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This dissertation is about the physics of dilute gaseous Bose-Einstein conden-

sates (BECs) confined to lower dimensions by optical lattices. The central theme

of the effects of reduced dimensionality is explored within various one-dimensional

(1D) and two-dimensional (2D) systems. We create a 2D BEC by adiabatically in-

creasing the confinement of a trapping potential in one direction to the point where

motion in that direction is frozen out. Doing this in two directions, we create a 1D

BEC. Two experiments examine the ground state properties of a 1D and 2D system.

In the 1D system (Chap. 9), a reduction in three-body recombination signals an

increase in correlation resulting in a partial “fermionization” of the Bose gas. In

the 2D system (Chap. 8), we measure temperature-dependent condensate phase

fluctuations in the vicinity of the Berezinskii-Kosterlitz-Thouless transition.

Other experiments investigate dynamic properties of reduced dimension sys-

tems. Strongly inhibited transport of a 1D gas in a lattice is observed in one ex-



periment (Chap. 9). Another 2D experiment measures suppressed collisional decay

rates due to the reduced dimensionality (Chap. 9). A final experiment (Chap. 7)

examines quantum/classical correspondence in the effectively 1D dynamics of a 3D
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“accordion lattice” (Chaps. 5-6) which greatly facilitated the Berezinskii-Kosterlitz-

Thouless experiment, the quantum/classical correspondence experiment, and a “su-

perlattice” experiment conducted to assist in the calibration of the accordion lattice.
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ters the pinch field along ẑ bringing the total field down to the 1 G
level in the vicinity of the origin. The bias coils vary the radial gradient. 67

vii



4.8 Magnitude of the magnetic field of the Ioffe-Pritchard trap along the
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Chapter 1

Introduction

Bose-Einstein condensation (BEC) in a dilute atomic gas was first achieved at

JILA in Boulder, Colorado in 1995 in the group of Carl Weiman and Eric Cornell

[1]. First predicted by Albert Einstein [18–21], who was generalizing the work of

Satyendra Nath Bose [22], its creation was a watershed event in atomic physics.

BEC has enabled the exploration of fundamental quantum mechanical issues using

systems that are accessible and highly flexible. The use of lasers to create periodic

light shift potentials (standing waves of light or “optical lattices”) for atoms in a

BEC has permitted many fascinating condensed matter-analog experiments in which

the experimentalist has exquisite control over properties such as the geometry of

the lattice potential, its strength, disorder, and periodicity. This has opened up a

new era of research to atomic, molecular, and optical physicists allowing detailed

investigations into the many-body properties of quantum mechanical systems. The

ease and speed with which we can spatially and temporally modulate laser light

intensity and polarization can be exploited to allow us to explore the ground state

properties as well as the dynamics of the atoms in the lattice with unprecedented

precision.
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1.1 3D BEC in a Uniform, Ideal Gas

The phenomenon of Bose-Einstein condensation was first described theoreti-

cally for ideal (non-interacting) bosons in a uniform potential. However, the first

realization of a gaseous BEC occurred with weakly interacting bosons in a three-

dimensional (3D) harmonic trap. Given these differences, it is remarkable how

closely the initial experiments can be understood in terms of the early theory. Un-

like a classical phase transition, BEC does not rely on atom-atom interaction for its

occurrence. It is a result that depends only on Bose statistics and the density of

states of the system. Its explanation for an ideal Bose gas in a uniform (also referred

to as homogeneous) potential is contained in many statistical mechanics textbooks

[31]. A brief explanation of the theory in 3D along the lines of Ref [31] follows.

Consider N non-interacting indistinguishable bosons, each with mass M , in

thermodynamic equilibrium at temperature T . The average occupation ni of an

energy level with energy εi is easiest to calculate in the grand canonical ensemble.

According to Bose statistics, it is

ni =
1

e(εi−µ)/kBT − 1
, (1.1)

where kB is Boltzmann’s constant and µ is the chemical potential. The chemical

potential can be thought of as a Lagrange multiplier whose value changes with tem-

perature in such a way as to keep the average total number of particles, determined
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by summing over all energy level occupations, equal to N.

N =
∑

i

ni. (1.2)

If we consider the energy of the lowest level to be zero, we see that µ must be

negative to avoid a negative occupation of the lowest level at finite T. In addition,

as the temperature decreases toward zero, it is apparent that µ must also approach

zero (from below) to keep N constant. However, since µ goes to zero faster than T

goes to zero, this forces the population in the lowest energy level to diverge. At this

point, the standard procedure is to write Eq. (1.2) as an integral with the ground

state occupation separated out as N0. This ability to write this as an integral is

justified if N is large and kBT is much larger than the typical energy level spacing

[31].

N = N0 +
∫ ∞

0
γ(ε)

1

e(ε−µ)/kBT − 1
dε. (1.3)

Here γ(ε) is the density of states, which for a 3D box with volume V is

γ(ε) =
VM3/2ε1/2√

2h̄3π2
. (1.4)

Substituting this expression for γ(ε) into Eq. (1.3), we arrive at the following

N = N0 +
V

λ3
th

g3/2(z), (1.5)

where λth =
√

2πh̄2/MkBT is the thermal deBroglie wavelength, z = eµ/kBT is the
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fugacity and g3/2(z) is the Bose function

g3/2(z) =
∞∑

l=1

zl

l3/2
. (1.6)

The phenomenon of Bose-Einstein condensation can now be understood as

follows. First, observe that as T decreases, λth increases. As the temperature T of

the system is reduced from an initial temperature high enough that µ is initially

much less than zero, we see that µ initially has the ability to increase toward zero,

thus allowing g3/2(z) to keep up with the increasing λ3
th in order to maintain fixed N

(without N0 having to be macroscopically occupied). However, keeping in mind the

fact that µ can never exceed zero, we see that at z = 1 (where g3/2(1) = 2.612) the

second term in Eq. (1.5) cannot hold all N atoms. At this point the first term in Eq.

(1.5) is forced to start holding a significant number of the atoms. As T continues

to decrease, it holds increasingly more. The transition occurs when z = 1 and Eqs.

(1.3) and (1.5) cannot be satisfied with N0 = 0. Using the value of g3/2 = 2.612 at

this point and requiring the first term in Eq. (1.5) to be zero together define the

onset of BEC:

N = 2.612
V

λ3
th

, (1.7)

or simply nλ3
th = 2.612 where n is the spatial number density of the gas. In the

next section, we will discuss a more general definition of BEC that relates to the

amount of phase fluctuations in the system.
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1.2 The Role of Interactions, Trapping, and Dimensionality

Previously we talked about BEC as being the macroscopic occupation of a

quantum state. Although this is a valid definition, an often more useful definition

involves the phase coherence properties of the system as originally emphasized by

Penrose and Onsager [2]. They considered the single-particle density matrix ρ(~r, ~r′)

which characterizes the correlation properties at points ~r and ~r′. If ~r = ~r′, then

this function returns the system density; but as |~r− ~r′| increases, the function goes

to zero for a non-condensed system. Macroscopic occupation of a quantum state

implies that ρ(~r, ~r′) remains finite even in the limit |~r − ~r′| → ∞. Calling the

wavefunction of the state that is macroscopically occupied ψ(~r), then the fact that

ρ(~r, ~r′) remains finite even in the above limit means that the phase of ψ(~r) must

be correlated over the entire system. This phase coherence is another definition of

BEC, and is commonly referred to as off-diagonal long-range order (ODLRO). For

a trapped finite-size system, the limit |~r − ~r′| → ∞ does not exist, however phase

coherence across the size of the condensate is a meaningful definition of BEC.

The first order corrections to degeneracy temperatures and ground state occu-

pations due to the effects of harmonic trapping and weak atom-atom interactions in

a 3D BEC were calculated in a seminal paper by Bagnato, Pritchard, and Kleppner

[3]. As mentioned above, these corrections were rather minor so that the uniform,

ideal gas theory was a good guide to the early experiments. However, for BEC in

one and two dimensions (1D, 2D), the effects of weak interactions and harmonic

trapping are very pronounced. For instance, in a 1D uniform ideal gas, BEC only
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occurs at zero temperature [5]; however, with interactions it cannot occur even at

T = 0 [5]. For a 2D uniform ideal gas, BEC also only occurs at T = 0 [106, 107].

However, unlike the 1D case, weak interactions do not destroy the 2D BEC at T=0

in a uniform gas. Instead, the effect of interactions is to create a finite T superfluid

(SF) transition associated with the formation of bound vortex pairs below the crit-

ical temperature TBKT [12–17] (the Berezinskii-Kosterlitz-Thouless temperature).

Above TBKT the system is normal (non-superfluid); below TBKT the system is SF

and referred to as a quasi-condensate because although density fluctuations are sup-

pressed, the phase still fluctuates on a length scale which is smaller than the system

size. The above conclusions can be reached by simple density of (plane wave) states

arguments for the non-interacting uniform 1D and 2D gases. For the interacting

gases, the arguments are more subtle.

The presence of a confining potential alters these conclusions to the point

where Bagnato and Kleppner showed that 2D BEC is possible at finite T for an

ideal gas in a power-law trap of any positive power [4]. They further showed that

in the thermodynamic limit, 1D BEC is possible at finite T for an ideal gas in a

power-law trap as long as the exponent is higher than two. However, exploring

finite-number effects in trapped systems, Ketterle and van Druten [47] theoretically

demonstrated, by using a definition of the thermodynamic limit which was different

than the standard definition, that 1D finite T BEC is in fact possible for an ideal

gas in a harmonic trap.

The role of interactions in trapped lower dimensional systems is quite compli-

cated. For a 1D harmonically trapped system, interactions that are weak compared

6



to the harmonic energy h̄ω do not destroy BEC at T=0. However these interactions

do destroy a sharp transition to a 1D trapped BEC at finite T if the interaction

energy is not less than approximately h̄ω/N where N is the number of atoms [105].

For interactions that are strong compared to h̄ω, a 1D gas in its ground state be-

comes a highly correlated string of impenetrable bosons (a Tonks-Girardeau gas)

[6–9] if the healing length ξh (where ξh =
√

8πna, n being the 3D density, and a

the s-wave scattering length) is less than the average interparticle separation. If

the healing length is greater than the average separation (and the interactions are

still larger than h̄ω), then this (weakly interacting) gas in its ground state has a

phase that does not appreciably vary over its spatial extent. This is known as a

quasicondensate above a critical temperature Tφ and it becomes a true BEC below

Tφ [129]. Interestingly, interactions in a 1D gas becomes increasingly important the

lower the 1D density.

For a 2D harmonically trapped system with interactions, it has not yet been

established under which conditions a normal BEC transition (long range order, as

described in this chapter) occurs versus a Berezinskii-Kosterlitz-Thouless transition

(quasi-long range order, as described in Chap. 8). These two transition temperatures

are expected to be very close to each other for most weakly-interacting, trapped

systems [131]. In general, if a finite T trapped 2D BEC exists for a system with weak

repulsive interactions, the critical temperature is lower than for the corresponding

ideal system. Bagnato, Pritchard, and Kleppner have calculated critical temperature

corrections based on changes to the density of states due to a mean-field effective

potential [3].
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See Table 1.1 for a brief summary of the above discussion giving (where ap-

plicable) degeneracy temperatures and ground state occupations as a function of

temperature for 1D, 2D, and 3D, uniform and trapped, with and without interac-

tions. Note that within Table 1.1, n and g refer to spatial number density and

coupling strength for the relevant dimensionality, i.e. their forms change depend-

ing on the dimensionality. The interactions are assumed to be repulsive (i.e. the

s-wave scattering length, a, is positive). Also, ω refers to the trap frequency for the

harmonic cases. In the case of an anisotropic trap, it is the geometric average of

the two or three frequencies. The harmonic oscillator ground state size is denoted

aho. Finally, the thermodynamic limit is assumed throughout Table 1.1 with the

exception of the 1D harmonically trapped ideal gas where finite N is assumed. All

references are contained in the text of this chapter.
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1.3 Thesis Overview

This thesis is about the physics of dilute gaseous BECs confined to lower

dimensions by optical lattices. We create a 2D BEC by increasing the confinement

of a trapping potential in one direction to the point where motion is frozen out. If we

do this in two directions, we create a 1D BEC. The experiment on BEC diffraction

beyond the Raman-Nath regime (Chap. 7) uses a 1D lattice; however the atomic

system is not 1D. Because the experiment takes place over a timescale which is short

compared to the time for motion in the weak radial directions, it can be considered

an experiment about the effective 1D dynamics of a 3D BEC.

The criterion for freezing out a dimension in order to reduce the dimensionality

of a system is that the separation between the ground state and the first excited state

in the tight direction must be much larger than the temperature and the chemical

potential of the gas. Because of the extremely cold temperatures (tens of nK) and

low densities (a few times 1013 cm−3) involved in these experiments, this criterion

is met using optical lattices created by a laser with approximately 1W power (with

beam waists of approximately 200 µm).

The overview of this dissertation is as follows. Chap. 2 provides a conceptual

summary of the steps necessary to a achieve a dilute gaseous BEC and a description

of the resulting harmonically-trapped wavefunction. Chap. 3 provides the theory of

the optical dipole potential, optical lattices, and Bloch bands. Chap. 4 describes

those aspects of the 87Rb BEC apparatus for which I was responsible during its

reconstruction. However, since one of the purposes of this dissertation is to docu-
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ment the apparatus for those who will continue to use it, I have also described some

parts of the apparatus in whose construction I did not play a major role. Chap. 5

describes the implementation of a specialized 1D optical lattice whose periodicity

can be dynamically changed during an experiment—an “accordion” lattice. The

theory of heating and adiabaticity issues in this accordion lattice are also consid-

ered. Chap. 6 contains descriptions of the ways in which we performed periodicity

calibrations of the accordion lattice, touching on mean-field effects during the ex-

pansion of the BEC. Chap. 7 describes an experiment using the accordion lattice

which explores the effective 1D dynamics of a BEC in a deep 1D optical lattice as

a function of different fixed lattice periodicities. Interesting connections between

classical and quantum physics relating to the observation of phase space caustics

are investigated. Chap. 8 describes an experiment investigating the low-lying ex-

citations of the ground state of a 2D BEC observed by matter wave interference.

The resultant phase fluctuations and occasional phase dislocations provide impor-

tant evidence on the existence and location of the Berezinskii-Kosterlitz-Thouless

transition in a trapped 2D system as well as the nature of the correlations as the

temperature of the system approaches zero. Chap. 9 summarizes three experiments

which led to publications in peer-reviewed scientific journals. These publications are

provided in the appendices. The first experiment relates to the ground state of a 1D

trapped gas in which the strength of the atom-atom interactions resulted in partial

“fermionization” as evidenced by reduced three-body recombination. The second

experiment continues the theme of reduced dimensionality by exploring transport

of a 1D gas through optical lattices of varying depth. The third experiment in-
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vestigates the discrete vibrational decay of an ensemble of 2D gases which we had

previously Raman-excited from the ground state to higher vibrational levels in the

tight (initially frozen) direction. Chap. 10 is a summary of the thesis and a for-

ward look at the unsolved problems in ultra-cold and condensed matter physics that

might be elucidated using Bose-Einstein condensates and optical lattices.
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Chapter 2

The Path to BEC

This chapter provides a conceptual overview of the steps along the path to

making a Bose-Einstein condensate (BEC). The path to BEC is not narrow; different

laboratories have developed different techniques for achieving the same result. The

following description is specific to the way we make a 87Rb BEC in our laboratory.

This chapter also gives a brief description of the final condensate wavefunction in

the magnetic trap. It is assumed that the reader is generally familiar with atomic

and optical physics techniques.

2.1 Laser Cooling and Trapping

2.1.1 Zeeman Slowing

The first step in the process of making our 87Rb BEC is to slow the hot 87Rb

atoms being emitted from the oven with radiation pressure. The atoms are effusively

emitted at approximately 420K from the oven in the direction of the magneto-optical

trap (MOT). In order to be captured by the MOT, they must be slowed to below

the capture velocity of the MOT (a few m/s).

Since the atoms coming out of the oven have a typical initial velocity of several

hundred m/s and they need to be reduced to a velocity of a few m/s to be captured

by the MOT, a scheme is needed to keep the atoms always nearly resonant with
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the Doppler-shifted frequency of the slowing light. To accomplish this, we use

the Zeeman effect and change the atomic level splitting with a time-independent,

position-dependent magnetic field along the path of the atoms. For a two-level

atom, a magnetic field B Zeeman-shifts the energy levels by a relative amount

∆Ezm = µBB[geme − ggmg] where µB is the Bohr magneton, g is the Landé g-

factor, subscripts g and e refer to the ground and excited states, and m is the

magnetic quantum number. The Zeeman slower is designed to have a magnetic field

profile whose direction is constant along its axis, but whose magnitude varies so

that ∆Ezm = h̄[(ω − ω0) + kv(x)] where ω and k are the frequency and k-vector

of the slowing laser, ω0 is the atomic transition frequency and v(x) is the position-

dependent velocity of the atoms.

The slowing laser is detuned from the atomic transition frequency so that it

is not resonant with the stationary atoms collecting in the MOT which it passes

through. The detuning is red (as opposed to blue) which means that for a given

maximum velocity class of slowed atoms, the magnitude of the Zeeman magnetic

field is smaller. Thus, there is a reverse part of the slower to make the field negative

before the atoms arrive at the MOT. Finally, we have a compensator on the other

side of the MOT to bring the magnetic field to zero at the MOT location.

2.1.2 Doppler Cooling

We now discuss schemes for cooling the atoms after the Zeeman slower using

laser light. We generally follow the treatment in Ref. [25]. Consider a two-level
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atom with velocity v interacting in one dimension with two counterpropagating low

intensity laser beams at the same frequency. The total light scattering force on the

atom is [25]

F =
h̄kγ

2
s0

[
1

1 + s0 + 4( δ+kv
γ

)2
− 1

1 + s0 + 4( δ−kv
γ

)2

]
, (2.1)

where γ is the decay rate of the atom, s0 = I/I0 is the saturation parameter of

one beam, and δ is the laser detuning from the atomic transition. In the definition

of s0, the saturation intensity, I0 ≡ 2π2h̄γc/3λ3 where λ is the wavelength of the

light. In the above expression for F , we ignore the effects of stimulated emission and

cross-saturation (in which one beam saturates the transition for the other beam).

For small velocities where terms of order (kv/γ)4 and higher are neglected, we can

simplify the above expression to

F ' 8h̄k2δs0v

γ[1 + s0 + (2δ/γ)2]2
. (2.2)

We see that for δ < 0 this is a velocity-dependent (dissipative) force, which can cool

the atoms. Since this force is nearly linear with velocity if |v| < γ/k (when s0 � 1

and δ = −γ/2), we can define a capture velocity vc = γ/k. Below this velocity,

the damping rate (term in front of v) is s0h̄k
2. By using three intersecting pairs of

counterpropagating beams, we can achieve Doppler cooling in three directions.

The above damping is accompanied by heating arising from the randomness
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in the discrete absorptions and emissions. The atoms are heated because these

recoils occur in random directions and at random time intervals between events.

Equating this heating rate to the Doppler cooling rate F ·v, the steady-state Doppler

temperature is reached, which is equal to [25]

T =
γ

8kB

1 + 4δ2/γ2

−δ/γ , (2.3)

where kB is Boltzmann’s constant. This temperature has its minimum when δ =

−γ/2 and the resulting temperature is called the Doppler cooling limit:

TD = h̄γ/2kB. (2.4)

For 87Rb, TD is approximately 140 µK. TD was long considered to be the limit in

cooling a gas of atoms. However, this barrier was soon broken because of processes

that will be described in the next section.

2.1.3 Sub-Doppler Cooling

The above treatment ignores important processes relating to the multi-level

character of the atom, the polarization of the light, and optical pumping. These

processes can take away kinetic energy from the atom by converting it to potential

energy as described below resulting in much lower temperatures. Here, we follow

the treatment detailed in Ref. [27]. As an example, consider the case of a multi-level

atom (J = 1/2 ground state, J = 3/2 excited state) with velocity v interacting in
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one dimension with two counterpropagating low intensity laser beams at the same

frequency. Now, assume that both beams are linearly polarized but with perpendic-

ular polarization vectors (lin ⊥ lin configuration). The resultant polarization along

the beam axis varies from linear to circular to orthogonal linear to opposite circu-

lar. Say that it starts out where the polarization is σ+ meaning that it is naturally

pumped to the mg = +1/2 sublevel. As it moves from this point, the light first

smoothly changes to linear polarization and then starts to become σ−. During this

time, it will be moving up a potential hill due to the dependence of the light shift on

the Clebsch-Gordan coefficient. When it reaches the location where the polarization

of the light is fully σ−, a slowly moving atom will tend to be optically pumped to

the mg = −1/2 sublevel where it starts the process of going up a hill again. This

picture is referred to as “Sisyphus” cooling based on Greek mythology. A similar

process occurs for the actual (more complicated) atom we have in our experiments

which is not J = 1/2 to J = 3/2.

This sub-Doppler Sisyphus cooling is limited by the “graininess” of the light

field, i.e. the fact that interactions take place via photons. We can associate a

temperature with the photon recoil energy equal to

TR =
h̄2k2

MkB
. (2.5)

For 87Rb, TR is equal to 400 nK. In practice, the lowest temperatures achieved

using standard sub-Doppler cooling techniques are approximately a factor of 10

higher than this. However, the recoil limit, TR, has been broken via techniques such
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as velocity-selective coherent population trapping [28] and Raman cooling [29].

2.1.4 The Magneto-Optical Trap

The techniques so far discussed do not involve spatial trapping of the atoms.

A magneto-optical trap is a hybrid technique which uses the light scattering force in

conjunction with a spatially varying magnetic field which shifts atoms increasingly

into resonance with inwardly-directed laser beams depending on how far away from

the origin the atoms are [30]. Even though the MOT has nothing to do with the

dipole force (described in Chap. 3) which is based on light-shifting the atomic levels,

it mimics a conservative potential in the sense that it results in a spatially-dependent

force.

In the simplest case, in one dimension, an atom with a J = 0 ground state and

J = 1 excited state is placed between two counter-propagating red-detuned laser

beams, circularly polarized in opposite directions (σ+ and σ− with respect to the

+x axis). Along this axis and near the origin, the projection of a 3D quadrupolar

magnetic field results in a linear field with its 0 at the origin and a direction which

is along the axis. The sign of the slope of this magnetic field is chosen so that

if the atom moves toward the source of the σ+ beam, its me = +1 excited state

is Zeeman-lowered, which, because of the light’s red-detuning, favors excitation by

the σ+ beam over the oppositely-directed σ− beam. Roles are reversed if the atom

moves toward the σ− beam and so the atom remains near the origin. The process

works for more complicated atoms as well.
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The same principle can be applied for the remaining two axes to get 3D confine-

ment. The beams along the axis of the quadrupolar field have opposite handedness

circular polarization from the beams in the plane of the field. Finally, because the

light is red-detuned in a MOT, in addition to a restoring force we obtain cooling as

described in the Doppler cooling section above.

2.2 Evaporative Cooling

Typically, when trying to get high normalized phase space densities using the

above laser cooling and trapping techniques, in the case of 87Rb we are limited to

approximately nλ3
th ' 10−4 based on temperatures in the range of tens of µK with

n ' 1011 cm−3 (λth is the thermal deBroglie wavelength). Various tricks such as

creating a “dark spot” on the MOT have been able to push the spatial densities

up to approximately n ' 1012 cm−3 by reducing light scattering pressure. So far,

however, no one has been able to achieve a BEC without evaporative cooling.

The principle of evaporative cooling is very simple. First, atoms are conserva-

tively confined by either a magnetic trap (which is what we do) or by a far-detuned

light trap so that spontaneous scattering (almost) never occurs, so that one is not

subject to the TR limit. Second, the height of the potential confining the atoms

is gradually brought down (at the periphery of the trap) in order to permit the

highest energy atoms to escape. The lowest energy atoms do not reach the edge

of the trap, and so they are retained. As long as this process of cutting the tail of

the Maxwell-Boltzmann distribution is done slowly enough to allow the remaining

19



atoms to collide and re-thermalize, the tail will continually regrow and cooling will

take place. Some of the collisions between the atoms may cause the colliding atoms

to change their internal states and be lost from the trap. In the case of 87Rb, these

“bad” collisions are rare and the “good” collisions, which lead to rethermalization,

dominate. Although evaporative cooling does increase phase space density and is a

proven path to BEC, its main disadvantage is that one ends up with typically 0.1%

of the initial number of atoms there were at the start of the evaporation.

2.3 The Gross-Pitaevskii Equation

We now turn to a description of the Bose-Einstein condensate wavefunction in

the magnetic trap. The following treatment borrows heavily from Ref [23]. A way

to derive the condensate wavefunction based on the Hartree-Fock method, which is

relevant when one needs to account for the trapping potential, leads to the well-

known Gross-Pitaevkii (GP) equation [23, 24]. The time-dependent form of the GP

equation is often used for direct simulation of condensate dynamics; we implement

the time-dependent GP equation in Chap. 6 as a comparison for our experimental

results.

By taking the many-body wavefunction as a product ofN (whereN is the num-

ber of atoms in the condensate) identical single-particle wavefunctions Ψ(x1,x2, ...,xN) =

χ(x1)χ(x2)...χ(xN), and minimizing the total energy functional

H(ψ) = N
∫
dxχ∗(x)

(
− h̄2

2M
∇2 + Uext(x)

)
χ(x) +

N(N − 1)

2
g
∫
dx|χ(x)|4, (2.6)

20



subject to the normalization constraint

∫
dx|χ(x)|2 = 1, (2.7)

we obtain the GP equation:

− h̄2

2M
∇2χ+ Uextχ+ g(N − 1)|χ|2χ =

λ

N
χ, (2.8)

where Uext(x) is the external trapping potential and λ is a Lagrange multiplier. If

we define the order parameter [24] as ψ(x) =
√
Nχ(x) and the chemical potential

µ = λ/N , also noting N − 1 ' N for large N , we obtain

− h̄2

2M
∇2ψ + Uextψ + g|ψ|2ψ = µψ. (2.9)

In the above expressions, g is related to the strength of the two-body interaction

potential. For a delta function interaction between two atoms, g is just the strength

of the interaction. For s-wave scattering in the Wigner threshold limit, with a

scattering length a, it is given by:

g =
4πh̄2a

M
. (2.10)

To see why µ is called the chemical potential, we can rewrite the constrained

functional minimization problem in terms of ψ. With a normalization constraint of
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N instead of 1, it follows that the minimized H and the corresponding µ (i.e. the

total ground state energy) satisfies µ = ∂H/∂N [23].

In the Thomas-Fermi regime, the mean-field energy g|ψ|2 dominates over the

kinetic energy term in Eq. (2.9). If we ignore the kinetic energy term altogether,

we obtain an equation for the Thomas-Fermi profile of the condensate:

Uext + g|ψ|2 = µ, (2.11)

which for a harmonic trap Uext = 1
2
M(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) gives the density profile

n(x, y, z) = N |ψ|2

n(x, y, z) =
1

g
(µ− M

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)). (2.12)

Therefore, in this limit, a harmonically-trapped condensate has an inverted parabolic

density distribution with Thomas-Fermi radii:

Ri =

√
2µ

Mω2
i

, (2.13)

where i = x, y, z. The Thomas-Fermi approach is typically a very good approxima-

tion except at the edge of the condensate where the kinetic energy is larger than

the mean-field energy. Here, the density goes smoothly to zero instead of abruptly

as given by the Thomas-Fermi profile. For a given N , in the Thomas-Fermi ap-

proximation, µ is determined by the normalization condition that N =
∫
dxn(x)
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giving

µ =
1

2

[
15Na

√
Mh̄2ωxωyωz

] 2
5

, (2.14)

again where a is the s-wave scattering length. Finally, in the Thomas Fermi regime

µ =
1

2
Mω2

iR
2
i � h̄ωi, (2.15)

for any i. This inequality is equivalent to

Ri �
√

h̄

Mω
, (2.16)

which means that the condensate wavefunction has a spatial extent much greater

than the single-particle ground state in the harmonic trap. So, in our experiments

with a typical harmonic frequency of 20 Hz and atom numbers of roughly 105,

the single-particle ground state in the harmonic trap has a size of approximately

2 µm whereas the Thomas-Fermi radius of the cloud is approximately an order of

magnitude larger.
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Chapter 3

Optical Lattices

Some of the earliest experiments using periodic optical potentials in conjunc-

tion with cold neutral atoms were in the contexts of atom diffraction [90] and atomic

cooling (optical molasses) [38]. The idea that a standing wave of light could be used

to scatter [64] and trap [39] neutral atoms had been proposed more than a decade

earlier. At the time of the early experiments, the term “optical lattice” was not in

use. In fact, in the case of the first optical molasses experiments [38], although the

researchers realized that they had created a standing wave of light, the importance

of the periodic potential in helping to achieve extremely low temperatures was not

even appreciated initially.

The term “optical lattice” was coined in the early 1990s to suggest the idea

of atomic confinement and localization at the nodes (or antinodes) of the periodic

potential (within the optical lattice). Although it did not use the term “optical

lattice,” the experiment described in Ref. [40] was one of the first to demonstrate

this localization. Since that time, there has been an explosion of interest in the

use of optical lattices with ultracold neutral atoms. Many of the experiments in

the early 1990s focussed on understanding and improving the atomic confinement

and localization within a lattice [41][42][43]. With increasingly sophisticated cool-

ing techniques (such as Raman sideband cooling), wave packet momentum spreads
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began to shrink below the width of Brillouin zones, thus allowing demonstrations

of predicted (and hitherto very difficult to observe) single-particle condensed mat-

ter phenomena such as Bloch oscillations [33] and its counterpart in the frequency

domain [36]. With the advent of BEC, the theme of using optical lattices and ultra-

cold atoms to simulate important condensed matter tools and phenomena such as

Bragg scattering [95], band structure [49], Mott insulators [50, 52, 53, 123], Tonks-

Girardeau gas “fermionization” [51, 54–56] etc., has continued. As of the writing

of this thesis, we are at the point where important, unsettled questions in con-

densed matter physics (such as the nature of the 2D Kosterlitz-Thouless transition

in trapped systems, [126] and whether high Tc superconductivity is contained within

the Hubbard model [158]) may be settled using ultracold neutral atoms in optical

lattices.

3.1 Optical Dipole Potential and Light Scattering Theory

To understand optical lattices, it is important to better understand the inter-

action between light and atoms. Following is a very brief overview of this interaction

in which the light is considered to be a classical field. In fact, for extremely far-

detuned light (as is typically used in optical lattices) processes such as spontaneous

emission and saturation can often be safely ignored and thus even the atom can be

treated classically with conclusions that are the same as the semi-classical predic-

tions (in which the atom is treated quantum-mechanically and the light is treated

classically). This is the starting viewpoint we take in presenting the following very
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simple model of the light-atom interaction. In essence, the quantum part of the

interaction is only important when the correct form of the damping coefficient is re-

quired. This presentation borrows heavily from an excellent presentation by Grimm,

Weidemüller, and Ovchinnikov [37].

Consider an atom with a dipole moment ~d induced by an electric field ~E(~r, t) =

êE0e
i~k·~re−iωt + c.c.. The dipole moment oscillates at the same frequency ω as the

electric field with a response given by ~d = α~E where the polarizability α is a tensor

whose elements are in general complex. If we assume that the unit polarization

vector, ê, of ~E and ~d are collinear, then α is a rank-0 tensor (i.e., just a complex

scalar). We now express the interaction potential between the atom and the light

field as

Udip = −1

2

〈
~d · ~E

〉
= − 1

2ε0c
Re(α)I, (3.1)

where I is the light intensity, the brackets indicate a time average over a cycle

and the factor of 1
2

in front reflects the fact that the atomic dipole is induced

and not permanent. Given the way we have expressed the electric field above, the

relationship between the amplitude of ~E and the intensity of the electric field is

I = 2ε0c|E0|2. The imaginary part of α is excluded because it gives the part of ~d

which is oscillating out of phase with ~E and thus does not contribute to Udip after

time averaging. Throughout this chapter, SI units are being used.

The part of the light-atom interaction due to the imaginary part of α is dissi-

pative. The atom absorbs a photon from the electric field and then emits a photon

spontaneously in a random direction (in accordance with the appropriate spatial
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distribution function) into the vacuum (scattering). Considering the light to be a

stream of photons, the scattering rate Γsc can be expressed as the ratio of the power

absorbed by the atom to the energy per photon.

Γsc =

〈
d
dt

(~d) · ~E
〉

h̄ω
=
ωIm(α)2|E0|2

h̄ω
=

Im(α)I

h̄ε0c
. (3.2)

We can now derive an expression for the atomic polarizability α using Lorentz’s

model of the light-electronic cloud interaction as a classical driven damped oscillator

of mass Me and charge e elastically bound to the nucleus with a resonant frequency

ω0 (equal to the optical transition frequency). The driving force is e ~E.

α =
e2

Me

1

ω2
0 − ω2 − iωΓ(ω)

. (3.3)

An expression for the damping rate Γ(ω) is obtained by dividing Larmor’s formula

for the power radiated by an accelerating charge [58] by Mev
2 where v is the instan-

taneous magnitude of the maximum velocity of the electron.

Γ(ω) =
e2ω2

6πε0Mec3
. (3.4)

The classical functional dependence of Γ on ω allows us to express α as

α = 6πε0c
3 Γ0/ω

2
0

ω2
0 − ω2 − i(ω3/ω2

0)Γ0

, (3.5)
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where Γ0 is the on-resonance damping rate. At this point, we can add quantum

mechanics onto the classical expression for α and consequently our expressions for

Udip and Γsc by equating the on-resonance classical damping rate to the quantum-

mechanical expression for the two-level excited state population decay rate γ (the

inverse of the excited state natural lifetime, τ). This gives us the scalar part of the

light shift applicable to systems without any fine or hyperfine structure:

γ =
ω3

0

3πε0h̄c3
| 〈φe|µ̂|φg〉 |2, (3.6)

where 〈φe|µ̂|φg〉 is the matrix element connecting the ground and excited state of

the atom for the dipole matrix µ̂ = −er̂. We now can write down expressions for

Udip and Γsc in which we assume that δ ≡ (ω − ω0)� γ

Udip = −3πc2

2ω3
0

( γ

ω0 − ω +
γ

ω0 + ω

)
I. (3.7)

Γsc =
3πc2

2h̄ω3
0

( ω
ω0

)3( γ

ω0 − ω +
γ

ω0 + ω

)2
I. (3.8)

If δ � ω , we can make the rotating wave approximation (RWA) [59] in which we

neglect the second term in Eqs. (3.7) and (3.8) and set
(
ω
ω0

)3
= 1, thereby leaving

Udip =
3πc2

2ω3
0

γ

δ
I. (3.9)
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Γsc =
3πc2

2h̄ω3
0

(γ
δ

)2
I. (3.10)

We see that for a negative (positive) detuning, atoms are attracted toward regions

of high (low) intensity and that the scattering rate does not depend on the sign of

the detuning. Also, we can relate Γsc to Udip as follows

Γsc =
γ

δ

Udip

h̄
. (3.11)

To preserve coherence and not heat the atoms, this relationship points out the

need to go to very large detunings (relative to the power broadened γ) to minimize

the spontaneous scattering events. However, as the detuning is increased, the laser

intensity needs to increase proportionately to maintain the same potential depth.

As previously mentioned, the above simple treatment ignores several important

aspects of the interaction between light and real atoms. For one, the effect of

saturating the transition is completely missed whereas a two-level atom (which is an

approximation to the system) shows saturation; however this is almost completely

irrelevant given our typical detunings and powers. We also miss the important

fact that according to second order perturbation theory the light shifts the upper

and lower state energy levels in equal and opposite directions, which is obtained

even for a two-level system. We can identify the lower state energy shift with the

classical dipole potential which we just derived. In fact, including the rotating

wave approximation, the results are identical. However, there is no classical effect
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corresponding to the shift of the upper state (because classically there is no “upper

state”). The quantum result comes out very easily in the “dressed” picture of the

atom [61].

A far more important aspect of the problem is that the atom in our experiment,

87Rb, has internal structure which cannot be captured via a two-level model. This

gives rise to state-dependent light shifts that depend on the internal structure of the

atom. Let us now specialize to the atom we use in our experiment. For 87Rb, the

excited states we work with can be grouped into two separate manifolds, 2P1/2 and

2P3/2, split several THz by electron spin-orbit coupling (fine structure). (Relative

to the ground state, these manifolds have transition wavelengths of roughly 795 nm

and 780 nm, respectively. The ground state has no fine structure because it has

no orbital angular momentum.) Each of these excited state manifolds is further

split by nuclear spin coupling into sub-manifolds separated on the order of 100

MHz (hyperfine structure). The ground state is also split into 6.8 GHz separated

manifolds by the nuclear spin coupling. Furthermore, all of the ground state and

excited state hyperfine manifolds and sub-manifolds can be even further split by an

externally applied magnetic field. These Zeeman shifts are (in the weak field limit)

proportional to the magnitude of the applied field and the projection of the total

angular momentum of the atom onto the direction of the field, given by the quantum

numbermF . The F subscript denotes total angular momentum. If the laser detuning

is large with respect to the excited state hyperfine splitting (approximately 200-300
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MHz in the case of 87Rb), then we can derive the following expression for Udip [37]:

Udip =
πc2γ

2ω3
0

I
(2 + PgFmF

δ2,F

+
1− PgFmF

δ1,F

)
, (3.12)

where P = 0,±1 for linearly and circularly σ± polarized light, gF is the Landé g-

factor, mF is the magnetic quantum number of the ground state (with respect to

the polarization axis for linearly polarized light, but with respect to the propagation

axis for circularly polarized light), and the detunings are relative to the transitions

between the ground state and the 2P3/2 and 2P1/2 manifolds, respectively.

We can simplify the expression for Udip even further if the laser detuning is

large with respect to fine structure. In this case, the expression reduces to

Udip =
3πc2γ

2ω3
0δ
I
(
1 +

1

3
PgFmF

δFS
δ

)
, (3.13)

where the detuning δ is with respect to the center “of gravity” of the D-line doublet

and δFS is the fine structure splitting. For linearly polarized light, this expression

is just

Udip =
3πc2γ

2ω3
0δ
I =

h̄γ2

8δ

I

I0

, (3.14)

which is the same as Eq. (3.9). If the system were a two-level atom, I0 = h̄γω3
0/12πc2
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is the laser intensity at which the zero-detuned light scattering rate is half the

maximum γ/2. We may also express Udip as

Udip =
h̄|Ω0|2

4δ
, (3.15)

where Ω0 =
〈
µ̂ · Ê

〉
/h̄ is the on-resonance Rabi frequency and |Ω0|2 = γ2I/2I0.

The key point is that the atomic potential is proportional to the light intensity. Any

intensity pattern we make with the light becomes a corresponding potential for the

atoms.

3.2 Optical Potentials

In order to trap atoms conservatively with light, an optical potential gradient

must be established. Simply by using a single red-detuned Gaussian laser beam,

one obtains radial (transverse to propagation direction) confinement because the

intensity decreases as one moves away from the central axis of propagation. If the

beam is focussed, one also obtains axial confinement at the focus. By combining

two (or more) coherent laser beams in space such that some component of their k-

vectors (k = 2π/λ is the magnitude of this vector; λ is the wavelength of the light)

are anti-parallel to each other, a standing light wave is created with a minimum

spatial periodicity of half the laser wavelength. The intensity gradients within this

optical lattice may trap ultra-cold atoms.
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3.2.1 Focussed Traps

Consider a single far red-detuned Gaussian beam with linear polarization, total

power P , focussed to a minimum waist w0 (giving a Rayleigh length zR = πw2
0/λ).

Using Eq. (3.15) the potential seen by an atom in the beam is

Udip =
h̄γ2

8δI0

2P

πw2
0(1 + (z/zR)2)

exp
−2r2

w2
0(1 + (z/zR)2)

, (3.16)

where z is the coordinate along the beam axis and r is in the radial direction

(perpendicular to the beam direction). We may define the dimensionless trap depth

s =
1

ER

h̄γ2

8δI0

2P

πw2
0

, (3.17)

where ER = h̄2k2/2M is the single photon recoil energy, which is the energy im-

parted to a 87Rb atom, initially at rest, by the absorption or emission of a single

photon. Using this definition, for small displacements away from the focus of the

beam we use the harmonic approximation and derive classical trapping frequencies

of

ωR =

√
8
√
s

kw0

(ER

h̄

)
, (3.18)

in the radial direction and

ωA =
2
√
s

kzR

(ER

h̄

)
=

4
√
s

k2w2
0

(ER

h̄

)
=
( √2

kw0

)
ωR, (3.19)
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in the axial direction. For most of the work in this thesis kw0 � 1, and so the axial

trapping frequency is negligible.

3.2.2 Optical Lattices

If we now consider two superimposed counterpropagating far red-detuned

Gaussian beams with parallel linear polarization, total power P in each beam, and

both focussed to the same minimum waist w0 at the same location in space, we

create a 1D optical lattice whose potential is

Udip =
h̄γ2

8δI0

8P

πw2
0(1 + (z/zR)2)

sin2(kz) exp
−2r2

w2
0(1 + (z/zR)2)

, (3.20)

with z and r defined as above. Notice that the light intensity at the maxima (antin-

odes) of the sin2 modulation is four times the intensity in a single beam due to

constructive interference. Radial confinement at the focus is still provided by the

Gaussian profile of the light and so ωR =
√

8
√
s

kw0

(
ER

h̄

)
as before (although s for the

two beams is four times as large as s for the single beam). At the focus in the

axial direction however, in addition to the confinement envelope provided because

the intensity decreases as one moves away from the focus, a fine-scale confinement

is created because of the standing wave. Thus, we still have an envelope curvature

in the axial direction of

Mω2
A = M

[4c
√
s

k2w2
0

(ER

h̄

)]2
, (3.21)
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where s for the two beams is twice s for the single beam and c is explained below.

In addition, we have, on a fine scale, a parallel array of microtraps (a stack of

“pancakes”) each of which, in the deep lattice limit where we ignore tunneling

between neighbors, has an axial frequency

ωL = 2
√
s
(ER

h̄

)
, (3.22)

(where s for the two beams is four times s for a single beam). The factor c in the

expression for the envelope curvature in the axial direction accounts for the fact that

as the depth of the lattice increases, the wavefunction increasingly is confined to the

deepest parts of the potential at the antinodes, thus seeing more of the intense parts

of the light. In the deep lattice limit, c = 2− 1√
s
' 2 [35].

If we now modify the 1D optical lattice created by two counterpropagating

beams by changing the angle between their propagation axes such that the centers

of their minimum waists are still superimposed and their polarizations are still par-

allel, we create a new 1D optical lattice with periodicity larger than λ/2 (see the

description of the “accordion lattice” in Chap. 5). For this lattice, we define the

x-axis to be along the line bisecting the angle θ between the two beams. The z-axis

is the lattice axis, which is perpendicular to the x-axis and in the plane of the two

beams. The y-axis is perpendicular to both the x-axis and the z-axis. For a deep

lattice, the trapping frequencies in the x̂ and ŷ direction and the envelope curvature
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in the ẑ direction are given by

ωx =

√
8
√
s

kw0

ER

h̄

√√√√sin2 θ

2
+

2 cos2 θ
2

k2w2
0

, (3.23)

ωy =

√
8
√
s

kw0

ER

h̄
, (3.24)

Mω2
z = M

[√
8
√
s

kw0

ER

h̄

√√√√cos2
θ

2
+

2 sin2 θ
2

k2w2
0

]2

. (3.25)

In the above expressions, s is the depth of the potential in units of the single photon

recoil energy ER (and is four times s for a single beam). For our experiments, the

second term under both square roots is very small (due to the Rayleigh length).

Also, k = 2π/λ is the magnitude of the light wavevector (not half the magnitude of

the reciprocal lattice vector). This other wavevector is convenient to use in defining

the lattice recoil. We may recast the deep lattice expression Eq. (3.19) as

ωL = 2
√
sL

(EL

h̄

)
, (3.26)

in which sL is now the lattice depth in units of the lattice recoil energy EL where

EL = h̄2κ2
L/2M, (3.27)

and κL = π
d

(half the reciprocal lattice vector). Here d is the optical lattice period-
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icity. This definition for the lattice recoil energy gives the same value as the photon

recoil energy when the two beams are counterpropagating (i.e. κL = k).

We can create a 2D optical lattice by intersecting two 1D lattices (for a total of

four beams). Assuming the two 1D lattices intersect at a right angle, the potential

for this lattice (ignoring the Gaussian character of the beams and the overall phase

differences between the two lattices) can be expressed as

Udip = sER

[
cos2 kx+ cos2 kz + 2ê1 · ê2[cos(ω1 + ω2)t+ cos(ω1 − ω2)t] cos kx cos ky

]
.

(3.28)

This expression is valid in the limit that the light is linearly polarized and its

detuning is large with respect to the upper state hyperfine splitting or the light

is circularly polarized and its detuning is large with respect to the fine structure

splitting. The lattice depth, s, again is four times s for a single beam. The cross

term in the above expression vanishes if the polarizations of the two lattices, ê1, ê2

are exactly perpendicular. Alternatively, if the frequencies of the two lattices, ω1, ω2

are sufficiently detuned from each other, then the atom will not be able to respond

to the rapidly changing value of the cross term, and it will time-average to zero.

Since it is in practice very difficult to ensure polarization orthogonality, frequency

detuning is the standard method to kill the cross term and it is the way we create

the 2D optical lattices described in Chap. 9. The term containing the sum frequency

goes away for the same reason.

There are important corrections to the simple expression (Eq. 3.22) we have

given relating the lattice trapping frequency to the depth of the optical lattice.
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First, this expression is based on considering only the quadratic term in the Taylor

expansion of a sinusoid, which approximates each lattice site as an infinitely deep

harmonic well. The next order correction is to include the quartic term in the

Taylor expansion. This correction weakens the trap at higher vibrational energy,

subtracting [n(n+ 1)/2]ER from the energy of state n, defining the energy of state

n = 0 to be zero. For instance, including the quartic term the excitation energy

between the ground and first excited state is (2
√
s − 1)ER. Between the first and

second excited state, the energy difference would be (2
√
s− 2)ER.

Another effect, due to atom-atom interactions, decreases the depth from the

“bare” (single-atom) depth of the potential within the context of the Gross-Pitaevskii

equation. In the weakly interacting limit where interactions can be treated as a

mean field, for a repulsive interaction between the atoms, a spatially-varying posi-

tive mean-field energy equal to

Uint =
4πh̄2a

M
n, (3.29)

where M is the atomic mass, a is the s-wave scattering length of the atom, and n

is the number density, makes the potential more shallow because for a red-detuned

lattice Uint is most positive where Udip is most negative. The resultant potential is

called the “effective potential.”

Another correction, mainly affecting the radial trapping frequency, is due to

the coupling between the confinement in the radial and axial directions which causes

the Schrödinger equation to not be truly separable. One way to handle this is to
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treat the energy of the zero point motion due to confinement in one direction as

a pseudopotential added to the confining potential in an orthogonal direction. For

instance, relative to the bottom of the potential, the ground state energy level due

to the axial lattice confinement is highest along the z-axis (r = 0) and decreases

monotonically as one moves out toward the edges of the beam (r > 0). This has the

effect of making the potential in the radial direction shallower. The radial trapping

frequency (for small displacements from the z-axis) is accordingly reduced by

√
2

2kw0

1

2
√
s

ER

h̄
. (3.30)

All of the above has ignored tunneling between lattice sites. When the lattice

is not very deep, tunneling must be taken into account. When this is done, each

originally single energy level is split into a band of m closely spaced levels where

m is the number of lattice sites. Within each band, each closely spaced level has

associated with it a quasimomentum q which is proportional to the amount of phase

difference between neighboring sites. The purpose of the next section is to describe

and explain this part of the picture more clearly.

3.3 Bloch Band Theory

Following is a brief exposition of one-dimensional Bloch band theory which may

be suitably amplified by any standard condensed matter textbook [57]. Consider

the Schrödinger equation for a single particle in a one-dimensional spatially periodic
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potential UL(x) = UL(x+ d) where d is the periodicity of the potential.

Hψ =
(
− h̄2

2M
∇2 + UL(x)

)
ψ = εψ. (3.31)

According to Bloch’s theorem, the eigenstates of the Hamiltonian can be written

as the product of a plane wave and a spatially periodic wavefunction with the same

periodicity as the potential:

ψnq(x) = eiqx/h̄unq(x). (3.32)

For a finite lattice, the index q called the “quasimomentum” ranges from +∞ to

-∞ in steps of 2πh̄/md, again where m is the number of lattice sites and d is the

lattice constant. However, q is usually defined modulo 2πh̄/d. The band index n is

the absolute value of the integer part of the quasimomentum (in the extended zone

scheme) divided by 2πh̄/d. If we insert ψnq(x) into the Schrödinger equation, we

get an equation for unq(x):

Hψ =
[

1

2M

(
−ih̄∇+ q

)2
+ UL(x)

]
unq(x) = εnqunq(x). (3.33)

We now Fourier decompose unq(x) using a single lattice spacing as the basic Fourier

interval:

unq(x) =
∑

l

cnql e
il2κx. (3.34)
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In the case of an optical lattice, the periodic potential is sinusoidal which we express

as UL(x) = U0 sin2(kz). It can be written in a form that makes evaluation of its

matrix elements in the plane wave basis spanned by the reciprocal lattice vectors

(parameterized by a particular q value) transparent,

UL(x) =
U0

2
− U0

4

(
ei2kx + e−i2kx

)
. (3.35)

The kinetic energy operator in this basis is

1

2M

(
−ih̄∇+ q

)2
=

(2h̄kl + q)2

2M
. (3.36)

And thus the Hamiltonian H0 expressed as a (2lmax +1)× (2lmax +1) matrix (where

lmax is chosen to truncate the basis set) becomes




... −U0

4
0 0 0 0 0

−U0

4
(4h̄k+q)2

2M
−U0

4
0 0 0 0

0 −U0

4
(2h̄k+q)2

2M
−U0

4
0 0 0

0 0 −U0

4
q2

2M
−U0

4
0 0

0 0 0 −U0

4
(−2h̄k+q)2

2M
−U0

4
0

0 0 0 0 −U0

4
(−4h̄k+q)2

2M
−U0

4

0 0 0 0 0 −U0

4
...




plus an offset of U0/2. For each choice of q, diagonalization of this matrix leads to
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a spectrum of 2l + 1 eigenvalues. If this is done for all values of q between −h̄k

and +h̄k, the set of spectra can be displayed in the usual reduced zone scheme

where only the first Brillouin zone is shown. Figures 3.1, 3.2 and 3.3 display the

resultant band structures for sinusoidal potentials of various depths. Notice that

as the lattice gets deeper, the bands become increasingly flat (starting with the

lowest bands) and their separations become increasingly uniform at a value given

by the harmonic frequency as described above. Each one of the eigenvectors unq(x)

associated with a particular value of q will be expressed as a linear combination

of plane waves (as in Eq. (3.33)). When multiplied by eiqx/h̄ (as in Eq. (3.31)),

these final solutions are known as Bloch states. It is convenient to express the wave

function of an atom in an optical lattice in the Bloch state basis. Assuming that

the Bloch states representing a particular atom all reside in the same band n and

have quasimomenta q clustered tightly around a central value q0, we can define an

effective mass for the atom [57].

m∗ = h̄2
[∂2ε

∂q2

]−1

q=q0
. (3.37)

We use the concept of effective mass in our experiment on transport (dipolar damp-

ing) of an array of 1D BECs.

3.4 Atom-Atom Interactions and Overall Confinement

The theory presented above is for a single particle in a uniform periodic po-

tential (one with no overall confinement). The effect of atom-atom interactions and
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Figure 3.1: Band structure for a 3 ER deep lattice formed from counterpropagating
beams so that d = λ/2. Energy is given in units of ER, the single photon recoil
energy; quasimomentum is in units of h̄k with the edges of the bands at ±1
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Figure 3.2: Band structure for a 10 ER deep lattice formed from counterpropagating
beams so that d = λ/2. Energy is given in units of ER, the single photon recoil
energy; quasimomentum is in units of h̄k with the edges of the bands at ±1
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Figure 3.3: Band structure for a 30 ER deep lattice formed from counterpropagating
beams so that d = λ/2. Energy is given in units of ER, the single photon recoil
energy; quasimomentum is in units of h̄k with the edges of the bands at ±1

overall confinement (which jointly can create energy offsets between wells) leads to a

possible breaking of translational symmetry so that the single-particle q is in general

no longer a good quantum number. The mechanism for this breaking of symmetry

is explained as follows. For a deep 1D lattice, one can think of a Bloch state as a

chain of harmonic oscillator eigenstates each centered on a well, with the phase dif-

ference between neighboring wells φ = dq/h̄. If the local chemical potential within a

well, which is the sum of the local mean-field energy and the local energy offset due

to external confinement, were to vary from well to well, then the phase differences

between neighboring wells would change over time. By definition, this means that

the quasimomentum would change, meaning that it is not a good quantum number.

Usually the atom-atom interactions and energy offsets are small compared to
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the eigenenergies of the uniform, non-interacting Hamiltonian H0, and so the band

structure of H0 is a good approximation to that of the full Hamiltonian (including

interactions and inhomogeneity). Nevertheless, the differences need to be kept fully

in mind and are quite relevant when we consider time scales for “mapping” bands

(described below).

3.5 BEC Diffraction

A Bose-Einstein condensate is diffracted when an optical lattice is applied to

it suddenly with respect to all time scales, it is allowed to evolve in the lattice for

some duration tevolve, and then the lattice is removed, again suddenly with respect

to all time scales. The phenomenon of matter-wave diffraction can be understood

very simply in the context of Bloch band theory. Ignoring atom-atom interactions

and the overall external confinement, we calculate as follows.

ψBEC(t = tevolve) = ei
H0
h̄
tψBEC(t = 0). (3.38)

Using H0 as written in matrix form following Eq. (3.35) in the plane wave basis,

we can express ψBEC(t = 0) as a single plane wave state eiκx = |κ > where κ = 0

and use H0 with q = 0 as long as ψBEC(t = 0) is spatially large compared to the

lattice constant d (i.e. ψBEC(t = 0) extends over many lattice constants). If not,

ψBEC(t = 0) must be Fourier decomposed into a collection of plane wave states

eiκx and each plane wave component evolved separately with the Hamiltonian H
(q)
0

parameterized by the correct q = h̄j where j = κ mod 2κL and χ is the integer part
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of κ/2κL.

ψBEC(t = tevolve) =
∑
χ

∑
q

ei
H

(q)
0
h̄

t |χ, q〉 . (3.39)

Usually, ψBEC(t = 0) is spatially much larger than d and so the inner sum reduces

to a single term |q = 0〉. (For an adiabatically loaded condensate, the outer sum

also reduces to a single term, |χ = 0〉.) The result of this calculation is a set of

plane wave states separated by 2h̄κL. For tevolve less than the Raman-Nath time as

discussed in Chap. 7, the plane wave weights are given by Bessel functions of the

first kind.

3.6 Time Scales, Ground States and Adiabaticity Issues

For a particular energy band of a deep lattice, the time scale for intraband

dynamics is set by the width of that band. Examples of the dynamics being referred

to include spreading of the wave packet and tunneling. The lattice tunneling time in

the bottom band is equal to h̄/J where J = 1
4
(ε0,h̄k − ε0,0). For interband dynamics,

the time scale is set by the energy differences between the states in the different

bands. Obviously, there is a strong q-dependence to this interband timescale to the

extent that the bands of interest are not flat.

We often require that a system remain in its ground state during the course

of a change in the Hamiltonian. The general expression of this requirement is the

adiabaticity criterion:

〈
e|Ḣ|g

〉
� (Ee − Eg)2

h̄
, (3.40)
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where H is the total Hamiltonian, E is the energy of a state, and g, e refer to

the ground and excited states. As an example, consider a BEC composed of non-

interacting 87Rb atoms trapped in a box potential. If a 1D optical lattice is applied

to the BEC and one wishes to remain always in the absolute ground state, then

the time scale for applying the optical lattice must be much greater than all other

relevant time scales in the problem. The easiest time scale to be adiabatic with

respect to (because it is so short) is that for band excitation at the center of the

Brillouin zone in which evaluation of the adiabaticity criterion between the bottom

and first band at q = 0 leads to [33]

ds

dt
� 32

√
2
ER

h̄
, (3.41)

where s is the lattice depth in ER and Ee − Eg is set equal to 4ER because this is

the minimum q = 0 energy difference between the two bands at t = 0. After t = 0

the energy difference increases and so the adiabaticity criterion is more easily met.

However, away from q = 0 the energy difference decreases and so it is more difficult

to be adiabatic. At the band edge (q = h̄k), it is impossible to be adiabatic at

the instant the lattice is first applied and so band excitation in the form of Bragg

scattering always occurs.

Now consider the BEC to be initially confined in an overall harmonic trap

with average confining frequency ω̄ = (ωxωyωz)
1/3. If the condensate is at rest with

respect to the lattice as its depth is changing (we are at the center of the band), the

most stringent adiabaticity criterion (for shallow lattices) is normally with respect

47



to the overall harmonic trap energy h̄ω̄ (the smallest energy in the problem). Since

ω̄/2π can often be as small as 10 Hz, the timescale of adiabatic optical lattice ramps

is often on the order of hundreds of milliseconds. Note that for very deep lattices,

the tunneling energy J can be less than h̄ω̄ and then this energy sets an even more

stringent criterion for adiabaticity. An example where this would be relevant would

be a shifting of the magnetic trap with the atoms already in a deep optical lattice.

The above adiabaticity examples are all for non-interacting systems. In the

presence of weak atom-atom interactions, a condition for atoms to remain in the

total ground state of a system while a lattice is being created or modified, is that

they be given sufficient time to redistribute themselves between wells so that the

local chemical potential does not vary from site to site. Again, this is a requirement

in the weakly interacting regime where the tunneling energy J is much greater than

the on-site interaction energy U (the local interaction energy bewteen two atoms).

(If a system is already in the strongly interacting regime, where U � J , time scales

can be much faster as discussed below.)

The timescale to be adiabatic with respect to weak atom-atom interactions is

set by the mean field energy which in 3D is equal to Uint = 4πh̄2a
m

n (Eq. (3.29)).

For shallow lattices, this energy is typically intermediate between h̄ω̄ and J . As the

lattice depth increases, J decreases while Uint increases. At some point they cross

each other and Uint becomes the second highest energy in the problem (after the

band excitation energy which is ' h̄ωL. Depending on the total number of atoms

N in the condensate and the strength of the confinement, Uint/h is typically in the

range of 100 Hz to a few kHz.
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Adiabaticity issues are very complicated and there are many unresolved prob-

lems currently under investigation. To give a feel for some of the issues being

discussed, consider the following. The adiabaticity criterion given in Eq. (3.40)

is misleading when considering system changes while in the Mott insulator state.

Extremely fast Hamiltonian changes can occur while remaining fully in the ground

state because the new ground state (the one for the new, changed Hamiltonian) is

so close (in Hilbert space) to the old one, that non-adiabaticity, which occurs, is not

really a problem.

The following subsection describes an process in which the time scale associ-

ated with Uint (as well as J) is very relevant.

3.6.1 Band Mapping

As mentioned above, the calculated band structure for a Hamiltonian describ-

ing non-interacting atoms in a homogeneous infinite lattice, H0, is often a good

approximation to the band structure for the true Hamiltonian which includes atom-

atom interactions and external confinement [147]. This is especially true for 3D

red-detuned lattices where these two effects nearly balance each other [148]. In

general, however, these band structures are different.

Consider an experiment in which we adiabatically apply an optical lattice to

an initially harmonically-trapped BEC. At the conclusion of the ramp, the system is

still in the ground state of the many-body Hamiltonian. For weak atom-atom inter-

actions, the band structure and eigenstates for the new Hamiltonian which includes
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the mean-field interactions, HMF, can be calculated [147]. In this new mean-field

Bloch basis, the system is in the nMF = 0 (bottom) band at qMF = 0. It is not at

n = 0 and q = 0 for the uniform, non-interacting Hamiltonian H0. In fact, in general

the projection of a mean-field Bloch state onto the single-particle Bloch basis will

result in an occupation of all the states. Usually, however, the two bases are suffi-

ciently similar (because interactions are weak) that a |nMF, qMF〉 Bloch state projects

meaningfully onto only a small interval centered at the corresponding |n, q〉 single-

particle Bloch state. For instance, the |nMF, qMF = 0, 0〉 mean-field ground state

would project onto a small centered interval in the bottom band of the spectrum of

H0.

If we wish to know the projection of the HMF ground state onto the single-

particle Bloch basis, the lattice must be turned off in a time scale that is fast com-

pared to h̄/Uint (and h̄/J) but slow compared to the interband separation. (This is

not always possible.) The reason it must be slow compared to the interband sepa-

ration is that we wish to adiabatically “map” each single-particle quasimomentum

state onto its corresponding plane wave state (i.e. not diffract the wavefunction).

Thus, the single-particle band structure must be smoothly transformed into the free

particle dispersion relation. Following this “band mapping”, and after a suitably

long time-of-flight for the atoms, the spatial distribution reflects the momentum dis-

tribution within the single-particle band [46]. A limitation of this technique is that

mean field effects during expansion blur the narrowest widths visible as does the

initial size of the condensate, if one does not have a sufficiently long time of flight,

which is often the case. If the condition on band excitation is violated, multiple
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copies of the mapped band are created.
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Chapter 4

The NIST Rubidium-87 Bose-Einstein Condensate Apparatus

This chapter covers the nuts and bolts of the NIST 87Rb Bose-Einstein con-

densate apparatus, in which I will concentrate on the parts I was most involved with

during its reconstruction in 2004. When the experiment was moved from Building

221 to Building 216 in the NIST AML (Advanced Measurement Laboratory), al-

though we did not break the ultra-high vacuum or alter the main Ioffe-Pritchard

magnetic trap, we took the opportunity to design and build a new system for cre-

ating and delivering the laser light to the atoms. In addition, changes were made

to the oven region of the experiment. As the sole graduate student working on the

experiment, I believe there is substantial benefit in documenting and describing as

much of the hardware as is reasonably possible in this thesis for use by those who

will continue to use the apparatus.

The 87Rb BEC apparatus is composed of several subsystems. In order to per-

form the experiments described in this thesis, the subsystems must work together in

concert. This chapter will describe the hardware aspects of the vacuum system, Zee-

man slower magnetics, magneto-optical trap magnetics, slowing/trapping/cooling

lasers, Ioffe-Pritchard trap, magnet cooling/dummy load/interlock system, and op-

tical lattice laser system.
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4.1 The Vacuum System

The vacuum system is built on a 12 inch thick non-magnetic (TMC 304 stain-

less steel) optical table and, as shown in Figure 4.1, encompasses a high vacuum

(HV) region for the atom oven source and an ultra-high vacuum (UHV) region with

good optical access where the experiments take place in a glass cell. The HV and

UHV regions are connected by a differential pumping tube which also serves as a

conduit for the atomic beam. We now describe the two vacuum regions.

4.1.1 HV Oven Chamber Region

The HV region contains the 87Rb oven and is pumped by a 125 l/s ion pump

(Varian VacIon Plus 150 Ion Starcell, MidiVac controller) with a non-evaporable

getter insert (SAES CapaciTorr D 400-2). The HV manifold consists of a 14-port

multi-CF (conflat) spherical square chamber (Kimball Physics) to which is attached

the 87Rb oven and the 125 l/s ion pump/getter. A Bayard-Alpert nude ion gauge

(Granville-Phillips Series 274) attached to one arm of a six-way 2-3/4 inch CF cross

on the opposite side of the ion pump from the oven normally reads approximately 3

10−10 Torr (Granville Phillips 307 controller). This reading is probably lower than

the actual pressure in the oven region due to the low conductance between the ion

gauge and the oven. The current leads for the getter insert occupy one arm of the

cross. We use another arm as a pump-out port during periodic ion pump bakes

(Varian all-metal valve 9515027).
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Figure 4.1: Layout of 87Rb BEC apparatus vacuum system (view from above).
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The 87Rb Oven

The 87Rb oven has had several incarnations. Currently, it is simply a crushed

87Rb glass ampoule within a copper pinch-off tube (Duniway Stockroom) with an

aluminum annulus insert in front of it which by itself probably provides very little

beam collimation. During operation, the back of the oven is kept at approximately

135oC (nichrome heating wire/Omega temperature controller) while the front is

cooled with chilled water to 55oF. Beyond the oven and within the HV oven chamber

is a mechanical shutter (Uniblitz) attached to the differential pumping tube which

blocks and unblocks the atomic beam. The shutter aperture plus the bore hole

in a copper block cooled by a thermo-electric cooler provide additional collimation

for the atomic beam effusing out of the oven. The differential pumping tube is a

copper pinch-off tube mounted on a 2-3/4 inch CF flange (Duniway Stockroom). Its

dimensions are 0.3 inch inner diameter and 2.0 inch length.

In an attempt to improve the performance of the source, we have bench tested

a source that uses glass capillary arrays (Burle Industries). Based on theoretical

models [145], we have experimented with a variety of glass capillary pore diameters,

lengths, and densities. We have tried both leaded and soda glass heated to temper-

atures in the range of 135oC to 195oC. The result of these experiments is that the

glass has always disintegrated at some point while being heated in the presence of

the 87Rb. We have heard anecdotally that pure SiO2 is the only type of glass that

can withstand alkali chemistry in this temperature range, but have not been able

to test this assertion because, as far as we know, there are no longer any manufac-
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turers of SiO2 glass capillary arrays. These bench tests have so far not led to any

modifications of the oven design on the apparatus.

Our final attempt to improve beam collimation will occur in late 2006 using

a copper test oven on the bench. I designed and built a beam collimator consisting

of a bundled array of 200 stainless steel tubes (McMaster-Carr) housed within a

copper pinch-off tube. Each tube is 12 mm long with an inner diameter of 300 µm

(40:1 aspect ratio). Since both the tube length and inner diameter are less than the

calculated approximate 1 cm mean free path of the 87Rb atoms (at the estimated

temperature and pressure a few cm from the ampoule), this steel tube array should

significantly improve beam collimation [145].

4.1.2 UHV Science Cell Region

The UHV region is pumped by two ion pumps, of capacity 20 l/s and 50 l/s

(Varian VacIon Plus 20 Ion Starcell, Varian VacIon Plus 55 Ion Starcell, MidiVac

controller). In addition, a water-cooled titanium sublimation pump (Varian) is

connected to the UHV manifold. The UHV region includes the Pyrex science cell

with a five-way 2-3/4 inch CF cross connected by a bellows at one end, and a 4-1/2

inch CF tee at the other end. The science cell was made by Jack Fuller (NIST glass

shops) by frit sealing together 3.3 mm thick pieces of uncoated Pyrex glass which

was then glass-blown by Jeff Anderson (NIST glass shops) onto the glass/metal

CF piece (probably MDC). Also connected to the five-way cross are the 2-3/4 inch

nipple for the Zeeman slower, the 20 l/s ion pump, and a 2-3/4 inch CF tee (which
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has a window and a nude ion gauge). At the oven end of the Zeeman slower, there is

a pneumatically-actuated 2-3/4 inch metal gate valve (MDC GV-1500M-P) which

automatically closes if the pressure exceeds a setpoint, and then a very short 2-3/4

inch nipple (holding the differential pumping tube) connected to the oven chamber.

On the side of the science cell away from the Zeeman slower a 4-1/2 inch CF

tee is connected to the cell. On top of the 4-1/2 inch CF tee is a six-way 4-1/2 inch

CF cross which extends up vertically. The top arm of this cross connects to the 50

l/s ion pump. The four remaining arms contain a 2-3/4 inch pump-out valve (MDC,

1-1/2 inch diameter all-metal connected with a zero-length adapter), a 4-1/2 inch

CF vertical elbow on top of which is the titanium sublimation pump, and a nude

ion gauge. The pressure in the UHV region reads in the mid 10−11 Torr range.

Relocation of the UHV System

As a testament to the robustness of the UHV system, the entire UHV assembly

was removed from an optical table, transported under ultra-high vacuum (approxi-

mately 1.0 x 10−10 Torr) from the old NIST physics Building 221 to the new space

in Building 216 of the AML, and then repositioned on the new optical table. Figure

4.2 shows a group of extremely nervous physicists nearing the end of that harrowing

journey.

We believe that a very small temporary leak may have occurred during the

relocation, requiring a rebake of the UHV region. (It could also have been a vir-

tual leak associated with turning on and off the ion pumps.) Although the Pyrex
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Figure 4.2: Transporting the 87Rb BEC UHV chamber from Bldg. 221 to Bldg.
216. Ken O’Hara, Chad Fertig, Johnny Huckans, and Bill Phillips (the man with
the beard) sometime during early spring 2004.

science cell and stainless steel are bakeable to 450oC, the epoxy used to set the Ioffe-

Pritchard magnets around the cell can be heated safely only to approximately 90oC

before it starts to soften. Steve Rolston and I performed an “easy-bake” by blowing

90oC Glocoil-heated air for almost a week into an aluminum foil tent surrounding

the UHV assembly. This procedure restored our pressure to the mid 10−11 Torr

range.

4.2 Zeeman Slower and Magneto-Optical Trap Magnetics

To load the magneto-optical trap (MOT), we Zeeman-slow a large number of

atoms to below the MOT capture velocity. The calculated magnitude of the mag-
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netic field generated by the Zeeman slower as a function of distance down its axis is

shown in Figure 4.3. This plot was generated by Chad Fertig by making dimensional

measurements of the slower helix and then calculating the field in Mathematica us-

ing the Biot-Savart law with the currents we employ in the laboratory which are

(40A, -51A) for the (slower, reverse slower). Based on this field profile and the

slower laser detuning (approximately 150 MHz) below the F=2 to F’=3 transition,

we slow atoms with initial velocities less than approximately 200 m/s (using a value

of 100 G for the point where atoms fall onto the curve). At an oven temperature

of 400K, the atomic velocity distribution is centered at approximately 200 m/s. At

the end of the slower, atoms decouple from the field to be captured by the MOT at

a velocity of a few m/s.
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Figure 4.3: Calculated magnitude of the magnetic field along the NIST 87Rb slower
and reverse slower. The field direction is along the axis of the slower and reverse
slower.

Because the magnetic field of the Zeeman slower does not follow a square
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root profile B(z) = Bb + Bo

√
1− (z/z0) [25], the deceleration of the atoms is not

constant. Over the length of the slower, the average deceleration is approximately

105 m/s2 which is roughly 60% of the maximum achievable deceleration, h̄kγ/2m.

The Zeeman slower is constructed of insulated hollow square copper tubing wound

around and epoxy-potted onto a phenolic cylindrical form. The copper tubing is

cooled with chilled water and protected by an interlock system (described in a later

section of this chapter).

The MOT magnet is composed of two parallel, co-axial approximately square

air-cooled coils (20 turns each) powered by separate bipolar supplies (Kepco). The

coils are separated by a distance roughly equal to their diameters (approximately 8

cm). When equal current flows in parallel (quasi-Helmholtz), a measured magnetic

field of 1.35 G/A in the ŷ direction is created. When equal current flows in op-

position, measured magnetic field gradients of 0.86 G/Acm in the ŷ direction, 0.38

G/Acm in the x̂ direction, and 0.47 G/Acm in the ẑ direction are created. This

asymmetry in the x̂ and ẑ direction field gradients is due to the MOT coils not being

exactly square. The ability to control the MOT coils separately allows us to control

the gradient and constant offset separately which is useful for other experiments in

the Ioffe-Pritchard trap. During MOT loading, we run 16.6 A in the upper coil and

-15 A in the lower coil. At the end of the MOT, molasses, and optical pumping

stage, we typically have an approximately 5 mm cloud of a few 109 atoms in the

F=1 ground hyperfine state at a temperature of approximately 40 µK as determined

by time-of-flight measurements followed by absorption imaging [1].
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4.3 Slowing and Trapping/Cooling Lasers

On a separate table from the main apparatus, are three commercial diode

lasers used to slow, cool, trap, and probe the atoms. Figure 4.4 shows the layout

of these lasers and associated optics on the table. The optical powers indicated at

various locations in this figure are approximate. A New Focus Vortex 6013 master (7

mW, Littman) external cavity diode laser (ECDL) is locked using standard saturated

absorption spectroscopy between the F = 2 hyperfine ground state and the F ′ = 2, 3

crossover of the 52P3/2 upper state. This light is then distributed via optical fiber

to beat-note lock two other diode lasers: a Toptica DLX 110 (400 mW, distributed

feedback, Littrow) used for the F = 2 to F ′ = 3 cycling transition in the slower,

MOT, and imaging probe; and a Toptica DL 100 (150 mW, ECDL, Littrow) used

for the F = 1 to F ′ = 2 repumping [26] of the atoms that have fallen out of the

cycling transition in the slower and MOT.

The locking of the cycling transition laser, which is used both for the MOT

and for the slower (with different shifts from AOMs), is achieved by beating its light

against that of the master on a fast photodiode (Hamamatsu). The approximately

100 MHz beat signal is frequency divided down and compared to a voltage-controlled

frequency source (voltage sent from the computer). The error signal is fed back to the

current input on the cycling laser. The locking of the repump laser is achieved also

by beating its light against that of the master on an integrated photodiode/amplifier

contained within a National Semiconductor Lab Buddy and then sending the RF

beat frequency into the arms of an RF Mach-Zehnder interferometer, one arm of
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Figure 4.4: Layout of lasers on a separate table from the main apparatus for slowing,
cooling, trapping and absorption imaging the atoms. The master laser (7 mW
Vortex) is locked using standard saturated absorption spectroscopy. Its light is then
used as a reference to beat-note lock the cycling and repump lasers.
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which has a phase delay from a 6.8 GHz trombone [146]. The error signal is fed back

to the current input of the repump laser. Diagrams of the various laser frequency

shifts obtained as a result of the locking and acousto-optical modulators are shown

in Figures 4.5 and 4.6. The frequencies shown in Figure 4.6 are not the frequencies

seen by the atoms.

F = 2

F’ = 2

Master (Vortex)

Cycling laser (DLX 110)

MOT AOM shift = + 61.5

Slower AOM shift = - 70.0

F’ = 2,3 crossover resonance

Master lock AOM shift = -78.8

Probe detuning (green arrow)

Slower cycling

Doppler/Zeeman detuning (red arrow)

F’ = 3

F’ = 1

All frequencies are in MHz

Master frequency:    (F = 2)          (F’ = 3)  optical transition - 133.5 - 78.8
Cycling laser frequency: = (F = 1)         (F’ = 2)  optical transition  - 80 - Probe detuning

Beat frequency = 132.3 - Probe detuning

Probe AOM shift = + 80

Figure 4.5: Frequencies of the master and cycling laser.

Light from the cycling and repump lasers for the MOT is launched into 2 of

the 4 inputs of a 4-input/6-output polarization-maintaining fiber combiner/splitter

(Canadian Instrumentation & Research, Ltd.) and then brought over to the exper-

iment table. Using optical fibers to deliver light to the experiment has enabled us

to decouple the generation and locking of the trapping laser light from the rest of

the experiment. Thus any changes we make to the optics near these lasers do not

require us to make changes to the optics near the experiment. This has obviated
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Beat frequency = 6690.3 - MOT repump detuning

Figure 4.6: Frequencies of the master and repump laser.

a lot of extremely time-consuming and tedious beam alignment (which we used to

perform in the old setup). In addition, having the trapping lasers on a different ta-

ble than the vacuum chamber (where we normally are working, i.e. dropping Allen

wrenches) allows the lasers to stay locked longer.

The MOT cycling and repump light is combined within the fiber combiner/

splitter. The six outputs feed six beam expanders/circular polarizers (designed

by Ken O’Hara). The light from each expander reflects off an oval, gold, AR-

coated mirror mounted on a mechanical flipper (Newport) which snaps out of the

way to provide optical access when the MOT stage is finished. The slower and

slower repump light is separately fiber launched and delaunched, without using a

fiber combiner/splitter. After delaunch, the slower and repump light is combined
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using a polarizing beamsplitter cube. Incidentally, in a zero-crossing slower (which

is what we have) the slower repump light is normally tuned to work in the zero

crossing region to prevent huge cycling losses due to atom disorientation. This

was Chad Fertig’s original design intent when he built the repump locking system.

Experimentally, however, we have tuned our slower repump light to give us the

largest possible MOT and the resultant frequency is not tuned to the zero crossing

region (taking into account the velocity of the atoms). We surmise that our slower

repump light is also important in the region between the oven and the beginning of

the slower.

4.4 The Ioffe-Pritchard Trap

Magnetic trapping of neutral atoms is due to the Zeeman interaction between

the magnetic moment ~µ of the atom with an external magnetic field ~B(~r). An atom

in an inhomogeneous field experiences a force. The energy of an atom with magnetic

moment ~µ is

Ezm = −~µ · ~B(~r), (4.1)

where ~µ = mFgFµB
~F/h̄. Here, mF is the hyperfine magnetic quantum number,

gF is the hyperfine Landé g-factor, µB is the Bohr magneton, and ~F is the total

angular momentum of the atom. From this expression, we see that atoms with

positive magnetic moment are driven to regions of higher field (high field seekers)

and those with negative magnetic moment are driven to low fields (low field seekers).

Because it is impossible to create a magnetic field with a local maximum (in regions
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where there are no electrical currents) [139], the only states trappable by magnetic

field alone are those with negative magnetic moment. For 87Rb, the relevant states

are |F = 1,mF = −1〉, |F = 2,mF = 1〉, |F = 2,mF = 2〉, and |F = 2,mF = 0〉.

(The |F = 2,mF = 0〉 state is trappable due to the quadratic Zeeman effect.) For

this thesis, experiments were done with 87Rb atoms in the |F = 1,mF = −1〉 state.

If the atom remains in the same quantum state relative to the instantaneous

direction of the magnetic field, then the potential felt by the atom is simply pro-

portional to the magnitude of the external magnetic field. However, a moving atom

experiences a time-varying magnetic field which can induce transitions to untrapped

states. If the rate of change of the magnetic field is comparable to or larger than

the transition frequencies between the magnetic sublevels (of order µB| ~B|), then

substantial “Majorana” spin-flip losses can occur. This puts a lower limit on the

local magnetic field minimum which we can allow in our trap. An estimate of this

minimum field can be obtained using the Landau-Zener parameter Γlz [140, 141].

While crossing the local minimum, the atomic magnetic moment will adiabatically

follow the local direction of the magnetic field (and remain trapped), if:

Γlz =
(gFµBBmin)2

h̄mFgFµBαvT
� 1, (4.2)

where Bmin is the magnitude of the local field minimum, α is the gradient of the

magnetic field in the vicinity of the local minimum and vT =
√

8kBT/πM is the

thermal velocity of the atom. We do not expect our magnetic trap to have atoms

hotter than 1mK and so we can suppress Majorana losses on a single pass to the
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10−5 level if Bmin ≥ 0.3 G [144]. For this calculation we use α = 500 G/cm and

a transition probability of e−Γlz . Observe that although high energy atoms have

greater vT than low energy atoms, this does not on average result in more Majorana

loss. The reason is that the high energy atoms also have high angular momentum

which tends to keep most of them away from the trap center.

y

x

z

pinch coils

racetrack bars

racetrack

endcaps

racetrack

endcaps

bias and anti-bias coils

Figure 4.7: The Ioffe-Pritchard trap geometry. The racetrack bars produce a linear
quadrupole field for radial confinement in the xy-plane with current directions in-
dicated by the arrows. The pinch coils provide confinement along the z-axis. The
field from the anti-bias coils counters the pinch field along ẑ bringing the total field
down to the 1 G level in the vicinity of the origin. The bias coils vary the radial
gradient.

We create a magnetic field with a local minimum above zero based on the very

successful Ioffe-Pritchard design [142]. As shown in Figure 4.7, the major compo-

nents of the Ioffe-Pritchard (IP) trap are a double racetrack creating radial con-

finement in the xy-plane, two large coaxial (z-axis) bias coils in a nearly Helmholtz

configuration to vary the radial confinement, and two small coaxial (z-axis) pinch

coils (with two large, nearly Helmholtz antibias coils in current series but with
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opposing direction) with a separation much larger then their radius to provide con-

finement in the ẑ direction. The Ioffe-Pritchard trap can be viewed as a magnetic

bottle. Because of the large currents used, the IP trap is continuously cooled by

water flowing through the hollow-core copper tubing used to form the traps.

The magnetic field of the IP trap is the sum of the fields of the individual

magnets which comprise it: the pinch, antibias, and bias coils, and the racetrack.

~BIP = ~Bp + ~Bab + ~Bb + ~Brt. (4.3)

We now describe the individual components.

4.4.1 Pinch/Antibias/Bias Coils

The currents in the pinch coils flow in the same direction; however, since

the coil separation is much larger than the coil radius (i.e., not a true Helmholtz

configuration), a magnetic field minimum is created in the vicinity of the midpoint

between the coils. The magnetic field along the z-axis created by the pinch coils

points in the ẑ direction and is a positive quadratic (centered at the trap minimum)

plus a spatially constant offset (also pointing in the ẑ direction). A pair of large,

nearly Helmholtz antibias coils (approximately coplanar and concentric with the

pinch coils) are wound in series with (but opposing) the pinch coils to create a

negative field along ẑ which very nearly (but not totally, in order to avoid Majorana

losses) cancels out the constant part of the pinch coil field.

The bias coils are also nearly Helmholtz. They are wound on top of the
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antibias coils with current running opposite to the antibias coils. The magnetic field

is dominated by a spatially constant term which points in the ẑ direction (in the

same direction as the pinch field). The purpose of the bias field is to allow us to

vary the confinement in the radial direction provided by the racetrack. The bias

field is orthogonal to the racetrack field, and the total field (vector sum of the two)

has a magnitude whose curvature in the radial direction is bias field-dependent. The

field from the pinch/antibias coils must be added to the bias field in calculating this

confinement.

The pinch, anti-bias, and bias fields can be expressed exactly (for idealized

coils) using eliptic integral solutions for the individual coils. The general solution

for the magnetic field from a pair of coaxial coils with current flowing in the same

direction is [143]:

~B00 =
x̂G0x

R
√
x2 + y2

[
γ1

Q1

(
E(k1)

1 + α2 + β2
1

Q2
1 − 4α

−K(k1)
)
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Q2

(
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2

Q2
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(
E(k2)

1 + α2 + β2
2

Q2
2 − 4α

−K(k2)
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ẑG0

R
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1
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(
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)

+
1

Q2

(
E(k2)

1− α2 − β2
2

Q2
2 − 4α

+K(k2)
)]
, (4.4)

where the following are defined.

G0 =
µ0nI

2π
(µ0 = magnetic constant, n = number of turns, I = current)

R = coil radius

L = distance between coils
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γ1,2 =
z ± L/2√
x2 + y2

α =
√
x2 + y2/R

β1,2 = z/R

Q1,2 =
√

(1 + α)2 + β2
1,2

k1,2 =
√

4α/Q2
1,2

E = complete elliptic integral of the first kind

K = complete elliptic integral of the second kind.

Using these exact solutions for the coils, we plot on Figure 4.8 the magnitude of the

magnetic field along the z-axis at three stages in the creation of our 87Rb BEC. Stage

1 is the state of the IP trap when the atoms are transferred from the MOT to the

trap. Stage 2 is the “tight” trap achieved after compression (in which we increase

the current in the coils and reduce the bias current to zero). RF evaporation is

performed in this “tight” trap. After evaporation, stage 3 is the expanded trap at

which point we transfer the atoms into an optical lattice.

4.4.2 Racetrack Magnet

As the name implies, the racetrack magnet looks like two oblong parallel race-

tracks, one above the other. In cross-section, the four long sides are at the corners

of a square. Because the current runs in alternating directions as one goes around

the square, the magnetic field is quadrupolar in the radial (xy) plane. When the

field from the racetrack is added to the combined field from the bias, pinch, and
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Figure 4.8: Magnitude of the magnetic field of the Ioffe-Pritchard trap along the ẑ
direction. The pinch coils create a magnetic field minimum for confinement along
the ẑ direction. This field is reduced by the antibias coils to the 1 G level in the
vicinity of the origin. The bias coils independently vary the magnitude of the field
at the bottom of the potential (trap bottom) and the radial gradient.

antibias coils, the total field points predominately in the ẑ direction, however with a

magnitude that is radially-dependent. Thus, we obtain variable radial confinement

while keeping the quantization axis very nearly constant (in the ẑ direction). (When

the field from the bias coils is zero and Irt = 540 amps, the remnant field from the

pinch/antibias coils (at Ip,ab = 580 amps) is sufficient to not tilt the quantization

axis more than .01 radian as long as the radial displacement ρ ≤ 13µm.)

We model the racetrack magnet as four infinite bars and two endcap half-loop
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“coils” with current flowing in opposite directions. The exact expression [143] for

this model is

~Brt = x̂G0

[ −y + d
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where, in addition to the previous definitions given for the coils, d is the distance

between adjacent Ioffe bars, L (the distance between the endcap coils) is the length

of a Ioffe bar, and R (the endcap coil radius) is d/2. A scale factor s ≈ 0.5 is used

to account for the incompleteness of the endcap coils.

Figure 4.9 depicts 2D slices of the IP trap field during the evaporation stage.

The first panel depicts the magnetic field in the xy-plane at z = 0. The second

panel depicts the magnetic field in the xz-plane at y = 0 ignoring the effect of the

endcap coils. The third panel depicts the xz-plane field including the effect of the

endcap coils showing a shift of the trap minimum in the ẑ direction.
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Figure 4.9: Top panel: linear quadrupolar field in the xy-plane created by racetrack.
Middle panel: xz-plane magnetic field ignoring the effect of the racetrack endcaps.
Bottom panel: xz-plane magnetic field including the effect of the racetrack endcaps.
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4.4.3 Ioffe-Pritchard Trapping Frequencies

In the vicinity of the IP trap minimum, we can express the IP trapping fre-

quencies as follows:

fz,ρ =
1

2π

√
∇2
z,ρEzm

M
, (4.6)

where M is the mass of the 87Rb atom. As discussed above, as long as the atom

adiabatically follows the local magnetic field, Ezm is proportional to | ~BIP|. Because

the IP trap is very nearly axially-symmetric, it is convenient to express | ~BIP| as

follows:

| ~BIP| =
√
| ~BIP,z(z)|2 + | ~BIP,ρ(ρ)|2, (4.7)

where, for small displacements from the trap minimum,

BIP,z = Bp,z(z) +Bab,z(z) + Bb,z(z) + Brt,caps,z(z).

BIP,ρ(ρ) = Brt,bars,ρ(ρ) + Brt,caps,ρ(ρ). (4.8)

For small displacements from the trap minimum, |BIP,z| � |BIP,ρ|, and so we can

express | ~BIP| as

| ~BIP| = |BIP,z|+ |BIP,ρ|2
2|BIP,z)| , (4.9)

which gives us the following expressions for the trapping frequencies at the trap

minimum.

fz =
1

2π

√
mFgFµB

M

√
∂2|Bp,z|
∂z2

.
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fρ =
1

2π

√
mFgFµB

M | ~BIP(~z)|

[
∂|Brt,bars,ρ|

∂ρ
+
∂|Brt,caps,ρ|

∂ρ

]
. (4.10)

In the expression for fz we have ignored the contributions of Bab,z and Bb,z be-

cause these terms are nearly constant in the vicinity of the trap minimum (nearly

Helmholtz coils). The effect of Brt,caps,z is a linear gradient which adds nothing to

fz; it does however shift the location of the trap minimum along z. The effect of

Brt,caps,ρ is a very slight breaking of the axial symmetry of the IP trap (an effect

which we typically ignore). With these simplifications, we provide expressions for

∂2|Bp,z|/∂z2, |BIP,z|, and ∂|Brt,bars,ρ|/∂ρ in the vicinity of the local trap minimum

in order to evaluate fz and fρ.
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, (4.11)

where we have ignored the Brt,caps,z term in BIP,z because it is very small (though

not exactly zero at the trap minimum because of the z shift of the trap minimum).

As explained above, the shift of the trap minimum along ẑ is due to Brt,caps,z

which creates a linear gradient along z. Along the z-axis, we have the following
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expression for ∂|Brt,caps,z|/∂z.

∂|Brt,caps,z|
∂z

=
µ0nrtIrt/2

2

[ −3LrtR
2
rt

(R2
rt + (Lrt/2)2)5/2

]
. (4.12)

We have divided Irt by two to account for the missing vertical sections of the endcap

coils. The shift in the local field minimum is

zshift = −∂|
~Brt,caps(~z)|
∂z

/
∂2| ~Bp(~z)|
∂z2

. (4.13)

For the three stages described above (trap loading, trap evaporation, lattice load-

ing), Table 4.1 summarizes the currents used in the IP trap components, the trap

frequencies, and Zeeman energies at the bottom of the trap. Table 4.2 provides

physical data for the Ioffe-Pritchard trap. Finally, we make mention of a “fine bias”

coil which is nearly Helmholtz along the z-axis used for trimming purposes.

Stage Pinch/ Bias Racetrack fρ fz Trap Bottom
Antibias

Trap load 300 A 100 A 252 A 10.7 Hz 6.3 Hz 64.56 MHz
Evaporation 580 A 0 A 540 A 125 Hz 8.7 Hz 2.16 MHz
Lattice load 520 A 53 A 425 A 24 Hz 8.2 Hz 35.56 MHz

Table 4.1: Calculated Ioffe-Pritchard magnetic trap currents, confinement frequen-
cies, and Zeeman energies at the trap bottom. These were determined by measuring
various trap parameters (oscillation frequencies, positional shifts, and trap bottom)
at a range of currents to determine coefficients in a Taylor series expansion of the
magnetic fields.
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Variable Pinch coils Antibias coils Bias coils Racetrack bars and “coils”
n 10 turns 3 turns 9 turns 9 turns
R 1.4 cm 9.0 cm 8.0 cm 3 cm (endcap coil radius)
d 5.7 cm (bar separation)
L 8.3 cm 9.5 cm 9.4 cm 23 cm

Table 4.2: Ioffe-Pritchard magnetic trap physical data. These are mean values of
measured quantities (i.e. not filamentary values).

4.4.4 Magnetic Trap Cooling, Power Supplies, Dummy Loads and

Interlock System

The IP trap is continuously cooled by chilled water flowing through the hollow-

core copper tubing. The process chilled (55oF) water originates from the Advanced

Measurement Laboratory (AML) filtered, closed-loop circulating system. The AML

water pumps have variable frequency drives and are capable of delivering up to 85

psig on the supply side. NIST operates at a supply pressure of approximately 40 psig

which we then boost to approximately 110 psi for the experiment. We connect to the

AML water system in the adjacent service corridor and bring it into the lab overhead

using heavy-duty, high-pressure (1000 psi) mine-spray hose (Alfagomma MSHA 1C-

152/6, 13
8

inch OD). The hose feeds an aluminum 10-port discharge manifold (on the

floor beside the optical table) which splits the water for the various uses. The water

returns from the experiment into another 10-port manifold and goes overhead back

to the service corridor via the mine-spray hose. The AML return water is always

20 psig below its supply and thus is normally about 20 psig. Thus, with our (Teel)

booster pump, we drop 90 psig across the experiment. Table 4.3 summarizes the

uses of the discharge and intake manifold ports.
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Discharge Port Use Valved? Flow Meter Elec Conn
1 Bias 104L110 (.06-.6 gpm)
2 Ti-Sub Pump yes
3 —–
4 Racetrack 104L110 (.06-.6 gpm) +
5 Slower/Oven yes 104L110 (.06-.6 gpm)
6 —–
7 Pressure gauge
8 —–
9 Reverse slower yes 100C110 (.1-1.0 gpm)
10 Pinch/Antibias 100C110 (.8-6.0 gpm)

Intake Port Use Valved? Flow Meter Elec Conn
1 Bias +
2 —–
3 Bias -
4 Ti-Sub Pump
5 Racetrack -
6 Reverse Slower
7 Slower/Oven
8 Pinch/Antibias yes
9 Pinch/Antibias +
10 Pinch/Antibias -

Table 4.3: Cooling water discharge and intake manifold port uses. Where an elec-
trical connection is made at a port, its polarity is noted.

We generate electrical current for the IP trap using a single Sorensen DHP

15-660 (15V, 660A) supply for the pinch coils, two Sorensen DHP 10-660 (10V,

660A) supplies in series (one in voltage control and one in current control mode) for

the racetrack (although this will become a single supply in late 2006), and a single

Agilent 6571A (8V, 220A) for the bias coils. The Sorensens are switching supplies

and are rated at 10 mVrms ripple, +/- 0.05% stability, and 2 ms transient response.

The Agilent is rated at 650 µVrms and 200 mArms ripple, 0.02% + 69 mA (8 hour)

stability, and <900 µs transient response. Current from the supplies is under analog

voltage control via the rear panel 25-pin J1 connector for the Sorensens and the
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rear panel 7-pin analog connector for the Agilent. The Sorensen J1 connectors allow

remote turn on/off (TTL between pins #14 and #2) which we use as part of the

interlock system. The Agilent is integrated into the interlock system via a small

Pomona box called the “kick box” for historical reasons. The interlock system is

explained in detail below.

Current from the supplies is carried to the magnets and “dummy” loads (de-

scribed below) by 4/0 AWG (0.13 ohm/km), highly flexible welding cable (Carol

Super V Vu-tron). Cable ends are soldered into large copper lugs. At the magnet

connections, the lugs are high-temperature (silver) soldered onto 1/2 inch diameter

copper rods which are then “swage-loked” into brass welding tees which serve as

the electrical/water junctions. Our attention to these connection details resulted in

much lower total voltage drops compared to the first incarnation of this experiment

where we did not solder.

During final RF-evaporation, when we compress the IP trap by increasing

the current in the pinch/antibias/racetracks and sending the bias current to 0, the

Sorensen supplies switch from having been in constant voltage mode to constant

current mode. This is accomplished by setting the current limit (on the supply

front panel) to a value that we know is the correct IP current and then sending an

analog signal to the J1 corresponding to a current higher than this value. We have

found that this procedure results in quieter current.

To prevent the IP power supplies from going to their voltage limits and yet still

being able to apply and remove a large magnetic field in approximately 250 µsec,

we built three “dummy” loads (one each) for the pinch/antibias, bias, and racetrack
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magnets. Figure 4.10 displays a dummy load schematic. During an experiment,

when we command current into or out of the IP trap, the supplies only see a change

in the load inductances; TTL signals simply shunt the currents back and forth

between the magnets and the dummy loads. Voltage drops in the dummy loads occur

across stainless steel tubing bent into configurations which attempt to minimize the

creation of magnetic fields. This tubing is internally water-cooled. We use Powerex

CM1200 IGBTs and Powerex BG1A gate driver boards which are mounted on water-

cooled copper plates to switch the current between the magnets and dummy loads.

Varistors are used across each magnet and dummy load to clamp the maximum

voltage due to inductive kicks. Six-port discharge and intake aluminum manifolds

are used for chilled water management.

An interlock system monitors the temperatures of the dummy load stainless

steel tubing for the bias, pinch/antibias, and racetrack magnets, and the water

flowrates in the bias coils, racetrack, slower/oven brightwall, reverse slower and

pinch/antibias coils. Should any of the temperatures in the dummy load tubing ex-

ceed a selectable setpoint or should the water flowrate go below a point defined by the

particular flowmeter on a manifold discharge port, the Agilent and Sorensen power

supplies will cease providing current. We use Proteus Industries celcon/polysulfone

flowmeters which can withstand up to 100 psi at 55oF. The particular model used

for a water port (including its acceptable flow rate range) is contained in Table 4.3.

A diagram of the overall interlock system (including a schematic of the “kick box”)

is shown in Figure 4.11.
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Figure 4.10: Dummy load schematic.
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Figure 4.11: The interlock system including the very important “kick box” which
powers the entire interlock system and controls the signal to the Agilent supply.
The voltage drop across the 200 ohm resistor enables the Sorensen power supplies
by providing the proper voltage across pins #2 and #14.
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4.5 Titanium-Sapphire Laser for Optical Lattices

We employ a 1.5 W Coherent MBR-110 Titanium-Sapphire (titanium-doped

sapphire) laser pumped by a 10 W frequency-doubled Nd:YVO4 (neodymium-doped

yttrium vanadate) Coherent Verdi V10 laser to generate the light for our optical

lattices. The Ti:Sapph uses a birefringent filter and Brewster plates to coarse tune its

wavelength. A thin etalon is used for fine-tuning and single-mode operation. Light

transmission through the etalon is locked to the laser frequency to prevent mode-

hopping while the laser is being fine-tuned. The Ti:Sapph dithers this thin etalon at

approximately 90 kHz in order to generate an error signal, which unfortunately puts

amplitude modulation on the laser light within a frequency range (90 kHz and higher

harmonics) which is very important in many of our experiments. In speaking with

company representatives, we have learned of the following methods to minimize this

modulation amplitude. This information is not contained in any of the MBR-110

manuals.

Remove the cover of the main electronics box. Then, using a photodiode and

oscilloscope to see the light coming out of the laser, turn the PR-16 potentiometer

within the electronics box to reduce the amplitude modulation on the oscilloscope.

Turning PR-16 in this direction has the effect of reducing the drive voltage to the

etalon which loosens the lock (i.e. reduces the etalon scan range). Thus, although

the amplitude modulation can be reduced, it cannot be entirely removed. According

to Coherent, the 1 V pk-pk etalon signal recommended by the manual, can be

reduced to approximately 100 mV pk-pk. The 180 kHz first harmonic noise (because
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the laser is locking to a maximum in the light transmission through the etalon) can

be minimized by playing with the PR-6 potentiometer which adjusts the gain of the

“noise eater” circuit.

Vertical (Y) lattice

300 mW

Accordion (~Y) lattice

500 mW

Horizontal (XZ) lattice

200 mW

Verdi V 10

MBR-110

Thin etalon

AOM

AOM

AOM

Launch

Launch

Launch

Half wave

Half wave

Shutter

Figure 4.12: Layout Ti:Sapph laser system for optical lattices.

Figure 4.12 depicts the way in which we split the Ti:Sapph light for the var-

ious optical lattices. The powers indicated are purely nominal and are often var-

ied depending on the requirements of the particular experiment being conducted.

For all five experiments described in this thesis, the light from the Ti:Sapph was

red-detuned (relative to both the D1 and D2 transitions at 795 nm and 780 nm,

respectively) to 810 nm, linearly polarized at the atoms, and contained within an

approximately Gaussian beam with a minimum waist w0 of approximately 200µm

located at the atom cloud. After being split into multiple beams and passed through

acousto-optical modulators, the laser light for three of the experiments described in

this thesis (those using the “accordion lattice” as described in Chaps. 7 and 8 and

the 2D vibrational decay experiment described in Chap. 9 and in the Appendices)

was launched into a single-mode, polarization-maintaining fiber and thus was spa-
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tially filtered to be very nearly TEM00 before being directed onto the atoms. The

other two experiments (described in Chap. 9 and the Appendices) did not have the

light brought to the atoms via a fiber and thus there was no spatial filtering after

the laser.

For the quasi-1D BEC experiments described in Chap. 9 and the Appendices,

a 2D optical lattice was created by intersecting two independent retro-reflected 1D

lattices at an angle of 80o in the horizontal plane. The light polarization was also in

the horizontal plane. The independent 1D lattices were detuned from each other by

5 MHz for one experiment and 6 MHz for the other. In either case, these detunings

created a very fast time-modulation of the cross term in the expression for the

light intensity (see Eq. (3.22)) relative to ωL and thus the atoms were not able to

kinetically respond to the cross term. For the dipole damping experiment described

in Chap. 9 and the Appendices, a third independent (perturbing) retro-reflected

1D optical lattice was created. This lattice was also linearly polarized and since it

was approximately vertical, its polarization could not be orthogonal to both of the

horizontal lattices. Thus, it was also detuned by 6 MHz from one of the lattices

and 12 MHz from the other. The detunings and intensities of all the lattices were

controlled by acousto-optical modulators/RF generators (Intra-Action).

For the 2D lattice experiments described in Chap. 9 and the Appendices,

each independent 1D retro-reflected optical lattice was generated by focussing an

approximately collimated beam from the Ti:Sapph laser to an approximate 200µm

waist at the BEC, after which the light was nearly re-collimated by a lens which

placed a much larger (imaginary) waist slightly behind an adjustable retro-reflecting
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mirror. The reason, the retro-reflecting mirror was slightly in advance of the second

waist was to compensate for the loss of light intensity due to passage through the

glass cell and lenses and reflection off of the retro mirror. Thus, the beam waist at

the atoms on the retro path was slightly smaller than the waist on the incoming

path.

The implementation of the 1D accordion lattice is carefully described in Chap.

5. Unlike the optical lattices used for the three-body and dipole damping experi-

ments, this 1D lattice was not generated by retroreflecting a beam. Instead, after

the beam came out of the fiber, it was split into two beams that were then recom-

bined on the atoms. The two beams were not counterpropagating at the atoms;

in fact they were often very nearly copropagating—the angle of their intersection

was variable. For this reason, the polarization of these two beams was necessarily

perpendicular to the plane they defined in order to minimize the dependence of the

lattice depth on their intersection angle.

As with the trapping lasers, we now fiber-launch all light from the Ti:Sapph

laser for delivery to the science cell. Although this method reduces the total power

available for our experiments due to unavoidable launching and delaunching ineffi-

ciencies, it has considerably reduced the time we spend aligning laser beams. All of

us in the laboratory have become quite expert in maximizing the light power into a

fiber.
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Chapter 5

A 1D Optical Lattice with Dynamically-variable Periodicity

Optical lattices are normally created with fixed periodicity. The usual ar-

rangement for a 1D lattice is a retro-reflected laser beam with the lattice constant

d equal to λ/2 where λ is the wavelength of the laser light used to create the op-

tical lattice. Much larger values of d are obtained if the two beams forming the

1D lattice intersect at a small angle. Assuming that the two beams are of equal

intensity, and neglecting beam profiles in the directions perpendicular to their axes

of propagation,

U =
UL
2

[cos(~k1 · ~r − ωt) + cos(~k2 · ~r − ωt)]2, (5.1)

where UL is the two-beam lattice depth and the rest of the notation is borrowed

from Chap. 3. This expression also assumes linear, parallel polarization and a

two-level atom. Multiplying out the right hand side we obtain,

U =
UL
2

[cos2(~k1 · ~r − ωt) + cos2(~k2 · ~r − ωt)

+ cos((~k1 + ~k2) · ~r − 2ωt) + cos((~k1 − ~k2) · ~r)]. (5.2)
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Taking the time average of the right hand side to get the average potential, we

obtain

U =
UL
2

[1 + cos((~k1 − ~k2) · ~r)]. (5.3)

If |~k1| = |~k2| = k, then ~k1− ~k2 = 2k sin θ
2
x̂ where x̂ is in the direction perpendicular

to the line bisecting the angle θ made by the intersecting laser beams. Choosing ~r

to lie in this direction and defining it as our lattice axis, we have

U = UL cos2(kx sin
θ

2
). (5.4)

The lattice constant is therefore λ/(2 sin θ
2
). Note that if θ = π, the formula

reproduces the standard result for counterpropagating beams, d = λ/2.

To dynamically change the lattice constant, a method is needed to change the

laser beam intersection angle while keeping the intersection point fixed in space. A

conceptual design which accomplishes this is depicted in Figure 5.1. The basic idea

is to image a point on a rotating mirror through two different paths to another point

in space (the location of the BEC). Laser light is introduced into the device by a

single mode optical fiber. Coming out of the fiber, the light first passes through

a half-wave plate so that the light may be polarized as desired (normally linear,

s-polarization). The fiber lens creates a waist at a galvanometer-mounted mirror.

Specifically, the beam waist is placed at a central mirror location as close as possible

to a point along the rotation axis, to minimally displace the reflected beam when the

galvanometer is rotated. Rotation of the galvanometer causes the reflected beam to
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scan across a lens located one focal length f away from the galvanometer mirror.

Because the mirror is at f and the waist is at the mirror, the beam emerges parallel

to the optical axis for all entrance points.

Figure 5.1: Accordion optical lattice schematic.

The beam then enters a non-polarizing beamsplitter cube. As the galvanome-

ter is rotated, the beam scans across the face of the cube. The reflected and trans-

mitted beams exit the cube at points that are symmetric with respect to the diagonal

axis. Reflecting off two symmetrically located mirrors, they enter individual lenses

which are oriented so that their focal points coincide. Thus, the two coherent beams

intersect at an angle dictated by the galvanometer and the position of the intersec-

tion does not change. Since the distance between the first lens and the second set

of lenses is twice the lens focal length, the beam waist at the galvanometer mirror

is placed at the point of intersection (the BEC). I wish to thank Trey Porto for the

very original design of this device.
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5.1 Design, Construction and Alignment of the Accordion Lattice

Figure 5.2: Orientation of the accordion lattice breadboard with respect to the 87Rb
BEC apparatus and overview of the breadboard design.

5.1.1 Orientation with Respect to 87Rb BEC Apparatus

It was decided early on in the design of the accordion lattice that due to

mechanical and optical access issues, the axis of the accordion lattice should be
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along the z-axis of the 87Rb BEC apparatus as shown in Figure 5.2. The minimum

lattice periodicity is set by the maximum angle between the intersecting beams

and mechanical/optical access limits this maximum angle. As shown in Figure 5.3,

for their full scanning ranges the two beams forming the lattice must always pass

through the top of the glass science cell and hit the condensate within the cell.

Figure 5.3: Section through experimental glass cell.

The cell is square in cross section and assuming that the condensate is created

at the exact center of the cell (which incidentally we discovered was not exactly true

when we reassembled the apparatus in 2004), the maximum intersection angle could

in principle be as large as π/2. Other practical issues such as the distance between

the bias coils, the height of the cell, and the limited availability of low f-number
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lenses ultimately limited the maximum intersection angle (in this implementation)

to roughly 0.7 radians yielding a practical minimum periodicity of approximately

3λ. Although a smaller minimum periodicity could have been achieved by separating

the lenses, this would have also reduced the maximum periodicity. In the end, for

us it was the lenses that set the limit on the minimum periodicity.

5.1.2 Lens Aberrations

One of the major challenges in physically implementing this device was to keep

the intersection point of the beams fixed in space as the galvanometer rotated. In

order to do this, it was important to minimize the relevant aberrations of the three

lenses. For fixed wavelength lattice beams, chromatic aberrations are irrelevant. Of

the monochromatic aberrations (which up to third order are spherical aberration,

coma, astigmatism, Petzval field curvature, and distortion) [93], we focussed on

spherical aberration. We were able to safely ignore coma and astigmatism because

all rays were engineered to be meridional (in the plane containing the optical axis

and the point where the ray intersects the lens). Petzval field curvature and dis-

tortion were not addressed because an extended object was not being imaged. This

left spherical aberration, and specifically longitudinal spherical aberration (L·SA)

because we wanted our system to minimize focal point displacement along the op-

tical axis as a function of the distance of the paraxial ray from the optical axis as

shown in Figure 5.4. It is important that the axis of symmetry of the 1D lattice

remain fixed in space relative to the atom cloud as its periodicity changes.
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LENS 1

LSA

LENS 2

LSA

Displacement of

the axis of symmetry

of the 1D lattice 

A perfect pair of lenses An imperfect pair of lenses

Figure 5.4: The effect of longitudinal spherical aberration and misalignment on
the accordion lattice. The outer blue rays form a set of pancakes closer to the
lenses than the nominal focal point indicated by the green line. The inner red rays
form a set of pancakes farther from the focal point. Depending on the alignment,
the displacement of the place where the beams intersect can be larger then the
longitudinal spherical aberration. We minimize this during final alignment.

Figure 5.5: The Melles Griot 06 LAI 009 precision achromatic doublet used in the
accordion lattice.
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Melles Griot 06 LAI 009

-50 microns +50 microns

AT 810 NM

mm

JHH

Figure 5.6: Longitudinal spherical aberration of the 06 LAI 009 as reported by OSLO
(see text). The abscissa of the graph on the right is the longitudinal aberration
(distance from the image surface to the intersection of the ray with the optical axis).
Positive LSA corresponds to an intersection closer to the lens. The ordinate of the
graph is the fractional pupil coordinate, ranging from 0 to 1, where 0 corresponds
to a ray going through the center of the lens and 1 is for a ray going through the
lens at a distance from the center equal to 0.9 of the lens radius as indicated by the
yellow ray in the left panel.

The three lenses used in the accordion lattice are all the same Model 06 LAI

009 precision achromatic doublets made by Melles Griot [101] as shown in Figure

5.5. This lens is a synthetic polyester-cemented Fraunhofer doublet composed of a

crown double-convex lens in intimate contact with a concave-nearly planar flint lens.

The lens diameter is 25 mm and nominal focal length is 80 mm. A high-efficiency,

broadband anti-reflection (/077 HEBBAR 750-1100 nm) coating was applied by

the manufacturer which resulted in reflectance and absorption coefficients less than

.01 at the wavelengths of interest. This model was chosen with the help of the

computer program OSLO Light Edition 6.1 [100] which is a program for optics design

and has access to a large database of commercially available lenses from various

manufacturers. By first limiting the selection based on the physical constraints of

the experiment, a set of lenses which minimized longitudinal spherical aberration

was selected through a process of trial and error. The range of longitudinal spherical
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aberration predicted by OSLO at 810 nm was -30 micrometers to +30 micrometers

up to a pupil coordinate of 1 as shown in Figure 5.6. Negative and positive L·SA

correspond to the focal point being behind and in front of the paraxial focal point,

respectively.

5.1.3 Construction of Accordion Lattice Breadboard

We now describe the mechanical parts of the accordion lattice breadboard

used to hold the optics. All of the optics required to overlap the two lens foci for

the full galvanometer rotational range are contained on this breadboard and light is

brought to the breadboard with an optical fiber. This decoupled the accordion lattice

alignment procedure from the alignment procedure to put the joint focal point on

the BEC. We stacked two low-profile stages (Newport) underneath the breadboard

base to permit alignment of the entire breadboard to bring the joint focal point onto

the BEC. We custom-designed many of these parts because of BEC apparatus space

limitations and accordion lattice component fragility. Some parts were machined by

me and others by Duane Enderle in the Radiation Physics building. Figure 5.2 gives

an exploded overview of nearly all of these small parts and how they fit together.

The two lenses closest to the atom cloud were cut by Jack Fuller of the NIST

glass shops as shown on Figure 5.7 so that only a central 9.8 mm section remained.

This enabled the lenses to be glued down directly onto a flat surface and thus

brought closely together. It also removed unused parts of the lenses for improved

optical access of other beams, such as the vertical MOT beams. Details of the
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hardware created to support and adjust the locations of the three lenses and beam-

splitting cube is shown on Figure 5.8. The two symmetric lenses are supported by

and epoxied to the end of an aluminum “springboard.” A milled area here assists in

the positioning of the lenses. The cube is cradled by the milled area of (and epoxied

onto) an aluminum “sled.” The sled also is tapped to receive the holder for the third

lens which is uncut. The sled was slid along the slot in the springboard for final

alignment and then “dogged” down. The springboard and sled were bolted onto a

1/2 in. thick tapped aluminum breadboard cut to 6 in. x 6 in. The 25 mm x 61 mm

x 14 mm symmetric gold coated mirrors were cut by the NIST glass shops (Jack

Fuller) from a single 75 mm x 75 mm x 14 mm mirror slab from Melles Griot (02

MFG 007). These mirrors were epoxied onto mirror holders which were then bolted

to the breadboard.

9.8 mm

Figure 5.7: Locations of the cuts to the 06 LAI 009 precision achromatic doublet.

The galvanometer needed to be held firmly because it is a moving part. The

manufacturer advised us against fastening around its base and the shaft could not
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Figure 5.8: Springboard and sled hardware to support and align lens and cube.
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be clamped too tightly because of the possibility of bearing seizure. As shown on

Figure 5.9, we designed and built a small aluminum “clamshell” jig to hold the shaft

housing, spreading the force over a large surface area while permitting frictional heat

from shaft rotation to be dissipated.

15

10-32 tapped

15

14

25.4

All dimensions in mm.

Material:  Aluminum

Tolerance for upper bore hole:  .025 mm (1 mil)

All other tolerances:  .125 mm. (5 mil)

Section 2

Section 1

1

10-32 tapped

10

20

14 9.5

4-40 tapped

4-40 tapped

2

Figure 5.9: Clamshell hardware to hold the galvanometer.

The optical fiber patchcord which brings the light into the accordion lattice

was made by OZ Optics Ltd. It was supplied with all connectors and focussing

optics. The 8 m long, polarization-maintaining fiber has a 5 µm diameter core, 125

µm diameter cladding, and 3 mm OD Kevlar-reinforced PVC jacket. The fiber was

cut angle-flat with NTT/FC connectors. Back reflection was less than -40 dB. Held

by a 33 mm OD flange, the focussing lens was a 3mm diameter asphere with a 2.7
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mm focal length arranged to create a 190 µm waist at 150 mm working distance.

The half-wave plate which we installed after the fiber lens was, unfortunately, not

zero-order, requiring adjustment when the laser wavelength is changed. We intend

to rectify this deficiency in late 2006.

5.1.4 Accordion Beam Alignment on Breadboard

We oriented the two final symmetric lenses so as to approximately overlap their

focal points. Then adjusting the symmetric mirrors, we minimized the displacement

of the intersection point of the two outgoing beams as the incoming beams were

scanned across the lenses. This was accomplished on the bench with a piece of

Pyrex glass (that was identical to that used in the construction of the cell in the

experiment) inserted in the paths of the beams to account for the deviation due

to the glass cell in the actual experiment. A CCD array was placed at the BEC

location and in planes perpendicular to the bisector of the two beams forward of

and behind the BEC location. The center of the each beam was determined using a

two-dimensional gaussian fit. Figure 5.10 depicts the measured beam intersections

after final alignment.

5.2 Analysis of Heating in the Accordion Lattice

The galvanometer which controls the rotation of the first mirror is a VM500

made by GSI Lumonics (now GSI Group, Inc.) [99]. It is a closed loop (capacitor

pick-up) servo-actuated limited-rotation motor. It allows the 4mm clear aperture
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Figure 5.10: Final alignment of the accordion lattice. The red beams give a lattice
periodicity of 1.3 µm and the black beams give a periodicity of approximately 8 µm.
The intersection point of the black beams is displaced slightly more than 100 µm
from the intersection points of most of the other beam pairs.
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gold mirror to rotate approximately +/- 1 radian with a -3 dB bandwidth of 3500 Hz.

A concern in the development of our device was the amount of lattice periodicity, d,

fluctuation generated by galvanometer dither. Lattice periodicity variation causes

fluctuation of the harmonic frequency, fo, of the array of sinusoidal optical traps

because fo = 2
√
sER2d/hλ where s is the lattice depth in single photon recoil energy

units, ER. This heats the atoms parametrically, causing them to leave the ground

state. This is the situation at the center of the intersection of the beams. Away

from the center, in addition to parametric excitation, lattice periodicity fluctuation

causes translational noise.

5.2.1 Parametric Heating

The energy, E(t), of a parametrically-heated cloud in a harmonic trap increases

exponentially in time with a rate constant given by [98]

Ė

E(t)
= Γ = π2f 2

oSε(2fo), (5.5)

where fo = ωo/2π is the optical trap oscillation frequency and Sε(2fo) is the one-

sided (frequency analyzed only up to the Nyquist frequency) power spectral density

of the fractional fluctuation in the spring constant (Mω2
o) of the optical trap mea-

sured at twice the optical trap frequency. For a deep optical lattice, the relationship

between the trap frequency and galvanometer rotation angle φ = θ/2 is

fo = 2
√
s
ER
h

sinφ, (5.6)
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where ER is the single photon recoil energy (h2/(2mλ2)), s is the lattice depth in

units of ER, and φ=0 corresponds to the angle giving an infinite lattice constant.

The relationship between the fractional fluctuation in the trap spring constant and

the galvanometer dither, δφ, is

δ(1
2
Mω2

o)
1
2
Mω2

o

= 2δφ cotφ. (5.7)

Using these two relationships, we find that the heating rate constant at the center

of the beam intersection is

Γ = 16π2s(
ER
h

)2Sφ(2fo) cos2 φ, (5.8)

where Sφ(2fo) is the one-sided power spectral density of the angular fluctuation of

the galvanometer measured at twice the trap frequency.

5.2.2 Translational Heating

For a harmonic trap, translational noise caused by lattice constant fluctuation

results in heating that is independent of the energy of the trapped particle [98]. A

characteristic time, τx, may be defined [98] which is the time it takes to double the

initial trap energy τx = 〈E(0)〉 /
〈
Ė
〉
:

τx =
〈x2〉

π2f 2
oSx(fo)

, (5.9)
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where 〈x2〉 is the initial mean-square displacement of an atom in a trap and Sx(fo)

is the one-sided power spectral density of the trap position fluctuation measured at

the trap frequency. The relationship between the trap position fluctuation and the

galvanometer dither is

δx =
λn cotφ

2 sinφ
δφ, (5.10)

where n is the number of lattice sites away from the intersection point center

that the lattice site of interest is located. Using this expression and Eq. (5.9) and

assuming the ground state so that 〈x2〉 = h̄/4πMfo, we obtain:

τ−1
x = 8π4n2Sφ(fo)(

ER
h

)2s3/2
[
ζ − 1

ζ

]
, (5.11)

where ζ = 2d/λ is the lattice scale factor. Notice that by definition s and ER are

not changed by lattice constant variation. Therefore, for a fixed laser wavelength

and intensity, the only dependence τx has on the optical trap oscillation frequency

is contained in Sφ(2fo) Also observe that, because of the ζ − 1/ζ factor, Eq. (5.11)

predicts that no translational heating occurs for counterpropagating beams. This is

expected, since we have derived a translational heating expression due to angular

noise.

5.2.3 VM500 Dither Noise

We measured the rotational dither noise of the VM500 galvanometer by looking

at its reflected light past a razor blade onto a photodiode and obtained a power
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1.3 µm

8 µm

Figure 5.11: VM500 galvanometer dither noise with no applied voltage.

spectrum with a very broad peak centered at 2 kHz and a slightly narrower dip

centered at 10 kHz as shown in Figure 5.11. (I was able to convert the measured

photodiode noise into rotational dither noise by first measuring the photodiode

response from a known small angular modulation signal. I also verified that laser

light amplitude noise was not a contributor to the noise I measured.) The dither

was measured with no voltage applied to the control circuitry. The peak at 2 kHz

was approximately 40 dB higher than the dip at 10 kHz. Using the power spectrum

in Figure 5.11, for a 30 ER deep lattice at d = 1.3 µm, the characteristic times for

parametric and translational heating would be approximately 3000 sec and 60 sec,

respectively, assuming excitation from the ground state. At the same lattice depth

at d = 8 µm, the characteristic times would be approximately 300 sec and 100 msec.
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For these calculations, we set n equal to 4 and 20 for the d = 8 µm and d = 1.3 µm

configurations, respectively.

5.2.4 Power Supply and Signal Generator Noise

Sobered by these results, we attempted to track down the source of the VM500

dither noise. We suspected the supply powering the galvanometer feedback/control

circuitry might be one source of the noise. This was a linear (non-switching)

Sola/Hevi-Duty SLD15-3030-15 capable of delivering 3 A at ±15 V. We switched to

an array of lantern batteries which had problems delivering sufficient current. We

considered trying an automobile or marine battery, but instead borrowed a dual DC

supply (Topward 6302D) from the NIST Tweezers laboratory which reduced dither

noise overall by several dB again by looking at the light past a razor blade onto a

photodiode.

Next, we looked carefully at the noise on the signal voltage from the generators

used to send commands to the VM500 feedback/control circuitry. Although this was

not a contributor to the previously measured noise because there was no signal, we

wanted to know if the signal generator noise would be a limiting factor (preventing

us from performing long duration experiments) during normal use of the accordion

lattice (when voltages were applied). We examined two or three SRS DS345 signal

generators and two or three Agilent 33250A signal generators from our laboratory

and were surprised at what we found. First of all, the SRS DS345 is quieter than

the Agilent 33250A at any frequency up to a few kHz as long as it is commanding
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0 V in offset or arbitrary waveform mode. (Offset mode means that the generator

outputs a constant voltage offset selected by the user with no additional waveform.

Arbitrary waveform mode means that there is no offset voltage and a constant

voltage is created by programming an appropriate constant waveform which is then

executed by the generator.) However, (presumably due to noise in a gain stage),

noise from the SRS DS345 increases rapidly when it commands non-zero voltages.

At 1 V, its noise increases 20-30 dB, depending on whether it is in offset or arbitrary

mode (arbitrary mode is higher). In contrast, noise from the Agilent 33250A does

not increase when it commands non-zero voltages. At 1 V, it is on average quieter

than the SRS DS345, however with a very pronounced 60 Hz overtone spectrum.
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Figure 5.12: A comparison of dither noises. Black curves are example not-to-exceed
specifications for translational noise. Voltage noise from signal generators has been
converted into angular noise.

To see if the signal generator noise is a limiting factor, we plot various curves

in Figure 5.12 which we now describe. All of the signal generator voltage noise

data are converted into corresponding dither noise and compared to the measured
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VM500 galvanometer dither noise. This conversion was done by using the previ-

ously measured flat voltage/angle transfer function up to the 3kHz galvanometer

corner frequency. The measured VM500 dither noise is for before (greenish-brown)

and after (pumpkin) factory-specified modifications were made to the feedback elec-

tronics in an attempt to quiet it. (It is apparent that these modifications increased

the noise.) Depending on the frequency, the signal generators could or could not

be contributing a major part of the noise. Also shown in this figure are example

required performance curves. The upper black curve is for τ−1
x = 0.2 s−1, s = 10 ER

and n = 2. The lower black curve is for τ−1
x = 0.2 s−1, s = 50 ER and n = 10.

The frequency domain of each curve corresponds to the full range of lattice period-

icities given by the frequency and lattice depth. The choice of τ−1
x = 0.2 s−1 is a

good estimate of the longest experiments (≈ 5 s) we may wish to conduct. As is

expected, the translational noise specification curve shifts depending on the optical

lattice depth and the number of lattice sites n away from the center an atom is.

Finally, a noise specification for the quietest galvanometer commercially available,

the Cambridge Technology 6450 (*746x option) is plotted for comparison.

5.3 Motional Adiabaticity

Another important issue is maintaining adiabaticity while dynamically chang-

ing the lattice constant. We theoretically investigate this problem from the stand-

point of a single particle. Our goal is to change d continuously without excitation

from the ground vibrational level to higher levels. For our analysis, we assume the
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deep lattice limit. In this situation, we ignore tunnelling and interactions, and re-

strict our attention to a single lattice site of the optical lattice. Accordingly, the

eigenvalues are labelled by a single index which corresponds to the band index of

the full lattice.

To model the dynamics of a single well undergoing expansion or contraction,

we employ an adiabatic basis set [102]. The wave function Ψ is expanded as follows,

Ψ(t) =
∑

j

aj(t) exp−
i
h̄

∫ t
0
Ej(t

′)dt′ |j(t)〉 , (5.12)

where |j(t)〉 is the instantaneous basis vector with eigenvalue Ej(t) corresponding

to the single-well size at some point in time, d(t). This ansatz is inserted into the

Schrödinger equation and solved for the coefficients. The dynamics is then com-

puted from the coupled set of equations,

ȧi =
∑

j 6=i
aj(t)

〈
i(t)|Ḣ|j(t)

〉

Ei(t)− Ej(t) expi(αj(t)−αi(t)), (5.13)

where the coefficient αj(t) = − 1
h̄

∫ t
0 Ej(t

′)dt′ is defined to simplify the notation.

It has been verified [103] that a reduced basis set consisting of the first two

terms is a good approximation to the problem if the expansion (or contraction) time

is longer than the optical trap oscillation period. For the central cell in the lattice,

which does not translate during expansion (or contraction), the ground and second

excited state is a good basis. For all other cells, the coefficient for the first excited
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state is much larger than that for the second excited state which we can therefore

ignore. Furthermore, if the stretching takes place sufficiently slowly, then we can

set a0 = 1 and

a1(t) =
∫ t

0

〈
1(t′)|Ḣ|0(t′)

〉

E1(t′)− E0(t′)
expi(α0(t′)−α1(t′)) dt′ (5.14)

We have solved Eq. (5.14) analytically (except for a final numerical integration) by

substituting a quadratic potential for the actual sinusoidal potential. Since we are

only considering the ground and first excited states in the deep lattice limit, this

is a reasonable approximation. Figure 5.13 depicts the final value of a∗1a1 at the

approximate edge of the cloud after an exponential lattice compression from 8 µm

to 1.3 µm for compression durations of 200 msec to 500 msec. The trap oscillation

frequency evolution was ω(t) = ω0e
γt where ω0 is the initial trap frequency and γ

is chosen so that ω is equal to the final trap frequency at the end of the ramp. For

example, in Figure 5.13, a ramp duration of 200 msec gives γ = 9.2 sec−1. For

this calculation, a lattice depth of 30ER was assumed, giving ω0 = 12000 rad/sec.

Note that the rapid small-scale variations from a straight line are due to a sampling

of the high frequency portion of the transition probability that oscillates at the

trap oscillation frequency. Since this calculation was performed near the edge of

the cloud (n=10), it is close to a worst-case assessment. Lattice sites closer to the

center of the atomic cloud would translate less and thus result in less band excitation.

Nevertheless, it is clear from this analysis that lattice compressions and expansions

will likely require hundreds of milliseconds in order to maintain high fidelity.
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Figure 5.13: First band excitation versus exponential compression duration for a
constant lattice depth of 30 ER. For all ramps, the starting frequency was 12 000
rad/sec and the ending frequency was 75 000 rad/sec corresponding to starting and
ending lattice spacings of 8 µm and 1.3 µm, respectively.
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Chapter 6

Periodicity Calibration of the Accordion Lattice

The spatial periodicity d of a 1D optical lattice formed by two laser beams

intersecting at an angle θ is equal to λ/[2 sin(θ/2)], where λ is the wavelength of

the laser light. This fact can be easily confirmed by performing a BEC diffraction

experiment. As shown in Figure 6.1, following the diffraction of the BEC, if there

is a sufficiently long time-of-flight tTOF to be in the far field (where the separation

between orders is large compared to the cloud size of the individual orders), then

the momentum components (orders) of the BEC produced by the optical lattice

will have time to separate from each other and this minimum separation distance D

between the orders (ignoring the effect of atom-atom interactions during expansion)

is simply related to the lattice periodicity by

D =
2h̄k sin(θ/2)

M
tTOF =

2h̄κL

M
tTOF =

h

Md
tTOF, (6.1)

where k and κL are the magnitudes of the single photon wavevector and half the

reciprocal lattice vector, respectively, and M is the mass of the atom (in our case

87Rb). Another method to determine d is by mapping the Bloch bands as described

in Sec. 3.6. In this case the total width of a Brillouin zone also equals htTOF/Md.

These methods work well as long as the lattice recoil energy EL as defined in

Eq. (3.27) is much larger than the peak mean-field energy Uint at the center of the

111



2
0
0

1
0
0

0
-1
0
0

-2
0
0

200-200 -100 0 100

0

+1

-1

-2

+2

D

ORDER

-3
0
0

Distance, microns

D
is

ta
n

c
e

, m
ic

ro
n

s

Figure 6.1: Matter wave diffraction. A BEC of approximately 200 000 87Rb atoms
is pulsed by a 30 ER deep optical lattice with lattice constant d = 1.3µm for tpulse =
8µs and then expands freely for tTOF = 27 ms.

central lattice site at the time of release of the BEC. If this is not the case, then for

the diffraction experiment two complications occur. First, inter-order atom-atom

interactions alter D resulting in erroneous d values. Second, if EL < Uint, the orders

(which can be viewed as copies of the original BEC separated in momentum space

by the reciprocal lattice vector) will individually expand during the time-of-flight

faster then they are separating from each other, and thus it will not be possible to

even determine D from the far field diffraction since one is never in the far field.

This is because the expansion of a BEC during time-of-flight is created by the fact

that mean-field energy is converted to kinetic energy, when all confining potentials

are removed [45].

These issues affected the calibration of the accordion lattice at long periodici-

ties where EL 6> Uint. As opposed to simply calculating the lattice periodicity based

on what we believed the angle of intersection of the two beams to be, we wanted to
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calibrate the lattice periodicity in-situ using diffraction. If we had decided to deter-

mine the accordion lattice periodicities by directly measuring the beam intersection

angles, we would have had to determine angles to better than 0.001 radian precision

(at d = 3 µm) to achieve the precision of the superlattice experiment described be-

low. This would have required, for example, measuring 1 mm center-to-center laser

beam separations at a distance of 1 m where the beams have a 1/e2 full waist of

5 mm which, although possible, would have been difficult. Additionally, we would

have had to take into account the effect of the glass cell in the experiment with an

ersatz piece of glass which would have led to some additional uncertainty. Finally,

the required angular precision increases inverse quadratically with the beam inter-

section angle to the point where we would have needed 80 µrad precision at the

smallest angles (longest periodicities), which would have been hopeless.

Thus, we began by diffracting the BEC and measuring D after a time of

flight of the atoms. However, as the beam intersection angle was reduced and d

correspondingly increased, it soon became impossible to measure D because the

orders were no longer well separated, as shown in Figure 6.2. They increasingly

overlapped and began to interfere with one another. This order interference became

the ultimate effect by which we were finally able to calibrate the accordion lattice

for long periodicities.

This chapter describes the three techniques used for the accordion lattice cal-

ibration and describes an intriguing method which could be further developed to

make very precise measurements of Uint (or at least the part of Uint which is respon-

sible for incrementally separating orders).
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Figure 6.2: The same BEC diffraction experiment described in Figure 6.1 is per-
formed for different lattice periodicities, d. As d increases from 1.3µm, 2.2µm, to
2.5µm (left to right), the BEC orders increasingly overlap.

6.1 BEC Far-field Diffraction in the Accordion Lattice

The initial diffraction experiment to determine the lattice periodicity as a func-

tion of voltage applied to the accordion lattice galvanometer proceeded as follows. A

BEC of approximately 200 000 87Rb atoms was produced in the tight magnetic trap

(axial and radial trapping frequencies of 8.7 Hz and 125 Hz, respectively). The BEC

was adiabatically expanded to the weak magnetic trap (axial and radial trapping

frequencies of 8.2 Hz and 24 Hz, respectively). The galvanometer feedback/control

circuit was then commanded a constant voltage from the computer which rotated

the accordion mirror to a fixed position. Laser light at λ = 810.345 nm (in air) from

the Ti:Sapph laser was abruptly applied to the atoms at the full lattice depth of

approximately 30 ER and held constant for 8µs. At the end of the 8µs, the lattice

and IP trap were extinguished (total time for the current to leave the IP trap was

approximately 250 µs). Following a 27.1 ms time of flight, the falling and expanding

114



cloud of atoms was absorption imaged along the vertical axis at 6x magnification

with F = 2→ F ′ = 3 resonant light.

The preceding process was repeated 100 times, each time with a different

voltage applied to the galvanometer control circuit. The scan began at 1.2 volts

and ended at -1.0 volts with a constant step size of 0.022 volts corresponding to 2.7

mrad constant step size (1% periodicity increments at smallest periodicities and 5%

increments at largest periodicities). The images obtained after each time of flight

appeared similar to those in Figures 6.1 and 6.2. We performed triple 1D Gaussian

fits on each image to extract average values of D, the distance between the +1, 0,

and -1 orders. Another fitting gave us D values based on the distances between the

0th order and the ±2nd orders. From these values of D, we calculated the lattice

periodicity as a function of the galvanometer voltage using Eq. (6.1). The results

are presented with an overall fitting function d = (λ/2)/ sin(B+C∗Vgalvo) in Figure

6.3.

The D values extracted from the +1, 0, -1 order fitting procedure showed

significantly more scatter as the galvanometer voltage was reduced below 0 volts for

two main reasons. The first reason was simply that the fitting procedure became

increasingly difficult as the orders increasingly overlapped. The second reason was

that as the lattice periodicity grew larger, the measurement became increasingly

dependent on N , the total number of atoms in the condensate. Thus noise in N

was translated into noise in D as follows. The greater the N , the greater the mean-

field energy Uint at the moment the condensate is released, and thus the greater

the incremental separation between the orders due to this part of the energy of
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Figure 6.3: Lattice periodicity as a function of accordion lattice galvanometer volt-
age. Top graph is from a fitting of the 0th order and the ±1st orders. Bottom graph
is for the 0th order and the ±2nd orders.
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the atoms. Based on this line of reasoning, at a given EL, the largest (and most

accurate) periodicities would be calculated when N was smallest. This was indeed

the case as the red points for negative voltage above the fitting curve in the upper

graph of Figure 6.3 all corresponded to small N experiments.

We expect this effect to be smaller if we look at the distances between the 0th

order and the ±2nd orders because assuming an approximately constant mean-field

energy impulse, it represents a smaller fraction of the momentum imparted by the

lattice. As shown in the lower graph of Figure 6.3, there is slightly less scatter in

the data. The technique of looking at order separations was still ultimately limited

by the inability to resolve the orders for reasonable values of N . This caused us to

explore alternative procedures to calibrate the accordion lattice which will now be

described.

6.2 Loading a BEC into a Superlattice

We decided to use a second 1D lattice whose lattice constant was known with

very high precision [149] as a reference for the accordion lattice. This second 1D

optical lattice had a fixed periodicity of λ/
√

2 and was nearly parallel to and super-

imposed on the accordion lattice similar to an earlier NIST experiment [104]. The

misalignment between the axes of the two optical lattices comprising the superlat-

tice was approximately 30 mrad and so the projection of one on the other was better

than 0.999. Since the two lattices were at laser frequencies differing by several MHz,
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the total light shift potential seen by the atoms was simply

UL(z) = s1ER sin2(
πz

d1

) + s2ER sin2(
πz

d2

), (6.2)

where s1, d1, s2, d2 were the depths and periodicities of the two lattices.

A superlattice potential has a primitive cell periodicity equal to the least com-

mon multiple (assuming there is one) of the two underlying periodicities as shown

in Figure 6.4. If we load a condensate adiabatically with respect to band excitation

into a superlattice potential and then snap the lattice off, the resultant diffraction

pattern reveals the primitive cell periodicity. (A diabatic lattice loading and snap

off might also reveal the primitive cell periodicity.) There is still a mean-field energy

contribution to the kinetic energy of the atoms in the diffraction pattern, and thus

we are not able to determine the absolute periodicity of the superlattice knowing

only D (for the superlattice) and tTOF. However, since we know one of the under-

lying lattice periodicities, we can infer the periodicity of the unknown (accordion)

lattice by scanning the accordion lattice periodicity finely across its full range and

looking for features in the spectrum of spatial frequencies if the diffraction patterns

where the two periodicities are rationally related. We expect these features to look

like local minima in the spatial frequency spectrum because frequencies on either

side of a diffraction frequency resulting from rationally related lattice periodicities

come from primitive lattices with larger periodicities which yield diffraction patterns

with higher spatial frequencies.. The experiment proceeded as follows. A BEC of

approximately 200 000 87Rb atoms was produced in the same manner as described
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Figure 6.4: Creation of superlattice by summing two independent lattices. The
ratio of the periodicities of these two independent lattices is 5

2
. The superlattice

has a periodicity equal to the least common multiple of the periodicities of the two
independent lattices—in this case 5 times the period of the smallest lattice.
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in the previous section. A constant voltage was applied to the galvanometer control

circuit to rotate the accordion mirror to a fixed position. Laser light at λ = 810.345

nm (in air) from the Ti:Sapph laser was applied over 400 µs with a time constant τ of

50 µs (et/τ ) to load the condensate in the superlattice. The individual lattices each

had an approximate depth of 30 ER. At the end of the 400 µs period, the lattice was

extinguished and the magnetic trap turned off. Following a 27.1 ms time of flight,

the atomic cloud was absorption imaged along the vertical axis at 6x magnification

with F = 2 → F ′ = 3 resonant light. Note that the 400 µs turn-on time satisfied

the adiabaticity criterion (Eq. 3.40) by a factor of 7 for the fixed periodicity λ/
√

2

lattice and by a lesser (and variable) amount for the accordion lattice.

As before, the galvanometer was scanned beginning at 1.2 volts and ending at

-1.0 volts with a constant step size of 0.022 volts. A central slice was taken from

each diffraction image and all 100 slices were stacked side by side as shown in the

top panel of Figure 6.5. The middle panel of this figure is the 1D Fourier transform

of all 100 slices, again stacked side by side. The bottom panel is a blow-up of the

bottom third of the middle panel.

The arrows along the horizontal axis in the middle panel of Figure 6.5 indicate

the locations of several local minima in the spectrum of spatial frequencies of the

diffraction patterns. It is important to use Figure 6.3 as a guide in interpreting this

information. For instance, there is a very obvious local minimum at a galvanometer

voltage of 0.60 volts. Consulting Figure 6.3, we see that this voltage (according to

the fitting function) would correspond to an accordion lattice periodicity of 1.6 µm

which is 2.8 times the periodicity of the fixed λ/
√

2 lattice. However, this ratio
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Figure 6.5: Top: BEC diffraction from a 1D superlattice after band-adiabatic load-
ing. Middle: Array of 1D Fourier transform magnitudes of diffraction patterns.
Bottom: Lower third of middle panel (with different look-up table). Blue (red) is
large (small) signal
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of 2.8 cannot possibly correspond to a local minimum because it is very close to a

ratio of 3 which would have a lower spatial frequency. Thus, we can assume that

the true ratio of the periodicities of the two lattices at 0.60 volts is actually 3 and

that the incorrect ratio of 2.8 resulted from the mean-field distortions discussed in

Sec. 6.1. Identical lines of reasoning allow us to locate five other local minima

and identify each one with its proper lattice period ratio as shown in the bottom

panel of Figure 6.5. For the experiment we performed, it was difficult to glean any

information below a galvanometer voltage of -0.60 volts based on a visual inspection

of the transforms.

The six data points from Figure 6.5 are plotted in Figure 6.6 along with the

data from Figure 6.3 for comparison. As can be seen, the superlattice diffraction

data predicts larger lattice periodicities than the accordion lattice far-field diffraction

data, which is expected since the superlattice diffraction data is interpreted in a

way that is insensitive to the mean-field energy. Within its range of usefulness, this

superlattice technique measures d significantly more accurately than that described

in the previous section since it is based on a fixed reference lattice whose periodicity

is known very precisely to calibrate the accordion lattice.

6.2.1 Measurement of Mean-Field Energy

The differences in the periodicities predicted by the two techniques can be

used to estimate the amount of mean-field energy at the instant of condensate re-
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Figure 6.3) are determined by diffraction from the accordion lattice only. Black
boxes are determined from superlattice diffraction. The linearity between the ap-
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lease that goes into causing the orders to separate, Usep.

Usep =
M

2

[(
1− dsingle

dsuper

)
2vL

]2

, (6.3)

where dsingle and dsuper are the calculated periodicities from the single and superlat-

tice diffraction techniques and vL = h̄κL/M = h/2Md is the lattice recoil velocity,

consistent with the way we have defined EL in this thesis. Remarkably, from the

data in Figure 6.6, we are able to measure Usep energies of about 1 Hz (50 pK)

(and less) at lattice periodicities of 3 µm (and greater), based on the observed

dsingle/dsuper ≈ 0.92. Even at the relatively shorter lattice periodicities of 1.3 µm,

we measure a Usep of only about 4 Hz (250 pK).

It is interesting that dsingle/dsuper is nearly constant over the range we measured

it. A possible explanation is that, in the inter-order interference regime (explained

below), faster separating orders (smaller period lattices) are more likely during their

flights to be at distances from the center where the overall BEC density gradient is

higher and thus they obtain a higher mean-field impulse (which if it were propor-

tional to their momentum from the lattice would yield a constant dsingle/dsuper). If we

were to extrapolate the data (assume that dsingle/dsuper remains 0.92) to a d = λ/2

lattice, using Eq. (6.3) we would obtain Usep ≈ 80 Hz (4 nK). Since the total mean-

field energy per atom is about 120 Hz (6 nK), this would mean that about 2/3 of

the total mean-field energy would go into order separation for the λ/2 lattice. This

extrapolated Usep/Uint ratio of 2/3 is the same as the ratio which was calculated for
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an earlier NIST experiment at λ/2 in which there were only two separating orders

[45]. Our data indicates that this fraction decreases in proportion to the decrease

in recoil velocity while more and more of the mean-field energy goes into expanding

the orders self-similarly. The fact that the ratio decreases as vL decreases makes

intuitive sense because the approximation that the orders do not deform as they

separate which was used to derive the 2/3 ratio in [45] is increasingly less valid as

vL decreases. Since the distortion of each order is primarily a self-similar expansion,

it is understandable that it would reduce the energy for order separation.

It is possible that there is a systematic error in tTOF for the single lattice

diffraction experiment which could partially account for dsingle/dsuper 6= 1 (perhaps

an AOM switch delay). Although we do not have a precise value for this uncertainty,

we are fairly confident that it is less than 1% based on oscilloscope observations and

thus cannot account for the discrepancy. Another source of uncertainty is related to

the fineness of the accordion lattice scan. However, the resolution of the accordion

lattice scan in the superlattice experiment corresponded to an uncertainty in dsuper of

only 2% at 3 µm and less at the smaller periodicities which therefore also precludes

this as an explanation. (Furthermore, this type of uncertainty is random and not

systematic.)

The superlattice experiment did not give us information at the longest peri-

odicities; however it seems that it could have in principle. The initial loading time

would have been longer to remain band-adiabatic and the scan would likely have

been finer, repeated several times and averaged. Instead, however, we developed a

different technique which made use of interference between overlapping orders.
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6.3 Interference Between Diffraction Orders

Figure 6.2 shows how changing the lattice periodicity can affect the diffraction

of a BEC. What is not captured in this triptych is the effect on the diffraction

pattern when the average mean-field energy per atom before time-of-flight is greater

than the lattice recoil energy. In this case, the rate of expansion of the orders is

greater than the rate of order separation and consequently there is significant spatial-

overlapping of the orders for all times of flight. Figure 6.7 shows an absorption

image of a diffracted BEC where the initial average mean-field energy per atom

was about 120 Hz and the lattice recoil energy was about 6 Hz corresponding to a

lattice periodicity of 9.3 µm. This pattern resulted from a tpulse = 100 µs diffraction

pulse followed by a 27.1 ms time of flight. The size of each order after mean-field

expansion is about 50 µm and the distance between the centers of neighboring orders

in the absence of mean-field effects would have been about 12 µm. Thus, there is

significant overlapping of neighboring orders. Notice also the very visible fringing

along the diffraction axis.

The bottom half of Figure 6.7 depicts a slice through the top image along the

blue cursor line. This cursor position was chosen because it gave the best overall

fringe contrast. The average fringe separation y between the two vertical black lines

is 13.4 µm. (Average fringe separations are slightly smaller in the vicinity of the

center of the cross-section possibly indicating smaller mean-field impulses for the

inner orders.) When we first obtained images such as these, we thought that the

fringing might be due to the matter-wave Talbot effect wherein an image of the
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optical lattice was being reformed periodically in time with periodicity fixed to the

initial spatial periodicity of the lattice.

This idea was soon laid to rest by experiments such as that summarized in

the top half of Figure 6.8. In this experiment, the galvanometer was commanded a

fixed voltage of -1.1 volts which corresponded to a very nominal d = 10 µm lattice

periodicity. A deep lattice then pulsed each BEC the same 100 µs and we varied

the time of flight with 500 µs resolution. Here we show slices through diffraction

images following increasingly longer times of flight. Thus, shot-by-shot, we have

created a space-time picture of the expansion of a single BEC starting from 4 ms

after release until 27 msec after it. The bottom half of Figure 6.8 depicts the Fourier

transform of each slice in the top half of the figure. The most obvious feature in the

bottom image is the strong signal of a decreasing spatial frequency as the time of

flight is increased. This signal is not consistent with a Talbot effect interpretation,

but rather with a continuously expanding diffraction pattern. It is possible that the

spatial frequency signal of 100 units at a tTOF = 15.5 ms is related to the Talbot

effect, but highly unlikely because this signal would imply a lattice periodicity of

about 13 µm (which is significantly more than our best estimates of the maximum

periodicity achievable with the accordion lattice). We do not have an explanation

for the obvious spatial periodicity gradient of the time-of-flight image (Figure 6.8,

top panel) for late times of flight.

The fact that the data in Figure 6.8 seems to be described by an expanding

diffraction pattern motivated us to develop an appropriate model describing the

physics. Fortunately, we had just heard about the work of the group in Tübingen
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[44] and were able to adapt their analysis to this measurement. In their experiment,

they diffracted a 87Rb BEC from a 4 µm periodic potential and used the inter-

ferences between the overlapping orders to prove that they had coherence. Their

experiment was also in the regime where the mean-field energy dominated over the

lattice recoil energy. The diffraction in their experiment was in the Raman-Nath

regime (explained in Chap. 7) and this is the case for the data in Figure 6.8 as well.

For this situation, the interference between overlapping diffraction orders arises from

the coherent superposition of the wavefunctions of the individual orders,

Ψn(z) =
√
n(z − n∆z)Jn(S)ei[α(z−n∆z)2−nπ/2+2nκL(z−n∆z)+φtof

n ], (6.4)

where n(z) is the BEC number density, ∆z is the center-to-center separation be-

tween neighboring orders after time of flight, Jn(S) are Bessel functions of the first

kind as a function of the phase modulation index S = Utpulse/h̄ (U is the lattice

depth), α is the curvature of the parabolic phase profile of the BEC, κL is half the

reciprocal lattice vector, and φtof
n is the phase accumulated by an order during time-

of-flight. The mean-field impulse during time-of-flight is contained in the φtof
n term.

We make two simplifying assumptions at this point. First, we assume that an order

only overlaps its two nearest neighbors and that they overlap perfectly. Second, we

assume that all Jn(S) are equal. These assumptions do not significantly affect our

determination of the spatial frequencies of the interferences.

We evaluate
∣∣∣Ψ−1 + Ψ0 + Ψ−1

∣∣∣
2

and find that there are two spatial frequencies.

One is a fundamental at 2κL − ∇φtof
1 and the other is the first harmonic at 4κL −
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2∇φtof
1 . In calculating this, we assumed that φtof

0 = 0 and that the time-of-flight

gradients in the ±1st orders are equal and opposite. Thus, the problem is symmetric

and only two frequencies are expected. The fundamental frequency is due to the

interference between the 0th order and either the +1st order or the -1st order. The

harmonic is due to the interference between the +1st order and the -1st order. The

phase gradient piece in each frequency is proportional to the incremental velocity

of an order caused by the initial mean-field repulsion. As before, it has the effect of

making the lattice period look smaller.

Armed with this understanding, we then performed a final diffraction scan of

the accordion lattice between 0 and -1.1 volts with a step size of 0.01 volts. For

this run, tpulse was a constant 100 µs and tTOF was a constant 27.1 ms. As before, a

section is taken through each interference pattern and then the sections are stacked

sequentially according to the accordion galvanometer voltage. This data is shown

in the top half of Figure 6.9; the bottom half shows the corresponding 1D Fourier

transforms.

The wiggles in the top graph indicate that the extent of the envelope of the

orders varies depending on the lattice periodicity and depth. These effects do not

influence the determination of the lattice constant. (However, it is an interesting ob-

servation that led to the experiment described in Chap. 7.) The apparent harmonic

spacing between the curves in the bottom graph can be interpreted as the result

of a very small mean-field contribution to the order separation. (We should point

out that it could also support the conjecture in Sec. 6.2.1 that dsingle/dsuper might

remain constant.) Either way, it is in contrast to the idea in Sec. 6.1 that the ±2nd
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orders were pushed out less by mean-field than the ±1st orders. This discrepancy

may be related to being in different diffraction regimes (inter-order interference vs.

far-field) but we are not sure. The most plausible explanation for the harmonic

spacing is the smallness of the mean-field contribution to the inter-order separation.

Finally, we collect together all data from the three calibration techniques for

comparison in Figure 6.10. The two fit curves are for the superlattice diffraction

technique, and the inter-order interference technique. They predict lattice constants

that differ by 9% in the long periodicity limit and 3% in the short limit. The fit

to the combined data from both techniques is shown within the box on Figure

6.10. A strong justification for the combined calibration can be seen in the beyond

Raman-Nath diffraction experiment described in Chap. 7.
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Chapter 7

Long Periodicity Diffraction Beyond Raman Nath

7.1 Introduction

Modern atom optics experiments, in particular the diffraction of atoms by

standing waves of light [90, 92, 94] provide a dramatic demonstration of the wave

nature of atoms. The advent of ultra-cold and Bose-condensed atoms, with their

extremely narrow momentum distribution, has made well-resolved diffraction com-

ponents [95] a commonplace feature of atomic physics. Most such experiments have

been in a regime where the light shift potential of the diffracting standing wave has

relatively few bound states (bands) or produces relatively few diffraction orders.

Under such conditions, the wave nature of the atoms is essential for describing the

behavior of the system. By contrast, when the optical potential has many bound

states the quantum system can exhibit strongly classical behavior, described by

classical trajectories. This regime has been theoretically investigated both from a

quantum [62, 73] and classical [79] standpoint. In 1994, Janicke and Wilkens cal-

culated the long time diffraction of cold atoms in which they predicted a dramatic

collapse and revival (see Figure 7.1) of the short time diffraction pattern [73]. Here,

for the first time we present an experimental realization of this sort of pattern in the

limit of many bound states. We investigate this regime by applying a deep standing

wave as a pulse to a Bose-Einstein condensate (BEC) creating an optical potential
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(with many bound states) at a range of lattice periodicities, and measuring the time

evolution of the momentum distribution.

Figure 7.1: Final momentum distribution (in units of quasimomentum) of atoms in
a magneto-optical field as a function of interaction time (in units of h̄ divided by the
lattice recoil energy). The lattice is applied as a stepfunction to the atoms. Figure
courtesy of Janicke and Wilkens.

A classical trajectory approach to the motion of atoms in an optical standing

wave has been used in some early experiments [32, 96, 97] to describe channelling

and focussing. These experiments used thermal beams of atoms and measured the

atomic position distribution within the standing wave. Another experiment used

an optical standing wave to diffract cold atoms from a MOT, observing a collapse

of the diffraction pattern, but not a clear revival [91]. Our experiments extend the

earlier experiments by starting with a BEC having an extremely narrow momentum
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distribution and by measuring the time-evolution of the momentum distribution

for a range of lattice periodicities. We compare our results to the predictions of

a quantum mechanical simulation and find excellent agreement. We also employ a

classical model which captures the essential features and provides important physical

insight into the evolution of the momentum distribution. In addition, we examine

in detail the consequences of the anharmonicity of the potential which leads us to

the mathematical physics of caustics [79].

7.2 Experiment

In our experiment, we create a one-dimensional (1D) optical lattice formed by

two intersecting laser beams. Each beam has an electric field, in the plane-wave

approximation, given by ~E(~r, t) = êE0e
i(~k·~r−ωt) + c.c.. The total field amplitude is

given by

~E(~r, t) = 4E0ê cos(
~k1 + ~k2

2
· ~r − ωt) cos(

~k1 − ~k2

2
· ~r) (7.1)

where ~k1 and ~k2 are the wavevectors of the two beams and ω is the frequency. This

electric field creates an optical lattice potential for the atoms given by

U(z) = U0 cos2(κLz) (7.2)
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where U0 = h̄Ω2
0/δ and κL = |~k1 − ~k2|/2 = π/d is one-half of the magnitude of the

reciprocal lattice vector. We vary κL by changing the angle between ~k1 and ~k2. Here

d is the lattice constant, Ω0 is the on-resonance single beam Rabi frequency, and

δ is the detuning between the frequency of the laser light and the resonant atomic

transition. The direction ẑ is parallel to ~k1 − ~k2. The detuning δ � Ω0,Γ where Γ

is the natural linewidth of the atomic transition so that we can ignore spontaneous

emission and not saturate the transition. Also, δ � ωo where ωo is the atomic

transition frequency so that the rotating wave approximation is valid.

Our experimental apparatus for producing a BEC was described in Chap. 4

and was also described in an early paper [104]. For the present experiment, we

typically achieve a nearly pure BEC with Ntot = 0.4 − 1.4 × 105 atoms in the

(F,mF) = (1,−1) hyperfine state of 87Rb. We use a Ioffe-Pritchard trap with an

oscillation frequency of νz = 8.2 Hz in the weak direction and νx, νy = 24 Hz or

33 Hz in the tight directions depending on the experiment. The atoms are then

loaded into optical lattices at four different lattice periodicities. Before loading, for

the 1.8 µm lattice, the average number of atoms was 1.2× 105 with a peak density

of 2.9× 1013 cm−3. For the 3.5 µm lattice, the average number was 1.4× 105 with

a peak density of 3.1× 1013 cm−3. For the 6.5 µm lattice, the average number was

3.7×104 with a peak density of 2.4×1013 cm−3. For the 9.3 µm lattice, the average

number was 4.7× 104 with a peak density of 2.6× 1013 cm−3.

The lattice beams derive from a Ti:Sapphire laser operating at λ = 810.3 nm

(detuned below both 5S → 5P transitions at 795 nm and 780 nm). At the BEC, the

1/e2 radius of each beam is ≈ 200 µm. The lattice is turned on abruptly to a nominal
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depth of 30 ER and held constant for a variable time thold. Here the single photon

recoil energy ER = h̄2k2/2M where M is the mass and k = 2π/λ is the magnitude

of the photon wavevector. After thold we release the atoms by suddenly turning off

the lattice and magnetic trap. The atoms expand ballistically for 20.2 ms and the

resulting spatial distribution of atoms (in the limit that atom-atom interactions can

be ignored), corresponds to the momentum distribution at the instance of release.

We record the spatial distribution of the atoms using resonant absorption imaging.

Figure 7.2 shows a series of such images as a function of thold at four different lattice

periodicities. The result is a picture of the evolving momentum distribution for each

lattice periodicity in striking similarity to the initial figure by Janicke and Wilkens.

7.3 Results

Figure 7.2a depicts the measured momentum distribution of a BEC pulsed by

a lattice of periodicity 1.8 µm as a function of time. We see that the width of the mo-

mentum distribution initially grows linearly with time. In addition, the distribution

is characterized by a momentum dicretization at 2h̄κL as expected. These early-time

measurements are consistent with diffraction predictions using the Raman-Nath ap-

proximation. Simply stated, ignoring the kinetic energy term in the Hamiltonian

(during application of the pulse) constitutes the Raman-Nath approximation. This

implicitly means that the density of atoms is unchanged during the diffraction on

the length scale of the lattice periodicity. This can be interpreted physically in two

ways. In the first way, no substantial population of atoms moves a distance of order
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Figure 7.2: Evolution of the momentum distribution at four different lattice peri-
odicities: d = 1.8 µm, 3.5 µm, 6.5 µm, and 9.3 µm. The Thomas-Fermi radius in
the lattice direction ranged from 26 µm to 29 µm. In the transverse directions the
radius ranged from 6 µm to 10 µm.
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d. Alternately, applying our classical intuition, an atom will have time to oscillate

much less than a quarter period in a nearly harmonic potential. The Raman-Nath

approximation is valid when the time that the atom spends interacting with the

optical lattice, thold, is much less than

tRN =
h̄√
sLEL

(7.3)

where sL is the optical lattice depth expressed in units of the lattice recoil energy,

EL = h̄2κ2
L/2M . In this approximation, the evolution of the atomic population

within each order n is given by J2
n(U0thold/h̄) where the Jn are Bessel functions of

the first kind.

It is evident from Figure 7.2a, that as thold (the pulse duration) increases

beyond tRN (which is ∼ 2Treph/π), the momentum distribution width first saturates

to an amplitude corresponding to an atomic velocity of 32 mm/s. This velocity

corresponds to a kinetic energy given by the depth of the well. The momentum

distribution then suddenly collapses with a large fraction of the population returning

to the lowest orders. The suddenness of this collapse is by no means an obvious

result, but can be understood, as we will see below, in a classical model. The collapse

is not total inasmuch as there remains a sizable occupation of the higher momentum

orders at the collapse point. Beyond the collapse, the momentum distribution revives

and the process approximately repeats. This recurring nature of the momentum

evolution cannot be predicted within the Raman-Nath approximation.

The point in time when the collapse occurs can be predicted on the basis
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of the lattice depth and periodicity. The depth U0 is inferred from the maximum

momentum kmax = zmaxM/tTOFh̄ where zmax is the maximum amplitude of the

diffraction pattern after time of flight (see Figure 7.2). The depth U0 can be used

along with the lattice periodicity d to predict a collapse/revival time (approximately

half the harmonic oscillator period from Eq. (3.26)). This predicted revival time

agrees to within a few percent of the measured rephase time Treph. Since Treph agrees

so well with the calculated collapse/revival time, this validates the lattice periodicity

calibration we performed in Chap. 6.

Figures 7.2b-d depict the same process for increasingly long periodicity lattices.

The character of each is similar; however, there are differences which we shall discuss

later. (For example, there are interferences between overlapping orders which do not

occur for the smaller periodicity lattice in Figure 7.2a.) Figure 7.2 also depicts the

results of numerical quantum simulations of our experiment. The Hamiltonian used

in this simulation included mean-field interactions as given by the time-dependent

Gross-Pitaevskii (GP) equation. Although measurable (see Chap. 6 and section 7.7)

the role of interactions is not significant in these simulations. We modeled the full

problem by assuming that the wavefunction solution dimensionally factorizes giving

us an effective 1D atom-atom interaction strength, g1D = 4g3D/3πRxRy where g3D =

4πh̄2a/M is the 3D interaction strength, Rx and Ry are the Thomas-Fermi radii in

the directions perpendicular to the lattice, and a is the s-wave scattering length

of 87Rb. We find good agreement between these simulations and our experimental

data.
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7.4 Quantum Mechanical Interpretation of Results

In the deep lattice limit, the number of bound states (bands) in a sinusoidal

potential scales as the square root of its depth sL, expressed in units of the lattice

recoil energy, EL. Since the lattice recoil energy scales quadratically with κL, the

number of bound states in an optical lattice grows linearly with the lattice period-

icity at fixed total depth. An optical lattice with a depth of 30 ER (single photon

recoil energy) formed by two counter-propagating beams has a depth of 30 EL and

approximately four bound states. However, the same 30 ER lattice formed by two

beams intersecting at 87 mrad create a lattice with a periodicity of 9.3 µm, a depth

of 15800 EL and approximately 80 bound states. This proliferation of bound states

quickly pushes the system toward the classical limit in which atom diffraction corre-

sponds to a change in the initial atom velocity distribution as a result of time spent

in the periodic potential.

To better understand the data, the top panel of Figure 7.3 shows the projection

of an infinite 1D condensate onto the eigenfunctions (Bloch states) of a 1D sinusoidal

potential of depth 30 ER with the relevant lattice constants of d = 1.8, 3.5, 6.5,

and 9.3 µm. (For reference, the projection for a standard retro-reflected lattice

with a periodicity of λ/2 = .405 µm is also given.) Only even Bloch states are

occupied since the wavefunction is symmetric. The bottom panel of Figure 7.3

shows the calculated energy differences between consecutive even states divide by

twice the harmonic frequency ωho = 2
√
sLEL/h̄. As expected, the non-harmonic

character of the spectrum means that there is no single time at which the system
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Figure 7.3: Top Panel: Bloch state decomposition of a homogeneous BEC diabat-
ically loaded into a 30 ER lattice (overlap integral of an infinite, constant density
condensate with the Mathieu functions) with periodicities of .405 µm (λ/2), 1.8
µm, 3.5 µm, 6.5 µm, and 9.3 µm. Bottom panel: Eigenenergy separations between
neighboring occupied Bloch states divided by the breathing mode energy (twice the
harmonic energy).

perfectly rephases. Nevertheless, as we will see, over half of the population rephases

within a fairly narrow time window at the first rephasing time. For example, for the

counterpropagating lattice 90% of the population rephases at exactly the same time.

For the 1.8 µm lattice, 55% rephases within a window that is ≈ 1/10 the time to

the start of the rephasing. We define Treph as the inverse of the frequency difference

between the ground and first even excited state. Notice from the eigenenergy spectra

that Treph is slightly longer than π/ωho. For the lattice periodicities examined in our
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experiments, the bottom panel indicates that 1.0 < Trephωho/π < 1.03 whereas for

a 30 ER deep, retro-reflected optical lattice Trephωho/π ≈ 1.22.

Treph

z=0

z=d

t=0
½Treph

3/2Treph
t

hold

Position

Figure 7.4: Position space evolution of the magnitude squared of the condensate
wavefunction within a single well of an optical lattice with periodicity d of 1.8 µm
and depth of 30 ER. Positions z = 0, d correspond to the lips of the well. The
condensate is large compared to d; each initial Bloch state is at q = 0 (with no
spread). At thold = Treph/2 and 3Treph/2 there is a large increase in density at the
center of the well when the atoms have maximum momentum.

Next consider the evolution of the system in position space. Starting with

a flat wavefunction across all the wells, the probability flows to the center of each

well. Flow velocity increases to a maximum roughly concurrent with the advent of

a large peak in the wavefunction at the center of each well at approximately 1/4 the

harmonic period. This is followed by flow away from each center at a decreasing
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velocity until near zero velocity is reached where the process starts again. Figure

7.4 shows the evolution of the wavefunction in a single well for a d = 1.8 µm lattice.

When the lattice is snapped off, the entire wavefunction across all of the wells is

projected onto the plane wave basis which is the proper eigenbasis for free expansion

during time of flight.

7.5 Classical Interpretation of Results

Many aspects of this quantum mechanical system can be understood classically

(in some cases quantitatively). In the classical limit, the recurrence of the diffraction

pattern beyond the Raman-Nath regime is equivalent to the motion of a particle in a

single well of a sinusoidal potential. In this picture, each atom has zero velocity ini-

tially and has position drawn from the initial probability distribution |Ψ(x, t = 0)|2;

each atom must eventually reach a turning point where its velocity returns to zero.

Since the potential is sinusoidal, the motion of an atom is increasingly harmonic the

smaller its amplitude of oscillation (in the absence of atom-atom interactions). In

contrast, the larger the amplitude, the more anharmonic the motion and the longer

the time to the eventual turning point. Figure 7.5 displays the trajectories of a

classical particle in a sinusoidal potential for a range of initial displacements from

the bottom of the well. The shortest periods correspond to particles starting very

near the bottom.

The position solution to this classical problem was applied to acousto-optical

diffraction experiments by Lucas and Biquard in 1932 [70]. Later, both the po-
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sition and momentum solutions were applied to acousto-optical diffraction theory

by Nomoto in 1951 [71, 72]. Berry has expanded upon this work [82] as well as

the theoretical work by C. V. Raman and N. S. N. Nath [74–77] dealing with the

diffraction of light by ultrasonic waves.

t

0

(2MU
0
)½

-(2MU
0
)½

p
z

T
reph

2T
reph

Figure 7.5: Inverse elliptic integral solutions to the motion of a classical particle in a
sinusoidal potential. Each curve corresponds to a particle starting with zero velocity
at some point on the potential. The shortest period is for a particle starting close
to the bottom of a well. The longest period is for a particle starting near the top.

Substantial insight can be gained from this classical picture. For example, the

asymmetric character of the recurrence is explained by plotting the results of the

classical calculations in a single-well phase space portrait [79] as shown in Figure

7.6. At the instant that the lattice is snapped on, the atoms in one well are evenly

distributed in space from one peak to the other, all at P = 0. As time passes,

the distribution rotates clockwise about the origin; however, reflecting the non-

harmonic nature of the potential, not at a single rotational frequency. The farther

the point from the origin, the slower its rotation (the end points of the distribution

are stationary). The projection of this evolving distribution onto the P axis is the

classical analog of our measured momentum distribution. The horizontal tangents
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Figure 7.6: Characteristic evolution of a classical uniform distribution of atoms in
a single well of a sinusoidal potential. The atoms are initially all at P = 0 when
the potential is first turned on. Positions X = 0 and X = 1 are at the peaks on
either side of a single well. Position X = 0.5 is the center of the well. The evolution
is characterized by fixed points at the boundaries and a segment rotating at the
harmonic frequency in the X = 0.5 limit. Between these points, the distribution is
stretched like taffy.
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to the evolving distribution project most intensely onto the P axis. The locus of

these tangent points is referred to as a caustic. As the distribution approaches the

first turning point, the horizontal tangents are far from P = 0; there is no focussed

signal near P = 0. However, at the instant that the central part of the distribution

goes through the turning point, another pair of caustics emerges from P = 0 and

starts to travel away from the X axis. This is the reason for the asymmetry in

the momentum evolution; the evolution would only be symmetric for a perfectly

harmonic potential.

7.6 The Connection to Optical Catastrophe Theory

In catastrophe theory [84–86], the caustics we describe are called folds and

cusps. The folds are the symmetric caustic pairs travelling away from P = 0. The

cusps are the vertices where two fold caustics join. Catastrophe theory has been

applied with much success to the field of optics by Berry [81]. There, the origin of

each caustic can be intuitively explained using the ray theory of light. Geometrical

optical caustics are structurally stable singularities connected to phenomena such

as lens focal points, rainbows, and the shimmering light structures reflected from

water surfaces. Corresponding caustics emerge in the wave theory of light. Each

geometrical ray caustic becomes “decorated” with interferences and the resulting

pattern is known as a “diffraction catastrophe” [89]. Figure 7.7 shows a geometrical

ray cusp caustic and its corresponding diffraction cusp caustic with its characteristic

distorted interior array structure [83]. While these are generic representations of
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cusp caustics, they could represent, for example, ultrasonic diffraction of light with

the light propagation direction as the abscissa, a transverse direction as the ordinate,

and the color as the intensity of the light. As far as we know, our data represents the

first evidence of fold and cusp diffraction catastrophes in matter wave diffraction.

In addition, the sequence from Figure 7.2a-d, shows the nature of the transition

from a (quantum) diffraction situation to a (classical) situation. As pointed out by

Berry and O’Dell [79, 80], caustics eventually dominate the classical distribution in

momentum space for long-time evolution in a sinusoidal potential. One is therefore

able to calculate ergodic averages using them as a basis.

Figure 7.7: Top panel: The classical cusp caustic based on ray theory. Bottom
panel: The corresponding diffraction cusp (Pearcey function) caustic (courtesy of
M. V. Berry). The banding in the top ray picture is an artifact, while that in the
bottom wave picture, is real.

Diffraction catastrophes constitute a class of special functions that are outside

of the standard hypergeometric functions (e.g. Bessel, Hermite, Laguerre, Legendre,
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Mathieu, etc.) [88]. The diffraction catastrophe for the fold caustic is an Airy

function (not the function describing Fraunhofer diffraction) and for the cusp it is

the Pearcey function [87].

7.7 The Role of Atom-atom Interactions

We now turn to a discussion of the effects of atom-atom interactions on the

previous analysis. Counterintuitively, the importance of atom-atom interactions

grows as the lattice periodicity increases for two reasons: (1) the lattice recoil energy

decreases quadratically with κL allowing atoms to interact for longer times; (2) for

a fixed total number of condensate atoms, the number of atoms per well increases

as 1/κL while its ground state width aho =
√
h̄/mωho grows only as

√
1/κL. Our

GP simulations indicate that the atoms become compressed during the evolution

and at thold = Treph/2 the bulk of the wavefunction in a single well occupies a width

slightly less than aho. Thus, using the ground state wavefunction at thold = Treph/2

is probably a conservative estimate for calculating the (brief) maximum density.

Using this, the maximum ground state atom density and consequently the maximum

mean-field energy Emax
int increases as

√
1/κL.

When thold is equal to an odd multiple of Treph/2, the mean-field energy reaches

a maximum Emax
int at the center of each well. For each lattice periodicity and number

of atoms in the BEC in our experiment, we calculate Emax
int ≈ g1DNcp|Ψho|2, where

Ncp is the number of atoms in the central pancake and Ψho is the harmonic oscillator

ground state. Table 7.1 shows these results and for comparison the recoil energy
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Energy (Hz) 1.8µm 3.5µm 6.5µm 9.3µm
Emax

int 570 860 680 920
EL 178 47 13 7

2h̄ωho 17250 8880 4780 3340
Emax

kin 105000 105000 105000 105000

Table 7.1: Maximum interaction energy, lattice recoil energy, monopole oscillation
energy, and maximum kinetic energy for the various periodicity 30 ER lattices in
our experiment.

(EL), the breathing mode energy (2h̄ωho), and the maximum kinetic energy Emax
kin

for each lattice periodicity.

Because of the insight gained by plotting the results of our classical evolution

calculations in a phase space portrait, we performed these classical calculations

again, but this time including atom-atom interactions as a mean-field repulsive

energy proportional to the (time-dependent) local atomic density. In the classical

calculation, we modeled the force on an atom as F = cos 2πx+A[N(x)−N(x+δx)]

where the first term is due to the lattice, and the second term is from the mean field

repulsion. A is proportional to the strength of the atom-atom interaction and N(x)

is the number of atoms within a bin at x. Since the purpose of this calculation was to

identify the potential qualitative effects of interactions, we purposely did not attempt

to calibrate the strength of the interaction used in this calculation to correspond

to the actual s-wave scattering length of 87Rb. The simulation was performed by

calculating the classical distribution trajectory without interactions, coarse-grain

averaging to obtain a new density profile which added an effective potential to the

original sinusoidal potential, and then iterating.

Figure 7.8 depicts the classical evolution of the distribution of atom positions
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Figure 7.8: The calculated evolution of the classical distribution of atoms including
atom-atom interactions (fuzzy colored curves where the fuzziness is likely due to the
graininess of the simulation). The increase in density near the center of the well at
thold = Treph/2 creates a mean-field barrier slowing atoms which have yet to arrive
at the center of the well and accelerating atoms which are just past the barrier. For
reference, the evolution without interactions is shown in black.
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and velocities approaching Treph. With sufficient mean-field interaction, near the

center of the well, velocity class bifurcations emerge. For the calculation, the mean-

field interaction strength was approximately two orders of magnitude larger than it

was in our experiment (where the lattice depth was ∼ 105 Hz, the initial maximum

interaction energy, before interaction with the lattice, was ∼ 102 Hz). The physical

picture is that the temporary increase in density at the center of the well at thold =

Treph/2 creates a mean field bump slowing atoms which have yet to arrive at the

center of the well and accelerating atoms which are just past the barrier. Berry has

called similar phase space portrait structures “tendril” distortions [80]. We have

examined our data carefully for the possible presence of caustics associated with

these bifurcations, but unfortunately do not see them. We are optimistic that a

BEC with a larger atom number in a large periodicity lattice would reveal these

secondary caustics. For our 9.3 µm lattice, the average total condensate number

was only Ntot ≈ 5× 104 which could have been much higher.

Although we do not observe the direct effect of atom-atom interactions dur-

ing their evolution in the lattice, we believe we have observed an indirect effect of

atom-atom interactions which we now discuss. (We did see atom-atom interactions

in the work described in Chap. 6, however, these were time-of-flight interaction

effects and not due to anything that happened while the atoms were in the lattice.)

We have calculated the 1D spatial Fourier transform at each time step thold in the

1.8 µm lattice. (The real space picture from Figure 7.2a is duplicated in the top

panel of Figure 7.9.) The dominant signal is a nearly constant spatial frequency

centered at 25 (arbitrary units) corresponding to the average order separation as
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Figure 7.9: Top panel: BEC diffraction in a 1.8 µm lattice. Middle panel: 1D
spatial Fourier transform of the diffraction focussed on the frequency corresponding
to the average neighboring order separation. Bottom panel: Wobble in the average
order separation possibly caused by the shape of the condensate wavefunction at
the diffraction endpoint and its effect on atom-atom interactions during subsequent
time of flight.
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shown in the middle panel of Figure 7.9. While not visible at the scale of the middle

panel, by taking the centroid of the Fourier transform within the red rectangle we

have detected a slight wobble in this frequency as shown in the bottom panel of

Figure 7.8 corresponding to atomic velocity deviations on the order of 50 µm/s.

When fit to a sine using Igor Pro, the extracted wobble frequency is approximately

equal to the recurrence rate of the diffraction oscillations. In the fit, all parameters:

the amplitude, offset, frequency, and phase were free with fitting uncertainties indi-

cated in the figure. The extracted phase is such that the average order separation

after time of flight is slightly larger when the atoms emerge from the lattice with

a roughly constant density profile (most similar to the original BEC profile before

being subjected to the optical lattice). The order separation is smallest when the

atoms exit the lattice peaked at the center of the wells. A possible interpretation of

this result is that when the atoms emerge with an approximately flat density profile

(at a rephasing time), there is little subsequent diffraction and thus the orders are

pushed by the full condensate at the beginning of the time of flight. In contrast,

when the atoms leave the lattice starting from a peaked spatial distribution, there

is maximal subsequent diffraction and so very soon there are few atoms at the cloud

center during early times-of-flight to push orders out.

7.8 Conclusion

We measured the theoretically predicted [73] collapse and revival of the short

time diffraction pattern of a BEC pulsed by a 1D optical lattice. Because of the long
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lattice periodicities, bound states proliferated and various classical hallmarks were

observed in the long-time momentum evolution of the wavefunction. We compared

our results to the predictions of the time-dependent GP equation and employed a

classical model which captured most of the essential features while providing impor-

tant physical insight. We carefully examined the consequences of the anharmonicity

of the potential and recognized the emergence of ultra-cold atom-diffraction caus-

tics. Finally, we found evidence for a slight effect of atom-atom interactions during

the time of flight possibly due to the state of the wavefunction at the diffraction

endpoint.
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Chapter 8

Observation of Temperature-Dependent Spatial Phase Fluctuations

Near the Berezinskii-Kosterlitz-Thouless Transition in a Trapped 2D

Degenerate Bose Gas

8.1 Introduction

The type of order a Bose system has is affected by its dimensionality. In a

3D system at low temperatures, long range order is common; however, in a homo-

geneous 2D system with a continuous symmetry, thermal fluctuations destroy long

range order at any finite temperature [106, 107]. Thus, as stated in Chapter 1, a

homogeneous 2D system cannot Bose-condense above T = 0. Instead, a homoge-

neous 2D system undergoes a phase transition at a finite critical temperature above

which it is normal and below which it is a superfluid. The theory of Berezinskii

and of Kosterlitz and Thouless (BKT) [14–17] relates this transition to the develop-

ment of geometrical order in the form of vortex-antivortex pairs (a pair of vortices

with opposite rotation). Below the transition, the vortex-antivortex pairs are bound

and at the transition the pairs begin to separate. Slightly above the transition, the

proliferation of these unbound vortices and anti-vortices drives the system into the

normal state.

Unlike the typical finite-temperature phase transition, the BKT transition
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has no spontaneous symmetry breaking and creation of a spatially uniform order

parameter. Instead, there is only quasi-uniformity below the transition and the

spatial correlations in the order parameter decay algebraically. Above the transition,

the quasi-uniformity cannot be maintained and the correlations decay exponentially.

This description relates to a host of 2D phenomena including superfluidity in 2D 4He

[108, 109], spin-polarized hydrogen on 2D surfaces [110], spin ordering in CuGeO3

[111], orientational ordering of CF3Br monolayers physisorbed on graphite [112],

and surface roughening in Pt(110)-(1x2) [113].

Such theories of many-body physics can be tested using harmonically-trapped

Bose gases. As discussed in Chapter 1, one can create reduced dimensional systems

of harmonically-trapped atomic Bose gases by imposing very tight confinement in

one or two directions. In the case of tight confinement in one direction, quantum-

degenerate 2D Bose gases have been produced both in single pancake traps and in

multiple 2D pancakes at the nodes of a 1D optical lattice [114–122]. Recent ex-

periments at ENS in Paris [124, 126] have examined the interference between 2D

pancakes and extracted phase information indicating the occurrence of the BKT

transition. They also revealed the presence of single and multiple isolated vortices.

These experiments are interesting because they shed light on the debate [105, 127–

132] as to whether an interacting trapped Bose gas undergoes an ordinary Bose-

Einstein or a BKT transition. One result of these experiments was that the BKT

transition occurs in the trapped system, however as a finite-width crossover instead

of a sharp transition, presumably due to finite-size effects [133]. Recognizing all of

the uncertainties that we will discuss, the results of our experiment are also consis-
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tent with a finite-width BKT transition. In addition, our results are consistent with

a recent theoretical prediction by Holzmann, Baym, Blaizot, and Laloë [131] which

predicts a significantly reduced jump in the power-law behavior of correlations, and

places the BKT transition temperature TBKT for a finite, trapped system slightly

below the calculated BEC transition temperature TBEC for an ideal, trapped 2D gas.

Finally, our results extend to temperatures lower than the predicted BKT transition

temperature, thus providing information about superfluid densities and the nature

of phase fluctuations approaching T = 0.

8.2 Experiment

The overview of our experiment (see Fig. 8.1) is as follows. We create a

very small number of independent 2D pancakes of atoms by applying a deep 1D

optical lattice to a 3D BEC. In the tight direction (ẑ) each pancake is well described

by a single particle harmonic oscillator in the ground state. In the weak directions

(x̂ and ŷ), each pancake is described by the 2D Gross-Pitaevskii equation. The

process of creating the initial 3D condensate and subsequent 2D pancakes results in

a variable amount of heat being deposited into the system. While we do not know

for certain the source of this variability, our best guess is that it is due to small

uncontrolled position and velocity fluctuations during the creation process. After

creating the pancakes, we suddenly turn off all confining potentials and allow the

pancakes to expand into each other. We then absorption-image the atoms after a

time of flight tTOF and extract relative phase information in the x̂ direction. Note
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Snap off all confinement

Figure 8.1: A 3D magnetically trapped BEC is subdivided into a very small number
of independent 2D Bose gases by the accordion optical lattice set at d = 8.4 µm.
The original BEC of approximately 8.5 × 103 87Rb atoms is now three or four 2D
Bose gas pancakes (sometimes with very small “satellites” on the ends) with the
largest pancakes containing approximately 3.0 × 103 atoms. At the conclusion of
the optical lattice ramp of 200 ms, we suddenly extinguish the light and turn off
the magnetic trap. The pancakes expand mainly in the ẑ direction for 30.2 ms and
overlap . We absorption-image the interference pattern onto our CCD camera using
resonant laser light.
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that the absorption-imaging process destroys the cloud of atoms. Phase variations

in the ŷ direction are automatically integrated by the absorption imaging. We

calculate a first order correlation function in the x̂ direction and extract an exponent

characterizing the decay of the correlation function with the integration length Lx in

the x̂ direction. Our experiment is very similar to the ENS experiment. Differences

include the fact that we do not limit to two pancakes and we do not control the

temperature of the atoms. Further differences will be pointed out as we continue.

We produce a 3D magnetically trapped 87Rb BEC with 8.5(20) × 103 atoms

in the |F = 1,mF = −1〉 state [54]. We then apply a 1D optical lattice with a

periodicity of d = 8.4(4)µm nearly along the ŷ direction to split the BEC into three

or four main pancakes (often with two additional very small satellite pancakes)

reaching the 2D regime. The lattice potential is ramped up slowly over 200 ms

in order to be adiabatic with respect to mean-field interactions and vibrational

excitations. At full laser power, the lattice depth is s = 30(3) expressed in units

of ER = h2/2Mλ2 where λ = 810.3nm is the wavelength of the laser light and

M = 1.443× 10−25kg is the mass of the 87Rb atom. The harmonic oscillator length

in the ẑ direction is 240(20) nm. Assuming a symmetric splitting of the BEC,

when there are three main pancakes, the central pancake has 3.1(7) × 103 atoms

with a chemical potential µ = 3.3(3) × 102Hz; the resulting peak 2D density is

2.7(3) × 109cm−2. The calculated 2D Thomas-Fermi radii are Rx = 7.0(6)µm and

Ry = 10.9(8)µm. When there are four main pancakes, the two central pancakes

each have 3.0(7) × 103 atoms with a chemical potential µ = 3.2(3) × 102Hz; the

resulting peak 2D density is 2.6(3) × 109cm−2. The 2D Thomas-Fermi radii are
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Rx = 6.9(6)µm and Ry = 10.9(8)µm. The above uncertainties are predominately

due to shot-to-shot variations in the number of atoms in the original condensate.
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Figure 8.2: Typical in-situ images of the 2D BEC pancakes just prior to expansion.

The harmonic frequency in the ẑ direction is 1900(100) Hz which is much larger

than the chemical potential of the atoms in the pancakes which means that each

pancake is a 2D system. Tunnelling between the pancakes is negligible on the time
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scale of the experiment (the tunneling time for the ground state is in excess of 1090s

[125]). In fact, motion in the ẑ direction is frozen out during the ramp when the

lattice is less than 1 ER deep. The radial oscillation frequencies are ωx/2π =42(1)

Hz and ωy/2π =24(1) Hz. The number of pancakes was confirmed by in-situ imaging

as shown in Fig. 8.2. As mentioned, we often observe five or six pancakes in our

images, however in these instances the outer two satellite pancakes are always very

small (typically less than 5% of the total number of atoms).

At the conclusion of the lattice ramp to make the pancakes, we suddenly turn

off all confinement of the atoms. The pancakes expand for 30.2 ms predominately

in the ẑ direction and increasingly overlap to create a 3D matter wave interference

pattern. We absorption image the expanding cloud with resonant laser light directed

in the ŷ direction and record the projected image on our Princeton Instruments CCD

camera as shown in Fig. 8.3. We then take a 1D spatial Fourier transform along

ẑ of the recorded interference pattern for each x position. We obtain a magnitude

m(x) and phase φ(x) (Fig. 8.3b) at the fundamental spatial frequency for strips

in the ẑ direction at each x position (which is one pixel wide). The phase φ(x) is

determined using a bandwidth equal to 0.025 of the fundamental frequency whose

FWHM is typically approximately 0.04 of the fundamental frequency. Although

the phase itself is arbitrary, its variation with x is nevertheless significant. Almost

immediately we notice that some of the images have more phase variation from

strip to strip than others (Fig. 8.3c), a fact that is reflected in the φ(x) curves

(Fig. 8.3d). In fact, some of the images have a very clear phase discontinuity

where φ(x) suddenly jumps by approximately π as shown in Fig. 8.3e and 8.3f.
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These images have the appearance of a zipper with interference fringes displaced

from each other on either side of a dislocation line. Note that the jump shown is

close to π, but not exactly, because in addition to the phase discontinuity, this type

of image still has the more gentle phase variations as seen in Fig. 8.3d. Zipper

images are consistent with interference between pancakes in which one pancake has

an isolated vortex [132]. A possible interpretation is that they indicate proximity to

the Berezinskii-Kosterlitz-Thouless transition [126]. Well below the transition (on

the superfluid side), the vortex-antivortex pairs are still bound, whereas far above

the transition (on the normal side), the proliferation of unbound pairs makes the

chance of observing a single vortex or antivortex unlikely.

To determine the temperature of each cloud after time of flight, we perform

multiple fits on each image. We first fit a bimodal distribution to the integrated

average of the central 80% (in the ẑ direction) of the image profile in the x̂ direction.

The bimodal distribution is a Thomas-Fermi function for the central core and a

Gaussian in the wings. (The fact that we have assumed a central Tomas-Fermi

profile after time-of-flight is justified if the expansion of the cloud follows Castin-

Dum [34].) The quality of these fits is in general quite good with example fits

shown in Fig. 8.4. To verify the robustness of each fit, we varied the width of

the profile from 80% to 160% and then to 320%. We also tried fits where the

central Thomas-Fermi region of the cloud was ignored and only a fit to the wings

was performed. These fitting modifications resulted in 10-20% variations in the

extracted temperature which we report as uncertainties. In the ENS experiment,

temperature was not determined by fitting to the time-of-flight images; instead, the
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Figure 8.3: Left images: Examples of the interference between the 2D BECs pro-
jected onto the xy-plane of our CCD camera. Note the 90o rotation of these images
relative to Fig. 8.2. Right images: Phase of the 1D spatial Fourier transform along
ẑ of the interference pattern for each x position. The phase is at the fundamental
frequency of the interference pattern. For four pancakes, this interference phase
mainly reflects the relative spatial phase between the central two pancakes. For
three pancakes, it represents the relative spatial phase between the outer pancakes.
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maximum fringe constrast was determined for each image and this was assumed to be

an indicator of the temperature. For comparison, we also determine the maximum

fringe contrast C0 obtained by fitting the interference pattern in the ẑ direction

within a strip 30 µm wide with the function A exp(− (z−z0)2

σ2 )[1−C0 cos(kz− χ(z))].

Here k = Md/h̄tTOF and χ(z) is the phase. In Fig. 8.5 we plot 1 − C0 against the

temperature for each image. For our experiment (with more than two pancakes),

the contrast C0 is not well correlated with the temperature and thus we do not use

it as a substitute for the temperature.
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Figure 8.4: Cross sections (a) and (b) of a time-of-flight absorption image (c) of the
expanded atom cloud. The solid black line in (a) is a bimodal fit which is Thomas-
Fermi in the central region and Gaussian in the wings. In (b), a Gaussian is fit to
the wings only. The dashed lines in the absorption image indicate the width of the
integrated region used to obtain the cross section (which is the central 80% in the
ẑ direction). The temperature extracted from (a) is 35 nK and from (b) is 42 nK.
Differences such as these are included in the reported temperature uncertainties.

The central contrast was the thermometer used in the ENS experiment [126]

because with only two interfering sources one expects unity contrast at zero tem-

perature. The contrast in the interference between N equal amplitude individually-

coherent sources with random phases which change from shot-to-shot averaged over

many experiments is reduced by a factor of
√
N − 1 [120, 137, 138]. The reduction

factor is slightly less when the source amplitudes follow a Thomas-Fermi distribu-
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Figure 8.5: Temperature, as measured from the Gaussian wings of the time-of-flight
distribution, of the cloud after time of flight vs. 1 − C0, the maximum fringe con-
strast. Because of the weak correlation between the temperature and the contrast,
we do not use the contrast as a substitute for the temperature in our experiment.

tion [137, 138]. For our experiment, we therefore would expect an average contrast

(over many experiments) of 0.6 to 0.7 if there were no thermal atoms. Because

of random variations of the phases of the pancakes, we would expect the contrast

to vary from shot to shot, a variation that has nothing to do with temperature.

Since our imaging system resolves down to approximately 4 µm (based on the loss

of the Fourier transform signal in Chapter 6 when the near-field diffraction fringe

separation reached the resolution) and the fringe spacing is htTOF/Md = 16 µm,

we attribute our lower average contrast to the presence of thermal atoms. Based

on the extracted temperatures and 2D trapped BEC theory, we calculate a variable

thermal population between a few percent of the total number of atoms and almost

all of the atoms, based on the temperatures extracted from the bimodal fitting.
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8.3 Analysis

At this point we wish to glean as much quantitative information as possible

from the interference data. This has been considered from an experimental point

of view in Ref. [126] and a theoretical point of view in Ref. [135]. We generally

follow the experimental and theoretical procedures in Refs. [126, 135] except as

noted below. The coherence of the system can be extracted from g1, the first order

correlation function.

g1(~r, ~r′) = 〈ψ∗(~r)ψ(~r′)〉, (8.1)

where ψ(~r) is the field operator at location ~r. By measuring the two-field correlation

function of the interfering spatially overlapped 2D condensates, we obtain relative

spatial phase correlation properties of the initial 2D clouds before expansion [134].

With two pancakes [126], the interference intensity correlations give the relative

phase correlations between the two pancakes. When there are three pancakes and

the atom number distribution is symmetric (the outer pancakes have approximately

the same number), the interference intensity correlations reveal the relative phase

correlation between the outer two pancakes. This is plainly true if one examines the

first harmonic of the Fourier spectrum of the interference pattern which corresponds

to interference between the outer pancakes; however, it is also true if one examines

the fundamental frequency of the interference pattern (which corresponds to the

sum of the interferences between the two pairs of neighbors).
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In order to understand this, we cast the problem into the more familiar one

of a three-slit interference pattern with arbitrary phases on the sources. Consider

three point sources separated by a distance d in the ẑ direction. These represent

the central and two outer pancakes at some point (x, y). Now imagine that we are

in a frame moving at vref with respect to these sources, so that the atoms appear to

have a de Broglie wavelength λ = h/Mvref . The sources are released at time t = 0

and at t = tTOF we determine the interference pattern produced by those sources on

a virtual screen a distance L = vreftTOF away from the original source position. We

take L� d2/λ, in order to be in the far field, which is equivalent to tTOF � d2M/h,

the condition for well-separated interference orders. (Note that this condition is

independent of vref , as it must be.)

The amplitude on the screen of Fig. 8.6, at some angle φ corresponding to a

dsin(phi)2

L

Z =L phi

d

phi

gamma

eta

Figure 8.6: The interference of three 2D Bose gases is modelled as a three-source
interference pattern on a virtual screen with arbitrary phases on the sources.
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position z, is the sum of the amplitudes from the three sources. Taking the central

source amplitude to be unity, and the outer amplitudes to be f , and the phase of

the upper source to be zero, the phase of the central source to be γ, and the phase

of the lower source to be η, we have

A = f + expi(
2πd sinφ

λ
+γ) +f expi(

4πd sinφ
λ

+η) . (8.2)

Taking φ � 1 (without loss of generality, since vref can be arbitrarily large) we

have

A = f+cos(2πdφ/λ+γ)+f cos(4πdφ/λ+η)+i(sin(2πdφ/λ+γ)+f sin 4πdφ/λ+ η).

(8.3)

But 2πdφ/λ is also zdM/tTOFh̄ which we define now as θ, which is simply the z

coordinate of the interference pattern expressed in units of the fundamental period

of the interference pattern divided by 2π. Thus,

A = f + cos(θ + γ) + f cos(2θ + 2δ) + i(sin θ + γ + f sin(2θ + 2δ)), (8.4)

where we have defined η = 2δ.

The observed intensity is the absolute square of this amplitude:

I = [f + cos(θ + γ) + f cos(2θ + 2δ)]2 + [sin(θ + γ) + f sin(2θ + 2δ)]2. (8.5)

We now Fourier transform the interference intensity I at the fundamental (where
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the conjugate variable is unity).

∫ 2π

0
dθ cos θ

[
(f + cos(θ + γ) + f cos(2θ + 2δ))2

+ (sin(θ + γ) + f sin(2θ + 2δ))2
]
= 4πf cos(γ − δ) cos δ, (8.6)

∫ 2π

0
dθ sin θ

[
(f + cos(θ + γ) + f cos(2θ + 2δ))2

+ (sin(θ + γ) + f sin(2θ + 2δ))2
]
= 4πf cos(γ − δ) sin δ. (8.7)

The phase of the transform is the arctan of the ratio of the sin integral to the cos

integral.

φ(x) = arctan
4πf cos(γ(x)− δ(x)) sin δ(x)

4πf cos(γ(x)− δ(x)) cos δ(x)
= δ(x). (8.8)

Thus, based on our symmetry assumptions, the dependence on γ is gone at the

fundamental, leaving only the dependence on δ, half the phase difference between

the outer clouds. However, information about the phase of the central cloud has

not totally vanished; it is encoded in the relative magnitudes of the fundamental

and the first harmonic in the interference intensity (which we do not include in our

correlation analysis described below). With four symmetric pancakes dominated by

a central pair, phase information at the interference fundamental is dominated by the

relative spatial phase between the central pancake pair which can be demonstrated
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in a similar way. For pancake distributions intermediate to the symmetric three and

symmetric four pancake situations, the analysis is not as simple, which complicates

the determination of phase correlations.

A method to analyze correlation data in which the correlations are partially

integrated over lengths in the x̂ and ŷ directions has been developed by Polkovnikov,

Altman, and Demler [135]. In their paper, they derive an expression for 〈|AQ|2〉 the

quantum observable corresponding to the intensity of the interference fringes in

arbitrary dimension. In 2D the expression is

〈
|AQ|2

〉
∼ LxLy

∫ Lx

0
dx
∫ Ly

0
dy
〈
a†(x, y)a(0, 0)

〉2
, (8.9)

where a and a† are the Bose creation and annihilation operators and Lx and Ly are

the integration lengths in the x̂ and ŷ directions. We have adapted their expres-

sion by performing the integration with a fixed Ly (corresponding to the automatic

integration performed by our absorption-imaging), a variable Lx, and substituting

an expression for the integrand [135] which reflects the algebraic character of the

off-diagonal correlations:

〈
a†(r)a(0)

〉
∼ (

ξh
r

)α, (8.10)

where ξh is the 2D healing length. The exponent α for a 2D Bose system below

the BKT transition is given by α = MkBT/2πns(T )h̄2 and for weakly interacting
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bosons at temperatures well below TBKT, the superfluid density ns(T ) equals the

2D atom number density [135]. However, at TBKT the superfluid density equals a

universal value 4/λ2
th where λth is the thermal de Broglie wavelength [108]. Thus, α

takes on a universal value of 0.25 at TBKT. Performing the integral in Eq. (8.9), we

find the following scaling for 〈|AQ|2〉.

〈
|AQ|2

〉
∼ (LyLx)

2−α∗ , (8.11)

where the experimentally measured α∗ is functionally related to the BKT α exponent

as shown in Fig. 8.7. We establish this relationship by performing the integral for

〈|AQ|2〉 with Ly ∼ 4Lx which corresponds to the approximately 80 µm Thomas-

Fermi time-of-flight diameter in the ŷ imaging direction and the approximate 20 µm

distance in the x̂ direction over which we integrate. This relationship is valid for

the ratio of Ly to Lx in our experiment. The relationship is close to that found

in the Ly � Lx limit and is therefore fairly accurate for integrations performed in

the x̂ direction up to Lx. Beyond Lx (where we do not integrate) the relationship

gradually changes to that found in the limit of Ly � Lx [126, 135].

We use boxcar functions for the condensate density (constant within the inte-

gration ranges and zero outside of them) in place of the actual profiles of the cloud

in the x̂ and ŷ directions. The integral was also calculated using an ellipse for the

condensate profile in the ŷ and x̂ directions and gave very similar results.

The connection between g1(~r, ~r′) and 〈|AQ|2〉 is as follows [126].
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Figure 8.7: The expected relationship between the BKT α exponent and our exper-
imentally measured α∗ exponent taking into account the ratio between the integra-
tion lengths in the x̂ and ŷ directions. The condensate density profile is assumed
constant over the integration ranges.

1

Lx

∫ Lx

0
dx[g1(~r, ~r′)]2 ∝

〈
|A2

Q|
〉

L2
x

∝
(

1

Lx

)α∗
. (8.12)

Now, analogous to the ENS experiment, we may define an integrated phase of the

Fourier transform of the interference pattern at the fundamental F(Lx) as a function

of the integration length Lx in the x̂ direction

F(Lx) =
1

Lx

∣∣∣∣∣
∫ Lx/2

−Lx/2
dx expiφ(x)

∣∣∣∣∣, (8.13)

which, when averaged over many shots, should decay with the following functional

form when there is 2D algebraic decay of the off-diagonal correlations in the bosonic

field.

〈
F2(Lx)

〉
∝ 1

Lx

∫ Lx

0
dx[g1(~r, ~r′)]2 ∝

(
1

Lx

)α∗
. (8.14)
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Thus, the 2D correlation properties can be characterized by the exponent α∗ which

we may extract from our measured interference images.

8.4 Results

Similarly to the ENS experiment, in calculating the 〈F2(Lx)〉 curves, we re-

strict the range over which we integrate each shot and perform fits to the central

part of the interference pattern along x where the magnitude of the Fourier trans-

form m(x) at the fundamental is at least approximately 50% of its maximum value

except for occasional isolated points. This distance is approximately 20 µm. Fig.

8.8 shows the logarithm of 〈F2(Lx)〉 as a function of the logarithm of Lx (divided by

5 µm), the integration length in the x̂ direction for the specified average temperature

of the shots making up the group. Linear fits of the log-log plots are also shown for

each graph. To help compare the graphs, we normalize each to ln[〈F2(0)〉] = 1 and

superimpose them in Fig. 8.9.

The final graph in Fig. 8.10 depicts the measured exponent α∗ as a function

of temperature. The reported uncertainty in the temperature is dominated by the

individual temperature fit uncertainties. For α∗, the reported uncertainty is the

standard deviation reported by the fitting program (Igor Pro) used to make the

linear fits of the log-log graphs in Fig. 8.8.

Also shown in the graph as horizontal dashed lines are the values of the BKT

exponent α = 0.25 and α = 0.50 corresponding to the α∗ values. The agreement
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Figure 8.8: The logarithm of 〈F2(Lx)〉 versus the logarithm of Lx/5µm, the inte-
gration length for shots grouped by measured temperature. The top temperature in
each graph is the center of the bin, whereas the bottom temperature (in parenthe-
ses) is the average of the measured temperatures within the bin. The Thomas-Fermi
diameter is 50 µm corresponding to ln[50 µm/5 µm] = 2.3.
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Figure 8.9: Each graph in Fig. 8.8 is normalized to ln[〈F2(0)〉] = 1 and superim-
posed.

between α and α∗ at 0.50 is due to the fact that the decay of the correlations changes

from algebraic below the BKT transition as given by Eq. (8.10) to exponential above

the transition. Using a decaying exponential as an integrand, we obtain α∗ = 0.50

for any Lx and Ly. This part of the physics is not incorporated into the analysis

which establishes the relationship between α and α∗ as shown in Fig. 8.7.

Also shown in the graph as a vertical dashed line is the calculated BEC tran-

sition temperature TBEC for a 2D trapped ideal Bose gas corresponding to our ex-

perimental parameters. The uncertainty in this predicted temperature (mainly due

to our original BEC number uncertainty) is indicated by the salmon-colored band.

As another vertical dashed line, we indicate a recent theoretical prediction [131] for

the BKT transition temperature TBKT for a trapped Bose gas. This prediction is

TBKT = TBEC(1 − 3ν log2 ν/π2) where ν is the ratio of the s-wave scattering length

to the harmonic oscillator size in the frozen direction. The uncertainty is given by

the green band (also due to atom number uncertainty). The tan and green bands
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overlap as indicated by the mustard-colored band.

The red curves in Fig. 8.10 indicate the theoretically-predicted behavior of the

BKT α exponent (translated into α∗), which is α = MkBT/2πns(T )h̄2 where ns(T )

is the 2D superfluid density as a function of temperature T . At T = 0, ns(0) is simply

equal to the particle density (unity superfluid fraction) which we use to draw the

small red segment near the origin. As T approaches TBKT, ns(T ) is renormalized by

fluctuations, and at the transition takes on the value ns(TBKT) = 2MkBTBKT/πh̄
2 =

4/λ2
th(TBKT) where λth is the thermal de Broglie wavelength [108] (thereby giving α

the universal value of 0.25 at the transition). Using this value for ns(TBKT) (which

for our experimental parameters gives a superfluid fraction of approximately 0.2),

we draw the small red segment approaching α = 0.25. At α = 0.25, theory predicts

a discontinuous jump in α to 0.50 for a homogeneous system [135, 136] as the system

goes normal (non-superfluid).

8.5 Discussion

We do not see a jump in α∗ near TBKT (see the red curve in Fig. 8.10) as

has been observed in condensed matter systems such as 2D 4He systems [108, 109].

Instead, we see a monotonic, nearly linear increase in α∗ from an extrapolated value

of 0 at T = 0 to a value of approximately 0.50 at T = TBKT. There are several

possible reasons for this lack of a jump in α∗. Probably the two most important

reasons are: 1) the assumption that three pancakes have a symmetric population

distribution and that four pancakes are overwhelmingly dominated by the two in the
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center may not be sufficiently valid, and 2) it is not clear that a discontinuous jump

is expected for a finite-size system [133]. In fact, Ref. [131] predicts that the jump

of the superfluid mass at the transition is proportional to ν (where ν is the ratio of

the s-wave scattering length to the harmonic oscillator size in the frozen direction),

and is thus highly suppressed compared with that in a homogeneous system. This

reason was also cited by the ENS group as a possible explanation for the smoothness

of the transition which they measured.

Although we state that the variation in the population distribution within the

pancakes might contribute to the measured absence of a jump in α∗, it is not clear

that, on average, this variability would cause the measured value of α∗ to be always

higher than in the case of two pancakes. In fact, it may be the case that with

a sufficiently large number of shots, the result with three or four pancakes would

average to the result with only two pancakes. If this were true, then we would

conclude that the smoothness of the measured transition is predominately due to

finite-size effects. We intend to further investigate this issue.

Assuming that a measured power law exponent, α∗, less than 0.50 means

we are not in the thermal regime, our results are consistent with the theoretical

prediction by Holzmann, Baym, Blaizot and Laloë [131] which places the transition

temperature TBKT for a finite, trapped system slightly below the calculated BEC

transition temperature TBEC for an ideal, trapped 2D gas. This is an important

result which could not be established by the ENS group because they did not extract

temperatures from their measured data. Although, given our uncertainties, we

would have to conclude that our data would also be consistent with a predicted
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transition temperature significantly higher than the result, our data would contradict

a predicted transition temperature significantly lower.

As previously stated, we occasionally observe nearly π phase dislocations (zip-

pers) in our images. These occur in approximately 5% of our data. It has been

suggested that the proliferation of these zippers may be a signature of being near

TBKT [126]. In future experiments, we will attempt to image these vortices along

the lattice axis as opposed to from the side. This should allow us to make contact

with the spatial origins, arrangements, and movements of the vortices.
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Chapter 9

Summary of Published Experiments

This chapter is a summary of experiments performed over the course of my

graduate studies in the 87Rb BEC laboratory whose results have already been pub-

lished in peer-reviewed journals. There seems little point in completely rewriting

these already well-polished (or, what we in the Laser Cooling group call “tortured”)

papers. In addition, since I was not the lead experimentalist in these investigations,

including them in this dissertation on the same footing as the experiments described

in Chaps. 6, 7 and 8 (in which I was the principal investigator) would be misleading.

Instead, I have chosen to provide short summaries of each experiment in this chapter

with copies of the published papers in the Appendices.

9.1 Observation of Reduced Three-Body Recombination in a Corre-

lated 1D Degenerate Bose Gas

In this experiment, we investigate the correlation properties of a 1D inter-

acting Bose gas. In 1D, atom-atom interactions dominate as the atomic density

decreases. This is unlike the situation in 3D where atom-atom interactions decrease

in importance as the density decreases. In 2D, the interaction energy is independent

of the density. These results can be understood in the homogeneous case by express-

ing the ratio of the mean-field interaction energy to the kinetic energy per atom in
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terms of the 1D, 2D, or 3D atomic densities. A single parameter γ ≡ Mg/2n1Dh̄
2,

where g is the s-wave interaction strength and n1D is the 1D atomic density, entirely

characterizes a homogeneous 1D gas with repulsive short range interactions. As γ

increases, interactions increasingly dominate and it becomes energetically favorable

for the gas to be correlated. For γ � 1, we enter the Tonks-Girardeau regime [8, 9]

where the many-body ground state becomes highly correlated in order to minimize

the interaction energy and the bosons become impenetrable, behaving like fermions.

The second and higher-order local correlation functions gi vanish [10] at small inter-

atomic separation, meaning that no more than one particle can be found at a given

position.

We adiabatically load a 3D magnetically-trapped BEC into a deep 2D optical

lattice creating an array of independent 1D tubes. We measure the three-body

recombination rate for the BEC in the magnetic trap and for the BEC loaded into

the optical lattice. The recombination rate coefficient is a factor of seven smaller

in the lattice, which we interpret as a corresponding factor of seven reduction in

the local (3D) third-order correlation function g3. For our experiment in which

we have an array of 1D tubes, we calculate a median value of 0.45 for γ which

is in the regime intermediate between that of an uncorrelated gas where γ � 1

and the highly correlated Tonks-Girardeau gas where γ � 1. At the time that we

wrote the paper, there was no calculation of g3(γ) in this regime; however, there

is an expression for g2(γ) in this regime and we use the approximate expression

g3 = (g2)3 which is expected to be nearly exact in the mean field regime and for

γ � 1 exceeds the exact g3 by a factor of 2 [11]. We find that our inferred reduction
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in g3 based on the measured three-body recombination suppression is consistent

with this approximation, within experimental uncertainty.

9.2 Strongly Inhibited Transport of a Degenerate 1D Bose Gas in a

Lattice

This experiment studies the inhibition of transport in a 1D Bose gas in the

presence of a 1D optical lattice along the 1D axis. Transport of the 1D gas is

established by setting up dipole oscillations of the entire gas in a combined harmonic

and optical lattice potential. The degree of inhibition is quantified by modelling the

center of mass of the 1D gas as a classical, damped simple harmonic oscillator and

extracting a damping coefficient. We observe significant damping for very shallow

1D lattices (0.25 photon recoil energies) and dramatic increases in the damping

with increasing lattice depth. The damping becomes so strong that the 1D gas is

immobile for times an order of magnitude longer than the single-particle tunneling

time.

As with the three-body recombination experiment, we create an array of in-

dependent 1D tubes by loading a 3D BEC into a deep 2D optical lattice. We then

corrugate the tubes by adiabatically applying an axial 1D lattice. We excite dipole

oscillations of the center of mass of the atoms in all of the tubes by suddenly ap-

plying a linear magnetic field gradient, thus displacing the total harmonic trap (but

not the lattice) 3 µm. One quarter dipole period later, the maximum velocities

correspond to quasimomenta less than the band structure inflection point (where
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the effective mass changes sign) up to a 8 ER deep 1D lattice, which rules out an

explanation for the damping based on a single-particle dynamical instability. If we

do not create the array of 1D tubes, but simply establish dipole oscillations of a

3D BEC in the same combined harmonic and 1D optical lattice, then we do not see

the damping. This tells us that the damping has something to do with the reduced

dimensionality and/or the density variations caused by the presence of the tubes.

This experiment has generated theoretical interest [150–155] and various expla-

nations have been put forth to explain the unexpected results. The common thread

to all of the theoretical explanations is the role of quantum fluctuations which are

more pronounced in 1D than in 2D and 3D. Where the explanations seem to di-

verge is in describing specifically how the fluctuations cause the inhibited transport.

Some explanations emphasize the role of quantum depletion [150–152] as a source

of “friction” for the atoms still in the condensate. Other explanations focus on the

ability of the system to “tunnel” to the dynamical instability point because of the

fluctuations [155]. As of this writing, there is no general consensus.

9.3 Collisional De-excitation in a Quasi-2D Degenerate Bose Gas

Here, we probe in detail the collisional decay of a quasi-2D degenerate Bose gas.

The gas is quasi-2D in the sense that although motion is restricted in one direction,

atom-atom interactions take place in 3D. We start by creating a stack of 2D pancakes

and Raman-exciting quantized vibrational motion in the (initially frozen) direction

normal to the pancakes. The Raman transitions between the vibrational levels are
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driven by a pair of nearly counterpropagating laser beams. Following the excitation,

we measure the rates of collisional decay from the discrete spectrum of excited

vibrational states. The measured decay rates are suppressed due to the reduced

dimensionality, in analogy to inhibited spontaneous emission.

Following each decay event, the released vibrational energy (which can be

thought of as an internal-state energy-quantum) is transformed into the kinetic en-

ergy of back-to-back atoms travelling out in (weak) directions normal to the tight

(initially frozen) direction. Because of the well-defined energies of de-excitation and

the randomness of the outgoing directions, the images after time-of-flight appear as

a set of well-defined concentric rings in the 2D plane with radii corresponding to

vibrational energy level differences. These images provide us accurate information

on the numbers of atoms participating in individual, allowed decay channels. Im-

ages taken in one of the weak directions following band-mapping (band-mapping is

explained in Chap. 3) permit us to identify the final vibrational states. The exper-

imental results consist of measured decay rates which are compared to calculated

decay rates based on a Fermi’s golden rule treatment. We find good agreement

between our experimental results and the results of the calculations.

Because the atom-atom interaction preceding the decay is well described by a

delta-function potential, decay channels are restricted to those whose matrix element

(containing two entering particle wavefunctions and two exiting particle wavefunc-

tions) is an overall even function. We observe this decay channel restriction in our

experimental data. In addition to being an important demonstration of inhibited de-

cay due to the reduced dimensionality, this experiment represents a novel single-shot
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spectrographic technique, potentially useful for other investigations.
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Chapter 10

Conclusion

10.1 Summary of the Dissertation

In addition to its obvious purpose of documenting what I have accomplished as

a University of Maryland graduate student at NIST, it is hoped that this dissertation

will serve several other important functions. I believe that a good dissertation helps

to advance the state of knowledge and is a useful how-to manual. It is also nice if it

reads like an engrossing novel where you cannot stop turning the pages. With this

in mind, like many Ph.D. students before me have done, I feel I now have license to

stretch out a bit and add a touch of drama and human elements to the recapitulation

of the dissertation.

Chap. 1 began at a level understandable to anyone who has had a course in

statistical mechanics and knows what a boson is. Thus, hopefully even an armchair

physicist will have an inkling about the general topic of this dissertation. Chap. 1

ended with a table (Table 1.1) that I have wanted hanging on my wall over the years.

Table 1.1 summarizes succinctly (if possible) various expressions for the degeneracy

temperatures and ground state occupations in 1D, 2D, and 3D for the cases of the

ideal Bose gas, the weakly interacting Bose gas, and the harmonically-trapped Bose

gas. If I ever see this table hanging on a wall in anyone’s laboratory or office in the

future, I will consider this thesis a success (and demand royalties :-)).
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Chaps. 2, 3, and especially 4 were written keeping foremost in mind my bewil-

derment when I began working in the 87Rb laboratory in 2002. I remember thinking

then how great it would be if I could read someone’s thesis describing the 87Rb ex-

perimental hardware from soup to nuts. In addition, I wanted written descriptions

and brief theoretical backgrounds on the specialized experimental techniques (such

as lattice pulsing and band-mapping) that everyone in the lab was talking about.

Alas, it could not be so since the apparatus was then less than one year old and

I was the first graduate student to work on it. (I’m sure I drove Trey Porto and

postdocs Bruno Laburthe Tolra, Ken O’Hara, and Chad Fertig insane with my in-

cessant questions.) So, for the future graduate students and postdocs entering the

87Rb laboratory, part of this thesis is my gift to you with apologies for not covering

everything.

Chaps. 5 and 6 comprised a couplet, an ode really, to the practical genius of

Trey Porto. Although I put together the accordion lattice and calibrated it, the idea

for the lattice sprang from his head (with contributions from Bruno Laburthe Tolra).

Like the later double-well lattice (not described in this thesis) that he (with Poul

Jessen) dreamt up, this device bears his distinct signature. Trey is a clever physicist

and I am eternally grateful for his bequest of the design of the accordion lattice to

me. Chap. 5 is an extremely thorough description of the design and construction of

the accordion lattice as well as an analysis of atomic ground state excitation due to

rotational noise and lattice compression/stretching. Chap. 6 describes the painstak-

ing process of calibrating the accordion lattice. I was assisted during this crucial

stage by Bruno Laburthe Tolra and Ian Spielman. Ian deserves special thanks for
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helping to turn a rather pedestrian procedure (calibrating a tool) into an exciting

proto-experiment involving two lattices with commensurate/incommensurate peri-

odicities.

The way in which the beyond-Raman-Nath diffraction experiment described

in Chap. 7 unfolded deserves a story. When I first saw the saturation of the

diffraction order envelope amplitude, its sudden collapse and subsequent revival, I

was mystified. I could make no sense of it. (Even a certain Nobel prize-winning

physicist did not have an explanation for what was going on.) I felt like the blind

man feeling the elephant until I finally scanned far out in lattice pulse duration,

sequenced the diffraction data by pulse duration and saw the organizing principle

of the order envelope executing a strange asymmetric oscillation. I remember Carl

Williams looking at the data and asking “What’s the fish?” (The lunch lady said the

same thing.) (See Figure 7.1) I had suspected an oscillation of some sort months

earlier while staring at a single diffraction image and noticing its similarity to a

highly-excited harmonic oscillator. A few weeks later, I was flabbergasted when I

saw a theory paper from 1994 by Janicke and Wilkens with the same “fish” patterns

in their figures. I ran down to the lab in great excitement and showed the paper to

Marco Anderlini who said something like “Now you have it Johnny!”

At this point, everything fell into place with the exception of an intuitive

understanding of the asymmetry of the envelope oscillations. For achieving insight

into the reason for this asymmetry based on a phase space portrait, I want to

especially thank Vincent Boyer for very helpful discussions. I remember the joy

of sharing this insight with Trey who had been challenging me to come up with
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an explanation. Once I explained it to him, he immediately gave the proper name

(caustics) to the features I was trying to describe to him. Imagine my surprise

when I discovered a few weeks later that M. V. Berry had also thought about

this anharmonic oscillator asymmetry in the context of geometrical optics and had

developed the same phase space portrait explanation involving caustics. Now that

everything is pretty well understood, it all seems rather simple; but this is how it

always is.

The story behind Chap. 8 is also interesting. It started with a group meeting

in which I described some strange diagonal interference patterns I had observed while

trying to align the accordion lattice. After the meeting, Ennio Arimondo button-

holed me and told me what he thought these patterns were. I had a vague idea of

what he was talking about because I remembered discussing the ENS experiment

a few weeks earlier with Marco. Of course, I had heard of the Kosterlitz-Thouless

transition, but I did not know much about it. So, while Ennio fed me a steady

diet of theory papers, I performed various calculations to see if I was in the proper

regime to be seeing KT vortices. I also consulted with my old condensed matter

professor, Ted Einstein at Maryland to learn more about the KT transition in con-

densed matter systems. I read the early 2D superfluid 4He papers by my Cornell

advanced lab instructor, John Reppy. This was an intense period of learning for me.

When I got back to the lab, I changed some of the experimental parameters (ramp

duration, snap-off time, and lattice periodicities). Almost immediately, the data

started looking better. I remember getting a beautiful zipper diffraction pattern at

the exact instant that Bill happened to walk into the lab. This felt good.
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My investigation into (Berezinskii-)Kosterlitz-Thouless physics using a BEC

with the accordion lattice represents the scientific high point of my graduate school

career and I am delighted to incorporate it in my thesis. I am deeply indebted to

Ennio for his early insights and correct interpretation of the preliminary data. He

was the spark plug behind my effort and I appreciated our valuable discussions as

well as his overall encouragement.

Chap. 9 describes three very significant experiments, two of which were per-

formed quite early in my graduate school career. I know that I was very lucky to

have had the opportunity to essentially “cut my AMO experimental teeth” on such

important experiments. Thanks Bill and Trey.

And now for a forward look...

10.2 The Challenges and Opportunities Ahead

As stated in Chap. 1 my thesis is about the physics of dilute gaseous BECs

confined to lower dimensions by optical lattices. In looking to the future, I have

focussed on condensed matter-analog experiments using a new optical lattice knob

hitherto unused by researchers in the field, namely the ability to dynamically vary

the periodicity of an optical lattice while keeping ultra-cold atoms in the ground state

in situ. I was in the midst of these motional adiabaticity investigations, attempting

to quiet the rotational dither noise, when a series of unfortunate events led to a

failure of the accordion lattice. Sadly, my graduate school career may end before I

am able to rectify this problem, let alone complete the motional adiabaticity study
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and thus fully exploit one of the truly novel features of the accordion lattice. This,

then, represents an immediate challenge for me (or someone after me) following the

completion of this dissertation.

Luckily, even without motional adiabaticity proof-of-principle, the accordion

lattice offers several unique advantages. The ability to rapidly vary the lattice con-

stant between shots permits a rapid exploration of experimental space. For instance,

it is unlikely that I would have been able to find the best location to perform the

BKT experiment described in Chap. 8 without the accordion lattice. Also, the

superlattice experiment described in Chap. 6 as part of the periodicity calibration

could never have been done without the accordion lattice. A similar superlattice

experiment should (and probably will) be performed in the future focussing on com-

mensurate/incommensurate phase transitions [156, 157].

Taking a more expansive view of the field, as stated in Chap. 3 we are now at

the point where important, unsettled questions in condensed matter physics may be

answered using ultracold neutral atoms in optical lattices. More work is needed on

the nature of the 2D Berezinskii-Kosterlitz-Thouless transition in trapped systems

and its relationship to the transition in a homogeneous system.

Expanding our view even further to degenerate Fermi systems, it is hoped

that experiments which will be performed shortly [158] will tell us whether high Tc

superconductivity is contained within the Hubbard model. I am excited to begin a

postdoc position in a laboratory that will attempt to answer this very fundamental

question with potentially significant practical repercussions. Competition with other

laboratories will likely be quite fierce.
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The combination of BECs and optical lattices has enabled the exploration

of fundamental quantum mechanical issues using systems that are accessible and

highly flexible. “Thank you Bill” for helping to create an exhilarating and dynamic

sub-field of AMO physics. Your enthusiasm, persistence, and never-ending curiosity

have enabled the creation of now two generations of laser-coolers and atom-trappers.

195



Appendix A

Observation of Reduced Three-Body Recombination in a Correlated

1D Degenerate Bose Gas
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Observation of Reduced Three-Body Recombination in a Correlated 1D Degenerate Bose Gas

B. Laburthe Tolra,* K. M. O’Hara, J. H. Huckans, W. D. Phillips, S. L. Rolston,† and J.V. Porto

National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
(Received 7 November 2003; published 10 May 2004)

We investigate the correlation properties of a one-dimensional interacting Bose gas by loading a
magnetically trapped 87Rb Bose-Einstein condensate (BEC) into a deep two-dimensional optical
lattice. We measure the three-body recombination rate for both the BEC in the magnetic trap and the
BEC loaded into the optical lattice. The recombination rate coefficient is a factor of 7 smaller in the
lattice, which we interpret as a reduction in the local three-body correlation function in the 1D case.
This is a signature of correlation intermediate between that of the uncorrelated, phase coherent, 1D,
mean-field regime and the strongly correlated Tonks-Girardeau regime.

DOI: 10.1103/PhysRevLett.92.190401 PACS numbers: 03.75.Lm, 05.30.Jp

The majority of experiments with quantum degener-
ate gases have been performed in the weakly interacting
limit, on Bose-Einstein condensates (BECs) character-
ized by long-range phase coherence and well described
by the mean-field Gross-Pitaevskii (GP) equation [1].
While the success of the GP equation in accounting for
many experimental results has been spectacular, it has
also led to the search for physics beyond mean-field
theory. As in condensed matter physics, there is now great
interest in highly correlated systems, where mean-field
approaches are inapplicable and a (second) quantization
of the atom field is required. Progress toward such corre-
lated systems includes the recent observation of number
squeezed states [2] and the Mott-insulator transition [3]
in BECs loaded into optical lattices, and the use of
Feshbach resonances to increase interactions between
atoms [4]. Here we present evidence of strong correlations
in a 1D degenerate Bose gas as reflected in a reduction of
three-body recombination.

The role of fluctuations and correlations in Bose gases
increases with reduced dimension. In homogeneous sys-
tems, BEC is possible only in 3D. In 2D, a Kosterlitz-
Thouless transition occurs, and in 1D there is no finite
temperature transition [5]. By contrast, BEC is possible in
1D, 2D, and 3D for trapped systems [6]. Trapped 1D
systems with �-function repulsive interactions are par-
ticularly interesting, in that for high density the ground
state is a condensate, while in the low density limit the
ground state is a highly correlated state known as a
Tonks gas [7]. This ground state is an example of ‘‘fer-
mionization,’’ where the repulsive interactions mimic the
Pauli exclusion principle. Indeed, the low energy excita-
tion spectrum is identical to that of noninteracting fer-
mions, and the many-body wave function of the Bose gas
is equal to the absolute value of the fermionic wave
function [8].

For such a 1D Bose gas, the degree of correlation
depends on the ratio between two energies: the repulsive
energy of uncorrelated atoms at a given density, Eunc �

gn1D, and the quantum kinetic energy needed to correlate
particles by localizing them with respect to each other on
the order of the mean interparticle distance d, Ecor �
�h2=2md2. Here, g is the strength of the �-function inter-
action, m is the atomic mass, and n1D � 1=d is the 1D
density. A single parameter 	�Eunc=4Ecor�mg=2n1D�h

2

entirely characterizes a homogeneous 1D gas with repul-
sive short range interactions. For 	 � 1, it is energeti-
cally favorable for the gas to be correlated. The exact
eigenstate solutions [7] and correlation functions [9] have
been calculated for arbitrary values of 	. Recently, these
results have been extended to harmonically trapped gases,
addressing, e.g., the excitation spectrum [10], the shape of
the trapped gas [11], and the single-particle correlation
function [9].

The many-body ground state has two limiting forms.
In the Tonks-Girardeau (TG) regime, where 	 � 1, the
ground state becomes correlated in order to minimize
the interaction energy and the bosons become impene-
trable, behaving like fermions as described in [8]. The
second and higher-order local correlation functions gi
vanish [12], meaning that no more than one particle can
be found at a given position. On the other hand, in the
mean-field (MF) regime when 	 � 1, the GP equation
describes the system well. In this regime the healing
length, lh � �h=

���������������

mgn1D
p

, is much larger than the mean
interparticle distance. Note the counterintuitive result
that the system reaches the correlated regime for low

1D densities, contrary to the 3D case where n3Da
3
s �

�	=2��3 � 1 corresponds to the correlated regime.
(Here as is the zero-energy 3D scattering length [13],
and 	 is the appropriate energy ratio in 3D.)

To probe correlations we measure three-body recom-
bination rates (proportional to the local third-order cor-
relation function g3) of 1D gases produced in a 2D
optical lattice. This technique was used in Ref. [14] to
demonstrate that there is a reduction of g3 in a 3D BEC
by a factor of 6 compared to a thermal gas. We observe
a further reduction of three-body recombination in a
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1D gas compared to the 3D BEC situation. Even though

	 ’ 0:5 for our system, which is far from the TG regime,

this is a signature that the correlations are significant due

to the fermionization of the particles.

We realize a 1D gas by confining a 3D gas sufficiently

tightly in two directions that the radial confinement en-

ergy �h!? is much larger than all other relevant energies

in the system: kBT, the axial trapping energy �h!z, and the

chemical potential. Reference [15] has recently produced

a 1D Bose gas using similar techniques. Since as is much

smaller than a? �
�����������������

�h=m!?
p

(as=a? ’ 0:1 in our sys-

tem), the atom-atom interaction strength is largely de-

termined by as, with only a small correction due to

confinement [16,17]: aeff �as=�1
1:46as=
���

2
p
a?�. There

is no excitation in the radial direction and by integrating

over the radial coordinates, one can show [16] that the

system is formally equivalent to a true 1D gas with

interaction strength g � 4 �h2aeff=ma
2

?, so that 	 �
2aeff=�n1Da2?�. The 3D density is related to the effective

1D density by n1D � 1=d � �a2?n3D.

Our approach is to load a BEC into the ground state of a

deep 2D optical lattice so that the BEC is divided into an

array of independent 1D quantum gases, each tubular

lattice site acting as a highly anisotropic trap. Our ex-

perimental apparatus has been described elsewhere [18].

We achieve BEC with up to N0 � 5� 10
5 atoms in the

�F;mF� � �1;
1� hyperfine state of 87
Rb (for which as �

5:313 nm [13]). An Ioffe-Pritchard trap confines the

atoms with initial ‘‘tight’’ trap frequencies of �x � �z �
210 Hz, and �y � 8:2 Hz, giving a peak atomic density of

up to 3� 10
14

cm

3. Before applying the optical lattice,

we adiabatically lower �x and �z to a ‘‘weak’’ trap fre-

quency of 28 Hz (keeping �y fixed), resulting in peak

densities of �5� 10
13

cm

3.

We create a 2D optical lattice from two independent,

retroreflected 1D lattices which lie in the xy plane and

intersect at an angle of 80
. The independent 1D lattices

are detuned from each other by 5 MHz. All beams derive

from a Ti:sapphire laser operating at � � 810:08 nm (de-

tuned below both 5S! 5P transitions at 795 and

780 nm), and the polarizations of the lattice beams are

in the xy plane. Each 1D lattice is measured [19] to be

29�1� ER deep (where ER � h2=2m�2) [20]. At each lat-

tice site the ground state of the radial motion is well

approximated by a Gaussian wave function with a? �
58:5�5� nm corresponding to an effective !?=2� �
33:8�6� kHz. By observing dipole oscillations following

a sudden, brief displacement of the trap center, we mea-

sure the axial frequency along the tubes to be !z=2� �
55:9�6� Hz. This frequency results from the combined

effect of the magnetic trap and the dipole potential of

the lattice beams along the tubes. To load the atoms

into the lattice, the laser light is increased over 200 ms

with an approximately half Gaussian shape (rms width

70 ms), which is adiabatic with respect to all vibrational

excitations. We estimate that the interaction-free tunnel-

ing time from one lattice site to the next for a 29 ER lat-

tice is ’150 ms. Although this is shorter than the time

of the experiment (up to 12 s), it corresponds to an en-

ergy much smaller than the interaction energy in the

tubes and should not modify the local 1D correlation

properties [21].

To measure the reduction of g3 due to correlations, we

observe the corresponding reduction in the three-body

recombination rate coefficient. The local three-body re-

combination rate (in either 1D or 3D) is proportional to

the cube of the local density. For 87
Rb, it is known that

two-body losses [14,22], including photoassociation at

810 nm [23], are very small [24]. Our model, therefore,

includes only one-body and three-body processes so that

the total number of atoms N decays according to

dN

dt
� 
K1N 


Z

K1D

3
n3
3D
dV: (1)

We account for atomic redistribution during decay

through the evolution of the density profile. Determi-

nation of the three-body recombination rate coefficient

K1D

3
requires an accurate estimate of the density, which

we ascertain from a measurement of the number of

trapped atoms as a function of time, along with a deter-

mination of the size and shape of the atom cloud.

Figure 1 shows the total number of atoms as a function

of time t in the lattice, obtained by absorption imag-

ing 34 ms after release from the lattice and magnetic

trap. We calibrate our absorption measurements by com-

paring the observed expansion of a released condensate

to the known number-dependent expression for the ex-

pansion [25]. [The inferred absorption cross section

agrees (�10%) with one calculated from the steady state

Zeeman sublevel distribution resulting from optical

pumping.] The number of atoms in the BEC fluctuates

by less than 20% from shot to shot. We automate the

experiment to produce a BEC every minute and each

data point is typically an average of five measurements.

6

8

10
5

2

4

N

121086420

Time (s)

FIG. 1. Number of atoms as a function of time in the 2D

lattice. The solid line is a fit to the decay as described in the

text, and the dashed line is an extrapolation of the asymptotic

one-body loss.
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In order to minimize systematic effects due to long term

thermal drift of the trap coils, we run current in the

magnetic trap after the imaging such that the total time

that the magnetic trap is on is the same for each measure-

ment. While the atoms are in the lattice, we apply a radio

frequency shield [22] tuned 500 kHz above the minimum

of the trap to reduce heating without significantly increas-

ing the loss of atoms trapped in the lattice.

We measure the size of the lattice-trapped cloud in

the xy plane by phase contrast imaging. The initial col-

umn density distribution of the cloud is well described

by an integrated Thomas-Fermi (TF) profile, with radii

of Rx � 13:1�5� "m and Ry � 22:5�10� "m so that the

observed number of atoms per tube at �x; y� is well

described by N tube � N max �1
 �x=Rx�
2 
 �y=Ry�

2�3=2,
where N max � 5N0�

2=8�RxRy is the number of atoms in

the central tube and �=2 is the spacing of the tubes. Based

on the initial total number and the measured sizes of the

cloud, we determine N max � 230�40�. In the xz plane,

we measure the size of the cloud using a different (ab-

sorption) imaging system. The initial xz density dis-

tribution is also described by a TF profile, of radii Rx �
15�2� "m (in agreement with our phase contrast

xy measurement) and Rz � 17�2� "m. For our parame-

ters, the atom distribution along the tubes (along z) is not

expected to deviate significantly from a TF profile [11];

indeed Rz agrees with the 1D TF value calculated based

on N max . We note that the peak density is �1�
1015 cm
3, which would lead to rapid three-body loss in

a 3D system.

We observe that the cloud slowly expands in the z
direction over the course of the measurement: the cloud

expands by 5 "m in 2 s while the Rx and Ry radii remain

constant, consistent with a 1 kHz=s rate of energy in-

crease along z. Spontaneous emission initially deposits a

majority of the recoil energy into radial motion, but since

kBT � �h!?, equilibration will eventually transfer essen-

tially all the energy to axial motion. The observed axial

heating rate lies between the limits set by full equilibra-

tion and no equilibration. This expansion reduces the

density only modestly during the first 2 s, when most of

the three-body decay occurs, and we account for it in our

modeling of the decay.

To model the decay using Eq. (1), we assume an overall

3D TF density profile with Gaussian radial distributions

within each tube. In addition, for simplicity of modeling

we assume K1D

3
to be a constant (see below). With these

approximations, Eq. (1) becomes

dN

dt
� 
K1N 
 #�t�K1D

3
N3; (2)

where #�t� � �25=896�4���2=a2?RxRyRz�t��
2. The radii

Rx and Ry are kept constant at their measured values,

and Rz�t� grows linearly in time at the measured rate of

2:5 "m=s. This differential equation has an analytic

solution which gives the total number as a function of

time, to which we fit the data of Fig. 1.

With this analysis, we determine K1D

3
� 1:2�7� �

10

30

cm
6
s

1 and K1 � 0:16�2� s
1. This result is rela-

tively insensitive to the specific model used for atomic

spatial redistribution during decay, and variations among

realistic models fall within the quoted uncertainties. We

attribute K1 mainly to optical pumping to states other

than the original �1;
1� state, which are untrapped in the

combined optical, magnetic, and gravitational potential.

For the depth and detuning of our lattice, the majority of

photon scattering events returns the atoms to the original

�1;
1� Zeeman sublevel and does not contribute to K1.

The calculated loss rate for a 29ER lattice is 0:17 s
1, in

good agreement with our measured K1.

To determine the reduction of three-body recombina-

tion in 1D, we must compare K1D

3
to K3D

3
. A comparison

in the same apparatus reduces the uncertainty due to our

15% systematic number uncertainty. (The effect of this

systematic uncertainty is not eliminated entirely because

the power law dependence of dN=dt on N is different in

1D and 3D.) We therefore repeat our experiments in a tight

magnetic trap in the absence of a lattice, similar to

Refs. [14,22]. (But see [26].) For the �1;
1� state, we

measure [27]K3D

3
� 8:3�20� � 10


30
cm

6
s

1 (see Fig. 2),

which is in agreement with the value of 5:8�1:9� �
10
30 cm6 s
1 measured in [14].

Comparing our measurements, we find that the ratio of

the three-body decay coefficients in 1D and 3D is 0.14(9).

This represents a factor of 7 reduction in g1D
3

over g3D
3

, a

clear signature of correlations.

For comparison of the observed reduction in g3 with

theory, we calculate 	 at the center of each tube. From the

experimentally determined density distribution we find at

t � 0 that 	 > 0:34, with 80% of the atoms having 0:34<
	< 0:65, and median value 	m � 0:45. We do not expect

correlations to vary significantly over this range of 	
[12], so the assumption of using a single average K1D

3
in

the model should be reasonable.
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FIG. 2. Number as a function of time in the tight magnetic

trap (no 2D lattice). The solid line is a fit to the decay [22],

and the dashed line is an extrapolation of the asymptotic one-

body loss.
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In Fig. 3 we compare the measured reduction in the

three-body loss rate coefficient with theoretical estimates

for g3 in an interacting 1D gas at T � 0. Although there is

currently no calculation of g3, we plot the approximation

g3 � �g2�
3, which is expected to be nearly exact in the

MF regime and for 	� 1 exceeds the exact g3 by a factor

of 2 [28]. The value of g2 used is that for a homogeneous

system [12]. The value of g2 is expected to be insensitive

to T for T � Td ’ N max �h!z=kB in this range of 	. From

the measured values of N and !z we estimate the dis-

tribution of degeneracy temperatures, finding at t � 0 a

peak value of �13 kHz and a median value of �9 kHz.

While it is difficult to measure the temperature in our

system, the measured size at t � 0 is consistent with zero-

temperature TF theory and is certainly much less than

m!2
zR

2
z=2, which during the first several seconds does not

exceed �6 kHz.

The reduction in K1D

3
relative to K3D

3
is a sensitive

indicator of correlations and shows that we are beyond

the mean-field regime, signifying the beginning of fer-

mionization of bosons in 1D. Interestingly, collective

oscillations in this parameter regime are well described

by 1D mean-field theory, as verified by Ref. [15]. The

fundamental effects of low dimensionality on the corre-

lation properties of a quantum Bose gas are also of

practical interest, given the interest in the physics of

‘‘atom lasers’’ loaded in waveguides. In addition, these

experiments indicate that high density, strongly corre-

lated 1D systems can be realized without fast decay due

to three-body recombination.
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We report the observation of strongly damped dipole oscillations of a quantum degenerate 1D atomic
Bose gas in a combined harmonic and optical lattice potential. Damping is significant for very shallow
axial lattices (0.25 photon recoil energies), and increases dramatically with increasing lattice depth, such
that the gas becomes nearly immobile for times an order of magnitude longer than the single-particle
tunneling time. Surprisingly, we see no broadening of the atomic quasimomentum distribution after
damped motion. Recent theoretical work suggests that quantum fluctuations can strongly damp dipole
oscillations of a 1D atomic Bose gas, providing a possible explanation for our observations.

DOI: 10.1103/PhysRevLett.94.120403 PACS numbers: 03.75.Kk, 05.60.Gg, 73.43.Nq

The ability of highly degenerate quantum systems to
sustain dissipationless flow is one of the most striking
manifestations of quantum mechanics. However, transport
in such systems can be dramatically modified by the pres-
ence of a relatively weak but rapidly spatially varying
(‘‘corrugated’’) potential along the transport axis. For ex-
ample, the periodic potential of an optical lattice inhibits
transport in a degenerate Fermi atomic gas [1–3], but not,
in general, in a degenerate Bose gas [i.e., Bose-Einstein
condensate (BEC)] [4,5]. However, under certain condi-
tions, highly dissipative transport in a BEC in an optical
lattice [6–8] can arise from nonlinear dynamical insta-
bilities [9–11]. In low dimensional systems, of which 1D
atomic gases [12–16] and superconducting nanowires [17]
are important experimentally realized examples, a corru-
gated potential can cause dramatic changes in ground state
and transport properties.

We study inhibited transport in a 1D Bose gas in the
presence of an optical lattice along the 1D axis. In the
absence of such a lattice, dipole oscillations are undamped
[14], since it is a general result that the dipole mode of a
harmonically confined gas is unaffected by two-body in-
teractions (generalized Kohn’s theorem) [18]. This result
does not strictly hold for a combined harmonic and peri-
odic potential; nevertheless, undamped oscillations have
been observed in 3D BECs for small amplitudes and weak
interactions [5,19].

In this Letter, we report a study of strongly damped
dipole oscillations of a 1D Bose gas in a combined har-
monic and periodic potential, under conditions for which
undamped motion has been observed previously for 3D
BECs. This striking difference between one dimension
and three dimensions was recently reported qualitatively
in Ref. [13]. Here we measure the damped motion as a
function of axial lattice depth. Significant damping is
induced by very shallow lattices, and in deeper lattices
the motion is overdamped to the degree that the gas is
nearly immobile for times an order of magnitude longer
than the single-particle tunneling time. We emphasize, and
discuss further below, that the inhibited transport is not due

to Bloch oscillations [4,20], where transport is frustrated
by Bragg reflection at the Brillouin zone (BZ) boundary, as
has been seen in previous experiments [1,2,7].

Our method to realize an ensemble of independent 1D
Bose gases is similar to earlier work [12]. We produce a
nearly pure 87

Rb condensate of N � �0:8–1:6� � 10
5

atoms in the jF � 1; mF � �1i state in a Ioffe-Pritchard
magnetic trap (�x � �z � 29 Hz, �y � 8 Hz). We next

partition the BEC into an array of independent, vertical
1D ‘‘tubes’’ by adiabatically applying a transverse (in the
xy plane) 2D confining lattice [12–16,21]. The confining
lattice is ramped on during 200 ms to a depth of approxi-
mately 30ER (where ER � h2=2m�2 is the photon recoil
energy, and � is the laser wavelength). The combined
magnetic and optical potential results in approximately
5000 occupied tubes, each with an axial frequency of
!0=2� � 60 Hz. We observe a Thomas-Fermi density
envelope in the combined magnetic and optical potential,
and calculate [12] cloud radii of rx � 14�1� �m [22], ry �

20�1� �m, and rz � 10:6�5� �m for N � 1:4� 105. From
this, we estimate a peak 1D density of 4:8�4� � 104 cm�1

in the central tube, and a peak 3D density of 4:7�4� �
104 cm�3. Subsequently, we corrugate the tubes by adia-
batically applying, over 20 ms, an axial (vertically along z)
1D lattice. The Rayleigh length of the axial lattice beams is
large enough that they do not significantly modify the axial
harmonic potential. All lattice beams derive from a single
Ti:Sapphire laser operating at � � 810 nm, far detuned
from the atomic resonances at 780 and 795 nm. The pairs
of lattice beams are detuned from each other by 6 MHz,
making them effectively independent [23]. The final con-
figuration consists of three independent standing waves,
each formed from a pair of counterpropagating beams.

We excite dipole oscillations of the center of mass of
the atoms in all the tubes by suddenly (&150 �s) apply-
ing a linear magnetic field gradient, thus displacing the
total harmonic trap (but not the lattice) axially by z0 �
3 �m. This displacement is less than 30% of rz and
corresponds to approximately eight axial lattice sites
[24]. The waists of the Gaussian transverse lattice beams

PRL 94, 120403 (2005)
P H Y S I C A L R E V I E W L E T T E R S week ending

1 APRIL 2005

0031-9007=05=94(12)=120403(4)$23.00 120403-1  2004 The American Physical Society

202



(w0 � 210 �m) are much larger than both z0 and the size

of the trapped cloud.

The oscillation in the position of the atoms is too small

for our imaging system to clearly resolve. We therefore

observe oscillation in velocity by waiting a variable time tw
after the initial displacement, then suddenly turning off all

trapping potentials (with time constants of �250 �s and

�150 �s for the optical and magnetic potentials, respec-

tively), and imaging the position zTOF of the atoms after a

time of flight (TOF) tTOF � 18:4 ms. The velocity of the

atoms at tw is found by simple kinematics, and is approxi-

mately given by zTOF=tTOF. The turn-off of the optical

lattice is fast compared to the oscillation period, but slow

enough to avoid diffraction of the atoms (i.e., adiabatic

with respect to band excitations).

We observe damped dipole oscillations for axial lat-

tice depths from V � 0ER to 2ER, as seen in Fig. 1. In

the absence of an axial lattice, we observe oscillations (pe-

riod T � 15:4 ms) consistent with no damping [Fig. 1(a)],

indicating that tube-to-tube dephasing and trap anhar-

monicities are not significant on the time scale of our

experiments. However, the oscillations are noticeably

damped in a lattice only 0:25ER deep. Such a shallow

lattice modulates the atomic density by only 6%, and

modifies the single-particle energy-quasimomentum dis-

persion relation E�q� from that of a free particle around

only the last few percent of the BZ. [We note here, and

discuss further below, that the amplitude of motion is kept

well within the quadratic part of E�q� for shallow lattices.]

Beyond a lattice depth of �3ER the motion is over-

damped, and there are no oscillations. In this case, the

atoms’ velocity can be quite small, so we use a technique

that maps the atoms’ position in the trap to the cloud

position after TOF. The experiment proceeds as before,

except that after the trap is displaced by z0, the atoms are

allowed to relax toward their equilibrium position at z � 0

for a fixed time tw � 90 ms. We then rapidly (with time

constant �250 �s) turn off only the axial lattice. The

remaining transverse lattice and magnetic potentials are

left on for 3.75 ms (approximately a quarter period of

undamped axial harmonic motion), then turned off simul-

taneously (as in the underdamped experiment). This con-

verts the axial displacement z�tw� into a velocity, which we

measure by TOF.

Figure 2(a) shows z�tw � 90 ms� as a function of axial

lattice depth. For the shallowest lattices, this wait time is

sufficient for the atoms to damp to the equilibrium position

z � 0. For the deepest lattices, the motion is so over-

damped that there is negligible motion during this time,

and the position remains z � z0. We note that, in the

absence of damping, atoms would tunnel through the lat-

tice to the equilibrium position in a time �T=4�
�������������

m	=m
p

,

where m	 is the effective mass. This time is only 8 ms for

noninteracting particles in a 10ER lattice. A comparison

can also be made to the tunneling time from the Mathieu

function treatment of band structure, 4h=�E � 15 ms,

where �E is the height of the band.

To quantify the damping, we model the motion as

damped simple harmonic, m	 �z � �b _z� kz, and extract

a damping constant b � b�V� for different axial lattice

depths V. For underdamped motion, we simultaneously

fit the oscillation data for eight depths to the expression
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FIG. 1. Damped oscillations of a 1D Bose gas in an optical

lattice. Shown are plots of velocity versus wait time tw from

tw � 0 to 110 ms, and for axial lattice depths of (a) 0ER,

(b) 0:25ER, (c) 0:50ER, and (d) 2:0ER, where ER is the photon

recoil energy (see text).
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FIG. 2. Overdamped motion of a 1D Bose gas in an optical

lattice. (a) Plot of the atoms’ position 90 ms after shifting the

trap, as a function of lattice depth. Inset depicts relaxation of the

atoms toward equilibrium. Immediately after the trap is dis-

placed to z0, the atoms (open circle) begin to move toward

equilibrium, reaching a displacement z from equilibrium after

90 ms (solid circle). Also shown is the initial position of the

atoms (dash-dotted line). (b) The 1=e half-widths of Gaussian

fits to axial TOF distributions (solid symbols), and the half-

widths of square transverse TOF distributions (open symbols)

resulting from a uniformly filled BZ (see text, and Fig. 4). Also

shown (dashed line) is the BZ calculated from lattice parameters.
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_z�t� � A
k

!m	
e�bt=2m	

sin�!t�;

where ! 

�������������������������������������

k=m	 � �b=2m	�2
p

, and A and k are fit pa-

rameters common across all V. For overdamped motion,

we determine b � b�V� from the overdamped solution for

z�tw�, which in the limit of strong damping simplifies to

z�tw� � z0

�

e�ktw=b

1� km	=b2
�

e�btw=m
	

1� b2=km	

�

;

where z0 and k are inputs derived from measurements of

undamped oscillations. In our analysis, we use a single-

particle calculation of the effective mass m	 [26].

Figure 3 shows a plot of b�V�=b0 versus lattice depth V,

where b0 
 2m!0 corresponds to critically damped har-

monic motion for !0 

���������

k=m
p

. We show data for both the

underdamped and overdamped regimes, and note that the

damping constant increases by at least a factor 1000 for a

30-fold increase in lattice depth.

The axial width of the cloud after TOF can provide

information about the distribution of atomic quasimomenta

in the lattice. The lattice turn-off time constant of 250 �s is

long enough to avoid diffraction, but short enough to be

nonadiabatic with respect to interwell tunneling and inter-

actions. (Related experiments in 2D [21] and 3D [25]

lattices support this conclusion.) In the absence of inter-

actions, and neglecting the initial size of the cloud, the

turn-off maps the single-particle quasimomentum distribu-

tion of atoms in the lattice to free-particle (i.e., plane-

wave) momentum states that can be directly observed in

TOF. In the presence of interactions, the mapping is com-

plicated by mean-field repulsion during TOF. A variational

calculation [27] indicates that mean-field repulsion is in

fact the dominant contributor to the axial TOF width in our

system. Therefore, the extracted TOF width greatly over-

estimates the width of a narrow initial quasimomentum

distribution.

An example TOF image is shown in Fig. 4, together with

cross-sectional profiles of the optical depth along the axial

and transverse directions. The first BZ of the transverse

lattice is uniformly filled, producing a uniform, square

spatial distribution (in the xy plane) after TOF. Our imag-

ing system views this square distribution along the diago-

nal in the xy plane, resulting in a triangular profile, from

which we extract the width of the square [open symbols,

Fig. 2(b)]. In the axial direction the distribution is narrower

and reasonably well fit to a Gaussian, from which we

extract the axial (along z) TOF 1=e half-width [solid

symbols, Fig. 2(b)]. Even for the strongly overdamped

data, the axial TOF width (which, we recall, overstates

the width of narrow quasimomentum distributions) is much

narrower than the BZ. This implies that the inhibition of

transport is not due to effects related to Bloch oscillations

of a filled BZ, as observed in Refs. [1,7]. Furthermore, we

do not see a significant difference in TOF width between

atoms that undergo damped harmonic motion and those

that are unexcited but held for an equal time [28]. This is in

stark contrast to earlier experiments on 3D BECs [6,8,11],

where strong damping was accompanied by a pronounced

broadening and fragmentation of the quasimomentum

distribution.

Large amplitude dipole oscillations in a lattice can damp

due to dynamical instabilities caused by particle inter-

actions. For a 3D BEC moving in an optical lattice, such

an instability point occurs at q � q�=2 (q� 
 2�=� is the

BZ boundary), where the dispersion relation has an inflec-

tion point, as predicted in [9,10] and observed in [6,8,11].

This effect is manifested as a large increase in the width of

the quasimomentum distribution. Here, in contrast, we

keep the maximum (single-particle) quasimomentum

qmax of the oscillation small by limiting the initial energy

of displacement E�z0� � m!2

0
z2
0
=2. For V < 2ER, our

choice of z0 corresponds to qmax � q�=5. For deeper lat-

tices, our fixed z0 corresponds to a larger qmax, but is

always less than q�=2 for V < 9ER. (In a separate experi-

ment, we excited oscillations in our system with twice the

usual amplitude, and saw stronger damping that was ac-
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FIG. 3. Plot of the reduced damping constant b=b0 for various

depths V of the axial lattice, as determined using the under-

damped (squares) and overdamped (circles) experimental tech-

niques. Near critical damping (V � 3ER), the analysis cannot

distinguish between underdamped and overdamped motion, so

only upper and lower bounds are shown at V � 2:25 and 2.50.
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companied by a broadening of the axial TOF width by

nearly a factor of 2.)

For small amplitude dipole oscillations (qmax 
 q�=2)

of a 3D BEC in an optical lattice, the effect of the lattice is

merely to increase the effective mass, leading to undamped

motion at a lower frequency [5,19]. In the reduced dimen-

sionality system of our 1D Bose gas, we have seen that the

optical lattice has a qualitatively different effect. To high-

light the difference between these two situations, we ex-

cited dipole oscillations in a 3D BEC (i.e., no transverse

confining lattice) in a 4ER axial lattice, and saw no damp-

ing. This is in contrast to the results of the same experiment

in a 1D Bose gas (i.e., with a transverse confining lattice),

shown in Fig. 3, where b�V � 4ER�=b0 � 50 corresponds

to extremely overdamped motion.

After we performed these experiments, theoretical treat-

ments appeared which suggested that zero-temperature

quantum fluctuations can lead to substantial damping of

transport in a 1D atomic Bose gas [29,30]. Our observa-

tions, including the significant damping in lattices too

shallow to support a Mott-insulator phase [31], can be

explained by the mechanisms of Refs. [29,30], but appear

to be inconsistent with a mechanism involving incompres-

sibility [13].

It is possible that there is a temperature dependence to

the damping; unfortunately, we can derive little informa-

tion on temperature from the TOF widths. Future experi-

ments to investigate the temperature dependence could

shed light on the relative importance of quantum and

thermal fluctuations to dissipation, a question of interest

in, for example, the development of ultrathin supercon-

ducting wires [17]. We also look forward to testing other

explicit predictions of these theories, such as the depen-

dence of damping on displacement and dimensionality. We

note that the periodic potential of an optical lattice is free

from defects, and that 1D atomic Bose gases are well

isolated from the environment, yielding a relatively clean

system in which to compare experiment with theory. The

ability to continuously and dynamically vary the confining

potentials makes optical lattice experiments attractive for

future studies of superfluidity in low dimensional quantum

systems.
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We separate a Bose-Einstein condensate into an array of two-dimensional �2D� sheets and excite quantized

vibrational motion in the direction normal to the sheets. The measured collisional decay rates are suppressed

due to the reduced dimensionality, a matter wave analog to inhibited spontaneous emission. After decay, the

large excitation energy is transferred to back-to-back outgoing atoms, imaged as rings in the 2D plane. The ring

diameters correspond to vibrational energy level differences, and edge-on imaging allows identification of the

final vibrational states.

DOI: 10.1103/PhysRevA.73.020702 PACS number�s�: 34.30.�h, 03.75.Kk, 05.30.Jp

Most quasi-2D quantum systems have been realized with
electrons in semiconductors, where a 1D potential confines
the electrons to the lowest quantized vibrational states in one
direction, i.e., the energies in the 2D plane are much smaller
than the vibrational level spacing. Recently it has become
possible to confine degenerate atomic Bose gases to 2D �1,2�
and investigate vibrational excitations in the tightly confined
direction �3�. Trapped 2D atomic gases provide experimental
opportunities unavailable in electron systems. For example,
unlike semiconductors, the atomic system is nearly defect-
free. Further, the dynamic control of the confining potential,
coupled with an ability to image the atoms, enables the direct
detection of the excited-state population and the momentum
distribution. Quantized vibrational states are an ingredient in
proposals to realize exotic states of matter, such as striped or
super-solid phases �4–6�, and are possible motional qubit
states for quantum computation �7–9�. Stronger confinement
�beyond that described herein� can also change the nature of
collisions �10–12�.

Here we study the vibrational relaxation of a quasi-2D
Bose-Einstein condensate �BEC�, where quantized motion in
the tightly confined direction plays a role analogous to an
internal degree of freedom. We transfer a large fraction of
atoms into excited vibrational states, creating highly non-
equilibrium atom populations. In this system, atom-atom col-
lisions provide the only significant relaxation mechanism,
transferring “internal” energy to 2D kinetic energy. We di-
rectly observe atom populations as outgoing rings �Fig. 1�
representing distinct decay channels. The excited-state life-
times are enhanced due to the reduction in the density of
final scattering states, relative to scattering into a 3D
continuum—analogous to suppressed spontaneous emission
in a planar cavity �13�. Scattering in unconfined geometries
has been studied, for example, in the context of cold coher-
ent collisions between 3D BECs �14,15�.

We create independent 2D sheets �or pancakes� of atoms
by applying a deep 1D optical lattice to a 3D BEC. In the
tight direction �ẑ� the system is well-described by a single-

particle 1D Schrödinger equation, yielding discrete vibra-
tional levels labeled by an index n. Atoms, Raman-excited
from the ground state n=0 to n=1 or 2, collide and decay.
By imaging after a time of flight tTOF, we identify the mo-
mentum and population of atoms in the various final vibra-
tional states. We extract excited-state lifetimes from time se-
quences of these single-shot vibrational spectra.

We produce a magnetically trapped 87Rb BEC with up
to 2.5�105 atoms in the �F=1,mF=−1� state �16�. The
BEC is separated into a stack of about 80 pancakes by

*Electronic address: ian.spielman@nist.gov
†Present address: University of Georgia, Athens, GA 30602.

FIG. 1. �Color� Absorption images of vibrationally excited at-

oms after a 1 ms decay and subsequent TOF, with 60% initial popu-

lation in the �a� n=1 and �b� n=2 vibrational levels. In the top

views, outgoing rings �tTOF=7.1 ms� correspond to different in-

plane energies imparted to the atoms from various decay channels.

Viewed from the side �tTOF=13.1 ms� the vertical momentum dis-

tribution identifies the vibrational states. Here, the rings appear as

rectangles, and the schematic of the side view shows the expected

distributions from the dominant decay processes to n=1 �white rect-

angles� and n=0 �hatched rectangles�. The uncollided fraction in the

center of the image �not shown in the schematic� is distributed

vertically in accordance with the remaining excited fraction.
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an optical lattice with period d=410�1� nm �22� vertically

aligned along ẑ �23�. When in the ground vibrational
state, the largest pancake has N�4.6�10��103 atoms with

a chemical potential �=1.6�2� kHz; the resulting peak

2D and 3D densities are 2.2�2��109 cm−2 and 2.9�3�
�1014 cm−3, respectively. The 2D Thomas-Fermi radii are
Rx=11.0�6� �m and Ry =12.0�7� �m. In the combined mag-

netic and optical potential, the in-plane oscillation frequen-

cies are �x /2�=55�1� Hz and �y /2�=50�1� Hz. The lattice

is raised continuously from zero in 200 ms with an exponen-

tially increasing ramp �50 ms time constant�. This time scale

is chosen to be adiabatic with respect to mean-field interac-

tions and vibrational excitations. By pulsing the lattice

and observing the resulting atom diffraction �17�, we mea-

sure a lattice depth of s=77�4�, expressed in units of

ER=h2 /8md2=h�3.42�2� kHz. For a single well of the deep

sinusoidal potential, the energy spacings are En+1−En

�ER�2	s− �n+1�� �these energies, which include the lowest-

order anharmonic correction, are shifted at the 1% level by

the interatomic interaction�. The harmonic frequency is

�z /2�=2ER
	s /h=60�1� kHz.

Raman transitions between vibrational levels �18� are

driven by a pair of laser beams. The nearly counterpropagat-

ing Raman beams are oriented approximately along ẑ �24�,
are detuned 82 GHz below the 87Rb D2 transition, and have

a relative detuning � ranging from 50 to 120 kHz. A 1 ms

Raman pulse excites a fraction fn of the atom population to

either n=1 or 2.

The anharmonicity of the potential allows us to selec-

tively transfer populations between desired vibrational lev-

els, provided the pulse duration tp is long enough that its

Fourier spread resolves the �ER /h difference from unwanted

transitions. tp must also be shorter than the vibrational life-

time �. For our experiment �where �� tp� 	 /ER�, we find

that by detuning below Raman resonance and chirping

15 kHz through resonance in 1 ms, we controllably transfer

up to 65% of the atoms to either n=1 or 2 �simulations

indicate a maximum transfer of around 75% in this situation�
with only 
5% population in unwanted states �25�.

The vibrationally excited atoms are allowed to decay for

variable hold times thold ranging from 10 �s to 10 ms; then

the lattice is turned off in 200 �s. The magnetic trap is then

turned off in �300 �s, and the atom cloud expands for tTOF

before absorption imaging. The resulting atomic distribution,

which constitutes an average over the 
80 pancakes, is im-

aged along one of two axes: perpendicular to the pancakes

�top view, along ẑ� and edge-on �side view, along ŷ�.
The decay of a pair of atoms from initial vibrational states

a and b to final states c and d �denoted ab→cd� can be

viewed as a 2D two-body inelastic collision process, where

vibrational states in the confined direction play the role of

internal states. The release of vibrational energy leads to

back-to-back atom pairs with large momenta in the 2D plane.

Figure 1 shows example TOF images from which we can

infer the final momentum distribution. Image coordinates are

in units of recoil momentum, 	kR=�	 /d �26�, and the cor-

responding recoil velocity is 	kR /m=5.6 mm/s. Each image

pair �Figs. 1�a� and 1�b�� contains nearly full spectral infor-

mation of an excited state and its decay paths.

The decay paths allowed by parity and conservation

of energy are shown in Table I. For atoms excited to n=1,

only two decay paths contribute. The high-energy process,

11→00, gives rise to the ring in Fig. 1�a� �top view�, while

the ring from the low-energy 11→20 process is not resolved

from the central cloud. Each ring’s radius corresponds to the

atomic in-plane velocity and hence the per atom difference

between initial and final vibrational energies. In Fig. 1�b�,
atoms excited to n=2 decay through several channels. The

processes 22→11, 20→00, and 22→20 all contribute to the

inner ring of Fig. 1�b�, each with an energy of about 2ER
	s

per atom. The outer ring results solely from the 22→00

decay process.

Figures 2�a� and 2�b� show the radial density of the

atomic cloud after an angular integration of the data in Figs.

1�a� and 1�b�, respectively. We extract the vibrational energy

spacings by fitting the data to Lorentzians. We attribute the

atom background between the peaks to secondary scattering

involving outgoing atoms and include it in the fits as a lin-

early sloping baseline. The measured energies agree with

TABLE I. Release energies �including the lowest-order anhar-

monic corrections� and matrix elements for the experimentally rel-

evant decay paths and lattice depth s=77 �sorted in order of increas-

ing decay energy�. The energies denote the per atom difference

between initial and final vibrational energies.

Ring Decay path E f −Ei Icd
ab

Central ring 11→20 ER /2 0.0243

22→31 ER /2 0.0257

22→40 2ER 0.0007

Inner ring 11→00 	�z−ER 0.2202

22→11 	�z−2ER 0.1556

22→20 	�z−3ER /2 0.0020

20→00 	�z−3ER /2 0.1128

Outer ring 22→00 2	�z−3ER 0.1075

FIG. 2. Angular integrals of top view data. �a� From Fig. 1�a�,
the single ring gives rise to a peak located at k=4.0�1� kR. �b� The

two rings in Fig. 1�b� yield two peaks at k=3.9�1�kR and 5.6�2�kR.

The diagrams schematically illustrate the decay channels which

contribute to each peak.
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those expected from the known lattice depth, within our 4%

experimental uncertainty. The branching ratio between the

inner and outer rings estimated from Fig. 2 �ignoring the

atom background� is 2.1�3�. The value calculated from the

matrix elements in Table I is 2.9�3� for an excited fraction

f2=0.60�5�.
The side view images in Figs. 1�a� and 1�b� complement

the top view images by identifying the final vibrational

states. The 200 �s lattice turn-off is adiabatic with respect to

the 55 kHz vibrational frequency. As a result, the turn-off

procedure maps quasimomentum states in the 1D lattice to

the corresponding free-particle momentum states �19,20�.
For example, atoms in the n=1 vibrational state reside in the

second Brillouin zone �BZ�, and are mapped to a continuum

of momentum states kz where kR
 �kz � 
2kR �27�.
Figure 1�a� shows atoms which were initially excited into

n=1. In the side view, the atom cloud’s extent along ẑ re-

flects the mapping of quasimomentum to momentum, and the

extent in the horizontal direction reflects the final in-plane

momentum. The ring in the top view appears as a rectangle

in the side view �schematically illustrated by the hatched

rectangle in Fig. 1�a��. The dense, vertically aligned double-

lobed structure at the center of the side view image is largely

due to atoms which have not decayed and remain in the

n=1 state �second BZ�. Figure 1�b� depicts atoms initially in

n=2. The process 22→00 gives rise to atoms in the first BZ

�hatched rectangle in Fig. 1�b��, while 22→11 leads to at-

oms in the second BZ �white rectangles in Fig. 1�b��. Note

that the vertical central structure is taller since it contains

atoms remaining in n=2 �third BZ�.
We calculate short-time two-body branching ratios and

decay rates in a single pancake using Fermi’s golden rule.

Due to the extreme anisotropy of our potential, the initial

condensate wave functions can be approximated as a product

of single-particle wave functions, �i�x ,y ,z����x ,y�
ni
�z�.

Here ��x ,y� satisfies an effective 2D Gross-Pitaevskii equa-

tion �10� for n=0 atoms in the Thomas-Fermi limit; we as-

sume ��x ,y� remains unchanged during the short duration of

the experiment. The 
ni
�z� solve the Schrödinger equation

for the 1D lattice potential and are nearly harmonic-oscillator

wave functions with an extent �z=		 /m�z. The final states

� f�x ,y ,z�=exp�−i�kxx+kyy��
nf
�z� are free particles in x

and y, which is justified since �z��x,y. The rate for the

scattering process ab→cd is �cd
abNaNb, with atom popula-

tions Na and Nb, and

�cd
ab = 2�as

2�zIcd
ab� dxdy���x,y��4, �1�

where Icd
ab=2� ��z�dz
a�z�
b�z�
c�z�
d�z��2 is dimensionless

�see Table I�, and as=5.3 nm is the s-wave scattering length

�21,28�. Parity considerations make Icd
ab=0 when a+b+c+d

is odd. The total rate is a sum over energetically allowed

final states c and d.

For atoms excited to n=1, the excited fraction f1�t� is

governed by ḟ1=−2N��00
11+2�20

11�f1
2. Parity considerations

forbid the transition 10→00 but not 20→00, so as f1→0 the

n=1 decay rate per atom ḟ1 / f1→0, but as f2→0 the corre-

sponding n=2 rate is nonzero. For atoms excited to n=2, a

pair of coupled equations describe the evolution of f2�t� and

f0�t�.
The excited-state population as a function of thold is found

from a series of side-view images like those in Fig. 1. Inte-

grating over x gives the atomic distribution along ẑ. To ex-

tract populations, we fit the data to a distribution, flat within

each BZ, convolved with a Gaussian. The width of the

Gaussian is fixed by applying this model to data in which

only the ground state �first BZ� was occupied. Repeating the

fitting process for different thold yields the fractional popula-

tion as a function of time. We extract rates by fitting the first

2 ms to the expected solutions f1�t� and f2�t� �29�.
The resulting rates per atom at t=0 are shown in Fig. 3.

For comparison we plot the predicted rates at t=0 �thin solid

line�, where the gray band reflects the experimental atom

number uncertainty. The agreement, with no free parameters,

is good even though we neglected corrections from second-

ary collisions. The presence of atoms not on the rings �Figs.

1 and 2� indicates that around 75% atoms rescatter, consis-

tent with our theoretical estimates. These processes decrease

the atomic density, and hence reduce the overall decay rate at

late times. �In separate experiments with lower density ther-

mal samples, we indeed observe significantly lower rates:

below 40 s−1.� The effect should be more significant for large

initial excited fractions, a trend consistent with the data. The

thick solid lines in Fig. 3 show the estimated effect of sec-

ondary scattering from outgoing atoms which decayed dur-

ing the 1 ms Raman pulse. This lowest-order estimate as-

sumes that each decayed atom can rescatter at most once,

and if it does scatter, its secondary-collision partner does not

itself rescatter. We suspect that the neglected higher-order

collision processes are in part responsible for the excess sup-

pression in Fig. 3�b� for f �0.5.

FIG. 3. Initial decay rates. �a� Initial population in n=1. �b�
Initial population in n=2. The thin lines represent the result of our

model with no adjustable parameters, integrated over the distribu-

tion of pancakes expected from Thomas-Fermi approximation. The

gray regions reflect the variation in this model due to experimental

number uncertainty. The thick solid lines include the estimated ef-

fect of secondary scattering, using a 75% probability of a second

event, and the long-dashed lines are the expected decay rate in the

absence of 2D confinement.
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The reduced dimensionality suppresses the total scattering
rate in a manner similar to the suppression of spontaneous
emission in a planar cavity �13�. A comparison between con-
fined and unconfined decay can be made by considering a
situation where the final states of the atomic scattering are
unconstrained. For confined final states, the total deexcitation
rate �2D is given by a discrete sum over energetically al-
lowed final vibrational states, times the �energy-independent�
2D density of in-plane states. For unconfined final states, the
total deexcitation rate �3D is proportional to the 3D density
of final states, which increases as the square root of the scat-
tering energy. Note that, unlike the case of spontaneous

emission in a planar cavity, the initial states and energies

here are determined by the confining potential, so �3D must

include the zero-point energies 	�z /2 of each atom. Figure 3

shows �3D �long dashes�. For a 100% excited fraction of

n=2 atoms, �3D /�2D�2.4, and for n=1 atoms, �3D /�2D

�2.9. In the absence of 2D confinement, the parity restric-

tion which suppressed the decay of n=1 atoms as f →0 is

lifted, so in this case �3D /�2D diverges �as seen in Fig. 3�a��.

In conclusion, we measured a confinement-induced sup-

pression of the transition rates between different vibrational

states in a deep 1D optical lattice using a new, single-shot,

spectrographic technique. Additional suppression of the rates

would be achieved by further modifying the final density of

states �6�, for example by confining the atoms into 1D tubes

�16�, or in analogy with photonic band-gap materials, by

applying an additional in-plane lattice to open suitably

placed band gaps. The long lifetimes are expected to be use-

ful in the context of producing correlated atomic systems.
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