [193].

Erlotinib: Erlotinib reversibly inhibits tyrosine kinases which are highly expressed

and often mutated in various types of EGFR positive cancers [194]. So in

other words it’s an EGFR inhibitor.

We present results for a total of 22 experiments here. Although our experi-

ments didn’t have any identical replicates, there were several cell lines that could

be grouped by mutation status or by treatments. Below is a list of various con-

trol/treatment groups:

1. EGFR/Kras wild-type treatment group:

• H3122DMSO - control

• H3122Criz - crizotinib treatment
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• H3211NMS - NMS treatment

2. EML4− ALK wild-type treatment group:

• H2228DMSO - control

• H2228Criz - crizotinib treatment

• H2228NMS - NMS treatment

3. EML4− ALK wild-type treatment group:

• BEAS2BPar - parental (control)

• BEAS2BWT - EML4− ALK test condition-1 (active signaling)

• BEAS2BKR - EML4− ALK test condition-2 (kinase dead mutant)

4. EGFR mutant control-treatment group:

• H827 - parental (control)

• H827ER20 - 20µM treatment with drug erlotinib

• H827ER40 - 40µM treatment with drug erlotinib

7.3 Novel normalization and error correction protocol

The highly sensitive NanoString nCounter system is useful for a variety of

applications, such as digital counting of miRNA and mRNA transcripts across a large

dynamic range, and measuring copy number variation of DNA. However, as stated in

earlier, the high sensitivity may cause large distortions in data due to experimental
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variables such as small variation in sample preparations and handling, as well as

non-specific binding of some probes. This sensitivity skews the underlying results,

and making any inferences and predictions becomes very difficult and unreliable.

To overcome this problem, we developed a novel normalization and error cor-

rection approach utilizing the built in “stable” house-keeping genes along with the

positive and negative controls. In this preliminary report, analysis of NanoString

data is presented using the novel protocol to normalize data for a set of 22 lung

cancer cell lines (controls and treatments) on Human Kinase codeset. This codeset

had markers for 519 (out of a total of > 2000) human kinases that are known to

be differentially expressed in the human kinome. The data is analyzed in various

ways to get significant and useful insights about the clustering of the various molec-

ular subtypes of lung cancer, and the functional information about various targeted

drugs and kinase genes that are affected.

To normalize the data, we use the three internal controls that are a part of

the experiment for each of the samples, that are as follows:

1. Positive controls: Each sample has a set of spike-in data where a set of non-

human genes is added to the reaction mix in known quantities of ranging from

0.125 fM to 128 fM .

2. House keeping genes: There are a total of 8 house keeping (or “stable”) genes,

whose expressions are not expected to vary much from one cell line to another

cell line.

3. Negative controls: Lastly there are a bunch of barcodes attached to reporter
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probes for genes that do not belong to the mammalian genome. These codes

are expected to be absent from the final data.

When several different samples are compared, we see a large variation (over a

massive dynamic range) in estimated expression levels of not only the target genes,

but positive controls (up to 4-6 fold variation) and house keeping genes (up to 6-8

fold variation). To make any sense out of the data we needed a way to normalize

this data so that different samples are on the same scale. Here is a summary of the

normalization and error correction steps that we are currently using:

1. Intra-sample normalization: We use the spike in data as reference to normal-

ize (i.e. rescale) the data for each sample. This normalization is performed

independently on each sample, and brings all the samples to roughly the same

scale. A linear fit was very sensitive to variations in the observed levels of each

of the positive controls across all ranges. To improve accuracy, a non-linear

interpolation was used.

2. Inter-sample normalization: All the 8 housekeeping genes had large variation

in their estimated quantities. The fold variation was reduced to about 2-3 fold

after intra-sample normalization, however the dynamic range still spanned sev-

eral hundreds of fMs. Based on the covariance analysis, we picked up HPRT1

and CLTC as the most stable genes. For our analysis, we used HPRT1 which

has also been reported previously as a stable gene for data normalization pur-

poses [195, 196]. The geometric mean of the HPRT1’s expression levels were

used for inter-sample normalization [197]. After normalization, all sets have
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the same expression level for HPRT1.

3. Error correction: Lastly, we use the negative controls to define a common

least-count (or ‘quanta’) for the entire set of experiments so that the observed

values of the negative control expression levels is zero. We use this least-count

as the sensitivity of the instrument and expression levels of all the genes are

rounded to this least-count, giving us quantized variation in expression levels.

The normalized and error corrected data was used for further analysis.

7.3.1 Advantages of our scheme

The existing methods use a linear normalization method across the dynamic

range of 3 orders of magnitude (0.125 fM to 128 fM). Moreover, the normalization

factor is chosen in an ad-hoc way, which is dependent on the number of experiments

done, and may vary significantly with each new experiment. This is particularly

troublesome for the transcripts with small copy number. Lastly, there is no corre-

lation between the data read and the transcripts count.

Our method overcomes each of these drawbacks:

• Each experiment is normalized with respect to it’s own set of positive controls,

in a non-linear fashion which is sensitive to the specific dynamic range. Thus

the normalization is much less sensitive to variation in observed levels of any

one value (as in the case of linear fit).

• We use the information about the spike-in concentrations during the normal-

ization. As a result of this built-in calibration, our normalized data has a
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direct correlation with the concentration of transcript levels. This is very

useful while comparing different experiments, or transcrtipts.

• Since our error correction protocol results in quantized data using the worst

case scenario, we can have high confidence in the values. This is an intuitive

way to integrate the information about background noise level into the each of

the data point, and makes it is easy to compare the levels of same transcripts

among several experiments.

7.4 Applications and results

NanoString analysis enables us to ask various questions about a large set of

tissue types with various drug treatments and stages of growth or development. In

this section we analyze two very basic questions.

The very first question for any experiment is that of reproducibility and ability

to put together similar experiments. If the litmus test of reproducibility is cleared,

one has confidence in the reliability of the data. The next question is to be able to

make testable predictions based on the data.

7.4.1 Reproducibility and Hierarchical Clustering

If our analysis is correct, and cells activate / utilize similar kinase pathways,

we should be able to cluster these mutation statuses and treatment groups together.

To answer the question of reproducibility, we use Hierarchical Clustering.

There are innumerable ways to cluster the same set of data, each approach
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will answer a specific question (or examine the similarity between datasets from a

different point of view). For any given set of experiments, we need to identify the

correct question. Once the correct question is identified, it can be used again for

similar experiments.

The underlying clustering question is based on the distance function between

any two pairs of the multidimensional data set, say (u, v). Here5 are some of the

standard ways to calculate the distances:

(a) Euclidean distance, i.e. simply Norm(u− v),

(b) Squared Euclidean distance, i.e. simply Norm(u− v)2,

(c) Normalized Euclidean distance, i.e. 1
2

Norm((u−Mean(u))−(v−Mean(v)))2

Norm(u−Mean(u))2+Norm(v−Mean(v))2
,

(d) Manhattan distance, i.e.
∑
|u− v|,

(e) Chessboard distance, i.e. Max|u− v|,

(f) Correlation distance, i.e. (u−Mean(u)).(v−Mean(v))
Norm(u−Mean(u))Norm(v−Mean(v))

,

(g) Bray-Curtis distance, i.e.
∑
|u−v|∑
|u+v| ,

(h) Canberra distance, i.e.
∑ |u−v|
|u|+|v| ,

(i) Cosine distance, i.e. 1− u.v
Norm(u)Norm(v)

.

5For this preliminary proof of concept we have used some of the standard distance functions.

In future, when we will ask spedific questions about the molecular signature or the specific drug

treatment, we’ll have to design specific distance functions depending on the underlying mechanism.
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In Fig. 7.2 we show the clustering of all the 22 experiments in aforementioned

9 different ways. Each of these is a unique arrangements of the given data, some

are more accurate than the others.

If we examine each one of these clusters carefully, the clusterings in Fig. 7.2

(c), (f) and (i) are among the top choices which correspond to distance functions of

normalized euclidean distance, correlation distance and directional cosines respec-

tively. Note how nicely various control and treatment groups are clustered together.

With more knowledge about these cell lines, we can identify the correct question

(a through i), which can then be used for further analysis and future experiments.

For each of these questions, a separate distance matrix can be generated to give an

easy feel of clustering in the multi-dimensional space. Fig. 7.3 shows clustering for

a smaller set of mutant groups (no treatments) for the same set of questions (a-i).

The fact that we are able to cluster together various molecular subtypes sug-

gests that the experiments are reproducible, and can be used to make further infer-

ences.

7.4.2 Identifying significantly affected genes in treatment groups

With some confidence about the reproducibility of the experiments, we can

use the normalized data for further analysis. In the remaining part of this chap-

ter, we analyze various groups to make predictions of potential kinases as targets

for lung cancer therapeutics [174]. In the first part, analysis of controls and drug

treatments is presented, along with a list of genes that are significantly affected by

131



HaL

A549
H358
H3122Criz
H3122NMS
H3122DMSO
H1975
H2228Criz
H2228DMSO
H2228NMS
BEAS2BWT
H322
BEAS2BPar
H2122
H2228
H3255
H827
H827Par
H827Cripto
BEAS2BKR
H1703
HR827ER40
H827ER20

HbL

A549
H358
H3122Criz
H3122NMS
H3122DMSO
H1975
H2228Criz
H2228DMSO
H2228NMS
BEAS2BWT
H322
BEAS2BPar
H2122
H2228
H3255
H827
H827Par
H827Cripto
BEAS2BKR
H1703
HR827ER40
H827ER20

HcL

A549
H358
H3122Criz
H3122NMS
H3122DMSO
H1975
H2228Criz
H2228DMSO
H2228NMS
BEAS2BWT
BEAS2BPar
H2228
H322
BEAS2BKR
H2122
H3255
H827
H827Par
H827Cripto
HR827ER40
H827ER20
H1703

HdL

A549
H358
H3122Criz
H3122NMS
H3122DMSO
H2228Criz
H2228DMSO
H2228NMS
H1975
BEAS2BWT
H827Par
H827
H827Cripto
H322
HR827ER40
H827ER20
H1703
H3255
BEAS2BPar
BEAS2BKR
H2122
H2228

HeL

A549
H3122Criz
H3122NMS
H3122DMSO
H358
H1975
H2228Criz
H2228DMSO
H2228NMS
H322
BEAS2BWT
H2122
BEAS2BPar
H2228
H3255
H827
H827Par
H827Cripto
H1703
BEAS2BKR
HR827ER40
H827ER20

HfL

A549
H358
H322
H3122Criz
H3122NMS
H3122DMSO
H1975
H2228Criz
H2228DMSO
H2228NMS
H2228
BEAS2BWT
BEAS2BPar
BEAS2BKR
H2122
HR827ER40
H827ER20
H827
H827Cripto
H827Par
H3255
H1703

HgL

A549
H3122NMS
H3122DMSO
H3122Criz
H358
H2228Criz
H2228DMSO
H2228NMS
BEAS2BWT
H1975
H322
BEAS2BPar
BEAS2BKR
H2228
H2122
H1703
H3255
H827Cripto
H827ER20
HR827ER40
H827
H827Par

HhL

A549
H3122Criz
H3122NMS
H3122DMSO
H827Par
H827
HR827ER40
H827ER20
H827Cripto
H358
H2228Criz
H2228DMSO
H2228NMS
BEAS2BWT
H1975
H2228
H1703
H322
BEAS2BPar
BEAS2BKR
H3255
H2122

HiL

A549
H358
H322
H3122Criz
H3122NMS
H3122DMSO
H1975
H2228Criz
H2228DMSO
H2228NMS
H2228
BEAS2BWT
BEAS2BPar
BEAS2BKR
H2122
H3255
H827Cripto
H827
H827Par
HR827ER40
H827ER20
H1703

Figure 7.2: Clustering 22 experiments in various ways
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Figure 7.3: Clustering mutant groups in various ways
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the treatments. In the second part, various mutant groups are compared to find out

the similarities and differences between the affected genes.6

We find several interesting features, e.g. we find that crizotinib represses most

of its target kinases, while NMS activates about half of its targets while repressing

the other half (including the common tagets). (See section 7.4.2.1 and Table B.1

& B.2)

7.4.2.1 Crizotinib and NMS treatment of H3122 cell line

H3122 lung cancer cells were treated with DMSO (control) and two drugs,

crizotinib and NMS.

Table B.1 gives the list of genes that are significantly affected by each of the

drugs as opposed to the control. This table gives the normalized data, along with

pairwise fold changes for the three experiments. The pairs are 1 : 2, 1 : 3 and

2 : 3, and are color coded in red and green depending on whether the fold change is

positive or negative. Using the color information, it is very easy to observe that for

many of the treatment groups, a significant number of genes show opposite responses

to the two drug pairs. See the changing colors in column 1 : 2 and 1 : 3.

The last column, Sig, has significance marker in binary form with 1 indicating

significant change in the corresponding pair, while zero representing insignificant

6We are only dealing with a limited part of Human Kinome (519 of over 2000), and that we

are only studying mRNA expression. There are various other questions which are important (but

beyond the scope of this study) such as the stability of mRNAs or proteins, their enzymic activity,

effect of various drugs on the wider gene circuits and their feedback to the kinome sub-circuit etc.
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change.

We are choosing a threshold to decide the significanct change. For the

current report, significance level was taken to be a minimum difference

of 3 quanta or more. This represents really significant changes corre-

sponding to about 5–6 times the standard deviation (i.e. ∼ 5 − 6σ) as

comparared to the background levels.

Depending on which of the pairs shows significant change for a given gene,

there are following values for Sig (the significance marker): 000, 001, 010, 011, 100,

101, 110, 111. This enumeration simplifies the task of isolating various groups. For

example,:7

• If we want to look for genes that are significantly affected in both the treat-

ments, we can look for the Sig markers 110 and 111.

• To locate the genes that are affected only by the first drug and not by the

second drug, we can look for Sig markers 100 and 101.

• To locate the genes that are affected only by the second drug and not by the

first drug, we can look for Sig markers 010 and 011.

• The Sig marker 001 corresponds to a small fraction of genes that are affected

7Although this description is true only when there is a comparison between the three exper-

iments, the algorithm can do a pairwise comparison among groups larger than three. Also, this

is an analysis where the control is in the first column and treatments are in the remaining two

columns.
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by the two treatments by small amounts in opposite directions, but the relative

change among the treatments is larger and significant.8

• The genes corresponding to Sig marker 000 are dropped from the list as they

do not have significant changes in either of the pairs.

Note: In some cases, where the expression level for a gene is zero in one

experiment, while significant in the other experiments, taking ratios gives

zeros or infinity. To overcome this problem, the ratios are taken assuming

the low expression value to be 100 times smaller than the quanta. This

avoids the aforementioned errors, at the same time marking these ratios

as significantly different from the other ratios.

In Table B.1, if we look at the genes that are significantly affected by both

the drugs (i.e. Sig = 110/111), it is interesting to observe that crizotinib represses

almost all the 58 kinases, while NMS represses about 2
3

rd of kinases (see Sig = 110

and some in 111) and activates the remaining 1
3

rd (see Sig = 111), including the

common tagets with crizotinib.

As stated in the section 7.2.2, crizotinib is an inhibitor of ALK and functions

by “competitive binding within the ATP-binding pocket of target kinases” [192].

This result suggests that successful inhibition of ALK in the EGFR/Kras mu-

tant cell line H3122 causes the repression in expression of about 50 other kinases

(Table B.1).

8In principle there should not be any genes belonging to this category, but because we are

choosing a high threshold for significance, we do see several genes in this category.
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Similarly, NMS treatment seems to have a similar repressive effect on almost

2
3

rd of these kinases. NMS is a drug that inhibits kinase PLK1 [193]. However, if

we compare the actual expression levels, it’s very evident that the criz treatment

was much more potent than the NMS treatment.

The results here suggest that either both these drugs have multiple targets,

or that their known targets (ALK for criz, and PLK1 for NMS) have functional

relations with the affected 58 kinases. (Table B.1)

7.4.2.2 Crizotinib and NMS treatment of H2228 cell line

H2228 lung cancer cells were treated with DMSO (control) and two drugs,

crizotinib and NMS. Table B.2 gives the list of genes that are significantly affected

by each of the drugs as opposed to the control. (For details about the table, please

see section 7.4.2.1.)

Once again we notice that crizotinib represses almost all the kinases it targets,

while NMS represses about 2
3

rd of kinases (see Sig = 110 and some in 111) and

activates the remaining 1
3

rd (see Sig = 111), including the common tagets with

crizotinib.

As stated in the section 7.2.2, crizotinib is an inhibitor of ALK and func-

tions by competitive binding within the ATP-binding pocket of target kinases [192].

This result suggests that successful inhibition of ALK in the EML4 − ALK mu-

tant cell line H2228 causes the repression in expression of about 150 other kinases

(Table B.2), which is about 3 times larger than the affected number of kinases in
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EGFR/Kras wild type cell line H3122 (Table B.1).

This means that if ALK is inhibited then the fusion protein EML4 − ALK

also looses it’s functionality. All the kinases that are affected in the EML4−ALK

mutant H2228 cell line (i.e. Table B.2) but not in the EGFR/Kras cell line H3122

(i.e. Table B.1) are targets of the fusion protein.

Similarly, NMS treatment seems to have a similar repressive effect on almost

2
3

rd of kinases. NMS is a drug that inhibits kinase PLK1 [193]. However, once

again, if we compare the actual expression levels, it’s very evident that the criz

treatment was much more potent than the NMS treatment for both EGFR/Kras

and EML4− ALK.

The results here suggest that either both these drugs have multiple targets,

or that their known targets (ALK for criz, and PLK1 for NMS) have functional

relations with the affected 58 kinases. (Table B.1)

7.4.2.3 Conditioning on BEAS2B cell line

EML4 − ALK mutant BEAS2B lung cancer cells were studied in two con-

ditions: active signaling (BEAS2BWT ) and kinase dead mutant (BEAS2BKR).

Table B.3 gives the list of genes that are significantly affected by each of the con-

ditions as opposed to the parental cell line. (For details about the table, please see

section 7.4.2.1.)

Note that condition 1 represses almost all observed affected kinases while con-

dition 2 activates almost all of them, including the common targets.
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As expected this EML4−ALK mutant cell line BEAS2B shares many dereg-

ulated kinases with the previous EML4 − ALK mutant cell line H2228 (Table

B.2). Curiously though, loss of kinase activity (in the untreated kinase dead mu-

tant BEAS2BKR cell line) causes the activation of other kinase pathways, e.g.

MAPK13, PAK6, ERN1, AXL and most importantly EFGR.

If we compare at the clustering of the untreated kinase dead EML4 − ALK

mutant cell line BEAS2BKR with the ALK inhibitor treated cell line H2228Criz,

the two do not cluster together (Fig. 7.2). This suggests that either the same drug is

inhibiting multiple kinases, and/or the inhibition of one kinase may have a context

dependent effect.

7.4.2.4 Erlotinib dosage treatments on H827 cell line

H827 lung cancer cells were treated by two separate dosages of erlotinib:

20µM (H827ER20) and 40µM (H827ER40). Table B.4 gives the list of genes

that are significantly affected by each of the conditions as opposed to the parental

cell line. (For details about the table, please see section 7.4.2.1.)

Note that both the concentrations are activating almost all the kinases across

the board, although, almost always the smaller dosage is more effective in activation

than the larger dosage.

As stated before, Erlotinib reversibly inhibits tyrosine kinases which are highly

expressed and often mutated in various types of EGFR positive cancers [194]. So

in other words it’s an EGFR inhibitor.
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When the tyrosine kinase is inhibited, we see that MET levels shoot upto

about 10-12 folds, and MET is known to have tyrosine kinase activity. So when one

tyrosin kinase pathway is shutdown, another route is taken. This assay and analysis

tells us the alternate route taken. Note that MET is also an important oncogene

which itself is mutated in various cancers.

There are other such examples of kinases, which are upregulated upon erlotinib

treatment (e.g. SGK). Many of these might potentially have some tyrosin kinase

activity or a direct relation to one of the tyrosin kinase pathway. The important

point to note is that we are able to make a logical guess based on this analysis.

7.4.3 Identifying significantly affected genes in mutant groups

In the previous section we identified many genes /pathways that were affected

by specific treatments, dosages or experimental conditions. It’s no surprise that

each of them have a signature that has commonalities and differences from others.

Now, let us focus on the mutant groups alone. The question that we are

essentially asking here is how similar (or different) are the different cell lines of

the same mutant group? We notice that just as expected from the “accident”

analogy, even the members of the same family are different with each other. The

net amplitude of the variations is low however.

To draw an analogy from non-linear dynamics, it seems that the internal tran-

scriptome has different “attractor states”. A mutation in one of the oncogenes

pushes the cell/tumor to a diseased attractor. Many of the molecular subtypes likely
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have “small barrier” to switch between these attractors. Thus when one “attractor”

is perturbed by means of some treatment, it switches to another “attractor”. The

significant contributors identified in this section are key kinase contributor which

are potentially playing a role in the definition of those attractor states.

7.4.3.1 Kras mutant group comparison

Table B.5 gives the list of genes that are significantly affected by various Kras

mutant lung cancer cell lines A549, H358 and H2122. (For details about the table,

please see section 7.4.2.1.)

Note that the H2122 cell line has the highest activation levels across the board

while A549 and H358 cell lines have a roughly equal distribution of activated and

repressed genes between them.

As expected there are many kinases that are expressed significantly in only

one of these groups. These kinases, alone or in groups, are potential subclassifiers

of the molecular subtypes for each of these specific tumors. (Note that a signature

could be the overexpression as well as underexpression.)

The different signature can be picked upfrom the appropriate Sig markers.

(For details about the table, please see section 7.4.2.1.)

For A549 some contributors are AXL, FGFRs etc. For H2122 some signature

contributors are SNF1LK, various STKs etc.
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7.4.3.2 EGFR mutant group comparison

Table B.6 gives the list of genes that are significantly affected by various EGFR

mutant lung cancer cell lines H3255,H827 and H1975. (For details about the table,

please see section 7.4.2.1.)

Note that for a significant majority of kinases the cell line H3255 has the

highest level of expression, while the H827 cell line has the lowest activation levels

across the board.

As expected there are many kinases that are expressed significantly in only

one of these groups. These kinases, alone or in groups, are potential subclassifiers

of the molecular subtypes for each of these specific tumors. (Note that a signature

could be the overexpression as well as underexpression.)

The different signature can be picked upfrom the appropriate Sig markers.

(For details about the table, please see section 7.4.2.1.)

7.4.3.3 EGFR and Kras wild type comparison

Table B.7 gives the list of genes that are significantly affected between the

EGFR and Kras wild type mutant lung cancer cell lines H322 and H1703. (For

details about the table, please see section 7.4.2.1.)

Note that there is almost an equal mix of genes that are expressed at higher

levels in either cell line.

As expected there are many kinases that are expressed significantly in only

one of these groups. These kinases, alone or in groups, are potential subclassifiers
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of the molecular subtypes for each of these specific tumors. (Note that a signature

could be the overexpression as well as underexpression.)

The different signature can be picked upfrom the appropriate Sig markers.

(For details about the table, please see section 7.4.2.1.)

7.4.3.4 EGFR mutant ±Cripto comparison

Table B.8 gives the list of genes that are significantly affected by among the

EGFR mutant H827 and its Cripto counterpart H827Cripto cell line. (For details

about the table, please see section 7.4.2.1.)

Note that the expression of about 90% of the kinases goes up in H827Cripto

cell line, while the expression of most of the remaining 10% kinases is decreased by

about 2-fold (or higher)

As expected there are many kinases that are expressed significantly in only

one of these groups. These kinases, alone or in groups, are potential subclassifiers

of the molecular subtypes for each of these specific tumors. (Note that a signature

could be the overexpression as well as underexpression.)

The different signature can be picked upfrom the appropriate Sig markers.

(For details about the table, please see section 7.4.2.1.)

7.4.4 Summary of predictions

Using the novel normalization and error correction, we have been able to make

the not only cluster different moluecular subtypes of lung cancers, but also able to
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make significant predictions about the genes that are affected. The table below gives

a summary of the predictions.

• From the analysis of H3122 and H2228 lung cancer cell lines, we find that

crizotinib causes repression in expression of a majority (50) of the affected

genes (58), while NMS activates about half (30) of the affected genes (58)

and represses the other half (including their common targets). (See sections

7.4.2.1 and 7.4.2.2 for details.)

• The active signaling (condition 1) represses almost all the affected kinases in

EML4−ALK mutant BEAS2B parental cell line, while the kinase dead mu-

tant (condition 2) activates almost all of them, including the common targets.

(See section 7.4.2.3 for details.)

• The two chosen erlotinib concentrations activate almost all the kinases across

the board, although almost always the smaller dosage is more effective in

activation than the larger dosage. (See section 7.4.2.4 for details.)

• In the Kras mutant group, the H2122 cell line has the highest activation levels

across the board, while A549 and H358 cell lines have a roughly equal distri-

bution of activated and repressed genes between them. (See section 7.4.3.1 for

details.)

• In the EGFR mutant group, a significant majority of kinases cell line H3255

has the highest level of expression, while the H827 cell line has the lowest

activation levels across the board. (See sections 7.4.3.2 and 7.4.3.3 for details.)
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• In the EGFR mutant cell line H827, the expression of about 90% of the

kinases goes up in presence of Cripto, i.e. H827Cripto cell line, while the

expression of most of the remaining 10% of the kinases is decreased by about

2-fold (or higher). (See section 7.4.3.4 for details.)

7.5 Future directions

The high-sensitivity of the NanoString nCounter system enables us to make

very fine measurements of mRNA expression levels of various genes. Using the new

normalization protocol (section 7.3), we make a host of significant predictions that

are further testable by means of standard techniques.

Apart from successfully predicting the molecular subtypes of various lung can-

cer cell lines, there is a wealth of functional information in each of the significance

comparison tables that we hope to harness in future work.

Here is a summary of the immediate next steps:

1. Comparison to other techniques of data normalization [36].

2. Choose the correct clustering question that gives us the correct mutation status

(see section 7.4.1 for more details).

3. Do the clustering analysis for experiments with the most significant genes

dropped.

4. Validation of the predicted, repressed and activated, kinase targets by PCR

and other standard techniques.
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5. Application of normalization strategy (section 7.3) to more complex samples,

e.g. tumors where several different tissue types are mixed.

6. To infer the functional relations among various kinases.

To draw an analogy from non-linear dynamics, it seems that the internal tran-

scriptome has different “attractor states”. A mutation in one of the oncogenes

pushes the cell/tumor to a diseased attractor. Many of the molecular subtypes likely

have “small barrier” to switch between these attractors. Thus when one “attractor”

is perturbed by means of some treatment, it switches to another “attractor”. Our

long term goal is to be able to predict the correct attractor so as to put the push the

cell/tumor from a diseased attractor to the healthy one, or at least to a manageable

one.
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Appendix A

Supplementary material for DNA supercoiling analysis

A.1 Simulation function

Although the microarray data does show high variation, we don’t expect pso-

ralen intercalation (and level of supercoiling) to change abruptly from one base-pair

to next.

The function used in Fig. 6.1 was designed so that it has a low frequency signal

(based on what we observed from our datasets) and distinctive features of different

amplitudes (various peaks and valleys of different amplitudes). The underlying

assumption is that the noise is of much higher frequency than the real signal and

it’s uncorrelated to the real signal (which is this case of psoralen-binding).

Eq. A.1 shows the function used for simulation in Fig. 6.1 (range: ±3500):

Sin
(

x
211

)
2 + Sin

(
x

351

) +
Sin
(

x
451

)
2− Cos

(
x

451

) (A.1)

It must be emphasized that the scheme will work for any response function

with frequencies that are much smaller than the noise frequencies. The smoothing

calibration code was tested on several thousands of simulated datasets1 generated

for various noise levels (ranging between 1 to 103) on various signal amplitudes

(ranging between 10−4 to 10) with a mix of various small frequencies.

1Each dataset is used alone, no replicates. For more details, see section 6.2 and 6.3.
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A.2 List of genes used

Here is the list of these transcribed regions used for analysis:

Table A.1: List of transcribed regions used in analysis

# chr Start Site End Site Accession #
1 19 59107802 59137444 59284
2 19 59107882 59138080 59284
3 20 33573306 33574658 343705
4 6 74135002 74136236 441161
5 20 33578212 33580862 140873
6 6 74129120 74130615 154288
7 6 74119507 74120674 340168
8 15 41772375 41778712 548596
9 X 153152125 153176632 1527
10 X 153101360 153114725 2652
11 15 41673536 41678892 548596
12 X 153062933 153077705 5956
13 20 33484240 33486662 554250
14 20 33484562 33489441 8200
15 X 153533444 153535036 30848
16 19 59927813 60070473 AF285439
17 X 153466704 153468263 653387
18 1 149603404 149611805 8991
19 20 33336947 33343639 128876
20 20 33652037 33656662 80307
21 1 149779404 149822683 7286
22 20 33609920 33651008 80307
23 11 5558682 5559690 340980
24 6 74161191 74183791 55510
25 6 73975313 74029640 80759
26 X 153556723 153632526 139716
27 X 153499058 153500716 246100
28 X 153717262 153904192 2157
29 11 4799191 4800220 119694
30 19 59739981 59748862 90011
31 11 4901179 4902145 79324
32 X 153177344 153211894 8277
33 X 153660161 153686957 4354
34 11 4826042 4827014 119692
35 11 5230996 5232587 3048
36 11 5036455 5037433 119678

Continued on next page
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Table A.1 – continued from previous page
# chr Start Site End Site Accession #
37 6 74191313 74218720 115004
38 11 5109497 5110448 390054
39 11 5329313 5330252 390058
40 11 5024331 5025267 119679
41 11 5400006 5400960 390061
42 11 5177540 5178506 283111
43 19 59265068 59269173 441864
44 11 4923964 4924906 401666
45 11 4932577 4933519 401667
46 11 5522366 5523329 390067
47 22 31080871 31087147 10738
48 11 5492198 5494501 143630
49 22 31085892 31097063 10737
50 22 30875518 30885243 150297
51 11 4746784 4747723 256892
52 19 59187353 59207732 59285
53 19 59077278 59102713 5582
54 6 108593954 108616706 7101
55 9 131123115 131127005 414318
56 11 4859624 4860689 401665
57 6 41411504 41426593 9436
58 22 30769258 30836645 6523
59 15 41597132 41611110 4130
60 11 4965999 4970235 56547
61 22 30916425 30930718 10739
62 22 30944462 30981318 6527
63 X 152780580 152794505 3897
64 22 31526801 31589028 7078
65 20 33506563 33563216 11190
66 22 31238539 31732683 8224
67 22 31239399 31784329 8224
68 6 41829976 41834895 647014
69 5 131315195 131375214 23305
70 5 131424245 131426795 3562
71 5 131170738 131357870 23305
72 22 31140289 31183373 254240
73 5 131317500 131375553 23305
74 11 4892524 4893469 81282
75 11 4976788 4977736 119682
76 5 141953305 142045812 2246
77 X 153452672 153453380 286967
78 22 31087313 31107216 646618

Continued on next page
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Table A.1 – continued from previous page
# chr Start Site End Site Accession #
79 5 131556201 131590834 8974
80 X 152891434 152901834 8269
81 11 4885175 4886114 119687
82 11 5466512 5467469 390066
83 22 31039083 31041792 646599
84 11 5431294 5432233 390064
85 X 152853916 152863426 5973
86 5 131905034 131907113 3567
87 11 131033416 131038060 399980
88 6 132309645 132314155 1490
89 11 5367204 5368185 390059
90 11 4781238 4782423 119695
91 13 112808105 112822346 2155
92 19 59158105 59177951 59283
93 X 153908257 153938385 65991
94 2 234316134 234317400 414061
95 21 32706622 32809568 59271
96 11 130745778 131710752 50863
97 21 32866419 32870062 55264
98 11 5203270 5204877 3043
99 11 5246158 5483410 3046
100 5 131466369 131511544 645029
101 11 5129236 5130175 23538
102 11 5714253 5716328 387748
103 21 33084854 33107868 56245
104 20 33720024 33750688 9054
105 5 132225179 132228124 2661
106 22 30845512 30846923 646580
107 11 5573934 5590217 117854
108 11 116196627 116199221 337
109 11 5210634 5212434 3045
110 9 130978873 131012683 389792
111 6 41714230 41729959 4188
112 11 5098469 5099384 390053
113 7 27134534 27136924 3201
114 1 149851285 149938183 81609
115 1 149851164 149933599 81609
116 X 152799320 152807619 643736
117 21 32870732 32879687 140290
118 18 59455481 59462470 6318
119 21 33066281 33093160 54067
120 11 5485107 5487744 50613

Continued on next page
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Table A.1 – continued from previous page
# chr Start Site End Site Accession #
121 19 59705824 59713709 3904
122 21 33779706 33785650 54943
123 5 131612501 131658907 BC030525
124 19 59510164 59516221 353514
125 2 234209886 234343242 54575
126 18 59455932 59479430 AF428135
127 5 132111041 132118263 645121
128 1 149750499 149777792 57530
129 13 112349358 112386812 400165
130 9 130896893 130912904 1384
131 7 127020924 127029079 29999
132 5 131658043 131707798 6583
133 18 59473411 59480098 6317
134 11 5641363 5662869 85363
135 X 153943079 153952830 4515
136 2 234333657 234346684 54658
137 7 27106497 27108919 3199
138 X 153254304 153256200 AK125630
139 21 39699654 39739529 150082
140 11 64079673 64095575 55867
141 7 27151640 27153893 3203
142 7 27191681 27198951 646692
143 11 63934128 63944265 644541
144 6 41812427 41823099 5225
145 5 131621285 131637046 8572
146 7 27160814 27162821 3204
147 21 39739666 39809303 6450
148 X 122923269 123064027 10735
149 9 131138623 131140395 AK092192
150 X 153952903 154004543 79184
151 11 5574461 5622204 445372
152 21 32922943 33022148 8867
153 21 33782367 33785893 54943
154 2 234490781 234592905 79054
155 11 2118322 2126470 51214
156 5 56240856 56248767 133383
157 13 112670814 112800864 23263
158 2 234624084 234650515 6694
159 X 122922235 123063026 10735
160 7 125865894 126670548 2918
161 7 115952074 115988466 857
162 21 32869022 32870472 55264

Continued on next page
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Table A.1 – continued from previous page
# chr Start Site End Site Accession #
163 7 27187653 27191355 3207
164 18 59528407 59541613 89778
165 7 27168581 27171674 3205
166 11 63973121 63975702 439914
167 7 117137940 117300797 83992
168 21 33936653 34183479 6453
169 7 116790511 116854779 136991
170 18 23784932 24011189 1000
171 7 116704517 116750579 7472
172 21 33320108 33323370 10215
173 22 30659507 30671336 25775
174 15 41652602 41769512 9677
175 18 59593623 59623592 8710
176 11 116165295 116167794 116519
177 7 113842511 114117391 93986
178 7 113842287 114117218 93986
179 7 27147520 27149812 3202
180 6 108722790 108950951 246269
181 21 34243099 34258130 400863
182 11 2273445 2279866 29125
183 7 116907252 117095951 1080
184 11 2106925 2109541 492304
185 7 89712444 89777638 79846
186 7 115926679 115935831 858
187 7 89678935 89704865 261729
188 7 89678993 89704927 261729
189 2 220016639 220039828 10290
190 7 89621624 89632077 26872
191 18 59705921 59722100 5055
192 19 59289813 59297806 126014
193 13 29674766 29779163 84056
194 2 219991342 219999705 1674
195 11 64114857 64126396 116085
196 7 27112333 27125739 3200
197 13 29680608 29779584 84056
198 2 220087135 220106998 55515
199 2 234351720 234406802 339766
200 21 33883516 33935936 9946
201 15 41906499 41946502 79968
202 11 2109739 2116400 AK074614
203 7 27121491 27129028 AK056230
204 5 132114415 132140966 23176

Continued on next page
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Table A.1 – continued from previous page
# chr Start Site End Site Accession #
205 12 38905085 39051870 120892
206 19 59289744 59295960 126014
207 13 112825145 112851842 2159
208 7 27203023 27206221 3209
209 18 59733724 59753456 5273
210 2 220087295 220111738 55515
211 11 116205833 116208997 345
212 11 64130221 64247236 9379
213 6 41845891 41855608 10817
214 11 2110355 2116780 3481
215 X 122821728 122875503 331
216 7 27099136 27102119 3198
217 7 114349444 114446492 29969
218 11 1953071 1956250 AK126915
219 11 1972983 1975280 283120
220 14 98705376 98807575 64919
221 21 32687312 32688133 84996
222 10 55236344 55248144 387683
223 5 131733342 131759205 6584
224 2 220123699 220145134 23363
225 7 90729032 90731910 645794
226 11 116211678 116213548 335
227 20 33667222 33672379 6676
228 7 27176734 27180448 3206
229 X 153282772 153293621 1774
230 11 2279818 2296006 10077
231 16 48057 62591 64285
232 21 39479273 39607426 54014
233 21 39674139 39691496 7485
234 6 108469305 108502634 28962
235 11 2137586 2139015 3630
236 11 1817478 1819484 7136
237 19 59777070 59790833 11027
238 22 30650902 30652995 AK123899
239 5 132059221 132101163 11127
240 X 153365249 153368126 8266
241 X 153368841 153372189 8273
242 7 116099694 116225676 4233
243 21 33364442 33366596 116448
244 5 131437383 131439758 1437
245 2 220200526 220214936 6508
246 12 38629561 38786156 114134

Continued on next page
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Table A.1 – continued from previous page
# chr Start Site End Site Accession #
247 19 59557944 59568280 3903
248 15 41815433 41825789 440278
249 11 64270605 64284763 5837
250 11 2141734 2149611 7054
251 5 132185910 132189901 134549
252 15 41612966 41669697 9677
253 11 1897511 1916512 7140
254 19 59064592 59071501 91663
255 16 142853 144504 3050
256 11 64348496 64368617 55561
257 19 59064504 59069685 91663
258 16 258310 265915 8786
259 21 33619083 33653999 3454
260 7 27248945 27252717 2128
261 2 220044627 220047344 AK098307
262 19 59668021 59676234 148170
263 16 265611 277210 64714
264 11 1808892 1815326 90019
265 19 59796924 59804352 11024
266 5 56146021 56227730 4214
267 X 153293070 153303259 6901
268 21 33872080 33882884 29980
269 16 155972 156767 445449
270 2 220145197 220148671 3623
271 5 56251187 56283697 166968
272 7 90731718 90736068 8321
273 2 234438819 234441829 151507
274 16 261827 265981 8786
275 19 59618416 59639892 57348
276 9 130883226 130892538 57171
277 7 116447578 116657391 7982
278 6 74007762 74076659 CR936715
279 16 162874 163708 3040
280 7 90063746 90674880 5218
281 5 132177177 132180377 134548
282 7 89870731 89883204 9069
283 11 2246303 2248758 430
284 9 130747629 130749833 22845
285 5 142130475 142586243 23092
286 5 142130155 142582945 23092
287 7 89813956 89858258 85865
288 16 166678 167520 3039

Continued on next page
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Table A.1 – continued from previous page
# chr Start Site End Site Accession #
289 19 59355657 59368664 147798
290 19 59355714 59368756 147798
291 19 59434640 59452868 79168
292 7 90176647 90677840 5218
293 7 116380616 116657313 7982
294 5 131920528 132007498 10111
295 19 59446172 59452939 10990
296 19 59412608 59438414 11025
297 21 33726662 33774120 757
298 1 149641823 149698556 23126
299 X 153359307 153360790 8270
300 X 153387699 153397567 60343
301 11 116124098 116148914 84811
302 2 118393639 118491788 54520
303 13 112392643 112589470 23250
304 15 41884024 41904243 4236
305 X 152940457 153016323 4204
306 9 130913064 130951044 5524
307 2 234410765 234427885 55355
308 21 39469253 39477310 8624
309 22 30480068 30633001 9681
310 1 149521414 149531005 57592
311 9 130978768 130980347 389792
312 7 116289798 116346549 830
313 19 59386005 59389333 79042
314 9 130839073 130874172 84895
315 7 127007917 127012890 79571
316 2 118389618 118390940 54520
317 9 130749797 130809195 23511
318 19 59491665 59496050 11026
319 2 220116988 220123561 130612
320 22 31110991 31113822 646621
321 21 33028083 33066040 94104
322 19 59664787 59666706 94059
323 11 64250958 64269504 10235
324 21 33021613 33022627 644266
325 21 39607756 39608756 257357
326 X 153412799 153428663 2539
327 21 33560541 33591390 3588
328 21 32895965 32906784 56683
329 12 38904567 38905165 642606
330 16 372247 382955 645631

Continued on next page
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Table A.1 – continued from previous page
# chr Start Site End Site Accession #
331 X 153310214 153318055 537
332 22 30670478 30683590 7533
333 16 277440 342465 8312
334 19 59351188 59355258 79165
335 20 33593191 33608819 51614
336 22 31201223 31224818 25793
337 16 170334 171178 3049
338 21 33798138 33836286 2618
339 20 33750740 33752294 140823
340 16 43016 47444 79622
341 6 108639409 108689156 8724
342 X 152823563 152825834 554
343 X 153339816 153355179 55558
344 5 132021763 132024700 3596
345 16 224801 258971 83986
346 22 31113568 31138235 51493
347 16 67017 75845 4350
348 22 30222260 30344534 9814
349 6 41856466 41865609 29964
350 5 132235912 132238286 116842
351 16 23876 26382 645582
352 1 149531036 149565348 5298
353 1 149437652 149488630 8394
354 1 149493820 149506560 5710
355 20 33330138 33336008 3692
356 1 149531231 149566511 5298
357 11 1730560 1741798 1509
358 19 59368920 59385478 79143
359 11 64313184 64327289 5871
360 16 415668 512482 9727
361 16 361859 371908 58986
362 X 153429255 153446455 8517
363 22 30165350 30215810 56478
364 7 126797588 126820003 168850
365 21 34197626 34210028 539
366 5 132037271 132046267 3565
367 X 122821265 122822820 643547
368 16 357396 360541 10573
369 16 387773 402487 26063
370 22 30402241 30438731 253143
371 16 356981 360226 10573
372 19 59866263 59873622 11006
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Table A.1 – continued from previous page
# chr Start Site End Site Accession #
373 2 220111921 220116682 79586
374 6 108298214 108386086 11231
375 19 59536503 59542233 23547
376 11 64418594 64441239 23130
377 9 130810133 130830400 56904
378 19 59412548 59418709 11025
379 2 118310049 118312244 389024
380 2 118288724 118306423 8886
381 11 1925113 1934408 6150
382 7 115637816 115686073 26136
383 6 41622141 41678100 116113
384 X 153325695 153334051 9130
385 X 153260980 153263075 2010
386 7 127015694 127018989 381
387 2 220071856 220079955 29926
388 11 116154485 116163949 8882
389 21 39420865 39421836 391282
390 22 30411027 30439831 253143
391 21 39636110 39642917 3150
392 22 30160554 30164552 AK127132
393 19 59470017 59476753 10288
394 20 33754944 33793607 9584
395 X 152848570 152853662 8260
396 19 59314702 59320534 AK128544
397 20 33677379 33705245 8904
398 15 41825881 41852096 2923
399 16 178970 219450 55692
400 2 220170839 220189418 114790
401 20 33700290 33716252 10137
402 11 64302486 64303493 644613
403 5 131774571 131825958 441108
404 21 33837219 33871682 6651
405 16 387192 390755 4833
406 16 36999 43625 51728
407 15 41874456 41879547 619189
408 11 64327563 64334764 4221
409 21 33524100 33558697 3455
410 11 1830883 1870068 4046
411 19 59333260 59351239 4849
412 8 128875987 129182678 5820
413 X 153644343 153659154 1736
414 X 152929150 152938536 3654
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Table A.1 – continued from previous page
# chr Start Site End Site Accession #
415 15 41852089 41856794 80237
416 15 41879912 41882079 25764
417 18 59767573 59778624 284293
418 22 30345379 30388195 23761
419 7 27029881 27031053 402643
420 21 33697071 33731696 3460
421 16 4081 5847 375260
422 X 153318714 153325008 2664
423 X 152826026 152844908 393
424 15 41871843 41881362 25764
425 X 152866201 152883371 3054
426 6 41759693 41810776 7942
427 8 128816861 128821905 M13930
428 22 30344476 30356810 23761
429 16 25950526 25951759 647915
430 11 64376783 64402767 10938
431 5 132230255 132231276 27089
432 X 153230158 153256123 2316
433 18 59788242 59807588 5271
434 19 59297971 59302080 4696
435 1 149638664 149641036 5692
436 8 128817497 128822856 4609
437 X 153279911 153283874 6134
438 1 149579739 149586393 5993
439 11 5667630 5688668 10346
440 19 59652207 59665006 114823
441 11 64288653 64302817 7536
442 19 59396537 59403327 6203
443 5 131846678 131854333 3659
444 22 30765440 30765968 402057
445 6 74283958 74287475 1915
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Appendix B

Supplementary material for NanoString analysis

In this appendix lists of significantly affected genes is presented from vari-

ous control and treatment groups. For more detals about these experiments, see

chapter 7. For details about reading the tables, see section 7.4.2.1.

B.1 Significance tables for various controls and treatment groups

Table B.1: List of significantly changed gene in the group: (1 - H3122DMSO, 2
- H3122Criz, 3 - H3122NMS), along with pairwise fold changes and significant
change markers

SN Gene 1 2 3 1:2 1:3 2:3 Sig
1 BMPR1A 2.48 1.86 2.79 1.3 -1.1 -1.5 001
2 BMPR2 2.48 1.86 2.79 1.3 -1.1 -1.5 001
3 MAP2K2 6.51 5.89 7.13 1.1 -1.1 -1.2 001
4 MAP4K4 6.51 5.89 6.82 1.1 -1. -1.2 001
5 RIOK3 2.48 1.86 2.79 1.3 -1.1 -1.5 001
6 SMG1 3.41 2.79 3.72 1.2 -1.1 -1.3 001
7 CLK1 0.62 1.24 1.55 -2. -2.5 -1.2 010
8 CLK4 0.31 0.62 1.24 -2. -4. -2. 010
9 PDIK1L 1.55 1.86 2.48 -1.2 -1.6 -1.3 010
10 AURKB 4.65 4.65 6.2 -1. -1.3 -1.3 011
11 IRAK1 5.89 5.27 7.13 1.1 -1.2 -1.4 011
12 MELK 6.51 6.2 7.44 1. -1.1 -1.2 011
13 NEK7 4.34 4.34 5.27 -1. -1.2 -1.2 011
14 PIM1 0.93 1.55 2.48 -1.7 -2.7 -1.6 011
15 PLK1 5.89 5.58 7.13 1.1 -1.2 -1.3 011
16 PRKDC 24.49 23.87 31.62 1. -1.3 -1.3 011
17 RIPK4 2.79 2.48 3.72 1.1 -1.3 -1.5 011
18 TTK 6.2 6.51 8.68 -1. -1.4 -1.3 011
19 WNK1 4.34 3.72 5.27 1.2 -1.2 -1.4 011
20 ACVR1 2.79 1.86 2.48 1.5 1.1 -1.3 100
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Table B.1 – continued from previous page
SN Gene 1 2 3 1:2 1:3 2:3 Sig
21 EGFR 2.79 1.86 2.48 1.5 1.1 -1.3 100
22 EPHA4 2.79 1.86 2.17 1.5 1.3 -1.2 100
23 PAK1 4.34 3.41 3.72 1.3 1.2 -1.1 100
24 SCYL2 3.72 2.79 3.1 1.3 1.2 -1.1 100
25 STK40 1.55 0.62 0.93 2.5 1.7 -1.5 100
26 TP53RK 2.17 1.24 1.55 1.8 1.4 -1.2 100
27 UHMK1 5.27 4.34 4.65 1.2 1.1 -1.1 100
28 YES1 5.27 4.34 4.96 1.2 1.1 -1.1 100
29 GSK3B 6.82 5.58 6.51 1.2 1. -1.2 101
30 MAPK6 7.13 5.58 6.82 1.3 1. -1.2 101
31 MST4 5.27 4.03 4.96 1.3 1.1 -1.2 101
32 NRBP1 5.27 4.03 5.27 1.3 -1. -1.3 101
33 PRKAA1 12.71 11.16 12.09 1.1 1.1 -1.1 101
34 PRKACA 7.13 6.2 7.13 1.1 -1. -1.1 101
35 PRPF4B 5.58 4.03 5.27 1.4 1.1 -1.3 101
36 PTK2 13.64 12.09 13.02 1.1 1. -1.1 101
37 ROCK2 5.58 4.34 5.27 1.3 1.1 -1.2 101
38 SGK 2.79 0.93 2.17 3. 1.3 -2.3 101
39 SNF1LK 2.79 1.55 3.1 1.8 -1.1 -2. 101
40 STK38L 2.79 1.55 3.1 1.8 -1.1 -2. 101
41 CSNK1D 17.05 15.81 15.19 1.1 1.1 1. 110
42 DAPK3 3.41 2.17 2.48 1.6 1.4 -1.1 110
43 EPHA2 8.06 1.24 1.55 6.5 5.2 -1.2 110
44 PLK2 18.6 4.65 4.96 4. 3.8 -1.1 110
45 PLK3 1.55 0.31 0.31 5. 5. -1. 110
46 PRKD1 18.6 16.43 16.74 1.1 1.1 -1. 110
47 SRPK1 5.27 4.03 4.34 1.3 1.2 -1.1 110
48 STK24 6.2 4.34 4.96 1.4 1.2 -1.1 110
49 AXL 3.41 2.17 6.2 1.6 -1.8 -2.9 111
50 BUB1B 6.51 5.58 8.37 1.2 -1.3 -1.5 111
51 CDC2 29.45 31. 33.79 -1.1 -1.1 -1.1 111
52 CDK4 10.54 9.61 11.78 1.1 -1.1 -1.2 111
53 CPNE3 7.13 4.96 6.2 1.4 1.1 -1.2 111
54 MET 12.71 9.92 13.95 1.3 -1.1 -1.4 111
55 STK17A 13.64 6.2 9.92 2.2 1.4 -1.6 111
56 STK39 10.23 8.68 7.44 1.2 1.4 1.2 111
57 TRIB1 8.06 3.72 6.51 2.2 1.2 -1.8 111
58 TRIO 8.37 7.44 9.61 1.1 -1.1 -1.3 111
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Table B.2: List of significantly changed gene in the group: (1 - H2228DMSO, 2
- H2228Criz, 3 - H2228NMS), along with pairwise fold changes and significant
change markers

SN Gene 1 2 3 1:2 1:3 2:3 Sig
1 BCR 2.17 1.55 2.79 1.4 -1.3 -1.8 001
2 CAMK2G 2.17 1.55 2.48 1.4 -1.1 -1.6 001
3 CAMKK2 2.17 1.55 2.79 1.4 -1.3 -1.8 001
4 CDC2 23.87 24.49 23.25 -1. 1. 1.1 001
5 CDK7 2.17 1.86 2.79 1.2 -1.3 -1.5 001
6 CDKL1 2.79 2.48 3.41 1.1 -1.2 -1.4 001
7 COL4A3BP 3.1 2.48 3.41 1.2 -1.1 -1.4 001
8 CSNK1G1 1.55 1.24 2.17 1.2 -1.4 -1.8 001
9 EIF2AK2 8.37 7.75 8.68 1.1 -1. -1.1 001
10 ERN1 1.24 0.62 1.86 2. -1.5 -3. 001
11 FLJ13149 2.48 1.86 3.1 1.3 -1.2 -1.7 001
12 HIPK1 0.93 0.62 1.55 1.5 -1.7 -2.5 001
13 HUS1 5.58 4.96 6.2 1.1 -1.1 -1.2 001
14 MAP2K6 0.62 0.31 1.24 2. -2. -4. 001
15 MAP3K2 4.65 4.34 5.27 1.1 -1.1 -1.2 001
16 MAP3K7 3.72 3.1 4.03 1.2 -1.1 -1.3 001
17 MAPK8 3.1 2.48 3.72 1.2 -1.2 -1.5 001
18 MST1R 3.1 2.48 3.41 1.2 -1.1 -1.4 001
19 PKN2 2.79 2.17 3.1 1.3 -1.1 -1.4 001
20 SLK 5.27 4.65 5.89 1.1 -1.1 -1.3 001
21 SNRK 0.93 0.62 1.55 1.5 -1.7 -2.5 001
22 SRC 0.93 0.62 1.55 1.5 -1.7 -2.5 001
23 STK32A 2.48 1.86 3.1 1.3 -1.2 -1.7 001
24 TAF1 1.55 1.24 2.17 1.2 -1.4 -1.8 001
25 TAF1L 1.24 0.93 1.86 1.3 -1.5 -2. 001
26 TAOK1 4.34 3.72 4.65 1.2 -1.1 -1.2 001
27 TBRG4 2.79 2.17 3.1 1.3 -1.1 -1.4 001
28 ULK1 1.24 0.93 1.86 1.3 -1.5 -2. 001
29 ULK3 1.86 1.24 2.17 1.5 -1.2 -1.8 001
30 ZAK 1.55 0.93 1.86 1.7 -1.2 -2. 001
31 CLK1 0.62 1.24 1.55 -2. -2.5 -1.2 010
32 RAF1 6.51 5.89 7.44 1.1 -1.1 -1.3 011
33 RPS6KB1 2.17 2.17 3.1 -1. -1.4 -1.4 011
34 SMG1 4.65 4.34 5.89 1.1 -1.3 -1.4 011
35 STK24 6.82 6.51 7.75 1. -1.1 -1.2 011
36 TRIO 5.58 4.96 6.51 1.1 -1.2 -1.3 011
37 ADCK2 2.48 1.55 2.17 1.6 1.1 -1.4 100
38 BMPR1A 5.27 4.03 4.65 1.3 1.1 -1.2 100
39 CHUK 5.27 4.34 4.65 1.2 1.1 -1.1 100
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Table B.2 – continued from previous page
SN Gene 1 2 3 1:2 1:3 2:3 Sig
40 ILK 3.41 2.48 3.1 1.4 1.1 -1.2 100
41 MAP2K3 1.55 0.62 1.24 2.5 1.2 -2. 100
42 PKMYT1 0.31 1.24 0.93 -4. -3. 1.3 100
43 STK16 1.86 0.93 1.55 2. 1.2 -1.7 100
44 WNK1 13.02 11.78 12.4 1.1 1. -1.1 100
45 ABL1 3.41 2.48 3.72 1.4 -1.1 -1.5 101
46 ABL2 2.79 1.55 2.79 1.8 -1. -1.8 101
47 ADRBK1 7.75 5.27 7.44 1.5 1. -1.4 101
48 AKT2 7.13 5.58 7.44 1.3 -1. -1.3 101
49 ALPK1 2.17 0.93 2.48 2.3 -1.1 -2.7 101
50 ARAF 4.65 3.72 5.27 1.3 -1.1 -1.4 101
51 AXL 26.97 32.24 26.35 -1.2 1. 1.2 101
52 BCKDK 2.79 1.86 3.1 1.5 -1.1 -1.7 101
53 BRD2 5.89 4.34 6.51 1.4 -1.1 -1.5 101
54 BUB1B 5.27 6.2 5.27 -1.2 -1. 1.2 101
55 CAMK1 1.24 0.31 1.24 4. -1. -4. 101
56 CAMK2D 8.37 4.96 8.68 1.7 -1. -1.8 101
57 CDC2L5 4.03 3.1 4.34 1.3 -1.1 -1.4 101
58 CDK10 5.58 3.72 5.58 1.5 -1. -1.5 101
59 CDK4 33.17 27.9 33.79 1.2 -1. -1.2 101
60 CDK9 3.41 2.48 3.72 1.4 -1.1 -1.5 101
61 CPNE3 6.82 4.96 6.82 1.4 -1. -1.4 101
62 CSNK1E 6.82 5.27 7.13 1.3 -1. -1.4 101
63 CSNK1G3 5.27 4.34 5.58 1.2 -1.1 -1.3 101
64 CSNK2A1 5.89 4.65 5.58 1.3 1.1 -1.2 101
65 DAPK3 5.89 3.41 5.89 1.7 -1. -1.7 101
66 DDR1 2.48 1.55 2.79 1.6 -1.1 -1.8 101
67 DYRK3 3.72 2.48 4.03 1.5 -1.1 -1.6 101
68 EGFR 8.37 6.2 8.06 1.3 1. -1.3 101
69 EIF2AK3 2.17 0.93 2.17 2.3 -1. -2.3 101
70 EIF2AK4 7.13 5.89 7.13 1.2 -1. -1.2 101
71 HIPK3 2.79 1.55 2.79 1.8 -1. -1.8 101
72 IRAK2 3.72 2.17 3.72 1.7 -1. -1.7 101
73 LATS1 3.1 1.86 3.41 1.7 -1.1 -1.8 101
74 LATS2 2.17 0.93 2.17 2.3 -1. -2.3 101
75 LYN 5.27 2.79 5.27 1.9 -1. -1.9 101
76 MAP2K2 26.35 20.15 26.97 1.3 -1. -1.3 101
77 MAP3K13 1.24 0.31 1.55 4. -1.2 -5. 101
78 MAP4K5 10.85 8.06 10.54 1.3 1. -1.3 101
79 MAPK1 6.82 5.58 6.51 1.2 1. -1.2 101
80 MAPK13 1.55 0.62 1.55 2.5 -1. -2.5 101
81 MAPK3 5.27 3.1 5.89 1.7 -1.1 -1.9 101
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Table B.2 – continued from previous page
SN Gene 1 2 3 1:2 1:3 2:3 Sig
82 MAPK9 5.89 4.96 5.89 1.2 -1. -1.2 101
83 MAPKAPK2 6.2 4.65 5.89 1.3 1.1 -1.3 101
84 MAPKAPK5 3.72 2.79 4.03 1.3 -1.1 -1.4 101
85 MARK4 2.48 1.55 2.79 1.6 -1.1 -1.8 101
86 MELK 6.82 9.3 7.44 -1.4 -1.1 1.3 101
87 MKNK2 7.44 4.34 7.75 1.7 -1. -1.8 101
88 MST4 4.65 3.72 5.27 1.3 -1.1 -1.4 101
89 NRBP1 8.68 6.2 8.68 1.4 -1. -1.4 101
90 OXSR1 4.34 3.41 4.34 1.3 -1. -1.3 101
91 PAK1 7.13 4.96 7.44 1.4 -1. -1.5 101
92 PAK2 8.06 6.51 8.06 1.2 -1. -1.2 101
93 PBK 7.44 9.61 8.06 -1.3 -1.1 1.2 101
94 PCTK1 8.68 6.2 8.99 1.4 -1. -1.4 101
95 PDK3 3.1 1.86 3.1 1.7 -1. -1.7 101
96 PDPK1 3.41 2.48 3.72 1.4 -1.1 -1.5 101
97 PIM2 2.48 1.24 2.17 2. 1.1 -1.8 101
98 PIM3 2.17 0.93 1.86 2.3 1.2 -2. 101
99 PKN1 9.61 6.2 8.99 1.5 1.1 -1.4 101
100 PLK1 10.54 14.88 10.23 -1.4 1. 1.5 101
101 PRKAA1 5.58 4.34 5.89 1.3 -1.1 -1.4 101
102 PRKACA 21.39 18.29 21.7 1.2 -1. -1.2 101
103 PRKCI 6.82 4.65 7.13 1.5 -1. -1.5 101
104 PRPF4B 12.09 10.23 12.4 1.2 -1. -1.2 101
105 PTK2 10.54 7.13 9.92 1.5 1.1 -1.4 101
106 RIOK2 5.27 4.34 5.89 1.2 -1.1 -1.4 101
107 RIPK1 5.27 3.72 5.58 1.4 -1.1 -1.5 101
108 RIPK2 5.58 4.03 5.27 1.4 1.1 -1.3 101
109 RPS6KA1 3.41 2.48 3.41 1.4 -1. -1.4 101
110 RPS6KA3 2.17 1.24 2.79 1.8 -1.3 -2.2 101
111 SCYL1 4.34 3.1 4.34 1.4 -1. -1.4 101
112 SCYL2 5.58 4.65 5.89 1.2 -1.1 -1.3 101
113 SNF1LK2 6.2 4.34 6.51 1.4 -1. -1.5 101
114 SRPK1 12.09 10.54 11.78 1.1 1. -1.1 101
115 SRPK2 3.41 2.48 3.41 1.4 -1. -1.4 101
116 STK17B 12.09 5.58 11.47 2.2 1.1 -2.1 101
117 STK38 4.65 3.72 4.65 1.3 -1. -1.2 101
118 STK40 3.72 2.79 4.03 1.3 -1.1 -1.4 101
119 TAOK3 5.58 3.72 5.89 1.5 -1.1 -1.6 101
120 TBK1 4.03 2.79 4.65 1.4 -1.2 -1.7 101
121 TLK1 4.34 3.41 4.34 1.3 -1. -1.3 101
122 TRIB2 2.79 1.24 2.48 2.2 1.1 -2. 101
123 UHMK1 6.82 5.89 7.13 1.2 -1. -1.2 101
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Table B.2 – continued from previous page
SN Gene 1 2 3 1:2 1:3 2:3 Sig
124 YES1 8.68 7.13 8.37 1.2 1. -1.2 101
125 CCL2 4.34 1.55 1.86 2.8 2.3 -1.2 110
126 MAP3K14 2.17 0.93 1.24 2.3 1.8 -1.3 110
127 MAP4K4 13.33 14.57 14.57 -1.1 -1.1 -1. 110
128 MAPK14 10.54 8.68 9.3 1.2 1.1 -1.1 110
129 PRKDC 11.47 13.33 13.33 -1.2 -1.2 -1. 110
130 SGK 4.34 2.48 2.17 1.8 2. 1.1 110
131 ACVR1B 1.86 0.93 2.79 2. -1.5 -3. 111
132 CSNK1A1 11.47 8.06 12.4 1.4 -1.1 -1.5 111
133 CSNK1D 26.66 15.5 25.73 1.7 1. -1.7 111
134 EIF2AK1 11.47 8.37 12.4 1.4 -1.1 -1.5 111
135 EPHA2 3.72 1.24 2.17 3. 1.7 -1.8 111
136 GRK6 5.58 3.1 6.51 1.8 -1.2 -2.1 111
137 GSK3B 9.61 7.75 10.54 1.2 -1.1 -1.4 111
138 MAP2K1 15.19 13.02 14.26 1.2 1.1 -1.1 111
139 MAP3K5 1.86 0.93 2.79 2. -1.5 -3. 111
140 MAPK6 15.5 10.85 14.26 1.4 1.1 -1.3 111
141 MET 26.35 24.8 27.28 1.1 -1. -1.1 111
142 MYLK 5.27 4.34 6.2 1.2 -1.2 -1.4 111
143 NEK7 6.82 5.58 8.06 1.2 -1.2 -1.4 111
144 NUAK2 4.34 1.24 2.48 3.5 1.8 -2. 111
145 PIM1 4.03 3.1 6.51 1.3 -1.6 -2.1 111
146 PLK2 33.48 15.5 9.3 2.2 3.6 1.7 111
147 RIPK4 6.82 5.89 8.06 1.2 -1.2 -1.4 111
148 ROS1 5.58 2.79 6.82 2. -1.2 -2.4 111
149 STK17A 48.36 38.44 46.81 1.3 1. -1.2 111
150 STK39 5.58 4.65 6.51 1.2 -1.2 -1.4 111
151 TGFBR2 45.57 27.9 52.08 1.6 -1.1 -1.9 111
152 TRIB1 5.89 2.48 4.96 2.4 1.2 -2. 111
153 TRIB3 6.51 4.03 8.06 1.6 -1.2 -2. 111
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Table B.3: List of significantly changed gene in the group: (1 - BEAS2BPar, 2 -
BEAS2BWT , 3 - BEAS2BKR), along with pairwise fold changes and significant
change markers

SN Gene 1 2 3 1:2 1:3 2:3 Sig
1 CAMK2G 3.1 2.48 3.72 1.2 -1.2 -1.5 001
2 CAMKK2 2.79 2.17 3.41 1.3 -1.2 -1.6 001
3 CDK7 2.79 2.17 3.1 1.3 -1.1 -1.4 001
4 FLJ25006 0.31 0. 0.93 100. -3. -300. 001
5 LYK5 0.93 0.31 1.24 3. -1.3 -4. 001
6 MAP3K9 0.62 0. 0.93 200. -1.5 -300. 001
7 MERTK 0.62 0. 0.93 200. -1.5 -300. 001
8 MINK1 3.1 2.48 3.72 1.2 -1.2 -1.5 001
9 NLK 1.55 0.93 2.17 1.7 -1.4 -2.3 001
10 NUAK2 2.79 2.17 3.1 1.3 -1.1 -1.4 001
11 PDGFRB 1.55 1.86 0.93 -1.2 1.7 2. 001
12 STK10 1.24 0.93 1.86 1.3 -1.5 -2. 001
13 STK16 1.24 0.62 1.86 2. -1.5 -3. 001
14 STK33 0.62 0.31 1.24 2. -2. -4. 001
15 TNK1 0.93 0.31 1.55 3. -1.7 -5. 001
16 TNK2 0.62 0. 0.93 200. -1.5 -300. 001
17 ADCK5 0.31 0. 1.24 100. -4. -400. 011
18 ALPK1 0.93 0.31 2.17 3. -2.3 -7. 011
19 CDK6 1.86 1.86 7.44 -1. -4. -4. 011
20 CDK9 3.41 2.79 7.13 1.2 -2.1 -2.6 011
21 DAPK1 2.79 2.79 0.31 -1. 9. 9. 011
22 DDR1 3.1 3.1 9.61 -1. -3.1 -3.1 011
23 DYRK3 1.55 0.93 2.79 1.7 -1.8 -3. 011
24 EPHA1 0. 0. 1.55 -1. -500. -500. 011
25 EPHB2 0.62 0.31 2.17 2. -3.5 -7. 011
26 ERBB3 0.62 0.31 3.72 2. -6. -12. 011
27 MAPK13 3.41 4.03 14.57 -1.2 -4.3 -3.6 011
28 MAPK14 10.54 10.23 13.33 1. -1.3 -1.3 011
29 MARK1 0.31 0. 1.55 100. -5. -500. 011
30 MGC5297 1.55 1.86 3.41 -1.2 -2.2 -1.8 011
31 PAK6 0.62 0.31 2.48 2. -4. -8. 011
32 PRKCD 2.48 2.17 4.34 1.1 -1.8 -2. 011
33 PRKCZ 1.86 1.24 3.41 1.5 -1.8 -2.8 011
34 PRKD1 4.34 4.34 1.24 -1. 3.5 3.5 011
35 RAGE 1.86 1.86 5.27 -1. -2.8 -2.8 011
36 STK17A 3.72 4.03 9.61 -1.1 -2.6 -2.4 011
37 STK17B 6.51 7.13 5.58 -1.1 1.2 1.3 011
38 TBRG4 2.48 2.48 3.72 -1. -1.5 -1.5 011
39 CDKL2 0.93 0. 0.62 300. 1.5 -200. 100

Continued on next page

165



Table B.3 – continued from previous page
SN Gene 1 2 3 1:2 1:3 2:3 Sig
40 IKBKB 1.24 0.31 0.62 4. 2. -2. 100
41 IRAK3 1.24 0.31 0.62 4. 2. -2. 100
42 MAP3K1 2.17 1.24 1.55 1.8 1.4 -1.2 100
43 PLK4 1.24 0.31 0.93 4. 1.3 -3. 100
44 ACVR2A 2.48 1.24 2.79 2. -1.1 -2.2 101
45 AKT3 8.06 3.41 8.68 2.4 -1.1 -2.5 101
46 CDC2L6 4.03 1.24 3.41 3.2 1.2 -2.8 101
47 CDC42BPA 2.17 0.62 2.79 3.5 -1.3 -4.5 101
48 CDKL1 1.24 0. 0.93 400. 1.3 -300. 101
49 CDKL3 2.17 0.31 1.86 7. 1.2 -6. 101
50 CLK3 3.41 0.62 3.41 5.5 -1. -5.5 101
51 EPHB4 1.55 0.62 2.17 2.5 -1.4 -3.5 101
52 FGFRL1 0.93 0. 1.24 300. -1.3 -400. 101
53 FYN 7.13 1.24 7.75 5.8 -1.1 -6.2 101
54 HIPK1 2.79 1.24 2.48 2.2 1.1 -2. 101
55 MAP2K3 0.31 1.86 0.62 -6. -2. 3. 101
56 MAP2K7 3.41 1.86 3.72 1.8 -1.1 -2. 101
57 MAP3K10 0.93 0. 1.55 300. -1.7 -500. 101
58 MAP3K14 2.48 1.55 3.1 1.6 -1.2 -2. 101
59 MAP3K3 8.37 4.96 8.99 1.7 -1.1 -1.8 101
60 MAP3K4 3.72 1.86 4.03 2. -1.1 -2.2 101
61 MAPK12 2.17 0.62 1.55 3.5 1.4 -2.5 101
62 MAPK7 3.72 1.86 3.72 2. -1. -2. 101
63 MAST2 3.72 1.24 4.03 3. -1.1 -3.2 101
64 MKNK2 8.37 4.03 8.68 2.1 -1. -2.2 101
65 MLKL 0.62 1.86 0.93 -3. -1.5 2. 101
66 NEK4 1.55 0.62 1.55 2.5 -1. -2.5 101
67 NEK9 2.48 1.24 2.79 2. -1.1 -2.2 101
68 NRBP1 19.53 11.16 20.15 1.8 -1. -1.8 101
69 NRBP2 1.86 0.31 1.55 6. 1.2 -5. 101
70 PASK 1.24 0. 1.24 400. -1. -400. 101
71 PBK 10.54 7.75 9.92 1.4 1.1 -1.3 101
72 PDPK1 6.51 2.48 5.89 2.6 1.1 -2.4 101
73 PHKG2 3.41 2.17 3.41 1.6 -1. -1.6 101
74 PRKAA2 3.1 0.31 3.1 10. -1. -10. 101
75 PRKACB 3.72 1.86 4.03 2. -1.1 -2.2 101
76 PRKCE 1.86 0.62 1.55 3. 1.2 -2.5 101
77 PSKH1 1.55 0.31 1.86 5. -1.2 -6. 101
78 PXK 2.48 0.62 1.86 4. 1.3 -3. 101
79 RIOK1 1.55 0.62 1.86 2.5 -1.2 -3. 101
80 RPS6KA1 9.3 8.06 9.61 1.2 -1. -1.2 101
81 SCYL3 2.79 0.93 3.41 3. -1.2 -3.7 101
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82 SGK269 3.72 0.93 3.72 4. -1. -4. 101
83 SGK3 2.17 0.62 2.48 3.5 -1.1 -4. 101
84 STK19 1.24 0. 1.24 400. -1. -400. 101
85 STK25 5.27 2.17 5.27 2.4 -1. -2.4 101
86 STK3 2.17 0.31 2.48 7. -1.1 -8. 101
87 STK35 4.03 1.55 4.65 2.6 -1.2 -3. 101
88 STK38 6.51 3.72 6.82 1.8 -1. -1.8 101
89 STK38L 2.79 1.55 3.41 1.8 -1.2 -2.2 101
90 STK4 4.34 1.55 3.72 2.8 1.2 -2.4 101
91 TBK1 6.2 3.72 6.82 1.7 -1.1 -1.8 101
92 TESK1 0.93 0. 1.24 300. -1.3 -400. 101
93 TGFBR1 2.17 0.31 2.17 7. -1. -7. 101
94 TYK2 1.24 0.31 1.24 4. -1. -4. 101
95 TYRO3 1.86 0.31 1.24 6. 1.5 -4. 101
96 ULK1 2.17 0.62 2.79 3.5 -1.3 -4.5 101
97 ULK2 3.41 0. 2.79 1100. 1.2 -900. 101
98 ZAK 2.17 0.62 1.55 3.5 1.4 -2.5 101
99 AURKB 11.78 13.02 13.64 -1.1 -1.2 -1. 110
100 BCKDK 4.03 5.27 5.58 -1.3 -1.4 -1.1 110
101 BUB1B 9.3 10.23 10.85 -1.1 -1.2 -1.1 110
102 CAMK1D 1.24 0.31 0.31 4. 4. -1. 110
103 CDK4 28.83 23.56 23.56 1.2 1.2 -1. 110
104 PDK2 3.41 2.17 1.86 1.6 1.8 1.2 110
105 PRKACA 22.32 21.08 20.46 1.1 1.1 1. 110
106 ROR2 4.65 1.24 1.86 3.8 2.5 -1.5 110
107 SNF1LK 1.86 3.1 2.79 -1.7 -1.5 1.1 110
108 AAK1 8.37 2.48 12.71 3.4 -1.5 -5.1 111
109 ABL1 3.72 1.86 5.58 2. -1.5 -3. 111
110 ABL2 4.03 0.93 6.51 4.3 -1.6 -7. 111
111 ACVR1 4.34 1.55 9.92 2.8 -2.3 -6.4 111
112 ACVR1B 3.41 1.24 5.89 2.8 -1.7 -4.8 111
113 ADCK2 7.13 2.48 13.95 2.9 -2. -5.6 111
114 ADRBK1 11.78 6.51 16.12 1.8 -1.4 -2.5 111
115 AKT2 8.68 6.51 12.4 1.3 -1.4 -1.9 111
116 ALS2CR2 2.79 0.62 1.55 4.5 1.8 -2.5 111
117 ARAF 6.2 4.96 7.44 1.2 -1.2 -1.5 111
118 ATR 3.41 2.48 7.13 1.4 -2.1 -2.9 111
119 AXL 80.29 46.5 291.4 1.7 -3.6 -6.3 111
120 BCR 3.72 2.48 6.82 1.5 -1.8 -2.8 111
121 BMP2K 4.34 2.17 5.27 2. -1.2 -2.4 111
122 BMPR1A 7.44 4.34 8.37 1.7 -1.1 -1.9 111
123 BMPR2 5.27 3.1 7.13 1.7 -1.4 -2.3 111
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124 BRAF 7.13 3.41 11.16 2.1 -1.6 -3.3 111
125 BRD2 8.06 4.03 10.23 2. -1.3 -2.5 111
126 BUB1 5.58 6.82 8.37 -1.2 -1.5 -1.2 111
127 CAMK1 6.51 2.79 3.72 2.3 1.8 -1.3 111
128 CAMK2D 7.75 4.34 8.68 1.8 -1.1 -2. 111
129 CASK 3.1 0.93 2.17 3.3 1.4 -2.3 111
130 CDC2 37.51 41.54 29.14 -1.1 1.3 1.4 111
131 CDC2L2 5.89 3.72 8.37 1.6 -1.4 -2.2 111
132 CDC2L5 6.51 3.1 10.54 2.1 -1.6 -3.4 111
133 CDC42BPB 3.72 1.86 6.2 2. -1.7 -3.3 111
134 CDC7 4.03 1.86 5.89 2.2 -1.5 -3.2 111
135 CDK10 5.27 3.41 11.16 1.5 -2.1 -3.3 111
136 CDK2 7.13 5.58 8.06 1.3 -1.1 -1.4 111
137 CDK8 6.51 3.72 11.47 1.8 -1.8 -3.1 111
138 CHEK1 6.2 2.79 8.37 2.2 -1.3 -3. 111
139 CHUK 16.74 8.68 21.39 1.9 -1.3 -2.5 111
140 CLK1 4.96 1.55 9.3 3.2 -1.9 -6. 111
141 CLK2 5.27 2.48 6.82 2.1 -1.3 -2.8 111
142 CLK4 9.3 3.41 13.02 2.7 -1.4 -3.8 111
143 COL4A3BP 9.61 4.34 8.06 2.2 1.2 -1.9 111
144 CPNE3 6.51 4.96 8.68 1.3 -1.3 -1.8 111
145 CRKRS 3.41 2.17 5.27 1.6 -1.5 -2.4 111
146 CSK 4.03 2.79 5.58 1.4 -1.4 -2. 111
147 CSNK1A1 18.91 8.37 29.45 2.3 -1.6 -3.5 111
148 CSNK1D 62.31 29.45 75.95 2.1 -1.2 -2.6 111
149 CSNK1E 16.74 11.78 26.97 1.4 -1.6 -2.3 111
150 CSNK1G1 5.27 1.55 6.51 3.4 -1.2 -4.2 111
151 CSNK1G3 11.47 6.51 15.81 1.8 -1.4 -2.4 111
152 CSNK2A1 13.64 6.82 17.67 2. -1.3 -2.6 111
153 CSNK2A2 4.34 0.62 6.2 7. -1.4 -10. 111
154 DAPK3 5.58 3.41 8.06 1.6 -1.4 -2.4 111
155 DDR2 4.34 0. 2.17 1400. 2. -700. 111
156 DYRK1A 8.37 4.03 10.54 2.1 -1.3 -2.6 111
157 DYRK2 2.79 1.86 4.03 1.5 -1.4 -2.2 111
158 EGFR 9.92 5.27 51.77 1.9 -5.2 -9.8 111
159 EIF2AK1 7.75 6.51 8.99 1.2 -1.2 -1.4 111
160 EIF2AK2 8.06 5.58 10.54 1.4 -1.3 -1.9 111
161 EIF2AK3 2.48 0.62 5.27 4. -2.1 -8.5 111
162 EIF2AK4 6.82 5.89 11.16 1.2 -1.6 -1.9 111
163 EPHA2 6.82 4.65 27.9 1.5 -4.1 -6. 111
164 ERBB2 4.03 2.79 7.13 1.4 -1.8 -2.6 111
165 ERN1 12.4 1.55 42.78 8. -3.4 -27.6 111
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166 FER 8.06 4.65 11.78 1.7 -1.5 -2.5 111
167 FGFR1 4.96 3.1 1.24 1.6 4. 2.5 111
168 FLJ13149 4.65 3.41 5.58 1.4 -1.2 -1.6 111
169 FLJ21901 4.65 3.72 7.75 1.3 -1.7 -2.1 111
170 FLJ23356 10.85 4.96 18.91 2.2 -1.7 -3.8 111
171 GAK 3.41 1.24 4.96 2.8 -1.5 -4. 111
172 GRK6 25.42 13.02 30.38 2. -1.2 -2.3 111
173 GSG2 4.96 3.1 7.13 1.6 -1.4 -2.3 111
174 GSK3A 9.3 5.27 10.85 1.8 -1.2 -2.1 111
175 GSK3B 21.7 12.71 22.94 1.7 -1.1 -1.8 111
176 HIPK3 5.89 2.79 7.44 2.1 -1.3 -2.7 111
177 HUS1 11.47 5.27 19.53 2.2 -1.7 -3.7 111
178 IGF1R 3.41 1.55 7.75 2.2 -2.3 -5. 111
179 INSR 1.86 0.31 4.65 6. -2.5 -15. 111
180 IRAK1 17.98 10.85 27.59 1.7 -1.5 -2.5 111
181 JAK1 3.1 1.55 4.03 2. -1.3 -2.6 111
182 KIAA0971 2.79 1.24 5.27 2.2 -1.9 -4.2 111
183 LATS1 7.75 3.72 13.02 2.1 -1.7 -3.5 111
184 LATS2 8.37 3.72 11.16 2.2 -1.3 -3. 111
185 LIMK2 5.89 3.41 7.44 1.7 -1.3 -2.2 111
186 LMTK2 7.75 2.48 16.43 3.1 -2.1 -6.6 111
187 MAP2K1 17.05 9.3 22.01 1.8 -1.3 -2.4 111
188 MAP2K2 23.87 16.43 31.62 1.5 -1.3 -1.9 111
189 MAP2K4 4.96 2.17 6.82 2.3 -1.4 -3.1 111
190 MAP3K2 5.58 2.48 6.51 2.2 -1.2 -2.6 111
191 MAP3K7 9.92 6.51 14.26 1.5 -1.4 -2.2 111
192 MAP4K3 4.34 2.79 6.51 1.6 -1.5 -2.3 111
193 MAP4K4 14.57 8.99 20.46 1.6 -1.4 -2.3 111
194 MAP4K5 8.06 4.65 13.64 1.7 -1.7 -2.9 111
195 MAPK1 15.81 8.68 14.88 1.8 1.1 -1.7 111
196 MAPK6 21.39 7.13 26.97 3. -1.3 -3.8 111
197 MAPK8 7.44 3.41 11.47 2.2 -1.5 -3.4 111
198 MAPK9 8.68 4.34 10.85 2. -1.2 -2.5 111
199 MAPKAPK2 4.65 3.1 6.82 1.5 -1.5 -2.2 111
200 MAPKAPK5 6.82 3.1 9.92 2.2 -1.5 -3.2 111
201 MARK2 11.16 6.2 16.12 1.8 -1.4 -2.6 111
202 MARK3 1.86 0.62 2.79 3. -1.5 -4.5 111
203 MARK4 3.72 1.55 4.96 2.4 -1.3 -3.2 111
204 MASTL 13.64 5.89 17.05 2.3 -1.2 -2.9 111
205 MELK 35.96 21.7 39.06 1.7 -1.1 -1.8 111
206 MET 10.54 7.44 52.7 1.4 -5. -7.1 111
207 MGC16169 3.41 1.55 4.96 2.2 -1.5 -3.2 111
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208 MKNK1 4.65 2.79 7.13 1.7 -1.5 -2.6 111
209 MST1R 5.27 3.72 17.67 1.4 -3.4 -4.8 111
210 MST4 4.34 2.79 8.06 1.6 -1.9 -2.9 111
211 MTOR 1.86 0.62 2.79 3. -1.5 -4.5 111
212 NEK1 2.17 0.31 3.1 7. -1.4 -10. 111
213 NEK3 3.41 0.62 4.96 5.5 -1.5 -8. 111
214 NEK7 9.92 4.65 11.16 2.1 -1.1 -2.4 111
215 OXSR1 5.58 3.1 9.3 1.8 -1.7 -3. 111
216 PAK1 4.96 3.1 7.44 1.6 -1.5 -2.4 111
217 PAK2 9.3 3.72 11.78 2.5 -1.3 -3.2 111
218 PAN3 3.72 2.48 6.2 1.5 -1.7 -2.5 111
219 PCTK1 11.78 6.2 13.64 1.9 -1.2 -2.2 111
220 PCTK2 5.89 3.1 13.95 1.9 -2.4 -4.5 111
221 PDIK1L 3.72 0.93 5.58 4. -1.5 -6. 111
222 PDK1 3.72 2.48 5.89 1.5 -1.6 -2.4 111
223 PFTK1 6.51 3.41 4.34 1.9 1.5 -1.3 111
224 PIK3R4 4.03 2.48 7.44 1.6 -1.8 -3. 111
225 PIM1 3.41 0.93 7.13 3.7 -2.1 -7.7 111
226 PIM3 3.41 1.55 2.48 2.2 1.4 -1.6 111
227 PINK1 3.41 0.93 5.58 3.7 -1.6 -6. 111
228 PKMYT1 10.23 2.48 11.47 4.1 -1.1 -4.6 111
229 PKN1 11.78 4.34 15.5 2.7 -1.3 -3.6 111
230 PKN2 6.51 3.41 8.37 1.9 -1.3 -2.5 111
231 PKN3 4.03 2.48 5.58 1.6 -1.4 -2.2 111
232 PLK1 4.34 10.54 6.51 -2.4 -1.5 1.6 111
233 PLK2 6.51 10.23 11.16 -1.6 -1.7 -1.1 111
234 PLK3 1.55 0.31 3.41 5. -2.2 -11. 111
235 PRKAA1 8.99 7.13 16.12 1.3 -1.8 -2.3 111
236 PRKCI 9.3 6.51 15.5 1.4 -1.7 -2.4 111
237 PRKD3 5.58 3.72 6.82 1.5 -1.2 -1.8 111
238 PRKDC 36.58 19.84 64.79 1.8 -1.8 -3.3 111
239 PRPF4B 14.57 12.09 22.32 1.2 -1.5 -1.8 111
240 PTK2 19.22 11.16 18.29 1.7 1.1 -1.6 111
241 PTK7 4.03 2.79 9.3 1.4 -2.3 -3.3 111
242 RAF1 13.64 9.3 15.81 1.5 -1.2 -1.7 111
243 RIOK2 7.44 4.34 9.92 1.7 -1.3 -2.3 111
244 RIOK3 9.92 4.03 15.19 2.5 -1.5 -3.8 111
245 RIPK1 4.65 3.41 7.13 1.4 -1.5 -2.1 111
246 RIPK2 6.82 3.1 9.61 2.2 -1.4 -3.1 111
247 RIPK4 3.72 4.96 6.2 -1.3 -1.7 -1.2 111
248 ROCK1 13.95 7.75 18.29 1.8 -1.3 -2.4 111
249 ROCK2 8.06 5.27 10.85 1.5 -1.3 -2.1 111
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250 RPS6KA4 3.72 2.48 5.58 1.5 -1.5 -2.2 111
251 RPS6KB1 4.65 2.79 6.82 1.7 -1.5 -2.4 111
252 RPS6KB2 2.48 1.24 3.72 2. -1.5 -3. 111
253 RPS6KC1 4.96 2.79 7.13 1.8 -1.4 -2.6 111
254 RYK 4.03 2.79 6.2 1.4 -1.5 -2.2 111
255 SCYL1 5.27 2.48 6.82 2.1 -1.3 -2.8 111
256 SCYL2 10.54 4.65 14.88 2.3 -1.4 -3.2 111
257 SGK 0.62 3.1 1.55 -5. -2.5 2. 111
258 SLK 8.06 5.27 12.09 1.5 -1.5 -2.3 111
259 SMG1 19.53 5.58 32.86 3.5 -1.7 -5.9 111
260 SNF1LK2 6.82 2.79 7.75 2.4 -1.1 -2.8 111
261 SNRK 4.34 1.24 5.27 3.5 -1.2 -4.2 111
262 SRC 2.17 1.24 4.96 1.8 -2.3 -4. 111
263 SRPK1 8.68 7.44 11.47 1.2 -1.3 -1.5 111
264 SRPK2 8.06 4.34 9.92 1.9 -1.2 -2.3 111
265 STK11 2.48 1.24 3.41 2. -1.4 -2.8 111
266 STK24 15.81 8.99 27.9 1.8 -1.8 -3.1 111
267 STK39 9.92 4.03 13.95 2.5 -1.4 -3.5 111
268 STK40 2.79 1.24 4.34 2.2 -1.6 -3.5 111
269 TAF1 2.48 1.24 3.72 2. -1.5 -3. 111
270 TAF1L 3.1 1.24 4.34 2.5 -1.4 -3.5 111
271 TAOK1 10.23 5.58 12.4 1.8 -1.2 -2.2 111
272 TAOK3 4.03 2.17 9.3 1.9 -2.3 -4.3 111
273 TGFBR2 25.73 53.63 33.79 -2.1 -1.3 1.6 111
274 TLK1 4.34 2.79 5.58 1.6 -1.3 -2. 111
275 TLK2 5.58 2.79 7.44 2. -1.3 -2.7 111
276 TP53RK 17.36 8.68 20.77 2. -1.2 -2.4 111
277 TRIB1 1.55 0.62 2.48 2.5 -1.6 -4. 111
278 TRIB2 1.55 6.82 0.31 -4.4 5. 22. 111
279 TRIB3 57.04 5.58 68.2 10.2 -1.2 -12.2 111
280 TRIO 10.85 5.89 19.53 1.8 -1.8 -3.3 111
281 TRPM7 5.58 1.86 8.06 3. -1.4 -4.3 111
282 TTBK2 4.03 0.62 6.51 6.5 -1.6 -10.5 111
283 TTK 11.16 13.33 14.88 -1.2 -1.3 -1.1 111
284 UHMK1 12.09 7.13 17.67 1.7 -1.5 -2.5 111
285 ULK3 6.82 3.41 9.3 2. -1.4 -2.7 111
286 VRK1 10.23 6.2 13.64 1.6 -1.3 -2.2 111
287 VRK2 3.72 1.55 5.58 2.4 -1.5 -3.6 111
288 VRK3 4.34 1.86 5.58 2.3 -1.3 -3. 111
289 WNK1 20.15 8.37 21.7 2.4 -1.1 -2.6 111
290 YES1 24.18 14.88 31.62 1.6 -1.3 -2.1 111
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Table B.4: List of significantly changed gene in the group: (1 - H827Par, 2 -
H827ER20, 3 - HR827ER40), along with pairwise fold changes and significant
change markers

SN Gene 1 2 3 1:2 1:3 2:3 Sig
1 NEK2 1.86 2.17 1.24 -1.2 1.5 1.8 001
2 NUAK2 2.17 2.48 1.55 -1.1 1.4 1.6 001
3 BUB1B 3.72 3.1 2.48 1.2 1.5 1.2 010
4 CSK 0.93 1.55 1.86 -1.7 -2. -1.2 010
5 AURKB 8.99 8.68 6.2 1. 1.4 1.4 011
6 BUB1 4.34 4.03 2.79 1.1 1.6 1.4 011
7 TTK 4.03 4.65 3.1 -1.2 1.3 1.5 011
8 ATR 0.93 1.86 1.55 -2. -1.7 1.2 100
9 BMP2K 1.24 2.17 1.55 -1.8 -1.2 1.4 100
10 BMPR1A 1.24 2.17 1.86 -1.8 -1.5 1.2 100
11 BMPR1B 0.31 1.24 0.62 -4. -2. 2. 100
12 BMPR2 1.86 3.1 2.48 -1.7 -1.3 1.2 100
13 CDK9 1.86 3.1 2.48 -1.7 -1.3 1.2 100
14 CPNE3 2.17 3.1 2.48 -1.4 -1.1 1.2 100
15 CSNK1G1 0.62 1.55 1.24 -2.5 -2. 1.2 100
16 DYRK1A 0.93 1.86 1.24 -2. -1.3 1.5 100
17 FER 0.31 1.24 0.93 -4. -3. 1.3 100
18 ILK 0.93 1.86 1.24 -2. -1.3 1.5 100
19 LOC91461 0. 0.93 0.62 -300. -200. 1.5 100
20 MAP3K1 2.48 3.41 2.79 -1.4 -1.1 1.2 100
21 MAP3K14 0.31 1.24 0.93 -4. -3. 1.3 100
22 MAPKAPK3 1.55 2.79 2.17 -1.8 -1.4 1.3 100
23 MKNK1 2.17 3.41 2.79 -1.6 -1.3 1.2 100
24 MST4 5.27 6.51 5.89 -1.2 -1.1 1.1 100
25 PAN3 0.93 1.86 1.55 -2. -1.7 1.2 100
26 PRKCD 3.1 4.34 3.72 -1.4 -1.2 1.2 100
27 PRKCE 0.93 2.17 1.55 -2.3 -1.7 1.4 100
28 PRKCZ 0.93 1.86 1.24 -2. -1.3 1.5 100
29 RIPK4 2.17 3.1 2.79 -1.4 -1.3 1.1 100
30 RPS6KA1 2.17 3.1 2.79 -1.4 -1.3 1.1 100
31 STK17B 3.1 4.34 3.72 -1.4 -1.2 1.2 100
32 STYK1 0.62 1.55 0.93 -2.5 -1.5 1.7 100
33 TAF1L 0.93 1.86 1.55 -2. -1.7 1.2 100
34 TLK1 1.24 2.17 1.55 -1.8 -1.2 1.4 100
35 TRIB2 0. 0.93 0.62 -300. -200. 1.5 100
36 CDC2 16.12 17.98 16.74 -1.1 -1. 1.1 101
37 DAPK1 2.79 4.34 3.41 -1.6 -1.2 1.3 101
38 EIF2AK4 3.1 4.03 2.79 -1.3 1.1 1.4 101
39 FYN 1.55 3.41 2.17 -2.2 -1.4 1.6 101
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40 MAPK9 2.17 3.72 2.79 -1.7 -1.3 1.3 101
41 MELK 3.41 4.34 3.1 -1.3 1.1 1.4 101
42 PCTK2 1.24 2.79 1.86 -2.2 -1.5 1.5 101
43 PDIK1L 1.24 2.48 1.55 -2. -1.2 1.6 101
44 PRKACB 2.17 3.41 2.48 -1.6 -1.1 1.4 101
45 PRKCA 0.93 2.48 1.55 -2.7 -1.7 1.6 101
46 ROCK2 2.79 4.34 3.41 -1.6 -1.2 1.3 101
47 STK25 1.86 3.41 2.48 -1.8 -1.3 1.4 101
48 TBRG4 1.55 3.1 2.17 -2. -1.4 1.4 101
49 AAK1 2.17 3.41 3.41 -1.6 -1.6 -1. 110
50 ABL2 0.93 2.17 1.86 -2.3 -2. 1.2 110
51 ACVR1 0.93 2.48 2.17 -2.7 -2.3 1.1 110
52 ACVR1B 0.93 2.17 2.17 -2.3 -2.3 -1. 110
53 ADCK2 0.93 1.86 1.86 -2. -2. -1. 110
54 ALPK1 1.55 3.72 4.03 -2.4 -2.6 -1.1 110
55 ARAF 1.86 3.72 3.1 -2. -1.7 1.2 110
56 BCKDK 2.17 3.72 3.1 -1.7 -1.4 1.2 110
57 BCR 2.17 3.72 3.1 -1.7 -1.4 1.2 110
58 BRDT 1.24 2.79 2.17 -2.2 -1.8 1.3 110
59 CAMKK2 1.55 3.1 3.1 -2. -2. -1. 110
60 CASK 1.24 2.48 2.17 -2. -1.8 1.1 110
61 CDC2L5 1.55 2.79 2.79 -1.8 -1.8 -1. 110
62 CDC42BPB 1.86 4.34 3.72 -2.3 -2. 1.2 110
63 CDK6 2.17 4.96 4.65 -2.3 -2.1 1.1 110
64 CDK7 1.55 3.72 3.1 -2.4 -2. 1.2 110
65 CDK8 1.86 3.72 3.1 -2. -1.7 1.2 110
66 CHUK 2.48 4.65 4.34 -1.9 -1.8 1.1 110
67 CLK2 1.55 3.1 2.48 -2. -1.6 1.2 110
68 COL4A3BP 3.41 7.13 6.51 -2.1 -1.9 1.1 110
69 CRKRS 0.93 2.17 1.86 -2.3 -2. 1.2 110
70 CSNK1A1 3.1 6.82 6.2 -2.2 -2. 1.1 110
71 CSNK1G3 2.48 5.89 5.27 -2.4 -2.1 1.1 110
72 CSNK2A2 1.24 3.1 2.79 -2.5 -2.2 1.1 110
73 DAPK3 1.86 4.34 3.72 -2.3 -2. 1.2 110
74 DDR1 1.86 4.03 3.41 -2.2 -1.8 1.2 110
75 EIF2AK1 5.89 10.54 10.23 -1.8 -1.7 1. 110
76 EIF2AK2 5.27 9.3 8.99 -1.8 -1.7 1. 110
77 EIF2AK3 0.62 2.48 1.86 -4. -3. 1.3 110
78 ERN1 0.93 4.65 4.03 -5. -4.3 1.2 110
79 FLJ21901 1.55 3.1 2.79 -2. -1.8 1.1 110
80 GAK 1.55 2.79 2.79 -1.8 -1.8 -1. 110
81 GRK6 3.41 6.82 6.82 -2. -2. -1. 110
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82 GSK3A 1.24 2.79 2.48 -2.2 -2. 1.1 110
83 HIPK3 1.86 3.72 3.1 -2. -1.7 1.2 110
84 INSR 0.93 3.41 2.79 -3.7 -3. 1.2 110
85 IRAK2 0.93 4.34 3.72 -4.7 -4. 1.2 110
86 LMTK2 1.55 4.03 4.03 -2.6 -2.6 -1. 110
87 LYN 0.93 3.1 3.1 -3.3 -3.3 -1. 110
88 MAP2K1 8.68 17.36 16.74 -2. -1.9 1. 110
89 MAP2K3 2.17 5.89 5.27 -2.7 -2.4 1.1 110
90 MAP2K4 1.86 3.1 2.79 -1.7 -1.5 1.1 110
91 MAP2K7 1.55 3.72 3.1 -2.4 -2. 1.2 110
92 MAP3K2 2.79 4.65 4.34 -1.7 -1.6 1.1 110
93 MAP3K5 0.93 3.1 3.1 -3.3 -3.3 -1. 110
94 MAP3K7 2.48 4.03 3.72 -1.6 -1.5 1.1 110
95 MAPK6 4.34 10.23 9.92 -2.4 -2.3 1. 110
96 MAPK8 1.55 3.72 3.1 -2.4 -2. 1.2 110
97 MAPKAPK2 2.48 4.03 4.03 -1.6 -1.6 -1. 110
98 MAPKAPK5 2.79 5.58 4.96 -2. -1.8 1.1 110
99 MARK1 0.31 1.24 1.55 -4. -5. -1.2 110
100 MARK4 1.24 2.48 2.17 -2. -1.8 1.1 110
101 MAST2 1.55 3.1 2.48 -2. -1.6 1.2 110
102 MGC16169 1.55 3.41 2.79 -2.2 -1.8 1.2 110
103 MINK1 3.1 5.27 4.96 -1.7 -1.6 1.1 110
104 MLKL 1.24 3.1 2.79 -2.5 -2.2 1.1 110
105 MST1R 1.24 2.79 2.48 -2.2 -2. 1.1 110
106 NEK7 4.34 8.37 7.75 -1.9 -1.8 1.1 110
107 OXSR1 1.55 3.1 2.48 -2. -1.6 1.2 110
108 PAK2 3.1 4.65 4.34 -1.5 -1.4 1.1 110
109 PAK4 1.86 3.41 3.1 -1.8 -1.7 1.1 110
110 PDK1 2.48 4.96 4.34 -2. -1.8 1.1 110
111 PDK4 0.31 1.24 1.24 -4. -4. -1. 110
112 PIM3 1.55 6.2 5.89 -4. -3.8 1.1 110
113 PKN1 3.1 8.06 7.75 -2.6 -2.5 1. 110
114 PRKCH 1.24 2.79 2.79 -2.2 -2.2 -1. 110
115 PRKD3 1.55 2.79 2.79 -1.8 -1.8 -1. 110
116 PRKDC 4.03 5.58 4.96 -1.4 -1.2 1.1 110
117 PRPF4B 2.48 4.96 4.65 -2. -1.9 1.1 110
118 RAF1 2.17 4.34 4.03 -2. -1.9 1.1 110
119 RIOK2 1.55 2.48 2.79 -1.6 -1.8 -1.1 110
120 RIOK3 1.86 5.58 4.96 -3. -2.7 1.1 110
121 RIPK1 1.24 2.79 2.48 -2.2 -2. 1.1 110
122 RIPK2 8.06 23.56 22.94 -2.9 -2.8 1. 110
123 ROCK1 2.48 4.34 4.34 -1.8 -1.8 -1. 110
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124 RPS6KC1 1.55 3.41 2.79 -2.2 -1.8 1.2 110
125 SCYL1 1.86 3.41 3.41 -1.8 -1.8 -1. 110
126 SCYL2 2.79 5.58 5.27 -2. -1.9 1.1 110
127 SCYL3 0.62 1.86 1.55 -3. -2.5 1.2 110
128 SGK3 1.55 2.48 2.48 -1.6 -1.6 -1. 110
129 SMG1 2.48 4.96 4.34 -2. -1.8 1.1 110
130 SNF1LK2 1.55 2.79 2.48 -1.8 -1.6 1.1 110
131 SRPK1 5.27 11.47 10.85 -2.2 -2.1 1.1 110
132 SRPK2 3.72 5.89 5.89 -1.6 -1.6 -1. 110
133 STK16 0.93 1.86 1.86 -2. -2. -1. 110
134 STK32A 0.62 1.86 1.86 -3. -3. -1. 110
135 STK35 0.93 1.86 1.86 -2. -2. -1. 110
136 STK38 2.79 4.03 3.72 -1.4 -1.3 1.1 110
137 STK38L 1.86 3.41 3.1 -1.8 -1.7 1.1 110
138 STK39 6.82 15.5 14.88 -2.3 -2.2 1. 110
139 STK40 1.55 4.65 4.03 -3. -2.6 1.2 110
140 TAOK1 2.17 4.03 3.41 -1.9 -1.6 1.2 110
141 TAOK3 2.48 4.96 4.34 -2. -1.8 1.1 110
142 TLK2 0.93 2.48 1.86 -2.7 -2. 1.3 110
143 TP53RK 3.41 7.13 6.51 -2.1 -1.9 1.1 110
144 TRIB1 1.86 5.58 5.58 -3. -3. -1. 110
145 TRIB3 1.86 5.58 6.2 -3. -3.3 -1.1 110
146 UHMK1 4.96 8.68 8.06 -1.8 -1.6 1.1 110
147 ULK1 0.93 2.17 1.86 -2.3 -2. 1.2 110
148 ULK3 1.55 3.41 2.79 -2.2 -1.8 1.2 110
149 VRK2 1.86 4.03 3.72 -2.2 -2. 1.1 110
150 ADRBK1 3.72 9.92 8.68 -2.7 -2.3 1.1 111
151 AKT2 3.72 5.89 4.96 -1.6 -1.3 1.2 111
152 BRAF 2.17 4.03 3.1 -1.9 -1.4 1.3 111
153 BRD2 1.86 4.03 3.1 -2.2 -1.7 1.3 111
154 CAMK2D 4.65 10.23 8.99 -2.2 -1.9 1.1 111
155 CAMK2G 1.86 3.72 2.79 -2. -1.5 1.3 111
156 CDK10 3.72 7.75 6.82 -2.1 -1.8 1.1 111
157 CDK4 243.97 318.37 283.03 -1.3 -1.2 1.1 111
158 CSNK1D 15.81 35.03 34.1 -2.2 -2.2 1. 111
159 CSNK1E 4.03 11.47 8.99 -2.8 -2.2 1.3 111
160 CSNK2A1 2.48 6.82 5.58 -2.8 -2.2 1.2 111
161 DYRK2 1.86 4.34 3.1 -2.3 -1.7 1.4 111
162 EGFR 78.43 110.98 88.66 -1.4 -1.1 1.3 111
163 EPHA2 1.86 5.58 4.34 -3. -2.3 1.3 111
164 ERBB3 6.51 10.85 9.61 -1.7 -1.5 1.1 111
165 FLJ23356 1.55 3.72 2.79 -2.4 -1.8 1.3 111
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166 GSK3B 6.2 12.4 10.23 -2. -1.6 1.2 111
167 HSPB8 0.93 3.72 2.48 -4. -2.7 1.5 111
168 HUS1 2.48 5.27 4.34 -2.1 -1.8 1.2 111
169 IRAK1 9.3 12.09 10.23 -1.3 -1.1 1.2 111
170 JAK1 4.03 8.99 8.06 -2.2 -2. 1.1 111
171 LATS1 1.55 4.65 3.72 -3. -2.4 1.3 111
172 LIMK1 4.96 7.13 6.2 -1.4 -1.2 1.1 111
173 MAP2K2 7.13 13.33 11.47 -1.9 -1.6 1.2 111
174 MAP4K3 2.48 5.58 4.65 -2.2 -1.9 1.2 111
175 MAP4K4 6.2 24.49 20.77 -3.9 -3.3 1.2 111
176 MAP4K5 4.96 7.75 6.82 -1.6 -1.4 1.1 111
177 MAPK1 4.03 6.2 5.27 -1.5 -1.3 1.2 111
178 MAPK13 3.72 9.3 8.37 -2.5 -2.2 1.1 111
179 MAPK14 3.1 6.51 5.58 -2.1 -1.8 1.2 111
180 MAPK3 3.1 6.2 4.65 -2. -1.5 1.3 111
181 MARK2 4.65 10.23 8.68 -2.2 -1.9 1.2 111
182 MET 40.61 499.41 426.25 -12.3 -10.5 1.2 111
183 MKNK2 3.1 9.92 8.99 -3.2 -2.9 1.1 111
184 MYLK 2.48 1.24 0.31 2. 8. 4. 111
185 NRBP1 4.96 8.99 6.82 -1.8 -1.4 1.3 111
186 PAK1 4.34 8.99 7.75 -2.1 -1.8 1.2 111
187 PCTK1 3.41 5.58 4.65 -1.6 -1.4 1.2 111
188 PIM1 3.41 6.82 5.27 -2. -1.5 1.3 111
189 PKN2 4.34 7.44 6.2 -1.7 -1.4 1.2 111
190 PLK2 4.34 8.68 6.51 -2. -1.5 1.3 111
191 PRKAA1 5.58 11.47 9.3 -2.1 -1.7 1.2 111
192 PRKAA2 2.17 4.34 3.41 -2. -1.6 1.3 111
193 PRKACA 5.58 8.68 7.75 -1.6 -1.4 1.1 111
194 PRKCI 5.58 9.61 7.75 -1.7 -1.4 1.2 111
195 PTK2 5.89 9.61 8.06 -1.6 -1.4 1.2 111
196 RPS6KA3 2.79 7.44 6.2 -2.7 -2.2 1.2 111
197 SGK 5.27 38.75 41.85 -7.4 -7.9 -1.1 111
198 SLK 2.17 4.03 3.1 -1.9 -1.4 1.3 111
199 SRC 2.17 5.27 4.34 -2.4 -2. 1.2 111
200 STK17A 4.03 8.06 5.27 -2. -1.3 1.5 111
201 STK24 3.41 7.44 6.51 -2.2 -1.9 1.1 111
202 TBK1 34.72 58.28 54.87 -1.7 -1.6 1.1 111
203 TGFBR2 4.03 6.51 5.58 -1.6 -1.4 1.2 111
204 TRIO 7.75 12.71 10.54 -1.6 -1.4 1.2 111
205 WNK1 5.89 11.78 10.85 -2. -1.8 1.1 111
206 YES1 6.2 8.99 7.13 -1.4 -1.1 1.3 111
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Table B.5: List of significantly changed gene in the group: (1 - A549, 2 - H358, 3
- H2122), along with pairwise fold changes and significant change markers

SN Gene 1 2 3 1:2 1:3 2:3 Sig
1 ACVR1 0.93 0.31 1.24 3. -1.3 -4. 001
2 ACVR1B 0.62 0. 1.24 200. -2. -400. 001
3 CDC42BPA 0.62 0. 1.24 200. -2. -400. 001
4 CDK5 0.93 0.31 1.55 3. -1.7 -5. 001
5 EEF2K 0.31 0. 0.93 100. -3. -300. 001
6 PHKG2 0.93 0.62 1.55 1.5 -1.7 -2.5 001
7 PKMYT1 1.24 0.93 1.86 1.3 -1.5 -2. 001
8 SGK269 0.62 0.31 1.24 2. -2. -4. 001
9 STK4 0.31 0. 0.93 100. -3. -300. 001
10 ZAK 0.31 0. 0.93 100. -3. -300. 001
11 EPHA1 0. 0.31 0.93 -100. -300. -3. 010
12 MAP2K6 1.55 0.93 0.62 1.7 2.5 1.5 010
13 MARK3 0.31 0.62 1.24 -2. -4. -2. 010
14 PDK3 0.93 1.55 1.86 -1.7 -2. -1.2 010
15 PINK1 0.93 1.24 1.86 -1.3 -2. -1.5 010
16 PTK7 0. 0.62 0.93 -200. -300. -1.5 010
17 RIOK1 0. 0.62 0.93 -200. -300. -1.5 010
18 SCYL3 0.31 0.93 1.55 -3. -5. -1.7 010
19 AAK1 1.55 1.55 3.72 -1. -2.4 -2.4 011
20 ACVR2A 0.31 0.31 1.24 -1. -4. -4. 011
21 ACVR2B 0. 0. 0.93 -1. -300. -300. 011
22 ALPK1 0. 0.31 2.17 -100. -700. -7. 011
23 ATR 0.93 0.93 3.72 -1. -4. -4. 011
24 BCKDK 2.48 1.86 6.51 1.3 -2.6 -3.5 011
25 BRAF 0.93 0.93 3.72 -1. -4. -4. 011
26 BUB1 2.79 2.48 3.72 1.1 -1.3 -1.5 011
27 CABC1 0. 0. 1.55 -1. -500. -500. 011
28 CAMK1 0.31 0. 2.79 100. -9. -900. 011
29 CAMK2G 1.55 0.93 10.85 1.7 -7. -11.7 011
30 CAMKK2 1.55 0.93 6.2 1.7 -4. -6.7 011
31 CASK 0.62 0.93 2.17 -1.5 -3.5 -2.3 011
32 CDC2L2 0.93 1.24 2.79 -1.3 -3. -2.2 011
33 CDC2L5 1.86 1.24 7.13 1.5 -3.8 -5.8 011
34 CDC2L6 1.24 0.62 2.48 2. -2. -4. 011
35 CDK10 2.17 1.86 7.44 1.2 -3.4 -4. 011
36 CDK2 1.55 1.55 2.48 -1. -1.6 -1.6 011
37 CDK7 0.93 0.93 7.44 -1. -8. -8. 011
38 CDK8 1.55 0.93 6.2 1.7 -4. -6.7 011
39 CDK9 1.24 1.55 4.34 -1.2 -3.5 -2.8 011
40 CDKL1 0.31 0. 5.89 100. -19. -1900. 011
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41 CHEK2 0.93 0.93 3.72 -1. -4. -4. 011
42 CIT 0.93 0.62 1.86 1.5 -2. -3. 011
43 CLK1 0.62 0.31 2.17 2. -3.5 -7. 011
44 CLK2 0.93 1.55 7.13 -1.7 -7.7 -4.6 011
45 CLK3 0.62 0.62 5.58 -1. -9. -9. 011
46 CLK4 0.31 0. 1.55 100. -5. -500. 011
47 COL4A3BP 2.17 1.86 4.96 1.2 -2.3 -2.7 011
48 CPNE3 4.34 4.03 15.5 1.1 -3.6 -3.8 011
49 CRKRS 1.55 0.93 2.79 1.7 -1.8 -3. 011
50 CSK 2.48 3.1 13.64 -1.2 -5.5 -4.4 011
51 CSNK1G2 0.62 0.93 1.86 -1.5 -3. -2. 011
52 CSNK2A2 0.62 0.93 4.34 -1.5 -7. -4.7 011
53 DAPK3 0.93 1.24 2.79 -1.3 -3. -2.2 011
54 DDR1 1.24 1.24 9.3 -1. -7.5 -7.5 011
55 DYRK1A 1.24 1.24 6.51 -1. -5.2 -5.2 011
56 DYRK1B 0.62 0.31 1.55 2. -2.5 -5. 011
57 DYRK2 1.55 1.55 8.99 -1. -5.8 -5.8 011
58 EIF2AK3 0.93 0.31 1.86 3. -2. -6. 011
59 ERBB2 1.24 0.93 8.99 1.3 -7.2 -9.7 011
60 ERBB3 1.55 1.55 19.84 -1. -12.8 -12.8 011
61 ERN1 0.62 0.31 5.27 2. -8.5 -17. 011
62 ERN2 0. 0. 9.92 -1. -3200. -3200. 011
63 FRK 0. 0. 2.48 -1. -800. -800. 011
64 GAK 0.62 0.93 6.82 -1.5 -11. -7.3 011
65 HIPK1 0.62 0.62 1.86 -1. -3. -3. 011
66 HSPB8 0.62 0. 4.03 200. -6.5 -1300. 011
67 HUS1 2.48 1.86 7.75 1.3 -3.1 -4.2 011
68 IKBKB 0.31 0.31 1.24 -1. -4. -4. 011
69 IKBKE 0. 0. 1.86 -1. -600. -600. 011
70 ILK 1.24 0.62 2.48 2. -2. -4. 011
71 INSR 0.62 0. 2.17 200. -3.5 -700. 011
72 IRAK1 5.58 4.96 12.71 1.1 -2.3 -2.6 011
73 IRAK2 0. 0.31 10.23 -100. -3300. -33. 011
74 KIAA0971 1.24 0.93 2.48 1.3 -2. -2.7 011
75 LATS1 1.86 1.55 8.06 1.2 -4.3 -5.2 011
76 LIMK2 0.31 0.62 8.06 -2. -26. -13. 011
77 LYN 0.31 0.62 2.17 -2. -7. -3.5 011
78 MAP2K3 1.55 0.93 10.85 1.7 -7. -11.7 011
79 MAP2K5 0.31 0. 1.86 100. -6. -600. 011
80 MAP2K7 0.31 0.62 2.79 -2. -9. -4.5 011
81 MAP3K1 0.31 0.93 3.72 -3. -12. -4. 011
82 MAP3K10 0. 0. 0.93 -1. -300. -300. 011
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83 MAP3K4 0.62 0.93 3.41 -1.5 -5.5 -3.7 011
84 MAP3K5 0. 0. 2.17 -1. -700. -700. 011
85 MAP4K3 1.24 0.62 4.03 2. -3.2 -6.5 011
86 MAPK12 0. 0.31 1.24 -100. -400. -4. 011
87 MAPK14 2.48 2.79 9.3 -1.1 -3.8 -3.3 011
88 MAPK3 2.17 2.17 8.68 -1. -4. -4. 011
89 MAPK8 1.55 0.93 8.37 1.7 -5.4 -9. 011
90 MAPKAPK2 1.86 1.55 6.51 1.2 -3.5 -4.2 011
91 MAPKAPK5 2.17 2.17 9.92 -1. -4.6 -4.6 011
92 MARK1 0. 0. 0.93 -1. -300. -300. 011
93 MARK4 0.31 0.93 2.17 -3. -7. -2.3 011
94 MAST4 0. 0. 3.1 -1. -1000. -1000. 011
95 MGC16169 0.62 0.62 1.55 -1. -2.5 -2.5 011
96 MKNK1 0.93 0.62 5.89 1.5 -6.3 -9.5 011
97 MTOR 0.31 0.31 1.24 -1. -4. -4. 011
98 NEK11 0. 0. 0.93 -1. -300. -300. 011
99 NEK2 0.62 0.62 2.48 -1. -4. -4. 011
100 NEK3 0.62 0.31 1.55 2. -2.5 -5. 011
101 NEK4 0.31 0.62 1.86 -2. -6. -3. 011
102 NEK7 2.79 3.1 7.75 -1.1 -2.8 -2.5 011
103 NEK9 1.24 0.93 3.41 1.3 -2.8 -3.7 011
104 OXSR1 1.55 1.86 7.44 -1.2 -4.8 -4. 011
105 PAK1 2.17 2.79 7.44 -1.3 -3.4 -2.7 011
106 PAK2 1.55 1.86 5.89 -1.2 -3.8 -3.2 011
107 PAN3 0.62 0.62 2.79 -1. -4.5 -4.5 011
108 PCTK2 0.93 0.93 9.3 -1. -10. -10. 011
109 PDIK1L 0.31 0.93 3.1 -3. -10. -3.3 011
110 PDPK1 1.55 1.24 4.03 1.2 -2.6 -3.2 011
111 PKN1 2.48 1.86 13.33 1.3 -5.4 -7.2 011
112 PKN2 1.55 1.55 7.44 -1. -4.8 -4.8 011
113 PLK3 0. 0.31 3.1 -100. -1000. -10. 011
114 PRKAA1 3.72 3.1 9.3 1.2 -2.5 -3. 011
115 PRKAA2 0.93 0.62 4.34 1.5 -4.7 -7. 011
116 PRKACA 4.96 4.96 11.16 -1. -2.2 -2.2 011
117 PRKCE 0.31 0.31 1.24 -1. -4. -4. 011
118 PRKCI 2.79 2.48 12.71 1.1 -4.6 -5.1 011
119 PRKCZ 0.31 0.93 3.1 -3. -10. -3.3 011
120 PRKD2 0.62 0.62 5.27 -1. -8.5 -8.5 011
121 PRKD3 1.24 0.62 4.03 2. -3.2 -6.5 011
122 PRKDC 10.23 10.85 14.88 -1.1 -1.5 -1.4 011
123 PRKX 0. 0. 1.55 -1. -500. -500. 011
124 PTK6 0. 0.62 9.61 -200. -3100. -15.5 011
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125 PXK 0. 0.62 2.79 -200. -900. -4.5 011
126 RIOK2 1.86 1.24 5.27 1.5 -2.8 -4.2 011
127 RIOK3 0.62 1.24 7.75 -2. -12.5 -6.2 011
128 RIPK1 1.55 1.24 2.79 1.2 -1.8 -2.2 011
129 RIPK4 1.86 2.17 8.99 -1.2 -4.8 -4.1 011
130 RNASEL 0.31 0. 1.86 100. -6. -600. 011
131 RPS6KB1 2.17 1.86 7.13 1.2 -3.3 -3.8 011
132 RYK 0.31 0.62 1.55 -2. -5. -2.5 011
133 SMG1 2.79 2.17 5.58 1.3 -2. -2.6 011
134 SNF1LK2 0.93 1.24 3.72 -1.3 -4. -3. 011
135 SNRK 0.31 0.62 9.61 -2. -31. -15.5 011
136 STK16 0.62 0.31 2.48 2. -4. -8. 011
137 STK25 1.55 0.93 4.34 1.7 -2.8 -4.7 011
138 STK32C 0.31 0. 1.86 100. -6. -600. 011
139 STK35 1.24 1.24 4.34 -1. -3.5 -3.5 011
140 STK38L 0.93 1.24 4.34 -1.3 -4.7 -3.5 011
141 STYK1 0. 0. 0.93 -1. -300. -300. 011
142 SYK 0. 0.62 7.44 -200. -2400. -12. 011
143 TAF1 0.62 0.62 2.48 -1. -4. -4. 011
144 TAF1L 0.62 0.62 2.48 -1. -4. -4. 011
145 TAOK3 0.93 0.31 8.06 3. -8.7 -26. 011
146 TESK1 0.31 0.31 1.24 -1. -4. -4. 011
147 TLK1 1.24 0.93 6.2 1.3 -5. -6.7 011
148 TLK2 1.55 1.86 4.34 -1.2 -2.8 -2.3 011
149 TNK1 0. 0. 1.24 -1. -400. -400. 011
150 TRIB3 1.24 0.62 12.71 2. -10.2 -20.5 011
151 TRIO 3.72 3.72 5.58 -1. -1.5 -1.5 011
152 TSSK4 0. 0. 0.93 -1. -300. -300. 011
153 UHMK1 4.34 4.65 20.46 -1.1 -4.7 -4.4 011
154 VRK1 2.79 2.79 9.3 -1. -3.3 -3.3 011
155 VRK3 1.24 0.93 3.72 1.3 -3. -4. 011
156 CHEK1 0.93 1.86 1.24 -2. -1.3 1.5 100
157 ICK 0. 0.93 0.62 -300. -200. 1.5 100
158 TAOK2 1.55 0.62 1.24 2.5 1.2 -2. 100
159 ALS2CR2 1.24 0. 1.24 400. -1. -400. 101
160 BMPR2 2.17 0.62 1.55 3.5 1.4 -2.5 101
161 FYN 0. 0.93 0. -300. -1. 300. 101
162 JAK1 4.34 0.93 4.96 4.7 -1.1 -5.3 101
163 LRRK1 0.93 0. 1.24 300. -1.3 -400. 101
164 MAP3K8 1.24 0. 1.86 400. -1.5 -600. 101
165 MELK 9.3 4.03 9.92 2.3 -1.1 -2.5 101
166 MERTK 0. 0.93 0. -300. -1. 300. 101
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167 NRBP1 13.02 3.72 13.64 3.5 -1. -3.7 101
168 PRKCA 2.79 1.24 2.17 2.2 1.3 -1.8 101
169 RPS6KC1 1.55 0.62 2.17 2.5 -1.4 -3.5 101
170 ULK2 1.24 0. 1.24 400. -1. -400. 101
171 AKT3 1.55 0. 0. 500. 500. -1. 110
172 AXL 8.99 2.48 1.86 3.6 4.8 1.3 110
173 CAMK1D 1.55 0.62 0.31 2.5 5. 2. 110
174 FGFR1 7.13 0. 0. 2300. 2300. -1. 110
175 FGFR4 1.55 0. 0. 500. 500. -1. 110
176 HAK 1.24 0. 0. 400. 400. -1. 110
177 LOC91461 4.96 0. 0. 1600. 1600. -1. 110
178 MAP3K14 1.55 0. 0.62 500. 2.5 -200. 110
179 MAP3K9 0. 0.93 1.55 -300. -500. -1.7 110
180 NTRK3 4.03 0. 0. 1300. 1300. -1. 110
181 NUAK2 4.03 0.31 0.93 13. 4.3 -3. 110
182 TGFBR1 2.79 0.31 0.93 9. 3. -3. 110
183 ABL1 2.17 0.93 5.27 2.3 -2.4 -5.7 111
184 ADCK2 2.48 0.93 7.13 2.7 -2.9 -7.7 111
185 ADRBK1 2.17 9.92 15.19 -4.6 -7. -1.5 111
186 AKT2 10.85 4.65 17.05 2.3 -1.6 -3.7 111
187 ARAF 3.1 1.86 5.89 1.7 -1.9 -3.2 111
188 AURKB 12.09 10.54 15.19 1.1 -1.3 -1.4 111
189 BCR 0.62 2.48 11.16 -4. -18. -4.5 111
190 BMPR1A 3.1 1.24 6.82 2.5 -2.2 -5.5 111
191 BMPR1B 1.24 0.31 2.17 4. -1.8 -7. 111
192 BRD2 2.17 3.1 8.06 -1.4 -3.7 -2.6 111
193 BUB1B 3.1 5.58 6.82 -1.8 -2.2 -1.2 111
194 CAMK2D 3.1 4.96 5.89 -1.6 -1.9 -1.2 111
195 CAMKK1 1.24 0. 2.48 400. -2. -800. 111
196 CDC2 26.35 17.36 63.24 1.5 -2.4 -3.6 111
197 CDC42BPB 1.86 0.31 5.58 6. -3. -18. 111
198 CDK4 12.71 14.57 23.25 -1.1 -1.8 -1.6 111
199 CDK6 3.1 1.86 11.16 1.7 -3.6 -6. 111
200 CHUK 3.72 1.86 11.47 2. -3.1 -6.2 111
201 CSNK1A1 1.86 3.1 15.5 -1.7 -8.3 -5. 111
202 CSNK1D 15.19 17.67 31.62 -1.2 -2.1 -1.8 111
203 CSNK1E 3.41 5.58 60.76 -1.6 -17.8 -10.9 111
204 CSNK1G1 1.86 0.62 4.96 3. -2.7 -8. 111
205 CSNK1G3 2.48 1.55 7.44 1.6 -3. -4.8 111
206 CSNK2A1 4.65 3.1 14.26 1.5 -3.1 -4.6 111
207 DAPK1 5.58 0. 0.93 1800. 6. -300. 111
208 EGFR 2.79 0.93 6.2 3. -2.2 -6.7 111
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209 EIF2AK1 9.92 5.27 22.63 1.9 -2.3 -4.3 111
210 EIF2AK2 4.65 2.79 9.92 1.7 -2.1 -3.6 111
211 EIF2AK4 2.48 4.34 9.3 -1.8 -3.8 -2.1 111
212 EPHA2 1.55 3.72 13.64 -2.4 -8.8 -3.7 111
213 EPHB4 0. 0.93 4.03 -300. -1300. -4.3 111
214 FGFRL1 0. 1.24 2.48 -400. -800. -2. 111
215 FLJ13149 3.1 0.93 7.13 3.3 -2.3 -7.7 111
216 FLJ21901 2.79 0.93 5.58 3. -2. -6. 111
217 FLJ23356 1.86 3.72 9.92 -2. -5.3 -2.7 111
218 GRK6 4.03 1.86 8.37 2.2 -2.1 -4.5 111
219 GSG2 1.55 0.62 3.1 2.5 -2. -5. 111
220 GSK3A 6.82 2.17 15.19 3.1 -2.2 -7. 111
221 GSK3B 5.58 4.34 13.33 1.3 -2.4 -3.1 111
222 HIPK3 1.86 0.93 6.2 2. -3.3 -6.7 111
223 IGF1R 4.65 0.62 6.2 7.5 -1.3 -10. 111
224 KIAA1804 1.55 0. 4.03 500. -2.6 -1300. 111
225 LIMK1 1.86 2.79 10.23 -1.5 -5.5 -3.7 111
226 LMTK2 2.17 0.93 11.47 2.3 -5.3 -12.3 111
227 MAP2K1 7.44 9.92 30.38 -1.3 -4.1 -3.1 111
228 MAP2K2 9.92 4.96 23.25 2. -2.3 -4.7 111
229 MAP2K4 2.79 1.86 6.51 1.5 -2.3 -3.5 111
230 MAP3K2 2.48 1.55 4.65 1.6 -1.9 -3. 111
231 MAP3K7 2.17 0.93 5.89 2.3 -2.7 -6.3 111
232 MAP4K4 4.65 8.37 14.26 -1.8 -3.1 -1.7 111
233 MAP4K5 2.48 5.89 10.54 -2.4 -4.2 -1.8 111
234 MAPK1 5.58 4.03 14.57 1.4 -2.6 -3.6 111
235 MAPK13 0. 9.3 23.25 -3000. -7500. -2.5 111
236 MAPK6 5.89 4.96 22.94 1.2 -3.9 -4.6 111
237 MAPK9 2.48 4.96 8.06 -2. -3.2 -1.6 111
238 MAPKAPK3 0.31 1.24 3.1 -4. -10. -2.5 111
239 MARK2 3.1 5.27 13.95 -1.7 -4.5 -2.6 111
240 MASTL 2.79 1.24 6.82 2.2 -2.4 -5.5 111
241 MET 15.5 10.54 16.43 1.5 -1.1 -1.6 111
242 MINK1 2.17 0.62 8.68 3.5 -4. -14. 111
243 MKNK2 2.17 3.1 14.57 -1.4 -6.7 -4.7 111
244 MLKL 2.48 0.93 10.85 2.7 -4.4 -11.7 111
245 MST1R 0.31 2.48 22.01 -8. -71. -8.9 111
246 MST4 1.86 2.79 11.78 -1.5 -6.3 -4.2 111
247 MYLK 2.48 1.55 0. 1.6 800. 500. 111
248 PAK4 3.72 1.86 9.92 2. -2.7 -5.3 111
249 PAK6 0. 0.93 3.1 -300. -1000. -3.3 111
250 PBK 8.06 5.58 10.23 1.4 -1.3 -1.8 111
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251 PCTK1 6.2 8.06 15.19 -1.3 -2.4 -1.9 111
252 PDK1 0.62 1.86 10.54 -3. -17. -5.7 111
253 PDK2 1.86 0.93 4.03 2. -2.2 -4.3 111
254 PDK4 7.44 0. 2.48 2400. 3. -800. 111
255 PIM1 1.86 2.79 9.3 -1.5 -5. -3.3 111
256 PIM3 0.31 1.55 8.37 -5. -27. -5.4 111
257 PLK1 4.96 3.72 8.68 1.3 -1.8 -2.3 111
258 PLK2 11.47 4.34 51.15 2.6 -4.5 -11.8 111
259 PRKACB 1.55 2.48 5.27 -1.6 -3.4 -2.1 111
260 PRKCD 1.24 2.17 17.36 -1.8 -14. -8. 111
261 PRKCH 0. 1.55 7.13 -500. -2300. -4.6 111
262 PRPF4B 4.03 3.1 8.37 1.3 -2.1 -2.7 111
263 PTK2 7.13 8.68 14.26 -1.2 -2. -1.6 111
264 RAF1 4.03 2.79 12.4 1.4 -3.1 -4.4 111
265 RIPK2 7.44 3.41 16.12 2.2 -2.2 -4.7 111
266 ROCK1 2.79 1.24 6.51 2.2 -2.3 -5.2 111
267 ROCK2 10.54 2.79 5.89 3.8 1.8 -2.1 111
268 RPS6KA1 1.55 2.48 8.99 -1.6 -5.8 -3.6 111
269 RPS6KA4 1.86 3.41 4.96 -1.8 -2.7 -1.5 111
270 RPS6KB2 0.93 2.17 3.1 -2.3 -3.3 -1.4 111
271 SCYL1 1.24 2.17 4.96 -1.8 -4. -2.3 111
272 SCYL2 3.1 2.17 10.54 1.4 -3.4 -4.9 111
273 SGK 9.92 0.31 2.79 32. 3.6 -9. 111
274 SLK 2.48 1.24 19.53 2. -7.9 -15.8 111
275 SNF1LK 17.98 1.24 53.32 14.5 -3. -43. 111
276 SRC 4.03 0.31 9.92 13. -2.5 -32. 111
277 SRPK1 4.03 5.89 19.84 -1.5 -4.9 -3.4 111
278 SRPK2 2.48 1.24 4.65 2. -1.9 -3.8 111
279 STK17A 2.79 6.51 25.42 -2.3 -9.1 -3.9 111
280 STK17B 0.62 1.86 13.64 -3. -22. -7.3 111
281 STK24 4.65 5.89 23.87 -1.3 -5.1 -4.1 111
282 STK38 2.79 1.86 5.89 1.5 -2.1 -3.2 111
283 STK39 2.79 4.03 10.54 -1.4 -3.8 -2.6 111
284 STK40 0.31 2.17 3.41 -7. -11. -1.6 111
285 TAOK1 4.65 2.17 11.78 2.1 -2.5 -5.4 111
286 TBK1 2.48 1.24 8.06 2. -3.2 -6.5 111
287 TBRG4 2.17 0.93 8.68 2.3 -4. -9.3 111
288 TGFBR2 5.58 1.55 10.23 3.6 -1.8 -6.6 111
289 TP53RK 1.86 2.79 13.33 -1.5 -7.2 -4.8 111
290 TRIB1 1.24 2.48 5.89 -2. -4.8 -2.4 111
291 TRIB2 0. 3.1 18.29 -1000. -5900. -5.9 111
292 TRPM7 1.55 0.62 3.41 2.5 -2.2 -5.5 111
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293 TTK 2.48 3.72 7.13 -1.5 -2.9 -1.9 111
294 ULK1 1.86 0. 4.03 600. -2.2 -1300. 111
295 ULK3 2.48 1.24 8.99 2. -3.6 -7.2 111
296 VRK2 2.17 0.93 6.82 2.3 -3.1 -7.3 111
297 WNK1 6.51 2.17 11.16 3. -1.7 -5.1 111
298 YES1 4.65 6.82 16.74 -1.5 -3.6 -2.5 111
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Table B.6: List of significantly changed gene in the group: (1 - H3255, 2 - H827,
3 - H1975), along with pairwise fold changes and significant change markers

SN Gene 1 2 3 1:2 1:3 2:3 Sig
1 AAK1 3.41 2.79 4.03 1.2 -1.2 -1.4 001
2 CASK 2.79 2.17 3.1 1.3 -1.1 -1.4 001
3 CLK2 2.79 2.48 3.41 1.1 -1.2 -1.4 001
4 ICK 0.93 0.31 1.24 3. -1.3 -4. 001
5 MARK3 1.24 0.62 1.55 2. -1.2 -2.5 001
6 NEK11 0.62 0. 0.93 200. -1.5 -300. 001
7 PKN3 0.31 0.93 0. -3. 100. 300. 001
8 PXK 0.62 0. 1.24 200. -2. -400. 001
9 SNRK 0.62 0.31 1.24 2. -2. -4. 001
10 STK11 1.86 1.24 2.17 1.5 -1.2 -1.8 001
11 TLK1 1.86 1.24 2.17 1.5 -1.2 -1.8 001
12 ULK1 1.55 1.24 2.17 1.2 -1.4 -1.8 001
13 ABL2 0.93 1.55 1.86 -1.7 -2. -1.2 010
14 CAMKK2 1.55 2.17 2.48 -1.4 -1.6 -1.1 010
15 CDK6 3.72 3.1 2.48 1.2 1.5 1.2 010
16 CDK9 1.55 2.17 2.79 -1.4 -1.8 -1.3 010
17 HIPK1 1.55 0.93 0.31 1.7 5. 3. 010
18 MAP3K13 0.93 0.62 0. 1.5 300. 200. 010
19 MARK1 0.93 0.31 0. 3. 300. 100. 010
20 MGC16169 2.17 1.55 0.93 1.4 2.3 1.7 010
21 MINK1 4.03 4.65 4.96 -1.2 -1.2 -1.1 010
22 NRK 1.24 0.62 0. 2. 400. 200. 010
23 PAN3 1.24 0.93 0.31 1.3 4. 3. 010
24 PSKH1 0.93 1.55 2.17 -1.7 -2.3 -1.4 010
25 RIPK4 4.03 3.41 2.79 1.2 1.4 1.2 010
26 RPS6KA5 1.24 0.62 0.31 2. 4. 2. 010
27 STK25 3.41 2.79 2.17 1.2 1.6 1.3 010
28 AKT3 0. 0. 0.93 -1. -300. -300. 011
29 ALS2CR2 1.24 0.93 2.17 1.3 -1.8 -2.3 011
30 AXL 0.93 0.93 8.99 -1. -9.7 -9.7 011
31 BMPR1A 1.55 1.55 3.72 -1. -2.4 -2.4 011
32 BUB1B 5.27 5.89 4.03 -1.1 1.3 1.5 011
33 CDK7 1.24 1.86 3.1 -1.5 -2.5 -1.7 011
34 CDK8 1.55 1.24 2.48 1.2 -1.6 -2. 011
35 CHEK1 0.62 1.24 2.17 -2. -3.5 -1.8 011
36 CLK1 2.48 2.17 0.62 1.1 4. 3.5 011
37 CSNK1G1 1.24 0.93 2.48 1.3 -2. -2.7 011
38 CSNK2A1 3.1 3.41 4.96 -1.1 -1.6 -1.5 011
39 DYRK3 0.31 0. 1.24 100. -4. -400. 011
40 GRK5 0.31 0.31 1.24 -1. -4. -4. 011
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41 HSPB8 0.31 0.62 3.72 -2. -12. -6. 011
42 IRAK4 0. 0.31 1.24 -100. -400. -4. 011
43 MAP3K2 2.48 2.79 3.72 -1.1 -1.5 -1.3 011
44 MAP3K9 2.17 1.86 0.62 1.2 3.5 3. 011
45 MAP4K3 3.41 2.79 4.96 1.2 -1.5 -1.8 011
46 MAP4K5 7.44 8.06 4.96 -1.1 1.5 1.6 011
47 MAST2 3.41 3.1 1.86 1.1 1.8 1.7 011
48 MASTL 2.17 2.79 1.24 -1.3 1.8 2.2 011
49 MKNK1 3.1 2.79 0.93 1.1 3.3 3. 011
50 NUAK2 2.17 2.48 1.24 -1.1 1.8 2. 011
51 OXSR1 1.24 1.55 2.48 -1.2 -2. -1.6 011
52 PFTK1 0.31 0.31 1.24 -1. -4. -4. 011
53 PKN1 4.65 4.34 2.79 1.1 1.7 1.6 011
54 PRKAA2 1.55 1.86 0. -1.2 500. 600. 011
55 RPS6KA4 3.1 3.41 4.34 -1.1 -1.4 -1.3 011
56 RPS6KC1 1.86 1.24 3.41 1.5 -1.8 -2.8 011
57 SLK 1.86 2.48 4.65 -1.3 -2.5 -1.9 011
58 SNF1LK2 0.93 1.55 2.48 -1.7 -2.7 -1.6 011
59 STK32C 0. 0. 1.24 -1. -400. -400. 011
60 STK35 1.55 1.55 3.72 -1. -2.4 -2.4 011
61 SYK 1.24 0.93 0. 1.3 400. 300. 011
62 TTK 4.96 5.27 4.03 -1.1 1.2 1.3 011
63 CAMK1 1.24 0.31 0.93 4. 1.3 -3. 100
64 CDKL2 0.93 0. 0.31 300. 3. -100. 100
65 CSNK1A1 5.58 4.65 4.96 1.2 1.1 -1.1 100
66 FASTK 0.93 0. 0.62 300. 1.5 -200. 100
67 GSG2 1.55 2.79 2.17 -1.8 -1.4 1.3 100
68 MAP4K2 0.93 0. 0.31 300. 3. -100. 100
69 MAPKAPK5 4.03 3.1 3.72 1.3 1.1 -1.2 100
70 MGC5297 1.24 0.31 0.62 4. 2. -2. 100
71 MYO3B 0.93 0. 0.62 300. 1.5 -200. 100
72 PRKACB 0.62 1.86 1.24 -3. -2. 1.5 100
73 PTK6 0.93 0. 0.31 300. 3. -100. 100
74 ROCK1 4.03 2.79 3.41 1.4 1.2 -1.2 100
75 TESK1 1.24 0.31 0.93 4. 1.3 -3. 100
76 TYK2 1.24 0.31 0.62 4. 2. -2. 100
77 TYRO3 0.93 0. 0.31 300. 3. -100. 100
78 BMP2K 2.48 1.55 2.79 1.6 -1.1 -1.8 101
79 BRDT 0. 1.55 0. -500. -1. 500. 101
80 BUB1 3.72 5.58 3.1 -1.5 1.2 1.8 101
81 CAMK2D 8.68 3.72 8.06 2.3 1.1 -2.2 101
82 CDC2L5 4.34 2.48 4.03 1.8 1.1 -1.6 101
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83 CDC42BPB 4.34 2.48 3.72 1.8 1.2 -1.5 101
84 CDK10 5.58 6.82 5.89 -1.2 -1.1 1.2 101
85 CDK2 2.79 1.24 2.48 2.2 1.1 -2. 101
86 CDK5 3.41 0.62 2.79 5.5 1.2 -4.5 101
87 COL4A3BP 3.72 4.96 3.72 -1.3 -1. 1.3 101
88 CSK 2.79 1.24 2.79 2.2 -1. -2.2 101
89 CSNK1G2 2.48 0.93 2.48 2.7 -1. -2.7 101
90 CSNK1G3 3.41 2.48 3.72 1.4 -1.1 -1.5 101
91 FER 1.55 0.62 1.55 2.5 -1. -2.5 101
92 GSK3B 12.09 8.06 11.78 1.5 1. -1.5 101
93 LIMK1 21.39 8.06 20.77 2.7 1. -2.6 101
94 LIMK2 1.86 0.62 2.17 3. -1.2 -3.5 101
95 MAP2K7 1.24 2.17 1.24 -1.8 -1. 1.8 101
96 MAP3K3 2.17 1.24 2.79 1.8 -1.3 -2.2 101
97 MAPK7 2.79 1.24 2.17 2.2 1.3 -1.8 101
98 MAPKAPK2 4.03 2.79 4.34 1.4 -1.1 -1.6 101
99 NEK2 0.62 2.48 1.24 -4. -2. 2. 101
100 PAK6 4.96 1.24 4.96 4. -1. -4. 101
101 PCTK2 3.1 1.55 2.48 2. 1.2 -1.6 101
102 PDPK1 3.1 0.93 3.1 3.3 -1. -3.3 101
103 PHKG2 2.17 0.93 1.86 2.3 1.2 -2. 101
104 PRKDC 6.2 5.27 6.82 1.2 -1.1 -1.3 101
105 RPS6KA3 0.93 1.86 0.93 -2. -1. 2. 101
106 RPS6KB1 2.48 1.24 2.48 2. -1. -2. 101
107 SCYL1 4.03 2.79 4.03 1.4 -1. -1.4 101
108 SRC 1.55 2.79 0.93 -1.8 1.7 3. 101
109 TBK1 3.1 32.24 3.41 -10.4 -1.1 9.5 101
110 TBRG4 3.41 1.55 3.41 2.2 -1. -2.2 101
111 TLK2 2.17 1.24 2.17 1.8 -1. -1.8 101
112 AURKB 10.23 15.5 14.88 -1.5 -1.5 1. 110
113 CDC2L6 2.48 1.55 1.24 1.6 2. 1.2 110
114 CDKL5 1.24 0.31 0. 4. 400. 100. 110
115 CHEK2 2.79 0.93 1.24 3. 2.2 -1.3 110
116 CRKRS 3.1 1.24 1.55 2.5 2. -1.2 110
117 CSNK2A2 0.31 1.55 1.55 -5. -5. -1. 110
118 DAPK2 1.24 0. 0.31 400. 4. -100. 110
119 DYRK1A 3.72 1.24 1.24 3. 3. -1. 110
120 EIF2AK3 2.17 0.93 1.24 2.3 1.8 -1.3 110
121 EPHA1 2.48 0.31 0.62 8. 4. -2. 110
122 EPHA2 9.92 2.48 2.17 4. 4.6 1.1 110
123 EPHA4 7.75 0. 0.31 2500. 25. -100. 110
124 EPHB3 2.17 0. 0. 700. 700. -1. 110
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125 ERN1 3.41 0.93 0.93 3.7 3.7 -1. 110
126 FGFR2 1.55 0. 0. 500. 500. -1. 110
127 FGFRL1 1.24 0.31 0.31 4. 4. -1. 110
128 FLJ21901 1.24 2.17 2.17 -1.8 -1.8 -1. 110
129 FLJ23356 9.92 2.79 2.17 3.6 4.6 1.3 110
130 FRK 1.86 0.93 0.31 2. 6. 3. 110
131 FYN 6.82 1.55 1.86 4.4 3.7 -1.2 110
132 GAK 3.1 1.86 2.17 1.7 1.4 -1.2 110
133 GSK3A 7.44 1.86 1.86 4. 4. -1. 110
134 IGF1R 2.48 0.62 0.62 4. 4. -1. 110
135 IKBKB 3.72 0. 0.31 1200. 12. -100. 110
136 IRAK2 0. 0.93 1.24 -300. -400. -1.3 110
137 KDR 0.93 0. 0. 300. 300. -1. 110
138 LATS1 3.72 2.17 2.17 1.7 1.7 -1. 110
139 LMTK2 4.34 2.79 3.1 1.6 1.4 -1.1 110
140 MAP2K3 4.34 3.1 3.1 1.4 1.4 -1. 110
141 MAP3K5 3.1 0.31 0.93 10. 3.3 -3. 110
142 MAP3K6 1.24 0. 0. 400. 400. -1. 110
143 MAP4K4 2.48 11.78 12.4 -4.8 -5. -1.1 110
144 MAPK12 4.03 0.31 0.93 13. 4.3 -3. 110
145 MAPK9 4.34 2.17 2.79 2. 1.6 -1.3 110
146 MARK2 8.37 5.27 5.89 1.6 1.4 -1.1 110
147 MARK4 1.86 0.93 0.62 2. 3. 1.5 110
148 MLKL 0.62 2.17 2.17 -3.5 -3.5 -1. 110
149 MTOR 1.55 0.31 0.31 5. 5. -1. 110
150 NEK4 1.24 0.31 0.31 4. 4. -1. 110
151 NLK 1.86 0.62 0.93 3. 2. -1.5 110
152 NRBP2 1.55 0.31 0.31 5. 5. -1. 110
153 PASK 0.93 0. 0. 300. 300. -1. 110
154 PBK 0.93 4.03 4.03 -4.3 -4.3 -1. 110
155 PDIK1L 2.17 1.24 0.62 1.8 3.5 2. 110
156 PIM1 9.92 3.72 3.72 2.7 2.7 -1. 110
157 PIM3 5.27 0.93 1.24 5.7 4.2 -1.3 110
158 PKMYT1 2.17 0.62 1.24 3.5 1.8 -2. 110
159 PLK2 26.97 7.75 8.06 3.5 3.3 -1. 110
160 PRKAA1 12.4 5.58 5.89 2.2 2.1 -1.1 110
161 PRKCH 4.65 1.55 1.86 3. 2.5 -1.2 110
162 PRKCI 34.41 5.58 6.2 6.2 5.5 -1.1 110
163 PRKD2 3.1 0.62 0.62 5. 5. -1. 110
164 PTK7 5.58 0.93 0.62 6. 9. 1.5 110
165 RIOK1 0.93 0. 0. 300. 300. -1. 110
166 RIOK2 4.96 2.17 2.79 2.3 1.8 -1.3 110
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SN Gene 1 2 3 1:2 1:3 2:3 Sig
167 ROS1 1.24 0. 0. 400. 400. -1. 110
168 RPS6KA1 6.51 3.41 2.79 1.9 2.3 1.2 110
169 SCYL3 1.86 0.62 0.93 3. 2. -1.5 110
170 SMG1 3.72 2.48 2.48 1.5 1.5 -1. 110
171 STK19 0.93 0. 0. 300. 300. -1. 110
172 STK31 1.24 0.31 0. 4. 400. 100. 110
173 STK32A 1.55 0.62 0.31 2.5 5. 2. 110
174 STK33 1.24 0. 0. 400. 400. -1. 110
175 STK38 8.99 3.72 4.34 2.4 2.1 -1.2 110
176 STK40 6.51 1.86 1.24 3.5 5.2 1.5 110
177 STYK1 1.55 0.62 0.31 2.5 5. 2. 110
178 TAOK2 2.17 0.62 1.24 3.5 1.8 -2. 110
179 TRIB3 1.24 3.72 3.1 -3. -2.5 1.2 110
180 TRPM7 2.48 0.93 1.24 2.7 2. -1.3 110
181 ULK3 4.96 1.86 2.48 2.7 2. -1.3 110
182 VRK1 6.2 4.34 3.72 1.4 1.7 1.2 110
183 ACVR1 3.1 1.24 2.17 2.5 1.4 -1.8 111
184 ADCK2 5.27 1.55 2.48 3.4 2.1 -1.6 111
185 ADRBK1 8.68 4.03 12.71 2.2 -1.5 -3.2 111
186 AKT2 8.06 5.58 2.79 1.4 2.9 2. 111
187 ARAF 4.65 2.17 6.2 2.1 -1.3 -2.9 111
188 BCKDK 6.82 3.41 5.58 2. 1.2 -1.6 111
189 BCR 7.44 3.1 5.89 2.4 1.3 -1.9 111
190 BRAF 7.44 2.17 3.41 3.4 2.2 -1.6 111
191 BRD2 5.58 2.79 4.03 2. 1.4 -1.4 111
192 CAMK1D 4.03 0. 0.93 1300. 4.3 -300. 111
193 CAMK2G 5.58 1.86 3.1 3. 1.8 -1.7 111
194 CDC2 17.36 24.49 20.77 -1.4 -1.2 1.2 111
195 CDC2L2 3.72 1.24 2.48 3. 1.5 -2. 111
196 CDK4 13.33 217.62 22.94 -16.3 -1.7 9.5 111
197 CHUK 4.03 2.48 7.13 1.6 -1.8 -2.9 111
198 CIT 1.24 2.48 0.31 -2. 4. 8. 111
199 CPNE3 4.65 2.17 11.78 2.1 -2.5 -5.4 111
200 CSNK1D 33.79 21.39 12.4 1.6 2.7 1.7 111
201 CSNK1E 11.16 5.89 12.09 1.9 -1.1 -2.1 111
202 DAPK1 4.03 2.17 0.93 1.9 4.3 2.3 111
203 DAPK3 6.2 2.17 8.06 2.9 -1.3 -3.7 111
204 DDR1 10.85 3.72 2.17 2.9 5. 1.7 111
205 EGFR 123.69 124.62 4.65 -1. 26.6 26.8 111
206 EIF2AK1 19.84 7.75 8.68 2.6 2.3 -1.1 111
207 EIF2AK2 15.81 5.89 10.23 2.7 1.5 -1.7 111
208 EIF2AK4 5.89 4.34 6.82 1.4 -1.2 -1.6 111
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SN Gene 1 2 3 1:2 1:3 2:3 Sig
209 EPHB4 7.13 0.93 3.1 7.7 2.3 -3.3 111
210 ERBB2 33.17 3.1 4.34 10.7 7.6 -1.4 111
211 ERBB3 18.6 7.44 5.27 2.5 3.5 1.4 111
212 GRK6 4.34 5.27 3.41 -1.2 1.3 1.5 111
213 HIPK3 2.79 1.55 3.72 1.8 -1.3 -2.4 111
214 HUS1 5.58 2.48 8.68 2.2 -1.6 -3.5 111
215 ILK 3.41 0.93 2.48 3.7 1.4 -2.7 111
216 IRAK1 7.44 12.4 13.64 -1.7 -1.8 -1.1 111
217 JAK1 3.72 5.89 2.79 -1.6 1.3 2.1 111
218 MAP2K1 8.68 10.54 13.33 -1.2 -1.5 -1.3 111
219 MAP2K2 11.16 9.92 26.04 1.1 -2.3 -2.6 111
220 MAP2K4 0.93 3.1 4.34 -3.3 -4.7 -1.4 111
221 MAP3K1 4.03 2.17 0.93 1.9 4.3 2.3 111
222 MAP3K7 4.96 2.79 4.03 1.8 1.2 -1.4 111
223 MAPK1 14.57 4.96 10.54 2.9 1.4 -2.1 111
224 MAPK13 53.63 4.34 6.2 12.4 8.6 -1.4 111
225 MAPK14 16.12 3.41 5.27 4.7 3.1 -1.5 111
226 MAPK3 11.78 3.41 5.89 3.5 2. -1.7 111
227 MAPK6 4.96 3.41 7.13 1.5 -1.4 -2.1 111
228 MAPK8 2.48 1.55 4.03 1.6 -1.6 -2.6 111
229 MELK 11.78 6.51 7.75 1.8 1.5 -1.2 111
230 MERTK 4.65 1.86 0.62 2.5 7.5 3. 111
231 MET 15.81 62. 25.73 -3.9 -1.6 2.4 111
232 MKNK2 6.51 3.1 5.58 2.1 1.2 -1.8 111
233 MST1R 9.61 3.1 6.2 3.1 1.5 -2. 111
234 MST4 3.72 5.27 0. -1.4 1200. 1700. 111
235 MYLK 0.31 4.03 19.53 -13. -63. -4.8 111
236 NEK7 6.51 4.34 5.58 1.5 1.2 -1.3 111
237 NEK9 3.41 1.24 2.17 2.8 1.6 -1.8 111
238 NRBP1 9.92 5.58 15.81 1.8 -1.6 -2.8 111
239 PAK1 4.96 4.03 6.82 1.2 -1.4 -1.7 111
240 PAK2 0.93 3.1 5.58 -3.3 -6. -1.8 111
241 PAK4 4.96 2.48 0.93 2. 5.3 2.7 111
242 PCTK1 5.89 4.65 10.85 1.3 -1.8 -2.3 111
243 PDK1 1.24 4.34 3.1 -3.5 -2.5 1.4 111
244 PDK2 4.65 0.93 2.48 5. 1.9 -2.7 111
245 PIM2 4.96 0.62 1.86 8. 2.7 -3. 111
246 PINK1 2.48 1.24 5.27 2. -2.1 -4.2 111
247 PKN2 4.03 5.89 2.48 -1.5 1.6 2.4 111
248 PLK1 1.86 4.96 6.51 -2.7 -3.5 -1.3 111
249 PRKACA 14.57 6.82 15.81 2.1 -1.1 -2.3 111
250 PRKCD 7.44 3.41 4.65 2.2 1.6 -1.4 111
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251 PRKCZ 5.27 1.24 0. 4.2 1700. 400. 111
252 PRPF4B 10.23 4.03 5.58 2.5 1.8 -1.4 111
253 PTK2 10.85 7.75 4.96 1.4 2.2 1.6 111
254 RAF1 5.58 2.48 6.51 2.2 -1.2 -2.6 111
255 RIOK3 7.44 1.86 2.79 4. 2.7 -1.5 111
256 RIPK1 3.72 1.55 2.79 2.4 1.3 -1.8 111
257 RIPK2 2.48 8.37 9.92 -3.4 -4. -1.2 111
258 ROCK2 7.44 3.1 6.2 2.4 1.2 -2. 111
259 RPS6KB2 3.41 1.86 5.58 1.8 -1.6 -3. 111
260 SCYL2 8.06 3.72 5.89 2.2 1.4 -1.6 111
261 SGK 8.37 2.48 4.34 3.4 1.9 -1.8 111
262 SNF1LK 4.65 1.24 3.41 3.8 1.4 -2.8 111
263 SRPK1 9.3 7.13 5.27 1.3 1.8 1.4 111
264 SRPK2 10.23 3.41 7.44 3. 1.4 -2.2 111
265 STK17A 7.13 4.34 22.01 1.6 -3.1 -5.1 111
266 STK17B 13.95 3.1 4.65 4.5 3. -1.5 111
267 STK24 6.2 4.34 0. 1.4 2000. 1400. 111
268 STK38L 4.65 2.48 3.41 1.9 1.4 -1.4 111
269 STK39 11.47 5.58 4.65 2.1 2.5 1.2 111
270 TAOK1 8.68 2.17 4.65 4. 1.9 -2.1 111
271 TAOK3 6.2 2.17 3.1 2.9 2. -1.4 111
272 TP53RK 5.89 4.34 7.44 1.4 -1.3 -1.7 111
273 TRIB1 7.13 1.55 3.72 4.6 1.9 -2.4 111
274 TRIB2 11.47 0. 0.93 3700. 12.3 -300. 111
275 TRIO 11.47 13.33 6.82 -1.2 1.7 2. 111
276 UHMK1 6.82 5.89 11.47 1.2 -1.7 -1.9 111
277 VRK3 4.34 0.31 1.55 14. 2.8 -5. 111
278 WNK1 16.12 5.89 7.44 2.7 2.2 -1.3 111
279 YES1 18.29 6.82 10.23 2.7 1.8 -1.5 111
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Table B.7: List of significantly changed gene in the group: (1 - H322, 2 - H1703),
along with pairwise fold changes and significant change markers

SN Gene 1 2 1:2 Sig
1 ACVR1 0.31 1.55 -5. 1
2 ACVR1B 1.24 0.31 4. 1
3 ADCK2 1.55 3.41 -2.2 1
4 ADRBK1 9.92 4.96 2. 1
5 AKT2 5.27 4.03 1.3 1
6 ALS2CR2 0.62 1.55 -2.5 1
7 ARAF 3.72 2.17 1.7 1
8 AURKA 3.1 1.55 2. 1
9 AURKB 17.36 14.57 1.2 1
10 BCKDK 7.44 4.65 1.6 1
11 BCR 3.41 1.86 1.8 1
12 BMP2K 1.86 0.62 3. 1
13 BMPR1A 4.65 6.51 -1.4 1
14 BMPR1B 1.24 0.31 4. 1
15 BMPR2 1.86 2.79 -1.5 1
16 BRAF 1.86 3.41 -1.8 1
17 BRD2 7.44 4.96 1.5 1
18 BUB1 6.51 2.79 2.3 1
19 BUB1B 11.16 4.03 2.8 1
20 CAMK1 0. 3.72 -1200. 1
21 CAMK2D 13.02 3.41 3.8 1
22 CAMK2G 4.34 2.48 1.8 1
23 CASK 1.55 0.62 2.5 1
24 CDC2 53.32 26.04 2. 1
25 CDC2L5 4.03 3.1 1.3 1
26 CDC2L6 0.93 3.72 -4. 1
27 CDC42BPB 3.41 2.48 1.4 1
28 CDK10 5.89 2.48 2.4 1
29 CDK4 17.05 13.95 1.2 1
30 CDK5 0.31 2.17 -7. 1
31 CDK6 7.44 1.24 6. 1
32 CDK7 0.93 3.1 -3.3 1
33 CDK8 3.1 4.03 -1.3 1
34 CDK9 1.86 2.79 -1.5 1
35 CHEK1 4.65 2.17 2.1 1
36 CHUK 3.1 6.2 -2. 1
37 CIT 0.93 1.86 -2. 1
38 CLK2 3.41 1.55 2.2 1
39 CLK4 0.62 1.86 -3. 1
40 COL4A3BP 2.17 3.1 -1.4 1
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SN Gene 1 2 1:2 Sig
41 CPNE3 13.64 5.27 2.6 1
42 CSK 17.67 2.48 7.1 1
43 CSNK1A1 4.65 5.58 -1.2 1
44 CSNK1D 16.12 21.08 -1.3 1
45 CSNK1E 5.27 10.54 -2. 1
46 CSNK1G1 3.41 2.48 1.4 1
47 CSNK1G3 3.41 5.27 -1.5 1
48 CSNK2A1 2.17 3.72 -1.7 1
49 DAPK3 1.55 3.72 -2.4 1
50 DDR1 2.79 0.62 4.5 1
51 DYRK1A 3.41 2.17 1.6 1
52 DYRK2 3.72 1.24 3. 1
53 DYRK3 0. 1.55 -500. 1
54 EGFR 4.65 2.48 1.9 1
55 EIF2AK2 9.61 7.13 1.3 1
56 EIF2AK3 2.48 0.31 8. 1
57 EIF2AK4 8.06 4.96 1.6 1
58 EPHB4 0.31 1.24 -4. 1
59 ERBB2 3.41 2.48 1.4 1
60 ERBB3 5.58 0. 1800. 1
61 FGFR1 0. 5.58 -1800. 1
62 FLJ13149 0.31 1.55 -5. 1
63 FLJ23356 8.99 2.79 3.2 1
64 FRK 0.93 0. 300. 1
65 FYN 0.31 1.24 -4. 1
66 GSK3B 12.71 6.2 2. 1
67 HIPK3 9.3 1.24 7.5 1
68 HUS1 7.13 4.65 1.5 1
69 IGF1R 4.65 0. 1500. 1
70 INSR 0.62 1.55 -2.5 1
71 IRAK1 11.47 8.37 1.4 1
72 IRAK2 0.31 1.24 -4. 1
73 JAK1 1.86 3.41 -1.8 1
74 KIAA0971 1.55 0.62 2.5 1
75 KIAA1804 1.55 0.31 5. 1
76 LATS2 1.55 2.79 -1.8 1
77 LMTK2 8.06 2.48 3.2 1
78 MAP2K1 36.58 7.75 4.7 1
79 MAP2K2 25.42 20.46 1.2 1
80 MAP2K3 5.58 2.17 2.6 1
81 MAP2K4 4.34 2.48 1.8 1
82 MAP2K7 1.86 0.93 2. 1
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83 MAP3K1 1.55 0.31 5. 1
84 MAP3K12 0. 1.55 -500. 1
85 MAP3K3 0.62 2.48 -4. 1
86 MAP3K5 1.55 0.31 5. 1
87 MAP4K2 2.48 1.24 2. 1
88 MAP4K3 4.34 1.55 2.8 1
89 MAP4K4 7.75 3.72 2.1 1
90 MAP4K5 7.75 4.03 1.9 1
91 MAPK1 11.78 9.3 1.3 1
92 MAPK11 0. 0.93 -300. 1
93 MAPK12 0.93 4.96 -5.3 1
94 MAPK13 14.88 0. 4800. 1
95 MAPK3 7.44 4.03 1.8 1
96 MAPK6 3.72 5.89 -1.6 1
97 MAPK8 3.41 5.27 -1.5 1
98 MAPK9 4.96 5.89 -1.2 1
99 MAPKAPK5 4.34 3.1 1.4 1
100 MARK1 3.1 0.93 3.3 1
101 MARK2 13.64 3.41 4. 1
102 MARK4 1.55 2.48 -1.6 1
103 MASTL 4.65 2.17 2.1 1
104 MELK 11.47 6.51 1.8 1
105 MERTK 0.31 1.24 -4. 1
106 MET 4.96 1.55 3.2 1
107 MGC5297 0.93 2.48 -2.7 1
108 MINK1 4.03 4.96 -1.2 1
109 MKNK1 3.72 1.86 2. 1
110 MKNK2 4.65 5.89 -1.3 1
111 MST1R 10.23 0. 3300. 1
112 MYLK 0. 1.24 -400. 1
113 NEK11 0.31 2.17 -7. 1
114 NEK2 4.03 2.17 1.9 1
115 NEK3 0.62 3.1 -5. 1
116 NEK4 1.24 0.31 4. 1
117 NEK7 13.02 6.2 2.1 1
118 NLK 0.62 1.86 -3. 1
119 NRBP1 15.5 17.98 -1.2 1
120 NRBP2 0.31 1.86 -6. 1
121 PAK2 5.27 8.06 -1.5 1
122 PAK4 3.72 2.48 1.5 1
123 PBK 6.82 3.41 2. 1
124 PCTK1 10.85 5.89 1.8 1
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125 PDGFRA 0. 203.05 -65500. 1
126 PDIK1L 2.17 0.93 2.3 1
127 PDK1 1.86 0.93 2. 1
128 PDK3 1.24 0.31 4. 1
129 PIM1 3.72 1.86 2. 1
130 PINK1 0.31 1.24 -4. 1
131 PKN2 5.58 3.72 1.5 1
132 PKN3 0.62 1.55 -2.5 1
133 PLK1 12.71 6.2 2. 1
134 PLK2 3.41 15.5 -4.5 1
135 PRKAA1 10.54 13.95 -1.3 1
136 PRKAA2 2.48 1.24 2. 1
137 PRKACA 10.23 19.22 -1.9 1
138 PRKACB 7.13 2.48 2.9 1
139 PRKCA 0. 1.24 -400. 1
140 PRKCD 3.1 1.24 2.5 1
141 PRKCH 7.44 0.93 8. 1
142 PRKD1 1.86 0.93 2. 1
143 PRKDC 16.74 11.16 1.5 1
144 PSKH1 2.17 0.62 3.5 1
145 PTK2 30.07 9.3 3.2 1
146 PTK6 1.24 0. 400. 1
147 PTK7 2.79 0.62 4.5 1
148 RAF1 6.51 8.37 -1.3 1
149 RIOK3 3.41 4.96 -1.5 1
150 RIPK1 2.17 3.72 -1.7 1
151 RIPK2 7.44 8.68 -1.2 1
152 RIPK4 5.89 0. 1900. 1
153 ROCK1 7.13 11.16 -1.6 1
154 RPS6KA1 4.65 2.79 1.7 1
155 RPS6KA4 6.2 2.17 2.9 1
156 RPS6KA6 0.31 1.24 -4. 1
157 RPS6KB1 2.17 3.41 -1.6 1
158 RPS6KB2 3.1 1.24 2.5 1
159 SCYL1 4.65 2.48 1.9 1
160 SGK 1.24 109.74 -88.5 1
161 SGK3 1.86 0.31 6. 1
162 SMG1 3.72 5.27 -1.4 1
163 SNF1LK2 4.03 2.17 1.9 1
164 SRC 6.2 0.62 10. 1
165 SRPK2 1.86 8.06 -4.3 1
166 STK10 0. 1.24 -400. 1
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167 STK11 1.55 3.1 -2. 1
168 STK17A 8.99 1.86 4.8 1
169 STK17B 4.34 1.24 3.5 1
170 STK24 8.68 7.44 1.2 1
171 STK3 3.1 1.55 2. 1
172 STK38 3.72 4.96 -1.3 1
173 STK39 6.51 3.41 1.9 1
174 STK40 10.54 2.17 4.9 1
175 TAF1 0.93 2.17 -2.3 1
176 TAF1L 0.93 1.86 -2. 1
177 TAOK1 5.27 7.13 -1.4 1
178 TESK1 0.62 1.55 -2.5 1
179 TGFBR2 11.47 24.49 -2.1 1
180 TLK2 1.86 3.1 -1.7 1
181 TP53RK 4.96 3.41 1.5 1
182 TRIB1 2.48 0. 800. 1
183 TRIB2 5.89 0. 1900. 1
184 TRIB3 0.93 6.2 -6.7 1
185 TRIO 6.82 23.25 -3.4 1
186 TRPM7 0.93 1.86 -2. 1
187 TTK 12.71 5.89 2.2 1
188 ULK3 8.99 2.17 4.1 1
189 VRK1 8.06 2.48 3.2 1
190 VRK2 3.41 1.55 2.2 1
191 WNK1 13.95 20.15 -1.4 1
192 ZAK 0.31 1.86 -6. 1
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Table B.8: List of significantly changed gene in the group: (1 - H827, 2 -
H827Cripto), along with pairwise fold changes and significant change markers

SN Gene 1 2 1:2 Sig
1 AAK1 2.79 3.72 -1.3 1
2 ACVR1 1.24 3.1 -2.5 1
3 ACVR1B 0.62 2.17 -3.5 1
4 ADRBK1 4.03 6.2 -1.5 1
5 AKT2 5.58 8.06 -1.4 1
6 AKT3 0. 2.79 -900. 1
7 ARAF 2.17 3.1 -1.4 1
8 AURKB 15.5 4.03 3.8 1
9 AXL 0.93 13.02 -14. 1
10 BCR 3.1 4.03 -1.3 1
11 BMP2K 1.55 2.48 -1.6 1
12 BMPR1A 1.55 3.1 -2. 1
13 BMPR2 2.17 6.2 -2.9 1
14 BRAF 2.17 4.03 -1.9 1
15 BRD2 2.79 5.27 -1.9 1
16 BRDT 1.55 2.79 -1.8 1
17 BUB1 5.58 2.17 2.6 1
18 BUB1B 5.89 3.1 1.9 1
19 CAMK2D 3.72 5.27 -1.4 1
20 CAMK2G 1.86 3.72 -2. 1
21 CAMKK2 2.17 3.72 -1.7 1
22 CDC2 24.49 13.02 1.9 1
23 CDC2L5 2.48 3.72 -1.5 1
24 CDC2L6 1.55 2.79 -1.8 1
25 CDC42BPB 2.48 4.65 -1.9 1
26 CDK10 6.82 13.33 -2. 1
27 CDK4 217.62 295.74 -1.4 1
28 CDK6 3.1 4.65 -1.5 1
29 CDK8 1.24 3.1 -2.5 1
30 CDK9 2.17 3.41 -1.6 1
31 CDKL5 0.31 1.24 -4. 1
32 CHUK 2.48 3.72 -1.5 1
33 CIT 2.48 1.24 2. 1
34 CPNE3 2.17 4.03 -1.9 1
35 CSNK1D 21.39 33.79 -1.6 1
36 CSNK1E 5.89 12.71 -2.2 1
37 CSNK1G1 0.93 2.48 -2.7 1
38 CSNK1G3 2.48 3.72 -1.5 1
39 CSNK2A1 3.41 5.58 -1.6 1
40 DAPK1 2.17 16.12 -7.4 1
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41 DAPK3 2.17 4.65 -2.1 1
42 DDR1 3.72 5.89 -1.6 1
43 DYRK2 2.17 5.58 -2.6 1
44 EGFR 124.62 160.89 -1.3 1
45 EIF2AK1 7.75 8.99 -1.2 1
46 EIF2AK2 5.89 8.99 -1.5 1
47 EPHA2 2.48 4.34 -1.8 1
48 EPHB2 0.31 1.24 -4. 1
49 ERBB2 3.1 4.03 -1.3 1
50 ERBB3 7.44 24.18 -3.2 1
51 ERN1 0.93 2.17 -2.3 1
52 FGFR1 0. 1.24 -400. 1
53 FRK 0.93 2.17 -2.3 1
54 FYN 1.55 3.41 -2.2 1
55 GRK6 5.27 4.34 1.2 1
56 GSG2 2.79 0.62 4.5 1
57 GSK3A 1.86 3.1 -1.7 1
58 GSK3B 8.06 15.5 -1.9 1
59 HIPK1 0.93 1.86 -2. 1
60 HIPK3 1.55 4.03 -2.6 1
61 HSPB8 0.62 1.86 -3. 1
62 HUS1 2.48 4.65 -1.9 1
63 IGF1R 0.62 1.55 -2.5 1
64 ILK 0.93 1.86 -2. 1
65 INSR 0.93 2.79 -3. 1
66 IRAK1 12.4 14.88 -1.2 1
67 JAK1 5.89 13.95 -2.4 1
68 LATS1 2.17 3.41 -1.6 1
69 LIMK1 8.06 12.71 -1.6 1
70 MAP2K1 10.54 17.67 -1.7 1
71 MAP2K2 9.92 13.33 -1.3 1
72 MAP2K4 3.1 2.17 1.4 1
73 MAP3K1 2.17 3.41 -1.6 1
74 MAP3K13 0.62 1.86 -3. 1
75 MAP3K2 2.79 6.82 -2.4 1
76 MAP3K5 0.31 2.79 -9. 1
77 MAP3K7 2.79 4.34 -1.6 1
78 MAP4K3 2.79 5.58 -2. 1
79 MAP4K4 11.78 15.5 -1.3 1
80 MAP4K5 8.06 13.64 -1.7 1
81 MAPK1 4.96 8.37 -1.7 1
82 MAPK10 0. 0.93 -300. 1
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Table B.8 – continued from previous page
SN Gene 1 2 1:2 Sig
83 MAPK13 4.34 8.37 -1.9 1
84 MAPK14 3.41 5.89 -1.7 1
85 MAPK3 3.41 8.06 -2.4 1
86 MAPK6 3.41 6.82 -2. 1
87 MAPK8 1.55 4.03 -2.6 1
88 MAPKAPK2 2.79 7.75 -2.8 1
89 MAPKAPK5 3.1 6.2 -2. 1
90 MARK2 5.27 10.23 -1.9 1
91 MARK4 0.93 2.17 -2.3 1
92 MASTL 2.79 1.86 1.5 1
93 MELK 6.51 3.72 1.8 1
94 MERTK 1.86 0.31 6. 1
95 MET 62. 75.02 -1.2 1
96 MGC16169 1.55 2.79 -1.8 1
97 MKNK1 2.79 4.03 -1.4 1
98 MKNK2 3.1 6.82 -2.2 1
99 MLKL 2.17 3.1 -1.4 1
100 MST1R 3.1 4.34 -1.4 1
101 MST4 5.27 7.44 -1.4 1
102 MYLK 4.03 4.96 -1.2 1
103 NEK2 2.48 0.93 2.7 1
104 NEK7 4.34 11.47 -2.6 1
105 NRBP1 5.58 9.92 -1.8 1
106 NUAK2 2.48 4.96 -2. 1
107 OXSR1 1.55 2.79 -1.8 1
108 PAK1 4.03 8.06 -2. 1
109 PAK2 3.1 5.89 -1.9 1
110 PBK 4.03 1.86 2.2 1
111 PCTK1 4.65 7.44 -1.6 1
112 PCTK2 1.55 3.1 -2. 1
113 PDK2 0.93 2.17 -2.3 1
114 PDPK1 0.93 2.17 -2.3 1
115 PFTK1 0.31 3.1 -10. 1
116 PIM1 3.72 6.2 -1.7 1
117 PIM3 0.93 2.17 -2.3 1
118 PINK1 1.24 2.17 -1.8 1
119 PKN2 5.89 7.75 -1.3 1
120 PLK1 4.96 2.17 2.3 1
121 PLK3 0.31 1.55 -5. 1
122 PRKAA1 5.58 14.57 -2.6 1
123 PRKAA2 1.86 3.41 -1.8 1
124 PRKACA 6.82 11.16 -1.6 1
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Table B.8 – continued from previous page
SN Gene 1 2 1:2 Sig
125 PRKACB 1.86 3.72 -2. 1
126 PRKCA 1.55 3.41 -2.2 1
127 PRKCD 3.41 7.75 -2.3 1
128 PRKCI 5.58 11.16 -2. 1
129 PRKCZ 1.24 2.48 -2. 1
130 PRPF4B 4.03 5.58 -1.4 1
131 PTK2 7.75 11.47 -1.5 1
132 RIOK2 2.17 1.24 1.8 1
133 RIPK1 1.55 2.48 -1.6 1
134 RIPK2 8.37 13.02 -1.6 1
135 RIPK4 3.41 4.34 -1.3 1
136 ROCK1 2.79 6.2 -2.2 1
137 ROCK2 3.1 5.27 -1.7 1
138 RPS6KA3 1.86 7.13 -3.8 1
139 RPS6KB1 1.24 2.48 -2. 1
140 RPS6KC1 1.24 2.79 -2.2 1
141 RYK 1.24 2.17 -1.8 1
142 SCYL1 2.79 3.72 -1.3 1
143 SCYL2 3.72 7.13 -1.9 1
144 SCYL3 0.62 1.55 -2.5 1
145 SGK 2.48 6.82 -2.8 1
146 SGK3 1.55 0.62 2.5 1
147 SLK 2.48 4.65 -1.9 1
148 SMG1 2.48 3.41 -1.4 1
149 SNF1LK 1.24 11.78 -9.5 1
150 SNF1LK2 1.55 3.1 -2. 1
151 SRC 2.79 5.89 -2.1 1
152 SRPK1 7.13 9.92 -1.4 1
153 SRPK2 3.41 5.27 -1.5 1
154 STK17A 4.34 8.68 -2. 1
155 STK17B 3.1 4.96 -1.6 1
156 STK24 4.34 10.54 -2.4 1
157 STK25 2.79 3.72 -1.3 1
158 STK35 1.55 2.79 -1.8 1
159 STK38 3.72 7.44 -2. 1
160 STK38L 2.48 8.99 -3.6 1
161 STK39 5.58 13.64 -2.4 1
162 STK40 1.86 4.03 -2.2 1
163 STYK1 0.62 1.55 -2.5 1
164 TAOK1 2.17 4.34 -2. 1
165 TAOK3 2.17 3.1 -1.4 1
166 TBK1 32.24 53.63 -1.7 1
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SN Gene 1 2 1:2 Sig
167 TGFBR2 5.58 9.61 -1.7 1
168 TLK1 1.24 2.48 -2. 1
169 TP53RK 4.34 6.2 -1.4 1
170 TRIB1 1.55 8.06 -5.2 1
171 TRIB3 3.72 6.2 -1.7 1
172 TRIO 13.33 17.67 -1.3 1
173 TTBK2 0.31 1.24 -4. 1
174 TTK 5.27 2.48 2.1 1
175 UHMK1 5.89 8.68 -1.5 1
176 ULK1 1.24 4.03 -3.2 1
177 ULK3 1.86 3.1 -1.7 1
178 VRK1 4.34 2.17 2. 1
179 VRK2 1.55 2.79 -1.8 1
180 WNK1 5.89 11.47 -1.9 1
181 YES1 6.82 16.74 -2.5 1
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genome-wide analysis of dna helical tension by means of psoralen-dna photo-
binding. Nucleic Acids Res, 38(19), Oct 2010.

[109] L Postow, C D Hardy, J Arsuaga, and N R Cozzarelli. Topological domain
structure of the escherichia coli chromosome. Genes Dev, 18(14):1766–1779,
Jul 2004.

[110] M R Gartenberg and J C Wang. Positive supercoiling of dna greatly diminishes
mrna synthesis in yeast. Proc Natl Acad Sci U S A, 89(23):11461–11465, Dec
1992.

[111] L Baranello, D Bertozzi, M V Fogli, Y Pommier, and G Capranico. Dna topoi-
somerase i inhibition by camptothecin induces escape of rna polymerase ii from
promoter-proximal pause site, antisense transcription and histone acetylation
at the human hif-1alpha gene locus. Nucleic Acids Res, 38(1):159–171, Jan
2010.

[112] G Capranico, J Marinello, and L Baranello. Dissecting the transcriptional
functions of human dna topoisomerase i by selective inhibitors: implications
for physiological and therapeutic modulation of enzyme activity. Biochim
Biophys Acta, 1806(2):240–250, Dec 2010.

[113] S J Petesch and J T Lis. Rapid, transcription-independent loss of nucleosomes
over a large chromatin domain at hsp70 loci. Cell, 134(1):74–84, Jul 2008.

[114] J Zlatanova and J M Victor. How are nucleosomes disrupted during transcrip-
tion elongation? HFSP J, 3(6):373–378, Dec 2009.

[115] B Villeponteau, M Lundell, and H Martinson. Torsional stress promotes the
dnaase i sensitivity of active genes. Cell, 39(3 Pt 2):469–478, Dec 1984.

[116] V.A. Bloomfield, D.M. Crothers, and I. Tinoco. Physical chemistry of nucleic
acids. Harper & Row New York, 1974.

[117] T A Brooks, S Kendrick, and L Hurley. Making sense of g-quadruplex and
i-motif functions in oncogene promoters. FEBS J, 277(17):3459–3469, Sep
2010.

[118] D Zhabinskaya and C J Benham. Theoretical analysis of the stress induced
b-z transition in superhelical dna. PLoS Comput Biol, 7(1), 2011.

[119] J L Huppert and S Balasubramanian. G-quadruplexes in promoters through-
out the human genome. Nucleic Acids Res, 35(2):406–413, 2007.

[120] A Siddiqui-Jain, C L Grand, D J Bearss, and L H Hurley. Direct evidence for
a g-quadruplex in a promoter region and its targeting with a small molecule to
repress c-myc transcription. Proc Natl Acad Sci U S A, 99(18):11593–11598,
Sep 2002.

210



[121] T A Brooks and L H Hurley. The role of supercoiling in transcriptional con-
trol of myc and its importance in molecular therapeutics. Nat Rev Cancer,
9(12):849–861, Dec 2009.

[122] G A Michelotti, E F Michelotti, A Pullner, R C Duncan, D Eick, and D Levens.
Multiple single-stranded cis elements are associated with activated chromatin
of the human c-myc gene in vivo. Mol Cell Biol, 16(6):2656–2669, Jun 1996.

[123] Y Kohwi and T Kohwi-Shigematsu. Altered gene expression correlates with
dna structure. Genes Dev, 5(12B):2547–2554, Dec 1991.

[124] T Tomonaga and D Levens. Activating transcription from single stranded
dna. Proc Natl Acad Sci U S A, 93(12):5830–5835, Jun 1996.

[125] E F Michelotti, T Tomonaga, H Krutzsch, and D Levens. Cellular nucleic acid
binding protein regulates the ct element of the human c-myc protooncogene.
J Biol Chem, 270(16):9494–9499, Apr 1995.

[126] D Sun and L H Hurley. The importance of negative superhelicity in inducing
the formation of g-quadruplex and i-motif structures in the c-myc promoter:
implications for drug targeting and control of gene expression. J Med Chem,
52(9):2863–2874, May 2009.

[127] B Wittig, S Wölfl, T Dorbic, W Vahrson, and A Rich. Transcription of human
c-myc in permeabilized nuclei is associated with formation of z-dna in three
discrete regions of the gene. EMBO J, 11(12):4653–4663, Dec 1992.

[128] T Schwartz, J Behlke, K Lowenhaupt, U Heinemann, and A Rich. Structure of
the dlm-1-z-dna complex reveals a conserved family of z-dna-binding proteins.
Nat Struct Biol, 8(9):761–765, Sep 2001.

[129] H Liu, N Mulholland, H Fu, and K Zhao. Cooperative activity of brg1 and
z-dna formation in chromatin remodeling. Mol Cell Biol, 26(7):2550–2559,
Apr 2006.

[130] B Wong, S Chen, J A Kwon, and A Rich. Characterization of z-dna as a
nucleosome-boundary element in yeast saccharomyces cerevisiae. Proc Natl
Acad Sci U S A, 104(7):2229–2234, Feb 2007.

[131] R Liu, H Liu, X Chen, M Kirby, P O Brown, and K Zhao. Regulation of csf1
promoter by the swi/snf-like baf complex. Cell, 106(3):309–318, Aug 2001.

[132] J M Vilar and L Saiz. Dna looping in gene regulation: from the assembly of
macromolecular complexes to the control of transcriptional noise. Curr Opin
Genet Dev, 15(2):136–144, Apr 2005.

[133] T Tomonaga, G A Michelotti, D Libutti, A Uy, B Sauer, and D Levens.
Unrestraining genetic processes with a protein-dna hinge. Mol Cell, 1(5):759–
764, Apr 1998.

211



[134] Y S Polikanov, V A Bondarenko, V Tchernaenko, Y I Jiang, L C Lutter,
A Vologodskii, and V M Studitsky. Probability of the site juxtaposition deter-
mines the rate of protein-mediated dna looping. Biophys J, 93(8):2726–2731,
Oct 2007.

[135] D Hanahan and R A Weinberg. Hallmarks of cancer: the next generation.
Cell, 144(5):646–674, Mar 2011.

[136] E Segal, Y Fondufe-Mittendorf, L Chen, A Th̊aström, Y Field, I K Moore,
J P Wang, and J Widom. A genomic code for nucleosome positioning. Nature,
442(7104):772–778, Aug 2006.

[137] E Segal, T Raveh-Sadka, M Schroeder, U Unnerstall, and U Gaul. Predict-
ing expression patterns from regulatory sequence in drosophila segmentation.
Nature, 451(7178):535–540, Jan 2008.

[138] A Gupta, F Kouzine, B Baranello, K Ben-Aissa, and D Levens. Dynamic su-
percoiling is differentially tuned by topoisomerases i and ii across the genome.
Submitted on 18-April-2012.

[139] J Roca. The torsional state of dna within the chromosome. Chromosoma,
120(4):323–334, Aug 2011.

[140] L R Benjamin, H J Chung, S Sanford, F Kouzine, J Liu, and D Levens. Hier-
archical mechanisms build the dna-binding specificity of fuse binding protein.
Proc Natl Acad Sci U S A, 105(47):18296–18301, Nov 2008.

[141] Mickal Durand-Dubief, Jenna Persson, Ulrika Norman, Edgar Hartsuiker, and
Karl Ekwall. Topoisomerase i regulates open chromatin and controls gene
expression in vivo. The EMBO Journal, 29(13):2126–2134, July 2010. PMID:
20526281.

[142] A C Seila, L J Core, J T Lis, and P A Sharp. Divergent transcription: a new
feature of active promoters. Cell Cycle, 8(16):2557–2564, Aug 2009.

[143] M Geertz, A Travers, S Mehandziska, P Sobetzko, S Chandra-Janga, N Shi-
mamoto, and G Muskhelishvili. Structural coupling between rna polymerase
composition and dna supercoiling in coordinating transcription: a global role
for the omega subunit? MBio, 2(4), 2011.
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