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A challenge for the virtual reality (VR) industry is facing is that VR is not

immersive enough to make people feel a genuine sense of presence: the low frame

rate leads to dizziness and the lack of human body visualization limits the human-

computer interaction. In this dissertation, I present our research on enhancing visual

and gestural fidelity in the virtual environment.

First, I present a new foveated rendering technique: Kernel Foveated Rendering

(KFR), which parameterizes foveated rendering by embedding polynomial kernel

functions in log-polar space. This GPU-driven technique uses parameterized foveation

that mimics the distribution of photoreceptors in the human retina. I present a

two-pass kernel foveated rendering pipeline that maps well onto modern GPUs. I

have carried out user studies to empirically identify the KFR parameters and have

observed a 2.8×−3.2× speedup in rendering on 4K displays.

Second, I explore the rendering acceleration through foveation for 4D light

fields, which captures both the spatial and angular rays, thus enabling free-viewpoint



rendering and custom selection of the focal plane. I optimize the KFR algorithm

by adjusting the weight of each slice in the light field, so that it automatically

selects the optimal foveation parameters for different images according to the gaze

position. I have validated our approach on the rendering of light fields by carrying

out both quantitative experiments and user studies. Our method achieves speedups

of 3.47×−7.28× for different levels of foveation and different rendering resolutions.

Thirdly, I present a simple yet effective technique for further reducing the cost

of foveated rendering by leveraging ocular dominance - the tendency of the human

visual system to prefer scene perception from one eye over the other. Our new

approach, eye-dominance-guided foveated rendering (EFR), renders the scene at a

lower foveation level (with higher detail) for the dominant eye than the non-dominant

eye. Compared with traditional foveated rendering, EFR can be expected to provide

superior rendering performance while preserving the same level of perceived visual

quality.

Finally, I present an approach to use an end-to-end convolutional neural network,

which consists of a concatenation of an encoder and a decoder, to reconstruct a 3D

model of a human hand from a single RGB image. Previous research work on hand

mesh reconstruction suffers from the lack of training data. To train networks with

full supervision, we fit a parametric hand model to 3D annotations, and we train the

networks with the RGB image with the fitted parametric model as the supervision.

Our approach leads to significantly improved quality compared to state-of-the-art

hand mesh reconstruction techniques.
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Chapter 1: Introduction

1.1 Overview

Rendering speed and transmission bandwidth are two critical constraints

in realizing effective and distributed virtual reality [22]. Human vision spans a

field of view of 135° × 160°, but the highest-resolution foveal vision covers only

the central 1.5° × 2° [6]. Patney et al. [8] have estimated that in modern virtual

reality head-mounted displays (HMD) only 4% of the pixels are mapped onto the

fovea. Foveated rendering [6,13,23] aims to improve the rendering efficiency while

maintaining visual quality by leveraging the capabilities and the limitations of the

human visual system. Equipped with an eye-tracker, a foveated rendering system

presents the foveal vision with full-resolution rendering and the peripheral vision

with low-resolution rendering. This allows one to improve the overall rendering

performance while maintaining high visual fidelity. Therefore, foveated rendering

techniques that allocate more computational resources for foveal pixels and fewer

resources elsewhere can dramatically speed up rendering [24] for large displays,

especially for virtual and augmented reality headsets equipped with eye trackers.

There is a large research literature that documents the falloff of accuracy in

visual periphery. Most of the previous research on foveated perception has been
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surveyed in [25]. Recent research has also addressed the issue of perception time for

depicting information in the far peripheral field [26]. A commonly used model is

the linear acuity model, which measures the minimum angle of resolution (MAR).

A linear model matches both anatomical data and is applicable for many low-level

vision tasks [25]. However, the model only works for the “central” vision (with

angular radius ≤ 8°), after which MAR rises more steeply [6]. In the periphery,

receptors become increasingly sparse relative to the eyes’ optical system Nyquist

limit. Another model is the log acuity model. It has been found that the excitation of

the cortex can be approximated by a log-polar mapping of the eye’s retinal image [27].

The calculation of this model is cheap and fast, thus being used in many practical

applications such as computer vision, robotics, and other fields. Curcio [1,2] proposed

the mixed acuity model. As shown in Figure 1.1, the Ganglion cell (orange) density

tends to match the photoreceptor density in the fovea (left), but many photoreceptors

map to the same Ganglion cell away from the fovea. ‘Nasal’, ‘Temp’, ‘Sup’ and ‘Inf’

indicate the four directions (nasal, temporal, superior, inferior) away from the fovea.

Most of the foveated rendering algorithms are inspired by the acuity models

mentioned above. However, it is not easy to quantify the pixel density rate by using

the models mentioned above. Previous research has addressed the issue of adjusting

visual acuity by conducting user studies with eye tracking technologies.

In this dissertation, I first present kernel foveated rendering for rendering

3D meshes and ray-traced scenes. I parameterize the foveation of rendering by

embedding polynomial kernel functions in the classic log-polar mapping [28,29]. This

allows us to alter both the sampling density and distribution, and match them to
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Figure 1.1: Spatial distribution of various retinal components, using data from [1]

and [2]. Ganglion cell (orange) density tends to match photoreceptor density in the

fovea (left), but away from the fovea many photoreceptors map to the same Ganglion

cell. ‘Nasal’, ‘Temp’, ‘Sup’ and ‘Inf’ indicate the four directions (nasal, temporal,

superior, inferior) away from the fovea.
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human perception in virtual reality HMDs.

Second, I optimize 3D-KFR by adjusting the weight of each slice in the light

fields, so that it automatically selects the optimal foveation parameters for different

images according to the gaze position and achieves higher speedup. In this way,

3D-KFR further accelerates the rendering process of high-resolution light fields while

preserving the perceptually accurate foveal detail.

Third, I present a simple yet effective technique for further reducing the cost

of foveated rendering by leveraging ocular dominance - the tendency of the human

visual system to prefer scene perception from one eye over the other. Our approach,

eye-dominance-guided foveated rendering (EFR), renders the scene with better detail

for the dominant-eye than the non-dominant-eye. Compared with traditional foveated

rendering, EFR provides superior rendering efficiency while preserving the same level

of perceived visual quality.

Finally, I present an end-to-end convolutional autoencoder to reconstruct a 3D

human hand from a single RGB image. To train networks with full supervision, we fit

a parametric hand model to 3D annotations, and we train the networks with the RGB

image with the fitted parametric model as the supervision. Our approach leads to

significantly improved quality compared to state-of-the-art hand mesh reconstruction

techniques.
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1.2 Kernel Foveated Rendering for 3D Graphics

In Chapter 2, I present the kernel foveated rendering (KFR) for 3D graphics [23],

a foveated rendering system with smoothly changing resolution from fovea to the

periphery as shown in Figure 1.2.

Figure 1.2: The comparison of the full-resolution rendering (left) and kernel

foveated rendering (right). Kernel foveated rendering system mimics the distribution

of photoreceptors in the human retina and generates foveated rendering with smoothly

changing resolution.

In the KFR rendering system, I parameterize foveated rendering by embedding

polynomial kernel functions in the classic log-polar mapping. The GPU-driven

technique uses closed-form, parameterized foveation that mimics the distribution

of photoreceptors in the human retina. The pipeline of kernel foveated rendering

contains two passes as shown in Figure 1.3.
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Figure 1.3: An overview of the kernel foveated rendering pipeline. I transform the

necessary parameters and textures in the G-buffer from Cartesian coordinates to

log-polar coordinates, compute lighting in the log-polar (LP) buffer and perform

internal anti-aliasing. Next, I apply the inverse transformation to recover the frame

buffer in Cartesian coordinates and employ post anti-aliasing to reduce the foveation

artifacts.
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In the first pass, I compute the kernel log-polar transformation of the necessary

parameters and textures in the G-buffer from Cartesian coordinates to log-polar

coordinates and store the transformation in a reduced-resolution log-polar (LP)

buffer. Then I compute shading in the LP buffer; the shading cost is greatly reduced

because the lighting calculations at the reduced-resolution are lower. Due to the

low-resolution of the LP-buffer, there may be artifacts in the peripheral regions after

the inverse transformation. Therefore, I add a denoising stage in the log-polar space.

To reduce artifacts in the peripheral regions, I use a Gaussian filter with a 3 × 3

kernel for the right part of the rendering(corresponding to the peripheral regions) in

the LP-buffer.

In the second pass, I carry out the inverse-log-polar transformation to recover

the rendered image in log-polar coordinates to the Cartesian coordinates for display.

I also perform spacial and temporal anti-aliasing for the full-resolution image. To

empirically establish the most suitable foveation parameter values, I have carried

out pilot and formal user studies. To achieve visually acceptable results for foveated

rendering, I use a threshold of 80% responses considering foveated rendering to be

visually indistinguishable from full-resolution rendering. I therefore choose σ = 1.8

and α = 4 as the desired parameters for the interactive rendering evaluation. With

the desired parameters, I observe a 2.8× – 3.2× speedup in rendering on 4K UHD

(2160p) displays with minimal perceptual loss of detail. The relevance of eye-tracking-

guided kernel foveated rendering can only increase as the anticipated growth of

display resolution makes it ever more difficult to resolve the mutually conflicting

goals of interactive rendering and perceptual realism.
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1.3 3D-Kernel Foveated Rendering for Light Fields

Light fields capture both the spatial and angular rays, thus enabling free-

viewpoint rendering and custom selection of the focal plane. Scientists can interac-

tively explore microscopic light fields of organs, microbes, and neurons using virtual

reality headsets. However, rendering high-resolution light fields at interactive frame

rates requires a very high rate of texture sampling, which is a challenge as the

resolutions of light fields and displays continue to increase. In Chapter 3, I present

3D-kernel foveated rendering for light fields [30], a foveation system for light field as

shown in Figure 1.4.

I have developed a perceptual model for foveated light fields by extending the

KFR for the rendering of 3D meshes: since the foveation level of a pixel is affected

by the distance to the center camera, the foveation parameter can be different for

different slices in a light-field image array. We optimize the KFR algorithm into

3D-KFR by adjusting the weight of each slice in the light field, so that it is able to

automatically select the optimal foveation parameters for different images according

to the gaze position, thereby achieving greater speedup with minimal perceptual loss

as shown in Figure 1.5.

3D-KFR coupled with eye-tracking can accelerate the rendering of 4D depth-

cued light fields dramatically. On datasets of high-resolution microscopic light fields,

I observe 3.47×-7.28× speedup in light field rendering with minimal perceptual loss

of detail. I envision that 3D-KFR will reconcile the mutually conflicting goals of

visual fidelity and rendering speed for interactive visualization of light fields.
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Figure 1.4: The pipeline of the foveated light field. Part (a) represents the light

field image array, the region with dark-green mask represents the foveal region that

the local center camera position of the frames are around fovea. The peripheral

region masked by light-green are the regions that the local center camera position

of the frames is far from the fovea. I apply kernel log-polar transformation for

each image with different σ (σ is determined by the gaze position) to get the image

sub-arrays as shown in the left part of (b). Then I average the image sub-arrays to

get textures as shown in the right part of (b). Finally, I apply the inverse log-polar

transformation for each sub-array, calculate the weighted sum of pixel values and

perform anti-aliasing to get the final image displayed on-screen as shown in part (c).
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Figure 1.5: The comparison of the original full-resolution light field rendering

(right) and foveated light field rendering (left). We optimize the KFR algorithm into

3D-KFR by adjusting the weight of each slice in the light field, so that it is able to

automatically select the optimal foveation parameters for different images according

to the gaze position, thereby achieving greater speedup minimal perceptual loss.
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1.4 Eye-dominance-guided Foveated Rendering

In Chapter 4, I introduce eye-dominance-guided foveated rendering [31] as

shown in Figure 1.6.

foveated rendering
for

dominant eye

Rendered Frame Perceived Frame

foveated rendering (more foveation)
for

non-dominant eye

foveated rendering
for

dominant eye

foveated rendering
for

non-dominant eye

Figure 1.6: Our pipeline renders the frames displayed in the dominant eye at a lower

foveation level (with higher detail), and renders the frames for the non-dominant eye

at a higher foveation level. This improves rendering performance over traditional

foveated rendering with minimal perceptual difference.

Here, I present a simple yet effective technique for further reducing the cost

of foveated rendering by leveraging ocular dominance – the tendency of the human

visual system to prefer scene perception from one eye over the other. I present the

technique of eye-dominance-guided foveated rendering (EFR), which leverages ocular

dominance property of the human visual system. I render the scene for the dominant

eye at the normal foveation level and render the scene for the non-dominant eye at
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a higher foveation level. This formulation allows us to save more in the rendering

budget for the non-dominant eye.

I have validated our approach by carrying out quantitative experiments and

user studies. I designed two user tests to establish the most suitable foveation

parameter values for the dominant eye and the parameter for the non-dominant eye.

I have implemented the eye-dominance-guided foveated rendering pipeline on a GPU,

and achieve up to 1.47× speedup compared with the original foveated rendering

at a resolution of 1280× 1440 per eye with minimal perceptual loss of detail. The

technique of eye-dominance-guided foveated rendering can be easily integrated into

the current rasterization rendering pipeline for head-mounted displays.

1.5 Hand Mesh Reconstruction from a RGB Image

Accurate reconstruction of 3D human hands from monocular RGB images is a

challenging task. Hand estimation benefits a broad range of applications, such as

human-computer interaction and virtual and augmented reality. The goal of this

research is to use an end-to-end deep neural network to reconstruct the 3D model of a

human hand from a single RGB image as shown in Figure 1.7. In Chapter 5, I present

a network architecture as a concatenation of an encoder and a decoder. Given a

single RGB image of a hand, the encoder predicts the feature vector, from which the

decoder decodes a 3D hand model. To train networks with full supervision, we fit a

parametric hand model to 3D annotations, and we train the networks with the RGB

image with the fitted parametric model as the supervision. Our approach leads to
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significantly improved quality compared to state-of-the-art hand mesh reconstruction

techniques.

We envision that the proposed approach could be widely used in the human-

object-interaction by facilitating the interaction between users and virtual objects

and bring virtual reality users more immersive experience by the visualization of

their hand model.

Figure 1.7: Example of the estimation of the hand pose and shape. The

Fscore@10mm indicates the accuracy of estimation (higher is better).
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Chapter 2: Kernel Foveated Rendering for 3D Graphics

2.1 Overview

Araujo and Dias [28] use a log-polar mapping to approximate the excitation

of the cortex in the human visual system. The classic log-polar transformation has

been used for foveating 2D images on the GPU [29]. However, to the best of my

knowledge, direct use of the log-polar mapping for 3D graphics has not yet been

attempted on GPUs.

In this chapter, I present a kernel foveated rendering pipeline for modern GPUs

that parameterizes foveated rendering by embedding polynomial kernel functions

in the classic log-polar mapping. This allows us to easily vary the sampling density

and distribution, and match them to human perception in virtual reality HMDs. In

contrast to adaptive sampling in Cartesian coordinates, which requires a complex

interpolation process [13] and the classic three-pass foveated rendering pipeline [6],

KFR just needs a two-pass algorithm. In the first pass, I carry out the kernel log-

polar transformation and render to a reduced-resolution framebuffer using deferred

shading [32,33]. In the second pass, I apply the inverse kernel log-polar transformation

to the reduced-resolution framebuffer to map the final foveated rendering to the

full-resolution display.
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I have built several foveated renderings with varying sampling density and

distribution and evaluate them via pilot and final user studies. I have found the

optimal parameters with minimal perceptual errors that correspond to the distribution

of photoreceptors in the retina. This algorithm is designed to achieve a high frame

rate by shading fewer pixels in the peripheral vision. Finally, I show results of

validating my approach on 3D rendering of textured meshes as well as ray-marching

scenes.

The KFR pipeline is broadly applicable for eye-tracking devices, and efficiently

testing, or previewing real-time rendering results with global lighting and physically

based rendering.

In summary, my contributions include:

1. designing the kernel log-polar mapping algorithm to enable a parameterized

trade-off of visual quality and rendering speed for foveated rendering,

2. conducting user studies to identify the kernel foveated rendering parameters

governing the sampling distribution and density to maximize perceptual realism

and minimize computation,

3. mapping kernel foveated rendering onto the GPU to achieve speedups of 2.8X

for textured 3D meshes and 3.2X for ray-casting scenes for 3840×2160 displays

with the minimal perceived loss of detail.
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2.2 Related Work

In this section, I will review the development of foveated rendering in images,

videos and 3D renderings and give an overview of the eye-tracking technology.

2.2.1 Foveated Images and Videos

The last few decades have seen significant advances in foveated rendering for

2D images and videos.

Burt [34] has generated foveated images with multi-resolution Gaussian pyra-

mids. He takes advantage of a coarse-to-fine scheme to adaptively select the critical

information for constructing the foveated image. Kortum and Kortum et al. [3]

have developed one of the earliest eye-tracking-based foveated imaging systems with

space-variant degradation. The structure of their image foveation system is shown in

Figure 2.1. Using 256× 256 8-bit gray-scale images, they have achieved bandwidth

reduction of up to 94.7% with minimal perceptual artifacts. Other image foveation

techniques include embedded zero-tree wavelets [35], set partitioning in hierarchical

trees [36], wavelet-based image foveation [37], embedded foveation image coding [38],

and gigapixel displays [39].

Video foveation has also been explored [40–42]. The filter bank method is used

for video preprocessing before using standard video compression algorithms (e.g.

MPEG and H.26x) [41,43,44]. Foveation filtering has been implemented with the

quantization processes in standard MPEG and H.26x compression [45,46].

Video foveation coupled with eye tracking could reduce overall system latency,
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Figure 2.1: Kortum [3] have developed one of the earliest eye-tracking-based foveated

imaging systems with space-variant degradation.

including network latency, processing latency, and display latency. Lungaro et

al. [4,5] propose to use a tile-based foveated rendering algorithm to reduce the overall

bandwidth requirements for streaming 360° videos. An overview of video foveation

is shown in Figure 2.2. They quantified the bandwidth savings achievable by the

proposed approach and characterize the relationships between Quality of Experience

(QoE) and network latency. The results showed that up to 83% less bandwidth

is required to deliver high QoE levels to the users, as compared to conventional

solutions.

As shown in Figure 2.3, Kaplanyan et al. present DeepFovea [47], which uses a

generative adversarial network [48] to reconstruct the given sparsely foveated image

by considering the closest match on a learned manifold of natural videos. Given a

history of frames and the corresponding gaze points that the user sees till a given

timestamp, along with the sparsely constructed image at that time frame, the deep
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Figure 2.2: Lungaro et al. [4, 5] propose to use a tile-based foveated rendering

algorithm to reduce the overall bandwidth requirements for streaming 360° videos.

neural network reconstructs the original frame by inpainting and in-hallucinating

peripheral details while maintaining high acuity at the gaze point.

While previous work in foveation for images and videos provides strong founda-

tions, most of these methods cannot be easily generalized for interactive 3D graphics

rendering on modern GPUs. A notable exception is the work by Antonelli et al. [29],

which uses log-polar mapping to speed-up 2D image rendering on modern GPUs.

However, their approach does not directly work with 3D graphics primitives and

does not use kernel functions.

2.2.2 Foveated 3D Graphics

Weier et al. [49] have reviewed several approaches for foveated rendering

including mesh simplification in the areas of lower acuity [50–52]. However, these

days shading has often been found to dominate the cost for rendering sophisticated
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Figure 2.3: Foveated reconstruction with DeepFovea. Left to right: (1) sparse foveated

video frame (gaze in the upper right) with 10% of pixels; (2) a frame reconstructed

from it with our reconstruction method; and (3) full resolution reference. Our method

in-hallucinates missing details based on the spatial and temporal context provided

by the stream of sparse pixels. It achieves 14× compression on RGB video with

no significant degradation in perceived quality. Zoom-ins show the 0 foveal and

30 periphery regions with different pixel densities. Note it is impossible to assess

peripheral quality with your foveal vision.

scenes on modern graphics pipelines [7, 11].

Ragan-Kelley et al. [53] use decoupled sampling for stochastic super-sampling

of motion and defocus blur at a reduced shading cost. Guenter et al. [6] present

a three-pass pipeline for foveated 3D rendering by using three eccentricity layers

around the tracked gaze point. As shown in Figure 2.4, the innermost layer is

rendered at the highest resolution (native display), while the successively outer

peripheral layers are rendered with progressively lower resolution and coarser level

of detail (LOD). They interpolate and blend between the layers and use frame jitter

and temporal re-projection to reduce spatial and temporal artifacts. However, this

approach renders the scene three times, which requires lots of rendering resources.

Vaidyanathan et al. [7] present a novel approach using a generalization of
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Figure 2.4: Guenter et al. [6] render three eccentricity layers (red border = inner

layer, green = middle layer, blue = outer layer) around the tracked gaze point (pink

dot), shown at their correct relative sizes in the top row. These are interpolated to

native display resolution and smoothly composited to yield the final image at the

bottom. Foveated rendering greatly reduces the number of pixels shaded and overall

graphics computation.
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multi-sample anti-aliasing (MSAA). They perform foveated rendering by sampling

coarse pixels (2 × 2 pixels and 4 × 4 pixels) in the peripheral regions as shown in

Figure 2.5. This approach targets small-form-factor devices with high resolution,

such as phones and tablets rather than HMDs. It therefore presents two challenges

for HMDs: the effective pixel size in current HMDs is too large for MSAA, and

gaze-dependent motions exaggerate the artifacts.

Figure 2.5: Vaidyanathan et al. [7] perform foveated rendering by sampling coarse

pixels (2× 2 pixels and 4× 4 pixels) in the peripheral regions.

Patney et al. [8, 9] address temporal artifacts in foveated rendering by using

pre-filters and temporal anti-aliasing. Because human eyes are sensitive to edges,

they add contrast preservation for the foveated image, which greatly enhances the
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image quality by reducing the tunneling effect as shown in Figure 2.6. They tested

the foveated rendering effect on both Desktop and VR headset.

Figure 2.6: Patney et al. [8, 9] perform foveated rendering by sampling coarse pixels

and address temporal artifacts in foveated rendering by using pre-filters and temporal

anti-aliasing.

Clarberg et al. [10] propose a modification to the current hardware architecture,

which enables flexible control of shading rates and automatic shading reuse between

triangles in tessellated primitives as shown in Figure 2.7.

He et al. [11] introduce multi-rate GPU shading to support more shading

samples near regions of specular highlights, shadows, edges, and motion blur regions,

helping achieve a 3X to 5X speedup as shown in Figure 2.8. However, this imple-

mentation of multi-rate shading requires an extension of the graphics pipeline, which
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Figure 2.7: Clarberg et al. [10] have proposed an approach in which pixel shading is

tied to the coarse input patches and reused between triangles, effectively decoupling

the shading cost from the tessellation level, as shown in this example.

is not available on commodity graphics hardware.

Swafford et al. [12] implement four foveated renderers as shown in Figure 2.9.

The first method reduces the effective rendered pixel density of the peripheral region

while maintaining the base density of the foveal window, as shown in Figure 2.9

(a). The second varies per-pixel depth-buffer samples in the fovea and periphery for

screen-space ambient occlusion. Although a very low number of per-pixel samples

can cause banding, they expect these differences to go unnoticed in the periphery

due to the loss of visual acuity and contrast sensitivity, as shown in Figure 2.9 (b).

The third method normally casts rays to geometry and detects intersections with a

given number of depth layers, represented as a series of RGBA textures mapped on

the geometry, then it varies the per-pixel ray-casting steps across the field of view,

as shown in Figure 2.9 (c). The final method implements a terrain renderer using

GPU-level tessellation for the fovea. In order to determine the appropriate level of
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Figure 2.8: He et al. [11] introduce multi-rate GPU shading to support more shading

samples near regions of specular highlights, shadows, edges, and motion blur regions,

helping achieve a 3X to 5X speedup.
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tessellation, we project the foveal window from screen coordinates into the scene. If

a tile falls within either the foveal or peripheral field of view, the level of tessellation

is set statically to the appropriate level. If the tile falls between the two regions (on

the blending border) the level of tessellation is linearly interpolated between the two

levels, as shown in Figure 2.9 (d).

Stengel et al. [13] use adaptive sampling from fovea to peripheral regions in

a gaze-contingent rendering pipeline as shown in Figure 2.10. To compensate for

the missing pixels caused by sparsely distributed shading samples on the periphery,

they use pull-push [54] interpolation to create the full foveated image. This strategy

achieves a reduction of render time of 25.4% (with speedup of 1.3X) and reduction

of shading time of 41% (with speedup of 1.7X).

As shown in Figure 2.11, Tursun [14] propose luminance-contrast-aware foveated

rendring, which demonstrates that the computational savings of foveated rendering

can be significantly improved if local luminance contrast of the image is analyzed.

They first study the resolution requirements at different eccentricities as a function

of luminance patterns. They later use this information to derive a low-cost predictor

of the foveated rendering parameters. Its main feature is the ability to predict the

parameters using only a low-resolution version of the current frame, even though the

prediction holds for high-resolution rendering.

Besides virtual reality, foveated rendering is also desirable for augmented reality

(AR) [55]. As shown in Figure 2.12, the AR display combines a traveling micro-display

relayed off a concave half-mirror magnifier for the high-resolution foveal region, with a

wide field-of-view peripheral display using a projector-based Maxwellian-view display
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(a) (c)

(d)(b)

Figure 2.9: Swafford et al. [12] implement four foveated renderers as described in

the text of the figure. (a) is the annotated view of a foveated render with moderate

settings pre-composition. The checkerboard area represents the proportion of pixels

saved for the targeted simulated resolution; (b) is the strips from two foveated renders

with the same fixation point (bottom-right) but different peripheral sampling levels.

Region transition is handled smoothly, but at four samples there are noticeable

artifacts in the peripheral region, such as banding; (c) Top: Sample frame from our

ray-casting method with 120 per-pixel steps in the foveal region (within circle) and

10 per-pixel steps in the peripheral region (outwith circle). Bottom: Close-up of

right lamp showing artifacts across different quality levels; (d) is the Wireframe view

of our foveated tessellation method. The inner circle is the foveal region, between

circles is the inter-regional blending, and outside the circles is the peripheral region.
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Figure 2.10: Stengel et al. [13] use adaptive sampling from fovea to peripheral regions

in a gaze-contingent rendering pipeline and compensate for the missing pixels by

pull-push interpolation.

Figure 2.11: Tursun [14] propose luminance-contrast-aware foveated rendring, which

demonstrates that the computational savings of foveated rendering can be significantly

improved if local luminance contrast of the image is analyzed.
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whose nodal point is translated to follow the viewer’s pupil during eye movements

using a traveling holographic optical element.

Figure 2.12: Display results from our Foveated AR prototype. By tracking the user’s

gaze direction (red cross), the system dynamically provides high-resolution inset

images to the foveal region and low-resolution large-FOV images to the periphery.

The system supports accommodation cues; the magenta and blue zoom-in panels

show optical defocus of real objects together with foveated display of correctly

defocus-blurred synthetic objects. Red dashed discs highlight the foveal vs peripheral

display regions. A monocular wearable prototype (functional but manually actuated)

illustrates the compact optical path.

Recently, deferred shading has been used for antialiasing foveated rendering.

Karis [56] optimizes temporal anti-aliasing for deferred shading, which uses samples

over multiple frames to reduce flickering. Crassin et al. [57] reduce aliasing by pre-

filtering sub-pixel geometric detail in the G-buffer for deferred shading. Chajdas et

al. [58]’s subpixel anti-aliasing operates as a post-process on a rendered image with

super-resolution depth and normal buffers. It targets deferred shading renderers that

cannot use MSAA.

28



𝛼𝛼 = 1 𝛼𝛼 = 2 𝛼𝛼 = 3 𝛼𝛼 = 4

𝜎𝜎2 = 1

𝜎𝜎2 = 2

𝜎𝜎2 = 4

Density

Figure 2.13: The relationship among σ2, K (x) = xα, and the sampling rate. The

number of samples in each image is proportional to σ2. I use a variant of the PixelPie

algorithm [15] to generate the Poisson samples shown.

In this dissertation, I present a simple two-pass foveated rendering pipeline that

maps well onto modern GPUs. Kernel foveated rendering (KFR) provides gradually

changing resolution and achieves 2.8X − 3.2X speedup with little perceptual loss.

2.3 Proposed Algorithm

Overall, my algorithm applies the kernel log-polar transformation for rasteriza-

tion in a reduced-resolution log-polar buffer (LP-buffer), carries out shading within

the LP-buffer, and then uses the inverse kernel log-polar transformation to render
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on the full resolution display. This is shown in Figure 1.3.

In the classic log-polar transformation [29], given a W ×H pixel display screen,

and an LP-buffer of w×h pixels, the screen-space pixel (x, y) in Cartesian coordinates

is transformed to (u, v) in the log-polar coordinates according to Equation 2.1,

u =
log‖x′, y′‖2

L
· w

v =
arctan

(
y′

x′

)
2π

· h+ 1 [y′ < 0] · h

(2.1)

where, (x′, y′) represent (x, y) with respect to the center of the screen as origin,

L is the log-distance from the center to the corner of the screen, and 1 [·] is the

indicator function,

x′ = x− W

2
, y′ = y − H

2
, L = log

(∥∥∥∥W2 ,
H

2

∥∥∥∥
2

)
(2.2)

1 [y′ < 0] =


1 , y′ < 0

0 , y′ ≥ 0

(2.3)

Notice how the central dark green area in Figure 2.14 (a) is mapped to a

relatively large region in the left part of the log-polar coordinates in Figure 2.14 (b),

while the peripheral regions of Figure 2.14 (a) are mapped to a relatively small part

of Figure 2.14 (b).

In the inverse log-polar transformation, a pixel with log-polar coordinates (u, v)

is transformed back to (x′′, y′′) in Cartesian coordinates. Let

A =
L

w
, B =

2π

h
, (2.4)
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(a) Cartesian Coordinates

(b) Log-polar Coordinates, α = 1 (c) Log-polar Coordinates, α = 2

(d) Log-polar Coordinates, α = 3 (e) Log-polar Coordinates, α = 4

Figure 2.14: Transformation from Cartesian coordinates to log-polar coordinates

with kernel function K (x) = xα. (a) is the image in the Cartesian coordinates,

(b)–(e) are the corresponding images in the log-polar coordinates with varying kernel

parameter α. Matching colors in the log-polar and Cartesian coordinates show the

same regions.
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then the inverse transformation can be formulated as Equation 2.5,

x′′ = exp (Au) cos (Bv)

y′′ = exp (Au) sin (Bv)

(2.5)

To understand how the resolution changes in the log-polar space, consider

r = ‖x, y‖2 = exp (Au).

Now, dr represents the change in r based on u,

dr = A · exp (Au) du. (2.6)

Inversely, D is defined as the number of pixels in the LP-buffer that map to a single

pixel on the screen,

D =
du

dr
=

1

A
· exp(−Au). (2.7)

Equation 2.7 shows the foveation effect of pixel density decreasing from the fovea to

the periphery. In this formulation, it is not easy to systematically alter the density

fall-off function and evaluate the perceptual quality of foveated rendering.

I propose a kernel log-polar mapping algorithm that allows us more flexibility

to better mimic the fall-off of photo-receptor density of the human visual system,

D =
exp

(
−wCσ ·K−1

(
u
w

))
Cσ ·K−1′ ( u

w

) . (2.8)

Here, the constant parameter C =
√

1 +
(
H
W

)2
represents the ratio between

screen diagonal and screen width. σ = W
w

represents the ratio between the full-

resolution screen width and the reduced-resolution LP-buffer width, σ2 = W 2

w2 repre-

sents the ratio between the number of pixels in the full-resolution screen and the

number of pixels in the reduced-resolution LP-buffer. Larger σ2 corresponds to more
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condensed LP-buffer, which means less calculation in the rendering process. A more

condensed LP-buffer also means more foveation and greater peripheral blur.

The kernel function K (x) can be any monotonically increasing function with

K (0) = 0 and K (1) = 1, such as the sum of power functions,

K (x) =
∞∑
i=0

βix
i, where

∞∑
i=0

βi = 1. (2.9)

Such kernel functions can be used to adjust the pixel density distribution in

the LP-buffer. I use K (x) =
∑∞

i=0 βix
i in this project because the calculation of

power functions is fast on modern GPUs. There may be other kernel functions worth

trying, such as K (x) = sin(x · π
2
) and K (x) = ex−1

e−1
. For example, for C =

√
2 and

K (x) = xα, the relationship between D and r under varying σ2 and α is illustrated in

Figure 2.13 1. Kernel functions can adjust the pixel density such that the percentage

of the peripheral regions in the LP-buffer increases as shown in Figure 2.14 (c),

(d), and (e). This makes it possible to increase the peripheral image quality while

maintaining the same frame rates. A comparison among different kernel functions

is shown in Figure 2.15 with σ = 1.8 and C =
√

2. The use of the kernel function

reduces the artifacts in the zoomed-in peripheral view, improving the peripheral

image quality.

Meanwhile, as shown in Figure 2.16, when α ≥ 5.0, the sampling rate of even

the foveal region drops, affecting the visual quality of the fovea. A comparison among

different σ is shown in Figure 2.17 with fixed α = 4.0, C =
√

2.

1The figure is the visualization of sampling rate rather than the true sampling map.

33



(a) α = 1

(b) α = 2

(c) α = 3

(d) α = 4

fovea

fovea

fovea

fovea

Figure 2.15: Comparison of foveated rendering with varying α for 2560 × 1440

resolution. From left to right: original rendering, kernel log-polar rendering, and the

foveated rendering with zoomed-in view of the peripheral regions. Here σ = 1.8, (a)

classic log-polar transformation, i.e. α = 1.0, (b) kernel function with α = 2.0, (c)

kernel function with α = 3.0, and (d) kernel function with α = 4.0. The foveated

rendering is at 67 FPS while the original is at 31 FPS.
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(a) original scene (b) foveated, α = 1.0

(c) foveated, α = 4.0 (d) foveated, α = 5.0 (e) foveated, α = 6.0

Figure 2.16: Comparison of foveated frame with different α (fovea is marked as

the semi-transparent ring in the zoomed-in view): (a) original scene, (b) foveated

with α = 1.0, (c) foveated with α = 4.0, (d) foveated with α = 5.0, and (e) foveated

with α = 6.0. The lower zoomed-in views show that large α enhances the peripheral

detail; the upper zoomed-in views show that when α ≥ 5.0, foveal quality suffers.

2.3.1 Pass I: Forward Kernel Log-polar Transformation

Kernel Log-polar Transformation For each pixel in screen space with coordi-

nates (x, y), foveal point F (̊x, ẙ) in Cartesian coordinates, I change Equation 2.1 to

Equation 2.10,

u = K−1
(

log‖x′, y′‖2

L

)
· w

v =

(
arctan

(
y′

x′

)
+ 1 [y′ < 0] · 2π

)
· h

2π

(2.10)

Here,

x′ = x− x̊, y′ = y − ẙ. (2.11)
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(a) original

(b) σ = 1.2 

(c) σ = 1.8 

(b) σ = 2.4 

fovea

fovea

fovea

fovea

Figure 2.17: Comparison of foveated rendering with varying σ for 2560 × 1440

resolution. From left to right: original rendering, kernel log-polar rendering, the

recovered scene in Cartesian coordinates, and a zoomed-in view of peripheral regions.

Here, K (x) = x4, (a) full-resolution rendered at 31 FPS, (b) σ = 1.2 at 43 FPS, (c)

σ = 1.8 at 67 FPS, and (d) σ = 2.4 at 83 FPS.
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K−1 (·) is the inverse of the kernel function, and L is the log of the maximum distance

from fovea to one of the four corners of the screen as shown in Equation 2.12,

L = log (max (max (l1, l2) ,max (l3, l4))) . (2.12)

Here,

l1 = ‖x̊, ẙ‖2

l2 = ‖W − x̊, H − ẙ‖2

l3 = ‖x̊, H − ẙ‖2

l4 = ‖W − x̊, ẙ‖2

(2.13)

Lighting In lighting calculation for traditional deferred shading, mesh positions,

normals, depth and material information such as roughness, index of reflection, and

normal maps are fetched from the G-buffer [32,33]. Instead of obtaining information

from the G-buffer with texture coordinates (x, y), in my approach, I sample from

the transformed kernel log-polar texture coordinates (u, v) with bilinear filtering for

the lighting resources in the G-buffer. The reduced-resolution of the log-polar (LP)

buffer helps in reducing the lighting calculation to only those pixels that matter in

the final foveated rendering.

Internal Anti-aliasing Due to the low-resolution of the LP-buffer, there may

be artifacts in the peripheral regions after the inverse transformation. However, I

can directly perform denoising in the log-polar space. To reduce artifacts in the

peripheral regions, I apply a Gaussian filter with a 3× 3 kernel for the first quarter

from the right of the rendering (corresponding to the peripheral regions) in the

37



Algorithm 1 Kernel Log-polar Transformation
Input:

Fovea coordinates in screen space: (̊x, ẙ),

pixel coordinates in screen space: (x, y).

Output:

Pixel coordinates in the log-polar space: (u, v).

1: acquire fovea coordinates (̊x, ẙ)

2: for x ∈ [0,W ] do

3: for y ∈ [0, H] do

4: x′ = x− x̊

5: y′ = y − ẙ

6: u = K−1
(

log‖x′,y′‖
L

)
· w

7: v =
(

arctan
(
y′

x′

)
+ 1 [y′ < 0] · 2π

)
· h

2π

8: end for

9: end for

38



LP-buffer. Since the LP-buffer pixels correspond to the adaptive detail of foveated

rendering, the Gaussian filtering in the LP-buffer gives us higher-level of anti-aliasing

in the peripheral regions.

2.3.2 Pass II: Inverse Kernel Log-Polar Transformation

Pass II performs the inverse kernel log-polar transformation to Cartesian

coordinates, applies anti-aliasing, and renders to screen.

Inverse Kernel Log-polar Mapping Transformation I can recover the Carte-

sian coordinates (x′′, y′′), from the pixel coordinates (u, v) and the fovea coordinates

(̊x, ẙ) using Algorithm 2 with bilinear filtering.

Post Anti-aliasing One of the crucial considerations in foveated rendering is

mitigating temporal artifacts due to aliasing in the peripheral, high eccentricity

regions. I apply temporal anti-aliasing (TAA) [56] with Halton sampling [59] to the

recovered screen-space pixels after the inverse kernel log-polar transformation. I

also use Gaussian filtering with different kernel sizes η for different L (as defined in

Equation 2.12) in post anti-aliasing. The kernel size η is shown in Equation 2.14,

which depends on the normalized distance between the pixel coordinate and the

fovea,

η = 3 + 2×

⌊
‖x′,y′‖2
eL
− 0.10

0.05

⌋
. (2.14)
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Algorithm 2 Kernel Log-polar Inverse Transformation
Input:

Fovea coordinates in screen space: (̊x, ẙ),

pixel coordinates in the log-polar coordinates: (u, v).

Output:

Screen-space coordinates (x′′, y′′) for pixel coordinates (u, v).

1: update L with fovea coordinates (̊x, ẙ) with Equation 2.12

2: let A = L
w

, B = 2π
h

3: for u ∈ [0, w] do

4: for v ∈ [0, h] do

5: x′′ = exp (A ·K (u)) · cos (Bv) + x̊

6: y′′ = exp (A ·K (u)) · sin (Bv) + ẙ

7: end for

8: end for
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2.4 User Study

I have carried out user studies to empirically establish the most suitable

foveation parameter values for σ and α that result in visually acceptable foveated

rendering. To systematically investigate this, I conducted a pilot study to examine a

broad range of the two parameters, σ2 and α. I used the results and my experience

with the pilot study to fine tune the protocol and ranges of σ2 and α for the final

user study.

2.4.1 Apparatus

My user study apparatus, shown in Figure 2.18, consists of an Alienware laptop

with an NVIDIA GeForce GTX 1080, a FOVE head-mounted display, and an XBOX

controller. The FOVE display has a 100° field of view, a resolution of 2560× 1440,

and a 120 Hz infrared eye-tracking system with a precision of 1° and a latency of 14

Figure 2.18: User study setup.
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Figure 2.19: The percentage of times that the participants considered the foveated

rendering and the full-resolution rendering to be the same for varying σ2 and α in

pilot user study with 24 participants.

ms, the system latency meets the eye tracking delay requirement of 50 ms - 70 ms.

2.4.2 Pilot Study

Procedure The session for each participant lasted between 35− 50 minutes and

involved four stages: introduction, calibration, training, and testing.

In the introduction stage, I showed participants the FOVE headset, the eye

trackers, and the XBOX controllers and discussed how to use them. I did not provide

any information about the research or the algorithm to avoid biasing the participants

towards any rendering.

After the participant comfortably wore the HMD, I moved forward to the

calibration stage, where I ran a one-minute eye-tracking calibration program provided

by the FOVE software development kit.

In the training stage, I presented the participants with 20 trials with different
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Figure 2.20: The percentage of times that participants considered the foveated

rendering and the full-resolution rendering to be identical for different σ2 and α in

the final user study with 18 participants.

combinations of σ2 and α, to ensure that they are familiar with the HMD and the

controller.

Trials in the training and testing stages were identical. In each trial of the

two-alternative forced choice test, I presented participants with a pair of rendered

scenes, each for 2 seconds and separated by a black-screen interval of 0.75 seconds.

One scene uses full-resolution rendering, and the other uses KFR with different

parameters σ2 and α. In each trial, I presented the KFR scene and the full-resolution

scene in a random order. The participant indicated whether the two images look the
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same by pressing a button on the XBOX controller. I instructed the participants to

maintain their gaze at the center of the screen, even though the foveated renderer

can use eye-tracking to update the foveated image.

The testing stage had three sessions, each with 56 trials. The LP-buffer

resolution reduction parameter σ ranges from 1.0 to 3.6 with step size 0.2 (σ2 ranges

from 1.00 to 12.96), and the kernel sampling distribution parameter α ranges from 1

to 4 with step size 1. I rendered scenes from the Sponza and Amazon Lumberyard

Bistro datasets for different sessions. I allowed the participants to have some rest

between different sessions.

Participants In the pilot study, I recruited 24 participants via campus email lists

and flyers. All participants are at least 18 years old with normal or corrected-to-

normal vision (with contact lenses). The participants are collected using campus

flyers and emails.

Results and Analysis I define PI as the percentage of the trials for which

participants reported the two images shown in a trial to be the same. The results of

PI are shown in Figure 2.19. First, I find that PI is inversely related to σ2. With

increase in σ2, the LP-buffer gets smaller, thus reducing the overall sampling rate

in foveated rendering. Second, I notice that with the increase of α, PI significantly

increases for σ ranging from 1.2 to 2.8 (σ2 ranging from 1.44 to 7.84). This shows

that for the same σ, the perception of the quality of foveated rendering increases by

the use of α for kernel functions. For σ = 1.0 and σ > 2.8 the improvement is not
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significant. The reason is that for σ = 1.0, the foveated renderings for α = 1 and

α > 1 are both clear, there is little space for improvement. Similarly, for σ > 2.8,

even if the quality improves by applying kernel functions, it still looks blurry for

both images. Therefore, the participants choose ”different” for these comparisons.

Third, some participants reported that the length of the study led to visual fatigue

and that they were not sure about some of their responses.

Using the above observations, I modified the final user study to be shorter and

more focused.

First, to reduce the total time that participants are in the HMD, I used the fact

that most participants found foveated renderings different from the full-resolution

rendering for σ > 2.4 (σ2 > 5.76). Since the goal is to accelerate rendering while

maintaining perceptually similar quality, I reduced the range of σ to be between 1.2

to 2.4 (σ2 between 1.44 to 5.76) in the final user study.

Second, I observed that the participants quickly came up to speed within a

couple of trials in the training session. I therefore reduced the number of trials in

the training session from 20 to 5. This also allowed us to shorten the user study

duration and maintain a high level of visual attentiveness of the participants. Third,

some of the participants reported that the rendering time of 2 seconds was too short.

To address this I increased the time of each rendering to 2.5 seconds in the final

study. Fourth, to continually check for the visual attentiveness of the participants, I

modified the final user study by randomly inserting 30% of the trials to be ”validation

trials” that had identical full-resolution renderings for both choices. If the participant

declared these validation renderings to be different, I would ask the participant to
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stop, get some rest, and then continue. After making these changes, the total time

participants spent in the HMD was reduced from around 25 minutes in the pilot

study to around 15 minutes in the final study.

2.4.3 Final User Study

Procedure The introduction and calibration stages are the same as the pilot user

study. The training session includes five trials with different parameters. Each testing

session involves 28 trials with multiple parameter combinations (parameter σ ranging

from 1.2 to 2.4 with the step size 0.2 (σ2 ranging from 1.44 to 5.76); and kernel

parameter α ranging from 1 to 4 with the step size 1) as well as additional ”validation

trials”. Order of the parameters is fully counterbalanced. The participants are asked

to rest after each session or if they do not pass a ”validation trial”. I also changed

the rendering-display time to 2.5 seconds.

Participants I recruited 18 participants via campus email lists and flyers. All

participants were at least 18 years old with normal or corrected-to-normal vision

(with contact lenses). The participants are collected using campus flyers and emails.

Results and Analysis I report the percentage PI and the corresponding standard

error in Figure 2.20. I make the null hypothesis (H0) that the foveated rendering

results with the four kernel functions are equally effective. As shown in Table 1, with

a Cochran’s Q test [60,61], I have found that there exists a significant difference across

the multiple α for σ = 1.6, 1.8, 2.2 (σ2 = 2.56, 3.24, 4.84) with χ2(3) = 7.81, p < 0.05.
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The results with very small σ = 1.2, 1.4 (σ2 = 1.44, 1.96) and very large σ = 2.4

(σ2 = 5.76) are not significantly different, which are reasonable. For small σ2, the

rendering result without kernel function is clear enough, so there is little room for

improvement. For large σ2, both the rendering results with and without kernel

function are blurry for the users.

Table 2.1: Cochran’s Q values at different σ2.

σ2 1.44 1.96 2.56 3.24 4.00 4.84 5.76

Cochran’s Q value 1.72 5.79 8.20 8.25 7.49 14.27 5.48

p value 0.631 0.122 0.042 0.041 0.058 0.002 0.139

To achieve visually acceptable results for foveated rendering, I use a threshold

of 80% responses considering foveated rendering to be visually indistinguishable from

full-resolution rendering. To achieve the highest rendering acceleration, I look for

the highest σ that met this threshold. I therefore choose σ = 1.8 (σ2 = 3.24) and

α = 4 as the desired parameters for the interactive rendering evaluation.

2.5 Results and Acceleration

I implemented kernel foveated rendering on NVIDIA GeForce GTX 1080, by

using the deferred shading pipeline of the Falcor engine [62]. I report results of my

rendering acceleration for resolutions of 1920× 1080, 2560× 1440, and 3840× 2160.

Using the results from the final user study, I selected the LP-buffer parameter σ = 1.8,

and kernel parameter α = 4 for the evaluations below.
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2.5.1 Rendering Acceleration of 3D Textured Meshes

I use the Amazon Lumberyard Bistro [19] scene with physically-based shading,

reflection, refraction, and shadows to simulate the complex shading effects as shown

in Figure 2.21. I choose Amazon Lumberyard Bistro because this scene has complex

triangular meshes, rendering textures and compact lighting effect. The comparison

of the break-down of rendering time between KFR and the ground truth of deferred

shading is shown in Table 2. I observed that the frame rate increases for all resolutions

as shown in Table 3, with a speedup of 2.0X − 2.8X.

2.5.2 Rendering Acceleration of Ray-casting Rendering

Ray casting uses ray–surface intersection tests to solve a variety of problems

in computer graphics and computational geometry. It can also be used for creating

scenes. Rendering of high-resolution ray cast scenes can be an extremely time-

consuming process. I used the complex ray-casting scene with 16 different primitives

by Íñigo Qúılez to evaluate the acceleration of kernel foveated rendering. Figure 2.22

shows a comparison of the foveated scene and the ground truth. The frame rate

increases for all resolutions as shown in Table 3, with a speedup of 2.9X − 3.2X.
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(a) original 3D geometries, 31 FPS

(b) foveated 3D geometries (σ = 1.8, α = 4), 67 FPS

fovea

Figure 2.21: Comparison of (a) full-resolution rendering and (b) foveated rendering

for 3D meshes involving a geometry pass with 1, 020, 895 triangles as well as multiple

G-buffers

at 2560× 1440 resolution.
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(a) original ray-marching scene, 10 FPS

(b) foveated ray-marching scene (σ = 1.8, α = 4), 30 FPS

fovea

Figure 2.22: Comparison of (a) full-resolution rendering and (b) foveated ray-

marching scene with 16 samples per pixel

rendered at 2560× 1440.
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Table 2.2: Timing comparison between the ground truth and KFR for one frame.

The resolution is 1920× 1080.

Procedure Timing (ms)

Ground Truth KFR

Depth Pass 0.327 0.309

Shadow Pass 3.744 4.503

Defer Pass 2.985 3.034

SkyBox 0.039 0.039

Shading / Pass1 22.043 6.674

Pass2 N/A 0.090

Total 29.138 14.649

Total GPU Time 31.892 17.052

2.6 Discussion

Here I compare the Kernel Foveated Rendering (KFR) pipeline with selected

prior art, including: Foveated 3D Graphics (F3D) [6], Multi-rate Shading (MRS) [11],

Coarse Pixel Shading (CPS) [7], and Adaptive Image-Space sampling (AIS) [13].

As mentioned by [13], both MRS and CPS pipelines require adaptive shading

features which are not yet commonly available on commodity GPUs and so they
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Table 2.3: Frame rate and speedup comparison for kernel foveated rendering at

different resolutions with σ = 1.8, α = 4.0.

Scene 3D Textured Meshes Ray Casting

Resolution Ground Truth Foveated Speedup Ground Truth Foveated Speedup

1920× 1080 55 FPS 110 FPS 2.0X 20 FPS 57 FPS 2.9X

2560× 1440 31 FPS 67 FPS 2.2X 10 FPS 30 FPS 3.0X

3840× 2160 8 FPS 23 FPS 2.8X 5 FPS 16 FPS 3.2X

rely on software simulator implementations. In contrast, F3D, AIS, and the KFR

pipelines can be easily mapped onto the current generation of GPUs.

The F3D pipeline has achieved impressive speedups of 10X−15X in the informal

user study, and a factor of 4.8X − 5.7X in the formal user study. Nevertheless, the

F3D approach uses three discrete layers, while the KFR parameterizes the distribution

of samples continuously in the log-polar domain. F3D relies on specifically designed

anti-aliasing algorithms including jitter sampling and temporal reprojection, thus

limiting F3D to simpler material models and less complex geometry [13]. In contrast,

KFR could easily be coupled with the state-of-the-art screen-space anti-aliasing

techniques, such as TAA [56] and recent G-buffer anti-aliasing strategies [57].

Both the AIS and KFR pipelines mimic the continuously changing distribution

of photo-receptors in the retina. Nonetheless, there are three significant differences:

complexity and evaluation of the perceptual model, interpolation, and speedup. First,

AIS uses four parameters from [63] to approximately model the linear degradation
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behavior of acuity with 30° eccentricity. However, these parameters have not yet

been evaluated on how they affect foveation and perception in HMDs or beyond 30°

eccentricity. In contrast, KFR uses only two parameters: the reduced-resolution LP-

buffer parameter σ and the kernel parameter α in conjunction with a simple coordinate

transformation. KFR has established desirable values of α and σ through user studies

in head-mounted displays. Second, AIS relies on the pull-push interpolation [54] to

fill the pixels that are missed due to variable sampling of silhouette features and

object saliency.

In comparison, KFR uses the built-in GPU-driven mipmap interpolation which

reduces the additional interpolation cost. However, it is worth investigating how

incorporating object saliency [64,65] could further improve the KFR pipeline.

It is a challenge to compare multiple foveated approaches given the varying

hardware and perceptual quality of the results. One possibility is to compare the

speedups as percentages of rendering time reduction with certain reduction sampling

rate. By rendering with 59% of the total amount of shaded pixels, AIS reports

an overall rendering time reduction of 25.4%, while KFR achieves 29.9% reduction

on average. Like AIS, KFR speedup also depends on the amount of time spent in

shading; the greater the shader computations, the higher will be the KFR speedup.
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Chapter 3: 3D-Kernel Foveated Rendering for Light Fields

3.1 Overview

Classic light field rendering is limited to low-resolution images because the

rendering process of large-scale, high-resolution light field image arrays requires

a great amount of texture sampling, thus increasing the latency of rendering and

streaming.

With the rapid advances in optical microscopy imaging, several technologies

have been developed for interactively visualizing [66] or reconstructing microscopy

volumes [67–71]. Recently, light field microscopy [72] has emerged, which allows one

to capture light fields of biological specimens in a single shot. Afterwards, one could

interactively explore the microscopic specimens with a light-field-renderer, which

automatically generates novel perspectives and focal stacks from the microscopy

data [73]. Unlike regular images, light field microscopy enables natural-to-senses

stereoscopic visualization. Users may examine the high-resolution microscopy light

fields with the inexpensive commodity virtual reality head-mounted displays (HMDs)

as a natural stereoscopic tool. The method of rendering light field microscopy can

be applicable to high-resolution light fields from other sources.

To the best of our knowledge, the interactive visualization of high-resolution
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light fields with low latency and high-quality remains a challenging problem.

Human vision spans 135° vertically and 160° horizontally, but the highest-

resolution foveal vision only covers a 5° central region of the vision [6]. As estimated

by Patney et al. [8], only 4% of the pixels in a modern HMD are mapped on the

fovea. Therefore, foveated rendering techniques that allocate more computational

resources for the foveal pixels and fewer resources elsewhere can dramatically speed

up light field visualization.

In this chapter, we present 3D-kernel foveated rendering (3D-KFR), a novel

approach to extend the kernel foveated rendering (KFR) [23] framework to light fields.

In 3D-KFR, we parameterize the foveation of light fields by embedding polynomial

kernel functions in the classic log-polar mapping [28,29] for each slice. This allows

us to alter both the sampling density and distribution, and match them to human

perception in virtual reality HMDs. Next, we optimize 3D-KFR by adjusting the

weight of each slice in the light fields, so that it automatically selects the optimal

foveation parameters for different images according to the gaze position and achieves

higher speedup. In this way, 3D-KFR further accelerates the rendering process of

high-resolution light fields while preserving the perceptually accurate foveal detail.

We have validated our approach on the rendering of light fields by carrying

out both quantitative experiments and user studies. Our method achieves speedups

of 3.47×−7.28× on different levels of foveation and different rendering resolutions.

Moreover, our user studies suggest the optimal parameters that anyone can use for

rendering of foveated light fields on modern HMDs.

In summary, our contributions include:
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1. designing 3D-KFR, a new visualization method to observe the light fields,

which provides similar visual results as the original light field, but at a higher

rendering frame rate;

2. conducting user studies to identify the 3D-KFR parameters governing the

density of sampling to maximize perceptual realism and minimize computation

for foveated light fields in HMDs;

3. implementing the 3D-KFR light field pipeline on a GPU, and achieving speedups

of up to 7.28× for the light field with a resolution of 25× 25× 1024× 1024 px

with minimal perceptual loss of detail.

3.2 Related Work

3.2.1 Light Field Rendering

4D light fields [16, 54] represent an object or a scene from multiple camera

positions as shown in Figure 3.1. We can generating new views from arbitrary camera

positions without depth information or feature matching, simply by interpreting the

input images as 2D slices of a 4D light field function, which completely characterizes

the flow of light through unobstructed space in a static scene with fixed illumination.

Chai et al. [74] determine the minimum sampling rate for light field render-

ing by spectral analysis of light field signals using the sampling theorem. Ng [75]

contributes to a Fourier-domain algorithm for fast digital focusing for light fields.

Lanman and Luebke [76] propose near-eye light field displays supporting continuous
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Figure 3.1: Levoy and Hanrahan [16] two visualizations of a light field. (a) Each

image in the array represents the rays arriving at one point on the uv plane from all

points on the st plane, as shown at left. (b) Each image represents the rays leaving

one point on the st plane bound for all points on the uv plane. The images in (a) are

off-axis perspective views of the scene, while the images in (b) look like reflectance

maps.
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accommodation of the eye throughout a finite depth of field, thus providing a means

to address the accommodation-convergence conflict occurring with existing stereo-

scopic displays. Huang et al. [77] analyze the lens-distortion in light field rendering

and correct it, thus improving the resolution and blur quality. Zhang et al. [78]

propose a unified mathematical model for multilayer-multiframe compressive light

field displays that significantly reduces artifacts compared with attenuation-based

multilayer-multiframe displays. Lee et al. [79] propose foveated retinal optimization

(FRO), which has tolerance for pupil movement without gaze tracking while main-

taining image definition and accurate focus cues. The system achieves 38°× 19° FoV,

continuous focus cues, low aberration, small form factor, and clear see-through prop-

erty. However, FRO adopts the idea of foveation to improve the display performance

of the multi-layer displays rather than the rendering speed of 3D content. Sun et

al. [17] design a real-time foveated 4D light field rendering and display system. Their

work analyzes the bandwidth bound for perceiving 4D light fields and proposes a

rendering method with importance sampling and a sparse reconstruction scheme.

Their prototype renders only 16% − 30% of the rays without compromising the

perceptual quality. The algorithm is designed for the desktop screen. In contrast

to the previous work, our approach focused on foveated visualization of large light

fields in virtual reality HMDs.

Sun et al. [17] design a real-time foveated 4D light field rendering and display

system as shown in Figure 3.2. Based on the theoretical analysis on visual and

display bandwidths, they find the frequency bound for the retina, eye lens and the

display. Afterwards, they finish a series of psychophysical experiments and formulate
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a content-adaptive importance model in the 4D ray space. Their prototype renders

only 16%− 30% of the rays without compromising the perceptual quality.

Figure 3.2: Sun et al. [17] design a real-time foveated 4D light field rendering and

display system.

Mildenhall et al. [80] propose an algorithm to render novel views from an

irregular grid of sampled views by expanding each sampled view into a local light

field via a multiplane image (MPI) scene representation and blending adjacent local

light fields.
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3.2.2 Light Field Microscopy

Weinstein and Descour [81] use lens arrays for single-view-point array micro-

scope with ultra-wide FOV instead of light fields with perspective views. Levoy et

al. [72] propose using light fields to produce microscopy with perspective views and

focal stacks. Wilt et al. [82] confirm the importance of observing cellular properties by

using light microscopy for neuroscientists. The advances include enabling new exper-

imental capabilities and permitting functional imaging at faster speeds. Prevedel et

al. [83] implement a light field deconvolution microscopy and demonstrate its ability

to simultaneously capture the neuronal activity of the entire nervous system.

3.3 Proposed Algorithm

In this section, we first introduce KFR for 4D light field rendering. Next, we

generalize KFR to 3D-KFR. Finally, we discuss the resulting rendering acceleration

that 3D-KFR is able to achieve over KFR.

3.3.1 KFR for 4D Light Field Rendering

In the k × k light field with image resolution of W ×H, the total number of

texture samples for rendering the original light field Noriginal is,

Noriginal = k2 ·WH (3.1)

KFR accelerates the rendering process of light fields by reducing texture

sampling. In the first pass, we perform kernel log-polar transformation for each
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slice and render to a reduced resolution buffer with dimensions of k × k × w × h.

In the second pass, we perform the inverse log-polar transformation to map the

pixels back to the screen. The kernel function K (x) is defined in [23], which can

be any monotonically increasing function with K (0) = 0 and K (1) = 1, such as a

polynomial,

K (x) =
∞∑
i=0

βix
i, where

∞∑
i=0

βi = 1. (3.2)

We next present the two passes of the KFR algorithm.

In the first pass, we transform the image from Cartesian coordinates to kernel

log-polar coordinates. For each pixel in screen space with coordinates (x, y), foveal

point F (̊x, ẙ) in Cartesian coordinates, we define x′, y′ as

x′ = x− x̊, y′ = y − ẙ. (3.3)

Then, we transform point (x′, y′) to (u, v) in kernel log-polar coordinates using

Equation 3.4,

u = K−1
(

log‖x′, y′‖2

L

)
· w

v =

(
arctan

(
y′

x′

)
+ 1 [y′ < 0] · 2π

)
· h

2π

(3.4)

K−1 (·) is the inverse of the kernel function, and L is the log of the maximum

distance from fovea to one of the four corners of the screen as shown in Equation 3.5,

L = log (max (max (l1, l2) ,max (l3, l4))) . (3.5)

61



Here,

l1 = ‖x̊, ẙ‖2

l2 = ‖W − x̊, H − ẙ‖2

l3 = ‖x̊, H − ẙ‖2

l4 = ‖W − x̊, ẙ‖2

(3.6)

We define σ = W
w

= H
h

as the ratio between the full-resolution screen width (or

height) and the reduced-resolution buffer width (or height). The number of texture

samples for the first pass NKFR pass 1 can be theoretically inferred as:

NKFR pass 1 = k2 · W
σ
· H
σ

=
k2

σ2
·WH (3.7)

In the second pass, a pixel with kernel log-polar coordinates (u, v) is transformed

back to (x′′, y′′) in Cartesian coordinates. Let

A =
L

w
, B =

2π

h
, (3.8)

then the inverse transformation can be formulated as Equation 3.9,

x′′ = exp (A ·K (u)) · cos (Bv) + x̊

y′′ = exp (A ·K (u)) · sin (Bv) + ẙ

(3.9)

The number of texture samples for the second pass NKFR pass 2 is

NKFR pass 2 = WH (3.10)

The total number of texture samples for rendering the light field with KFR is

NKFR = NKFR pass 1 +NKFR pass 2

= (
k2

σ2
+ 1) ·WH

(3.11)
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The parameter σ controls the total number of pixels of the reduced-resolution

buffer, thus controlling the foveation rate and the amount of sampling. Comparing

Equations 3.1 and 3.11, we notice that the number of texture samples can be greatly

reduced in KFR with σ > 1.0. Kernel function controls the distribution of pixels

in the whole image. By adjusting kernel functions, we can determine the pixel

distribution and choose one that mimics the photo-receptor distribution of human

eyes. The kernel log-polar mapping algorithm allows us to mimic the fall-off of

photo-receptor density of human visual system with different σ and different kernel

functions.

3.3.2 3D-KFR for 4D Light Field

The rendering of 4D light field is different from the rendering of 3D meshes

because the center camera position of each slice is different. Since the foveation level

of a pixel is affected by the distance to the center camera, the foveation parameter

can be different for different slices in a light-field image array. We optimize the KFR

algorithm into 3D-KFR by adjusting the weight of each slice in the light field, so that

it is able to automatically select the optimal foveation parameters for different images

according to the gaze position, thereby achieving greater speedup. Our algorithm

consists of two passes as shown in Figure 1.4.

We define d as the distance between the local center camera of the frame

Xcam ij(xij, yij) and the gaze position Xcam 0(x0, y0),

d = ‖Xcam 0 −Xcam ij‖2 (3.12)
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(b) 3D-KFR, σ = 1.2(a) original light field (d) 3D-KFR, σ = 3.0(c) 3D-KFR, σ = 2.0

fovea fovea fovea fovea

Figure 3.3: The result comparison of the foveated light field with fovea on the center

of the screen. (b) - (d) are the application of 3D-KFR on light field with (b) σ0 = 1.2,

(c) σ0 = 2.0, (d) σ0 = 3.0. The left zoomed-in views show that the application of

3D-KFR doesn’t make changes in the fovea; the middle zoomed-in views and the

right zoomed-in views show that larger σ0 causes detail loss in the peripheral region.
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foveafoveafoveafovea

(b) 3D-KFR, σ = 1.2(a) original light field (d) 3D-KFR, σ = 3.0(c) 3D-KFR, σ = 2.0

Figure 3.4: The result comparison of the foveated light field with fovea on the

peripheral region of the screen. (b) - (d) are the application of 3D-KFR on light field

with (b) σ0 = 1.2, (c) σ0 = 2.0, (d) σ0 = 3.0. The left zoomed-in views show that

the application of 3D-KFR doesn’t make changes in the fovea; the middle zoomed-in

views and the right zoomed-in views show that larger σ0 causes detail loss in the

peripheral region.
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We partition the original dataset into multiple progressive regions: the inner

foveal region (highlighted in dark green) indicates the fovea, i.e., where the user is

currently looking at; as d increases, the peripheral regions (highlighted in lighter

green and white) are rendered in smaller framebuffers with less texture sampling.

We classify the frame of the i-th row and j-th column Iij to foveal region or

peripheral region with different framebuffers by d as shown in Equation 3.13.

Iij ∈



foveal region d < r0

peripheral region 1 r0 ≤ d < r1

peripheral region 2 r1 ≤ d < r2

... ...

peripheral region N rN−1 ≤ d < rN

(3.13)

In the first pass, assume the foveal region covers k0 frames and the i − th

peripheral region peripheral region i covers ki frames. Our approach reduces the

framebuffer size for the foveal region by σ2
0, and reduces the framebuffer size of

peripheral region i by σ2
1,..., σ2

N , respectively. Then the number of total texture

samples in the first pass N3D-KFR pass 1 can be theoretically inferred as:

N3D-KFR pass 1 = k0 ·WH · 1

σ2
0

+ k1 ·WH · 1

σ2
1

+ ...+ kN ·WH · 1

σ2
N

=

(
k0

σ2
0

+
k1

σ2
1

+ ...+
kN
σ2
N

)
·WH

(3.14)

We can also write Noriginal as:

Noriginal = k2 ·WH = (k0 + k1 + ...+ kN) ·WH (3.15)
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So the total number for texture sampling for the foveal region and peripheral

region are reduced by 1
σ2

0
×, 1

σ2
1
×, ..., and 1

σ2
N
×, respectively.

We choose smaller σ with small d in order to keep more details. And we

choose larger σ for frames with larger distance in order to reduce rendering cost (i.e.,

σ0 ≤ σ1 ≤ ... ≤ σn).

The algorithm of light field rendering combined with kernel log-polar transfor-

mation is shown in Algorithm 3.

Algorithm 3 3D-KFR: Pass 1

Input:

Aperture size: a,

focal point ratio: f ,

fovea coordinate in screen space: Xfovea (̊x, ẙ),

pixel coordinate in LP-Buffer: Xbuffer (u, v),

k × k light field {I} with image resolution of n× n.

Output:

Pixel value Cbuffer, σ for the coordinate Xbuffer.

1: acquire the coordinate for the center camera Xcam 0

2: acquire the coordinate for the fovea Xfovea

3: initialization: Cbuffer, σ ← 0, Nbuffer, σ ← 0

4: for row index i ∈ [0, k] do

5: for column index j ∈ [0, k] do

6: calculate σ with Xfovea with Equation 3.13

7: update L with Xfovea with Equation 3.5

67



8: let A = L
w

, B = 2π
h

9: acquire Xcam ij for frame Iij

10: dij ← ‖Xcam 0 −Xcam ij‖2

11: if dij < a then

12: x′ ← exp (A ·K (u, σ)) · cos (Bv) + x̊

13: y′ ← exp (A ·K (v, σ)) · sin (Bv) + ẙ

14: X ′Sample ← (x′, y′)

15: XSample ← Xcam ij + (X ′Sample −Xcam ij) · f

16: if XSample in the range of the screen then

17: Cbuffer, σ ← Cbuffer, σ + Iij · Color(XSample)

18: Nbuffer, σ ← Nbuffer, σ + 1

19: end if

20: end if

21: end for

22: end for

23: return Cbuffer, σ ← Cbuffer, σ

Nbuffer, σ

In the second pass, we carry out the inverse-log-polar transformation with

anti-aliasing to map the reduced-resolution rendering to the full-resolution screen,

the algorithm is shown in Algorithm 4. To reduce artifacts in the peripheral regions,

we use a Gaussian filter with a 5× 5 kernel for the peripheral region of the recovered

image in the screen.
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The number of texture samples for the second pass N3D-KFR pass 2 is,

N3D-KFR pass 2 = (1 +N) ·WH (3.16)

The total number of texture samples for rendering the light field with 3D-KFR

is

N3D-KFR = N3D-KFR pass 1 +N3D-KFR pass 2

=

(
k0

σ2
0

+
k1

σ2
1

+ ...+
kN
σ2
N

+ 1 +N

)
·WH

(3.17)

In the light field rendering, we commonly have k ≥ 16. In 3D-KFR, we

commonly have 1.0 < σ ≤ 3.0, and we choose N = 2 as the number of peripheral

regions and K (x) = x4 as the kernel function. Therefore, we have

NKFR pass 2 = WH � k2

σ2
·WH = NKFR pass 1, (3.18)

and

N3D-KFR pass 2 = (N + 1)WH

�
(
k0

σ2
0

+
k1

σ2
1

+ ...+
kN
σ2
N

)
·WH = N3D-KFR pass 1.

(3.19)

Equations 3.18 and 3.19 show that the extra time consumed by the pass 2 can be

omitted. We then have

NKFR ≈ (
k2

σ2
0

) ·WH (3.20)

N3D-KFR ≈
(
k0

σ2
0

+
k1

σ2
1

+ ...+
kN
σ2
N

)
·WH (3.21)

Comparing Equations 3.1, 3.20 and 3.21, we have

N3D-KFR � NKFR � Noriginal, (3.22)
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which shows that the 3D KFR scheme can accelerate the rendering of the light field

beyond a simple KFR approach. The resulting comparison of the original light field

rendering and the 3D-KFR for light field is shown in Figure 3.3 and Figure 3.4. With

3D-KFR applied, pixel density decreases from the fovea to the periphery. We do not

notice any differences in the fovea with different σ0 between the left zoomed-in views

because 3D-KFR uses a weighted-sum which strengthens the frames with small d.

For the same reason, we can notice the loss of detail from the right zoomed-in views

of the periphery. Next, we determine what parameters ensure that the peripheral

loss and the peripheral blur are not noticeable by conducting user studies.

Algorithm 4 3D-KFR: Pass 2

Input:

Fovea coordinate in screen space: Xfovea (̊x, ẙ),

pixel coordinate in screen space: XDisplay (x, y),

Output:

Pixel value Cdisplay for coordinate XDisplay.

1: initialization: Cdisplay ← 0, Ndisplay ← 0

2: acquire the coordinate for the fovea Xfovea

3: update L with Xfovea with Equation 3.5

4: for each attachment Iσ in LP-Buffer do

5: x′ ← x− x̊

6: y′ ← y − ẙ

7: u← K−1
(

log‖x′,y′‖
L

)
· w

8: v ← arctan
(
y′

x′

)
h
2π

+ 1 [y′ < 0] · h
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9: XSample ← (u, v)

10: Cdisplay ← Cdisplay + Iσ · Color(XSample)

11: Ndisplay ← Ndisplay + 1

12: end for

13: return Cdisplay ← Cdisplay

Ndisplay

3.4 User Study

We have carried out user studies to find the largest foveation parameter values

for σ0 that results in visually acceptable foveated rendering.

3.4.1 Apparatus

Our user study apparatus is shown in Figure 3.5. We used an Alienware laptop

with an NVIDIA GTX 1080, a FOVE HMD, and an XBOX controller. The FOVE

display has a 100° field of view, a resolution of 2560× 1440, and a 120 Hz infrared

eye-tracking system with a precision of 1° and a latency of 14 ms.

Since public datasets on large-scale and high-resolution microscopy light field

datasets are not yet available, we have rendered and open sourced 30 microscopy

light field datasets1. We synthesized the microscopy dataset on Cell and Cellular

Lattice for the user study.

1Simulated HD Light Fields: http://users.umiacs.umd.edu/~xmeng525/3D_KFR_For_Light_

Fields/MicroscopyLightFieldResource/
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Figure 3.5: Our user study set up with gaze-tracker integrated into the FOVE

head-mounted display.

3.4.2 Participants

We recruited a total of 22 participants via campus email lists and flyers. All

participants are at least 18 years old with normal or corrected-to-normal vision (with

contact lenses).

3.4.3 Procedure

We conducted three different and independent experiments to test the param-

eters for which 3D-KFR produces acceptable quality to non-foveated rendering: a

Pair Test, a Random Test, and a Slider test.

In the Pair Test, we presented each participant with pairs of foveated and

full-resolution light field renderings. We presented the two renderings in each pair in

a random order and separated by a short interval of black screen (0.75 seconds). The

foveation parameter ranged between σ0 = 1.2 to σ0 = 3.0. Pairs at all quality levels

in this range were presented twice (monotone increasing then monotone decreasing)

for each dataset, i.e. σ0 increased from 1.2 to 3.0 then decreased from 3.0 to 1.2. At
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the end of each comparison, the participant responded upon the similarity between

the two rendering results by the XBOX controller. The answer contains 5 confidence

levels: 5 represents perceptually identical, 4 represents minimal perceptual difference, 3

represents acceptable perceptual difference, 2 represents noticeable perceptual difference

and 1 represents significant perceptual difference.

In the Random Test, we presented each participant with pairs of foveated

and full-resolution light field renderings. We presented the two renderings in each

pair in a random order and separated by a short interval of black (0.75 seconds).

The foveation parameter ranged between σ0 = 1.2 to σ0 = 3.0. Pairs at all quality

levels in the range were presented once for each dataset in random order. At the

end of each comparison, the participant responded upon the similarity between the

two rendering results by the XBOX controller. The answer contains 5 confidence

levels: 5 represents perceptually identical, 4 represents minimal perceptual difference, 3

represents acceptable perceptual difference, 2 represents noticeable perceptual difference

and 1 represents significant perceptual difference.

The Slider Test lets the participants navigate the foveation quality space

themselves. First, the participant observed the full-resolution rendering result as a

reference. Next, we presented the participant with the lowest level of foveation quality

(σ0 = 3.0) while the participant could progressively increase the foveation level (with

a step size of 0.1). The participant switched between the foveated rendering result

and the reference image back and forth, until they found out the lowest foveation

level which is visually equivalent to the non-foveated reference. We recorded the

first quality level index at which the participant stopped as the final response for
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the slider test.

To ensure the visual attentiveness of the participants, we randomly inserted

30% of the trials to be “validation trials” that had identical full-resolution results for

both choices in the Pair Test and the Random Test. If the participant declared

these validation renderings to be mostly the same with acceptable difference, noticeable

difference or totally different, we would ask the participant to stop, take some rest,

and then continue. Meanwhile, we recorded this choice as an error. If error ≥ 5 in

the Pair Test and the Random Test, we would stop the user study and discard

the data of the user. We discarded two participants according to this rule.

3.5 Results and Acceleration

3.5.1 Results of the User Study

Let Sσ be the average score of all the users for a specific σ0, and let Pσ be the

percentage of responses of rated foveated and non-foveated renderings as perceptually

identical (5) and minimal perceptual difference (4) for a specific σ = σ0.

The result of Sσ for the Pair Test is shown in Figure 3.6. Generally, Sσ

decreases with the increase of σ0. A Friedman test revealed a significant effect

of the users’ responses on foveation parameter σ (χ2(20) = 104.3, p < 8.9× 10−14).

The result of Pσ for the Pair Test is shown in Figure 3.7. We have identified a

threshold of Pσ = 90% for σpair = 2.4 as the foveation parameter that provides

minimal perceptual differences based on the Pair Test.

The result of Sσ for the Random Test is shown in Figure 3.8. The trend
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Figure 3.6: The Pair Test responses of Sσ across sliding foveation parameters σ.

Sσ decreases with the increase of σ. 5 represents perceptually identical, 4 repre-

sents minimal perceptual difference, 3 represents acceptable perceptual difference, 2

represents noticeable perceptual difference, and 1 represents significant perceptual

difference (2 and 1 are not shown)

.
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Figure 3.7: The Pair Test responses of Pσ across sliding foveation parameters σ.

Pσ decreases with the increase of σ.
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Figure 3.8: The Random Test responses of Sσ across gradually varied foveation

parameters σ. Sσ decreases with the increase of σ. 5 represents perceptually identi-

cal, 4 represents minimal perceptual difference, 3 represents acceptable perceptual

difference, 2 represents noticeable perceptual difference, and 1 represents significant

perceptual difference (2 and 1 are not shown)

.
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Figure 3.9: The Random Test responses of Pσ across sliding foveation parameters

σ. Pσ decreases with the increase of σ.

that Sσ decreases with an increase of σ matches our expectation. A Friedman

test revealed a significant effect of the users’ responses on foveation parameter

σ (χ2(20) = 29.2, p < 0.0006). The result of Pσ for the Random Test is shown

in Figure 3.9. We have identified a threshold of Pσ = 90% for σrandom = 2.6 as

the foveation parameter that provides minimal perceptual differences based on the

Random Test.

The histogram of the user-chosen thresholds in the Slider Test is shown in

Figure 3.10. For instance, the histogram shows that 25% of the users found that

σ = 3.0 or lower is acceptable; 75% of the users found that σ = 1.8 or lower is

acceptable. With σ0 = 1.6, 80% of the users considered that the foveated rendering

is visually indistinguishable from full-resolution rendering. We chose threshold
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Figure 3.10: The histogram of the optimal foveation parameter σ selected by each

user in the Slider Test. For instance, the histogram shows that 80% of the users

found that σ = 1.6 or lower is acceptable.
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σslider = 1.6.

We have noticed that σslider = 1.6 is smaller than σpair = 2.4 and σrandom = 2.6.

We speculate that the reason for a smaller sigma in the Slider Test is: if the users

are free to choose the threshold, they tend to choose the best quality they can achieve,

instead of the lower bound of the perceptually indistinguishable quality.

3.5.2 Rendering Acceleration

Using the three parameters, one could think of building a foveated rendering sys-

tem where the saccades are implemented with σ = 2.6 and the fixation implemented

with σ = 1.6.

Performance Evaluation and Discussion We have implemented the 3D

kernel foveated rendering pipeline in C++ 11 and OpenGL 4 on NVIDIA GTX

1080. We report the results of our rendering acceleration for the tissue dataset at

the resolution of k× k× 1024× 1024. We tested the rendering time for different light

field dimensions (20 ≤ k ≤ 25) and different σ0 (1.2 ≤ σ0 ≤ 3.0) with σ1 = 1.6σ0,

σ2 = 2.0σ1. We used the kernel function K (x) = x4. The evaluations are shown

in Figure 3.11, where σ0 = 1.0 corresponds to the rendering time of the original

field, and σ0 > 1.0 corresponds to the 3D-KFR rendering time. We notice that the

rendering time of 3D-KFR decreases with the increase of σ0.

We further tested the rendering time comparison and the speedup for σslider =

1.6, σpair = 2.4 and σrandom = 2.6 as shown in Table 3.1. With σpair = 2.4, the

rendering time is less than 21.96 ms (45.54 fps); with σrandom = 2.6, the rendering
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Table 3.1: The average timings and the corresponding speedups of 3D-KFR at

different light field dimensions and foveation parameters σ.
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time is less than 19.09 ms (52.38 fps). σpair = 2.4 and σrandom = 2.6 meets the real-

time requirement of 30 fps. With σslider = 1.6, the rendering times for k = 20, 21, 22,

or 23 are less than 30.64 ms (32.64 fps), which meets the real-time requirement of 30

fps. While the rendering times for k = 24 and 25 are less than 41.42 ms (24.14 fps),

they are still able to achieve reasonably interactive frame rates.

3.5.3 Quality Evaluation

The comparisons of the visualization of the original light field rendering and

the 3D-KFR rendering of different datasets are shown in Figure 3.12 - Figure 3.14.

We use structural dissimilarity (DSSIM) [84] [85] between the 3D-KFR and

the original light field approaches as the metric to evaluate the quality of 3D-KFR

results. DSSIM can be derived from structural similarity index (SSIM) [86] [87].

The measurement of SSIM and DSSIM between the two images Ψ and Ω with size

N ×N is shown in Equations 3.23 and 3.24.

SSIM(Ψ,Ω) =
(2µΨµΩ + c1)(2σΨΩ + c2)

(µ2
Ψ + µ2

Ω + c1)(σ2
Ψ + σ2

Ω + c2)
(3.23)

DSSIM(Ψ,Ω) =
1− SSIM(Ψ,Ω)

2
(3.24)

where µΨ and µΩ are the average pixel values for images Ψ and Ω, respectively; σΨ

and σΩ are the pixel variances for images Ψ and Ω, respectively; σΨΩ is the covariance

between images Ψ and Ω; c1, c2 are two constants used to stabilize the division with

a weak denominator.

SSIM is a perception-based model that considers image degradation as perceived
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change in structural information. A pair of images with low DSSIM indicates better

structural similarity. We measure the average DSSIM of the RGB channels, and

we show the results in Figure 3.12 - Figure 3.14. The DSSIM measurement of the

zoomed-in views for the fovea regions are small, which indicates high visual similarity.

With an increase in distance between the fovea position and the pixel position, the

DSSIM increases because of the foveation effect.

(b) 3D-KFR, σ = 1.6(a) original light field (d) 3D-KFR, σ = 2.6(c) 3D-KFR, σ = 2.4

fovea fovea fovea fovea

DSSIM 2.1e-5 9.03e-5 6.95e-4 4.20e-5 1.64e-4 7.64e-4 5.09e-5 1.85e-4 7.96e-4

Figure 3.12: Comparison of the foveated light field Biomine II. (b) - (d) using

3D-KFR with (b) σslider = 1.6, (c) σpair = 2.4, (d) σrandom = 2.6. The measured

DSSIM (lower is better) is shown for each zoomed-in view.
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(b) 3D-KFR, σ = 1.6(a) original light field (d) 3D-KFR, σ = 2.6(c) 3D-KFR, σ = 2.4

fovea fovea fovea fovea

DSSIM 0.0010 0.0210 0.0221 0.0022 0.0311 0.0320 0.0027 0.0365 0.0366

Figure 3.13: Comparison of the foveated light field Cellular Lattice IV. (b) - (d) using

3D-KFR with (b) σslider = 1.6, (c) σpair = 2.4, (d) σrandom = 2.6. The measured

DSSIM (lower is better) is shown for each zoomed-in view.

(b) 3D-KFR, σ = 1.6(a) original light field (d) 3D-KFR, σ = 2.6(c) 3D-KFR, σ = 2.4

fovea fovea fovea fovea

DSSIM 9.90e-7 2.86e-6 1.07e-5 1.79e-6 5.03e-6 3.02e-5 1.95e-6 5.38e-6 3.25e-5

Figure 3.14: Comparison of the foveated light field Red Cells IV. (b) - (d) using

3D-KFR with (b) σslider = 1.6, (c) σpair = 2.4, (d) σrandom = 2.6. The measured

DSSIM (lower is better) is shown for each zoomed-in view.
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Chapter 4: Eye-dominance-guided Foveated Rendering

4.1 Overview

As we have seen in Chapter 2, foveation speeds up the rendering of each frame

by 3× to 5× [6, 13,23]. Other rendering acceleration approaches take advantage of

the properties of the human visual system, such as perception-guided reduction of

motion artifacts [88, 89] and temporal resolution multiplexing [22], which renders

even-numbered frames at a lower resolution.

The human visual system has a tendency to prefer visual stimuli of one eye

over the other eye [90]. This phenomenon is referred to as eye (or ocular) dominance.

The dominant eye is found to be superior to the non-dominant eye in visual acuity,

contrast sensitivity [91], color discrimination [92], and motor functions that are

visually managed and require spatial attention [93].

In this chapter, we propose the technique of eye-dominance-guided foveated

rendering (EFR), which leverages ocular dominance property of the human visual

system. We render the scene for the dominant eye at the normal foveation level

and render the scene for the non-dominant eye at a higher foveation level. This

formulation allows us to save more in the rendering budget for the non-dominant

eye. We have validated our approach by carrying out quantitative experiments and
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user studies. Our contributions include:

1. designing eye-dominance-guided foveated rendering, an optimized technique for

foveated rendering, that provides similar visual results as the original foveated

rendering, but at a higher rendering frame rate;

2. conducting user studies to identify the parameters for the dominant eye and the

non-dominant eye to maximize perceptual realism and minimize computation

for foveated rendering in head-mounted displays; and,

3. implementing eye-dominance-guided foveated rendering pipeline on a GPU,

and achieving up to 1.47× speedup over the original foveated rendering at a

resolution of 1280× 1440 per eye with minimal perceptual loss of detail.

4.2 Related Work

The related work in foveated rendering as been reviewed in Section 2.2. In this

section, we review the relevant state-of-the-art research eye-dominance that inspires

our work. Eye dominance has been described as the inherent tendency of the human

visual system to prefer scene perception from one eye over the other [90].

Einat and Shaul [91] study the role of eye dominance in dichoptic non-rivalry

conditions, testing visual search and comparing performance with target presented

to the dominant or the non-dominant eye. Einat and Shaul [91] designed user study

with red–green glasses. The participants viewed an array of green and red lines

of uniform orientation, with a differently oriented target line present on half the

trials. And they observed the performance of visual perception. They found that the
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dominant eye significantly performed better than the non-dominant eye when the

dominant eye saw the target, especially when the opposite eye saw the distractors.

This effect was reduced when only nearest-neighbor surrounding distractors were

homogeneous. They conclude that the dominant eye has priority in visual processing,

perhaps even resulting in inhibition of non-dominant eye representations.

Oishi et al. [94] observe that the dominant eye is functionally activated prior

to the non-dominant eye in conjugate eye movements. They recorded conjugate eye

movements to elucidate whether ocular dominancy was present at reading distance

in 21 right-handed normal participants by using a video-oculographic measurement.

This included the velocity of smooth pursuits, and the latency and velocity of saccades.

They defined the dominant eye for each participant by the near–far alignment test

and 20 subjects showed the right dominant eyes. Although the ocular dominancy

was not found in the velocity of smooth pursuit and vertical saccades, the velocity of

horizontal saccades in the dominant eyes was faster than that in the non-dominant

eyes. These results suggest that the dominant eye is functionally activated prior to

non-dominant eye in horizontal saccades at reading distance, which thus indicates

the functional dominance of the dominant eye in conjugate eye movements.

Koctekin et al. [92] find that the dominant eye has priority in red/green

color spectral region, leading to better color-vision discrimination ability. For

this comparative study, 50 students studying at Başkent University Faculty of

Medicine, including 31 males (62%) and 19 females (38%), with visual acuity of

20/20 and without congenital color vision deficiency (CCVD) evaluated by Ishihara

pseudoisochromatic plate test (IPPT) were recruited. Dominant eye was determined
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by the Gundogan Method. The color discrimination ability was examined with the

Farnsworth −Munsell 100 hue (FM100) test. The statistical differences among

the dominant eye and the non-dominant eye in red/green local region and total error

scores were found to be statistically significant in both genders.

McManus et al. [93] studied the relationship between handedness and eye-

dominance. Handedness and eye-dominance are associated statistically, although a

previous meta-analysis has found that the precise relationship is difficult to explain,

with about 35% of right-handers and 57% of left-handers being left eye dominant. Of

particular difficulty to genetic or other models is that the proportions are distributed

asymmetrically around 50%. This study explored whether this complicated pattern of

association occurred because it divides right-and left-handers into consistent handers

(who write and throw with the same hand) and inconsistent handers (who write and

throw with opposite hands). In an analysis of 10,635 participants from questionnaire

studies, 28.8% of left-handers and 1.6% of right-handers by the writing task were

found to be inconsistent for the throwing task. The results also showed that writing

hand and throwing hand both relate independently to eyedness and that throwing

hand is somewhat more strongly associated with eyedness. The study found that

24.2% of consistent right-handers are left eye dominant compared with 72.3% of

consistent left-handers, and 55.4% of inconsistent right-handers compared with 47.0%

of inconsistent left-handers. They conclude that eyedness is phenotypically secondary

to writing and throwing handedness. In the discussion they note that eyedness runs

in families. They present new data suggesting that writing hand and throwing hand

are co-inherited, and they argue that further data are now required to model properly
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the associations of writing hand, throwing hand, and eyedness, as well as probably

also footedness and language dominance.

Chaumillon et al. [95] show that sighting eye dominance has an influence on

visually triggered manual action with shorter reaction time. They used the simple

and well-known Poffenberger paradigm [96] in which participants press a button with

the right or left index finger, in reaction to the appearance of a lateralized visual

stimulus. By selecting participants according to their dominant-eye and handedness,

they deciphered the impact of eye dominance on visuomotor transformation speed.

They showed that, in right-handers simple reaction times (RT) in response to a

lateralized visual target are shorter when it appears in the contralateral visual

hemifield with respect to the dominant eye. Meanwhile, in left-handers, only those

with a right dominant eye exhibit a shorter RT with the left hand and they show

no hemifield difference. Additionally, the Poffenberger paradigm has been used to

estimate the interhemispheric transfer time (IHTT) in both directions, from the right

to the left hemisphere or the reverse, by comparing hand RTs following stimulation

of each visual hemifield. Chaumillon et al. [95] demonstrates that this paradigm

leads to biased estimations of these directionally considered IHTT and provides

an explanation to the often reported IHTT negative values that otherwise appear

implausible. These new findings highlight the need to consider eye dominance in

studies investigating the neural processes underlying visually-guided actions. More

generally, they demonstrate a substantial impact of eye dominance on the neural

mechanisms involved in converting visual inputs into motor commands.

In this work, we take advantage of the weaker sensitivity and acuity of the
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non-dominant eye and render the non-dominant display with greater foveation to

accelerate overall foveated rendering.

4.3 Proposed Algorithm

Here we present an overview of the parameterized foveated rendering and then

we build upon it to accomplish eye-dominance-guided foveated rendering.

KFR
Transformer

Inv-KFR
Transformer Anti-aliasingShading

KFR
Transformer

Inv-KFR
Transformer Anti-aliasingShading

Figure 4.1: An overview of the eye-dominance-guided foveated rendering system. Our

system uses two foveated renderers, with different values of the foveation parameter σ,

for the dominant eye and the non-dominant eye, respectively. For the dominant eye,

we choose the foveation parameter σd which results in an acceptable foveation level

for both eyes. For the non-dominant eye, we choose σnd ≥ σd, which corresponds to

a higher foveation level. Because the non-dominant eye is weaker in sensitivity and

acuity, the user is unable to notice the difference between the two foveation frames.
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4.3.1 Foveation Model

We use the kernel foveated rendering (KFR) model proposed in Section 2

because this model parameterizes the level of foveation with two simple parameters:

frame buffer parameter σ controls the width of the frame-buffer to be rendered, thus

controlling the level of foveation; and the kernel function parameter α controls the

distribution of pixels.

Here I briefly describe the KFR model again. The KFR model contains two

passes. In the first pass, the renderer transforms the shading materials in the G-buffer

(world positions, texture coordinates, normal maps, albedo maps, etc.) from the

Cartesian coordinates to kernel log-polar coordinates. Because of the non-uniform

scaling effect in the transformation, details in the foveal region are preserved and

details in the peripheral region are reduced.

Given a screen of resolution W×H, for each pixel with coordinate (x, y), we first

normalize the coordinate to (x′, y′). Then, KFR transforms the point (x′, y′) to (u, v)

in the kernel log-polar space via Equation 2.10, where L is the log of the maximum

distance from F (̊x, ẙ) to the farthest screen corner as shown in Equation 2.12.

In the second pass, the renderer transforms the rendered scene from kernel

log-polar coordinates to Cartesian coordinates and renders to the full-resolution

screen. A pixel with log-polar coordinates (u, v) is transformed back to (x′′, y′′) in

Cartesian coordinates as shown in Equation 2.5.

According to Section 2, the kernel function parameter is suggested as α = 4.

Therefore, we can control the level of foveation by only altering the parameter σ.
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4.3.2 Eye-dominance-guided Foveation Model

Previous research on ocular dominance indicates that the non-dominant eye is

weaker than the dominant eye in sensitivity and acuity. Here, we propose that the

non-dominant eye is able to accept a higher level of foveation.

The overview of our eye-dominance-guided foveated rendering (EFR) system is

shown in Figure 4.1. In our EFR framework, for the baseline rendering, the system

uses a KFR renderer with foveation parameter σd for the dominant eye and a KFR

renderer with σnd for the non-dominant eye.

In the KFR algorithm, the parameter σ controls the width of the frame-buffer

to be rendered, and the rendering time is proportional to the area of the rendered

buffer. In other words, rendering time is inversely proportional to σ2. Suppose the

rendering time of the original frame for each eye is T , then the expected rendering

time of KFR with σd = σnd is:

tFR =
T

σ2
d

+
T

σ2
nd

=
2T

σ2
d

(4.1)

The expected rendering time of eye-dominance-guided foveated rendering (EFR)

with σd 6= σnd is:

tEFR =
T

σ2
d

+
T

σ2
nd

=
T

σ2
d

(
1 +

(
σd
σnd

)2
)

(4.2)

93



Then,

σd ≤ σnd

⇒
(
σd
σnd

)2

≤ 1

⇒ T

σ2
d

(
1 +

(
σd
σnd

)2
)
≤ 2T

σ2
d

⇒tEFR ≤ tFR.

(4.3)

Therefore, with σd ≤ σnd, the rendering time for head-mounted displays can

be reduced with non-perceivable difference between the foveated renderings for the

dominant eye and the non-dominant eye.

The theoretical speedup S achieved by EFR is shown in Equation 4.4:

S =
tFR
tEFR

=
2

1 +
(
σd
σnd

)2 ≥ 1. (4.4)

Next, we conduct user studies to validate that the non-dominant eye is able

to accept a higher level of foveation than the dominant eye, and also identify the

foveation parameters for the dominant and non-dominant eyes.

4.4 User Study

We have conducted two user studies: a pilot study and a main study to

identify the eye-dominance-guided foveated rendering parameters which can produce

perceptually indistinguishable results compared with non-foveated rendering.

4.4.1 Apparatus

Our user study apparatus consists of an Alienware laptop with an NVIDIA

GTX 1080 and a FOVE head-mounted display. The FOVE headset is integrated
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with a 120 Hz infrared eye-tracking system and a 2560 × 1440 resolution screen

(1280× 1440 per eye). We use an XBOX controller for the interaction between the

participant and the system. User studies took place in a quiet room.

As shown in Figure 4.2, the computer-generated environments consist of two

fireplace room scenes [18] and 8 scenes from the Amazon Lumberyard Bistro [19].

These scenes are rendered with the Unity game engine. To ensure that the participants

are familiar with the user study system, we requested the participants to complete

all the tasks for the trial run and familiarize themselves fully with the interaction

before the formal tests.

4.4.2 Pre-experiment: Dominant Eye Identification

In both of the pilot study and the main study, we use the Miles Test [97] to

measure the eye dominance for each participant before the start of the study.

First, the participant extends their arms out in front of themselves and creates

a triangular opening between their thumbs and forefingers by placing their hands

together at a 45-degree angle. Next, with both eyes open, the participant centers

the triangular opening on a goal object that is 20 feet away. Then, the participant

closes their left eye with their right eye open. Finally, the participant closes their

right eye with their left eye open. If the goal object stays centered with the right

eye open and is no longer framed by their hands with the left eye open, the right

eye is their dominant eye. If the goal object stays centered with the left eye open

and is no longer framed by their hands with the right eye open, the left eye is their
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dominant eye. The Miles Test is performed twice for each participant, and we record

the participant’s dominant eye and configure our renderer accordingly.

Scene 0 Scene 1 Scene 2 Scene 3 Scene 4

Scene 5 Scene 6 Scene 7 Scene 8 Scene 9

Figure 4.2: The scenes used for the user study. Scene 0 and Scene 1 are animated

fireplace room [18] and the other scenes are animated Amazon Lumberyard Bistro [19].

These scenes are rendered with the Unity game engine.

4.4.3 Pilot Study

We conduct a slider test and a random test in the pilot study. Each test

consists of two steps:

1. the participant estimates the Uniform Foveation Parameter σUF which is

acceptable for both the dominant eye and the non-dominant eye. We express

this condition as σd = σnd = σUF ;

2. the participant estimates the Non-dominant Eye Foveation Parameter σNF

that results in the same overall visual perception as the uniform foveation, by
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increasing the foveation level (reducing overall detail) of the rendering for the

non-dominant eye. We express this condition as: σd = σUF , σnd = σNF .

Participants We recruited 17 participants (5 females) at least 18 years old with

normal or corrected-to-normal vision via campus email lists and flyers. The majority

of participants had some experience with virtual reality. None of the participants

was involved with this project prior to the user study.

Slider Test The slider test allows the participants to navigate the foveation space

by themselves. We conduct the test with five different scenes with one trial for each

scene. We present the two-step study protocol as follows.

1. Estimation of σUF : In each trial, we first present the participant with the

full-resolution rendering as a reference. Next, we present the participant with the

same foveated rendering for both eyes and allow the participant to adjust the level

of foveation by themselves: starting with the highest level of foveation, σd = 3.0,

the participants progressively decrease the foveation level (with a step size of 0.2).

The participants can switch between the foveated rendering result and the reference

image back and forth until they arrive at the highest foveation level σUF (with the

lowest overall level of detail) that is visually equivalent to the non-foveated reference.

2. Estimation of σNF : In each trial, we present the participant the foveated

rendering with σd = σUF for the dominant eye, and allow the participant to adjust

the level of foveation for the non-dominant eye. Starting with σnd = σUF , the

participant can progressively increase the foveation level (with a step size of 0.2)
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until they reach the highest foveation level σNF that is perceptually equivalent to

the foveated rendering with uniform foveation parameter σUF .

Random Test The random test allows the participant to score the quality of the

foveated rendering with different parameters in a random sequence. We conduct

the test with five different scenes with one trial for each scene. The two steps are

detailed below.

1. Estimation of σUF : In each trial, we present the participant with two frames:

(1) the full-resolution rendering, and (2) the foveated rendering with σd = σnd = x,

where x is selected from the shuffled σ parameter array with σ ranging between 1.2

and 3.0 with a step size of 0.2. The two frames are presented in a random order. We

ask the participants to score the difference between the two frames they observe with

unlimited time to make their decision. The score SUF contains five confidence levels:

5 represents perceptually identical, 4 represents minimal perceptual difference, 3 rep-

resents acceptable perceptual difference, 2 represents noticeable perceptual difference,

and 1 represents significant perceptual difference.

We use a pairwise comparison approach and the participants finish the trials

with 1.2 ≤ x ≤ 3.0 in a random order. We choose the maximum x which results in

an evaluation of perceptually identical or minimal perceptual difference with respect

to the full-resolution (non-foveated) rendering, i.e.,

σUF = argmax
x

SUF (x) ≥ 4. (4.5)

2. Estimation of σNF : In each trial, we present the participant with two frames:

(1) foveated rendering with σd = σnd = σUF , and (2) foveated rendering with
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σd = σUF , σnd = x, where x is selected from the shuffled parameter array with

parameters ranging between σUF and 3.0 with a step size of 0.2. The two frames are

presented in random order. We ask the participants to score the difference between

the two frames with unlimited time to make their decisions. The score SNF contains

five confidence levels: 5 represents perceptually identical, 4 represents minimal

perceptual imbalance, 3 represents acceptable perceptual imbalance, 2 represents

noticeable perceptual imbalance, and 1 represents significant perceptual imbalance.

We choose the maximum x that results in perceptually identical or minimal

perceptual imbalance with respect to the uniform foveated rendering, i.e.,

σNF = argmax
x

SNF (x) ≥ 4. (4.6)

Results and Limitations of the Pilot Study From the pilot study, we find

that: for most users, the dominant eye significantly dominates the visual perception

and therefore eye-dominance-guided foveated rendering is likely to achieve significant

speedup. From the one-way ANOVA test, we did not find a significant effect of

the choice of scenes on the feedback (with p = 0.8708 > 0.01) for the slider test.

Therefore, σUF and σNF do not correlate with the choice of scenes in a statistically

significant manner. However, the pilot study yields a gap between the results of the

slider test and the random test as shown in Figure 4.3.

We next present the potential reasons for this gap and our strategies for

mitigating them:

1. Performing a single trial for each test per scene is likely to induce some

inaccuracy in parameter estimation. To mitigate this for the main study, we
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Figure 4.3: The average value of σUF and σNF in the slider and the random tests.

The pilot study yields a gap between the results of the slider and the random tests.
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Figure 4.4: The result of the slider test of the pilot user study. We observe that σNF

often reach our upper bound (3.0).
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Figure 4.5: The result of the slider test of the random user study. We observe that

σNF often reach our upper bound (3.0).

carry out three trials per scene per parameter;

2. In the pilot study, we use the maximum foveation parameter in Equations 4.5

and 4.6. We did this even if lower values of the foveation parameters led to an

unacceptable score below 4. This was leading us to overestimate the foveation

thresholds. In the main study, we use the greatest foveation parameter below

which the user did not report an average score below 4. While this may reduce

the speedups due to overall foveation, it will produce a higher perceptual

quality;

3. We observe that σNF often reach our upper bound (3.0) – 42.5% in the slider test

(as shown in Figure 4.4) and 60% in the random test (as shown in Figure 4.5).

We have therefore increased the upper bound of σNF from 3.0 to 4.0 in the

protocol of the main study;
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4. In pilot study, we did not qualitatively evaluate the similarity in perceptual

difference between EFR with the selected parameters and conventional foveated

rendering (KFR) or regular rendering (RR). We therefore decide to add a quality

evaluation in the main study.

Taking the above limitations and their mitigation strategies into account, we redesign

the main study as described below.

4.4.4 Main Study

We conduct a slider test and a random test in the main study. There are three

steps in both tests:

1. the participant estimates the Uniform Foveation Parameter σUF ;

2. the participant estimates the Non-dominant Eye Foveation Parameter σNF ;

3. the participant qualitatively evaluates whether the EFR frames with σd = σUF ,

σnd = σNF are perceptually the same with RR or traditional (non-dominant)

KFR.

We use Scene 3, Scene 5, and Scene 6 in Figure 4.2 for the parameter estimation in

Steps 1 and 2 above. We use all the 10 scenes in Figure 4.2 for the quality evaluation.

Participants We recruited 11 participants (4 females) at least 18 years old with

normal or corrected-to-normal vision via campus email lists and flyers. The majority

of participants had some experience with virtual reality. None of the participants

was involved with this project prior to the user study.
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Slider Test The slider test allows the participant to navigate the foveation quality

space by themselves.

1. Estimation of σUF : We conduct the test on three scenes with three trials per

scene. Therefore, there are 9 tests in total. For the n-th trial of scene m, we first

present the participant with the full-resolution rendering, as a reference. Next, we

present the participant with the same foveated rendering for both eyes and allow the

participant to adjust the level of foveation by themselves: starting with the highest

level of foveation, σd = 3.0, the participants progressively decrease the foveation level

(with a step size of 0.2). The participant can switch between the foveated rendering

result and the reference image back and forth until they can identify the lowest

foveation level σUF (m,n) that is visually equivalent to the non-foveated reference.

We calculate the mean uniform foveation parameter for scene m:

σUF (m) =
1

3

∑
n=1,2,3

σUF (m,n). (4.7)

We calculate the overall mean uniform foveation parameter:

σUF =
1

3

∑
m=1,2,3

σUF (m). (4.8)

2. Estimation of σNF : We conduct the test on three scenes with three trials

per scene. Therefore, there are 9 tests in total. For the n-th trial of scene m, we

present the participant the foveated rendering with σd = σUF (m) for the dominant

eye, and allow the participant to adjust the level of foveation for the non-dominant

eye: starting with σnd = σUF (m), the participants can progressively increase the

foveation level (with a step size of 0.2) until they reach the highest foveation level
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σNF (m,n) that is perceptually equivalent to the foveated rendering with uniform

foveation parameter σUF (m).
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Figure 4.6: Change of parameter σd and σnd in the slider test. In Step 1, estimation

of σUF , we present the participant with the same foveated rendering for both eyes

and the participant progressively decrease the foveation level until σd = σUF (m). In

Step 2, estimation of σNF , we present the participant the foveated rendering with

σd = σUF (m) for the dominant eye, and allow the participant to adjust the level of

foveation for the non-dominant eye. The participant can progressively increase the

foveation level until they reach the highest foveation level.

Figure 4.6 shows the change of parameters σUF and σNF in Step 1: Estimation

of σUF and Step 2: Estimation of σNF in each trial. We calculate the mean uniform

foveation parameter for scene m:

σNF (m) =
1

3

∑
n=1,2,3

σNF (m,n). (4.9)
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We calculate the overall mean uniform foveation parameter:

σNF =
1

3

∑
m=1,2,3

σNF (m). (4.10)

3. Quality evaluation: We conduct the A/B test on 10 scenes with two comparisons

(EFR vs. KFR and EFR vs. RR) per scene, and 1 trial per scene per comparison.

There are 20 trials in total. For scene m, we present the participant with two frames:

(1) EFR with σd = σUF , σnd = σNF and (2) RR or KFR with σd = σnd = σUF . The

two frames are presented in random order. Then we ask the participants to score the

difference between the two frames they observed with unlimited time to make their

decisions. The score S(m) contains five confidence levels: 5 represents perceptually

identical, 4 represents minimal perceptual difference, 3 represents acceptable perceptual

difference, 2 represents noticeable perceptual difference, and 1 represents significant

perceptual difference.

Random Test The random test allows the participant to score the quality of

foveated rendering with different parameters in a random sequence.

1. Estimation of σUF : We conduct the test on three scenes with 10 parameters

per scene, each with three trials. Therefore, there are 90 tests in total. For the n-th

trial of scene m, we present the participant with two frames: (1) the full-resolution

rendering, and (2) the foveated rendering with σd = σnd = x, where x is selected

from the shuffled parameter array with parameters ranging between 1.2 and 3.0 with

a step size of 0.2. The two frames are presented in a random order. Then, we ask

the participant to score the difference between the two frames they observed with

unlimited time to make their decision. The score SUF (m,n, x) contains five confidence
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Figure 4.7: The average value of σUF and σNF in the slider test and the random

test. A paired T-test reveals no significant difference (p = 0.8995 > 0.01) between

the result of the slider test and the result of the random test.

levels: 5 represents perceptually identical, 4 represents minimal perceptual difference, 3

represents acceptable perceptual difference, 2 represents noticeable perceptual difference

and 1 represents significant perceptual difference.

When the process is finished, we calculate the average score of all the trials for

scene m with foveation parameter x:

SUF (m,x) =
1

3

∑
n=1,2,3

SUF (m,n, x). (4.11)

We choose the minimum x which results in an evaluation of perceptually identical

or minimal perceptual difference with respect to the full-resolution (non-foveated)

rendering as σUF (m), i.e.,

σUF (m) = argmin
x

SUF (m,x) ≥ 4. (4.12)
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We calculate σUF using Equation 4.8.

2. Estimation of σNF : We conduct the test on three scenes with Q parameters for

scene m and three trials per scene per parameter. We compute Q using Equation 4.13

with σmax = 4.0 in the main study.

Q =
σmax − σUF (m)

0.2
+ 1 (4.13)

For the n-th trial of scene m, we present the participant with two frames: (1) foveated

rendering with σd = σnd = σUF (m), and (2) foveated rendering with σd = σUF (m),

σnd = x, where x is selected from the shuffled parameter array with Q parameters

ranging between σUF (m) and σmax = 4.0 with a step size of 0.2. The two frames are

presented in a random order. Then we ask the participants to score the difference

between the two frames they observed with unlimited time to make their decisions.

The score SNF (m,n, x) contains five confidence levels: 5 represents perceptually

identical, 4 represents minimal perceptual imbalance, 3 represents acceptable perceptual

imbalance, 2 represents noticeable perceptual imbalance and 1 represents significant

perceptual imbalance.

When the process is finished, we calculate the average score of all the trials for

scene m with foveation parameter x:

SNF (m,x) =
1

3

∑
n=1,2,3

SNF (m,n, x). (4.14)

We choose the minimum x which results in an evaluation of perceptually identical

or minimal perceptual imbalance with respect to the full-resolution (non-foveated)
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rendering as σNF (m), i.e.,

σNF (m) = argmin
x

SNF (m,x) ≥ 4. (4.15)

We calculate σNF using Equation 4.10.

3. Quality evaluation: The quality evaluation is the same as that of the slider

test.
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Figure 4.8: The average score in Step 1 ( Estimation of σUF ) and Step 2 (Estimation

of σNF ) over different scenes and different users in the random test. To achieve

perceptually identical and minimal perceptual difference between regular rendering

and foveated rendering, we therefore choose σUF = 2.0 and σNF = 3.0 as our desired

parameters.

108



4.4.5 Validity Test

Eye Tracking Data Analysis We collected eye-tracking data from the FOVE

HMD and would like to use it as a high-level validation to ensure that the participants

are focusing at the desired fovea location.

However, we have noticed obvious tracking errors during the process: sometimes

the eye-tracker fails to capture the movement of gaze and sometimes the tracked

gaze position changes when the user blinks while focusing at the center of the screen.

We also need to ensure that the users are paying attention to the user study instead

of randomly choosing the answers. Therefore, it may not be ideal to solely depend on

eye tracking results for judging the participants’ focus. We also use the participant’s

performance with respect to the ground truth data to determine the accuracy and

participant focus. We discuss this next.

Controlling for Lack of Attention and Exhaustion We randomly inserted

30% of the trials to be validation trials in the random test to ensure the validity of

the data in the pilot study and the main study. For uniform foveation parameter

estimation, we presented the participants with identical full-resolution rendering

results for both comparison frames as validation trials; for non-dominant eye foveation

parameter estimation, we presented the participants with identical rendering results

with σd = σnd = σUF for both comparison frames as validation trials. If the

participant declared these validation trials to have a low score for similarity (3 or

lower), we would ask the participant to pause and take a break for at least 30 seconds,
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and then continue the user study. Meanwhile, we would record this choice as an error.

If error ≥ 5 in the random test, we would terminate the user study and discard the

data of this participant. Based on this protocol, we discard one participant from

the pilot study and mark the remaining 16 participants as valid data. All the 11

participants in the main study passed the validation trials.

Comparison Score = 1 Score = 2 Score = 3 Score = 4 Score = 5

Slider: EFR vs. RR 0.00% 2.73% 8.18% 17.27% 71.82%

Slider: EFR vs. KFR 0.00% 4.55% 10.91% 30.00% 54.55%

Random: EFR vs. RR 0.00% 0.00% 0.91% 14.55% 84.55%

Random: EFR vs. KFR 0.00% 0.91% 3.64% 25.45% 70.00%

Table 4.1: The score frequency for different comparisons in the slider test and the

random test. We notice that P (score ≥ 4) ≥ 85% for both comparisons in the slider

test and that P (score ≥ 4) ≥ 95% for both comparisons in the random test. The

result indicates the generalizability of eye-dominance-guided foveated rendering.

4.5 Results and Acceleration

In our main user study, the number of errors in the attention and exhaustion

checking is less than 5 over all the participants. We use the results from all the 11

participants for data analysis.
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4.5.1 Parameters Estimated with Different Scenes

We conducted a one-way ANOVA test [98, 99] of the null hypothesis that the

choice of scenes has no effect on the feedback of the participants. With the slider

test, we did not find a significant effect of the choice of scenes on the feedback (with

p = 0.9782 > 0.05).

4.5.2 Results of σUF and σNF

For user i, we consider the averages of σUF (Equation 4.8) and σNF (Equa-

tion 4.10) over different scenes as the per-user foveation parameter for the dominant

eye σUF,i and non-dominant eye σNF,i . We present these results in Figure 4.7.

We first verified if there is a significant difference of the measured parameters

(σUF and σNF ) between the slider test and the random test. With a paired T-test,

we did not find a significant effect between the slider test and the random test (with

p = 0.8995 > 0.05).

The paired T-test shows that the EFR parameters are stable with different

experimental setups. We therefore take the average of slider test and the random

test as the final parameters to test the rendering acceleration.

We further conducted statistical analysis on the difference between σUF and

σNF . With a paired T-test, we found a significant effect that the foveation parameter

σUF required for the non-dominant eye is higher than the foveation parameter σNF for

the dominant eye (with p = 7.0530×10−10 < 0.05). Hence, we reach a conclusion that

the disparity between the visual acuity in the dominant eye and the non-dominant
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eye is significantly different for the users.

For the random test, we also present the average score in Step 1 (estimation

of σUF ) and Step 2 (estimation of σNF ) over different scenes and different users as

shown in Figure 4.8. We notice that both SUF and SNF decrease with the increase

of the foveation parameter. To achieve perceptually identical and minimal perceptual

difference between regular rendering and foveated rendering for most users, we may

choose σUF = 2.0 and σNF = 3.0 as the desired parameters.

4.5.3 Quality Evaluation

We analyzed whether there exists a significant difference of the quality evalua-

tion results between the slider test and the random test. With the paired T-test, we

did not find a significant effect between the slider test and the random test (with

p = 0.8629 > 0.05).

We further verified if there exists a significant difference of the quality evaluation

results between the experiment of EFR vs. KFR and the experiment of EFR vs RR.

With a paired T-test, we found no significant difference between the result of the

two experiments (with p = 0.9410 > 0.05).

The frequency from score = 1 to score = 5 is shown in Table 4.1. We

notice that P (score ≥ 4) ≥ 85% for both comparisons in the slider test and that

P (score ≥ 4) ≥ 95% for both comparisons in the random test. The result indicates

the generalizability of eye-dominance-guided rendering. We can get acceptable

perceptual quality that on different scenes with the measured parameters from the
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user study.

4.5.4 Rendering Acceleration

 

User 01 User 02 User 03 User 04 User 05 User 06 User 07 User 08 User 09 User 10 User 11
RR (fps) 21 21 21 21 21 21 21 21 21 21 21
KFR (fps) 37 47 47 47 51 36 36 35 37 36 36
EFR (fps) 52 53 53 50 57 53 53 47 48 46 48
Speedup (KFR vs. RR) 1.76 2.24 2.24 2.24 2.43 1.71 1.71 1.67 1.76 1.71 1.71
Speedup (EFR vs. RR) 2.48 2.52 2.52 2.38 2.71 2.52 2.52 2.24 2.29 2.19 2.29
Speedup (EFR vs. KFR) 1.41 1.13 1.13 1.06 1.12 1.47 1.47 1.34 1.30 1.28 1.33

0

0.5

1

1.5

2

2.5

3

Sp
ee

du
p

Speedup of eye-dominance-guided foveated rendering

Speedup (KFR vs. RR) Speedup (EFR vs. RR) Speedup (EFR vs. KFR)

Figure 4.9: The measured frame-rates (in fps) and the speedups. The speedups

of the eye-dominance-guided foveated rendering (EFR) compared with the original

kernel foveated rendering (KFR) ranges between 1.06× and 1.47× with an average

speedup of 1.35×. The speedups of EFR compared with regular rendering (RR)

ranges between 2.19× and 2.71× with an average speedup of 2.38×.

We have implemented the eye-dominance-guided foveated rendering pipeline in

C++ 11 and OpenGL 4 on NVIDIA GTX 1080 to measure the rendering acceleration.

We report our speedups based on the sophisticated Amazon Lumberyard Bistro

dataset [19] at the resolution of 1280× 1440 per eye. The frame-rates and speedups

of the original kernel foveated rendering (KFR) and the eye-dominance-guided

foveated rendering (EFR) compared with traditional regular rendering (RR) are
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shown in Figure 4.9. The speedup of the eye-dominance-guided foveated rendering

compared with the original kernel foveated rendering ranges between 1.06× and

1.47× with an average speedup of 1.35×.
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Chapter 5: Hand Mesh Reconstruction from RGB Images

5.1 Overview

Hands play an important role in our daily life. An approach that could

detect the shape and gesture of the human hand from RGB images would enable

new applications in virtual and augmented reality [100,101] and human-computer

interaction [102–105]. However, the current state-of-the-art approaches do not provide

a good solution because of the depth and scale ambiguities. In recent years, deep

learning is playing an important role in visual interactions [106] by providing success

in hand pose reconstruction from a depth image [107,108], hand pose reconstruction

from a RGB image [109, 110], as well as hand mesh reconstruction from a RGB

image [20, 21,111]. Here, I focus on the hand reconstruction with only RGB images

as input. This is significantly more challenging than hand reconstruction when the

depth data is also available as an auxiliary feature.

Our contributions include:

• building a new dataset of the hand by fitting a hand model to 74, 715 3D joint

annotations in the Panoptic Studio dataset to solve the problem of sparse

training annotation;
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• designing an end-to-end neural network, which accepts a RGB image and the

auxiliary features as inputs and predicts a 3D hand mesh of the right hand

that could be projected onto the RGB image and match the 2D hand in shape

and pose;

• evaluating our research in terms of 3D pose estimation on various public

datasets.

5.2 Related Work

5.2.1 Hand Model

Taylor et al. [112] presents a method for acquiring dense shape and deformation

from a single monocular depth sensor. Khamis et al. [113] propose the first learning-

based subject-specific hand shape variation from scans with linear blend skinning.

The MANO (hand Model with Articulated and Non-rigid defOrmations) model [114]

is a hand deformation model based on the SMPL [115] model for human bodies.

MANO models both hand shape and pose, thus generating realistic posed meshes.

5.2.2 Hand Skeleton Reconstruction from Multiview

The multi-view image processing techniques could be utilized to refine the

hand reconstruction models. Campos and Murray [116] use the relevance vector

machine-based learning for hand pose recovery. Sridhar et al. [117] propose a real-

time markerless hand tracking approach which employs an implicit hand shape
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representation based on sum of anisotropic Gaussians and minimizes the sum of the

pose fitting energy. Simon et al. [109] propose a multi-view hand pose prediction

system which uses a pretrained weak predictor to estimate the hand pose and

retrain an improved detector by annotating the failed detection with the re-projected

successful detection.

5.2.3 Hand Mesh Reconstruction from Singleview

Boukhayma et al. [21] predict both 3D hand shape and pose from RGB

images with heatmaps in the wild. Their pipeline consists of the concatenation

of a deep convolutional encoder (ResNet-34), and a MANO decoder. Zhang et

al. [118] concatenate the autoencoder with an iterative regression block and refine the

estimated parameter iteratively. Ge et al. [111] and Baek et al. [119] use a stacked

hourglass network to predict heatmaps as the auxiliary feature and predict the hand

mesh with a convolutional neural network. Kulon et al. [20] learn the prior on 3D

hand shapes by training an autoencoder with intrinsic graph convolutions performed

in the spectral domain. Kulon et al. [120] solve the problem of sparse supervision

by gathering a large-scale dataset of hand action in YouTube videos and use it as a

source of weak supervision. They propose an autoencoder system with ResNet-50 as

the encoder and a spatial mesh convolutional decoder.
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Figure 5.1: The pipeline of the ground truth mesh generation.
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5.3 Estimation of the Hand Mesh

5.3.1 Datasets

We use the CMU Panoptic Dataset [121] for hand mesh estimation. For each

scene, there are 31 videos captured with HD synchronized cameras. The dataset also

contains camera information, visibility of the hands from the target cameras, and

the 3D joint annotations in the world space.

5.3.2 Pipeline

The pipeline of the estimation of the hand mesh is shown in Figure 5.1. For

each hand image in the Panoptic Dataset with 3D joint annotation JI , we predict a

3D hand mesh generated with the MANO model by minimizing the error between

the 3D joint annotation JI in the image coordinates and the predicted 3D joints

in the image coordinates ĴI by predicting the parameters for rotation rot, shape β,

pose θ, scaling s, and translation t. By accepting β and θ as inputs, the MANO

decoder M(rot, θ, β) decodes a hand mesh ĤMANO in the local object coordinates

(including the hand joint information ĴMANO and the hand vertex information V̂MANO

in the local object coordinates), ĤMANO is projected to the world coordinates ĤW

(including hand joints ĴW and hand vertices V̂W in the local object coordinates)

with the guidance of r, s and T . And ĤW is projected to the image coordinates ĤI

(including hand joints ĴI and hand vertices V̂I in the local object coordinates) to

match the hand in the RGB image with ground truth camera extrinsic parameters
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R and T and camera intrinsic parameter K.

{rot∗, θ∗, β∗, s∗, t∗}

= argmin
rot,θ,β,s,t

L(JI , ĴI)

= argmin
rot,θ,β,s,t

L(JI ,P(ĴMANO, ŝ, t̂, K,R, T ))

= argmin
rot,θ,β,s,t

L(JI ,P(M(rot, θ̂, β̂), ŝ, t̂, K,R, T )),

(5.1)

Instead of modelling the joint angles as free variables, which can lead to physi-

cally implausible hand, we constrain the pose parameters and the shape parameters

to lie in the convex hull of the pre-computed cluster centers [120]. We obtained the

cluster centers by applying k-means on the FreiHAND [122] dataset and cluster the

pose parameters and the shape parameters into 32 clusters. In the fitting process, we

predict the angle weights wClusterID with ClusterID ∈ [1, 32] and calculate the pose

and shape parameters as shown in Equation 5.2.

[θ, β] = P (w) =

∑32
ClusterID=1 exp(wClusterID)PClusterID∑32

ClusterID=1 exp(wClusterID)
(5.2)

where F (XMANO, s, t,K,R, T ) finishes the scaling and translation of XMANO,

which could be the predicted joints ĴMANO or the predicted vertices V̂MANO:

P(XMANO, s, t,K,R, T ) =K[R|T ] ·XW

=K[R|T ] · (sXMANO + t)

(5.3)
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5.3.3 Training Objective

We combine multiple losses to predict the parameters: a 3D joint loss in the

camera coordinates Ljoint, a bone length loss Lbone, and a regularization term Lreg.

L = αjointLjoint + αboneLbone + αregLreg (5.4)

3D joint loss Ljoint: We project the predicted hand joints from the world coor-

dinates ĴW to the i-th camera coordinates ĴC,i, calculate the joint error between

ĴC,i and the ground truth hand joints in the camera coordinates JC,i by taking the

weighted sum of the joint error of the hand root (ROOT), metacarpophalangeal

(MCP), proximal interphalangeal (PIP), distal interphalangeal (DIP) and the finger

tips (TIP).

Finally we calculate the sum of the joint error of all the 31 camera coordinates

as shown in Equation 5.5.

Ljoint =
31∑
k=1

L(JC,k − ĴC,k)

=
31∑
k=1

(αMCP||JMCP − ĴMCP||2

αPIP||JPIP − ĴPIP||2+

αDIP||JDIP − ĴDIP||2+

αTIP||JTIP − ĴTIP||2+

αROOT||JROOT − ĴROOT||2)

(5.5)

Bone length loss Lbone: The 21 hand joints could be interpreted as 20 groups

of bone edges (BE). The loss of bone length ensures that the lengths of the bones
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coincide with the ground truth hand bone lengths.

Lbone =
31∑
k=1

∑
(i,j)∈BE

|JC,k,i − ĴC,k,j| (5.6)

Regularization Lreg: The regularization term ensures that the predicted hand is

physically plausible.

Lreg = αθ||θ||2 + αβ||β||2 (5.7)

The regularization parameters αθ = 10−1 and αβ = 103 are chosen experimentally.

5.3.4 Optimization

We use the Adam optimizer [123] with different learning rates for the rotation

rot, scaling s, translation t, and the MANO parameter weights W#Cluster×(|β|+|θ|) with

#Cluster = 32. The optimizer is used with small learning rate decay (multiplicative

factor of 0.95) when loss ≤ 150. We fit 2048 groups of frames per batch on GeForce

RTX 2080 which takes on average 40 min.

5.3.5 Evaluation Metric and Result

We use F-score [124] to evaluate the quality of the generated hand mesh and

we accept F@10mm = 1 as acceptable.

We used 11 scenes from the Panoptic Dataset containing 241, 008 valid frames

with physically plausible hands and 3D annotation in 31 cameras for the fitting and

got 48, 955 mesh with F@10mm = 1 in the multiview fitting and 47, 954 mesh with
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Figure 5.2: The qualitative results of hand mesh estimation from joints.
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F@10mm = 1 in the temporal-multiview fitting. The qualitative results are shown

in Figure 5.2.

5.4 Hand Reconstruction from RGB Images

5.4.1 Overview

We propose to reconstruct a 3D hand mesh from a single RGB image as

illustrated in Figure 5.3. The RGB image of the hand I is passed to a pre-trained

multi-stage convolutional neural network [125] to predict the heatmaps H for the 21

hand joints. The RGB image I and the heatmaps H are stacked and encoded to

camera embedding and mesh embedding in the Resnet-34 [126] encoder. The mesh

embedding is decoded into a hand mesh H̃ in the camera coordinates, and projected

to the image coordinates using a weak perspective camera created with the camera

embedding.

5.4.2 Encoder

The encoder takes an RGB image I and the heatmaps H as the input and uses

the Resnet-34 [126] network pretrained on the ImageNet [127] classification task.

The output of the encoder is a vector rot, s, T, θ, β ∈ R61. The mesh embedding

containing the pose parameter θ and the shape parameter β are passed to the decoder.

And the camera embedding including the Rodrigues rot, scaling s, and translation

T is fed into a weak perspective camera system, which projects the hand mesh from

the camera coordinates to the image coordinates.
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Figure 5.3: The pipeline of the hand Reconstruction from RGB Images.
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5.4.3 Decoder

The differentiable MANO decoder is used to recover 3D hand meshes from

the mesh embedding. The output is a MANO hand deformation in the camera

coordinates.

5.4.4 Training Objective

We train the network with the estimated dense supervision and we combine

multiple losses:

2D joint loss Ljoint: We calculate the 2D joint loss in the image coordinates,

which is the joint error between the predicted 2D joints and the ground truth 2D

joints:

LJ = ||J2D − ˜J2D||2 (5.8)

Embedding loss Lembedding: The embedding loss Lembedding enforces the consis-

tency between the predicted embedding { ˜rot, s̃, T̃ , θ̃, β̃} and the ground truth embed-

ding {rot, s, T, θ, β} estimated from the fitting process as described in Chapter 5.3:

Lembedding = αs||s− s̃||22 + αT ||T − T̃ ||22 + αrot||rot− ˜rot||22

+ αθ||θ − θ̃||22 + αβ||β − β̃||22,
(5.9)

where αs = 10−2, αT = 10−4, αrot = 102, αβ = αθ = 1.
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5.5 Results and Comparisons

5.5.1 Experimental Setup

Implementation: Our network is implemented in PyTorch [128]. Before training,

the weights of the encoder are initialized with the weights of an image classification

model pre-trained on the ImageNet [127] dataset. The network is trained end-to-end

using the Adam optimizer [123] with mini-batches of size 32. The learning rate is

set as 10−5 and we keep the default values for other parameters.

Training and Testing: For the Panoptic dataset with fitted ground truth, we hold

out 6284 randomly-selected samples as the test data, 6393 samples as the validation

data, and use the remaining 62038 samples as the training data. We use RGB image

crops of human hands with a resolution of 256× 256 as the input. The ground truth

hand joints are used to find the tightest bounding box B0(w0, h0), and the images are

cropped with a squared patch of size B1(2.2max(w0, h0), 2.2max(w0, h0)) centered

at the same 2D position as B0. The new patches resized to 256× 256 are used as

the input RGB images. We report the mesh estimation result using the autoencoder

trained for 450 epochs.

5.5.2 Quantitative Evaluation of 3D Hand Mesh Estimation

We report the performance of the 3D hand mesh estimation with two metrics:

• 2D/3D PCK: the percentage of correct keypoints (PCK) of which the Euclidean
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Figure 5.4: Qualitative evaluation results of the fitted hand mesh (the second

column), our hand reconstruction approach (the third column), Kulon et al. [20]

(the fourth column), and Boukhayma et al. [21] (the fifth column).
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Figure 5.5: Qualitative evaluation results of the fitted hand mesh (the second

column), our hand reconstruction approach (the third column), Kulon et al. [20]

(the fourth column), and Boukhayma et al. [21] (the fifth column).
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Figure 5.6: Qualitative evaluation results of the fitted hand mesh (the second

column), our hand reconstruction approach (the third column), Kulon et al. [20]

(the fourth column), and Boukhayma et al. [21] (the fifth column).
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error distance is below a specific threshold;

• AUC: the area under the curve (AUC) on the 2D/3D PCK for different error

thresholds.

We compare our approach with the state-of-the-art 3D hand mesh estimation methods

on the Panoptic Dataset. Specifically, we report the results from the approaches of

Boukhayma et al. [21] and Kulon et al. [20]. We use the implementations provided by

the authors and fine-tune the model of Boukhayma et al. [21] on the Panoptic Dataset.

The approach of Kulon et al. [20] has already been trained with the Panoptic Dataset

so we use the model provided by the authors directly for evaluation.

The 2D PCK and 3D PCK curves over different error thresholds are presented

in Figure 5.7. Because we are using weak perspective camera for projection, we

evaluate the 3D PCK after depth alignment in the camera coordinates. Our method

outperforms the two state-of-the-art methods over all the evaluation metrics.

5.5.3 Qualitative Evaluation of 3D Hand Mesh Estimation

The qualitative results of 3D hand mesh reconstruction appear in Figures 5.4

to 5.6.

5.5.4 Ablation Study

Ablation Study of Loss terms: We evaluate the impact of the embedding loss

Lembedding and the joint loss Ljoint in the fully supervised training. As shown in

Figure 5.9, the model trained with only the embedding loss might make a large
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Figure 5.7: 2D PCK our hand reconstruction approach, Kulon et al. [20], and

Boukhayma et al. [21]. Our method outperforms the other methods in AUC.
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Figure 5.8: 3D PCK our hand reconstruction approach, Kulon et al. [20], and

Boukhayma et al. [21]. Our method outperforms the other methods in AUC.

133



prediction error by wrongly predicting a parameter such as rotation or translation.

The model trained with only the joint loss might generate a twisted (physically im-

plausible) hand to minimize the joint error. The PCK curve presented in Figure 5.10

also shows that the model trained with the sum of joint loss and parameter loss as

the objective achieves the best performance.

Figure 5.9: Qualitative evaluation results of the fitted hand mesh (the second column),

our hand reconstruction approach (the third column) with the sum of joint loss

and parameter loss as the objective, our hand reconstruction approach (the fourth

column) with the parameter loss as the objective, and our hand reconstruction

approach (the fifth column) with the joint loss as the objective.
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Figure 5.10: 3D PCK of our hand reconstruction approach with the sum of joint

loss and parameter loss as the objective, our hand reconstruction approach with the

parameter loss as the objective, and our hand reconstruction approach with the joint

loss as the objective.

Ablation Study of Input Type: We evaluate the impact of the RGB image

and the heatmaps in the fully supervised training. We train the autoencoder for

450 epochs with RGB image and heatmaps, with only RGB images, and with only

heatmaps. As shown in Figure 5.11, the model trained with only the RGB image

and the model trained with only the heatmaps predicts wrong pose or hand rotation.

The PCK curve presented in Figure 5.12 shows that the model trained with the

RGB images and the heatmaps achieves the best performance in the hand mesh
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estimation, which indicates that both inputs contribute to the improvement.
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Figure 5.11: Qualitative evaluation results of the fitted hand mesh (the second

column), our hand reconstruction approach (the third column) with the RGB image

and heatmaps as inputs, our hand reconstruction approach (the fourth column) with

the RGB image as input, and our hand reconstruction approach (the fifth column)

with heatmaps as input.
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Figure 5.12: 3D PCK of our hand reconstruction approach with the RGB image

and heatmaps as inputs, our hand reconstruction approach with the RGB image as

input, and our hand reconstruction approach with heatmaps as input.
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Chapter 6: Conclusion and Future Work

In this dissertation, I have presented my research to enhance visual and and

gestural fidelity for effective visual environments.

In Kernel Foveated Rendering [30], I have presented the kernel log-polar

mapping model and conducted user studies for finding the best parameters, as well

as a GPU-based implementation and quantitative evaluation of the kernel foveated

rendering pipeline. With high frame rates, the KFR pipeline allows rendering

more complex shaders (e.g., real-time global illumination and physically-based

rendering [129]) in real time, thus bringing higher power efficiency and better user

experience for 3D games and other interactive visual computing applications.

Even though I have devised an efficient and effective foveated rendering pipeline,

my system is not without some limitations.

Foveation Parameters As discussed in Hsu et al. [130], the perceived quality of

foveated rendering systems is highly dependent on the user and the scene. As the

initial step towards kernel foveated rendering for 3D graphics, the user study in this

project is only designed for selected static scenes. The foveation parameters may

vary in dynamic scenes. Exploring the relationship between user demographic (e.g.,

pupil size, contrast sensitivity, vision condition, and diopter), perception time [26]
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(a) original scene 𝐹𝐹𝐼𝐼 (b) foveated scene 𝐹𝐹𝐼𝐼

(c) original scene 𝐹𝐹𝐼𝐼𝐼𝐼 (d) foveated scene 𝐹𝐹𝐼𝐼𝐼𝐼

Figure 6.1: Temporal flickering issue. The original scene and the foveated scene of

two consecutive frames (FI and FII). In FI , the specular reflection in the original

scene as shown in the red and blue circles in the zoomed-in view of (a) are amplified

in the foveated scene as shown in the zoomed-in view of (b). In the next frame

FII , the specular reflection in the original scene as shown in the pink circle in the

zoomed-in view of (c) is amplified in the foveated scene as shown in the zoomed-in

view of (d).
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and display-dependent parameters of KFR is a potential future direction.

Temporal Flickering In the post-processing stage, I have applied TAA to tackle

the temporal flickering problem. However, in fly-through of the scene with glossy

objects, I notice that view-dependent specular reflection changes before and after

applying KFR. As shown in Figure 6.1, foveation amplifies the specular reflection

regions, and makes the specular highlights flicker more.

Other Mapping Algorithms and Kernel Functions KFR makes intuitive

sense as the log-polar mapping has an initial resolution proportional to e−r, and the

kernel functions can fine tune this mapping. My choice of kernel functions is not

unique; other mapping algorithms with different kernel functions could provide a

better mapping to the human vision system. As shown in Figure 6.2, Koskela et

al. [131] implement a path traced frame in Visual-Polar space. The visual polar space

performs better than log-polar space in reducing distracting artifacts.

In 3D-kernel Foveated Rendering for Light Fields [23], I have presented a novel

approach to accelerate the interactive visualization of high-resolution light fields.

We conduct user studies to determine the optimal foveation parameters to validate

the 3D-KFR pipeline in practice. According to the quantitative experiments, our

methods accelerate the rendering process of large-scale, high-resolution light fields

by a factor of up to 7.28× at the resolution of 25× 25× 1024× 1024.

Our algorithm is effective in rendering high resolution light fields using foveation

for virtual reality HMD with low latency, low power consumption and minimal
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Figure 6.2: Illustration of a path traced frame in Visual-Polar space, the denoised

result transformed into Cartesian screen space, and the distribution of the path

tracing samples in screen space. Path tracing and denoising in Visual-Polar space

makes both 2.5× faster.

perceptual differences. With the increase of VR headset resolution and the growth

of the VR market, we envision that 3D-KFR may inspire further research in the

foveated rendering of high-resolution light fields.

There are several possibilities to further improve our algorithm.

Foveation Parameters Our choice of the relationship between σ0, σ1, and σ2

is not unique. Other sigma arrays may provide a higher speedup. However, the

trade-off between rendering quality and foveation parameter σ always exists. It is

desirable to further explore the relationship between rendering quality and σ.

In Eye-dominance-guided Foveated Rendering [31], I have presented the EFR

pipeline, which achieves a significant speed-up by rendering the scene in the dominant

eye with a lower foveation level (higher detail) and rendering the scene in the non-

142



dominant eye with a higher foveation level (lower detail). This technique takes

advantage of the ocular dominance property of the human visual system, and

leverages the difference in acuity and sensitivity between the dominant eye and

the non-dominant eye. Our approach can be easily integrated into the current

rasterization rendering pipeline for head-mounted displays. We envision that EFR

would be also beneficial to data streaming for networked VR/AR applications such

as Montage4D [132], Geollery [133,134], AR surgery [135], and memory palaces [136]

by reducing the bandwidth requirements.

Temporal Artifacts One of the grand challenges in foveated rendering is handling

artifacts due to temporal aliasing of moving objects [137], phase-aligned aliasing [88],

and saliency-map based aliasing [138]. Since the eye-dominance-guided foveated

rendering relies on different levels of foveation for the two eyes, such challenges are

likely to be even greater. We plan to study and address these challenges in future.

Personalized VR Rendering Ocular dominance studies [139] indicate that 70%

of the population is right-eye dominant and 29% is left-eye dominant. Thus, we expect

that most users stand to benefit from eye-dominance-guided foveated rendering. In

terms of personalized VR rendering, prior art has investigated how to personalize

spatial audio for virtual environments using head-related transfer functions based on

the ears’ shape [140]. Further research may investigate how to enhance the visual

experience of a user based on the eye prescription.
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Further Leveraging Human Perception An important argument in the study

of visual direction is that there is a center or origin for judgments of visual direction

called cyclopean eye [141]. Elbaum et al. [142] demonstrates that tracking accuracy

is better with the cyclopean eye than with the dominant and non-dominant eye. Xia

and Peli [143] propose a perceptual space model for virtual reality content based on

the gaze point of the cyclopean eye. How the human visual system integrates the

input from the two eyes into a cyclopean vision and how virtual reality in general,

and foveated rendering in particular, could leverage it to improve visual quality and

efficiency is deeply intriguing. We plan to delve into exploring how the foveated

rendering system could be integrated with the cyclopean eye to further improve the

immersive viewing experience and enhance the interaction accuracy between HMD

and users.

In Hand Reconstruction from RGB Images, I have presented an end-to-end

convolutional neural network that predicts 3D hand shape and pose from a single

RGB image. The proposed research solves the problem of sparse training annotation

by fitting a 3D deformation model to 74, 715 3D possible joint conformations and

improves the quality of estimation. We envision that the proposed approach could

be used in multiple application scenarios in the field of human-computer interaction

and virtual and augmented reality.There are improvements that we can make to

enhance the user’s immersive experience.

Texture Reconstruction The first research direction is to predict the hand

texture for the estimated hand mesh. We plan to use a captured hand texture as the
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template and use another neural network to predict the surface texture parameters

such as the hand color and roughness. We could use the texture template and

the surface texture parameters to synthesize a texture that will be attached to the

estimated hand for visualization.

Hand Interaction The second challenge is to tackle potential problems like the

interaction between the two hands. Mueller et al. [144] focuses on the hand interaction

captured from depth cameras. Because depth data is not available in most VR

headsets, it will be desirable to focus on handling inter-hand and intra-hand collisions

with only a sequence of RGB images as input.

Finally, it will be interesting to develop a real-time VR application that accepts

the video from the inside-out camera as the input, predicts the hand mesh from the

video, and visualizes the predicted hand mesh.
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Journal of Microscopy, 235(1):50–58, 2009.

150



[60] Kashinath D Patil. Cochran’s q test: Exact distribution. Journal of the American
Statistical Association, 70(349):186–189, 1975.

[61] Margarita Vinnikov and Robert S Allison. Gaze-contingent depth of field in realistic
scenes: The user experience. In Proceedings of the Symposium on Eye Tracking
Research and Applications, pages 119–126. ACM, 2014.

[62] Nir Benty, Kai-Hwa Yao, Tim Foley, Anton S. Kaplanyan, Conor Lavelle, Chris
Wyman, and Ashwin Vijay. The Falcor rendering framework, 07 2017.

[63] Frank W Weymouth. Visual sensory units and the minimal angle of resolution.
American Journal of Ophthalmology, 46(1):102–113, 1958.

[64] Chang Ha Lee, Amitabh Varshney, and David Jacobs. Mesh saliency. ACM
Transactions on Graphics (Proceedings of SIGGRAPH 2005), 24(3):659 – 666, August
2005.

[65] Youngmin Kim, Amitabh Varshney, David Jacobs, and Francois Guimbretere. Mesh
saliency and human eye fixations. ACM Transactions on Applied Perception, 7(2):1 –
13, 2010.

[66] Hsueh-Chien Cheng, Antonio Cardone, Eric Krokos, Bogdan Stoica, Alan Faden,
and Amitabh Varshney. Deep-Learning-Assisted Visualization for Live-Cell Images.
In Proceedings of 2017 IEEE International Conference on Image Processing, ICIP.
IEEE, September 2017.

[67] Y. Wan, H. Otsuna, C. Chien, and C. Hansen. An Interactive Visualization Tool
for Multi-Channel Confocal Microscopy Data in Neurobiology Research. IEEE
Transactions on Visualization and Computer Graphics, 15(6):1489–1496, Nov 2009.

[68] M. Hadwiger, J. Beyer, W. Jeong, and H. Pfister. Interactive Volume Exploration of
Petascale Microscopy Data Streams Using a Visualization-Driven Virtual Memory
Approach. IEEE Transactions on Visualization and Computer Graphics, 18(12):2285–
2294, Dec 2012.

[69] K. Mosaliganti, L. Cooper, R. Sharp, R. Machiraju, G. Leone, K. Huang, and J. Saltz.
Reconstruction of Cellular Biological Structures From Optical Microscopy Data.
IEEE Transactions on Visualization and Computer Graphics, 14(4):863–876, July
2008.

[70] Hsueh-Chien Cheng, Antonio Cardone, Somay Jain, Eric Krokos, Kedar Narayan,
Sriram Subramaniam, and Amitabh Varshney. Deep-learning-assisted Volume Visu-
alization. IEEE Transactions on Visualization and Computer Graphics, PP(99):1–14,
January 2018.

[71] Hsueh-Chien Cheng, Antonio Cardone, and Amitabh Varshney. Volume Segmentation
Using Convolutional Neural Networks With Limited Training Data. In Proceedings
of 2017 IEEE International Conference on Image Processing, ICIP. IEEE, September
2017.

151



[72] Marc Levoy, Ren Ng, Andrew Adams, Matthew Footer, and Mark Horowitz. Light
Field Microscopy. ACM Trans. Graph, 25(3):924–934, 2006.

[73] Robert Prevedel, Young-Gyu Yoon, Maximilian Hoffmann, Nikita Pak, Gordon
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