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Abstract

Loss of precision due to the conservative nature of compile-time dataflow analysis is a general
problem and impacts a wide variety of optimizations. We propose a limited form of runtime dataflow
analysis, called deferred dataflow analysis (DDFA), which attempts to sharpen dataflow results by using
control-flow information that is available at runtime. The overheads of runtime analysis are minimized
by performing the bulk of the analysis at compile-time and deferring only a summarized version of the
dataflow problem to runtime. Caching and reusing of dataflow results reduces these overheads further.

DDFA is an interprocedural framework and can handle arbitrary control structures including multi-
way forks, recursion, separately compiled functions and higher-order functions. It is primarily targeted
towards optimization of heavy-weight operations such as communication calls, where one can expect
significant benefits from sharper dataflow analysis. We outline how DDFA can be used to optimize
different kinds of heavy-weight operations such as bulk-prefetching on distributed systems and dynamic
linking in mobile programs. We prove that DDFA is safe and that it yields better dataflow information
than strictly compile-time dataflow analysis.

1 Introduction

Compile-time dataflow analysis combines information from all execution paths that a program could possibly
take. The analysis is conservative, because at runtime, a program will follow only one of these (possibly
infinite) execution paths. For example, consider the problem of bulk-prefetching for distributed shared
memory programs. Fetching data in small chunks can be expensive and prefetching data in bulk can
significantly improve performance [18]. A commonly used conservative approach is to prefetch only the
data that will definitely be required along all paths. This prevents needless communication, but may limit the
effectiveness of prefetching. Figure 1 provides an illustration. In this case, a compile-time analysis indicates
that neither of the remote variables � or � is required along all paths from the first call to prefetch(). If,
however, it were possible to determine which one of the paths would be actually taken (in a given iteration),
the appropriate value(s) (�; � or f�; �g) could be prefetched.

Loss of precision due to the conservative nature of compile-time dataflow analysis is a general problem
and impacts a wide variety of optimizations. This problem particularly influences optimization of heavy-
weight operations such as bulk-prefetch, garbage-collection, runtime-compilation or remote procedure calls.
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Figure 1: (a)A program fragment to illustrate loss of precision in conservative analysis of distributed shared
memory code. The code accesses two remote variables � and �. At each prefetch instruction, we
would like to prefetch those remote variables that will be read along all outgoing paths. (b) Control-flow
graph for the program fragment in (a). The two op-nodes op1 and op2 in the CFG, correspond to the two
calls to prefetch. We will use this CFG fragment as a running example.

These operations are expensive ; avoiding or combining even a small number of them has the potential of
providing significant benefit. The obvious alternative to compile-time dataflow analysis, namely runtime
analysis, can provide good dataflow information but could add too much runtime overhead to be worthwhile.
In this paper, we propose a hybrid between compile-time analysis and runtime analysis, called deferred
dataflow analysis (DDFA). DDFA performs most of its analysis at compile-time and uses additional control-
flow data that becomes available at runtime to stitch together the dataflow information that was collected at
compile-time.

DDFA divides the task of flow analysis into two phases - a compile-time phase and a runtime phase. The
compile-time phase, called the builder, analyzes the control-flow graph to identify forks1 whose direction
can be determined at specific points in program execution. These predictable forks are used to divide
the control-flow graph into regions such that each region contains at most one such fork. The builder then
performs dataflow analysis on each region independently and summarizes the result in the form of a summary
transfer function. The summary transfer function for a region describes how the region affects dataflow
attributes flowing through it. The second phase, called the stitcher is invoked whenever a heavy-weight
operation is encountered during program execution. It checks values of program variables to predict future

1Forks are program-points from which control can flow in more than one direction - e.g. conditionals, procedure returns, switch
statements, higher-order functions.
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control-flow directions and computes the final dataflow results by stitching together summary functions
from regions that may be encountered in the future. The final dataflow results can be used by a runtime
system to optimize heavy-weight operations.

The key idea of DDFA is to divide dataflow analysis into a compile-time phase and a runtime phase
and to use runtime control-flow information to improve precision of compile-time analysis. Two-phase
techniques using summary functions have have previously been used for interprocedural flow analysis by
others (e.g. Sharir et al [21] and Duesterwald et al [7]). In these techniques, the first phase computes a
summary function for each procedure and the second phase applies these functions to obtain interprocedural
dataflow properties. These techniques perform both phases at compile-time; they use summary functions
as a mechanism to avoid reanalysis of a procedure at every call-site. DDFA differs from these techniques
in three important ways. First and foremost, DDFA applies these functions at runtime. It is therefore
important to construct compact representations for these summary functions, so that results of the compile-
time phase can be efficiently passed to the runtime phase. Second, DDFA computes summary functions
for regions, which are not necessarily procedures - this introduces complications as regions can overlap
while procedures cannot. Third, DDFA computes multiple summary functions for each region and uses
control-flow information available at runtime to choose between these functions.

In this report, we present an interprocedural DDFA framework that is applicable for arbitrary control
structures including multi-way forks, recursion, separately compiled functions and higher-order functions.
We present algorithms for construction of region summary functions and for composition and application
of these functions. We limit our application of DDFA to solving backward flow problems in this report.

The report is structured as follows. We begin our presentation by providing an overview of the DDFA
approach in Section 2, using intuitive descriptions for key terms and concepts. Section 3 provides a more
rigorous definition of these terms and lists all our assumptions. Section 4 describes the details of the basic
DDFA framework for intraprocedural analysis. It has two parts – the first part describes the compile-time
builder which constructs summary functions for regions while the second part describes the stitcher which
composes and applies these functions at runtime. The running example is used to demonstrate how DDFA
optimizes bulk-prefetches and to describe the data-structures necessary to pass information from compile-
time to run-time. In section 5, we prove that DDFA is safe and that its results are at least as good as the
compile-time meets-over-all-paths solution. Section 6 extends the basic intraprocedural DDFA framework
to handle interprocedural analysis, separately compiled code, higher-order functions and dynamic merging
of heavy-weight operations. Section 7 outlines several application scenarios in which DDFA can be used to
optimize heavy-weight operations. We limit our application of DDFA to solving backward flow problems
in this report. In section 8 we outline a variant of DDFA for solving forward dataflow problems and discuss
more aggressive techniques for extracting control-flow information at runtime.

2 Overview of DDFA

In this section, we present a brief overview of DDFA including terms and concepts which are needed to
follow the rest of the paper. These terms are defined more rigorously in Section 4.

As mentioned in the introduction, DDFA is targeted towards optimization of heavy-weight operations
(such as bulk-prefetch, garbage-collection, runtime compilation, remote procedure calls etc). We will refer
to these operations as ops and the nodes representing them in the control-flow graph as op-nodes. Each
op-node induces an op-domain. The op-domain corresponding to the operation op1 consists of the nodes that
are reachable from op1 without passing through another op-node or program-exit node. op1 is referred to
as the entry-point to the op-domain; the exits from an op-domain are either other op-nodes or program-exit
nodes.

Each op-domain has zero or more forks. Forks are program-points from which control can flow in more
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Figure 2: The three shaded areas show the lp-regions of the first op-domain in the running example. The
figure on the right shows the summary functions for each lp-region. The gen and kill sets are represented
by g and k respectively.

than one direction - e.g. conditionals, procedure returns, switch statements, calls to unknown functions. A
fork is said to be lossy with respect to a particular data-flow analysis if all its incident edges in the control-
flow graph do not have the same dataflow attributes (after fix-point has been reached). Meet operations
at such forks result in loss of information. A fork is said to be predictable with respect to an op-node if
the direction of the fork is always determined before execution reaches the op-node. Corresponding to
each fork, there is at least one other program point, referred to as a fork-determinant, which determines
which of the multiple control-flow alternatives the fork will take. For example, the fork-determinants for
a if statement would be the reaching definitions of the variable being tested.2 In other words, a fork is
said to be predictable at an op-node if there is no path from the op-node to the fork-point that contains a
fork-determinant. Forks that are both lossy and predictable are said to be lp-forks. Because lp-forks are
forks at which a conservative analysis loses information and whose control-flow direction can be predicted,
it is potentially beneficial to defer the meet operation for them. In figure 2, only the forks corresponding to
case(b) and if(c) are lp-forks; the fork at if(a) is lossy but not predictable (due to the assignment
to a); the fork at if(d) is predictable but not lossy.

Each lp-fork induces an lp-region. An lp-region is the collection of nodes that can be reached from an
lp-fork without passing through an lp-fork or any of the exits of the op-domain. An lp-region may contain
zero or more other forks. These forks, however, are either not predictable or not lossy. Since we will not
have better information about these forks at runtime, deferring the data-flow analysis for these forks will
provide no advantage. The shaded regions in figure 2 show the lp-regions for the running example.

The first stage of DDFA, performed at compile-time, identifies the op-nodes in a control-flow graph,
constructs the op-domains, identifies the lossy and predictable forks within each op-domain and constructs
the lp-regions. The intuitive definitions presented above for op-domains and lp-regions indicate how they

2Fork-determinants can similarly be defined for other types of forks.
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can be constructed; more rigorous definitions are provided in section 3. Note that, for op-domains that
straddle procedure boundaries, care needs to be taken to preserve the calling context when computing the
set of nodes reachable from an op-node.

The second stage, performed at compile-time, analyzes each lp-region and produces one or more
summary transfer functions, �(fork-direction), one function for each direction the lp-fork at the entry to the
region can take. 3 Each function summarizes the backward dataflow operations that would occur if control
was restricted to flow in a particular direction.

The third stage is performed on-demand at runtime when control reaches the op-node at the entry to an
op-domain. At this point, the directions of all lp-forks in the op-domain are known. This information is
used to select the appropriate summary function for each lp-region in the op-domain. The runtime stitcher
uses the information about the directions of lp-forks to determine the sequence of lp-regions that lie along
the path that will be traversed from the op-node to exit and applies the corresponding summary functions
(in reverse order as we are doing backward propagation). The links among the lp-regions of an op-domain
may contain back-edges; this may require the stitcher to iterate. In such cases, one has the choice of trading
off execution time and analysis precision by choosing between performing the iterations and falling back to
using the conservative dataflow properties computed at compile-time. Note that performing iteration may
not be expensive as the number of lp-regions in a op-domain is expected to be small (much less than the
number of basic-blocks).

The final stage, performed at runtime, uses the data-flow information computed by the stitcher to make
optimization decisions. This stage is application-specific. For conciseness, we do not present detailed
examples in this abstract. We do, however, sketch how DDFA can be used for bulk-prefetching, our running
example.

3 Terminology and Background

This section defines the terms used in describing the DDFA framework and lists all our assumptions. The
casual reader may choose to skip directly to subsection 3.4 which summarizes the important terms and
assumptions.

In the following discussion we limit ourselves to intra-procedural analysis of a first-order language
in which the only forks are conditionals that test a single variable. In addition, we assume that dataflow
analysis for each op is restricted to the corresponding op-domain; i.e. we do not try to merge information
from multiple op-domains. These restrictions are for expositional simplicity. In section 6, we will extend
the framework to include interprocedural analysis, separately compiled code, higher-order functions and
allow dynamic merging of dataflow analyses across op-domains.

3.1 Op-domains

A program is represented as a directed flow graph. A flow graph is denoted as G = (R;N�; E�; X�; O�).R is the root of the graph and represents the entry-point of the program. N� is a set of nodes that represent
program statements and E� is a set of edges that represents the transfer of control among these statements.X� � N� is a set of program-exit nodes. These nodes have no outgoing edges. O� � N� is a set of nodes
that are specially marked as op-nodes; these represent program points at which the program performs some
heavy-weight operation that we want to optimize. The entry point R is also marked a dummy op-node, soR 2 O�.

3Actually, for reasons described later, we may have more than one summary function for each fork-direction. Specifically, each
summary function � is parameterized by a (fork-direction, region-exit) pair.
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For each node n 2 N�, pred(n) = fm j (m;n) 2 E�g and succ(n) = fm j (n;m) 2 E�g denote the
set of immediate predecessors and successors of n. A sequence of nodes p = (n1; n2; :::::nk) is said to be a
valid path if for 1 � i � k, (ni; ni+1) 2 E�. The length of the path is the number of edges in it (k � 1 in
the above notation). For any pair of nodesm;n, paths(m;n) is the set of all paths in graphG leading fromm to n. paths(m;n) = � if there is no path from node m to node n. If there are cycles in the flow graph,
then the number of paths in paths(m;n) may be infinite.

Each op-node opi 2 O� induces an op-domain. The op-domain induced by opi, is denoted as Di. Di
is is a subgraph of G and contains all nodes that are reachable from opi without passing through another
op-node. More precisely, Di = (opi; Ni; Ei; Xi) where :� opi 2 O� is the op-node that induced domain Di.� Ni = fn j n 2 succ(opi) or 9 (opi; m1; : : : ; mk; n) 2 paths(opi; n); m1; : : : ; mk 62 O�gNi is the set of nodes in the op-domain.� Ei = f(m;n) j m;n 2 Ni; (m;n) 2 E�g is the set of edges in the op-domain.� Xi = fx j x 2 Ni \ (O� [X�)g is the set of exit nodes for the op-domain. These nodes are called

domain-exits.

When the domain being analyzed is clear from the context, we will drop subscripts and denote it asD = (op;N;E;X). We use predD(n) and succD(n) to denote the nodes that immediately precede and
succeed node n and which lie within domain D. pathsD(m;n) represents the set of paths between nodesm and n that lie completely within the domain.

It is worth pointing out two properties of op-domains that follow from the definition. (1) An op-node
does not necessarily dominate all the other nodes in its op-domain. A node m in G may be reachable
from two different op-nodes and therefore get included in both op-domains. This means that op-domains
can overlap. (2) During execution, control will always be associated with a unique op-domain. Control
gets associated with a new op-domain only when it encounters an op-node. By definition, control cannot
encounter a new op-node within the current op-domain.

We assume that the dataflow information that influences each op-node is limited to the information
propagated up from within its own op-domain. This assumption allows us treat op-domains independently
of each other ; each op-domain can be treated a separate flow-graph for the purpose of dataflow analysis.
Later, in section ?? we will relax this assumption and collect dataflow information across multiple
op-domains.

3.2 Dataflow Frameworks

The framework of a dataflow problem is a pair (L; F ), where L is a complete meet semi-lattice of attribute
information and F is a set of transfer functionsF : L! L. Following standard terminology,L has a partial
order (�), top (>) and bottom (?) elements and a meet operator (u). Also, L is assumed to be well-founded,
i.e. any descending chain in the lattice L is of finite height.

We assume that the set F is closed under functional composition (�) and point-wise functional meet (^).
4 That is, for any pair of functions f1; f2 2 F , we must have f1�f2 2 F and f1^f2 2 F . F also contains two
special functions — an identity function fid , and a constant function f> . For all x 2 L, f>(x) = > andfid(x) = x. A framework that satisfies these assumptions is said to be a closed framework [12]. In a
closed framework, the functions in F form a semi-lattice with f> at the top of the function-lattice and the

4Functional-meet (^) is different from the commonly used attribute-meet (u). Functional-meet operates on the function lattice,^ : F � F ! F , while attribute-meet operates on the attribute-lattice u : L� L! L. Ideally, (f1 ^ f2)(x) = f1(x) u f2(x).
6



other functions partially ordered as follows : for f1; f2 2 F , f1 � f2 iff f1(x) � f2(x) for all x 2 L.
5 We also assume that every function in the set F is monotone and distributive, i.e. 8f 2 F; x; y 2 L,x � y ) f(x) � f(y) (monotone) and 8f 2 F , f(x u y) = f(x) u f(y) (distributive). Assuming
a monotone and distributive closed framework is fairly common in dataflow analysis; most elimination
algorithms [2, 10, 20, 19] also make the same assumptions.

A (backward) dataflow problem for an op-domain can be described by a tuple P = (L; F;D;M). Here,L and F together represent a closed distributive framework as discussed earlier. D = (op;N;E;X) is the
op-domain being analyzed and M : E ! F is a mapping that associates each edge of the domain’s flow
graph with a transfer function from F . The transfer function f(n;m) associated with edge (n;m) represents
the change of relevant data attributes propagated backwards from the entry of block m, up through node n
to the entry of block n. Given M , F can be reduced to the smallest set which contains M , fid, f>, f? and
which is closed under functional composition and functional meet. This ensures that F is distributive iff M
is distributive.

A solution to the dataflow problem P is a map Θ : N ! L which maps each node n of the flow graph
to an element of the attribute lattice, i.e. Θ(n) represents the dataflow information that can be asserted at
node n. It is always safe to assert less information, i.e. re-mapping a node to a lower lattice element is safe
; hence, there are many safe solutions possible for any dataflow problem.

A maximal safe static solution is given by the meet-over-all-paths (MOP) solution, ϒ : N ! L which
is abstractly defined as follows : For each n 2 N ,

ϒ(n) = u f fp(?) j p 2 paths(n; x); x 2 Xg (1)

Here fp = f(n;m1) � f(m1;m2) � : : : � f(mk;x) for the path p = (n;m1; m2; : : : ; mk; x). If p is null, then fp is
defined to be the identity map fid.

Computing the MOP solution ϒ(n), for node n, requires propagating information backwards along every
possible path from n to an exit node. The attributes collected from all these paths are then combined by
performing an attribute-meet (u). In graphs with cycles there may be an infinite number of paths to consider;
hence, equation ( 1) does not suggest a practical algorithm. Instead, most practical dataflow algorithms try
to approximate the MOP solution by solving the following set of “local-propagation” equations.

Φ(x) = ? 8x 2 X
Φ(n) = um2succ(n) f(n;m)(Φ(m)) 8n 2 (N �X) (2)

This system of equations describes the relations between attributes at adjacent basic blocks and uses
them to propagate information backwards starting with? at the exit nodes. An iterative algorithm suggested
by Kildall [14] is commonly used to solve this system of equations; it yields a maximal fixed-point solution
which can be shown to match the MOP solution when the all transfer functions are distributive. Notably,
the iterative algorithm, like most other dataflow algorithms, computes Φ(n) for each and every node in N
even though we only need Φ(op), the dataflow attributes of the op-node. 6

Partitionable frameworks: A dataflow framework (L; F ) is partitionable [23] if we can split the frame-
work into a finite number of “independent” frameworks (Li; Fi), each inducing a separate dataflow problem,
and obtain the solution to the original problem simply by grouping all the individual solutions together. For

5DDFA assumes a well-founded (finite-height) function-lattice F . If L is finite, then F will also be finite (and thereby
well-founded). If L is infinite (but of finite height), then F may or may not be well-founded. See [21] for more details.

6The observation that we only need to obtain the dataflow solution only for op-nodes is significant — DDFA expends “runtime-
effort” to compute safe results only for a few important nodes - the op-node and the lp-fork nodes in the op-domain.
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example, the standard framework for available expressions analysis is partitionable into sub-frameworks
each of which determines the availability of a single expression. Use-def chaining and live variable analysis
are other examples of partitionable problems. Constant copy propagation is an example of a problem
that is not partitionable; it requires simultaneous analysis of all program variables. In the classical “bit-
vector” approach, partitionable problems correspond to transfer functions that operate on each bit-position
independently.

1-related frameworks: A framework (L; F ) is 1-related [21] if it is partitionable and each partitioned
framework Fi consists only of constant functions and identity functions. In fact, it can be shown that the
only constant functions allowed in Fi are f> and f?. 1-relatedness is characteristic of problems in which
there exists at most one point along each control flow path which can affect the data being propagated. For
example, say p = (s1; s2; : : : ; sk) is an execution path, and let j be the smallest index (j � k) such thatf(sj�1;sj) is a constant function. Clearly fp = f(sj�1;sj) ; i.e. the net effect of the entire path p can be
summarized by the transfer function of edge (sj�1; sj). In the “bit-vector” approach, 1-relatedness implies
that transfer functions have two properties : (1) a bit b cannot be included in the gen and kill sets at
the same time (i.e. gen \ kill = �) 7 and (2) bits are modified independently of each other (from
partitionability).

A large number of classical dataflow problems, such as available-expressions, liveness, use-def-chaining
etc. can be characterized as having 1-related frameworks. We assume that the dataflow problem being
tackled by DDFA has a 1-related framework. While this assumption is not necessary, it simplifies matters
a great deal, especially by ensuring that the summary functions we generate can be compactly represented
using gen and kill sets.

3.3 lp-forks and lp-regions

A node is labeled as a fork if it has more than one successor. A fork v is said to be lossy with respect
to a dataflow solution Φ if it receives different the information propagating up to v from its successors
is not the same along every path. In such cases, we must make the minimal assertions that hold true
along every path, leading to loss of information. Formally, a node v is lossy if 9u 2 succ(v) such that
Φ(u) 6= uw2succ(v) Φ(w)

Each fork has a variable which determines the successor node to which control will be transferred after
the fork is executed. This variable, called the predicate, will be defined before the fork is reached. The set
of nodes that contain reaching definitions of the predicate are called fork-determinants. A fork v is said to
predictable at an op-node op if and only if there is no fork-determinant in pathsD(op; v). Note that a fork’s
predictability is with respect to an op-node. For instance, fork v may be included in two different domains,
induced by op1 and op2. Fork v’s direction may be unpredictable at op1 because a fork-determinant lies inpathsD1(op1; v), but it may be predictable at op2 because there is no determinant in pathsD2(op2; v).

Forks that are both lossy and predictable are called lp-forks. The set LD contains all the lp-forks in
domainD. The op-node of the domain is also marked as a dummy lp-fork and included in LD.

Just as op-nodes induce domains inside flow graphs, similarly lp-forks induce lp-regions within op-
domains. Recall that an op-domain begins at an op-node and is bounded by other op-nodes (or program
exit points). Similarly, a region begins at a lp-fork node and includes all nodes that can be reached from
that fork without passing through another lp-fork or exiting of the domain. Thus, each region is bounded
by lp-fork nodes and domain-exit nodes. Formally, region Rv = (v;Nv; Ev; Xv) where :� v 2 LD is a lp-fork that induces the region.

7This can be achieved in most cases by splitting a basic block.
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� Nv = fn j n 2 succD(v) or 9(v;m1; ::::; mk; n) 2 pathsD(v; n); m1; : : : ; mk 62 LDg.
is the set of nodes in region Rv.� Ev = f(m;n) j m;n 2 Nv; (m;n) 2 Eg is the set of edges between nodes in the region.� Xv = fx j x 2 Nv \ (LD [X)g is the set of exit nodes for the region.

A regionRv can be uniquely identified by the lp-fork node v that induces it. In the following discussion
we will often use a fork-node’s identifier to refer to the corresponding region. Thus, the phrase, “the regionv” should be interpreted as Rv.pathsv(m;n) denotes the set of all paths from node m to n that lie completely within the region v.
The successors of a lp-fork node, are called its predictable successors, and are denoted by Wv = fw j v 2LD; (v; w) 2 Eg. When execution reaches the op-node, a simple check of v’s predicate can determine the
direction of fork v. Similar predictions are made for all other lp-forks in the op-domain. The predicted
control-flow edges for all lp-forks are summarized by the prediction map � : LD ! Nv. If v 2 LD then�(v) 2 Wv such that the fork-direction (v; w) is predicted by a check of v’s predicate.

Each region has a set of predecessor and successor regions; predv = fy j v 2 Xyg and succv =fy j y 2 Xvg. These predecessor and successor sets are based on the (conservative) assumptions that
control may flow from a fork to any of its predictable successors. At runtime, given a prediction map�, the predecessor-successor relationships can be narrowed by eliminating those entries that are no longer
possible. These narrowed predecessor and successor sets are denoted as predv (�) and succv(�) respectively;predv(�) = fy j y 2 predv; w = �(y) and pathsy(w; v) 6= �g and succv(�) = fy j y 2 succv ; v =�(w) and pathsv(w; y) 6= �g
3.4 Summary

Figure 3 summarizes the most important terms defined in the previous subsections that will be used again
in the following sections. The assumptions that have been made are listed below.� The lattice of data-flow attributes is well-founded (of finite-height).� The framework is closed, monotone and distributive; i.e. all the transfer functions are monotone

and distributive and it is possible to compose them and perform functional-meet operations on them.
Further, the framework is partitionable and 1-related. These assumptions allow us to represent
summary functions compactly and manipulate them efficiently using bitmaps.� The heavy-weight operation at an op-node depends only on dataflow attributes propagated from other
nodes that lie within the same op-domain. We will relax this assumption later, and allow optimizations
across multiple op-domains.� If a fork-node is designated as being predictable with respect to an op-node, then its fork-direction
can be determined when control is at the op-node. The fork-direction will remain the same as long
as control remains within the same op-domain (the direction may change the next time the op-node is
encountered).

4 The Basic Framework

The basic DDFA framework is a two-phase algorithm. The first phase, the builder, is performed at compile-
time. It constructs summary transfer functions for each region. The second phase, the stitcher, is performed

9



(L; F ) L is a lattice of attributes, with top (>) and bottom (?) elements and a meet (u).F is a set of functions on L, closed under functional-meet (^) and composition (�).F contains an identity function (fid) and a constant function (f>).D = (op;N;E;X) Op-domainD induced by op-node op,
with nodes N , edges E, domain-exit nodes X .LD Set of lp-forks
The lossy and predictable forks in op-domainD.Rv = (v;Nv; Ev; Xv) Region induced by lp-fork v,
with nodes Nv, edges Ev, region-exit nodes XvWv Successors of lp-fork node v
These nodes are called predictable successors.� The prediction map
Control-flow directions determined at runtime for all lp-forks in the domainsuccv(�) Narrowed successor regions
Regions that can succeed v, given �predv(�) Narrowed predecessor regions
Regions that can precede v, given �

Figure 3: A summary of important terms

on-demand at runtime whenever control reaches an op-node. It checks the predicates of all lp-forks in
the op-node’s domain and uses this control-flow information to select and apply summary functions. The
following subsections describe the builder and the stitcher in detail.

4.1 The builder — constructing summary functions at compile-time

In this subsection, we describe how the builder constructs summary transfer functions for lp-regions.
The term  v(n;m) is used to denote a function that summarizes the effect of dataflow operations along

all paths between nodes n andm in region v. For each region, we construct a set of these summary functions,
Ψv = f v(w; x) j w 2 Wv ; x 2 Xvg.  v(w; x) summarizes the dataflow operations along on all paths
between w, a predictable successor of the fork node v and x, an exit node of the region. The following set
of non-linear equations describe how  v(w; x) can be constructed. For each x 2 Xv, we have a separate
set of equations : v(x; x) = fid v(n; x) = ^(n;m)2Ev(f(n;m) �  v(m; x)) 8n 2 (Nv � fxg � fvg) (3) v(n; x) for node n can be obtained by taking the summary function of each successor node m
(  v(m; x) ) composing it with the transfer function for node n (f(n;m)) and then using functional-meet (^)
to combine the summary function with similar summary functions obtained from other successors. These
equations are analogous to the propagation equations in Eqs. ( 2), except that they operate on functions, not
dataflow attributes. We can solve Eqs. ( 3) by starting with  0(n;x) = f> for each n 2 (Nv � fxg � fvg)
and iterating to obtain new approximations to the ’s until convergence. Note that Eqs. ( 3) do not compute
a summary function for the fork-node itself. We do not compute  v(v; x) = V v(w; x) because the meet
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would be lossy. Instead, we defer the meet operation until runtime. Once the successor (say wi) of the
fork-node v is known the meet can be eliminated by simply assigning  v(v; x) =  v(wi; x)

There are several pragmatic problems that arise when constructing summary functions. Eqs. ( 3)
manipulate transfer functions directly, instead of just applying them on elements of L. The  ’s that are
generated may not have a finite representation if L is infinite. Even when L is finite, the space required
to encode these functions may be excessive. As pointed out by Sharir et. al. [21], the summary-function
approach belongs to the class of elimination algorithms for solving dataflow problems since it uses functional
compositions and functional meets in addition to functional applications. All such elimination algorithms
[2, 10, 20, 19] face similar problems. In practice, these algorithms are limited to cases where the functions
in F possess some compact and simple representation, in which meets and compositions of elements of F
can be easily calculated, and in which F is a well-founded semi-lattice. Fortunately, this class of problems
is quite large and includes the classical “bit-vector” dataflow problems. In particular, the important subclass
of 1-related problems (introduced earlier in section 3) always have compact representations for summary
functions. Further, it is easy to perform functional composition and functional meets for 1-related problems;
we show how this can be achieved using gen and kill sets.

Each basic block i has a transfer function fi 2 F , that can be represented in terms of two sets - a set (gi)
that contains a list of attributes which are mapped to > by the block and a set (ki) that lists the attributes
which are mapped to ? by the block. Other attributes are assumed to be unaffected. g and k are supposed
to correspond to the gen and kill sets respectively.8

For the DDFA framework to work, we must show how to perform the functional-meet and functional-
composition of these transfer functions using g and k sets.

Composition of gen-kill sets: If f1 = (g1; k1) and f2 = (g2; k2), then the composite function F = f1 � f2

is defined as F = (g; k), where g = (g1 [ (g2�k1)) and k = (k1 [ (k2� g1)). F summarizes the effects of
applying f2 on any attribute and then applying f1 on the result. Intuitively, the gen set of F should contain
all elements in the f1’s gen set as well as those in f2’s gen set that are not killed by f1.

Meet of gen-kill sets: If f1 = (g1; k1) and f2 = (g2; k2), then the composite functionF = f1^f2 is defined
as F = (g; k), where g = (g1 \ g2) and k = (k1 [ k2)

We also need to constructively show that there exists a set F which (i) contains all the transfer functions,f> and fid (ii) is closed under functional composition and functional meet (iii) forms a function-lattice of
bounded depth and (iv) contains only distributive functions. These properties are actually quite simple to
show. We define fid = (g = �; k = �) , and f> = (g = U; k = �), where U represents a bitmap with all
bits set (i.e. all attributes are generated). If the set of attributes in L is finite then the power set of these
attributes is also finite. This limits the possible number of distinct g and k sets ensuring that the number
of possible functions is finite. Hence, F can be constructed and is closed. Since F is finite, the height of
its lattice is bounded. To show distributivity of F we need to show that distributivity is preserved under
functional-meet and functional-composition. This can be shown quite easily (follows from the fact thatfi(x) = (x� ki) [ gi).
4.1.1 Data structures and Example

The builder passes the results of its analysis to the stitcher via pre-initialized data-structures in the
data segment of the compiled code. For each op-domain in the CFG, we keep a data-structure called an
op-domain table. An op-domain table contains one entry record for every region within the op-domain.

8To be precise, this depends on the orientation of the lattice. There are cases where the intuitive mapping may be reverse. For
instance in live-variable analysis, the null set is the top element in the lattice; hence, in that case, our symbol g represents the
standard kill set and the symbol k represents the gen set.
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Figure 4: Data-structures created by the builder and passed to the runtime stitcher for the op-domain in the
running example. The fields marked by ? are to be filled in by the runtime stitcher. The cache has been
pre-filled by the builder for two of the paths.

These records contain the following fields: (1) a pointer to a region-table for each region, (2) a pointer to the
code that must be executed to determine the direction of each region’s lp-fork, (3) scratch space for storing
the fork-direction (4) scratch space for storing intermediate dataflow results computed during stitching,
and (4) a place-holder for the set of predecessors predv(�) for each region. The predecessor-set cannot
be computed at compile-time because it depends on the prediction map � (the predicted fork-directions).
Each region table contains summary functions indexed by (fork-direction, region-exit) pairs. Not every
region-exit is reachable from every fork-direction, so the region tables are stored in a sparse format.

Figure 4 illustrates these data structures for the running example. It shows the op-domain table for the
first op-node and the region-tables corresponding to the lp-forks in the first op-domain. The region-table for
the op-node is not shown because the region has just one node and does not need summary functions. The
second region (region b) is induced by the fork at switch(b). The switch forks in three directions all of
which to the same region-exit. Hence, there are three entries in region-table c, one for each (fork-direction,
region-exit) pair. As region b does not contain any forks, its summary functions can be constructed simply
by composing the gen and kill sets of the nodes along each of the three possible paths. The third region
(region c) is created by the if(c) conditional. This conditional forks in two directions c=0 and c!=0 and
has two region-exits op1 and op2. The region has three entries, not four, because there is not path from the
c=0 fork-direction to exit op1. Region c contains two forks ( if(a) and if(d)). To construct functions
that can summarize the effect of these forks, we need to perform functional-meet operations as specified in
Eqs.( 3). Figure 5 demonstrates the construction of one of these summary functions —  c(c!=0; op2).

The sparse format of the region-tables encodes an important piece of information that is not clearly shown
by the simple tabular structures used in Figure 4. The builder analyzes each region to determine which
fork-directions can lead to which region-exits. This information is not thrown away – it is kept in the form
of parameterized successor sets for each region : succv(wi) = fy j y 2 LD; wi 2 Wv; pathsv(wi; y) 6= �g
At runtime, when the prediction-map � is available, computing the narrowed successor sets is merely a
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Figure 5: Construction of the summary function for (c!=0, op2) entry of region-table c. The builder starts
by assigning fid to exit node op2, and f> to all other nodes. The iterative algorithm propagates these values
backwards until convergence. Edges in the figure have been labeled with the final  ’s assigned to their
targets. The final result is  c(c!=0; op2) = f�;� . Note that when computing  c(c!=0; op2), values are
not propagated along fork-direction (c = 0) and node op1 is treated like a non-exit node and is initialized
to f>, not fid.

matter of selecting one of these parameterized successor sets, i.e. succv(�) = succv(wi) where wi = �(v).
The builder also generates a cache structure for holding previously computed dataflow properties. This

cache is associatively indexed by the prediction-map �. It may not be feasible to store the dataflow results
for all combinations of fork-directions. In such cases we can use a hash-function that hashes the prediction-
map to an entry in the cache and employ a simple cache-replacement policy such as random or fifo. The
compiler can prime the cache by statically computing the dataflow properties for the “likeliest” prediction-
maps. For instance, in Figure 4, the cache has been pre-filled with dataflow results for two different sets of
fork-directions – (b=2,c=0), and (b=1, c!=0).

4.2 The stitcher — applying summary functions

This section describes the stitcher, the runtime phase of DDFA. The stitcher is invoked every time
control reaches an op-note. On each invocation, it checks the predicates of every lp-fork in the domain and
determines their directions. The prediction-map selects appropriate summary functions from region-tables
which are then used to propagate dataflow information backwards to the op-node.

We pause to make some observations about regions and their summary functions. A region is like a big
basic block and its summary function Ψ is analogous to a block’s transfer function. However, this analogy is
incomplete. Basic blocks are single-entry single-exit units while regions have multiple exits. Moreover, each
of the predictable successors of a region’s lp-fork can be viewed as a potentially different entry point (with
only one entry is feasible at any time). Thus regions are equivalent to (possibly overlapping) multiple-entry,
multiple-exit hyper-blocks. The builder has prepared for this complexity by keeping separate summary
functions for each (entry, exit) pair, i.e. Ψv = f v(w; x) j w 2 Wv; x 2 Xvg. In addition, the builder has
also prepared parameterized successor sets f succv(w1); succv(w2); : : : g, where succv(wi) represents the
set of regions that can succeed region v if the fork-direction were known to be to be (v; wi).

The stitcher is invoked every time execution reaches an op-node. It checks the predicate corresponding
to each lp-fork in the op-domainD = (op;N;E;X). The results of these checks constitute the prediction-
map � which maps each lp-fork node to one of its successors. These fork-directions will remain true as
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Figure 6: Operation of the stitcher on the running example. The summarized graph is shown on the left with
the edges selected by the prediction map� =(b = 3, c != 0)marked in bold. The work-list algorithm
performs iterative analysis on this summarized graph, reaching the fix-point values shown alongside. The
result, f�; �g, is used to prefetch data and is also cached. The cached result is reused in the next three
iterations because fork-directions do not change.

long as control remains in the op-domain; they may change direction the next time control encounters an
op-node. Once we have the prediction-set narrowing the successor relationships between regions is trivial;
this is merely a matter of selecting the correct parameterized successor set i.e. succv(�) = succv(w) wherew = �(v).

We can now describe the backward flow equations that must be solved by the stitcher in order to obtain
dataflow information at the op-node of the domain.

Ω(x) = ? 8x 2 X
Ω(v) = uu2succv(�) v(�(v); u)(Ω(u) ) 8v 2 LD (4)

Here, Ω(v) represents the dataflow properties at the lp-fork v. The Ω’s of adjacent regions are related to
each other in exactly the same way that adjacent basic-blocks are related to each other in Eqs. ( 2). Except
for the fact that we are using summary functions of the form �v(w; u) instead of transfer functions of the
form f(n;m), the two sets of equations are equivalent. It is worth noting that Eqs.(4) do not yield dataflow
information at every node in the control-flow graph. They compute Ω(v)(s only for v 2 LD, i.e. the lp-fork
nodes in the domain. As we are only interested in Ω(op) and op 2 LD, this does not create a problem.

The solution procedure for Eqs.( 4) has been adapted from Kildall’s iterative algorithm. Initially Ω0 = >
for each v 2 LD. We iteratively re-apply Eqs. ( 4) to obtain new approximations to the Ωs until convergence.
The next subsection outlines an implementation of this iterative algorithm, which incorporates caching of
dataflow results. Caching is very important because it allows dataflow results to be reused — this can
substantially reduce runtime overheads.
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4.2.1 Stitcher algorithm and Example

Figure 7 presents the stitcher algorithm. The stitcher consists of four parts, marked as statements S1 through
S4. The first statement (S1), checks the predicates of all lp-forks in the domain and determines their
directions. The second statement (S2), checks the cache to see if dataflow results for this particular set of
directions are cached. If so, the cached results can be used directly to prefetch data (S4). If the results are
not cached, an iterative work-list algorithm is invoked (S3). This algorithm, shown on the right in Figure 7,
is similar to standard iterative work-list algorithms used for dataflow analysis except that it operates on
regions, instead of basic blocks. The work-list contains tuples of the form (r, x, In), which denotes
attributes In flowing into region r through exit node x. In each iteration, a tuple is removed from the
work-list and the transfer function  r(�[r]; x) is applied to In, the incoming attributes. The result of this
function-application is combined with region r’s old dataflow attributes using the meet operator u. The
result of the meet is used to update region r’s attributes and is also fed to its predecessors by adding new
tuples into the work-list. This process is repeated until convergence.

Figure 6 illustrate the operation of the stitcher using the running example The program iterates through
the repeat-until loop four times, so the prefetch() instruction inside the loop will be invoked four
times.

In the first iteration through the loop, the values of b and c are 3 and 3 respectively, so �, the prediction
map is(b = 3, c != 0). Assuming the builder has primed the cache with the entries shown in Figure 4,
ChkCache() will fail, and the work-list algorithm will be invoked. The work-list is initialised with tuplesf(c; op2;?); (c; op1;?)g, corresponding to the two exits of the op-domain. All regions are initially assigned
the dataflow attribute>. Tuples are then removed from the work-list and transfer functions are applied. For
example, after removing the first tuple (c; op2;?), the algorithm will apply  r(c! = 0; op2) to ? and getf�; �g. This causes Ω(c) to be updated to f�; �g and a new tuple (b; c; f�; �g) is inserted into the work-list.
The algorithm will reach fix-point in two iterations — the final assignments are shown in Figure 6. The
result, Ω(op) = f�; �g is fed to the prefetcher which uses this information to bulk-prefetch both remote
variables. This dataflow result is also placed in the cache. When the stitcher is reinvoked in the next
three iterations of the loop, it will find that the fork-directions are the same, i.e.(b = 3, c != 0). The
dataflow results will be picked up from the cache and the prefetcher will prefetch f�; �g on each of the
following iterations.

4.3 Pragmatics: space and time

The primary space requirement is for storing the summary functions for each lp-region. We note that only
very loose bounds can be placed on the number of directions that a fork can take. For example, a switch
statement could fork into very many directions (order ofN , the number of CFG nodes) and different summary
function would need to be stored for each of these directions. We bound the number of fork-directions to a
small number W — when the number of fork-directions gets exceeds W , we perform a functional-meet on
all the extra directions and store a single summary function for all of them. The number of exit nodes in a
lp-region is bounded by the maximum number of lp-regions in an op-domain (say L). Thus the number of
summary functions to be stored in a lp-region is bounded byW �L. Each op-domain can haveL lp-regions
so the total number of summary functions stored within an op-domain can be as large as W � L� L. Note
that this is a very conservative estimate. It assumes that control can reach every exit of an lp-region from any
of the fork directions. It also assumes that every lp-region connects to every other lp-region (a circumstance
that would require a very convoluted set of mutually recursive functions or inter-connecting jump-tables).
Even so, we note thatL is the number of predictable fork points within an op-domain, which we expect to be
a reasonably small number; hence, the number of summary functions that need to be stored for the lp-region
should not be excessive. It is also possible to bound the number of lp-regions in a op-domain by specifying
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Helper Functions Functionality
succ(r, �) regions succeeding region r, given fork-direction �
pred(r, �) regions preceeding regon r, given fork-direction �
SetPredecessors(r) prepares pred(r,�) sets by transposing

pre-computed succ(r, �) sets
G(r,dir,exit) gen component of summary-function  r(dir,exit)
K(r,dir,exit) kill component of summary-function  r(dir,exit)
remove(list) returns (and removes) a region from worklist
ChkPredicate(r) checks predicate to get direction of fork r
ChkCache(opd,dir) checks if dataflow results are cached
StoreCache(opd,dir,flow) stores dataflow results in cache
SetPrefecthList(flow) fills datastructures used by the prefetcher

function stitcher(domain *opd)

S1: foreach region r�[r]  ChkPredicate(r)

S2: Ω  ChkCache(opd,�)
S3: if ( not found in cache )

SetPredecessors()
Ω  work(opd, �)
StoreCache(opd,�,Ω)

S4: SetPrefetchList (Ω)
end

function work(opd, �)
foreach region r

out[r]  >
foreach exit x in succ(r, �)

if x.type = Op
wkList  (r,x,?)

while (wkList 6= �)
(r,x,In)  remove(wkList)
oldOut  out[r]
tmp  G(r,�[r],x) [

(In - K(r,�[r],x))
out[r]  out[r] u tmp
if (out[r] 6= oldOut)

foreach region p in pred(r,�)
wkList  wkList [

(p,r,out[r])
returns out[Op]
end

Figure 7: The stitching algorithm. The workList contains tuples of the form (r, x, In), which denotes
attributes In flowing into region r through exit node x. In each iteration, a tuple is removed from the
work-list and the appropriate transfer function applied; this process is repeated until convergence.

the maximum number of lp-forks that should be checked at the op-node. All other lp-forks would then be
considered unpredictable and would be completely analyzed at compile-time. This flexibility allows the
DDFA framework to trade accuracy for runtime space as well as execution time. We would like to point out
that sacrificing accuracy by bounding the number of fork-directions and lp-regions in an op-domain does
not make DDFA unsafe, it only reduces the benefits of having future control-flow information.

The primary concern regarding time is that the stitcher executes an iterative algorithm every time control
reaches an op-node. In this regard, we point out two alleviating factors. We note that the results of the
runtime analysis at an op-node are cached. The cache entries are uniquely identified by the fork-directions
for all the lp-forks within the op-domain. The cache of dataflow results need not be large. A two-entry
cache should suffice for most cases as it takes care of the common case where one path is more taken
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more frequently taken than others. A similar technique, called record-replay [18] has been shown to work
well for optimizing communication in irregular parallel programs. Even in cases where cache-reuse is low,
overheads can still be limited. The stitcher operates on the high-level region-graph, which is much smaller
than the original control-flow graph. In the worst case, we can bound the time allowed to the stitcher. If this
time is exceeded without reaching a fix-point, the stitcher is stopped and we can fall back on the results of
compile-time analysis (which can be stored in the cache for use as a fall-back option).

5 Proofs

In this section, we provide the theoretical underpinnings for DDFA. We show that: (1) DDFA terminates; (2)
DDFA is safe; and (3) DDFA computes a solution that is no worse than a compile-time meet-over-all-paths
solution. Our proofs are largely adapted from the proofs of the two-phase interprocedural analysis used in
[21].

We begin by defining a few terms that will be used in the proofs. The domain under consideration isD = (op;N;E;X), using terminology of section 3. We need only consider a single op-domain because
DDFA treats domains independently of each other. The domain contains a set of lp-fork nodesLD and each
of these fork-nodes induces an lp-region Rv = (v;Nv; Ev; Xv). A sequence of nodes p = (n1; n2; :::::nk)
is said to be a valid path if all its edges are in the domain, i.e. 1 � i � k, (ni; ni+1) 2 E. The length of the
path is the number of edges in it (k�1 in the above notation). paths(m;n) is the set of all paths leading fromm to n. A path p = (n1; n2; : : :nk) can be decomposed into sub-paths (or segments) — the decomposed
path is denoted as p = (n1; n2; : : : ; nakna; na+1; : : :nbknb; nb+1; : : :k : : :k : : :nk). where na; nb; : : : etc.
are the segmentation-points. Our notation includes the segmentation-points twice in the decomposed path.
A region-segment is a segment that begins at a lp-fork node and ends at one of the exit nodes of the region
induced by that fork. Formally, segment s = (n0; n1; :::::nk) is a region-segment if n0 2 VD and nk 2 Xn0

and and for 1 � i � k, ni 62 VD.

Path Decomposition Lemma: Let p be a valid path that begins at a lp-fork node v0 and ends at a domain-exit
node x 2 X . The lemma states that path p satisfies three properties. 9

1. Decomposability : Path p admits a decomposition into region-segments. This property means thatp can be decomposed into segments such that p = (v0:::; x0kv1:::x1k:::kvj:::x) where v0; v1; :::; vj 2VD, xi 2 Xvi and pathsvi (vi; xi) 6= �.

2. Uniqueness : For every valid path there is a unique decomposition into region-segments; i.e. there
is one and only one way to decompose p into region-segments.

3. Existence : The converse is also true; any sequence of valid region-segments that are “correctly
connected”, constitute a valid path. More precisely, say S is a sequence of region-segments, S =(s0ks1k : : :ksk) where si = vi : : : xi, vi 2 VD, xi 2 Xvi . Correctly connected means that the
sequence satifies the property xi = vi+1. If these constraints are satisfied then S 2 paths(v0; xk).

Decomposability and uniqueness are related properties and can be proven together. Note that the path-
decomposition lemma constrains the path p’s start node v0 to be a lp-fork node and the exit x to be a
domain-exit node (and therefore an exit-node of atleast one region). If there are no lp-forks in the path

9There are subtle differences between our path decomposition lemma and a similar lemma used in [21]. These differences stem
from the fact that regions can overlap while procedure calls are completely nested. Decomposition of a path into unique procedural
segments is much more intuitive because every CFG node of belongs to only one procedure while nodes in our region-segments
can belong to multiple regions.
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p = (v0; : : : ; x), then p itself is a region-segment and the entire path is the trivially unique solution. If the
path does contain other lp-forks inside it, then a decomposition can be obtained by segmenting the path at
lp-fork node. This is a valid decomposition as each segment si = vi : : : vi+1 has vi 2 VD and vi+1 2 Xvi
and all the intermediate edges are not lp-forks and therefore inEvi . This decomposition in region-segments
is unique. Any other choice of segmentation points would result in atleast one segment having a lp-fork
node in the middle; such a segment cannot be a valid region-segment. The “existence” property, follows
directly from the fact that compositions of valid paths yield other valid-paths as long as the end of the first
path is the start of the second path. This conditions are true – each region-segment is a valid path and the
end of one segment is the start of the next segment.

5.1 Termination

We need to show that both the builder and the stitcher algorithms terminate.
Termination of the builder follows from the following observations.

1. The summary function of a node never rises (in the function-lattice) from one iteration to the next;
i.e.  i+1 �  i. This follows from monontonicity of transfer functions in F .

2. In each iteration of the builder one of three things must happen : (1) the algorithm terminates because
the work-list is empty or (2) the summary function of atleast one node in the region changes — i.e.9n 2 Nv such that  i+1(n; x) �  i(n; x) or (3) the size of the work-list is reduced. Only possibility
(2) increases the size of the work-list. However, this possibility can happen only a bounded number
of times, because there are a finite number of nodes in a region and the depth of the function-lattic F
is bounded.

The stitcher phases terminates because :

1. The dataflow attribute assigned to a region never rises from one iteration to the next; i.e. Ωi+1(v) �
Ωi(v). This follows from monontonicity of summary functions.

2. In each iteration of the stitcher one of three things must happen : (1) the algorithm terminates because
the work-list is empty or (2) the dataflow attribute of atleast one region changes — i.e. 9v 2 lD such
that Ωi+1(v) � Ωi(v) or (3) the size of the work-list is reduced. Only possibility (2) increases the
size of the work-list. However, this possibility can happen only a bounded number of times, because
there are a finite number of region in a domain and the depth of the attribute-lattice L is bounded.

We are now ready to prove the other two results.

5.2 DDFA is safe

For any feasible execution path p, from op to an exit node x 2 X the dataflow properties that flow up the
path would be ideally determined by the composition of the transfer functions for each node along the path.
That is, if path p = (op:::; x0kv1; :::x1k:::kvj:::x) then fp(op) = fx � : : : � fvj � : : : � fv1 � : : :fop(?). To
prove safety, we need to show that Ω(op) computed by DDFA will be a conservative approximation offp(op). We need to prove that :

Ω(op) � fp(op) 8p 2 paths(op; x); x 2 X (5)

We outline the steps of the proof below.
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1. Every region-segment (vi; wi; : : : ; xi) in the unique decomposition of path p, will have a correspond-
ing summary function  i(wi; xi) constructed by the builder.

2.  i(wi; xi) is a safe approximation for the composition of transfer functions of nodes that lie in the i-th
region-segment of path p ; i.e.  i(wi; xi) � fwi � : : : � fxi . This is shown by an inductive proof on
the segment-length, using the safety property of functional-meet and functional-composition. After
this step, we know that the builder is safe.

3. For every segmentation-point vi : : : xikvi+1 : : : in path p, there will be a corresponding backward
propagation of attributes from region vi+1 to region vi. This essentially translates to the requirement
that vi+1 2 succvi(�) which is directly based on the safety of the predictability analysis (for which
we use safety of reaching-definitions analysis). After this step we know that the region-graph used
by the stitcher includes the path p.

4. The iterative stitching algorithm on the region-graph is safe. This requires an inductive proof on the
number of region-segments in path p.

5.3 DDFA matches Meet-over-all-paths solution

In this section, we show that DDFA’s solution is at least as good as a compile-time meet-over-all-paths
(MOP) solution (ϒ). That is we need to show that :

ϒ(op) � Ω(op) (6)

The idea here is to show that if we did not use any runtime information (knowledge of control-flow deci-
sions), the results of DDFA’s two-phase analysis would still be at least as good as a MOP solution. Consider
a crippled version of DDFA (called p-DDFA, for poor-man’s DDFA) that is identical to DDFA except that
the stitcher does a poorer job of selecting which summary functions to apply. Unlike DDFA’s stitcher which
selects functions based on fork-direction as well as the exit node, p-DDFA selects based only on the exit
node. This may activates a larger number of summary functions at every region, all of which are applied
to the incoming flow attributes. The results are combined by a meet operation (u). Let us denote the re-
sults obtained by p-DDFA as Ω�(op)We can show that p-DDFA can perform as well as aMOP analysis, i.e :

ϒ(op) � Ω�(op) � Ω(op) (7)

First, we introduce an alternative way of obtaining the dataflow results at the op-node, called BOA
(builder-only approach). The BOA approach ignores all lp-forks and treats the entire op-domain as a single
region. It computes a summary function (multiple functions if there are multiple exits) for the entire domain.
BOA’s stitcher is much simpler than DDFA’s stitcher. If the domain has a single exit, then there will be only
one big summary function for the entire domain; the stitcher can get the dataflow result for the op-node by
merely applying this function to ?. If the domain has multiple domain-exits then there will be a different
summary function corresponding to each exit. Each of these summary functions is applied to ? and the
results are combined using u.

Lemma 1 p-DDFA’s solution is at least as good as a builder-only solution (BOA).

The proof of Lemma 1 is based on the “existence” property of the path-decomposition lemma. Any
sequence of region-segments used by p-DDFA’s stitcher is a valid path. This path must also be considered
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(x)call  P

entry P(d)

Preturn

OP

gen 

resume

if  (y)

call  P (y ) α

if  (x)

gen 

resume

exit

α

OP

......

exit
......

gen  β

if  (d)

op-domain2
op-domain1

1

2

Figure 8: Interprocedural Example. Procedure P is called from two sites. At both sites, the fork inside P can
be predicted. As a result, the op-domains for the two sites can share the common region’s data-structures.

by the BOA builder when computing the domain’s summary function. An inductive proof (on the number
of segments in any such path) can be used to show that the domain summary function will be no better than
the p-DDFA approach of iterating on the region-graph.

Note than BOA is computing the domain’s summary function for the entire op-domain using an iterative
process. We can show that the iterative computation of the summary function is just as good as a functional
meet over all paths (FMOP) computation of the summary function.

Lemma 2 The BOA solution is at least as good as a FMOP solution.

This part is relatively easy - other than the fact that we are operating on the function lattice F , this step
is identical to any normal dataflow analyses. Since F is distributive, monotone, bounded and closed under
functional-composition and functional-meet, we can directly borrow proofs from Kildall [14].

Lemma 3 The FMOP solution is at least as good as the MOP solution.

This step shows that operating on the functional domain does not hurt the quality of the solution. For
this we just cite previous work on summary functions, in particular Theorem 7-3.4 in [21].

From the Lemmas stated above we have : DDFA � p-DDFA � BOA � FMOP � MOP.

6 Extensions to the basic framework

In this section, we extend the basic framework to incorporate interprocedural analysis, higher-order functions
and separately compiled functions. We also describe how the runtime analysis can be modified to look
further ahead in the execution – the goal being to optimize over multiple op-domains.
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compiled

esc-entry

esc-return

esc-call

esc-resume

Figure 9: Separately Compiled Code. Procedure P is called from the separately compiled code on the right,
as well as from within its own module. The shaded regions show the new op-domains that would be created
to handle the esc-call.

6.1 Interprocedural Analysis

To handle procedure calls, we extend the control-flow graph. We insert two nodes for each call-site
– a call-node and a resume-node. For every procedure, we insert an entry-node and and return-node.
Each entry-node has incoming edges from all its call-nodes; each return-node has outgoing edges to the
corresponding resume-nodes. A suitable binding function and its inverse are associated with the entry-node
and the return-node of a procedure.

Extending DDFA to an interprocedural setting introduces two primary problems. First, not all paths
in the control-flow graph are valid. Control that arrives at a procedure via a call-node can only leave the
procedure via the matching resume-node. Therefore, care must be taken to preserve the calling context while
creating op-domains that straddle procedure boundaries. Second, since procedures can be called from a large
number of call-sites and since each call-site can be within a different op-domain, the regions corresponding
to the code in the procedure can be a part of a large number of op-domains. Since a region table is generated
for every region in an op-domain, this can result in a large number of replicated region-tables.

Sharing the region-tables for common regions among different op-domains that reach a procedure is
non-trivial – a fork within the procedure may be predictable at one op-node but not at another. We note
that this problem is similar to context-sensitive binding-time analysis [13] and suggest a similar solution.
For each op-domain that extends into a procedure, we mark each fork within the procedure as lp (lossy and
predictable) or non-lp. If two op-domains induce the same markings for all forks in a procedure then they
can share the region analysis and data-structures for that procedure. Since the number of forks is likely to
be small, we expect that the number of possible divisions will also be small, allowing significant sharing
across op-domains.

To increase the possibility of sharing, we ensure that lp-regions don’t straddle procedure boundaries.
We do this by marking entry-nodes and resume-nodes as dummy lp-fork nodes. Since these forks have
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only one child, they are always predictable – we’ve just imposed a false lossiness onto them.10 Figure 8(a)
illustrates the interprocedural representation and sharing of regions. In the figure, the regions of procedure
P are shared by both op-domains.

6.2 Separately compiled code and higher-order functions

The primary problem that has to be dealt with when extending DDFA to separately compiled code and
higher-order functions is that the complete control-flow graph is not available at compile-time. This makes
it impossible to perform a precise predictability analysis, and correctly mark of forks as lp-forks. In these
situations, we have to make some conservative approximations which may lose precision across call-sites
but preserve it on each side of the boundary. The strategy we have chosen is to insert new op-nodes at
every control-flow point at which control may arrive from an unknown place. This strategy assumes that it
is possible to safely insert new op-nodes (e.g. it is safe to insert new bulk-prefetch calls).

We refer to calls to separately compiled code and to unknown functions as esc-calls. The corresponding
resume-nodes are marked as esc-resumes. Similarly, we mark entry- and return-nodes of escaping functions
(functions that can be called from unknown sites) as esc-entries and esc-returns. See Figure 9 for an
example. To handle the fact that a function may have both known and unknown call-sites, we analyze two
versions of escaping functions – a non-escaping version and an escaping version. The non-escaping version
is analyzed as usual and allows op-domains to straddle procedure boundaries. For the escaping version, we
place an new op-node at the esc-entry node. We also place an op-node at the esc-resume node corresponding
to sites that may call unknown functions. No dataflow information can flow across these call-sites. During
runtime? is passed up from these call-nodes. Figure 9 shows an example of separately-compiled function.
The shaded regions show the new op-domains that would be created to handle the esc-calls. Higher-order
function calls are treated in exactly the same manner.

6.3 Dynamic merging of op-domains

DDFA restricts the domain of influence of each operation to a single op-domain. This is because a lp-fork
that is predictable at one op-node may not be predictable at a previous op-node. Thus, op-domains form
boundaries of predictability. However, this boundary is not always strict. There may very well be situations
where all the fork-directions predictable at an op-node op2 could also be predicted at one of its preceding
op-node (say, op1). These circumstances can be detected at compile-time using simple reaching-definitions
analysis. In these cases, op2 is designated a half-op node (or hop-node) with respect to op1. The runtime
stitcher when invoked at op1, can detect that control may reach op2. On detecting that op2 is a hop-node with
respect to op1, the stitcher can continue processing op2’s domain-table. by checking op2’s fork directions
and adding op2’s regions to its own. The hopping process continues until control reaches an exit that is not
a hop-node.

For instance, in our running example (Figure 1), the lp-fork (if(d)) inside op2’s domain is predictable
even at op1. When the stitcher at op1 detects that control can exit the loop and reach op2 it stitches inop2’s lp-region to its own set of regions and prefetches the combined result. In the example, the prefetch
instruction is already prefetching (f�; �g), so dynamic merging does not make a difference.

10Marking a non-lossy node as lossy does not hurt DDFA’s correctness or the quality of the results; it only increases the number
of regions that must be analyzed at runtime, thereby increasing space and time overheads.
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proc grep_on_hostB()
     clean_&_go("B");
     B_fopen();

     clean_&_go("A");
     A_fopen();

return
........

return
.....

proc grep_on_hostA( )

     go(hostname);
     finalize_state();

return

proc clean_&_go(hostname)

grepA grepB

call clean

resume

A_fopen

return

return

return

B_fopen

resume

call cleanclean

GO

Figure 10: A simple program that cannot be successfully linked using a conservative approach. After the
migration at go, the linker at the new site would try to bind A fopen as well as B fopen because both
are deemed reachable. Since these functions are defined on different sites, the linker would fail. Checking
the calling-context at runtime avoids this problem.

7 Other Applications of Deferred Data-Flow Analysis

This paper has used bulk-prefetching as a running example for DDFA. In this section we briefly outline
other dataflow problems where DDFA is applicable.

7.1 Compiler-directed Dynamic Linking for Mobile Programs

The problem of dynamic linking for mobile programs is described in [1]. In mobile programs, there are
migration points (called go(newhost) instructions) at which the execution is suspended on the current
host and is resumed at a named host. After migration, the mapping between program names and local
procedures have to be re-established. The problem is to determine the names that the mobile program can be
refer to while on a particular host and to dynamically link these in at the migration point. A simple compiler-
based solution would be to collect all names that can possibly be referenced between one migration point and
the next and to link these names when the program migrates. While this approach is safe, it can be overly
restrictive and can result in link-failures for “reasonable” mobile programs. For example, in Figure 10,
the call to go is inside the function clean and go, which is called from procedures grep on A() and
grep on B(). Ignoring the calling context (which will be known at runtime) would the linker to link in
both A fopen and B fopen. Since these two fopen functions are defined on different hosts, the linker
would fail. To tackle this problem, Acharya et. al. [1] propose a compiler-directed technique that uses
the runtime call-stack to prune the set of future control-flow paths. The linker links in only those names
that may be reached along these pruned paths. For the example in Figure 10, the algorithm can check the
call-stack at runtime and determine the direction of the return-fork. This allows it to link in only one of the
fopen, and prevent a link-failure.

The solution proposed in [1] only handles return-forks. Deferred data-flow analysis can improve the
solution presented in [1] by taking all predictable conditionals into account while pruning future paths. and
yields a smaller set of names to link in.

Figure 11 illustrates the differences between the static solution, the call-stack algorithm of [1] and the
DDFA solution. The mobile program shown in the figure will migrate twice. It migrates from home to
newsite where it performs a host-specific operation (fgets) after which it migrates back to home. The
first call to go() is made through the call-sequence A ! B ! go, and the second call is is made through
the call-sequence A ! D ! B ! go or A ! U ! B ! go. The corresponding flow graph is shown
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proc

return
 call B(home)

     D()

 dos_fgets(data);

cleanUp();

proc

return
go(site);

     B(site)

proc A (newsite)

call B(newsite);

home = hostname();

if(newsite.os == dos)

else

return

call D();

call U();

return
call B(home);

proc     U()

 unix_fgets(data);

process(data);

A_entry

callB

if (os)

resume1

B_entry

B_exit

 resumeB

callB

 resumeB

D_entry

callB

D_exit

callD

 resumeD

A_exit

 process

GO

U_entry

U_exit

unix_fgets  dos_fget
callU

resumeU

Figure 11: The figure on the left shows a mobile program that migrates migrates from home to newsite,
performs a host-specific operation (fgets) at newsite and then migrates back to home. The figure on
the right shows the program’s interprocedural flow graph. Static compile-time collection of link-sets for the
go call would require linking in both unix fgets and dos fgets causing a link-failure. An algorithm
that inspects the call-stack at runtime and uses it to figure out the calling-context can avoid a link-failure at
the second go but would still fail at the first go. DDFA can predict the direction of the conditional-fork,
allowing it to safely link in only one version of fgets.

alongside. The dataflow problem being solved is very simple, merely requiring that all names reachable
from a go call be collected. The transfer function for each basic block has a gen set that contains all the
names referred to in that basic-block. Names are never killed, so kill sets are empty. The meet-operator
is set-union.

Using standard compile-time dataflow analysis, we find that the link-set, i.e. the names that can be
reached from the go-node are : N = f U, D, B, dos fgets, unix fgets, process g. The compile-
time algorithm cannot distinguish between the first call to go() and the second, so the dynamic linker will
try to link in the set same setN at both migration-points. Since the functionsdos fgets andunix fgets
are not available on the same machine, the linker will fail on both occasions.

The call-stack algorithm of [1] can do better than strictly static analysis. It can distinguish between the
first go and the second by inspecting the call-stack at runtime. Its runtime stitcher will create two different
sets of names. For the first go, we have the name-sets: N1 = f U, D,B, dos fgets, unix fgets g andN2 = f process g. Unlike the static algorithm, N2 is a feasible link-set; unfortunately however, the first
link-set is not, so there will be link-failure after the first go.

DDFA can tackle not only the return-fork at B exit but also the conditional if(site.os) as well.
The name-set created by the DDFA runtime stitcher for the first go call will be based on the value of
site.os. If site.os = dos, thenN1 = f D, B, dos fgets g, otherwiseN1 = f U,B, unix fgetsg. Both these link-sets are feasible for the linker, so the linker will not fail.
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  EXIT

alloc s1

  

y = alloc ( s1)

gc ( )

p = alloc ( s3)
else

repeat 

read   x 

if  ( x  is Even )

until (x == 0)

p = alloc ( s2)

q = alloc ( s3)

exit

dir.

GC

alloc  s3

read  x

alloc s4

alloc  s2

evenodd

even

odd

 if  even(x)

until (x=0) x > 0

until x 

until x

x > 0

x = 0

even(x)

exit  

φ

φ

φ

φ

gen kill

{s3}

{s4}
region
even(x)

region
until(x)

DDFA  Region  Tables

exit.

{ s1}

{ s2}

Figure 12: Garbage collection example. A strictly compile-time algorithm would estimate memory required
after the gc() call to be max(s3; s4) +max(s1; s2). DDFA can use runtime control flow information (i.e
the value of x) to improve the estimate to select(s3; s4) + select(s1; s2). The region-tables computed by
the builder for the two lp-forks are shown alongside.

7.2 Explicit Garbage Collection

Garbage collection presents a great difficulty for programs that have real-time requirements. Garbage
collection may be trigerred at any memory allocation point and take unpredictable amounts of time. To limit
this variability, many garbage-collected languages allow the garbage-collector to be turned off unless it is
explicitly invoked. Explicit garbage-collection is cumbersome because it leads to frequent over-cautious
collections of small bits of garbage even when there is a lot of free space available. Compiler-support can
help by providing the garbage-collector with an estimate of the amount of memory that will be requested
before the next gc() call. The garbage-collector will perform garbage-collection only if the estimate
is more than the amount of available memory. Otherwise, garbage-collection can be deferred until the
next call to gc thus aggregating garbage-collection operations dynamically. However this is not an ideal
solution. Different execution paths may have different memory requirements and static analysis has to make
worst-case estimates. Further, the size of each memory allocation request may be a runtime variable. For
example, consider the code fragment in Figure 12. Each iteration of the repeat-until loop makes an explicit
call to the garbage-collector gc(). The compile-time estimate of memory required between any two calls
to gc() is E = max(e1; e2) +max(e3; e4), where ei = compile-time-estimate(si).

DDFA can improve the memory requirement estimate in two ways. First, it uses runtime information to
eliminate infeasible control-flow paths. In the example of Figure 12, runtime knowledge of the value of x
can tell the stitcher exactly which allocation calls will be made, effectively replacing themax operator used
in the compile-time estimate with a select operator. Second, the runtime stitcher may have precise values
of s1; : : : ; s4, which can be used to improve the estimate of memory requirements.

8 Discussion

8.1 Forward DDFA

Our presentation of DDFA was limited to solving backward flow problems. This is because DDFA’s main
power is its ability to predict directions of lossy forks that will be encountered in the future. Forward dataflow
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analysis frameworks suffer from an analogous loss of information at joins in the CFG. We could build similar
regions and domains. A notable difference is that in forward frameworks the domain of influence of an
operator is executed before the operator is reached. This implies that there are no non-predictable joins, for
there is nothing to predict. The path has already been executed, so the points of entry and exit into regions
can be logged by using path-profiling techniques [3] (adapted for profiling region entry and exit). At the
op-node, a check of the region entries and exits would tell the runtime stitcher which transfer functions to
compose.

8.2 Predictability of forks

We have described the DDFA predictability analysis in only very broad terms. What is predictable and what
is not it depends on how much computation one is willing to do to check for a condition’s value. In the
extreme case, every conditional could be made predictable by slicing out all the code required to determine
the condition-variable and pushing it inside the runtime stitcher. Obviously, how much computation should
be performed just for the sake of prediction depends on the particular dataflow problem being solved. Our
approach uses a very conservative form of predictability. In our approach there should be no definitions
to the condition-variable along a path from the op to the condition — if there is such a definition, we
allow simple renames of one variable to another or assignment to a constant. In all other circumstances,
the condition variable is considered unpredictable. Return forks tend to easily predictable because return
destinations are stored from the call-stack and are not usually manipulable (i.e. no setjmp/longjmp). We
have also taken a very simplistic approach towards exploiting correlations between fork-directions. It may
not be necessary to check every lp-fork’s direction on reaching an op-domain because one fork’s direction
may imply another fork’s direction. Similarly, a fork that is designated as non-predictable may actually be
predictable depending on some other fork-directions.

9 Related Work

Specializing programs at runtime with respect to runtime invariants has been studied in considerable detail.
Typically, most dynamic compilation strategies focus on efficient code generation by delaying some parts
of code generation until runtime (or an intermediate specialization-time). The process usually involves
generating parameterized code templates with holes in them; a runtime specializer plugs in these holes with
runtime values and stitches the templates. Engler et. al. [9] allow programmers to construct and manipulate
templates explicitly. Others, [6, 11, 16], generate templates automatically. These efforts are concerned
with generating optimized code based on runtime values, so they focus on lower-level optimizations like
load-elimination, loop-unrolling, static branch-elimination etc. Like these techniques, DDFA is a two-phase
approach, with a compile-time phase that “sets things up” for a runtime-stitcher. However, as our goal is to
optimize heavy-weight operations we focus on improving the precision of the dataflow analysis rather than
generating optimized code. DDFA does not modify code, except to insert a call to the runtime stitcher at
each heavy-weight operation.

Our use of summary functions have been adapted from previous research on interprocedural analysis,
in particular Sharir et. al. [21] and Duesterwald et. al. [8]. An important distinction is that we apply these
summary functions at runtime. Another important distinction is that we use summary functions for regions
instead of procedures; this introduces additional complications as regions overlap while procedures do not.

Standard algorithms for dataflow analysis assume that every sequence of edges that leads from a node
to an exit-node constitutes a feasible execution path. All these paths are included in the meet-over-all-paths
solution. However, in practice, not every control-flow path is actually feasible. Edges are often correlated
to each other — for example, Mueller et. al. [17], has reported the existence of significant amounts of
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correlation among conditional branches. Often these correlations can be detected at compile-time [4], and
can be used to eliminate some paths during dataflow analysis, resulting in a solution that is sharper than the
meet-over-all-paths solution. For example, Holley and Rosen [12], describe a qualified dataflow approach
which exploits edge correlations to sharpen dataflow analysis; Bodik et. al. present a similar technique
in [5]. Unlike these approaches, DDFA does not try to detect edge correlations at compile-time. Instead,
DDFA tries to eliminate paths at runtime, by using runtime control-flow information. It should be possible
to combine both techniques — we have not yet investigated this angle.

There has been considerable research recently in branch prediction [15, 22] and profiling [3]. These
techniques generally give probabilistic information about control-flow directions. DDFA could use such
information to guide its caching policies.

The technique of deferring collection of dataflow information until runtime was used in a limited form
(only procedure return forks) by Acharya et. al. in [1] to handle the problem of dynamic linking in mobile
programs. DDFA is more general as it handles all types of forks.

10 Conclusions

The DDFA framework uses runtime control-flow information to sharpen compile-time dataflow analyses.
We have shown how this framework can be used for optimizing various heavy-weight operations, including
bulk-prefetching and dynamic linking of mobile programs. Runtime overheads are kept low by performing
most of the analysis at compile-time; at runtime, knowledge of future control-flow can be used to simply
stitch compile-time results together -time to get sharper dataflow information. Overheads are further reduced
by caching dataflow results and reusing them. We have outlined how the basic DDFA framework can be
extended to include interprocedural analysis, separately compiled code, higher-order functions and for
analysis across multiple heavy-weight operations. In this report, we have limited our focus to backward
dataflow problems. In section 8, we outlined a very simple variant of DDFA for forward problems, which
logs the execution-path and uses this log to compute dataflow information for the traversed path.

In describing the DDFA framework we have assumed placement of heavy-weight operations is fixed.
In some scenarios, the placement may not be so sacrosanct. In such cases, performance could be improved
if one were allowed to move these operations in conjunction with deferred dataflow analysis.
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