Snap-Together Visualization:
Coordinating Multiple Views to Explore Information

Chris North and Ben Shneiderman*
Human-Computer Interaction Lab, Institute for Advanced Computer Studies,

*Institute for Systems Research,

Department of Computer Science

University of Maryland, College Park, MD 20742 USA
north@cs.umd.edu, ben@cs.umd.edu
http://www.cs.umd.edu/hcil

ABSTRACT

Information visualizations witlmultiple coordinated views
enable users to rapidly explore complex data asdoster
relationships. However, it is usually difficultrfasers to
find or create the coordinated visualizations theed.
Snap-Together Visualization allows users to coa@tdin
multiple views that are customized to their neddsers
query their relational database and load results desired
visualizations. Then they specify coordinationswesn
visualizations for selecting, navigating, or re-eg.
Developers can make independent visualization tsabsp-
able’ by including a few hooks.

KEYWORDS: User Interface, Coordination,
Views, Tightly Coupled, Information Visualization.

Multiple

INTRODUCTION

The multiple coordinated viewapproach is a powerful and
increasingly-employed user-interface technique for
exploring information. Each view is a visualizatiof
some part of the information, and views are coaid
(a.k.a. “tightly coupled”, or “linked”) so that thieoperate
together as a unified interface [NS97].

For example, Microsoft Word’'s document-map feature
displays the table of contents of the text in apeeht
frame. Selecting a heading in the map scrollsdfeument
text directly to that section. Likewise, scrollinthe
document text highlights the current section inregp. A
second example, Windows Explorer actually has 3vsie
The left pane contains the directory hierarchy, tt
pane shows the detailed contents of a selectedtdiiye
and (with “View as Web Page” on) also displays ietaf
a selected file including a miniature quick-viewn a more
advanced visualization, selecting a record in Symdsf
[AS94] starfield displays its attributes in a wedoWwser or

the integrated details pane. On the web, framesused
like Word’'s document map to link tables-of-contets
main views. However, frame coordinations are aohe-
directional due to their use of the hypertext model

Multiple coordinated views have many advantaged tha
have been documented in user studies [NWS86] [CWM94
[SSS86]. Coordination improves user performanceor F
example, users can select items in overviews (aglha
table of contents) to produce details (such as ftike
chapter) in an adjacent window or to synchronizelkng

in a French translation. Coordination users cao akploit
relationships to facilitate exploration across mifation
types. For example, clicking on a city in a maplgs a
city description, a calendar of events, and phaitos
adjacent views.

However, users often cannot coordinate the visatidins
they need. The choice of visualizations and caattithns
are highly dependent on the information and taSksne
common coordinations have been implemented, bugreth
require custom programming. Development tools,cWwhi
focus on the independent view approach, do not @aupp
building coordinated views easily. Hence, a med@maris
needed to give users the coordinated multiple-view
interfaces they want, yet, at the same time, sagigders
from endless development of coordinations.

SNAP-TOGETHER VISUALIZATION

Snap-Together Visualization (STV) is an architeetand
system that allows users to coordinate visualipatmols.
Users can build coordinated multiple-view interfader
information exploration that are customized to $pecific
needs of their data and tasks. Users query tleda dnd
load results into desired visualizations, then ldish
coordinations between visualizations for selecting,
navigating, or re-querying. Developers can make
independent visualization tools ‘snap-able’ by dimp
including a few hooks with a small amount of code.

Our goals for designing STV are:

1. Coordination: Allow users to coordinate views to
build their own multiple-view user interfaces for
exploring information.

2. Utilize third party visualizations: Allow users take
advantage of visualization tools built by themsslee
other researchers and developers.

Model

To support the first goal, the coordination modeltihe
STV user-interface is based on the unit of infoiorgt
called anobject There are four major concepts in this
model:

Informationis stored in an underlying relational database.

An object represents a tuple.
information by following relationships (e.g., sdlea
directory to discover its contents), the relatiomabdel
provides a good basis for coordination. It alsovjafes a
robust general data format and a unique identiiereach
object. An objectlID is the tuple’s primary-key wval

A visualizationis a view (graphical and/or textual) of a set
of objects (e.g., a scatterplot of data pointseat view of
the sections of a document). A query (e.g., SQlt)aets
the records from the database and loads them ho t
visualization.

Useractionsact on individual objects or sets of objects in a
visualization. There are three major categoriesctibns:

parameters based on a given object). This allows
navigation through other information in the databas
E.g., load the list of files contained in a giveider.
While exploring, users indicate objects of interdst
selecting or navigating to them. The system respaid
reveal related information by selecting, navigatingy
guerying. (We focus on information exploration,tno
manipulation or editing tasks.)

Coordinationmaps actions on objects in one visualization
to actions on objects in another. The two visuéitires are
coordinated so that when one of the actions ocdimes,
mapped action is also executed in the other view., E
selecting a section title in the table-of-conteptdliner

Since users explorescrolls the document text to that section.

User Interface

When users open a database with STV, the menu windo
(Figure 1) displays a list of all tables and querstored in
the database, and a list of available visualizatiools.
Queries can be added or edited using the databeise'sl
query editor or typed in as SQL. Users can theidbu
coordinated multiple-view interfaces by simply ojmen
appropriate visualizations and ‘snapping’ them tbge

1. Open visualizations via queries. When users sealect
table or query from the menu and drag and dromit @
visualization in the menu, the visualization opéns new
window and the results of the query are loaded 8TV
adds a menu to the visualization window for vari&®Is/-
related actions. To put a different query resaotbithe
window, users simply drag a new query from the menu
window to this menu. The visualization displays thata
and users can interact with it as a stand-alonécapipn.

1. Selectan object. E.g., click on, mouse over, rubber
band, etc. Visualizations typical respond by Vilyua
highlighting the selected object(s).

2. Navigateto an object. E.g., scroll to, zoom onto, open
subtree of, etc.

3. Query(based on an object). Query and load a new set

of objects into the visualization (by setting theegy's

. Snap-Together ¥isualization Menu HE B3
{fOpen Database... || Update | -
G:hwsershehnizidizcoviwbhwest mdb Yisualizations:
---------- Tableg - - List
Altarneys
Caze Attorney junction Page
Cases
Good Bad Grid
Headnotes —
---------- Luerigs: - Spotfire
Attormney Homepage B
Attormeys of a Caze Dutliner
Cazes and Altomeys
Cazes and Headnotes V=R
Decision Text of a Case weh
Good Bad View s
Headnotes of a Caze :I 7
Querny: 1 parameters
Save Group | IEase Wiewer j
Higtory | Bazket | Search | Exit |

Figure 1. The Snap-Together Visualization window
lists tables and queries in the database and displays a
menu of available visualizations.

2. Snap visualizations together. Users can then

Snap Specification

lﬁ e |
Window 1:
Spotfire - Cases
action:
[5Scmol
[]Load
— window 2:
Lizt - Headnotes of a Cagse
actioh: [Select
[Scral
Object Relation:

Figure 2: In the Snap Specification dialog, users
select which actions to coordinate between two views.
In this example, selecting a case in Spotfire will load
the headnotes of the case in a textual list view.

coordinate any 2 visualizations by a drag-and-dxofion view is needed, users can simply snap it in.
between the STV menus of both visualization windows
This opens the Snap Specification dialog box (Fgpy, STV creates a new class of users called “coordinati
and users select which actions in each window todesigners”. Coordination designers know the dateh
coordinate. Then, the 2 visualizations are tiglibppled ~ knowledge of good user interface design, and usé ®T
such that interacting in one causes the desirettsfin the ~ construct coordinated multiple-view interfaces.
other. The coordination between the visualizatioms be ~ Coordination designers can be end-users who snhap
modified or deleted using the STV menu on eitherdaiv. visualizations together for their own browsing reedOr,
coordination designers, like web designers, canldbui
Any number of visualizations can be opened and browsing interfaces for other less-knowledgeabld-esers
coordinated in this way, allowing users to congtruc to explore information. Coordinated designs carsded,

exploration interfaces consisting of many integiateews. distributed, and then broadly used by others.
They can then browse their information, and allwge _
maintain synchronization. At any time, if an adigl Scenario

,‘-11' Treemap 97 i, Dutliner - Folders ... [H[=] E3
File ‘“iew Optionz Help Load | Shap |
chis 521 genex =]
clqdisconr fzenex m C=Rr
— c -¥ images
..... jodi
f- W meds
t1qt3.qt
vh
t2atsat
t5qt5.qt
gt gt
-8 thkprato
ElE? wh
t| ad
-3 combo
u L3 ald
B LB
Ty H Images
i

i Grid - Contents of Folder [1173]

Load | Shap I
Marne Size | Type Datekd odify
P |otdsetupexe 7198006 |Application 10/29/98 7:05:00 P4
11gt3.at 3751534 | QuickTime Mowvie 1072998 B:53:56 Phd
t2gtd.gt 1039142 | QuickTime Mowie 10/29/98 5:49:52 PhA
t3gtd.ot 7334158 | QuickTime Mowvie 1072998 B:54:16 Phd
tdgt3 gt 9416350 | QuickTime Mowie 10429798 7:05:26 Ph4
thot3.ot 7613621 | QuickTime Mowvie 1072998 7:24:36 Phd

Figure 3: A coordinated multiple-view interface, created with Snap-Together Visualization, for exploring directory
structures. Selecting a directory in the treemap (left) also selects it in the outliner (right) and displays its contents in the
grid (bottom).

While Windows Explorer is adequate for some users,two views together, coordinating between the sedetion
system administrators may benefit if a treemap §&hn in the outliner to query in the grid. Then, sdlegta
visualization were included in its set of viewsre@maps, directory in the outliner displays its contentghe grid. To
which show hierarchies in a recursive slice-anaéddic take advantage of more advanced visualization tools
pattern, are strong in revealing overall layoutseatire simply snap in a treemap view by dropping the fiesl
large hierarchies. Administrators can quickly gan directories table onto the treemap and then coatitig the
overview of directory structures to spot buriedy&aior old select action to the outliner. Then, selectingraatiory in
files and discover duplicated similar directoriegy(re 3). the treemap highlights it in the outliner, whiclethdisplays

its details in the grid. Now administrators care ube
From a database of a file system, drop the table oftreemap to quickly find suspiciously large groupdiles,
directories into an outliner visualization to d&plthe easily see where they are in the file structuréaénoutliner,
directory hierarchy. Drop a query of files for aen and immediately access details of files in the gid
directory into a spreadsheet grid view, and thespsthe discover which user is hogging space.

Administrators can easily extend their exploration particular file structure to browse in the resttiogé views

environment as needed. For example, to identify already created.

directories to archive, they might snap in a Patpe
Wall [MRC91]] visualization for a timeline view. Snap a
Spotfire scatter plot, mapping file creation datethie X-
axis and last access date to Y-access, to locaigedrfiles
on the diagonal. To examine contents of many,fdeap a
file viewer to the grid view. Then, they can quickeak
into files by simply selecting them in the grid. t e
opposite end of the scale, administrators mightuahe an
overview of their network, allowing them to seleaty

Other Features

To demonstrate other features of the STV system,seea
richer, more complex scenario. STV has immediately
proven its value in our information visualizationojects.
For example, WestGroup provides information suppart
legal professionals, including databases of midlioh court
cases from Federal and state jurisdictions. We &3¢V to
quickly prototype multi-view visualizations to help

w Search Term: M [=1 E3|| (@] Spotfire - Search Cases (in headnote text) (a) - Imported ODBC Data (] - [Sc... [H[=]E3

(& File

user interface

Edit “iew Options Toolz ‘Window Help &1 %]

Relevance ¥ I

Load Sna

w List - Search Cazes [in headnote text] [a] il

Load Viewl Snap |
RS

Cite As: 15F.3d 1573
Relevance: 2

Title: CARROLL TOUCH, INC., Plaintiff, v.
ELECTROC MECHANICAL SYSTEMS, INC., Defendant
Date: 8/24/93 4

Cite As: 49 F.3d 807 3
Relevance: 2
Title: LOTUS DEVELOFPMENT CORPORATION,

G0 gt e g0 e gt e g0l g1l g qr-OT

3 informed by expert testimony, 15 part o

99ks51 "extrinsic test" employed in determining whether
work infringes copyright in ancther work, making

4 1ssue well-suited for determination as matter of

99k51 law. Bee publication Words and Phrases for other
judicial constructions and definitions.

=]

99k10.4

6 HeadNote#: 3

29151 Key Number: 29k51
Key Text: MNature and elements of injury.

7 Annotation: Intrinsic test" for determining

99k 5 copyright infringement entails comparison enly
of portions of work that can be subject of

2 copyright protection. See publication Words and

qolka 5 || Phrases for other judicial constructions and
definitions.

9

99k4.5 | |

v. BORLAND INTERNATIONAL, INC. < A Date_v |
M= [|| & List - Headnotes of a Case (3] JH=I EF || & List - Decision Text of a Case [3) M =13
Load | Wiew | S| Load [View | SnEP_I Load [Wiew | SnEP_I
1 Al HeadNote#: 2 Al 2 Bl
99k51 Key Number: 99k51 The Ninth Circuit employs a two-part test to determine whether
Key Text: COPYRIGHTS AND awork infringes the copyright in ancther work. First, the "ideas"
INTELLECTUAL FROFPERTY of the works in suit are compared for substantial similarity,
Annotation: "Analytic dissection,” using an "extrinsic test" or "objective analysis of expression”
i iteria of comparison 1d & Marty Erof; ol .

, Cir 1977, Shaw v. Lindheim, $19F 24 135
1357 (9th Cir.1990). Analytic dissection, employing a list of
criteria of comparison informed by expert testimony, i3 a part
of this exercise, which makes this well-suited for determination
as amatter of law. Erofft, 562 F.2d at 1164.If the ideas are
substantially similar, then an "intrinsic test" or "subjective
analysis of expression" is used. Shaw, 919 F.2d at 1357, In suits
involving literary works, Shaw requires that the intrinsic test be
performed by the trier of fact, and not by the court upon a
motion for summary judgment. Id at 1359 Tt should be
ernphasized that Shaw confines its holding to suits involving
literary works, or arguably the literary aspects of works, see
Brown Bag v. Bymantec, 960 F.2d 1465, 1476 (9th Cir. 1992},
and does not extend to visual displays.

H

3

MWoreover, the "intrinsic test" entails a commparison of the

portions of a work that can be the subject of copyright

protection. Bee Pasillas v. McDonald's Corp., 927 F.2d 440,

443 (9th Cir. 1991). Because the "intrinsic test" is thus limited, =|

Figure 4: Exploring legal information with a searcher’'s workbench created using Snap-Together Visualization. The
Search Term box executes a search query and loads the results into the text view and Spotfire. Selecting a case in
f the case into the Case Viewer (bottom). The Case Viewer
Scrolling in the headnotes and

Spotfire highlights the title in the text view and loads details o

is composed of 3 views (left to right): case overview, headnotes, and decision text.

decision text is synchronized, and selecting in the overview scrolls both.

WestGroup explore user interface alternatives fiier@nt
“workbenches” for different types of users.

We first demonstrate building a Case Viewer (Figdre
bottom). A case is composed of a judge’s decise,
which is partitioned into sections. Each sectias la
headnote, consisting of a categorization (in anarwy of
case law) and annotation. The existing user iaberf
simply lists out all the information in a single w@age
with many intra-links between sections and headnote
Since users often refer to headnotes while browsireg
decision text, yet need to scan the decision amtguous
text, a two-view synchronized-scrolling approach
appropriate. The headnotes and decision text aegiegl
into separate adjacent textual list views. Thelsactions
of both views are coordinated. Then, as usersllsicro
either window, the other always shows the related
information.

is

Since many decision texts are long, containing d®@
headnotes, a good HCI designer might include a Ismal
overview frame for quick access to any section. erQu
only the section numbers into another list view,d an
coordinate its select action to the scroll-to actiof the
Headnotes view. All three windows become coordidat
Scrolling either detail view highlights the curresgction
number in the overview, and vice versa.

To make the Case Viewer into a general tool, pararize
the queries of each view to load a case givendtelD,
using an SQL component like “where decisions.caselD
?". Then, create query-to-query coordinations leetw
them so that when a case is loaded into oneldaided into
all 3.

Save Groups From the STV menu, the coordinated set of
windows can be saved as a group and given a nacheasu
“Case Viewer”. Then, at any time, selecting theugr
name from the STV menu will launch a new instaigrabf

the group of 3 coordinated windows. This givesrsishe
ability to construct new composite visualizatiomltoand
reuse them as snap-able primitives.

Search Box Users typically browse cases by search terms.z

To search for cases, a search query that takesarahse
phrase as a parameter and returns a list of hitedsdy
relevance is dropped into a textual list view towhresults.
STV provides a simple search box window that can be
snapped to such a results window by coordinating th
search action to the result view’s query actiorgy(Fe 4,
top). Entering a search term such as “user inteffan the

spot trends. Selecting a recent and highly relegase in
Spotfire’s scatterplot highlights the correspondititie,

“Apple v Microsoft”, in the textual results view dn
displays the details in the Case Viewer (Figure 4).

Shopping BasketWhen exploring such a large database of
cases, users can gather a set of interesting @atgesin
STV shopping basket window by drag and drop.

History. In designing user interfaces for information
exploration, we increasingly recognize the needhistory
keeping, allowing users to review previous staten
interesting bonus of the STV architecture is tlstice it
receives notification of user actions in all vismations, it
can easily keep track of the history. The STV drist
window displays the history list of actions. Seileg an
action from the list replays it.

Extract Of course, the reason users must explore
information is to extract the knowledge required to
accomplish some task. For example, an attorneyhtmig
need to contact other attorneys of recent siméaes. In a
Spotfire display of attorneys of similar cases, &t®rney
selects 25 recent attorneys from the scatterphal, drag-
and-drops the them onto the “To:” field of an email
message window. STV then presents a small pogtpfi
the available fields in the dropped records (Figbixe The
attorney selects the “email address” field, and S¥gps

all the email addresses of the selected attornetys the
field. The attorney then types a message and semds
STV can drop or paste to any OLE compliant windowl a
extract any fields from records. For visualizatiaghat do
not provide drag-and-drop capability, STV initiatee drag
itself and provides the data since it tracks s&lacictions.

. Select Fields:

search box reveals relevant case titles in thdtsegiew.

Then, users can quickly browse the case hits bylgim
shapping on a Case Viewer and coordinating theltresu
view’s select action to the previously-construct€dse-
Viewer’s query action. If search results are larggers can
shap in a visualization tool, such as Spotfirehétp them

Figure 5: Users can extract data to a composition
window, such as an email editor, by drag and drop
and then select fields to include in the pasted data.
For example, users could drag attorney records from
a scatterplot to an email message and select to
extract only their email addresses.

ARCHITECTURE

A visualization tool has a set of user actions trat snap-

STV is a centralized software system that acts @s a enabled. Typically, these are select and navigat®ns.

intermediary among the visualization tools anddhtabase
(Figure 6). The visualization tools are actuallgépendent
software programs, potentially built by 3rd parggndors,
augmented only slightly to integrate
environment via inter-process communication.

into the STV
The

At initialization, the tool communicates this set $TV.
When a pair of visualizations are snapped together,
mapping is defined as:

(viza, action, objectlD,) < (vizg, actiorg, objectIDy).

database is also an independent entity generated byhe pair (via, vizg) are the visualizations being snapped

standard relational database software. To editiegiewe
employ the software’s SQL or visual query editor.

When users open a query result into a visualizatemeral
operations are executed. First, STV executes tieeycand
receives a recordset, and the selected visualizatiol is
launched. Then, if needed, the recordset is tatadslinto
the input format required by that visualization lfcsiored
to a temporary file, and the “Load” method of the
visualization is invoked. The visualization behsaes it
normally would, reading in the data file and digtg it.
Database-enabled visualization tools can bypasg|tieey
execution, translation, and storage steps by accp@
connection and query string directly. STV addsneals
menu palette to the visualization’s window for STafated
actions by inserting a small child window. Thifleets our
vision of STV as integrated into the window- or nfra
management system. Hence, user actions in thitteal
invoke STV software.

Database

together, determined by the source and destination
visualizations of the user’s drag-and-drop snajpactThe

pair (action, actiory) is specified by the user in the
resulting Snap Specification dialog box. In moases,
objectlDy = objectlDy, as in primary-key to foreign-key
joins. However, to allow for more complex coordinas

as in data mining applications, they can be reldtgdn
arbitrary relational transformation.

During execution, visualization tools communicatéhw

STV:

1. Action notification. When users perform an action
the visualization, a notification message is ser8TVv
containing the triple: (visualizationID, action,
objectID).

2. Action invocation. STV can send a message to a
visualization to programmatically invoke an action
normally invoked by the user, as in
visualizationID.execute(action, objectID).

SELECT * FROM files
WHERE parent=<?>

Treemap
Visualization

i Snap-Together Visualization \ 4 i
Query Query Query
Query
(<?>:=0bjID)
Select(objID) Select(objID) Select(objID)
AT /

Outliner
Visualization

Gri
Visualization

Figure 6: The Snap-Together Visualization architecture. Users select queries to load data into visualizations. Then, they
snap visualizations together to coordinate actions between them. This example demonstrates how the actions propagate
in the interface in Figure 3 when users select a node in the treemap. The same node is selected in the outliner, and then
the query to the grid view extracts the children of that node from the database and loads them into the grid.

When users perform actigron objectID, in visualization left). More interesting is brushing across a mtoy-

Vviz,, notification is sent to STV. In turn, STV applite many relationship. E.g., Selecting cases in o/ o
transformation and invokes actipmn objectily in vizg. highlight attorneys involved with those cases in
Select and navigate actions are sent to the viaiedn for another view.

execution. Query actions are sent to the visuatinat _ o
input query, causing the query to be re-executedgus Making Visualizations ‘Snap-able’

objectlD; as query parameter value, and then invoke theThe second goal of Snap-Together Visualizatiomw ialtow
visualization’s load operation. users to take advantage of the wide variety of foklp

visualization tools that have been implemented by
As users snap pairs of visualizations together, STVresearchers and developers. A closed system hatises
maintains an internal graph data-structure reptaggihe visualizations constructed internal to the systeould be
coordination graph. Nodes in the graph are vigadbns merely a small improvement over a hard-coded nwigtiv
and links are the snap mappings between them. Whemiser interface, would quickly lead to obsolescersae
notified of a user action in a visualization, STMverses therefore would not solve the problem. Hence, we
the graph, invoking the coordinated actions on lthieed minimize effort required to make any off-the-shifrd-
visualizations. party visualization ‘snap-able’ to the extent tleaten a

fourth party could easily accomplish.
To illustrate with the treemap+outliner+grid exampl
(Figure 6), when users select node X in treemaggrids a STV is analogous to the standardized cut-and-masteag-
(select, X) message to STV. STV traverses theand-drop feature of modern windowing systems. A
coordinations set up earlier by the user, and sdhds centralized server, integrated into the window eyst
mapped message to the outliner (select, X). Rexyrs handles much of the work. Then, with the additiba few
STV then sends (query, X) to the Query input fod.giThe simple hooks and a small amount of code, a powerful
grid's SQL query is: “SELECT * FROM files WHERE feature is enabled in an application, making ieiaperable
files.parent = 2. The parameter “?” binds to Mg query ~ with many others. Effort is low and payoff is larg
is executed, and the resulting list of files indied X are

loaded into the grid. To make STV open, and minimize impact on visuairat
tools, we make several assumptions about the tddisy:
Coordination Properties * Remain independent software entities, need not be
Coordinations are: compiled into STV, run as independent processeas, an
« Commutativgbi-directional). Given a snapped pair of can be run as stand-alone applications.
visualizations, user action in either visualizat@auses « Use only simple inter-process communication with
action in the other. STV to send and receive events as (action, objgctiD
« Transitive If visualization A is snapped to B and B is pairs.
snapped to C, then a user action in A will produce « Must support only the actions they already support
action in B, which will then produce action in C. (e.g. select). No major new functionality required

]) . ¢ Communicate only in terms of object IDs. They
Common coordinated view pairs correspond to data jgentify and act on an object by its unique ID, and

relationships and other properties of queries. iNstrate cannot query or search on attributes.

with examples from the WestGroup scenario. _ « Are not aware of the larger data context of themx

» Synchronized scrolling Navigate-to-navigate actions STV database, only of the data currently loaded int
on a one-to-one relationship with a common sorenord them by STV.

E.g., Headnotes and decision text (Figure 4, bottom,
right and center).

* Overview and detail viewSelect-to-navigate on one- To enable a visualization, four hooks are required:
to-one relationships where the overview query ¢glec 1. |Initialization. At initialization, notify STV of ®ailable

Accept input data in their own format.

fewer or smaller fields. E.g., Headnote numbers(o actions for coordination, such as select or scroll.
small field) to headnote text (includes lengthy 2. Action notification. When a user action (e.g., rseu
annotations). (Figure 4, bottom left and center) click to select an object) is processed, send anteio

e Hierarchical browsing Select-to-query on one-to- STV, passing the objectID of the selected object.
many relationships to browse across levels of scale 3. Action invocation. A method, externally invokalilg
Different visualizations may be appropriate ateliént STV, programmatically executes a given action on a
levels. E.g., Spotfire display of cases to textistlof given objectID (e.g., highlight a selected objecthis
headnotes of a selected case (Figure 4, top rigtt a may require some code to search the internal data
bottom center). structures for objectID.

« Brushing Simple brushing is select-to-select on one- 4. Load. A method, externally invokable by STV,
to-one relationships. E.g., Spotfire view of casethe initiates the existing routine to load data intce th

textual list of the same cases (Figure 4, top reyid visualization, potentially from the given temporditg.

Data structures may need to be augmented to handlén terms of the user interface, three major impnogets are

objectID’s.

To snap enable the treemap visualization tool, whias
originally developed by others, required approxighat2
hours of work for us to add approximately 20 limé<ode
to its software.
visualizations, such as Spotfire, already suppdttilasuite
of methods and events. In this case, access tsdhee
code is not necessary.
simple wrapper program

that translates

component.

The only other requirement is a translator progrduat
converts the input data from the record set fortoathe
input format of the visualization tool. Howevergewlaim
this as a gain, not a cost, because only one saoklator
ever has to be written for each visualization toetom the

users’ point of view, this is a big advantage beeau

traditionally users must write their own translatéor each
visualization they use. With STV they need at nuos: to
convert their data into a relational database.
visualization developers need to supply only on¢o
convert a record set to their visualization’s fotma

IMPLEMENTATION
We have implemented the STV architecture as de=trid
this paper. It is currently developed on the Windo

STV provides a templateafo
the STV
communication protocol to calls to the visualizatio

needed. First, better window management is neéaed
tiling, docking, or grouping windows together [K39#or
example, a Case Viewer might be grouped as oneowind
composed of three sub-frames. Second, a visual
coordination-editor tool might combine the queryiagd

Some well-designed componentdbase coordinating steps into a more task-oriented psc&iven

one view, what else can | explore from here? Thad
visual map is needed to indicate what coordinatanasin
place between a set of snapped views.

LIMITATIONS

Clearly, STV places a premium on screen space. This
research anticipates large desk-sized displays. ofém

use a two-monitor workstation to demonstrate coatilng
many views for information-rich interfaces.

The STV coordination model is based on user actmms
information objects. It is not well suited for edmating
visual layout and image browsing [PCS95]. Examples
include Adobe PhotoShop’s overview window and the
InfoMural [JS95], where views paint themselves dasa

And pixel-level information in other views.

The architecture reveals a tradeoff between sddjabnd
the use of independent visualization tools. Thisrea
bottleneck in the load operation of some visuailiret. The
slowest common denominatoproblem can arise if
interaction is limited to the speed of the slowest

platform, using ODBC for database access and COM fo visualization.

inter-process communication. Any database softwatdd
be used to generate the databases.
Access. To edit queries, Access’s visual querygtewmol
is more than adequate.

STV is motivated by our current work with WestGraaumd
the US Census Bureau, and other previous projdtisas
well received by professionals in these communitaesd
WestGroup is integrating STV concepts into thestegns.

FUTURE WORK

We use MicrosoRELATED WORK

Several other systems include some capability fmrsito
coordinate multiple views. Each is hardwired fareoor
two specific coordinations, but allows users to figure
options in the coordination or choose windows to
participate. All of them use a fully internal aitefcture in
which visualizations must be built within the systeising
its internal shared data storage and functionalitie only
exception is Cyberdesk [DAP97], which allows ustrs
select text in any window, and then choose a “setyi

The architecture could be extended in several ways.such as a web search or address book, from a mesent

Multiple objects per action are needed to handldtiphe
selections. In addition, generalized
coordinations with multiple-parameter queries woalldw
for several views to participate in a single cooadiion,
such as simultaneous menus.
select a county in one view, an industry from aosec
view, and a year from a third view, in any order,view
production statistics in a fourth view. Multi-obje

coordinations could also be accomplished by incigdi

attribute-based coordination, e.g., select objetisre 10 <
object.attr < 25. Some visualization tools, sustdgnamic
query tools, may be able to support such expressidinis
could also be useful for visualizations that doraggtion
(e.g., histograms).

multi-way

the text to the service’s window.

Most common are systems for brushing scatterplots
[BC87], in which painting data points in one pldsa

For example, usetd cou paints them in the others (e.g. select to selecX[Gobi

[BCS96] provides significant options for brushirsgich as
accumulation, color, glyphs, etc. XmdvTool [WA954usds

out in its ability to brush points (object-based)regions
(attribute-based). With Visage’'s [RLS96] “infornat-
centric” approach users can drag-and-drop objestisden
views and brush them. Its SAGE component overcomes
the problem of a limited set of visualizations ksngrating
custom data visualizations automatically.

With LinkWinds [JBO94], users connect controls and
views to build a series of filters for scientificsualization.

DEVise [LRB97] coordinates region selections andsasf Information visualization researchers and develpgeve
graphs to synchronize zoom and pan. In the Appley built many helpful visualization tools. With theerefits
programming environment [DP95], wusers browse listed above, STV users can utilize these visutidina to
hierarchical objects by splitting and linking fragngo that build their own coordinated multiple-view user iritees
selecting a folder in the source frame displaysdstents for exploring information.

in the destination frame. Logos, a commercial eibl

software package, can coordinate sets of viewsffarent ACKNOWLEDGMENTS

translations and commentaries to synchronize sogotty ~~ This research is supported in part by funding from
verses. Spreadsheet Visualization [CBR97], a uniqu WestGroup and the US Census Bureau. Thanks tongero
approach, arranges views as cells in a grid. Thsgrs can Brown and Shaun Gittens for the Treemap97
apply algebraic operations between rows of visastns. implementation of treemaps. We appreciate comments

draft from Ben Bederson and Robert Allen.

Of these systems, LinkWinds and Dylan use a draly-an
drop action to select windows for coordination.h€@s use =~ REFERENCES _ .
selection from window lists. LinkWinds is the ontp ~ [AS94] Ahlberg, C., Shneiderman, B., *“Visual

visually indicate coordinated windows, by drawirigeb information seeking: tight coupling of dynamic quer
between them. filters with starfield displays”Proc. ACM CHI'94 pp.

313-317, (1994).

Some inspiration for the STV model comes from RMM

[ISB95], a system for constructing web sites from [BC87] Becker, R., Cleveland, W., “Brushing
underlying relational databases. In RMM, relattips scatterplots”, Technometrics 29(2), pp. 127-142,
identify hypertext navigation structures, whereasSiTV, (1987).

relationships correspond to coordinations.

[BCS96] Buja, A., Cook, D., Swayne, D., “Interactive

CONCLUSION high-dimensional data visualization”Journal of

Snap-Together Visualization has many benefits fothb Computational and Graphical Statistjc§(1), pp. 78-

visualization developers and users. 99, (1996).

For visualization developers: [CBR97] Chi, E. H., Barry, P., Riedl, J., Konstan, ‘A

+ Reuses Vvisualizations. STV treats individual spreadsheet approach to information visualization”,
visualization tools as components. Each visuatinat Proc. IEEE Information Visualization ‘97%p. 17-24,
needs to be developed only once. (1997).

For users and coordination designers:

Simplifies visualization development. Developeas c
focus efforts on the primary view of the visualipat
and do not need to incorporate supporting viewBY S
can supply those.

Eliminates the need to develop multiple-view
coordinations.

[CWM94] Chimera, R., Shneiderman B., “An explorgtor
evaluation of three interfaces for browsing large
hierarchical tables of contents3CM Transactions on
Information Systemd.2(4), pp. 383-406, (Oct. 94).

[DAP97] Dey, A., Abowd, G., Pinkerton, M., Wood, A.,

Steers developers to more rigorous identificatibthe “CyberDesk: a framework for providing self-
purpose and strengths of each visualization tdag. integrating ubiquitous software service®oc. ACM
for what situations should users snap in visuabrat UIST ‘97, pp. 75-76, (1997)

X? » PP. , .

[DP95] Dumas, J., Parsons, P., “Discovering the way
programmers think about new programming

Offers advantages of coordinated multiple-view environments”, Communications of the AGMBS(6),
interfaces, including improved user performance and pp. 45-56, (June 1995).

rapid exploration across information types.

Coordinates views without programming. [ISB95] Isakowitz, T., Stohr, E., Balasubramanian, P
Customizes exploration environment to specific data “RMM: a methodology for structured hypermedia
and tasks. design”, Communications of the ACM8(8), pp. 34-
Accesses many visualization tools, and multiplewie 44, (August 1995).

composites shared by others.

Uses Sing|e data input format. [\]8094] Jacobson, A., Berkin, A., Orton, M.,
Enables rapid prototyping of workbenches. “LinkWinds: interactive scientific data analysis dan
Provides an appropriate user interface when wsuahzanon”,Commumcauons of the AGN87(4), pp.
distributing data to end-users. 43-52, (April 1994).

[JS95] Jerding, D., Stasko, J., “The Information ®lur

a technique for displaying and navigating large
information spaces”,Proc. IEEE Symposium on
Information Visualizationpp. 43-50, (October 1995).

[KS97] Kandogan, E., Shneiderman, B., “Elastic
Windows: evaluation of multi-window operations”,
Proc. ACM CHI'97 pp. 250-257, (March 1997).

[LRB97] Livny, M., Ramakrishnan, R., Beyer, K., Chen
G., Donjerkovic, D., Lawande, S., Myllymaki, J.,
Wenger, K., “DEVise: integrated querying and visual

exploration of large datasets”, Proc. ACM
SIGMOD’97, pp. 301-312, (1997).

[MRC91] Mackinlay, J., Robertson, G., Card, S,
“Perspective Wall: detail and context smoothly

integrated” Proc. ACM CHI9] pp. 173-179, (1991).

[NWS86] Norman, K., Weldon, L., Shneiderman, B.,
“Cognitive layouts of windows and multiple screens
for user interfaces”,Intl Journal of Man-Machine
Studies 25, pp. 229-248, (August 1986).

North, C., Shneiderman, B., “A taxonomy of
University of

[NS97]
multiple window coordinations”,

Maryland, College Park, Dept of Computer Science

Technical Report #CS-TR-3854, (1997).

[PCS95] Plaisant, C., Carr, D., Shneiderman, B.,atjm
browsers: taxonomy, guidelines, and informal
specifications”, IEEE Software 12(2), pp. 21-32,
(March 1995).

[RLS96] Roth, S., Lucas, P., Senn, J., Gomberg, C.,
Burks, M., Stroffolino, P., Kolojejchick, J., Dunraj
C., “Visage: a user interface environment for expigp
information”, Proc. Information VisualizationlEEE,
pp. 3-12, (October 1996).

[Shn92] Shneiderman, B. “Tree visualization with
treemaps: a 2-d space-filling approach”, ACM
Transactions on Graphics, 11(1), pp. 92-99, (Jan.
1992).

[SSS86] Shneiderman, B., Shafer, P., Simon, R., @egld
L., “Display strategies for program browsing: copise
and an experiment’|EEE Software,3(3), pp. 7-15,
(March 1986).

[WA95] Ward, M., Allen, M., “High dimensional
brushing for interactive exploration of multivagat
data”, Proc. IEEE Visualization '95 pp. 271-278,
(1995).

