
Stable Encoding of Large Finite-State Automata inRecurrent Neural Networks with Sigmoid DiscriminantsChristian W. Omlin a;b, C. Lee Giles a;ca NEC Research Institute, 4 Independence Way, Princeton, NJ 08540b CS Department, Rensselaer Polytechnic Institute, Troy, NY 12180c UMIACS, U. of Maryland, College Park, MD 20742University of Maryland Technical Report CS-TR-3337 & UMIACS-TR-94-101AbstractWe propose an algorithm for encoding deterministic �nite-state automata (DFAs) in second-order re-current neural networks with sigmoidal discriminant function and we prove that the languages acceptedby the constructed network and the DFA are identical. The desired �nite-state network dynamics isachieved by programming a small subset of all weights. A worst case analysis reveals a relationship be-tween the weight strength and the maximum allowed network size which guarantees �nite-state behaviorof the constructed network. We illustrate the method by encoding random DFAs with 10, 100, and 1,000states. While the theory predicts that the weight strength scales with the DFA size, we �nd the weightstrength to be almost constant for all the experiments. These results can be explained by noting thatthe generated DFAs represent average cases. We empirically demonstrate the existence of extreme DFAsfor which the weight strength scales with DFA size.1 INTRODUCTIONIt is possible to train recurrent neural networks to behave like deterministic �nite-state automata [Elman, 1990,Frasconi et al., 1991, Giles et al., 1992, Pollack, 1991, Servan-Schreiber et al., 1991, Watrous and Kuhn, 1992].The internal representation of learned DFA states can deteriorate due to the dynamical nature of re-current networks making predictions about the generalization performance of trained recurrent networksdi�cult [Zeng et al., 1993]. Methods for constructing DFAs in recurrent networks with hard-limiting neu-rons discriminant functions have been proposed [Alon et al., 1991, Horne and Hush, 1994, Minsky, 1967];1



methods for constructing networks with sigmoidal and radial-basis discriminant functions are discussed in[Frasconi et al., 1993, Gori et al., 1994, Giles and Omlin, 1993]. We prove that recurrent networks with con-tinuous sigmoidal discriminant functions can be constructed such that the encoded �nite-state dynamicsremains stable inde�nitely. Notice that we do not claim that such a stable representation can be learned.The stability of the internal DFA representation is based on on the premise that the discriminant functionshave su�ciently high gain such that the neurons always operate in a saturated mode.We show empirically that the gain does not scale with the size of networks that implement average DFAs;however, there exist extreme cases of DFAs where we observe a scaling of the neurons' gain with networksize.2 ENCODING DFA DYNAMICS2.1 Finite State AutomataA deterministic �nite-state automaton (DFA) is an acceptor for a regular languageL(M ). Formally, a DFAMis a 5-tupleM =< �; Q;R; F; � > where � = fa1; : : : ; amg is the alphabet of the language L, Q = fq1; : : : ; qngis a set of states, R�Q is the start state, F � Q is a set of accepting states and � : Q��! Q de�nes statetransitions in M . A string is accepted by the DFA M if an accepting state is reached; otherwise, the stringis rejected.2.2 Recurrent NetworkWe implement DFAs in discrete-time, recurrent networks with second-order weights Wijk. The continuousnetwork dynamics are described by the following equations:S(t+1)i = h(ai(t)) = 11 + e�ai(t) ; ai(t) = bi +Xj;k WijkS(t)j I(t)k ; (1)where bi is the bias associated with hidden recurrent state neurons Si; Ik denotes the input neuron forsymbol ak. The product S(t)j I(t)k directly corresponds to the state transition �(qj; ak) = qi. After a stringhas been processed, the output of a designated neuron S0 decides whether the network accepts or rejects astring. The network accepts a given string if the value of the output neuron St0 at the end of the string isgreater than 0.5; otherwise, the network rejects the string.2.3 Encoding AlgorithmThe encoding algorithm achieves a nearly orthonormal internal representation of the desired DFA dynamics;it constructs a network with n+1 recurrent state neurons (including the output neuron) andm input neurons2



from a DFA with n states and m input symbols. There is a one-to-one correspondence between state neuronsSi and DFA states qi. Consider a DFA state transition �(qj; ak) = qi. Setting Wijk to a large positive value+H will ensure that S(t+1)i will be high and setting Wjjk to a large negative value �H will guarantee thatthe output S(t+1)j will be low. Furthermore, if state qi is an accepting state, then we program the weightW0jk to +H; otherwise, we set W0jk to �H. We set the bias terms bi of all state neurons Si to �H=2. Foreach DFA state transition, at most three weights of the network have to be programmed. The initial stateS0 of the network is S0 = (S00 ; 1; 0; 0; : : : ; 0). The initial value of the response neuron S00 is 0 if the DFA'sinitial state q0 is a rejecting state and 1 otherwise.3 ANALYSISWe prove the stability of DFA encodings in recurrent neural networks using �xed point analysis. We onlygive the proofs of the theorems which establish our results; for proofs of auxiliary lemmas see [Omlin, 1995].3.1 Fixed Point AnalysisRecall that the recurrent network changes its state according to equation (1). Our DFA encoding algorithmyields a special form of that equation describing the dynamics of a constructed network:S(t+1)i = g(H(2xi � 1)=2) = h(x;H) = 11 + eH=2(1�2x) (2)The bias term �H=2 is common to all state neurons. Hx is the weighted sum feeding into neuron S(t+1)i .Under certain conditions, the discriminant function h(:) has �xed points which allow a stable internal repre-sentation of DFA states. We state here without proof the following facts about �xed points of the functionh(:); the proofs can be found in [Omlin, 1995].Lemma 3.1.1 For 0 < H < 4, h(x;H) has the following �xed point:�0 = 0:5Furthermore, h(x;H) converge to �0 for any choice of a start value x0.Lemma 3.1.2 For H � 4, h(x;H) has three �xed points �0 = 0:5, �� and �+.Lemma 3.1.3 for x < �0 and �0 < x; ht(x;H) (with H > 4) converges to �� and �+, respectively.Lemma 3.1.4 For arbitrary H > 0, the two �xed points �� and �+ are related as follows:�� + �+ = 13.2 Worst Case AnalysisWe will now investigate the conditions under which a constructed network implements a given DFA. Themain result shows how large a network may be for �xed H such that the languages of the DFA and the3



constructed network are identical:Theorem 3.2.1 Let � denote the maximum fraction of DFA states qj from which there are state transitions�(qj; ak) = qi for a �xed choice of ak and any qi. Then, a sparse recurrent neural network RNN with n+1 sig-moidal state neurons, m input neurons, at most 3mn second-order weights with alphabet �w = f�H; 0;+Hg(4 < Hmin < H < Hpred), n + 1 biases with alphabet �b = f�H=2g, and maximum fan-out 3m can beconstructed from a DFA M with n states and m input symbols of states such that the internal state repre-sentation remains stable, i.e. Si > 0:5 when qi is the current DFA state and Si < 0:5 otherwise ifn < 12 � ���(H) (1 + 1H ) with �+�(H) > 14(3 + 1H )for a proper choice of H.Proof: >From the DFA encoding algorithm, we can derive four di�erent types of neuron state changes:low ! high: St+1i = h(Stj �H + XSl�Ci;l Stl �H � Sti �H) (Stj : high; Stl ; Sti : low) (3)St+1i = h(Stj �H + XSl�Ci;l Stl �H + Sti �H) (Stj : high; Stl ; Sti : low) (4)high! high: St+1i = h(Sti �H + XSl�Ci;l Stl �H) (Sti : high; Stl : low) (5)high! low: St+1i = h(Sti �H + XSl�Ci;l Stl �H) (Sti : high; Stl : low) (6)low ! low: St+1i = h(Sti �H + XSl�Ci;l Stl �H) (Sti ; Stl : low) (7)St+1i = h(Sti �H + XSl�Ci;l Stl �H) (Sti ; Stl : low) (8)where Ci;l = fSj j Wijl = Hg (9)4



The inputs Itk are not shown explicitly since we assume that each input symbol is assigned a separate inputneuron in a one-hot encoding. The DFA state transitions corresponding to the these types of neuron statechanges are shown in �gure 1.Note that the term �H=2 is implicit; they cause neuron outputs which do not correspond to the cur-rent DFA state to be reset to a small value. The term Stj � H where Stj is a high signal represents theprincipal contribution to the neuron St+1i which is responsible for driving the output of neuron St+1i highwhen the network executes a DFA state transition �(qj ; ak) = qi. All other terms are the residual contribu-tions to the input of neuron St+1i where the signal Stl is low. The termPStl �H contributes to the total inputof state neuron St+1i if there are other transitions �(ql; ak) = qi in the DFA from which the recurrent networkis constructed. Since there is a one-to-one correspondence between state neurons and DFA states, there willalways be a negative contribution �Sti �H for the current DFA state transition �(qj; ak) = qi, i.e. only Stican drive the signal St+1i low. Equations (3) and (4) only di�er with respect to the sign of the residual inputSti �H. If there is a state transition �(qi; ak) = qi, then equation (4) applies; otherwise, there is a residuallow signal Sti trying to drive St+1i low and equation (3) applies. Similarly, either equation (7) or (8) is chosenfor state transitions of the type low ! low. The above equations account for all possible contributions tothe net input of all state neurons because the encoding algorithm constructs a sparse recurrent network.Before we proceed, we make some observations about the equations (3)-(9) which will simplify the anal-ysis.Observation 3.2.1 An analysis for state transitions of type low ! high and low ! low also covers statetransitions of type high! high and high! low, respectively.The state transition types high ! high and high ! low cause stronger high and low signals, respectively,than the state transitions types low ! high and low ! low. Thus, an analysis that shows stability of highand low signals for these types of state transitions implies the stability of high and low signals for statetransitions of type high! high and high! low, respectively.Observation 3.2.2 Of the two possible equations (3) and (4) for state transitions low ! high, the formerequation also covers the latter equation.If high signals can be kept stable for equation (3), then they certainly can also be kept stable for equation(4). No separate analysis is necessary for thetwo equations.Observation 3.2.3 Of the two possible equations (7) and (8) for state transitions low ! low, the latterequation also covers the former equation. 5
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(e) (f)Figure 1: Neuron State Changes and Corresponding DFA State Transitions: The �gure (a)-(f)illustrate the DFA state transitions corresponding to all possible state changes of neuron Si; the DFA state(s)participating in the current transitions are marked with t and t+ 1. (a) low ! high (no self-loop on qi) (b)low ! high (with self-loop on qi) (c) high! high (necessarily a self-loop on qi) (d) high! low (necessarilyno self-loop on qi ) (e) low ! low (no self-loop on qi) (f) low ! low (with self-loop on qi). Notice that, eventhough state qi is neither the source nor the target of the current state transition in cases (e) and (f), thecorresponding state neuron Si still receives residual inputs from state neurons Sl1 ; : : : ; Slm .6



An argument similar to that given for validity of observation 3.2.2 can be given.Thus, we are left with only the two following types of state transitions which represent the worst cases:low ! low: St+1i = h(Sti �H + XSl�Ci;l Stl �H) (Sti ; Stl : low) (10)low ! high: St+1i = h(Stj �H + XSl�Ci;l Stl �H � Sti �H) (Stj : high; Stl ; Sti : low) (11)Thus, the network equation (1) takes on the special formai � �H=2 +Hxi with xi =Xj Stj (12)since all but one input neuron have value 0 at any given time t. Notice that the number of terms in the sumPj Stj is equal to the number of DFA states qj for which there are transitions �(qj; ak) = qi for the currentinput symbol ak.The ideal case where neurons do not receive residual inputs from other neurons, successive network statechanges can be expressed as the iteration of the function ht(x;H)ht(x;H) = 8<: h(x;H) t = 1h(ht�1(x;H);H) t > 1 (13)with x = 0 and x = 1 for low and high signals, respectivelyWe can now de�ne a new function ht�(x;H) which takes the residual inputs into consideration.Since the initial output value of all state neurons except the neuron assigned to a DFAs start state arezero, the residual inputs under this worst case assumption are identical for all neurons; let �x denote theresidual neuron inputs. Then, the function ht�(x;H) is de�ned asht�(x;H) = 8<: h(x;H) t = 1h(ht�1� (x+�x;H) + �x;H) t > 1 (14)The initial values for low and high signals are x = 0 and x = 1, respectively.7



Consider a state qi and let Dik denote the number of states qj such that �(qj; ak) = qi for each symbolak. Setting D = maxfDikg, each recurrent state neuron receives residual input from at most � = Dn recur-rent neurons for a chosen input symbol ak.We make the following simplifying assumption:Assumption 3.2.1 Each state neuron receives residual inputs from exactly � other neurons for all inputsymbols.Although this is generally not the case, this worst case covers all possible DFAs and simpli�es the analysis.Then, we can quantify �x for the case of low signals:Lemma 3.2.1 The low signals are bounded from above by the �xed point ��� of the functionht�� (x;H) = 8<: h(0;H) t = 1h(� � n � ht�1�� (x;H);H) t > 1 (15)Similarly, we can quantify high signals:Lemma 3.2.2 The high signals are bounded from below by the �xed point �+� of the functionht�+ (x;H) = 8<: h(1;H) t = 1h(ht�1�+ (x;H)� ht�1�� (x;H);H) t > 1 (16)The derivation of these iterated functions can be found in [Omlin, 1995]; the functions (16) and (17) convergetoward their �xed points ��� and �+� according to lemma 3.1.3.In practice, only few neurons ever exceed or fall below the �xed points �� and �+, respectively. Fur-thermore, the network has a built-in reset mechanism which allows low and high signals to be strengthened.Low signals Stj are strengthened to g(�H=2) when there exists no state transition �(:; ak) = qj. In thatcase, the neuron Stj receives no inputs from any of the other neurons; its output becomes less than �� sinceg(�H=2) = h(0;H) < �� for H > 4. Similarly, high signals Sti get strengthened if either low signals feedinginto neuron Si on a current state transition �(fqjg; ak) = qi have been strengthened during the previoustime step or when the number of positive residual inputs to neuron Si compensates for a weak high signalfrom neurons fqjg. Thus only a small number of neurons will have Stj > �� or Stj < �+ and only for a �niteamount of time. For the majority of neurons we have Stj � �� and Stj � �+. Since constructed recurrrentnetworks are able to regenerate their internal signals and since typical DFAs do not have the worst case8



properties assumed in this analysis, the conditions guaranteeing stable low and high signals are generallymuch too strong for some given DFA. Scaling issues are discussed elsewhere [Omlin and Giles, 1994].In order for the internal DFA state representation to remain stable, the low and high signals must remainsu�ciently distinguishable:De�nition 3.2.1 An encoding of DFA states in a SORNN is called stable if all the low and high signals areless and larger than 0.5, respectively.We now return to the worst case state equations (10) and (11).In order for the function (16) to converge toward the low �xed point ���, the argument of equation (10) mustsatisfy the following invariant property: � H2 +H � n � � � ��� < 12 (17)Similarly, the argument of equation (11) must satisfy the following invariant property in order for function(17) to converge toward the high �xed point �+�:� H2 +H � �+� �H(1� �+) 12 : (18)Solving inequalities (18) and (19) for n and �+�, respectively, we obtain the conditions for stable low andhigh signals of the theorem.Although we have stated the conditions for stable low and high signals separately, the condition for sta-ble signals can be simpli�ed as follows:Corollary 3.2.1 If all neurons (not including the output neuron) have at least two weights Wixk = Wiyk =H for all input symbols ak, then the internal representation of a DFA remains stable if���(H) < 12n (1 + 1H )Proof: Substituting 1� �+� for ��� in theorem 3.2.1 we get1� �+� < 12n(1 + 1H ) (19)1� 12n (1 + 1H ) < �+� (20)2n� 12n + 2n� 12Hn < �+� (21)9



But stable high signals require 34 + 14H < �+� (22)Comparing inequalities (22) and (23), we conclude that the former implies the latter for n � 2.We can now state the following theorem for the construction of recurrent networks for speci�c DFAs:Corollary 3.2.2 Let L(MDFA) denote the language accepted by a DFA M with n states and let L(MRNN )be the language accepted by the sparse RNN constructed from M ; then, we have L(MRNN ) = L(MDFA) if���(H) < 12n and �+�(H) > 14 (3 + 1H )Proof: We just need to establish a condition for correct string classi�cation. As we will see, the conditionfor stable dynamics in partially recurrent networks is not su�cient to guarantee correct string classi�cation.For the case of an ungrammatical strings, the following condition must be satis�ed:� H2 �H � �+� + (n� 1) �H � ��� < 12 (23)where we have made the usual simpli�cation about the convergence of the outputs to the �xed points ���and �+�; furthermore, we assume that only one DFA state is a rejecting state; then the output neuron'sresidual inputs from all other state neurons is positive, weakening the intended high signal for the network'soutput neuron. Notice that the output neuron is the only neuron which can be forced toward a low signalby neurons other than itself.A similar condition can be formulated for grammatical strings:� H2 +H � �+� � (n� 1) �H � ��� > 12 (24)The above two inequalities can be simpli�ed into a single inequality:� 2 �H � �+� + 2 � (n� 1) �H � ��� < 0 (25)Solving for ���, we get the following condition for the correct output of a network:��� < 1n (26)Thus we have the following conditions for stable low signals and correct string classi�cation:for (H > 1). ���(H) < 8><>: 12�n (1 + 1H ) < 1�n for H > 1 (dynamics)1n (classi�cation) (27)10



Comparing these two conditions, it follows that the condition for correct string classi�cation implies thecondition for stable low signals for �rho � 1.Other scenarios of worst cases can be considered: Instead of partial interconnectivity, a worst case anal-ysis can be carried out where it is assumed that each neuron receives inputs from all other neurons. In thatcase, the conditions for stable �nite-state dynamics dominate the condition for correct string classi�cation.Obviously, those conditions imply the conditions for partially recurrent networks. It is also possible to con-sider a fully recurrent networks where all those weights that are not programmed to +H or �H are assignedrandom values from an interval [�W;W ]. That scenario applies when a recurrent network initialized withthe knowledge of some DFA is further trained on data for knowledge re�nement of revision; in that case, theweight strength H and the value W can be chosen such that the weights initialized to random values do notdestroy the encoded knowledge.4 EXPERIMENTSIn order to empirically validate our analysis, we constructed networks from randomly generated DFAs with10, 100 and 1,000 states. For each of the three DFAs, we randomly generated di�erent test sets each consist-ing of 1,000 strings of length 10, 100, and 1,000, respectively. The randomly generated, minimized 100-stateDFA with alphabet � = f0; 1g we encoded into a recurrent network with 101 state neurons is shown in �gure2. The networks' generalization performance on these test sets for rule strength H = f0:0; 0:1; 0:2; : : : ; 7:0gare shown in �gures 3-5. A misclassi�cation of these long strings for arbitrary large values of H would indi-cate a network's failure to maintain the stable �nite-state dynamics that was encoded. However, we observethat the networks can implement stable DFAs as indicated by the perfect generalization performance forsome choice of the rule strength H and chosen test set. Thus, we have empirical evidence which supportsour analysis.All three networks achieve perfect generalization for all three test sets for approximately the same value ofH. Apparently, the network size plays an insigni�cant role in determining for which value ofH stability of theinternal DFA representation is reached, at least across the considered 3 orders of magnitude of network sizes.For the 100-state DFA in �gure 2, we computed the value Hpred = 13:8 which guarantees stable �nite-state dynamics of the constructed network. Hpred was computed from a worst case analysis; it should thuscome as no surprise that 4 < Hexp < Hpred. 11
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Figure 2: Randomly generated 100-state DFA: The minimal DFA has 100 states and alphabet � =f0; 1g. State 1 is the start state. States with and without double circles are accepting and rejecting states,respectively.
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5 SCALING ISSUES5.1 PreliminariesThe worst case analysis of section makes the following predictions about the implementation of arbitraryDFAs:(1) neural DFAs can be constructed that are stable for arbitrary string length for �nite value of theweight strength H,(2) for most neural DFA implementations,Hemp < Hpred, and(3) the value of H scales with the DFA size, i.e. the larger the DFA and thus the network, the largerH will be for guaranteed stability.Predictions (1) and (2) are supported by our experiments. However, when we compare the values Hemp inthe above experiments for DFAs of di�erent sizes, we �nd that Hemp � 6 for all three DFAs. This observationseems inconsistent with the theory. The reason for this inconsistency lies in the assumption of a worst casefor the analysis, whereas the DFAs we implemented represent average cases. For the construction of therandomly generated 100-state DFA we found correct classi�cation of strings of length 1,000 for Hemp = 6:3.This value corresponds to a DFA whose states have `average' indegree n = 1:5. [The magic value 6 also seemsto occur for networks which are trained. Consider a neuron Si; then, the weight which causes transitionsbetween dynamical attractors often has a value � 6 [Tino, 1994].]However, there exist DFAs which exhibit the scaling behavior that is predicted by the theory. We willbrie
y discuss such DFAs. That discussion will be followed by an analysis of the condition for stable DFAencodings for asymptotically large DFAs.5.2 DFA States with Large IndegreeWe can approximate the worst case analysis by considering an extreme case of a DFA:(1) Select an arbitrary DFA state q�;(2) select a fraction � of states qj and set �(qj; ak) = q�.(3) For low values of �, a constructed network behaves similar to a randomly generated DFA.(4) As the number of states qj for which �(qj ; ak) = q� increases, the behavior gradually movestoward the worst case analysis where one neuron. receives a large number of residual inputs withfor a designated input symbol ak. 14
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expect such an uncharacteristic behavior to occur in some cases.5.3 Asymptotic Case AnalysisWe are interested in �nding an expression for the average number of residual inputs to a neuron in largeDFAs. Since we are dealing with a second-order network architecture, disjoint parts of the network partic-ipate in the computation of the next state for any given input symbol. Thus, we can limit our analysis toDFAs with a single input symbol.Consider a DFA M and its underlying graph G(V;E) whose vertices V and directed edges E are the DFAstates Q and state transitions �, respectively. We assume that G(V;E) is randomly generated: For any givenvertex vj , a directed edge eij is drawn to another vertex vi with equal probability 1=n for all vertices of G.The number of directed edges entering any given vertex vi from other vertices vm is the number of residualinputs state neuron Si receives from other state neurons Sm. Thus we only need to compute the expectednumber of incoming edges (\in-degree") for a DFA generated according to the above probability distribution.The probability p(d = k) for a vertex to have in-degree k follows a binomial distribution; thus, the av-erage in-degree is given by the expected value of k which can be written as:Efd = kg = nXk=1 k 0@ nk 1A 1nk (1� 1n )n�kFor n!1 and � = np � 1 where p is the probability that an event occurs (in our case we have p = 1=n andthus � = 1) and p! 0 the binomial distribution asymptotically converges toward the Poisson distribution:Efd = kg = 1Xk=1 k e�� �kk!With � = 1, we conclude Efd = kg = e�1 1Xk=1 1(k � 1)! = e�1 1Xk=0 1k! = e�1 e = 1We can now state the following asymptotic result for the construction of large DFAs:Theorem 5.3.1 Let n denote the number of states in a DFA. For n ! 1, the languages accepted by theDFA M and the constructed neural RNN are identical only for H !1.16



Proof: Recall the worst case equations (10) and (11) for state transitions of type low ! low and low ! high.For the asymptotic case n!1, these equations simplify.The worst case equations of section 3.2.1 apply here also; however, the residual inputs are zero. Thusthe following two conditions for stable low and high signals, respectively, must be satis�ed:� H2 +H � ��� < 12 (29)and � H2 +H � �+� �H � ��� < 12 (30)Combining these two inequalities and solving for ��� leads to the condition ���(H) < 13 . Thus, we have thefollowing conditions for stability of the �nite-state dynamics and correct string classi�cation in asymptoti-cally large DFAs: stability of signals: ���(H) < 13correct string classi�cation: ���(H) < 1nUnlike in the case of the worst case analysis for partially recurrent networks,the condition for correct stringclassi�cation dominates the conditions for stable �nite-state dynamics. As a matter of fact, stable �nite-statedynamics alone does not require H ! 1; however, correct string classi�cation requires ��� ! 0 and thusH !1 for n!1.6 CONCLUSIONWe investigated how deterministic �nite-state automata (DFAs) can be encoded into sparse second-orderrecurrent neural networks. The operation performed by the second-order architecture is akin to DFA statetransitions, making DFA encoding a straightforward operation. We have proven that our algorithm can con-struct a sparse recurrent network with O(n) state neurons, O(mn) weights and limited fan-out of size O(m)from any DFA state with n states and m input symbols such that the DFA and the constructed networkaccept the same regular language. The DFA dynamics is achieved by programming some of the weights tovalues +H or �H. A worst case analysis has revealed a quantitative relationship between the rule strengthHpred and the maximum allowed network size such that the network dynamics remains robust for arbitrarystring length. This is only a proof of existence, i.e. we do not make any claims that such a solution can belearned. 17
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