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Abstract

Loss of precision due to the conservative nature of compile-time dataflow analysis is a genera
problem and impacts a wide variety of optimizations. We propose a limited form of runtime dataflow
analysis, called deferred dataflow analysis (DDFA), which attempts to sharpen dataflow results by using
control-flow information that is available at runtime. The overheads of runtime analysis are minimized
by performing the bulk of the analysis at compile-time and deferring only a summarized version of the
dataflow problem to runtime. Caching and reusing of dataflow results reduces these overheads further.

DDFA is an interprocedural framework and can handle arbitrary control structures including multi-
way forks, recursion, separately compiled functionsand higher-order functions. It is primarily targeted
towards optimization of heavy-weight operations such as communication calls, where one can expect
significant benefits from sharper dataflow analysis. We outline how DDFA can be used to optimize
different kinds of heavy-weight operations such as bulk-prefetching on distributed systems and dynamic
linking in mobile programs. We prove that DDFA is safe and that it yields better dataflow information
than strictly compile-time dataflow analysis.

1 Introduction

Compile-timedatafl ow analysi scombinesinformation from all execution pathsthat aprogram could possibly
take. The analysis is conservative, because at runtime, a program will follow only one of these (possibly
infinite) execution paths. For example, consider the problem of bulk-prefetching for distributed shared
memory programs. Fetching data in small chunks can be expensive and prefetching data in bulk can
significantly improve performance [18]. A commonly used conservative approach is to prefetch only the
datathat will definitely berequired along all paths. Thisprevents needless communication, but may limit the
effectiveness of prefetching. Figure 1 providesanillustration. Inthiscase, acompile-timeanalysisindicates
that neither of theremote variables « or 5 isrequired along all pathsfrom thefirst call topr ef et ch() . If,
however, it were possibleto determine which one of the pathswould be actually taken (inagiveniteration),
the appropriate value(s) («, 5 or {a, 3}) could be prefetched.

Loss of precision dueto the conservative nature of compile-time dataflow analysisis ageneral problem
and impacts a wide variety of optimizations. This problem particularly influences optimization of heavy-
wei ght operations such as bulk-prefetch, garbage-collection, runtime-compil ation or remote procedure calls.



a=b=c=d= o= B= 3;

repeat {
prefetch (?)
switch (b) {
casel: B = a-1 ;break;
case2: o = B-1 ;break;
case 3: X = o -1 ;break;
}
if (c==0) break;
x=B; a-;
Yuntil ('a); B
b=a; -
if (d) y=5;
prefetch (?)
if (d) a=p;
exit (0);
(@ (b)

Figure 1: (a)A program fragment toillustrateloss of precision in conservative analysisof distributed shared
memory code. The code accesses two remote variables « and 3. At each pr ef et ch instruction, we
would like to prefetch those remote variables that will be read aong all outgoing paths. (b) Control-flow
graph for the program fragment in (a). The two op-nodes opl1 and op2 in the CFG, correspond to the two
calstopr ef et ch. We will use this CFG fragment as a running example.

These operations are expensive ; avoiding or combining even a small number of them has the potential of
providing significant benefit. The obvious alternative to compile-time dataflow anaysis, namely runtime
analysis, can provide good datafl ow information but could add too much runtime overhead to be worthwhile.
In this paper, we propose a hybrid between compile-time analysis and runtime analysis, called deferred
dataflow analysis(DDFA). DDFA performs most of itsanalysisat compile-timeand uses additional control -
flow data that becomes available at runtimeto stitch together the dataflow information that was collected at
compile-time.

DDFA dividesthetask of flow analysisinto two phases - acompile-time phase and aruntime phase. The
compile-time phase, called the builder, analyzes the control-flow graph to identify forks' whose direction
can be determined at specific points in program execution. These predictable forks are used to divide
the control-flow graph into regions such that each region contains at most one such fork. The builder then
performs dataflow analysi son each region independently and summarizestheresult intheform of asummary
transfer function. The summary transfer function for a region describes how the region affects dataflow
attributes flowing through it. The second phase, called the stitcher is invoked whenever a heavy-weight
operation is encountered during program execution. It checks values of program variablesto predict future

Forks are program-points from which control can flow in more than one direction - e.g. conditionals, procedure returns, switch
statements, higher-order functions.



control-flow directions and computes the final dataflow results by stitching together summary functions
from regions that may be encountered in the future. The final dataflow results can be used by a runtime
system to optimize heavy-weight operations.

The key idea of DDFA isto divide dataflow analysis into a compile-time phase and a runtime phase
and to use runtime control-flow information to improve precision of compile-time analysis. Two-phase
techniques using summary functions have have previously been used for interprocedural flow anaysis by
others (e.g. Sharir et a [21] and Duesterwald et al [7]). In these techniques, the first phase computes a
summary function for each procedure and the second phase applies these functionsto obtain interprocedural
dataflow properties. These techniques perform both phases at compile-time; they use summary functions
as a mechanism to avoid reanalysis of a procedure at every cal-site. DDFA differs from these techniques
in three important ways. First and foremost, DDFA applies these functions at runtime. It is therefore
important to construct compact representations for these summary functions, so that results of the compile-
time phase can be efficiently passed to the runtime phase. Second, DDFA computes summary functions
for regions, which are not necessarily procedures - this introduces complications as regions can overlap
while procedures cannot. Third, DDFA computes multiple summary functions for each region and uses
control-flow information available at runtime to choose between these functions.

In this report, we present an interprocedural DDFA framework that is applicable for arbitrary control
structures including multi-way forks, recursion, separately compiled functions and higher-order functions.
We present agorithms for construction of region summary functions and for composition and application
of these functions. We limit our application of DDFA to solving backward flow problemsin this report.

Thereport is structured as follows. We begin our presentation by providing an overview of the DDFA
approach in Section 2, using intuitive descriptions for key terms and concepts. Section 3 provides a more
rigorous definition of these terms and listsall our assumptions. Section 4 describes the details of the basic
DDFA framework for intraprocedura analysis. It has two parts — thefirst part describes the compile-time
builder which constructs summary functionsfor regions while the second part describes the stitcher which
composes and applies these functions at runtime. The running exampleis used to demonstrate how DDFA
optimizes bulk-prefetches and to describe the data-structures necessary to pass information from compile-
time to run-time. In section 5, we prove that DDFA is safe and that its results are at least as good as the
compile-time meets-over-all-paths solution. Section 6 extends the basic intraprocedural DDFA framework
to handle interprocedural analysis, separately compiled code, higher-order functions and dynamic merging
of heavy-weight operations. Section 7 outlines several application scenariosin which DDFA can be used to
optimize heavy-weight operations. We limit our application of DDFA to solving backward flow problems
in thisreport. In section 8 we outlineavariant of DDFA for solving forward dataflow problems and discuss
more aggressive techniques for extracting control-flow information at runtime.

2 Overview of DDFA

In this section, we present a brief overview of DDFA including terms and concepts which are needed to
follow therest of the paper. These terms are defined more rigorously in Section 4.

As mentioned in the introduction, DDFA is targeted towards optimization of heavy-weight operations
(such as bulk-prefetch, garbage-collection, runtime compilation, remote procedure cals etc). We will refer
to these operations as ops and the nodes representing them in the control-flow graph as op-nodes. Each
op-nodeinduces an op-domain. The op-domain corresponding to the operation op; consistsof thenodesthat
are reachable from op; without passing through another op-node or program-exit node. op1 is referred to
as the entry-point to the op-domain; the exits from an op-domain are either other op-nodes or program-exit
nodes.

Each op-domain has zero or more forks. Forks are program-points from which control can flow in more
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Figure 2: The three shaded areas show the |p-regions of the first op-domain in the running example. The
figure on the right shows the summary functions for each Ip-region. The gen and kill sets are represented
by g and k respectively.

than onedirection - e.g. conditionals, procedure returns, switch statements, calls to unknown functions. A
fork issaid to be lossy with respect to a particular data-flow analysisif all itsincident edges in the control-
flow graph do not have the same dataflow attributes (after fix-point has been reached). Meet operations
at such forks result in loss of information. A fork is said to be predictable with respect to an op-node if
the direction of the fork is always determined before execution reaches the op-node. Corresponding to
each fork, there is at least one other program point, referred to as a fork-determinant, which determines
which of the multiple control-flow aternatives the fork will take. For example, the fork-determinants for
aif statement would be the reaching definitions of the variable being tested.? In other words, a fork is
said to be predictable at an op-node if there is no path from the op-node to the fork-point that contains a
fork-determinant. Forks that are both lossy and predictable are said to be Ip-forks. Because |p-forks are
forks at which aconservative anaysis loses information and whose control -flow direction can be predicted,
itis potentially beneficial to defer the meet operation for them. In figure 2, only the forks corresponding to
case(b) andi f(c) arelp-forks; thefork at i f (a) islossy but not predictable (due to the assignment
toa); thefork ati f (d) ispredictable but not lossy.

Each Ip-fork induces an Ip-region. An Ip-region is the collection of nodes that can be reached from an
Ip-fork without passing through an Ip-fork or any of the exits of the op-domain. An |p-region may contain
zero or more other forks. These forks, however, are either not predictable or not lossy. Since we will not
have better information about these forks at runtime, deferring the data-flow analysis for these forks will
provide no advantage. The shaded regionsin figure 2 show the Ip-regionsfor the running example.

The first stage of DDFA, performed at compile-time, identifies the op-nodes in a control-flow graph,
constructs the op-domains, identifies the lossy and predictable forks within each op-domain and constructs
the Ip-regions. The intuitive definitions presented above for op-domains and Ip-regions indicate how they

2Fork-determinants can similarly be defined for other types of forks.
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can be constructed; more rigorous definitions are provided in section 3. Note that, for op-domains that
straddle procedure boundaries, care needs to be taken to preserve the calling context when computing the
set of nodes reachable from an op-node.

The second stage, performed at compile-time, analyzes each Ip-region and produces one or more
summary transfer functions, ¢(fork-direction), one function for each direction the [p-fork at the entry to the
region can take. 3 Each function summarizes the backward dataflow operations that would occur if control
was restricted to flow in a particul ar direction.

Thethird stageis performed on-demand at runtime when control reaches the op-node at the entry to an
op-domain. At this point, the directions of al Ip-forks in the op-domain are known. This information is
used to select the appropriate summary function for each Ip-region in the op-domain. The runtime stitcher
uses the information about the directions of Ip-forks to determine the sequence of |p-regionsthat lie along
the path that will be traversed from the op-node to exit and applies the corresponding summary functions
(in reverse order as we are doing backward propagation). The links among the Ip-regions of an op-domain
may contain back-edges; thismay require the stitcher to iterate. In such cases, one hasthe choice of trading
off execution time and analysis precision by choosing between performing theiterations and falling back to
using the conservative dataflow properties computed at compile-time. Note that performing iteration may
not be expensive as the number of Ip-regions in a op-domain is expected to be small (much less than the
number of basic-blocks).

Thefina stage, performed at runtime, uses the data-flow information computed by the stitcher to make
optimization decisions. This stage is application-specific. For conciseness, we do not present detailed
examplesin thisabstract. We do, however, sketch how DDFA can be used for bulk-prefetching, our running
example.

3 Terminology and Background

This section defines the terms used in describing the DDFA framework and listsall our assumptions. The
casual reader may choose to skip directly to subsection 3.4 which summarizes the important terms and
assumptions.

In the following discussion we limit ourselves to intra-procedural analysis of a first-order language
in which the only forks are conditionals that test a single variable. In addition, we assume that dataflow
analysis for each op is restricted to the corresponding op-domain; i.e. we do not try to merge information
from multiple op-domains. These restrictions are for expositional simplicity. In section 6, we will extend
the framework to include interprocedura analysis, separately compiled code, higher-order functions and
allow dynamic merging of dataflow analyses across op-domains.

3.1 Op-domains

A program is represented as a directed flow graph. A flow graph isdenoted as G' = (R, N*, E*, X*, 0*).
R istheroot of the graph and represents the entry-point of the program. N* isaset of nodes that represent
program statements and £ is a set of edges that represents the transfer of control among these statements.
X* C N*isaset of program-exit nodes. These nodes have no outgoing edges. O* C N* isaset of nodes
that are specially marked as op-nodes; these represent program points at which the program performs some
heavy-weight operation that we want to optimize. The entry point R is also marked a dummy op-node, so
Re O

3Actually, for reasons described |ater, we may have more than one summary function for each fork-direction. Specifically, each
summary function ¢ is parameterized by a (fork-direction, region-exit) pair.




For each noden € N*, pred(n) = {m | (m,n) € E*} and succ(n) = {m | (n,m) € L*} denote the
set of immediate predecessors and successors of n. A sequence of nodesp = (n1, n2, .....n;) issaidtobea
valid path if for 1 < ¢ < k, (n;, n,41) € E*. Thelength of the path is the number of edgesinit (k — 1in
the above notation). For any pair of nodesm, n, paths(m, n) isthe set of all pathsin graph ¢ leading from
m to n. paths(m,n) = ¢ if thereis no path from node m to node ». If there are cyclesin the flow graph,
then the number of pathsin paths(m, n) may beinfinite.

Each op-node op; € O* induces an op-domain. The op-domain induced by op;, is denoted as D;. D;
isisa subgraph of G and contains all nodes that are reachable from op; without passing through another
op-node. More precisely, D; = (op;, N;, E;, X;) where:

e op; € O* isthe op-node that induced domain D;.

o N, ={n|n € succ(op;) or 3 (op;,m1,...,mg,n) € paths(op;,n), mi,...,my & O*}
N; isthe set of nodes in the op-domain.

o E;={(m,n) | m,n€ N;,(m,n) € E*} istheset of edgesin the op-domain.

o X;={a|ze N;,n(O*UX")} istheset of exit nodesfor the op-domain. These nodes are called
domain-exits.

When the domain being analyzed is clear from the context, we will drop subscripts and denote it as
D = (op,N,FE,X). Weuse predp(n) and succp(n) to denote the nodes that immediately precede and
succeed node » and which lie within domain D. pathsp(m,n) represents the set of paths between nodes
m and n that lie completely within the domain.

It is worth pointing out two properties of op-domains that follow from the definition. (1) An op-node
does not necessarily dominate all the other nodes in its op-domain. A node m in G may be reachable
from two different op-nodes and therefore get included in both op-domains. This means that op-domains
can overlap. (2) During execution, control will always be associated with a unique op-domain. Control
gets associated with a new op-domain only when it encounters an op-node. By definition, control cannot
encounter a new op-node within the current op-domain.

We assume that the dataflow information that influences each op-node is limited to the information
propagated up from within its own op-domain. This assumption allows us treat op-domains independently
of each other ; each op-domain can be treated a separate flow-graph for the purpose of dataflow analysis.
Later, in section ?? we will relax this assumption and collect dataflow information across multiple
op-domains.

3.2 Dataflow Frameworks

The framework of adataflow problemisapair (L, F'), where I isacomplete meet semi-lattice of attribute
informationand F' isaset of transfer functions /' : I, — [. Following standard terminology, . hasapartial
order (<), top (T) and bottom (L) elementsand ameet operator (M). Also, I isassumed to be well-founded,
i.e. any descending chain in thelattice I is of finite height.

We assumethat the set F' isclosed under functional composition (o) and point-wise functiona meet (A).
4 That is, for any pair of functions f1, f» € F,wemusthave fio f> € F and fiA f> € F. F adsocontainstwo
special functions— anidentity function f;, , and aconstant function fr . Foralz € L, fr(z) =T and
fia(z) = z. A framework that satisfies these assumptionsis said to be a closed framework [12]. In a
closed framework, the functionsin F' form a semi-lattice with f+ at the top of the function-lattice and the

4Functional-meet (A) is different from the commonly used attribute-meet (). Functional-meet operates on the function lattice,
A F x F — F,while attribute-meet operates on the attribute-lattice 1 : L x L — L. Ideally, (f1 A f2)(z) = fi(z) 1 fo(z).



other functions partially ordered asfollows: for fi, fo € F, f1 > fo iff fi(z) > fo(z) fordlz € L.
5 We aso assume that every function in the set F is monotone and distributive, i.e. Vf € F,z,y € L,
x>y = f(z) > f(y) (monotone) and Vf € F, f(xMy) = f(z)N f(y) (distributive). Assuming
a monotone and distributive closed framework is fairly common in dataflow analysis, most elimination
algorithms [2, 10, 20, 19] also make the same assumptions.

A (backward) dataflow problem for an op-domain can be described by atupleP = (L, F), D, M ). Here,
L and I together represent a closed distributive framework as discussed earlier. D = (op, N, F, X )isthe
op-domain being analyzed and M : F — F'isamapping that associates each edge of the domain’s flow
graph with atransfer function from F'. The transfer function f,, ,,,) associated with edge (., m ) represents
the change of relevant data attributes propagated backwards from the entry of block m, up through node n
to the entry of block n. Given M, I’ can be reduced to the smallest set which contains M, f.4, fr, fL and
whichisclosed under functional composition and functional meet. Thisensuresthat F isdistributiveiff A
isdistributive.

A solution to the dataflow problem Pisamap © : N — [ which maps each node n of the flow graph
to an element of the attribute lattice, i.e. ©(n) represents the dataflow information that can be asserted at
node n. It isaways safeto assert lessinformation, i.e. re-mapping anode to alower lattice element is safe
; hence, there are many safe solutions possible for any dataflow problem.

A maximal safe static solution is given by the meet-over-all-paths (MOP) solution, Y': N — [ which
is abstractly defined asfollows: Foreachn € N,

Yin) = 0 { fo(L) | p€paths(n,z), =€ X} (D

Here f, = finmy) © fomima) © - -+ © Jmy ) fOr thepath p = (n,ma, mo, ..., mg, @). If pisnull, then f, is
defined to be the identity map f,.

Computingthe MOP solution Y{ ), for node ., requires propagati nginformation backwards along every
possible path from » to an exit node. The attributes collected from all these paths are then combined by
performing an attribute-meet (7). In graphswith cyclesthere may be an infinite number of pathsto consider;
hence, equation ( 1) does not suggest a practical algorithm. Instead, most practica dataflow algorithmstry
to approximate the M OP sol ution by solving the following set of “local-propagation” equations.

) = M fn (@) Vn € (N - X) @

This system of equations describes the relations between attributes at adjacent basic blocks and uses

themto propagate information backwards startingwith | at the exit nodes. Aniterativea gorithm suggested

by Kildal [14] iscommonly used to solvethis system of equations; it yieldsamaximal fixed-point solution

which can be shown to match the MOP solution when the al transfer functions are distributive. Notably,

the iterative algorithm, like most other dataflow algorithms, computes ®(» ) for each and every nodein NV
even though we only need ®(op), the dataflow attributes of the op-node. ©

Partitionable frameworks: A dataflow framework ( L, I') is partitionable [23] if we can split the frame-
work into afinite number of “independent” frameworks ( Z;, F;), each inducing aseparate dataflow problem,
and obtain the solution to the original problem simply by grouping al theindividual solutionstogether. For

SDDFA assumes a well-founded (finite-height) function-lattice F. If L is finite, then F will also be finite (and thereby
well-founded). If L isinfinite (but of finite height), then ' may or may not be well-founded. See [21] for more details.

5The observation that we only need to obtain the datafl ow solution only for op-nodesis significant— DDFA expends*“runtime-
effort” to compute safe results only for afew important nodes - the op-node and the Ip-fork nodesin the op-domain.



example, the standard framework for available expressions analysis is partitionable into sub-frameworks
each of which determinesthe availability of asingle expression. Use-def chaining and livevariable analysis
are other examples of partitionable problems. Constant copy propagation is an example of a problem
that is not partitionable; it requires simultaneous analysis of all program variables. In the classical “bit-
vector” approach, partitionable problems correspond to transfer functions that operate on each bit-position
independently.

1-related frameworks: A framework (L, F') is 1-related [21] if it is partitionable and each partitioned
framework F; consists only of constant functions and identity functions. In fact, it can be shown that the
only constant functions allowed in F; are f+ and f, . 1-relatednessis characteristic of problemsin which
there exists at most one point along each control flow path which can affect the data being propagated. For
example, say p = (s1, s2,...,5) IS an execution path, and let j be the smallest index (; < k) such that
f(s;_1,5;) IS@constant function. Clearly f, = f(;,_, ;) ; i.e. thenet effect of the entire path p can be
summarized by the transfer function of edge (s;_1, s;). Inthe“bit-vector” approach, 1-relatedness implies
that transfer functions have two properties : (1) a bit & cannot be included in the gen and ki | | sets at
the same time (i.e. gennkill = ¢) 7 and (2) bits are modified independently of each other (from
partitionability).

A large number of classical dataflow problems, such asavailable-expressions, liveness, use-def-chaining
etc. can be characterized as having 1-related frameworks. We assume that the dataflow problem being
tackled by DDFA has a 1-related framework. While this assumption is not necessary, it simplifies matters
agreat deal, especially by ensuring that the summary functions we generate can be compactly represented
usinggen andki | | sets.

3.3 Ip-forksand Ip-regions

A node is labeled as a fork if it has more than one successor. A fork » is said to be lossy with respect
to a dataflow solution @ if it receives different the information propagating up to » from its successors
is not the same aong every path. In such cases, we must make the minima assertions that hold true
aong every path, leading to loss of information. Formally, anode v islossy if Ju € succ(v) such that
CD(U) # w€s1|:|cc(v) q)(w)

Each fork has avariable which determines the successor node to which control will be transferred after
the fork is executed. Thisvariable, called the predicate, will be defined before the fork is reached. The set
of nodes that contain reaching definitions of the predicate are called fork-determinants. A fork » is said to
predictable at an op-node op if and only if thereis no fork-determinant in pathsp(op, v). Note that afork’s
predictability iswith respect to an op-node. For instance, fork » may beincluded in two different domains,
induced by op1 and op,. Fork v’s direction may be unpredictable at op; because a fork-determinant liesin
pathsp,(op1,v), but it may be predictable at op, because thereis no determinant in pathsp,(op2, v).

Forks that are both lossy and predictable are called Ip-forks. The set I.p contains al the Ip-forksin
domain D. The op-node of the domain is aso marked as adummy |p-fork and includedin 7.p.

Just as op-nodes induce domains inside flow graphs, similarly Ip-forks induce |p-regions within op-
domains. Recall that an op-domain begins at an op-node and is bounded by other op-nodes (or program
exit points). Similarly, a region begins at a Ip-fork node and includes al nodes that can be reached from
that fork without passing through another Ip-fork or exiting of the domain. Thus, each region is bounded
by Ip-fork nodes and domain-exit nodes. Formally, region R, = (v, N,,, F,, X)) where:

e v € Lp isalp-fork that induces the region.

"This can be achieved in most cases by splitting a basic block.



o N,={n|n € succp(v) or I(v,my,....,mg,n) € pathsp(v,n), ma,...,mp & Lp}.
isthe set of nodesinregion R,.

o Fy={(m,n)| m,n € N,,(m,n)€ E} istheset of edges between nodesin the region.
e X,={a| z€ N,n(LpUX)} istheset of exit nodes for the region.

A region R,, can be uniquely identified by thelp-fork node » that inducesit. In the following discussion
wewill often use afork-node’s identifier to refer to the corresponding region. Thus, the phrase, “the region
v” should beinterpreted as R.,.

paths,(m,n) denotes the set of all paths from node m to » that lie completely within the region v.
The successors of alp-fork node, are called its predictable successors, and are denoted by W, = {w | v €
Lp,(v,w) € E}. When execution reaches the op-node, a simple check of »’s predicate can determine the
direction of fork ». Similar predictions are made for all other Ip-forks in the op-domain. The predicted
control-flow edges for al |p-forks are summarized by the predictionmap A : L.p, — N,. If v € Lp then
A(v) € W, such that the fork-direction (v, w) is predicted by acheck of v’s predicate.

Each region has a set of predecessor and successor regions; pred, = {y | v € X,} and succ, =
{y | v € X,}. These predecessor and successor sets are based on the (conservative) assumptions that
control may flow from a fork to any of its predictable successors. At runtime, given a prediction map
A, the predecessor-successor relationships can be narrowed by eliminating those entries that are no longer
possible. Thesenarrowed predecessor and successor setsaredenoted aspred, (A ) and suce,( ) respectively;
pred,(N) ={y| y € pred,, w= Ay) and paths,(w,v) # ¢} and succ,(N) = {y| y € suce,, v=
Aw) and paths,(w,y) # ¢}

34 Summary

Figure 3 summarizesthe most important terms defined in the previous subsections that will be used again
in the following sections. The assumptionsthat have been made are listed bel ow.

¢ Thelattice of data-flow attributesis well-founded (of finite-height).

e The framework is closed, monotone and distributive; i.e. all the transfer functions are monotone
and distributive and it is possible to compose them and perform functional-meet operations on them.
Further, the framework is partitionable and 1-related. These assumptions alow us to represent
summary functions compactly and manipulate them efficiently using bitmaps.

¢ The heavy-weight operation at an op-node depends only on dataflow attributes propagated from other
nodesthat liewithin the same op-domain. We will relax thisassumption later, and allow optimizations
across multiple op-domains.

o If afork-node is designated as being predictable with respect to an op-node, then its fork-direction
can be determined when control is at the op-node. The fork-direction will remain the same as long
as control remains within the same op-domain (the direction may change the next time the op-nodeis
encountered).

4 TheBasic Framework

The basic DDFA framework is atwo-phasealgorithm. Thefirst phase, the builder, isperformed at compile-
time. It constructs summary transfer functionsfor each region. The second phase, the stitcher, is performed



(L, F) I isalattice of attributes, with top (T) and bottom (L) elements and a meet (7).
Fisaset of functionson I, closed under functional-meet (A) and composition (o).
F contains an identity function (f;4) and a constant function (f+).

D= (op,N,FE, X) Op-domain D induced by op-node op,
with nodes NV, edges F/, domain-exit nodes X .

Lp Set of Ip-forks
Thelossy and predictable forks in op-domain D.

R, = (v,N,, F,, X,) | Regioninduced by Ip-fork v,
with nodes NV, edges F,, region-exit nodes X,

W, Successors of Ip-fork node »
These nodes are called predictabl e successors.
A The prediction map
Control-flow directions determined at runtime for all Ip-forksin the domain
suce,(A) Narrowed successor regions
Regions that can succeed v, given A
pred, () Narrowed predecessor regions

Regions that can precede », given A

Figure 3: A summary of important terms

on-demand at runtime whenever control reaches an op-node. It checks the predicates of all Ip-forksin
the op-node’s domain and uses this control-flow information to select and apply summary functions. The
following subsections describe the builder and the stitcher in detail.

4.1 Thebuilder — constructing summary functionsat compile-time

In this subsection, we describe how the builder constructs summary transfer functionsfor Ip-regions.

Theterm «,(n, m) isused to denote a function that summarizes the effect of dataflow operations along
all paths between nodesn and m inregion ». For each region, we construct a set of these summary functions,
W, = {(w,2)| we W,ze X,}. ¥(w,z)summarizes the dataflow operations along on all paths
between w, a predictable successor of the fork node » and =, an exit node of the region. The following set
of non-linear equations describe how 1, (w, =) can be constructed. For each = € X, we have a separate
set of equations:

¢v($7 $) = fid
bu(n,e) = N (fagmy © u(m, 2)) Vn € (Ny — {z} - {v}) 3)
(n,m)eE,

¥y(n,2) for node n can be obtained by taking the summary function of each successor node m
(tu(m, x)) composing it with thetransfer function for node n (f{,,,,,,)) and then using functional-meet (1)
to combine the summary function with similar summary functions obtained from other successors. These
equations are analogous to the propagation equationsin Egs. ( 2), except that they operate on functions, not
dataflow attributes. We can solve Egs. ( 3) by starting with ¢° ) = = frforeschn € (N, — {a} — {v})
and iterating to obtain new approximationsto the’s until convergence Notethat Egs. ( 3) do not compute
asummary function for the fork-node itself. We do not compute (v, z) = A 1, (w, =) because the meet
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would be lossy. Instead, we defer the meet operation until runtime. Once the successor (say w;) of the
fork-node v is known the meet can be eliminated by simply assigning ¢, (v, z) = ¥, (w;, x)

There are several pragmatic problems that arise when constructing summary functions. Egs. ( 3)
manipulate transfer functions directly, instead of just applying them on elements of .. The ¢'s that are
generated may not have a finite representation if 7 isinfinite. Even when I isfinite, the space required
to encode these functions may be excessive. As pointed out by Sharir et. a. [21], the summary-function
approach bel ongsto the class of eiminationalgorithmsfor solving dataflow problemssinceit usesfunctional
compositions and functional meets in addition to functiona applications. All such elimination algorithms
[2, 10, 20, 19] face similar problems. In practice, these agorithms are limited to cases where the functions
in F' possess some compact and simple representation, in which meets and compositions of e ements of F
can be easily calculated, and in which F' isawell-founded semi-lattice. Fortunately, this class of problems
isquitelarge and includestheclassical “bit-vector” dataflow problems. In particular, the important subclass
of 1-related problems (introduced earlier in section 3) aways have compact representations for summary
functions. Further, it iseasy to perform functional composition and functional meetsfor 1-related problems;
we show how this can be achieved usinggen and ki | | sets.

Each basic block ¢ has atransfer function f; € F, that can be represented in terms of two sets - a set (¢;)
that contains a list of attributes which are mapped to T by the block and a set (k;) that lists the attributes
which are mapped to L by the block. Other attributes are assumed to be unaffected. ¢ and % are supposed
to correspond to thegen and ki | | sets respectively.®

For the DDFA framework to work, we must show how to perform the functional-meet and functional-
composition of these transfer functionsusing g and % sets.

Composition of gen-kill sets: If f1 = (g1, k1) and f2 = (g2, k2), then the compositefunction F' = f10 f,
isdefinedas F' = (g, k),whereg = (91U (92 — k1)) and k = (k1 U (k2 — ¢1)). I summarizesthe effects of
applying f> on any attribute and then applying f1 onthe result. Intuitively, the gen set of F' should contain
al elementsinthe fi’sgen set aswell asthosein f>’'sgen set that are not killed by f;.

Meet of gen-kill sets: If f1 = (g1, k1) and fo = (g2, k2), then thecompositefunction /' = f1 A f» isdefined
asl' = (g.k),whereg = (91N gz2)and k = (ky U k2)

We al so need to constructively show that there existsaset F' which (i) containsall thetransfer functions,
fr and f;4 (i) is closed under functional composition and functional meet (iii) forms a function-lattice of
bounded depth and (iv) contains only distributive functions. These properties are actualy quite simple to
show. We define f;q = (g = ¢,k = ¢) ,and fr = (¢ = U,k = ¢), where U represents a bitmap with all
bits set (i.e. al attributes are generated). If the set of attributesin I is finite then the power set of these
atributes is also finite. This limits the possible number of distinct ¢ and & sets ensuring that the number
of possible functionsisfinite. Hence, F' can be constructed and is closed. Since F' isfinite, the height of
its lattice is bounded. To show distributivity of F' we need to show that distributivity is preserved under
functional-meet and functional-composition. This can be shown quite easily (follows from the fact that

filz) = (2 — k;) U g5).

411 Datastructures and Example

The builder passes the results of its analysis to the stitcher via pre-initialized data-structures in the
data segment of the compiled code. For each op-domain in the CFG, we keep a data-structure called an
op-domain table. An op-domain table contains one entry record for every region within the op-domain.

8To be precise, this depends on the orientation of the lattice. There are cases where the intuitive mapping may be reverse. For
instance in live-variable analysis, the null set is the top element in the lattice; hence, in that case, our symbol ¢ represents the
standard ki | | set and the symbol % representsthe gen set.
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predicate fork pr ed- fork

region check dir. €  ecessors directions. (A ) Q
oP X X Cache X (b=2,¢=0) {a}
b b =2 2 2 2 (b=1c!=0) | {B}
c c =2 2 2 2 Cache

Op-domain-table ( op:L )

(dir, exit) {gen}, {kill} (dir, exit) {gen}, {Kkill}
b=1, ¢ {B} {a} c=0,0p2 | {a} {1}
b=2, ¢ | { a} { B} c!=0, opl| {B} {}
b=3, ¢ { o} {1 c!=0, op2| {a,B} {1}
Region-table b Region-table ¢

Figure 4. Data-structures created by the builder and passed to the runtime stitcher for the op-domainin the
running example. The fields marked by ? are to befilled in by the runtime stitcher. The cache has been
pre-filled by the builder for two of the paths.

Theserecords contain thefollowing fields: (1) apointer to aregion-tablefor each region, (2) apointer tothe
code that must be executed to determine the direction of each region’s Ip-fork, (3) scratch space for storing
the fork-direction (4) scratch space for storing intermediate dataflow results computed during stitching,
and (4) a place-holder for the set of predecessors pred,(A) for each region. The predecessor-set cannot
be computed at compile-time because it depends on the prediction map A (the predicted fork-directions).
Each region table contains summary functions indexed by (fork-direction, region-exit) pairs. Not every
region-exit is reachable from every fork-direction, so the region tables are stored in a sparse format.

Figure 4 illustrates these data structures for the running example. It shows the op-domain table for the
first op-node and the region-tabl es corresponding to the |p-forksin thefirst op-domain. The region-tablefor
the op-node is not shown because the region has just one node and does not need summary functions. The
second region (region b) isinduced by thefork at swi t ch( b) . The switch forksin three directionsall of
which to the same region-exit. Hence, there are three entriesin region-table c, one for each (fork-direction,
region-exit) pair. Asregion b doesnot contain any forks, its summary functions can be constructed simply
by composingthegen and ki | | sets of the nodes aong each of the three possible paths. The third region
(region c) iscreated by thei f (¢) conditional. This conditional forksin two directionsc=0 and c! =0 and
has two region-exits op1 and op,. The region has three entries, not four, because there is not path from the
c=0 fork-direction to exit op;. Region c containstwo forks (i f (a) andi f (d)). To construct functions
that can summarize the effect of these forks, we need to perform functional-meet operations as specified in
Egs.( 3). Figure 5 demonstrates the construction of one of these summary functions — .(c! =0, op3).

Thesparseformat of theregion-tablesencodes an important piece of informationthat isnot clearly shown
by the simple tabular structures used in Figure 4. The builder analyzes each region to determine which
fork-directions can lead to which region-exits. Thisinformation is not thrown away — it iskept in the form
of parameterized successor setsfor each region: succ,(w;) = {y| y € Lp,w; € W, paths,(w;,y) # ¢}
At runtime, when the prediction-map X is available, computing the narrowed successor sets is merely a
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fid =(gen:{}, kill: { })
fop=(gen: o, B}, Kil: {})
fCX =(gen:{a }, kil:{})

Figure 5: Construction of the summary function for (c! =0, op,) entry of region-table c. The builder starts
by assigning f;4 to exit node op», and f+ to al other nodes. The iterative algorithm propagates these values
backwards until convergence. Edges in the figure have been labeled with the fina ¢’s assigned to their
targets. The final result is ¢.(c! =0, 0p2) = f. 5. Note that when computing «.(c! =0, op,), values are
not propagated along fork-direction (¢ = 0) and node op; istreated like a non-exit node and isinitialized
to fr, not f;4.

matter of selecting one of these parameterized successor sets, i.e. suce,(A) = suce,(w;) wherew; = A(v).

The builder also generates a cache structure for holding previously computed dataflow properties. This
cache is associatively indexed by the prediction-map A. It may not be feasible to store the dataflow results
for al combinationsof fork-directions. In such cases we can use a hash-function that hashes the prediction-
map to an entry in the cache and employ a simple cache-replacement policy such as random or fifo. The
compiler can prime the cache by statically computing the dataflow properties for the “likeliest” prediction-
maps. For instance, in Figure 4, the cache has been pre-filled with dataflow resultsfor two different sets of
fork-directions— (b=2,c=0), and (b=1, c!=0).

4.2 The stitcher — applying summary functions

This section describes the stitcher, the runtime phase of DDFA. The stitcher is invoked every time
control reaches an op-note. On each invocation, it checks the predicates of every Ip-fork in the domain and
determines their directions. The prediction-map selects appropriate summary functions from region-tables
which are then used to propagate datafl ow information backwards to the op-node.

We pause to make some observations about regions and their summary functions. A regionislikeabig
basic block and itssummary function W isanalogousto ablock’stransfer function. However, thisanalogy is
incomplete. Basic blocksaresingle-entry single-exit unitswhileregionshave multipleexits. Moreover, each
of the predictable successors of aregion’s |p-fork can be viewed as a potentially different entry point (with
only oneentry isfeasible at any time). Thusregionsare equivalent to (possibly overlapping) multiple-entry,
multiple-exit hyper-blocks. The builder has prepared for this complexity by keeping separate summary
functionsfor each (entry, exit) pair, i.e. W, = {¢,(w,z)| w € W,, € X, }. Inaddition, the builder has
also prepared parameterized successor sets { succ,(w1), suce,(w2), . .. }, where suce, (w;) represents the
set of regionsthat can succeed region v if the fork-direction were known to be to be (v, w;).

The stitcher isinvoked every time execution reaches an op-node. It checks the predicate corresponding
to each Ip-fork in the op-domain D = (op, N, F, X'). Theresults of these checks constitute the prediction-
map A which maps each |p-fork node to one of its successors. These fork-directions will remain true as
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prefetch( a, B)

Qep)={ a,B} Iteration 1: a=3, b=3, ¢=3
. fork ———
work-list dirslb=3 c=
algorithm
prefetch( ¢
if b Q(b)={ a,B} L

Iteration 2: a=2, b=3,¢c=3
reuse
cache L/ prefetch( q,

Qc)={ B} lteration 3: a=1, b=3,¢c=3

T rczucshee L/ prefetch( a,

1
{B} {a, B} lteration 4: a=0, b=3, c=3
% g E:Zucii L_/r prefetch( a, |
O 0

Figure 6: Operation of the stitcher on the running example. The summarized graph is shown on theleft with
theedges selected by thepredictionmap A=(b = 3, ¢ !'= 0) markedinbold. Thework-list algorithm
performs iterative analysis on this summarized graph, reaching the fix-point values shown alongside. The
result, {a, 3}, is used to prefetch data and is also cached. The cached result is reused in the next three
iterations because fork-directions do not change.

long as control remains in the op-domain; they may change direction the next time control encounters an
op-node. Once we have the prediction-set narrowing the successor rel ationships between regionsistrivial;
thisis merely amatter of selecting the correct parameterized successor seti.e. succ,(A) = suce,(w) where
w = A(v).

We can now describe the backward flow equations that must be solved by the stitcher in order to obtain
dataflow information at the op-node of the domain.

Q(z) = 1 Vee X
Q(v) = M A)va(/\(v), w)(Q(u) ) Yv € Lp 4

u€sucey (

Here, Q(v) representsthe dataflow properties at thelp-fork ». The Q's of adjacent regionsare related to
each other in exactly the same way that adjacent basic-blocks are related to each other in Egs. ( 2). Except
for the fact that we are using summary functions of the form ¢, (w, u) instead of transfer functions of the
form f(n, m), the two sets of equationsare equivalent. It isworth noting that Eqgs.(4) do not yield dataflow
information at every node in the control-flow graph. They compute Q(v)(sonly for v € Lp, i.e. thelp-fork
nodes in the domain. Aswe are only interested in Q(op) and op € L p, thisdoes not create a problem.

The solution procedure for Egs.( 4) has been adapted from Kildall'siterative algorithm. Initially Q% = T
foreachv € Lp. Weiteratively re-apply Egs. (4) to obtain new approximationsto the Qsuntil convergence.
The next subsection outlines an implementation of this iterative agorithm, which incorporates caching of
dataflow results. Caching is very important because it alows dataflow results to be reused — this can
substantialy reduce runtime overheads.
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4.2.1 Stitcher algorithm and Example

Figure 7 presentsthe stitcher algorithm. The stitcher consistsof four parts, marked as statements S1 through
SA. The first statement (S1), checks the predicates of all Ip-forks in the domain and determines their
directions. The second statement (S2), checks the cache to see if dataflow results for this particular set of
directions are cached. If so, the cached results can be used directly to prefetch data (S4). If the results are
not cached, an iterative work-list agorithmisinvoked (S3). Thisalgorithm, shown on theright in Figure 7,
is similar to standard iterative work-list algorithms used for dataflow analysis except that it operates on
regions, instead of basic blocks. The work-list contains tuples of theform (r, X, | n), which denotes
atributes | n flowing into region r through exit node x. In each iteration, a tuple is removed from the
work-list and the transfer function «,.(A[r], z) is applied to | n, the incoming attributes. The result of this
function-application is combined with region »'s old dataflow attributes using the meet operator 1. The
result of the meet is used to update region r’s attributes and is also fed to its predecessors by adding new
tuplesinto the work-list. This processis repeated until convergence.

Figure 6 illustrate the operation of the stitcher using the running example The program iterates through
ther epeat - unt i | loop four times, sothepr ef et ch() instructioninsidetheloop will beinvoked four
times.

In thefirst iteration through the loop, the values of b and ¢ are 3 and 3 respectively, so A, the prediction
mapis(b = 3, ¢ != 0). Assumingthebuilder hasprimedthe cachewiththeentriesshowninFigure4,
ChkCache() will fail, and the work-list algorithm will be invoked. Thework-listisinitialised with tuples
{(e,0p2, L), (c,0p1, L)}, corresponding to the two exitsof the op-domain. All regionsareinitially assigned
the dataflow attribute T. Tuples are then removed from the work-list and transfer functions are applied. For
example, after removing the first tuple (¢, op2, L), the agorithm will apply (¢! = 0, 0p2) to L and get
{a,p}. Thiscauses Q(¢) tobe updatedto{«, 5} and anew tuple(b, ¢, {«, 5} ) isinserted into thework-list.
The agorithm will reach fix-point in two iterations — the final assignments are shown in Figure 6. The
result, Q(op) = {a, 8} is fed to the prefetcher which uses this information to bulk-prefetch both remote
variables. This dataflow result is also placed in the cache. When the stitcher is reinvoked in the next
threeiterations of theloop, it will find that the fork-directions arethesame,i.e(b = 3, ¢ != 0). The
dataflow results will be picked up from the cache and the prefetcher will prefetch {«, 3} on each of the
following iterations.

4.3 Pragmatics. space and time

The primary space requirement is for storing the summary functions for each Ip-region. We note that only
very loose bounds can be placed on the number of directions that a fork can take. For example, a switch
statement could fork into very many directions(order of N, thenumber of CFG nodes) and different summary
function would need to be stored for each of these directions. We bound the number of fork-directionsto a
small number W — when the number of fork-directions gets exceeds W, we perform afunctiona -meet on
all the extra directions and store a single summary function for al of them. The number of exit nodesin a
Ip-region is bounded by the maximum number of |p-regionsin an op-domain (say 1.). Thus the number of
summary functionsto be stored in alp-region isbounded by W x L. Each op-domain can have L |p-regions
so the total number of summary functions stored within an op-domain can be aslargeas W x L x L. Note
that thisisavery conservative estimate. It assumesthat control can reach every exit of anlp-regionfrom any
of thefork directions. It aso assumesthat every Ip-region connectsto every other I p-region (a circumstance
that would require a very convoluted set of mutually recursive functions or inter-connecting jump-tables).
Even so, wenotethat 7. isthe number of predictablefork pointswithin an op-domain, which we expect to be
areasonably small number; hence, the number of summary functionsthat need to be stored for the lp-region
should not be excessive. It is also possibleto bound the number of |p-regionsin a op-domain by specifying
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Helper Functions

Functionality

succ(r, A)

regions succeeding region r , given fork-direction A

pred(r, X)

regions preceeding regon r , given fork-direction A

Set Predecessors(r)

prepares pred(r,\) sets by transposing
pre-computed succ(r, A) sets

Gr,dir,exit)

gen component of summary-function ¢, (dir,exit)

K(r,dir,exit)

kill component of summary-function «,(dir,exit)

renmove(list)

returns (and removes) aregion from worklist

ChkPredi cate(r)

checks predicate to get direction of fork r

ChkCache(opd, di r)

checks if dataflow results are cached

St oreCache(opd, dir, fl ow)

stores dataflow resultsin cache

Set Pref ect hLi st (1 ow)

fills datastructures used by the prefetcher

function wor k(opd, A)
foreach region r

. . . out[r] «— T
function stitcher (domai n *opd) fore[acr]1 exit x in succ(r, A)
if x.type = O

S1: foreach region r

A[r] < ChkPredicate(r) wklisst — (r,x, 1)

while (wkLi st # ¢)
(r,x,In) — renmove(wkLi st)
ol dQut «— out[r]
tnp  — Qr,A[r],x) U
(I'nm - K(r,A[r],Xx))
out[r] « out[r] MO tnp
if (out[r] # oldCut)
foreach region p in pred(r, )
wkLi st — wkList U
(p,r,out[r])

S2: Q «— ChkCache(opd, })

S3: if ( not found in cache )

Set Predecessor s()
Q — work(opd, 2)
St or eCache(opd, A, Q)

Set Pref et chLi st (Q)
end

returns out [ Op]
end

Figure 7: Thestitching algorithm. The workList containstuples of theform (r, x, | n), which denotes
atributes | n flowing into region r through exit node x. In each iteration, a tuple is removed from the
work-list and the appropriate transfer function applied; this processis repeated until convergence.

the maximum number of |p-forks that should be checked at the op-node. All other Ip-forks would then be
considered unpredictable and would be completely analyzed at compile-time. This flexibility alows the
DDFA framework to trade accuracy for runtime space as well as execution time. We would liketo point out
that sacrificing accuracy by bounding the number of fork-directions and Ip-regions in an op-domain does
not make DDFA unsafe, it only reduces the benefits of having future control-flow information.

The primary concern regarding timeisthat the stitcher executes an iterative algorithm every time control
reaches an op-node. In this regard, we point out two alleviating factors. We note that the results of the
runtime analysis at an op-node are cached. The cache entries are uniquely identified by the fork-directions
for al the Ip-forks within the op-domain. The cache of dataflow results need not be large. A two-entry
cache should suffice for most cases as it takes care of the common case where one path is more taken
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more frequently taken than others. A similar technique, called record-replay [18] has been shown to work
well for optimizing communicationinirregular paralel programs. Even in cases where cache-reuseis|low,
overheads can still belimited. The stitcher operates on the high-level region-graph, which is much smaller
than the origina control-flow graph. Intheworst case, we can bound the time allowed to the stitcher. If this
timeis exceeded without reaching afix-point, the stitcher is stopped and we can fall back on the results of
compile-time analysis (which can be stored in the cache for use as a fall-back option).

5 Proofs

In this section, we providethetheoretical underpinningsfor DDFA. We show that: (1) DDFA terminates; (2)
DDFA issafe; and (3) DDFA computes a solution that is no worse than a compil e-time meet-over-all-paths
solution. Our proofs are largely adapted from the proofs of the two-phase interprocedural analysisused in
[21].

We begin by defining a few terms that will be used in the proofs. The domain under consideration is
D = (op, N, FE, X), using terminology of section 3. We need only consider a single op-domain because
DDFA treats domainsindependently of each other. The domain contains a set of Ip-fork nodes 7., and each
of these fork-nodes induces an Ip-region R, = (v, N, F,, X,,). A sequence of nodes p = (n1, n2, .....nx)
issaidto beavalid pathif al itsedgesareinthedomain,i.e. 1 < ¢ < k, (n;,n;+1) € E. Thelength of the
pathisthenumber of edgesinit (k — 1intheabovenotation). paths(m, n)istheset of all pathsleading from
m ton. A path p = (n1,n2,...n;) can be decomposed into sub-paths (or segments) — the decomposed
path isdenoted as p = (n1, n2, ..., 4|74, Nast1, - - - W|| 70, o1, - -] -+ || - - - 72k). Where ng, ng, . . . etc.
are the segmentation-points. Our notation includes the segmentati on-pointstwice in the decomposed path.
A region-segment is a segment that begins at alp-fork node and ends at one of the exit nodes of the region
induced by that fork. Formally, segment s = (ng, n1, .....nx) isaregion-segment if ng € Vp and ny, € X,
andandforl <: < k,n; ¢ Vp.

Path Decomposition Lemma: Let p beavalid paththat beginsat alp-fork nodevg and endsat adomain-exit
nodex € X. Thelemmastates that path p satisfies three properties. °

1. Decomposability : Path p admits a decomposition into region-segments. This property means that
p can be decomposed into segments such that p = (vo..., zo||v1...21||...||vj...x ) Where vg, v1, ..., v; €
Vp, z; € Xy, and paths,, (vi, z;) # ¢.

2. Uniqueness : For every valid path there is a unique decompoasition into region-segments; i.e. there
isone and only one way to decompose p into region-segments.

3. Existence : The converse is aso true; any sequence of valid region-segments that are “correctly
connected”, constitute a valid path. More precisely, say S5 is a sequence of region-segments, S =
(solls1]| - .-||sk) where s; = v;...z;, v; € Vp, 2; € X,,. Correctly connected means that the
sequence satifies the property ; = v;41. If these constraints are satisfied then S € paths(vo, k).

Decomposahility and uniqueness are related properties and can be proven together. Note that the path-
decomposition lemma constrains the path p’s start node »g to be a Ip-fork node and the exit = to be a
domain-exit node (and therefore an exit-node of atleast one region). If there are no Ip-forks in the path

9There are subtle differences between our path decomposition lemmaand asimilar lemmausedin [21]. Thesedifferencesstem
from the fact that regions can overlap while procedure calls are completely nested. Decomposition of a path into unique procedural
segments is much more intuitive because every CFG node of belongs to only one procedure while nodes in our region-segments
can belong to multiple regions.
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p = (v, ..., ), then p itself is aregion-segment and the entire path is the trivially unique solution. If the
path does contain other Ip-forksinside it, then a decomposition can be obtained by segmenting the path at
Ip-fork node. Thisis avalid decomposition as each segment s; = v;...v;41 hasv; € Vp and v;41 € X,
and all the intermediate edges are not |p-forks and therefore in £,.. Thisdecompositionin region-segments
isunique. Any other choice of segmentation points would result in atleast one segment having a Ip-fork
node in the middle; such a segment cannot be a vaid region-segment. The “existence” property, follows
directly from the fact that compositionsof valid paths yield other valid-paths as long as the end of the first
path is the start of the second path. This conditions are true — each region-segment is a valid path and the
end of one segment is the start of the next segment.

5.1 Termination

We need to show that both the builder and the stitcher agorithmsterminate.
Termination of the builder follows from the following observations.

1. The summary function of a nhode never rises (in the function-lattice) from one iteration to the next;
i.e. '+l < 4. Thisfollowsfrom monontonicity of transfer functionsin F.

2. Ineach iteration of the builder one of three things must happen : (1) the algorithm terminates because
the work-list is empty or (2) the summary function of atleast one node in the region changes— i.e.
In € N, suchthat v +(n,z) < 1'(n, ) or (3) the size of the work-list is reduced. Only possibility
(2) increases the size of the work-list. However, this possibility can happen only a bounded number
of times, because there are a finite number of nodesin aregion and the depth of the function-lattic ¥’
is bounded.

The stitcher phases terminates because :

1. The dataflow attribute assigned to a region never rises from one iteration to the next; i.e. Q+1(v) <
Q'(v). Thisfollows from monontonicity of summary functions.

2. Ineachiteration of the stitcher one of three things must happen : (1) the a gorithm terminates because
the work-list isempty or (2) the dataflow attribute of atleast one region changes—i.e. 9v € Ip such
that Q“+1(v) < Q'(v) or (3) the size of the work-list is reduced. Only possibility (2) increases the
size of the work-list. However, this possibility can happen only a bounded number of times, because
there are a finite number of region in a domain and the depth of the attribute-lattice . is bounded.

We are now ready to prove the other two results.

5.2 DDFA issafe

For any feasible execution path p, from op to an exit node » € X the dataflow properties that flow up the
path would be ideally determined by the composition of the transfer functions for each node along the path.

That is, if path p = (op..., zo||v1, ...z1]]...||vj...x) then fo(op) = fro...0 f, 0...0 fy 0. . f,(L). TO
prove safety, we need to show that Q(op) computed by DDFA will be a conservative approximation of
f»(op). We need to provethat :

Q(op) < fy(op) Vp € paths(op,z),z € X (5)

We outline the steps of the proof bel ow.
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1. Every region-segment (v;, w;, . . ., ;) in the unique decomposition of path p, will have a correspond-
ing summary function v;(w;, ;) constructed by the builder.

2. ;(w;, x;) isasafe approximation for the composition of transfer functions of nodesthat liein the i-th
region-segment of path p ; i.e. ¥, (w;, ;) < fu, o...0 fi,. Thisisshown by an inductive proof on
the segment-length, using the safety property of functiona-meet and functional-composition. After
this step, we know that the builder is safe.

3. For every segmentation-point v; . ..z;||v;+1. .. in path p, there will be a corresponding backward
propagation of attributes from region v; 1 to region »;. Thisessentially translates to the requirement
that v; 41 € suce,,(A) which is directly based on the safety of the predictability analysis (for which
we use safety of reaching-definitions analysis). After this step we know that the region-graph used
by the stitcher includes the path p.

4. Theiterative stitching algorithm on the region-graph is safe. Thisrequires an inductive proof on the
number of region-segmentsin path p.

5.3 DDFA matches Meet-over-all-pathssolution

In this section, we show that DDFA's solution is at least as good as a compile-time meet-over-all-paths
(MOP) solution (). That iswe need to show that :

Y(op) < Q(op) (6)

Theideahereisto show that if we did not use any runtimeinformation (knowledge of control -flow deci-
sions), theresults of DDFA’s two-phase analysiswould still be at least as good as a M OP solution. Consider
acrippled version of DDFA (caled p-DDFA, for poor-man’'s DDFA) that isidentical to DDFA except that
the stitcher does a poorer job of selecting which summary functionsto apply. Unlike DDFA’s stitcher which
selects functions based on fork-direction as well as the exit node, p-DDFA sdlects based only on the exit
node. This may activates a larger number of summary functions at every region, all of which are applied
to the incoming flow attributes. The results are combined by a meet operation (7). Let us denote the re-
sultsobtained by p-DDFA as Q*(op) We can show that p-DDFA can perform aswell asaM O P analysis,i.e:

Y(op) < Q"(op) < Q(op) (7

First, we introduce an aternative way of obtaining the dataflow results at the op-node, called BOA
(builder-only approach). The BOA approach ignoresal Ip-forks and treatsthe entire op-domain asasingle
region. It computesa summary function (multiplefunctionsif there are multiple exits) for the entire domain.
BOA's stitcher is much simpler than DDFA's stitcher. If the domain has asingle exit, then there will be only
one big summary function for the entire domain; the stitcher can get the dataflow result for the op-node by
merely applying this function to L. If the domain has multiple domain-exits then there will be a different
summary function corresponding to each exit. Each of these summary functions is applied to 1 and the
results are combined using 1.

Lemmal p-DDFA'ssolutionisat least as good as a builder-only solution (BOA).

The proof of Lemma 1 is based on the “existence” property of the path-decomposition lemma. Any
sequence of region-segments used by p-DDFA’s stitcher isa valid path. This path must aso be considered
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Figure 8: Interprocedural Example. Procedure Piscalled fromtwo sites. At both sites, thefork inside P can
be predicted. Asaresult, the op-domains for the two sites can share the common region’s data-structures.

by the BOA builder when computing the domain’s summary function. An inductive proof (on the number
of segmentsin any such path) can be used to show that the domain summary function will be no better than
the p-DDFA approach of iterating on the region-graph.

Note than BOA iscomputing the domain’s summary function for the entire op-domain using an iterative
process. We can show that the iterative computation of the summary functionisjust as good as afunctional
meet over dl paths (FMOP) computation of the summary function.

Lemma 2 The BOA solutionisat least as good as a FMOP solution.

Thispart isrelatively easy - other than the fact that we are operating on the function lattice F', this step
isidentical to any normal dataflow analyses. Since I’ isdistributive, monotone, bounded and closed under
functional -composition and functional-meet, we can directly borrow proofs from Kildall [14].

Lemma 3 The FMOP solutionisat least as good as the MOP solution.

This step shows that operating on the functional domain does not hurt the quality of the solution. For
thiswe just cite previouswork on summary functions, in particular Theorem 7-3.4in [21].
From the Lemmas stated above we have : DDFA > p-DDFA > BOA > FMOP > MOP.

6 Extensionsto thebasic framework

Inthissection, we extend the basi cframework to incorporateinterprocedural analysis, higher-order functions
and separately compiled functions. We aso describe how the runtime analysis can be modified to look
further ahead in the execution — the goal being to optimize over multiple op-domains.
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Figure 9: Separately Compiled Code. Procedure Pis called from the separately compiled code on theright,
aswell asfromwithinitsown module. The shaded regions show the new op-domainsthat would be created
to handletheesc-cal | .

6.1 Interprocedural Analysis

To handle procedure calls, we extend the control-flow graph. We insert two nodes for each cal-site
— a call-node and a resume-node. For every procedure, we insert an entry-node and and return-node.
Each entry-node has incoming edges from all its call-nodes; each return-node has outgoing edges to the
corresponding resume-nodes. A suitable binding function and itsinverse are associated with the entry-node
and the return-node of a procedure.

Extending DDFA to an interprocedural setting introduces two primary problems. First, not al paths
in the control-flow graph are valid. Control that arrives at a procedure via a call-node can only leave the
procedure viathe matching resume-node. Therefore, care must betaken to preservethe calling context while
creating op-domainsthat straddl e procedure boundaries. Second, since procedures can becalled from alarge
number of call-sites and since each call-site can be within a different op-domain, the regions corresponding
to the code in the procedure can be a part of alarge number of op-domains. Since aregion tableis generated
for every region in an op-domain, this can result in alarge number of replicated region-tables.

Sharing the region-tables for common regions among different op-domains that reach a procedure is
non-trivial — a fork within the procedure may be predictable at one op-node but not at another. We note
that this problem is similar to context-sensitive binding-time analysis [13] and suggest a similar solution.
For each op-domain that extends into a procedure, we mark each fork within the procedure asp (lossy and
predictable) or non-Ip. If two op-domains induce the same markings for all forks in a procedure then they
can share the region analysis and data-structures for that procedure. Since the number of forksislikely to
be small, we expect that the number of possible divisionswill aso be small, alowing significant sharing
across op-domains.

To increase the possibility of sharing, we ensure that Ip-regions don’t straddle procedure boundaries.
We do this by marking entry-nodes and resume-nodes as dummy Ip-fork nodes. Since these forks have
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only one child, they are always predictable —we' ve just imposed a false lossiness onto them.'© Figure 8(a)
illustrates the interprocedural representation and sharing of regions. In the figure, the regions of procedure
P are shared by both op-domains.

6.2 Separately compiled code and higher-order functions

The primary problem that has to be dealt with when extending DDFA to separately compiled code and
higher-order functionsisthat the complete control-flow graph is not available at compile-time. This makes
it impossibleto perform a precise predictability analysis, and correctly mark of forks as Ip-forks. In these
situations, we have to make some conservative approximations which may lose precision across cal-sites
but preserve it on each side of the boundary. The strategy we have chosen is to insert new op-nodes at
every control-flow point at which control may arrive from an unknown place. This strategy assumes that it
is possibleto safely insert new op-nodes (e.g. it is safe to insert new bulk-prefetch calls).

We refer to callsto separately compiled code and to unknown functions as esc-calls. The corresponding
resume-nodes are marked as esc-resumes. Similarly, we mark entry- and return-nodes of escaping functions
(functions that can be called from unknown sites) as esc-entries and esc-returns. See Figure 9 for an
example. To handle the fact that a function may have both known and unknown call-sites, we analyze two
versions of escaping functions— a non-escaping version and an escaping version. The non-escaping version
isanayzed as usual and alows op-domains to straddl e procedure boundaries. For the escaping version, we
place an new op-node at the esc-entry node. We a so place an op-node at the esc-resume node corresponding
to sites that may call unknown functions. No dataflow information can flow across these call-sites. During
runtime | ispassed up from these call-nodes. Figure 9 showsan example of separately-compiled function.
The shaded regions show the new op-domains that would be created to handle the esc-calls. Higher-order
function calls are treated in exactly the same manner.

6.3 Dynamic merging of op-domains

DDFA restricts the domain of influence of each operation to a single op-domain. Thisis because alp-fork
that is predictable at one op-node may not be predictable at a previous op-node. Thus, op-domains form
boundaries of predictability. However, thisboundary is not dways strict. There may very well be situations
where all the fork-directions predictable at an op-node op; could aso be predicted at one of its preceding
op-node (say, op1). These circumstances can be detected at compile-time using simple reaching-definitions
analysis. In these cases, op; is designated a half-op node (or hop-node) with respect to op1. The runtime
stitcher when invoked at op1, can detect that control may reach op,. On detecting that op» isahop-nodewith
respect to op1, the stitcher can continue processing op,’s domain-table. by checking op,’s fork directions
and adding op»’s regionsto its own. The hopping process continues until control reaches an exit that is not
a hop-node.

For instance, in our running example (Figure 1), thelp-fork (i f ( d) ) inside op,’sdomainispredictable
even a op1. When the stitcher at op1 detects that control can exit the loop and reach op» it stitches in
op2’s Ip-region to its own set of regions and prefetches the combined result. In the example, the prefetch
instruction is already prefetching ({«, 5}), so dynamic merging does not make a difference.

OMarking a non-lossy node as lossy does not hurt DDFA's correctness or the quality of the results; it only increases the number
of regions that must be analyzed at runtime, thereby increasing space and time overheads.
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Figure 10: A simple program that cannot be successfully linked using a conservative approach. After the
migration a go, the linker at the new site would try to bind A f open aswell as B_f open because both
are deemed reachable. Since these functions are defined on different sites, the linker would fail. Checking
the calling-context at runtime avoids this problem.

7 Other Applications of Deferred Data-Flow Analysis

This paper has used bulk-prefetching as a running example for DDFA. In this section we briefly outline
other dataflow problemswhere DDFA is applicable.

7.1 Compiler-directed Dynamic Linking for Mobile Programs

The problem of dynamic linking for mobile programs is described in [1]. In mobile programs, there are
migration points (caled go( newhost ) instructions) at which the execution is suspended on the current
host and is resumed at a named host. After migration, the mapping between program names and local
procedures have to bere-established. The problemisto determinethe namesthat the mobile program can be
refer to whileon aparticular host and to dynamically link thesein at the migration point. A simplecompiler-
based sol utionwould beto collect all namesthat can possibly be referenced between one migration point and
the next and to link these names when the program migrates. While this approach is safe, it can be overly
restrictive and can result in link-failures for “reasonable” mobile programs. For example, in Figure 10,
the call to go isinsidethe function cl ean_and_go, which is called from procedures gr ep_on_A() and
grep_on_B() . Ignoring the calling context (which will be known at runtime) would the linker to link in
both A_f open and B_f open. Since these two f open functions are defined on different hosts, the linker
would fail. To tackle this problem, Acharya et. a. [1] propose a compiler-directed technique that uses
the runtime call-stack to prune the set of future control-flow paths. The linker linksin only those names
that may be reached aong these pruned paths. For the example in Figure 10, the agorithm can check the
call-stack at runtime and determine the direction of the return-fork. Thisalowsit to link in only one of the
f open, and prevent alink-failure.

The solution proposed in [1] only handles return-forks. Deferred data-flow analysis can improve the
solution presented in [1] by taking all predictable conditionalsinto account while pruning future paths. and
yields asmaller set of namesto link in.

Figure 11 illustratesthe differences between the static solution, the call-stack algorithm of [1] and the
DDFA solution. The mabile program shown in the figure will migrate twice. It migrates from hone to
newsi t e whereit performs a host-specific operation (f get s) after which it migratesback to hone. The
first call to go() ismade through the call-sequence A — B — go, and the second call isis made through
the call-sequence A — D — B — go or A — U — B — go. The corresponding flow graph is shown
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proc A (newsite)

honme = host name(); (‘B_entry
call B(newsite); CBOS
i f(newsite.os == dos) B exit

cal | ; . =
el se DO proc B(site) Y

call U(); cl eanUp();

. o(site);

process(data): return
return
proc U() proc ()

uni x_f get s(dat a) ; dos_fgets(data); —
cal | B(hone); call B(home) (e \=-
return return

Figure 11: The figure on the left shows amobile program that migrates migratesfrom home to newsi t e,
performs a host-specific operation (f get s) a newsi t e and then migrates back to hone. The figure on
theright showsthe program’sinterprocedural flow graph. Static compile-time collection of link-setsfor the
go cal would requirelinking in both uni x _f get s and dos _f get s causing alink-failure. An algorithm
that inspectsthe call-stack at runtime and usesiit to figure out the calling-context can avoid alink-failure at
the second go but would still fail at the first go. DDFA can predict the direction of the conditiona-fork,
allowingit to safely link in only one version of f get s.

alongside. The dataflow problem being solved is very simple, merely requiring that all names reachable
from ago cal be collected. The transfer function for each basic block hasagen set that containsal the
names referred to in that basic-block. Names are never killed, so ki | | setsare empty. The meet-operator
is set-union.

Using standard compile-time dataflow analysis, we find that the link-set, i.e. the names that can be
reached from the go-nodeare: N ={ U, D, B, dos_f get s, uni x_f get s, process }. The compile-
time algorithm cannot distinguish between thefirst call to go() and the second, so the dynamic linker will
try tolink intheset sameset IV at both migration-points. Sincethefunctionsdos _f get s anduni x_f get s
are not avail able on the same machine, the linker will fail on both occasions.

The call-stack agorithm of [1] can do better than strictly static analysis. It can distinguish between the
first go and the second by inspecting the call-stack at runtime. Its runtime stitcher will create two different
sets of names. For the first go, we have the name-sets: N1 ={ U, DB, dos _f get s, uni x_fgets } and
N, ={ process }. Unlikethe static algorithm, N, isafeasible link-set; unfortunately however, the first
link-set is not, so there will belink-failure after thefirst go.

DDFA can tackle not only the return-fork at B_exi t but also the conditiona i f (si t e. 0s) aswaell.
The name-set created by the DDFA runtime stitcher for the first go call will be based on the vaue of
site.os. Ifsite.os = dos,then N1 ={ D,B,dos_fgets }, otherwise Ny ={ UB, uni x_f gets
}. Both these link-sets are feasible for the linker, so the linker will not fail.
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Figure 12: Garbage collection example. A strictly compile-timeal gorithm would estimate memory required
after thegc() call to bemaz(ssz, sa) + maxz(s1,s2). DDFA can use runtime control flow information (i.e
the value of x) to improve the estimate to select(ss, s4) + select(s1, s2). The region-tables computed by
the builder for the two Ip-forks are shown alongside.

7.2 Explicit Garbage Collection

Garbage collection presents a great difficulty for programs that have real-time requirements. Garbage
collection may betrigerred at any memory alocation point and take unpredictable amounts of time. To limit
this variability, many garbage-collected languages alow the garbage-collector to be turned off unlessit is
explicitly invoked. Explicit garbage-collection is cumbersome because it leads to frequent over-cautious
collections of small bits of garbage even when thereis alot of free space available. Compiler-support can
help by providing the garbage-collector with an estimate of the amount of memory that will be requested
before the next gc() call. The garbage-collector will perform garbage-collection only if the estimate
is more than the amount of available memory. Otherwise, garbage-collection can be deferred until the
next call to gc thus aggregating garbage-collection operations dynamically. However thisis not an ideal
solution. Different execution paths may have different memory requirements and static analysishasto make
worst-case estimates. Further, the size of each memory alocation request may be a runtime variable. For
example, consider the code fragment in Figure 12. Each iteration of the repeat-until loop makes an explicit
call to the garbage-collector gc () . The compile-time estimate of memory required between any two calls
togc() isF = maz(e, e2) + maz(es, e4), Where e; = compile-time-estimate( s; ).

DDFA can improve the memory requirement estimate in two ways. First, it usesruntimeinformationto
eliminate infeasible control-flow paths. In the example of Figure 12, runtime knowledge of the value of x
can tell the stitcher exactly which alocation callswill be made, effectively replacing the max operator used
in the compile-time estimate with a select operator. Second, the runtime stitcher may have precise values
of s1,. .., s4, Which can be used to improve the estimate of memory requirements.

8 Discussion

8.1 Forward DDFA

Our presentation of DDFA was limited to solving backward flow problems. Thisis because DDFA's main
power isitsability to predict directionsof |ossy forksthat will be encountered inthefuture. Forward dataflow
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analysisframeworks suffer from an anal ogouslossof information at joinsin the CFG. We could build similar
regions and domains. A notable difference is that in forward frameworks the domain of influence of an
operator is executed before the operator isreached. Thisimpliesthat there are no non-predictablejoins, for
thereis nothing to predict. The path has aready been executed, so the points of entry and exit into regions
can be logged by using path-profiling techniques [3] (adapted for profiling region entry and exit). At the
op-node, a check of the region entries and exits would tell the runtime stitcher which transfer functionsto
COmpose.

8.2 Predictability of forks

We have described the DDFA predictability analysisin only very broad terms. What is predictable and what
is not it depends on how much computation one is willing to do to check for a condition’s value. In the
extreme case, every conditional could be made predictable by slicing out al the code required to determine
the condition-variable and pushing it inside the runtime stitcher. Obviously, how much computation should
be performed just for the sake of prediction depends on the particular dataflow problem being solved. Our
approach uses a very conservative form of predictability. In our approach there should be no definitions
to the condition-variable aong a path from the op to the condition — if there is such a definition, we
allow simple renames of one variable to another or assignment to a constant. In al other circumstances,
the condition variable is considered unpredictable. Return forks tend to easily predictable because return
destinations are stored from the call-stack and are not usually manipulable (i.e. no setjmp/longjmp). We
have a so taken a very simplistic approach towards expl oiting correl ations between fork-directions. 1t may
not be necessary to check every Ip-fork’s direction on reaching an op-domain because one fork’s direction
may imply another fork’s direction. Similarly, afork that is designated as non-predictable may actually be
predictable depending on some other fork-directions.

9 Redated Work

Specializing programs at runtime with respect to runtimeinvariants has been studied in considerable detail.
Typicaly, most dynamic compilation strategies focus on efficient code generation by delaying some parts
of code generation until runtime (or an intermediate specialization-time). The process usualy involves
generating parameterized code templateswith holesin them; aruntime specidizer plugsin these holeswith
runtimevalues and stitchesthetemplates. Engler et. a. [9] alow programmersto construct and manipul ate
templates explicitly. Others, [6, 11, 16], generate templates automatically. These efforts are concerned
with generating optimized code based on runtime values, so they focus on lower-level optimizations like
|oad-elimination, loop-unrolling, static branch-elimination etc. Likethesetechniques, DDFA isatwo-phase
approach, with a compile-time phase that “ sets things up” for aruntime-stitcher. However, as our goa isto
optimize heavy-weight operations we focus on improving the precision of the dataflow analysis rather than
generating optimized code. DDFA does not modify code, except to insert a call to the runtime stitcher at
each heavy-weight operation.

Our use of summary functions have been adapted from previous research on interprocedura anaysis,
in particular Sharir et. a. [21] and Duesterwald et. a. [8]. Animportant distinctionisthat we apply these
summary functions at runtime. Another important distinction is that we use summary functionsfor regions
instead of procedures; thisintroduces additional complications as regions overlap while procedures do not.

Standard algorithms for dataflow analysis assume that every sequence of edges that |eads from a node
to an exit-node constitutes a feasible execution path. All these paths are included in the meet-over-all-paths
solution. However, in practice, not every control-flow path is actually feasible. Edges are often correlated
to each other — for example, Mueller et. al. [17], has reported the existence of significant amounts of
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correlation among conditional branches. Often these correlations can be detected at compile-time [4], and
can be used to eliminate some paths during dataflow analysis, resulting in a solution that is sharper than the
meet-over-all-paths solution. For example, Holley and Rosen [12], describe a qualified dataflow approach
which exploits edge correlations to sharpen dataflow anaysis; Bodik et. al. present a similar technique
in [5]. Unlike these approaches, DDFA does not try to detect edge correlations at compile-time. Instead,
DDFA triesto eliminate paths at runtime, by using runtime control-flow information. It should be possible
to combine both techniques — we have not yet investigated this angle.

There has been considerable research recently in branch prediction [15, 22] and profiling [3]. These
techniques generally give probabilistic information about control-flow directions. DDFA could use such
information to guide its caching policies.

The technique of deferring collection of dataflow information until runtime was used in alimited form
(only procedure return forks) by Acharyaet. al. in [1] to handle the problem of dynamic linking in mobile
programs. DDFA ismore general asit handlesal types of forks.

10 Conclusions

The DDFA framework uses runtime control-flow information to sharpen compile-time dataflow analyses.
We have shown how thisframework can be used for optimizing various heavy-weight operations, including
bulk-prefetching and dynamic linking of maobile programs. Runtime overheads are kept low by performing
most of the analysis at compile-time; at runtime, knowledge of future control-flow can be used to simply
stitch compile-timeresultstogether -timeto get sharper dataflow information. Overheadsare further reduced
by caching dataflow results and reusing them. We have outlined how the basic DDFA framework can be
extended to include interprocedural analysis, separately compiled code, higher-order functions and for
analysis across multiple heavy-weight operations. In this report, we have limited our focus to backward
dataflow problems. In section 8, we outlined avery simplevariant of DDFA for forward problems, which

logs the execution-path and uses thislog to compute dataflow information for the traversed path.

In describing the DDFA framework we have assumed placement of heavy-weight operations is fixed.
In some scenarios, the placement may not be so sacrosanct. In such cases, performance could be improved
if one were alowed to move these operationsin conjunction with deferred dataflow anaysis.
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