Structural Optimization in a
Distributed Computing Environment

by B.K. Voon and M.A. Austin

TECHNICAL
RESEARCH
REPORT

Supported by the
National Science Foundation

Engineering Research Center
Program (NSFD CD 8803012),
Industry and the University

TR 91-104

Structural Optimization in a

Distributed Computing Environment!’

By B.K. Voon?, and M.A. Austin, A.M. ASCE?

ABSTRACT

This report presents the formulation and testing of a Feasible Sequential Quadratic
Programming (FSQP-DIS) optimization algorithm customized to a Distributed Numerical
Computing environment (DNC). DNC utilizes networking technology and an ensemble of
loosely coupled processors to compute structural analyses concurrently. Each iterate of
the FSQP-DIS is partitioned for concurrent computations in the direction calculation, and
the steplength calculation. The prototype environment is tested on three applications; a
mathematical programming problem, the design of a two-story planar steel frame, and
finally, the optimal design of a two-story three-dimensional steel frame.

1 This research was supported by the National Science Foundation’s Initiation Grant NSF BCS 8907722,

by the NSF Engineering Research Centers Program: NSFD CDR 8803012, and by the AFSOR University

Research Initiative Program under grant AFSOR-90-0105.

2 Graduate Research Assistant, Department of Civil Engineering and Systems Research Center, Uni-

versity of Maryland, College Park, MD 20742, USA.

3 Assistant Professor, Department of Civil Engineering and Systems Research Center, University of

Maryland, College Park, MD 20742, USA.

TABLE OF CONTENTS

1 INTRODUCTION
1.1 Optimization-Based Structural Design
1.2 Parallel versus Distributed Computing
1.3 Objectives and Scope
1.4 Overview of Algorithm Structure

1.5 Reading Level,

-1 O Ot DO =

2 DISTRIBUTED NUMERICAL COMPUTING ENVIRONMENT

8
2.1 Introduction 8
2.2 Architecture of DNC Environment 9
2.3 Background to Socket-Based Interprocess Communication . . . 10
23.1 IPCLibrary 11
2.4 UserlInterface 12
2.5 Remote Simulators L. 15
2.6 Process Manager, 16
2.6.1 Lightweight Processes 17
2.6.2 Threads Package from Brown University 19
2.6.3 Use of Monitors within THREADS package 21
2.6.4 Optimization/Numerical Algorithm 21
265 Caretaker L L L L 22
2.6.6 Dispatcher Threads 22
2.7 Message Passing Mechanisms and Data Structures 23
2.7.1 Details of Sending and Receiving Messages 24
2.8 Building Queues of Tasks and Simulation Responses 26
2.9 Synchronization of States within Process Manager 29
2.9.1 Scope of Monitor in Process Manager 30
2.9.2 Interplay of Process Manager Threads 31

2.10 Setting Up the DNC Architecture 40

3.1 Introduction
3.2 ISQP Version 2.0 Optimization Algorithms
3.3 Details of FSQP-AL Algorithm
3.4 Distributed Computing Version of FSQP

3.4.1 Step 1: Computation of Jacobian Matrix
3.4.2 Step 2 : Correction for Superlinear Convergence
3.4.3 Step 3 : Steplength Calculation

NUMERICAL EXPERIMENTS

4.1 Introduction
4.2 UNIXProfiler
4.3 Mathematical Programming Program

4.3.1 Computer Implementation of Mathematical Problem
4.3.2 Results Mathematical Programming Program

4.4 Finite Element Computer Package
4.4.1 Data Structures for Design Performance
4.4.2 Modeling of 2-D Planar Steel Frame
4.4.3 Modeling of 3-D Steel Frame Building

4.5 Formulation of Optimization Problem

4.6 Design Parameters
4.6.1 Section Relationships
4.6.2 Design Parameters for 2D Steel Frame
4.6.3 Design Parameters for 3D Steel Frame

4.7 Design Dissatisfaction
4.7.1 Definition of Dissatisfaction for FSQP Implementation
4.7.2 Structural Design Constraints
4.7.3 Design Constraints for 2-D Steel Frame
4.7.4 Design Constraints for 3-D Steel Building Frame

4.8 Design Objective

4.9 Optimization Results
4.9.1 2-D Building,
4.9.2 3-DBuilding 0 oL

CONCLUSION AND FUTURE WORK
5.1 Summary and Conclusion
5.2 Future Work

5.2.1 Nonmonotone Search Strategies

11

3 DISTRIBUTED COMPUTING VERSION of FSQP OPTIMIZA-
TION ALGORITHMS

43

58
a8
58
39
60
61
64
64
65
67
69
69
69
70
71
71
72

5.2.2 Speculative Gradient Evaluation

5.2.3 Smarter Dispatcher Threads

6 BIBLIOGRAPHY

il

CHAPTER

ONE

Structural Optimization

1.1 Optimization-Based Structural Design

Now that engineering workstations with network connectivity are readily
available in the marketplace, opportunities exist for the formulation of new
algorithms and software tools that exploit concurrency as a means of increasing
computational speed. The strong need for this research dates back to the early
1980’s when considerable work was done to better represent real world design
problems, and to capitalize on the emergence of engineering workstations. At
U.C. Berkeley, for example, Nye et al. [29] proposed an optimization algorithm
called the Phase I-II-III Method of Feasible Directions. This algorithm has
been successfully applied to a wide variety of engineering problems including
the design of chemical polymers [12], integrated circuits [28] and earthquake
resistant buildings [5, 4]. For structural engineering problems of a realistic size,
however, the quality of user interaction has often been very poor, with time
consuming structural analyses - and hence iterations of optimization - severely

restricting the size of the problems studied. Together these limitations have not

only limited the appeal of the Berkeley work to others, but also restrained the
scope of problems that could be practically investigated.

Researchers at the Systems Research Center, University of Maryland, are
attempting to mitigate this problem by focusing their work in two areas. First,
a new class of Feasible Sequential Quadratic Programming (FSQP) optimiza-
tion algorithms has been formulated [41]. These algorithms have superlinear
convergence properties, and thercfore require fewer iterations to converge than
the Phase I-II-1IT Method of Feasible Directions [41, 40]. Still, this leaves the
problem of having to compute the behavior of engineering systems. Our ex-
perience indicates that for many optimization problems, more than 90% of the
computational effort is dedicated to the calculation of engineering system behav-
ior. Indeed, upwards of 98-99% of the total computational effort is consumed by
structural /finite element analyses during the optimal design of earthquake resis-
tant structures [5, 4, 7, 8]. Consequently, any efforts to speed up the engineering

analyses will also improve user interaction and reduce design turn-around time.

1.2 Parallel versus Distributed Computing

Two approaches for increasing computational speed are parallel comput-
ing and distributed computing. Parallel computing systems consist of several
processors that are located within a small distance of each other; their main
purpose is joint execution of a computational task. Often, individual processors

are designed with this task in mind. Communication among processors is re-

liable and predictable. By contrast, distributed computing systems are loosely
coupled. Couloris et al. [15] point out that a number of factors have led to the

emergence of loosely coupled systems. They include:

1. A significant reduction in price/performance ratio of VLSI hardware.
2. Highspeed network technologies are now readily available.

3. Interactive service of large centralized computer services is often poor qual-
ity with long unpredictable response times. Restricted user interfaces lead
to difficulties in customizing hardware and software to a users specific

needs.

Not only is it possible for individual processors to be far apart, but the topol-
ogy of processors in the network may change (addition or subtraction) during
the execution of a task. In this respect, communication among processors in
distributed computing is much less reliable than in parallel computing [9].
Several issues need to be considered in deciding whether parallel or dis-
tributed computing (or combinations thereof) is the best approach to increasing
computational speed for the problem being studied. From a financial viewpoint,
many engineering companies do not have the resources to buy parallel machines,
but can justify the purchase of engineering workstation clusters connected by
LAN networking. For example, Pratt and Whitney has recently decided to de-
centralize its computing resources; instead of emphasizing expansion of their
main frame computers, they are moving to purchase 1200 general purpose engi-

neering work stations.

The second issue is “whether or not computational algorithms can be config-
ured to exploit the combined processing power of multiple workstations in a dis-
tributed computing environment?” In this study we are interested in increasing
computational speed in optimization-based structural design. As already men-
tioned, the vast majority of computational effort is dedicated to finite element
analyses, which are repeated many times. Since our general-purpose structural
analysis/finite element packages are implemented on engineering workstations,
a good first step is to increase computational speed by identifying locations
for potential concurrency in the optimization algorithm, and developing a dis-
tributed computing environment for running structural analyses concurrently.
This is coarse grained parallelism. It is worth noting that the short history of
distributed computing includes applications to number of engineering and nu-
merical analysis problem domains: (a) the asynchronous solution of large sets of
numerical equations [9], (b) finite element modeling (and sensitivity analysis)
of a large swept wing [14], (c) operations on very large matrices [32], (d) inte-
gration of structural dynamics equations [3], and (e) solutions to the traveling
salesman problem [26].

Optimization-based structural design on a parallel machine is dismissed at
this time because it requires fine grained implementations of both the optimiza-
tion algorithm, and the finite element method. While considerable work has
been done on the formulation of data structures and algorithms for parallel

implementations of the finite element method - see, for example, Farhat [17],

Herendeen [20] and Johnsson [22] - this work is still under development.

1.3 Objectives and Scope

The long-term objectives of this research are to formulate algorithms and
develop computer software that allows engineers to study problems in the opti-
mal design of large flexible aerospace structures, earthquake resistant structures,
and highway bridge structures. Indeed, it is envisioned that when implemen-
tations of the finite element method are readily available on massively parallel
machines, significant improvements in performance will be possible by writing
computational environments that exploit combinations of distributed and mas-
sively parallel computing (10° or more processors) resources working in tandem
[34].

As a starting point, this research has focussed on the formulation and writing
of software components to setup, execute, and monitor numerical computations
running concurrently on groups of 5 to 10 engineering workstations. This means
that increases in speed of less than 10 will be achievable.

The purposes of this report are four-fold. First, the ideas leading to the
implementation of the Distributed Numerical Computing Environment are mo-
tivated and explained. A new version of the Feasible Sequential Quadratic Pro-
gramming (FSQP) optimization algorithm that matches the distributed com-
puting architecture is formulated. Numerical experiments are conducted on

a small mathematical programming problem, and two structural optimization

I
AU

N/ o
7\
/ — !
2qyic Cueus OF | 2ulid Queus OF
Simuiztion Tzsks ‘ Zimuiation Rescanses
-IngurTan Ixecution
27 Simuiatens
{ i lme

Figure 1.1: Structure of Algorithms

problems. Finally, the performance of the prototype system is critically assessed.
Recommendations for future work include ways to improve the performance of
structural optimization algorithms within the DNC environment, as well as long-

term strategies for obtaining factors of computational speedup in excess of 10.

1.4 Overview of Algorithm Structure

Our research direction stems from the simple observation that optimization
and numerical algorithms frequently require many simulations that differ only
slightly in their input data. Indeed, Figure 2.1 shows that the same algorithms

often contain critical points that cannot be passed until a complete block of

simulations is finished. Since the quantity of input information that distinguishes
simulations is minimal, a practical way of increasing computational speed is to
setup multiple simulator packages distributed over a workstation network and
concurrently compute individual components of the simulation block.

We start each simulation block by building a FIFO (first-in first-out) queue
of initial condition data for the simulation components. Packets of simulation
requests are then distributed to remote simulators via the network. When a re-
mote simulation finishes, the essential features of the system response/behavior
are sent back to the algorithm and temporarily stored in a response queue. The
block of simulations is complete when the length of the simulation response

queue equals the initial length of the simulation task queue.

1.5 Reading Level

Readers are assumed to be familiar with the C programming language, the
UNIX operating system, data structures, and basic computer terminology such

as workstation, mouse, window, menu, and keyboard.

CHAPTER

TWO

Distributed Numerical Computing Environment

2.1 Introduction

This chapter describes the prototype implementation of the Distributed
Numerical Computing (DNC) environment developed as part of this work. The
development goal of DNC is to provide designers with easy-to-implement soft-
ware tools to setup, execute, and monitor concurrent computations for numer-
ical analysis, optimization, and engineering analysis problems. Concurrency is
achieved by distributing tasks over a network of loosely coupled autonomous en-
gineering workstations. In 1990 DNC was used to solve the equations of motion
for smooth dynamical systems [6]. This report describes a second application
area, the formulation and testing of algorithms for optimization-based structural
design.

For historical purposes, we note that the model of loosely coupled processors
dates back to 1981 (at least) [25]. Distributed systems are now developed with
a very wide range of applications in mind; two implementations that are similar

to DNC are SUN’s Remote Procedure Call (RPC) [23], and ISIS, a toolkit for

dynamic and fault tolerant distributed computing [10]. |

The discussion of DNC is divided into ten sections. Sections 2.2 and 2.3
describe the architecture of the DNC environment and background information
on InterProcess Communication. The DNC graphical user interface, process
manager, and remote engineering simulators are described in Sections 2.4 - 2.6,
respectively. Section 2.7 describes how to setting up the socket-based interpro-
cess communication (IPC) in the DNC architecture. Section 2.8 discusses how
a message or a piece of data can be sent across the DNC network. The mecha-
nisms DNC employs for synchronizing events are outlined in Section 2.9. Finally,

Section 2.10 describes the procedure for setting up the DNC architecture.

2.2 Architecture of DNC Environment

The network topology of the DNC environment is shown in Figure 2.1. Its
main components are: (a) A graphical user interface, (b) A process manager,
and (c¢) Several remote engineering simulators. The vehicle for this work is the
workstation model consisting of a high resolution bit mapped screen, a multi-
window user interface model with mouse and keyboard input, multitasking, and
network connectivity. All components are written in C programming language
[24] running under UNIX 4.3BSD [23]. Each component of DNC environment
executes on a separate SUN SPARC station.

The C programming language was used for this implementation because of

the ease with which complex data structures may be defined and manipulated,

9

Usar
interiacsz

A ec
i=Te \ Simulator 3

Simuiator | Simulator 2

]
ik

Figure 2.1: Architecture of DNC

and because it allowed for the use of the SunView [38] libraries in the develop-

ment of graphical user interface.

2.3 Background to Socket-Based Interprocess Communication

At the Systems Research Center (SRC), University of Maryland, the SUN
SPARC stations use an operating system called SUNQOS. This operating system
provides all of the socket-based interprocess communications mechanisms avail-
able in versions 4.2BSD and 4.3BSD of the Berkeley UNIX system. Neighboring
engineering workstations at SRC are linked by several Local Area Networks

(LANSs) using coaxial cable for high-speed communication. Transmissions over

10

communications lines in the LAN are grouped into message packets constructed
and transmitted according to precisely defined rules known as a protocol. At
SRC, socket communication between computers uses either the Internet Trans-
mission Control Protocol (TCP) or the Internet User Datagram Protocol (UDP).
The TCP and UDP protocols belong to a family called Internet family (INET).

The basic building block for unrelated process to communicate with each
other on different machines, possible running different operating systems is the
socket. A socket is a software abstraction for a communication device which
create an endpoint for communication; in other words, it is a reference point to
which to which message may be sent or received; When a socket is created, a
protocol must be specified for the semantics of communication. In this project
a SOCK STREAM type was used. The stream socket provides sequenced, reliable,
two-way connection based byte streams. A stream socket must be in a connected
stated before any data may be sent or received on it. This can be done with
a connect () call. The INET communication protocols used here to implement
the SOCK STREAM sockets insure that data is not lost or duplicated. For further

information, the interested reader is referred to Coulouris [15] and Stevens [36].

2.3.1 IPC Library‘

DNC uses an InterProcess Commumications library developed by Byrne
[13]. The library have facilities to automatically setup client/server models, send
and receive data across network sockets, and to close down these systems. For a

complete listing of C code in this library, see the appendices of reference [13]. In

11

send_structure(sock, ptr, size)
int sock;

char *ptr;

int size;

{

int sent, acc=0, RETRY=FALSE;
char log_buf[132];

static int count=0, retries=0;

while (acc < size) {
if((sent = write(sock, (char %) (ptr+acc), size-acc)) < 0) {
perror(“ipc.c: send_structure()");
exit (EWRITE);
} else {
acc += sent;
if (acc < size) {
RETRY = TRUE;
retries++;

Table 2.1: IPC Library Function : send_structure()

this section, C code is given only for the two functions for (a) sending packets of
data across sockets, and (b) detecting the presence of incoming data on a socket.
For example, Table 2.1 shows the script for the function send_structure();
the command send_structure(gui socket, mp, SIZE); sends SIZE bytes of a
data structure pointed to by mp along socket gui_socket. Similarly, the function
call data_present(gui_socket, long (0)) - shown in Table 2.2 - tests to see

if new data has arrived on socket gui_socket using a timeout 0 milliseconds.

2.4 User Interface

Figure 2.2 is a screendump of the DNC User Interface developed under the

SunView Window systems [38]. The user interface supports a wide variety of

data_present (sock, time_out)
int sock;

long time_out;

{

fd_set fds;

struct timeval timeout;
short result;

FD_ZERO(&fds);
FD_SET(sock, &fds);

timeout.tv_sec = time_out;
timeout.tv_usec = 0;

if ((result = select(FD_SETSIZE, &fds, NOFDS, NOFDS,
&timeout)) == ERROR) {
perror("ipc: select()");
exit (ESELECT);
}

return(FD_ISSET (sock, &fds));

Table 2.2: IPC Library Function : data_present()

design and analysis activities, as explained in the following subsections:

1. Simulation Subwindows: An important purpose of the interface is to
report on computational activities at the process manager (see Section 2.6)
and remote numerical simulators (see Section 2.5). Subwindows dedicated
to this task appear down the right hand side of the interface. Each window
contains the machine name, job status, plus a slider showing the percentage
of work done in each simulator. Even though all of the simulators are
SPARC workstations, the time-to-completion of identical tasks may vary

due other background jobs competing for resources.

2. Terminal Emulation (TTY) Window : The TTY window displays inter-

mediate and final final results of the remote engineering simulations, and

13

sudr wee e entemasasies eesccyeseqy

I IRIITLETE LI GAETET 13 SRWL 84 AT MeCarms 3 v % | b e e ame

ETes Tistan] (R 3n] (Faumees) (u:m:fig:::x e
oL

e R R e e 1) Lot b Fae

Srred Al

Wk Lxrs Al rrc st L

221
TR A
AT NS IR S S G

ESA537a 1818830 480
rple ymaind)(’ 3J 1]

Figure 2.2: DNC User Interface

optimization. In the latter case, for example, this includes the design vec-
tor, design objectives, values of design constraints at each iteration. These
are done by sending the data or messages via the IPC sockets either from
the remote simulators or the process manager. Thus, message sending
is an essential activity in the DNC network. Its details will be given in

Section 2.8.

Button Command: Depressing a mouse button triggers a callback function,
which in turn sends a message to the process manager telling the manager
what job needs to be executed. The DNC User Interface supports mouse
button events for: (a) transferring files - simulation datafiles and opti-

mization constraint/objective files - to remote simulators, (b) initiating

the execution of optimization and numerical algorithms, and (c) closing

down the DNC environment.

When a post command action includes the mailing of a message to the process
manager - possibly requesting a numerical simulation - the user interface should
remain unblocked for the processing of further keyboard/mouse events. Unfor-
tunately, standard event-based systems do not behave in this way. A callback
function embedded within a standard base window event handler will wait for
the arrival of numerical results on an incoming socket before releasing the man-
ager to other tasks. SUN’s interposition mechanism [37] overcomes this problem
by allowing client programs, such as our user interface, to register event sensitive
interposer functions with the window notifier. The subsequent arrival of incom-
ing data on the process manager/user interface socket triggers an interception
of window manager control, and a callback to the interposer function. After
the interposer function finishes reading the socket, control of events is returned
to the base window event handler. Since the interception of window manager
control occurs only when data arrives on the socket, users are given the impres-
sion that the interface is completely decoupled from the process manager and

simulator nodes.

2.5 Remote Simulators

A variety of simulators performing various tasks can be employed in this

distributed Computing environment. A simulator i1s a process that read and

15

Optimization Algorithm

M
i)
~)

Dispatch

Caretaker

(93]

Dispatcher

Figure 2.3: Components of Process Manager

analyze a set of input data. It usually checks certain constraint requirements

before an output is produced. The remote simulators are full UNIX processes.

2.6 Process Manager

Figure 2.3 shows that the process manager is composed of: (a) Caretaker,
(b) Dispatchers, and (c) Numerical and/or optimization algorithms (these are
problem dependent). The general purposes of the caretaker and dispatcher
threads are to monitor asynchronous events within the DNC environment, sched-
ule concurrent computational activities on the remote engineering simulators,

and forward messages to/from the user interface and.remote simulators.

16

2.6.1 Lightweight Processes

When a (parent) process creates another (child) process the parent and
child may/may not share some or all of their variables and address space [15].
Processes that share their address space with the parent process, and contain
minimal information on the processing state associated with a computation are
called lightweight processes (lightweight processes are also called threads).
Multiple threads within a single UNIX task may execute in parallel.

There are several good reasons to implement the DNC process manager as

a series of lightweight processes rather than a full UNIX process. They are:

1. Lightweight processes typically operate a single machine, They are effi-
cient because they communicate via shared memory instead of the UNIX

filesystem.

2. Implementations of lightweight processes contain the tools to build pro-
gramming constructs for the synchronization of events within individual
threads (the use of monitors allows one lightweight processes temporarily
halt the execution of another; see below), to perform I/0, and to respond

intelligently to interrupts and runtime exceptions.

3. As pointed out by Martin et al. [27] the use of lightweight processes
automatically results in an object-oriented implementation. Associated
with each lightweight process object is a well defined set of internal states,

operations to change the state, and mechanisms to interact with other

17

main(argc,argv)
int argc;

char *argv([];

{

extern void startup();

if (arge '=2){
fprintf (stderr,'usasge: tst #processors\n");
exit(1);

}

THREADgo (atol (argv[1]),2%1024%1024, startup, 0,0,20%1024,2);

void
startup()

for (ij.i = 0; 1j.i<3;ij.i++)
for (ij.j = 0; ij.j<3;ij.j++)
THREADcreate(mult, &ij, sizeof(ij), 0, 20%1024,2);

while (THREADwaitforchild());
}

void
mult ()

Table 2.3: Simple Example of THREADS Code

objects (see Item 2).

4. Implementations of lightweight process objects are succinct; the dispatcher

and caretaker threads described in the following sections are each less than

230 lines of C code !!

While the process manager can be configured to take advantage of items 1 to 4,

it is important to remember that processes executed on the remote simulators

are asynchronous. The remote simulators do not share memory.

18

2.6.2 Threads Package from Brown University

Support for the concurrent execution of lightweight processes in the DNC
process manager is provided by a Threads package from Brown University [16].
The script of skeleton C code shown in Table 2.3 shows the simplest details of
setting up a Threads application. Each thread is written just like a normal C
function. However, at run time the Threads package converts each function to
a lightweight process.

The entry point for program execution is the main() function. The function
Threadgo () is called to convert the executable program from a full UNIX task
to lightweight processes, and to initiate execution of the single thread startup
on machine having atol(argv[1]) processors. For implementations on the
SUN SPARC station, the number of available processors is one. A pool of
2%1024%1024 bytes is allocated to hold the stacks and control blocks for threads.
The function THREADcreate (mult, &ij, sizeof(ij),0,20%1024,2) creates a
new thread of control that executes the thread function mult with priority 2,
The fourth argument of this function indicates whether or not the parent and
child threads should be detached. By setting this argument to zero (i.e. false)
the child and parent threads are nondetached. The parent thread executes a

call to THREADwaitforchild() and will not terminate until the child thread

terminates.

19

THREAD_MONITOR prmanager;

void startup()
{

extern void child();
prmonitor = THREADmonitorinit(0, NULL);

THREADcreate(child, "prompti >> ",0,0,20%1024,2);

THREADcreate(child,"prompt2 >> ",0,0,20%1024,2);

THREADcreate(child,"prompt3 >> ",0,0,20%1024,2);
}

void child(prompt)
char *prompt;

{
char buf[80];

promptandread (prompt ,buf,80) ;

void promptandread(prompt,buf,buflen)
char *prompt;

char *buf;
int buflen;
{

THREAD_MANAGER_BLOCK manager;
THREADmonitorentry(prmonitor,&manager) ;
..... code deleted

THREADmonitorexit (prmonitor);

Table 2.4: Example of THREADS Monitor

2.6.3 Use of Monitors within THREADS package

A monitor is the standard operating systems mechanism for synchronizing
events, and providing protection against the incorrect interpretation of shared
data due to races in lightweight processes. Once a thread is executing within a
monitor, other threads within the same monitor are halted until that monitor
is exited.

The script of C code shown in Table 2.4 generates three copies of a thread
called child and uses a monitor to control the sequencing of prompting (and
output) events. First, a call to the function THREADmonitorinit() from the
parent thread startup allocates a monitor and returns a handle for the new
monitor of type THREAD MONITOR. Its name is prmonitor. In the simplest cases
a monitor provides mutually exclusive access to shared data by calling the func-
tion THREADmonitorentry() to access the data, and THREADmonitorexit () to
release access control. Once a monitor is entered, other threads can not interrupt
the activities inside until the monitor is exited. The variable manager stores the
address of data structure THREAD MANAGER that is used by the monitor to deal

with runtime exceptions.

2.6.4 Optimization/Numerical Algorithm

DNC is setup to solve numerical analysis and optimization problems. The
code for these application is written as a C function, but at runtime is con-

verted to a lightweight process. As such, it may interact with the caretaker and

dispatcher threads as described below.

2.6.5 Caretaker

The caretaker thread continuously polls the gui_socket socket for the ar-
rival of incoming commands and data from the graphical user interface. Upon

request, it creates threads for:

1. Copying and forwarding datafiles to each of the simulators. In the current
implementation - described in detail in Chapters 3 and 4 - data files are
transferred for the finite element analysis program, and design constraint

and design objective routines.

2. Invoking optimization (or numerical analysis threads) as directed, and

3. Closing down the process manager/user interface IPC sockets at the end

of optimization process.

2.6.6 Dispatcher Threads

Generally speaking, the dispatcher threads form an intermediate link be-
tween the optimization/numerical algorithms, and the remote simulators. One
dispatcher thread is created for each remote simulator resource. The specific

purposes of each dispatcher are to:

1. Get items from the front of the task queue, and forward them to the remote
simulators. Details on building and manipulating the task queue are given

in Sections 2.8 and 2.9.

o
3]

typedef enum {
NOTIFY_TTY
NOTIFY_JOB_STATUS
NOTIFY_TASK
NOTIFY_WORK_DONE
OUTPUT_FILE
QUIT_JOB

} MESSAGE_TYPE;

DU W N =

#onon oo

typedef struct message_packet {

char source[16];
MESSAGE_TYPE type;
float work_done;
char message[80] ;

} MESSAGE_PACKET, *MESSAGE_PACKET_PTR;

Table 2.5: Data Structure for Message
2. Forward incoming messages from remote simulators onto the graphical

user interface.

3. Interact with the optimization (or numerical) algorithm that are waiting
for these simulation responses. Incoming simulation responses are stored

on a response queue.

2.7 Message Passing Mechanisms and Data Structures

Loosely coupled workstations in the DNC environment communicate via

message passing. Message communication occurs when:

1. Remote simulators (or the process manager) want to inform the designer

al the user interface on the current stage of activities in DNC.

[\]

Files need to be transferred across sockets in the DNC network. Notice

that we do not assume that file systems are mounted across a LAN.

3. The designer wishes to shut down the DNC system.

Table 2.5 summarizes the data structure that is used to assemble messages.
The enumeration type MESSAGE_TYPE distinguishes message types. For example,
NOTIFY_TTY indicates that a message should be displayed on the terminal emula-
tion window of the user interface. When the message type is NOTIFY_WORK_DONE,
the address of the message is the slider subwindow whose name matches the con-

tents of array source[16]. Textual messages are stored in message[80].

2.7.1 Details of Sending and Receiving Messages

The functions send_structure() and data_present () described in the pre-
vious sections form a crucial role in transmitting/receiving messages throughout
the DNC network. The features of the DNC message facility are demonstrated
by tracking the steps of sending a progress report message from a remote simu-
lator to the user interface.

Table 2.6 is shows code taken from a remote simulator, and demon-
strates how a message is assembled and mailed to the user interface. In this
particular case, it reports on the percentage of work completed for a particular
simulation. When the function is entered, memory is dynamically allocated for
the task header and message packet (see Step [1]). A message is sent across
the simulator-to-process manager socket sm_socket in two parts. First, the task
header is sent to the process manager indicating that the following block of data

will be a message (see Step [2]). The contents of the message itself follows; in

extern int sm_socket;

{
TASK_PTR tp;
MESSAGE_PACKET_PTR mp;
tp = (TASK_PTR) calloc (1, sizeof(TASK)); /* [1] */
mp = (MESSAGE_PTR) calloc (1, sizeof(MESSAGE));
...... code deleted
tp~>datatype = MESSAGE; /% [2] %/

send_structure(sm_socket, tp, sizeof (TASK));

mp->type NOTIFY_WORK_DONE; /% [3] =/
mp->work_done = (float) 100.0*(i/{frame->no_material));
send_structure(sm_socket, mp, sizeof (MESSAGE_PACKET));

...... code deleted

Table 2.6: Building and Sending a Message

this case (see Step [3]) the message type is NOTIFY WORK_DONE, with the fraction
of work completed stored in member mp->work_done.

Table 2.7 summarizes the code needed to detect incoming data on the socket
dp->socket. When the function data_present() indicates that new data has
arrived, the dispatcher attempts to read and check the successful transmission
of two packets of data from dp->socket. The first packet - see Step [5] - is the
task header, and indicates the type of packet that follows. Since we are expecting
the arrival of a progress report message, the task header will have tp->datatype
= MESSAGE. A switch statement separates the different types of message packets.
The second message packet is read from the socket dp->socket, and automati-
cally forwarded to the user interface via socket gui_socket; see Step [7].

Table 2.8 shows source code for the function read_input(), which reads

incoming data on gui_socket; the functionality is very similar to that of Table

extern int gui_socket;

int IPC_Dispatcher(dp)
DISPATCHER_PTR dp;

...... code deleted
if (data_present (dp->socket, (long))){ /* (41 =/

nbytes = read(dp->socket, tpl, sizeof (TASK)); /* [5]1 */
if(nbytes != sizeof(TASK)) {

printf("error: bytes lost in TASK transfer !!\n");

exit (1);
1

switch(tpl->datatype) { /* [6] */
case MESSAGE:
nbytes = read(dp->socket, mp, sizeof (MESSAGE_PACKET));
if(nbytes != sizeof (MESSAGE_PACKET)) {
printf("error: bytes lost in MESSAGE transfer !!\n");
exit (1);
}
else {
tpi->datatype = MESSAGE; /* [7]1 =/
send_structure(gui_socket, tpl, sizeof(TASK));
strcpy(mp->source, dp->sim_machine);
send_structure(gui_socket, mp, sizeof (MESSAGE_PACKET));
}

break;

[eryae

Table 2.7: Receiving a message at Dispatcher

2.7. The main difference occurs after a message is read. A switch statement with
parameter mp->type triggers a callback to the function Handle Work Done(); see

Step [8]. The latter function updates the slider in the graphical user interface.

2.8 Building Queues of Tasks and Simulation Responses

As mentioned in Chapter 1, DNC was developed to provide engineers with

computational tools to compute engincering simulations concurrently. A typical

static Notify_value
read_input ()
{
if(data_present (gui_socket, (long) 0)) {
switch(tp->datatype) {

........ code deleted

case MESSAGE:
mp = (MESSAGE_PACKET_PTR)
calloc(1, sizeof (MESSAGE_PACKET));
nbytes = read(gui_socket, mp, sizeof (MESSAGE_PACKET));

if(nbytes != sizeof (MESSAGE_PACKET)) {
printf("error: bytes lost in MESSAGE transfer\n");
exit (1);

}

else {
switch(mp->type) { /* [8] */

........ code deleted

case NOTIFY_WORK_DONE:
Handle_Work_Done (mp);
break;

default:
break;

break;

Table 2.8: Receiving a Message at User Interface
DNC architecture contains NO_RESOURCES simulation resources. If a particular
component of an algorithm requires N similar simulation tasks that can be com-
puted concurrently, then the first step is to build a queue of simulation tasks.
Table 2.9 summarizes the data structure for assembling queues of tasks, and
queues of simulation response results. The script:

Queue_Task_Init();
for(jh = 1; jh <= NO_RESOURCES; jh++) {

tp = (TASK_PTR) calloc(1l,sizeof(TASK));
tp->task_no = (int) jh;
tp->datatype INITIAL;

3]
-

typedef enum {

COMMAND_ONLY = 1,
MESSAGE = 2,
INITIAL = 3,
RESPONSE = 4,
DATAFILE = 5,
STEPLENGTH = 6,
INITIAL_RUN = 7

} DATA_TYPE;

typedef struct task {
int task_no;
COMMAND_TYPE commandtype;
DATA_TYPE datatype;
union {

MESSAGE_PACKET_PTR mp;

INT_TO_MAN_INITIAL_PTR imip;
MAN_TO_SIM_INITIAL_PTR msip;
MAN_TO_SIM_RESPONSE_PTR nsrp;
SIM_TO_MAN_RESPONSE_PTR smrp;
MAN_TO_INT_RESPONSE_PTR mirp;
} ou;
} TASK, *TASK_PTR;

typedef struct tqueue {
TASK_PTR tp;
struct tqueue *next;

} QUEUE_TASK, *QUEUE_TASK_PTR;

typedef struct rqueue {
SIM_TO_MAN_RESPONSE_PTR smrp;
struct rqueue *next;

} QUEUE_RESP, *QUEUE_RESP_PTR;

Table 2.9: Data Structure for Queue of Tasks

tp->commandtype = SIMULATION_INIT;

tp~>u.msip = (MAN_TO_SIM_INITIAL_PTR) calloc(l,sizeof (MAN_TO_SIM_INITIAL));
for(ij = 1; ij <= NDOF; ij++)
for(ik = 1; ik <= NDOF; ik++) {
tp~>u.msip~>mass[ij~1] [ik-1]
tp->u.msip->stiff[ij-1][ik-1]

mass [1j-1] [ik-1];
stiff[ij-1][ik-11;

}

Queue_Task_Add(tp);

demonstrates how a task queue of length NO_RESOURCES could be assembled
with initial data for remote simulations. The queue is initialized by calling

Queue_Task_Init (). Task items are composed of 2 packets of bytes. The first

packet is simply the task queue header. It has sizeof (TASK) bytes and is ap-
pended to the end of the task queue with the function function Queue_Task_Add ().
The second packet of information is accessed via the union in the task data
structure; the specific details of the union contents depend on both the location
of the queue in the DNC environment, plus details of the application at hand.
For example, the name MESSAGE PACKET _PTR points to data structure containing
a basic message, as already shown in Table 2.5. In the abovementioned script of

code, the acronym INT_TO_MAN_INITIAL_PTR is a pointer to the data structure:

typedef struct interface_manager {

int task_no;
double accell3];
double velocity[3];
double displ[3];
double load[3];

} INT_TO_MAN_INITIAL, *INT_TO_MAN_INITIAL_PTR;

which contains information on system response and external loading. It is sent
from the graphical user interface to the manager. In Table 2.9, the entities
QUEUE.TASK_PTR and QUEUE_RESP_PTR are pointers to items in the task and re-

sponse queues, respectively.

2.9 Synchronization of States within Process Manager

In Section 2.6, monitors have heen used to provide mutual exclusion to
shared data and input-output. Sometimes the need arises to modify data - or
execute code - that depends on whether or not certain conditions are true. In
such a scenario, a thread would continue execution only it a condition is true.

Otherwise, it would suspend itself using the function call THREADmonitorwait ().

Monitar

Figure 2.4: Scope of Monitor in Process Manager

After another thread has satisfied the condition, it may wake up the first thread
as it exits the monitor by calling THREADmonitorsignalandexit(). Finally,
a thread may wish to signal another thread before suspending itself. This is

accomplished by calling the function THREADmonitorsignalandwait ().

2.9.1 Scope of Monitor in Process Manager

The process manager employs a single monitor to synchronize activities
inside its thread components. Figure 2.4 shows a schematic of the components,
together with a dashed line for the the scope of the monitor; the monitor is
known to all of the dispatchers, the caretaker. and the optimization (or numerical
analysis) threads.

Recall that the purpose of the monitor is to ensure that only one thread

30

execute within the monitor at any point in time. The remaining threads wait
in process queues, and will not execute until certain conditions to become true.
DNC uses one queue for the dispatcher threads - called DISPATCHER QUEUE - and
a second queue for suspended caretaker and optimization threads. The latter
queue is called MANAGER_QUEUE. The length of the DISPATCHER QUEUE equals the
number of the remote simulators used, and is assembled during the DNC startup

procedure. For details, see Section 2.10.

2.9.2 Interplay of Process Manager Threads

The interaction of caretaker, optimization, and dispatcher threads is demon-
strated by tracking the state of process activities and queues, and queues of
task and simulation response data during the initial stages of assembling and
distributing a queue of simulation tasks to remote simulators. Tables 2.10 and
2.11 contain the relevant sections of code in the optimization algorithm and
dispatcher threads, respectively.

Let’s begin in fera algo proc(), a thread for building a queue of simu-
lation tasks. When the optimization algorithm enters the monitor, (Step [1]
in Table 2.10) the monitor queue is empty. Each of the dispatcher threads is
suspended at Step [6] of Table 2.11, and waiting on the DISPATCHER_QUEUE as
shown in the top box of Figure 2.5. A queue containing n simulation tasks
ts built at Step [2] of Table 2.10, and stored in the task queue as shown in
the lowest box of Figure 2.5. When this is complete, the process manager has

process and queue states as shown in Figure 2.5. Notice that both the process

31

int

fera_algo_proc(carep)
MANAGER_PTR carep;

{

THREAD_MANAGER_BLOCK manager;
MESSAGE_PACKET_PTR mp,mpl;
TASK_PTR tp, tpi;

int i, ntasks, stepno;
SIM_TO_MAN_RESPONSE_PTR smrp;

THREADmonitorentry(carep->cp->mon, &manager); /* [1] =/
mp = (MESSAGE_PACKET_PTR) calloc(l, sizeof (MESSAGE_PACKET));
tpl = (TASK_PTR) calloc(l, sizeof (TASK));

Queue_Task_Init();

for(i=1; i <= n; i++) { /* [2] =/
tp = (TASK_PTR) calloc(1,sizeof (TASK));
........ code deleted

Queue_Task_Add(tp);

}

Tasks_Completed = 0;

ntasks = Queue_Task_GetLength(); /* [3] %/
while(Tsks_Completed < ntasks) /* [4] =/

THREADmonitorsignalandwait (carep->cp->mon,
DISPATCHER_QUEUE, MANAGER_QUEUE);

........ optimization code deleted /* [5] */

THREADmonitorexit(carep->cp~>mon) ;
}

Table 2.10: Scheduling Events : Optimization Algorithm Thread

and task queues are ordered, with m and n items, respectively.

Interaction between the optimization and dispatcher queues begins at Step
[3] of Table 2.10. Tasks _Completed is a global variable that indicates how
many of the simulation tasks have completed; that is, data has been sent to a
remote simulator, the simulation computed, and the system response informa-
tion returned to the appropriate dispatcher. The variable ntasks is the initial
length of the task queue. When the set of statements at Step [4] is first ap-

proached, the optimization thread signals to the front item on the dispatcher

32

int IPC_Dispatcher(dp)
DISPATCHER_PTR dp;
{
THREADmonitorentry(dp->cp->mon, &manager);

....... code deleted
THREADmonitorwait (dp->cp->mon, &manager); /* (6] */
/* Process Events : Signal MANAGER_QUEUE : Wait on DISPATCHER_QUEUE */

dp->job_status = FINISHED; /* [7] %/
vhile(Continue_Simulation == TRUE) {
if(dp->job_status == FINISHED) {

if (Queue_Task_GetLength() > 0) {
tp = Queue_Task_GetItem();
send_structure(dp->socket, tp, sizeof(TASK));
send_structure(dp->socket, tp->u.msip,
sizeof (MAN_TO_SIM_INITIAL)); /% [8] */

}
}
else {
if (data_present (dp->socket, (long) 0)) { /% [9] »/
...... code deleted
}
}

THREADmonitorsignalandwait (dp->cp->mon,
MANAGER_QUEUE, DISPATCHER_QUEUE) ; /* [10] =/
}

THREADmonitorexit (dp->cp->mon, MANAGER_QUEUE);
}

Table 2.11: Scheduling Events : Dispatcher Component

queue - shown by a dashed line - and suspends itself on the MANAGER_QUEUE.
This sequence of process activities is shown in Table 2.6.

Activity in the process manager immediately jumps to Step [7] in Table
2.11. The dispatcher thread verifies that items still remain on the task queue
- via function Queue_Task_GetLength() - and then grabs the front item in the

task queue with the function Queue_Task_GetItem(). Details of the simulation

33

task are sent to the remote simulator as described in Section 2.7.1. Now the task
queue has n-1 items, and a program state as shown in Figure 2.7. Notice that
Step [9] is for reading incoming data; it operates as described in Section 2.7.1.
At Step [10] of the code, the dispatcher thread signals the MANAGER QUEUE and
suspends itself at the back of DISPATCHER QUEUE. The state of processes and
queues is as shown in Figure 2.8.

The program activity returns to Step [3] of Table 2.10 and tests to see
if the number of tasks completed equals the initial length the task queue. In
this case it isn’t, so the optimization thread once again signals to the thread at
the front of the dispatcher queue, and places itself on the MANAGER_QUEUE. The
dispatcher thread Disp 2 fetches a simulation task from the task queue, sends it
to the second remote simulator, signals to MANAGER_QUEUE, and suspends itself
on the end of the dispatcher queue. The process of control switching between
the optimization and dispatcher threads continues until all the simulation tasks
have been sent to remote simulators, and the queue of simulation responses
equals the initial length of the task queue as shown in event state Figure 2.9.
When this condition is eventually satisfied, the program drops to Step [5] in
Table 2.11.

Notice that even though the simulation tasks are guaranteed to be sent out
in order, significant variations in computational speeds of the remote simulators
may result in a mixed ordering of quantities in the response queue. This is

demonstrated by placing Resp 2 before Resp 1 in Table 2.11.

34

WAITING PROCESSES

Dispm
Disp 2
Disp 1
MANAGER QUEUE DISPATCHER QUEUE
ACTIVE PROCESSES
Algorithm
QUEUES OF DATA
Taskn
Task 2
Task 1
TASK QUEUE RESPONSE QUEUE

Figure 2.5: Process Manager : State 1

WAITING PROCESSES

Dispm
Algorithm Disp 2
) -7 | v
i Signals !
MANAGER QUEUE 7 DISPATCHER QUEUE
| e i
| z 1
i P I
ACTIVE PROCESSES -7 '
| -7 !
e i
: - - - “ !
_____ b —

Disp 1

QUEUES OF DATA

Taskn

Task 2

Task 1

TASK QUEUE

RESPONSE QUEUE

Figure 2.6: Process Manager : State 2

36

WAITING PROCESSES

Disp m
Algorithm Disp 2
MANAGER QUEUE DISPATCHER QUEUE
ACTIVE PROCESSES
Disp 1
QUEUES OF DATA
Task n
Task 3
Task2 [-==-=-=—----1 Taskl [~—=—=-==-===-- > Simulator 1
TASK QUEUE RESPONSE QUEUE

Figure 2.7: Process Manager : State 3

37

WAITING PROCESSES

Displ [<---3
i
]
Disp m '
i
]
1
)
__________]
: DA \ :
: : AN Disp 2 !
bmmcmmee o : !
I S 1
: . Signals !
MANAGER QUEUE : \\\ DISPATCHER QUEUE "
1 A :
! A3 1
T N I
!
ACTIVE PROCESSES ! \\ Waits 1
: :
i AN :
l N mmmmm——— \
| AN ! I
. | N !
Algorithm ——-- 3 ==l
lommeme o ;
QUEUES OF DATA
Task n
Task 3
Task 2
TASK QUEUE RESPONSE QUEUE

Figure 2.8: Process Manager : State 4

WAITING PROCESSES

Disp K+1
DispK
MANAGER QUEUE DISPATCHER QUEUE
ACTIVE PROCESSES
Algorithm
QUEUES OF DATA
Respn
Respl
Resp 2
TASK QUEUE RESPONSE QUEUE

Figure 2.9: Process Manager : State 5

39

2.10 Setting Up the DNC Architecture

All the machines employed in this research consisted of SUN SPARC work-

stations. This section describes the step-by-step procedure for setting up the

DNC architecture shown in Figure 2.10.

1.

Execution of remote simulators: One window is created for each of
the remote simulators. Then remote login to the simulators and manu-
ally execute the command simulator on every window of the simulator.
Fach simulator creates a stream socket (see Section 2.5.1 for the notion
of a socket), and bounds a name to it. The simulators wait for incoming

connection requests from the process manager.

Setup the User Interface-Part 1: The user interface process is started.
First, a socket is created, bound to a name, and put in a listening state
for a connection request from the process manager Second, a remote shell
command - rsh - is made to start the manager on the process manager

workstation.

Process Manager: DIxecution of the process manager is initiated by an
incoming rsh command from the user interface machine. As has been
mentioned in Section 2.5, the process manager is composed of three type
of threads: (a) Caretaker, (b) Dispatchers, and (c¢) Numerical / Optimiza-
tion algorithms. The dispatcher and caretaker threads are responsible for

making [PC connections to the simulators and user interface, respectively,

40

Proczss Manager 1eC /‘\

1
rF3n l P - V\q
2 Simulator .0
3
“—w: o et
N \ IFC
\
User ipC I°C | Simulater
Interraca

Simulator | Stmulator 2

Figure 2.10: Procedure for Assembly IPC sockets in DNC

and as shown in Figure 2.11.

(a) Startup Thread: The startup thread creates a monitor for the

process manager by calling THREADmonitorinit ().

(b) Dispatcher Threads: One dispatcher thread is created for each re-
mote simulator. Immediately after the dispatcher thread is created,
a socket connection is established the the appropriate simulator. The
socket name is ms_socket. Each dispatcher then suspends itself on
the dispatcher queue, and waits to be reactivated by a companion

process within the monitor.

41

ST T A
1 |
|
I B LENELISEY
Starwun | D [
——————————— _

’—Mcmtor Oispatcher!t !

i 2 |)
qui_sacket ms_zacket
3 { |

I 4 5] [

: Carstaker Dispatcner2 |

I

Ul ms_socket

| S 3 i

! l

! Qotimization Algorithms Oispatcher n |

Figure 2.11: Threads for DNC Architecture

(c) Caretaker Thread: The caretaker creates a socket called gui_socket
for connection to the graphical user interface. After a connection has
been successfully established - see Step [2] above - then the caretaker

continuously polls for incoming data on gui_socket.

4, User Interface - Part 2: Successful connections cause the Graphical

User Interface as shown in Figure 2.2 to appear.

5. Numerical and Optimization Algorithms: Algorithms are activated by
the caretaker as a thread within the process manager monitor. Details of a
Fast Sequential Quadratic Programming (FSQP) optimization algorithm

are given in Chapter 3.

CHAPTER

THREE

Distributed Computing Version of FSQP Optimization Algorithms

3.1 Introduction

The main contribution of this research is the formulation of a Feasible Se-
quential Quadratic Programming (FSQP) optimization algorithm which takes
advantage of the DNC architecture described in Chapter 2. The family of
FSQP optimization algorithms are based on a Sequential Quadratic Program-
ming (SQP) iteration, modified so as to generate feasible iterates. They are
described and analyzed in references [11, 30], and were selected for this study
because they are readily available at the Systems Research Center.

The remainder of this chapter is divided into two sections. Section 3.2 gives
an introduction to Version 2.0 the sequential FSQP optimization algorithm;
please note that large portions of this section have been taken (more or less)
verbatim from references [40] and [41]. Section 3.3 explains how the distributed

computing version of 'SQP has been formulated.

3.2 FSQP Version 2.0 Optimization Algorithms
Version 2.0 of FSQP tackles optimization problems of the form

(P) min max{f;(z)} st. z€X
ielf

where I/ = {1,-+-,ns} and X is the set of point € R" satisfying

Here the parameters b/ € IR™ and bu € IR™ are lower and upper box constraints
for components in the design vector @. The coefficients ¢; € R™ and b; € R,
J = 1,---,¢ describe linear equality constraints. The functions ¢g; : R" —
R, j =1,---,n; with ¢; € R*, d; € R, j = 1,---,1; — n; represent smooth
inequality (possibly nonlinear) design constraints. The merit function for the
optimization is the maximum value of multiple design objectives f; : R" — IR,
¢ = 1,---,ny. If the initial design vector x provided by the user results in
an infeasible design, FSQP first generates a feasible point by iterating on the
problem of minimizing the maximum of constraints. All subsequent iterates
generated by FSQP will be feasible.

The scope of this study is limited to an Armijo line search strategy that
gives a monotone decrease in the maximum of the objective functions at each

iteration [30]. The monotone line search is composed of two parts; if nonlinear

14

constraints are present, then the SQP direction is first tilted to yield a feasible
direction. It is then bent to ensure that a step of one is accepted when the
design vector is close to a solution. The latter is a requirement for superlinear

convergence. This algorithm will be simply called FSQP-AL (for convenience).

3.3 Details of FSQP-AL Algorithm

Given a feasible iterate z, the basic SQP direction d° is first computed by
solving a standard quadratic program using a positive definite estimate H of the
Hessian of the Lagrangian. d° is a direction of descent for the objective function;
it is almost feasible in the sense that it is at worst tangent to the feasible set
if there are nonlinear constraints and it is feasible otherwise. An essentially
arbitrary feasible descent direction d' = d'(z) is then computed. Then for a
certain scalar p = p(z) € [0,1], a feasible descent direction d = (1 — p)d® + pd*
is obtained, asymptotically close to d°. Finally a second order correction d =
J(a:, d, H) is computed, involving auxiliary function evaluations at 2 4 d, and an
Armijo type search is performed along the arc x +td+ ¢2d. The purpose of dis to
allow a full step of one to be taken close to a solution, thus allowing superlinear
convergence to take place. Conditions are given in [30] on d*(-), p(-) and d(-,-)
that result in a globally convergent, locally superlinear convergent algorithm.

Nomenclature : For notational convenience let:

'z, d) = 12&}}{fi(.v) +(Vfi(z), d)} = fis ()

and for any subset I C I’ (defined below),

~ o~ ~

Fita + dyo,d) = max{ fi(w +) + (V (), d)} = fila + d).

Algorithm FSQP-AL.

Parameters. n = 0.1, v =0.01, a =01, 3 =05,k =2.1, 7y =1, = 2.5.
Data : 29 € R", ¢ > 0.

Step 0: Initialization. Set & = 0 and Hy = the identity matrix. If zo is

infeasible, substitute a feasible point, obtained as discussed below.

Step 1: Computation of a search arc.

i. Compute df, the solution of the quadratic program Q P(x, Hy). Compute
the Kuhn-Tucker vector

ny n t, ee
VL (@5y oy € My k) = D G V(@)D Erit D Mg Vgi(r) D s
i=1

i=1 =1 i=1

If ||V L(2k, Cry &y Aes fix)]] < €, stop. If n; = 0 and ny = 1, set dy = dj
and dp = 0 and go to Step 2. If n; = 0 and ny > 1, set dy = dj and
go to Step 1 iv. Here (};’s with Zyil Cey = 1, &k;’s, Arj’s, and pg;’s
denotes the multipliers, for the various objective functions, simple bounds
(only n possible active bounds at each iteration), inequality, bounds (only
n possible active bounds at each iteration), inequality, and equality con-
straints respectively, associated with this quadratic program. The set of

active objective functions, for any ¢ such that (x; > 0, by

46

H(d) = {5 € I : | f(an) = filw)] < 020\ dell - [V i) = Vfilzo)l]}
u{j e I : (&; > 0}
and the set of active constraints by
(d)={7€{1,--,t:} : lgi(we)| < 020l - [[Vai(zi)ll}
U{j € {1,---,t:} : \x; > 0}
. Compute d}. by solving the strictly convex quadratic program

min dY —d', d% — d') +
delR" ~elR s *)+

s.t. bl < zp + d' < bu
flag,d') <~
9i(ar) + (Vgj(zx), ') <y, j=1,-+,m
(cjrap+d') <dj, j=1-ti—mn

<(L]',£Uk+d1):bj, g=1,---,4

i, Set di = (1 — pp)dy) + prd}, with pi = [[d2|*/(|d}]]" + vk), where vy =

max(0.5, ||dip]|™).

. Compute dj, by solving the strictly convex quadratic program

. l T TN ! T
J?ﬁ]" 2<(dk + d)’ f]k(dk + d)) + fI,{(dk)(xk’ dy, d)

s.t. blek+dk+J§ bu

gi(wk + di) + (Vgj(er),d) < —min(vl|del, [|ds]™),
JeR(d)n{s:j <ni}

(cj—n,‘axk + dk + d) < dj—nn .7 € Ilg(dk) N {] .7 > 77,,}

~

(aj,17k+dk+d)=bj, j=1,"',€e

where f;,((zr,dp,d) = f'(xh,dx + d) if ny =1, and f;f(dk)(:vk,dk,t) =

k dk)
~;f(dk)(xk + dk,:vk,g) if ny > 1. If the quadratic program has no solution
5 (dy

or if (||| > ||dk|, set dj = 0.

Step 2 : Line Search : The line search proceeds as follows. Set 6y =
f'(@r,dy) if n; # 0 and 6 = —(di, Hyd)) otherwise. Compute t;, the first

number ¢ in the sequence {1, 3, 5%, -} satisfying

flag +tdy + tka) < flzg) + atby,
gilar +tdp +2d3) <0, j=1,---,m

(Cionirtp + tdy + 12dy) < dj_n,, Vj>n & J & I (dy).

First, the linear constraints that were not used in computing dj are checked until
all of them are satisfied, resulting in a stepsize, say, t;. Due to the convexity
of linear constraints, these constraints will be satisfied for any t < t;. Then,
for ¢ = t, nonlinear constraints are checked first and, for both objectives and
constraints, those with nonzero multipliers in the QP yielding df are evaluated

first. For ¢t < 1, the function that caused the previous value of t to be rejected

48

is checked first; all functions of the same type (“objective” or “constraint”) as

the latter will then be checked first.

Step 3. Update Hessian : Compute a new approximation Hy,; to the Hes-
sian of the Lagrangian using the BFGS formula with Powell’s modification [31].

In this approach, given zj, 34 and Hj, define the variable increment by
Ck = Thyr — Tk
and the gradient increment of the Lagrange function by
e = Ve L(Thgrs s Ak) — Vo L(Zk, fir, Ai)- (3.3.1)

The new Hypyq is then obtained by

HiGu(Hy)T N Mk
(Cr, HiCr) (e, Ce)

This formula has the nice feature that if Hj is positive definite (the smallest

Hyph = Hy —

(3.3.2)

eigenvalue of Hy is positive) and if (ng,(x) > 0, then Hyyy remains positive

definite.

Step 4. Update Iterate.
- Set xpyy = xp + trdy + ti(zk.
- Increase k by 1.

- Go back to Step 1.

The sequence of x; converges to a stationary point. It has the descent prop-
erty of being at least a local minimum. For details on the properties of theoretical

convergence, see Panier [30].

49

3.4 Distributed Computing Version of FSQP

Zhou and Tits [41, 40] have implemented Version 2.0 of FSQP-AL as a
set of FORTRAN subroutines. The designer provides application dependent
subroutines for the design objective and constraint functions. Subroutines to
compute the gradients of these functions may also be supplied; otherwise, FSQP-
AL estimate gradients via forward finite differences.

The distributed version of FSQP-AL is called FSQP-DIS (for convenience).
Before work on FSQP-DIS could proceed, the sequential version of FSQP had
to be converted from FORTRAN to C. A C implementation of FSQP-AL was
needed so that tools from the Threads Package (for mutual exclusion of shared
data and monitors) could be built into FSQP-DIS. With a little help from the
f2¢ program at AT&T Bell Laboratories [18], it is amazing that only a few
hours was needed to make the FORTRAN to C language conversion, and to
verify that both implementations would give identical numerical results on the
test problems reported by Zhou [41].

Each iterate of FSQP-DIS is dominated by three computational tasks: (1)
computation of the terms V f;(z) and Vg;() in the Jacobian matrix, (2) a single
analysis at (2 4 d) for the computation of d (this is needed to achieve super-
linear convergence) and (3) the step length computation. FSQP-DIS employs

concurrent computations at Steps 1 and 3 of each iterate.

30

3.4.1 Step 1 : Computation of Jacobian Matrix

The first major task in each iteration of optimization is computation of

terms in the Jacobian matrix

r 3D, D, 38D, ~
3y dzq dzn
9D, 3Dy 9D,
3371 82:2 8.’1}11 .
[J] = (3.4.1)
IDm IDm ,,, ZDm
- Oz Oxqy Szp -

Here [0D;/0z;] is the partial derivative of design performance for the ™" speci-
fication - constraint g;(z) or objective f;(z) - with respect to the j** component
of the design vector z. Because analytic expressions for [0D;/dz;] are usually
unobtainable, terms in the Jacobian matrix are often approximated by the finite

difference scheme

aD; = [D(z+dz,;)-D(=)]) (3.4.2)
dx, dx,

If the performance specifications are coded as individual functions in fortran
subroutines (as described in paragraph 1 of Section 3.4), then there is no com-
putational advantage in computing terms in the Jacobian matrix row-wise versus
column-wise. This is true for gradient computations via finite differences and

analytical formulae.

ol

Next we note that hundreds (sometimes thousands) of individual specifica-

tions are often needed to adequately assess the performance of a large engineering

system.

Cl(x)
Input System Response C2(x)
X R C3(x)
—— L 4 Cn(x)

Engineering Simulation Performance Evaluation

The schematic indicates that specifications g;(z) and f;(z) cannot be evaluated
until a finite element (or similar) computation is complete; the exception is
box constraints 8/ < x < bu, which can be evaluated at without an engineer-
ing analysis. Once the output from these computations is available, it usually
contains enough information for all of the constraints and objectives to be eval-
uated. More important, the computational effort needed to evaluate thousands
of specification formulae may be insignificant compared to the computational
work required to solve large sets of linear/nonlinear equations for the system
response in the first place (e.g. finite element models of structures, SPICE for
circuits). This means that the optimization algorithm should be organized to
pass through the left hand box of the schematic a minimum number of times. If
x contains n components, then a minimum of n simulations must be computed

for the gradient approximation via finite differences. Given that the number

of available remote simulators m may be much less that n, by far the simplest
implementation is to compute terms in the Jacobian matrix columnwise.
FSQP-DIS computes components of the perturbed design - D(z + ;) - con-
currently, and then estimates entire columns of the Jacobian matrix using the
forward finite difference approximation. For this component of the optimiza-
tion, the result is an algorithm whose computational time is linearly dependent
on the number of design parameters, but almost independent of the number of
constraints.
Details of Implementation: Figure 3.1 is a script of code that shows the
d(;tails of building a queue of simulation tasks for the perturbed designs needed

for gradients in the Jacobian matrix. The labeled sections are as noted:

1. Gradient Thread : A lightweight process (see Section 2.6.1) is dedicated
to the column-wise computation of Jacobian matrix components via for-

ward finite differences.

2. Enter monitor : This thread enters the process manager monitor, thereby

ensuring other threads cannot affect the assembly of the simulation tasks.

3. Build queue of Tasks : The function Queue Task._Init() initializes
the queue of simulation tasks. Perturbed components of the design vector
x; + Auz; are then stored in a queue of tasks by calling Queue _Task_Add ().
In addition to x; + Axz;, each task contains the message to run the simu-
lation, i.e., FSQPD_GENERAL. The length of the queue equals the number of

design parameters.

53

TMP_PTR
nngrfd(carep,tmp,nparam,rteps,udelta,x,cas)
MANAGER_PTR carep;

TMP_PTR tmp;

int *nparam,cas;

double *rteps,*udelta,*x;

{

THREAD_MANAGER_BLOCK manager;
MESSAGE_PACKET_PTR mp;

double d1,d2,d3,d4,gnew,delta,xj;
int i,j,k,ntasks;

TASK_PTR tp,tpl;

THREADmonitorentry(carep->cp->mon, &manager);
Queue_Task_Init();

for(i = 1; i <= #nparam; i++) {

xj = x[il;
43 = 1., d4 = fabs(xj);
dl = %udelta, d2 = *rteps * max(d3,d4);

delta = max(d1,d2);
if(xj < 0.)
delta = -delta;

tmp->delta_x[i] = delta;
x[i] = xj + delta;

tp = (TASK_PTR)calloc(1,sizeof(TASK));
tp->task_no = (int) 1i;
tp->datatype RESPONSE;
tp->commandtype = FSQPD_GENERAL;
tp->u.msrp = (MAN_TO_SIM_RESPONSE_PTR)

calloc(1l,sizeof (MAN_TO_SIM_RESPONSE));

tp->u.msrp->delta = delta;

for(j = 1; j <= NPARAM; j++)
tp->u.msrp->x[j] = x[j]l;

Queue_Task_Add(tp);
x[i] = xj;

}

Queue_Resp_Init();
ntasks = Queue_Task_GetLength();

while(Queue_Resp_GetLength() < ntasks)

THREADmonitorsignalandwait (carep->cp->mon,
DISPATCHER_QUEUE, MANAGER_QUEUE);

return(tmp);

/* [1] */

/*

[2]

[3]

(4]

*/

*/

*/

Figure 3.1: Procedure for Direction Calculation

54

4. Send Tasks to Simulators : Tasks are sent to the simulators, engineer-
ing analyses computed, and constraint and objective function evaluated.
A summary of constraint and objective function values is returned to the
process manager. These quantities and stored temporarily in a response

queue, as illustrated in Figure [1.1], and described in Section 2.9.

3.4.2 Step 2 : Correction for Superlinear Convergence

A second order correction d = (2,d, H) is computed so that convergence
close to the optimal solution takes only one step. The calculation of d requires
one auxiliary function evaluation at z+d, plus the solution of a second quadratic

program; details are given in Step 1, part iv of Algorithm FSQP-AL.

3.4.3 Step 3 : Steplength Calculation

After the search direction vector has been calculated, trial points for the

[k + 1]* iteration are selected according to the rule:
Trat = Tp + tpdy + thdy (3.4.3)

where d;. is the search direction, ¢; is the stepsize in the sequence {1,83, 3%, -}
and B = 0.5; for details, see Step 2 of Section 3.2.1. Instead of selecting single
values of ¢ in a decreasing sequence, as has been done in FSQP-AL, FSQP-DIS
simulates groups of ¢, values in parallel over the number of available processors.

Step [1] in the script of code in Figure 3.2 shows that a separate thread is

employed for the step length calculation. Steps [2], [3] and [4] cover the gen-

5D

eration of trial design points, and their placement in a simulation task queue.
As a naive starting point, the length of the queue is set to NO_RESQURCES, the
number of available remote simulators. Step [6] covers the details of this thread
interacting with the dispatcher threads, the posting of tasks to the remote sim-
ulators, and eventually, the assembly of a simulation response queue that will
have a final length = NO_RESOURCES.

Worst case performance occurs when the first trial point (i.e., ¢ = 1) satisfies
the line search requirement. This is because time may be wasted in assembling
the complete response queue. Experience indicates, however, that for the first
few iterations of optimization, a steplength with ¢, < 1 this most often needed.
If tx =1 does not satisfy the line search requirement, then objective and con-
straint values for a smaller values of t;, are immediately available. Time saving is
significant because the overhead in building task queues, and sending/receiving
data is insignificant compared to the time required to compute additional engi-

neering analyses.

TMP_PTR
x_new(carep,nparam,X,steps,di,d,local) /* [1] =/
MANAGER_PTR carep;

int nparam,local;

double *x, steps, *di, *d;

{

THREAD_MANAGER_BLOCK manager;
MESSAGE_PACKET_PTR mp;
TMP_PTR tmp;

double *xnew,dl,xtemp;
TASK_PTR tp,tpl;

int i,j,k,ntasks;

THREADmonitorentry(carep->cp~>mon, &manager); /% [2] »/
Queue_Task_Init();
for(i=1; i<= NO_RESOURCES; i++) { /* [3] */
for(j=1; j<=nparam; j++) {
if(local == TRUE) /* [4] %/
xnew[j] = x[j] + steps*diljl;
else
xnew[j] = x[j] + steps*dilj] + d[jl*steps*steps;

tmp->xnewl[il[j] = xnew[j];
}

/* Build Queue O0f Trial Points */ /* [5] %/

tp = (TASK_PTR)calloc(1,sizeof (TASK));

tp->task_no = (int) 1i;

tp->datatype = STEPLENGTH;

tp->commandtype = STEPLENGTH_INIT;

tp->u.msip = (MAN_TO_SIM_INITIAL_PTR)
calloc(1,sizeof (MAN_TO_SIM_INITIAL));

for(k = 1; k <= nparam; k++)
tp~->u.msip->x[k] = xnewl[k];

Queue_Task_Add(tp);
steps = 0.5*steps;
)

/* (d) : Send Trial Points to simulators */
Tasks_Completed = 0; /* [6] %/
ntasks = Queue_Task_GetLength();
while(Queue_Resp_GetLength() < ntasks)
THREADmonitorsignalandwait (carep->cp->mon,
DISPATCHER_QUEUE, MANAGER_QUEUE) ;
THREADmonitorexit (carep->cp~>mon) ;

return(tmp) ;

Figure 3.2: Procedure for Steplength Calculation

CHAPTER
FOUR

Numerical Experiments

4.1 Introduction

This chapter discusses the performance of FSQP-DIS (the distributed ver-
sion of the FSQP optimizatidn algorithm) in the DNC environment. Three
application problems are studied. The first is a simple mathematical program-
ming problem having three design variables, two constraints, and one objec-
tive function. The second and third problems are to optimize the weight of
2-dimensional and 3-dimensional unsymmetrical steel frame buildings. In each
case, experimental results from the distributed implementation are compared to

the sequential version of FSQP (FSQP-SEQ).

4.2 UNIX Profiler

All of the components in the DNC environment, including the optimization
algorithms, simulators, and graphical user interface, are timed using the UNIX
profiler prof. This facility produces an execution profile of a program show-

ing the number of times a function is called, the percentage of time spent in

Mathematical Programming Problem
Initial Guess z = [0.1,0.7,0.2]
Final Solution x = [0.00000000, 0.0000000, 1.0000000]
Initial Objective 7.2
Final Objective 1.0
No. of Iterations 3

Table 4.1: Results of Mathematical Programming Problem
executing each function, plus the total cumulative time in running the program.
C programs are setup for profiling by adding the -p option to the compilation
statement. In addition to keeping extra symbol table information around in the
executable program, a recording mechanism leaves a file called mon. out, which
1s interpreted by the program prof. Profiling times are reported to an accuracy

of & 0.01 seconds; see Chapter [8] of rcference [23] for details.

4.3 Mathematical Programming Program
This simple problem is borrowed from [41]. It optimizes the function f
with three variables x1, x5 and x3
f(@) = (21 + 3az + a3)* + 4(21 — 32)°
subjected to nonlinear inequality constraints,
;l?:f — 0y — 423 +3 <0
and linear equality constraints,

l—a2y—29—235=10

L b
- Simple Mathematical Problem
g b —
" 6N\ 7
[+
2 B \
° -~ AN
2
) N _
2_ . -t
- AN
~,
\x
ol T I SN TN N S A S Y R AT HUN SN T N U SRR S N
0 3 1 1.8 2 25 R i3 {

Figure 4.1: Objective Function versus [teration No

The simple bounds on the variables are

OS-Ti, Z=1aa3

4.3.1 Computer Implementation of Mathematical Problem

The gradients of the objective and constraints functions with respect to
design variable components are estimated via forward finite differences. For
FSQP-SEQ, the FSQP algorithm, constraints, and objective functions are all
located on a single SUN SPARC workstation. In the FSQP-DIS implementa-
tion, copies of the objective and constraint functions were positioned at each of

three remote SUN SPARC workstations; their names are Lorentz, Galaxy and

Poisson.

60

4.3.2 Results Mathematical Programming Program

The simulation results are summarized in Table 4.1. The values of objective
function versus iteration number are plotted in Figure 4.1. The total time
required to run FSQP-SEQ and FSQP-DIS are shown in Table 4.2 and Table 4.3
respectively. Figure 4.2 displays the profile data of the simple mathematical

problem. The key observations are:

1. For a very simple mathematical problem having just two constraints and
one objective, the sequential version runs much faster than the distributed
version (in fact twelve times faster). This is because the communica-
tion overhead associated in the distributed computing environment, for
instance, setting up the DNC architecture. sending data to/from the sim-
ulators and so on, is very high compared to required computation of the

optimization problem.

o

Figure 4.2 summarizes the profiling output for FSQP-SEQ. The profile
indicates that most of the time is dedicated to low level assembly code
operations, and input/output. The computational effort to evaluate the

constraint and objective functions is negligible.

61

Timing of Sequential Algorithm

Machine Type SUN SPARC
CPU percentage 20
Other users None
Number of Simulations 35
Simulation Time (Seconds) 0.2

Table 4.2: Timing of Sequential Algorithm

Distributed Optimization

GUI Manager Sim 1 Sim 2 Sim 3
Machine Newton | Descartes | Lorentz | Galaxy | Poisson
Type SPARC SPARC SPARC SPARC SPARC
CPU (%) 27 25 1 1 1
Other User None None None None None
No. Simulations - - 21 15 18
Time (Seconds) 5.5 2.5 0.05 0.06 0.06

Table 4.3: Timing of Distributed Algorithm

Y%time cumsecs #call ms/call name

21.1 0.04 .rem
10.5 0.06 .div
10.5 0.08 __umac
10.5 0.10 _pow

5.3 0.11 .umul
5.3 0.12 __unpack_double
5.3 0.13 _addcon_
5.3 0.14 _bndalf_
5.3 0.15 _fstat
5.3 0.16 _lpcore_
5.3 0.17 _printf
5.3 0.18 _quotnt
5.3 0.19 _v2norm_
0.0 0.19 1 0.00 _check
0.0 0.19 23 0.00 _constr
0.0 0.19 2 0.00 _di1

0.0 0.19 3 0.00 _diagnl
0.0 0.19 3 0.00 _dir

0.0 0.19 5 0.00 _dgp

0.0 0.19 1 0.00 _fsqpd
0.0 0.19 1 0.00 _fsqpdil
0.0 0.19 4 0.00 _grenfd
0.0 0.19 3 0.00 _grobfd
0.0 0.19 2 0.00 _hesian
0.0 0.19 1 0.00 _main
0.0 0.19 5 0.00 _matrcp
0.0 0.19 7 0.00 _matrvc
0.0 0.19 25 0.00 _nullvc
0.0 0.19 12 0.00 _obj

0.0 0.19 4 0.00 _out

0.0 0.19 33 0.00 _gphess
0.0 0.19 20 0.00 _scaprd
0.0 0.19 4 0.00 _slope
0.0 0.19 1 0.00 _small
0.0 0.19 2 0.00 _step
0.0 0.19 61 0.00 _subout

Figure 4.2: Timing Profile for Mathematical Problem

63

4.4 Finite Element Computer Package

Each of the remote simulators in DNC employs a prototype version the finite
element analysis program called FERA [35] to compute structural responses
quantities (bending moments, axial forces, nodal displacements, and so on).

FERA [35] is an acronym for Finitc Element and Rigidbody Analysis. The
program is written exclusively in the C programming language, and as such,
makes full use of various data structures - linked list, hashtable and so on - to
assist in the management of data. Its library of finite elements includes plane-
stress plane strain, two- and three-dimensional frame elements, and DKQ plate
element. In addition, it has the ability to model a rigid body connected to
flexible elastic elements. Currently, FERA is limited to linear elastic analysis.

For the optimization, two new features were added to FERA. They are: (1)
facilities for using the UNIX tool YACC [21] to parse a data file containing
parameters for the design constraints and objectives, and (2) procedures for

checking the design constraints and objectives.

4.4.1 Data Structures for Design Performance

In Section 2.9 it was pointed out that details of data structures shown in
Table 2.9 are application dependent. With this in mind, Figure 4.3 shows
the C preprocessor definitions and data structures used to send simulation tasks
from the manager to the simulators, and to return constraint values from the

simulators to the dispatcher thread. In Table 2.9, NCONST and NOBJ are the

64

/* */

/* Data Structures for Manager/Simulator Message Passing */

/* */
#define NCONST 32
#define NPARA 3
#define NOBJ 1
#define NSIM 3

/* Manager => Simulator Response Data Structure */

typedef struct ms_result {
int task_no;
double x[NPARA+1];
} MAN_TO_SIM_RESPONSE, *MAN_TO_SIM_RESPONSE_PTR;

/* Simulator => Manager Response Data Structure */

typedef struct result {
int task_no;
double gradient [NCONST+NOBJ+1] ;
} SIM_TO_MAN_RESPONSE, *SIM_TO_MAN_RESPONSE_PTR;

Figure 4.3: Data Structures for Design Performance Messages

number of design constraints and objectives, and NPARA is the number of design
parameters. It is important to note that since these parameters are problem
dependent, the process manager must be recompiled before a new problem is

executed.

4.4.2 Modeling of 2-D Planar Steel Frame

The two-bay two-story planar frame shown in Figure 4.4 has five column
elements and four beam elements. All elements are wide flange structural steel
sections with material type ASTM A36, and a minimum yield stress of 36 ksi.
The specified dead load is 80 1bs per square foot, and the specified live load is
40 Ibs per square foot for the floors. The roof live load is 20 lbs per square foot.

The two-dimensional frame is assumed to be a typical frame in a long struc-

65

=0 xizs <3 kics
\ <2
| & «ICS A Y -
g : *
%2 X2 o
SR
a3 ss |30 0
K103 <3 “10g ‘K\DS <3 Kics Y
g Kips - LiA4 _' T
a o) 2 A
Y . ts 1t
A x| X1 < -
\—>./< | 2 :} !
= x| =
20 7t ICc s
t P!t -

Figure 4.4: 2-D Unsymmetrical Building

ture where frames are spaced at centers 20 feet. Thus, the uniform gravity loads
are 0.2000 kips/in for the floor, and 0.1667 kips/in for the roof. In addition, a
total moderate seismic lateral loading of 24 kips - this is approximately 10% of
the structural weight - was distributed over the height of the structure.

The bases of the three columns are assumed to be fully fixed. Each joint in
the steel frame is modeled with two translational and one rotational degree of

freedom. Hence, the size of the stiffness matrix is 15 by 15.

66

]
\ <
h

>l

|-

Figure 4.5: 3-D Unsymmetrical Steel Building

4.4.3 Modeling of 3-D Steel Frame Building

Figure 4.5 shows the geometry and element connectivity for the three di-
mensional steel building frame. It has 10 column elements, 20 beam elements
around the exterior of the first and second floors, and 14 beam elements for
interior floor support. All elements are assumed to be wide flange structural
steel sections with material type ASTM A36, and a minimum yield stress of 36
ksi.

Figure 4.6 summarizes the external loads applied to the building frame. The
floors and roof are assumed to have a nominal dead load of 80 Ib per square foot.

For the roof, live loads are assumed to be 20 1bs per square foot, and on the

67

0.1 ksf
o Z
x/"'vf '/*'7/1 / O.lklsr‘
- !
7 kips ‘/)i A AT
Y

Figure 4.6: 3-D Unsymmetrical Steel Building : Loads

floors, 40 1bs per square foot. The totalﬁ unfactored weight of the structure is
384 kips. In addition, a total moderate seismic lateral loading of 35 kips - this
is approximately 10% of the structural weight - was distributed over the height
of the structure.

The six column bases are assumed to be fully fixed. Each joint in the steel
frame is modeled with three translational and three rotational degrees of free-

dom. Hence, the size of the stiffness matrix is 144 by 144.

63

4.5 Formulation of Optimization Problem

The components of the optimization problem formulation are design param-

eters, design constraints, and design objectives.

4.6 Design Parameters

For simplicity, the size of each beam and column frame element is repre-

sented by a single design parameter, its principal moment of inertia.

4.6.1 Section Relationships

Empirical relationships are used to describe section properties, such as sec-
tion depth and radius of gyration, as a function of section moment of inertia.
The empirical relationships are based on the ohservation that section depth is
approximately proportional to the moment of inertia raised to a rational power.
Similarly, the radius of gyration for columns and girders is approximately pro-
portional to the section depth raised to a rational power. Walker [39] used these
approximations, and a nonlinear least-squares analysis on wide flange sections
to derive the following functional relationships:

For columus with I < 429in!

D = 1.477°%8

R =0.39D"%

69

For columns with I > 429:n4

D — 10.5]0.0436

R =0.39D!%

For girders

D = 2.661°%7

R = 0.52D°92

where D = section depth in inches, I = moment of inertia in inches®, and R is
the radius of gyration in inches. Once the radius of gyration is known, the cross

section area is simply given by A = [I/R?].

4.6.2 Design Parameters for 2D Steel Frame

Figure 4.4 shows that the optimization problem was cast with three design

variables. They are:
1. X1 : Moment of Inertia of the first storey columns.
2. X2 : Moment of Inertia of the second storey columns.
3. X3 : Moment of Inertia of the floor beams.

The section moment of inertia for each frame element is constrained to lie in the

range of [125in?, 5000in].

4.6.3 Design Parameters for 3D Steel Frame

Figure 4.5 shows that optimization problem for the 3D steel building frame

was cast with five design variables. They are:

1. X1 : Moment of Inertia of the columns at z = 60 ft.

2. X2 : Moment of Inertia of the middle columns at z = 30 ft.
3. X3 : Moment of Inertia of the right columns at z = 0 ft.

4. X4 : Moment of Inertia of exterior floor beams.

5. X5 : Moment of Inertia of interior floor beams.

The section moment of inertia is assumed to lie in the range of [125in*, 5000in].

4.7 Design Dissatisfaction

The adequacy of a structural design is ascertained by simply comparing: (1)
the calculated actions at a designer-prescribed reliability level to (2) the ability
of the structure to carry these actions without failure [2, 5]. To facilitate this
comparison a single design entity called designer dissatisfaction that quantifies
the results is defined [29].

(response — GOOD)

D(const; or oby;) = (BAD GOOD)

(4.7.1)
In equation (4.7.1), D(const; or obj;) is the designer dissatisfaction for the ¢*

design constraint or objective. The parameter response is the computed struc-

tural response value. The GOOD and BAD structural response parameters are

71

given by:

GOOD = Good.Value * Constraint Value (4.7.2)
BAD = Bad_Value* ConstraintValue (4.7.3)
where Constraint Value is an ideal level of structural response at which failure

will occur, and Good_Value and Bad_Value are dimensionless capacity reduction
factors. The Good Value and Bad_Value are set by the designer in such a way
that GOOD corresponds to a dependable level of system performance, and BAD, to
a structural response level at which undesirable performance is almost assured
if exceeded.

Dissatisfaction is not a boolean variable simply describing whether or not a
constraint or objective is satisfied, but a function whose value depends on the
magnitude of a constraint or objective violation. It is less than or equal to zero
for a conservative design, becomes slightly nonzero - i.e., within the interval
(0,1) - as the design becomes more economical, and increases above 1 as the

design becomes increasingly unconservative.

4.7.1 Definition of Dissatisfaction for FSQP Implementation

Ideally, a maximum dissatisfaction among all of the performance attributes
of about 0.5 should be aimed at since this is roughly half way between a design
that is too conservative, and one that is believed to be unreliable. Because the

FSQP algorithm described in Chapter 3 requires all constraint measures to be

less than zero for a design to remain feasible, equation (4.7.1) was modified to:

— GOOD 1
D(const; or obj;) = (response)} _ []

= (4.74
(BAD — GOOD) 2 (4.74)
Notice that the same eflect could be achieved by adjusting the GOOD values,

but this would also require a change in its engineering interpretation.

4.7.2 Structural Design Constraints

The performance of two- and three-dimensional frame elements is checked
with three constraints. In the spirit of equations (4.7.2) and (4.7.3), element

axial forces are required to satisfy the constraint:
allowable axial force < [Good Value,Bad Value] * ideal axial force. (4.7.5)

Here the ideal axial force is one of the two possible values. For compressive
loading, it is the Euler buckling force with pin-pin end conditions. Otherwise,
1t 1s the axial force needed to yield the element in tension.

Bending moments in the beam and column elements are checked at the end

points only. Again, the form of the constraint is:
allowable bending < [Good_Value,Bad_Value| * ideal bending. (4.7.6)

The ideal bending moment is that required to cause incipient flexural yielding.
Shear forces within the element are not checked. Design constraints based on
absolute and relative nodal displacements, such as for story drift and overall

frame sway, have not been implemented in this study.

group("column") {

item {
name "“axial_force";
state = ACTIVATED;
good_value = 0.4;
bad_value = 0.5;

}

item {
name "bending_moment';
state = ACTIVATED;
good_value = 0.5;
bad_value = 0.6;

}

}

group("beamn") {
item {
name "axial_force";
state = ACTIVATED;

good_value = 0.4;
bad_value = 0.5;

}

item {
name "bending_moment'';
state = ACTIVATED;
good_value = 0.5;
bad_value = 0.6;

}

}

group("objective") {
item {
name "“volume";
good_value = 20000;
bad_value 30000;

Figure 4.7: Design Constraints and Objectives for 2-D Frame

4.7.3 Design Constraints for 2-D Steel Frame

Parameters for the constraints and objectives, as defined in equations (4.7.2-
4.7.6), are stored in beam and column constraint groups as shown in Figure 4.7.
A YACC grammar has been written to read and interpret the constraints and
objective datafile. Beam and column constraint objects are stored in the FERA
symbol table, and retrieved as needed.

The two-dimensional stecl frame has 24 design constraints and one design

74

objective. Axial forces are controlled by setting Good_Value and Bad Value to
0.4 and 0.5, respectively. Since most of the columns will be in compression, under
combined gravity loads plus moderate lateral loadings, axial forces are assured
to be less than 0.45 of the Euler buckling load. The Good Value and Bad_Value
parameters for flexural bending were set to 0.5 and 0.6, thereby ensuring stresses

remain within the working stress range.

4.7.4 Design Constraints for 3-D Steel Building Frame

The design constraints for the three-dimensional {rame are the same as
for the 2-D steel frame. Since empirical relationships are employed to connect
primary and secondary cross section properties of frame members, constraints
are not explicitly checked for the interaction of axial forces with biaxial bending.
Instead, constraints checking is simplified by first finding the maximum absolute

bending moment, and substituting it into equation (4.7.6).

4.8 Design Objective

The design objective of these two problems is to find the minimum volume of
frame elements that also satisfies the constraint requirements. The good_value
and bad_value parameters for the 2-D steel frame problem are as shown in
Figure 4.7. For the 3-D building design objective, good_value = 150000 and

bad_value = 200000.

-1
ot

4.9 Optimization Results

Recall that in FSQP-DIS, the main FSQP algorithm executes as a lightweight
process on the process manager. Copies of the FERA computer package, rou-
tines for evaluating constraints and objectives, and YACC [21] code for reading
constraint/objective datafiles are located on each remote simulator.

Design vectors are sent from the process manager to the remote simulators.
Once the simulation and constraint/objective evaluation is complete, vectors of

design dissatisfactions are sent back to the dispatcher thread.

4.9.1 2-D Building

The FSQP-SEQ and FSQP-DIS algorithms both run for 36 iterations, and
converge to the results shown in Table 4.4. Figures 4.8,4.9,4.10 and 4.11 show
objective function value versus iteration no, the maximum constraint value ver-
sus iteration no, design variables X1-X3 versus iteration no, and number of steps
needed in line search computation at each iteration. Tables 4.5 and 4.6 summa-
rize the computational work - number of simulations, time of simulation - for the
sequential and distributed versions of the optimization algorithm, respectively.
Figure 4.12 shows the percentage of time spent in executing each function of

the sequential implementation.

2-D Unsymmetrical Building

Initial Guess z = [500.0,500.0, 500.0]
Final Solution z = [461.1,231.9, 125.0]
Initial Objective 1.121458
Final Objective 0.295073
Initial Max. Constraint -2.133162
Final Max. Constraint -0.005192
No. of Iterations 36

Table 4.4: 2-D Building : Simulations Results

Timing of 2-D Building : Sequential Optimization

Machine Type SUN SPARC
CPU percentage 70
Other User None
Number of Simulations 188
Simulation Time (Seconds) 7.80

Table 4.5: Timing of 2-D Building : Sequential Optimization

77

L= i P :
: 2-D Building j
o \, g
kd L \\\ J
= 0 . !
@] ‘h— \\ ‘1
- \ -
4 —
. —_— i
T
:
0 . L : : ! ! : L 1 . T
0 10 15 20 25 35
[teration Number
Figure 4.8: 2-D Building : Objective Values
Timing of 2-D Building : Distributed Optimization
GUI Manager Sim 1 Sim 2 Sim 3
Machine Banach Eiffel Newton | Laplace| Texl
Type SPARC SPARC SPARC SPARC SPARC
CPU (%) 70 31 5 7 6
Other User None None None None None
No. Simulations - - 73 104 72
Time (Seconds) 15.5 10.8 2.3 4.0 2.8

Table 4.6: Timing of 2-D Building : Distributed Optimization

Maximum Constraint

w

L i i | ' _11
i Infeasible Region a
- .
O e ;
o -
L / -
_ , -
-5 / Feasible Region —
- | _
. 4
L i
iL B
—1 = y -
| , -
td f
| ! .
1 i 4
s i

. f 4
15l /' -
L | 7
[| |
| j N
-2 — /]

:'—_~'< | | o] , TR, L |

o] 3 10 15 20 25 30 25

Iteration Number

Figure 4.9: 2-D Building : Maximum Constraint Values

79

Momeut of inertia {(ind)

T T .1 1 T 1 1 17

T T T)
| i i i -
. 2-D Building : Design Variables ‘J
500 —
AN
L \ N B
L \\ \ / \—————\l B
L x -
W /
L P e _— 4
400 PN ~ _
o \ //\\ -
| \
. ! N X2 =
{ | SR
- | 4
1
| \ —
300 — N .
= \ —
\ \
- \ Y -
- \ LA
- \\ 4
200 — \ *3 —
—————— —_—
L N 4
- \ 4
- Box Constraints \\ b
100 b S B ‘ il J I J |] (S l | | | I l Ll 1
Q 5 10 15 20 23 30 35

Iteration Number

Figure 4.10: 2-D

Building : Design Variables

30

Number of Steps

W

mn

T FTTTTTT [rrr T P
i 2-D Building jl
:
z 5 ;
n / Z
L / ? /Z
B
: %/ /1
0 5 10 15 20 2s 30 35

[teration Number

Figure 4.11: 2-D Building : Number of Steps

The following points should be noted on Tables [4.4 - 4.6] and Figures [4.9 -

4.11]:

1.

o

The two-dimension building frame is a very small sized structural problem;
approximately 70% of the total computational work is dedicated to finite
element simulations. The distributed version executes at almost the same
speed as the sequential version of the optimization algorithm (10.8 seconds

as compared to 7.8 seconds).

The total number of simulations in the sequential version (188) is less than
the total number of simulations for the distributed implementation (249).
This is because the line search computation of the distributed version is
done in groups of threc trial designs. Figure 4.11 shows that for most
iterations the stepsize, t;, = 1 satisfies the line search requirement. In
fact, in all but iteration 24, trial steplength simulations for ¢, = 1/2 (and
sometimes t; = 1/4) are discarded once the largest possible stepsize is sat-
isfied. A strategy for mitigating the excess computation will be suggested

in Chapter 5.

The design variables do not converge at the same rate. In fact, component
X3 converges faster than the others. Only after X3 converges hits the lower

box constraint do significant adjustments to X1 and X2 take place.

The maximum dissatisfaction among design constraints increases from -

2.13 to -0.005 during the course of the optimization. For the starting

,.
o
o

Jtime cumsecs #call ms/call name

15.8

W W W
== 0O O

O OO OO OO OO O OO
O OO OO O k= =t b b

1

NN N = e

NN N N N N W N W N NN

.23
.61
.97
.27
.51
.75

.19
.58
.93
.09
39
54
96
42
.76
.17
.23
.43
.53
.57
.90
.96
.31
.33
.45

.60
.64
.68
.69
.72
.73
.80
.80
.80
.80
.80
.80

188 6.54 _dLU_Decomposition
3008 0.13 _Assign_p_Array
_pow
4515 0.07 _elmlib
189 1.27 _profile
v2norm

output deleted

188 1.17 _check_dconst
1504 0.13 _rotate
1504 0.11 _Assemble_Stiffness
_malloc
188 0.80 _dLU_Backsubstitution
4515 0.03 _elmt07
188 0.69 _Fera_Optimization
_bzero
1504 0.05 _Destin_Array
lpgrad
106 0.57 _matrvc
71 0.70 _dqgp
635 0.08 _qgphess
188 0.21 _Fsqpd_General
36 0.83 _dir
35 0.86 _hesian
36 0.56 _nngrfd
188 0.11 _pload
35 0.57 _step
output deleted --------——~————mceeun
188 0.05 _calc_dc_size
35 0.29 _dit
1 10.00 _fsqpdl
840 0.01 _fuscmp
388 0.03 _nullvc
-qpgrad_
188 0.00 _check_dobj
1 0.00 _fsqpd
70 0.00 _nscaprd
247 0.00 _scaprd
70 0.00 _slope
1 0.00 _small

Figure 4.12

: 2-D Building : Profile for Sequential Implementation

83

design, the maximuin dissatisfaction corresponds to axial force in the first
storey element of the middle column line. The critical dissatisfaction of
the optimal design is caused by the ground level bending moment of the

right most column.

5. The objective function decreases from 1.12, at the beginning of iteration

1, to 0.30 after 36 iterations.

4.9.2 3-D Building

The 3-D building frame is still a small sized optimization problem. Table 4.7
summarizes the optimization results for the 3-D building frame problem. Both
the sequential and distributed implementations run for 63 iterations before the
final solution is obtained. Figures 4.13, 4.14, 4.15 and 4.16 show the plots
of objective, maximum constraint, design variables and number of steps in line
search at every iteration. Table 4.8 shows the total time to run the sequential
version of the algorithm. Table 4.9 shows the total time spent in each component
of the distributed enviromment using three simulators.

The distributed version of the optimization algorithm was repeated for three,
four, and five remote simulators. Column 2 of Table 4.10 shows the maximum
CPU seconds used among the process manager and remote simulators. The
speedup in computation is shown in column 3. Speedup is defined as [T/T4],
where T is the execution time for the sequential implementation, and Ty is

the corresponding entry of column 2 for the given number of simulators. An

estimate of the overall efficiency of the system is shown in column 4 of Table 4.10;
efficiency is defined as [Tvlﬁ] -100%, where N is the number of remote simulators.
Finally, a profile summary of functions executed in the 3-D building optimization

is shown in Figure 4.17. The abovementioned tables and figures indicate:

1. The two storey 3-D unsymmetrical building frame is a small sized optimiza-
tion problem. Figure 4.17 shows that more than 95 % of the computational
time is dedicated to the calculation of structural responses/simulations.
Less than 5 % of the total computational work is needed for the FSQP
optimization algorithm. Notice that this 95% - 5% division in resources for
the simulation/optimization is consistent with statements made in Chap-

ter 1 of this report.

S

The maximum value of dissatisfaction for the design constraints increases
from -0.21 to -0.000053 as the design is updated from iteration 0 to itera-
tion 63. For both the initial and final designs, the critical dissatisfaction
corresponds to bending moments in the interior girders at the first floor
level. The objective function decreases from 2.11 initially to 0.89 after 63

iterations

3. The speedup in computations due to the use of multiple simulators has
a maximum value of 3.26 when 5 remote simulators are employed. The

computational efficiency is approximately 66%.

4. The remote simulations are distributed quite evenly among available sim-

85

ulators, as indicated in row No Simulations of Table 4.9. The total
number of simulations for the FSQP-DIS implementation is slightly more
than that in the sequential version, 591 versus 494. Again, this occurs for

the reasons explained in Section 4.9.1.

. Figure 4.16 shows that nearly half of the optimization iterates required
more than one step in the line search computation; i.e., ¢ < 1. Some
iterations needed more than five trial steps !! Experience indicates that
during the latter stages of the optimization, FSQP often needs only one
trial steplength. The results of this problem deviate from usual behavior.
This observation could be caused by a number of factors. First, the axial
force design constraint for each beam and column element is not con-
tinuously differentiable. Second, the design space could be quite bumpy,

possibly containing pockets the algorithm gets cornered in.

3-D Unsymmetrical Building

Initial Guess x = [1100.0,1100.0,1100.0,1100.0,1100.0]
Final Solution z = [539.3,634.4,440.8,1075.6, 537.6)
Initial Objective 2.114658
Final Objective 0.888923
Initial Max. Constraint -0.208572
Final Max. Constraint -0.000053
No. ol‘l‘ Iterations 63

Table 4.7: 3-D Building : Simulations Results

Timing of 3-D Building : Sequential Optimization

Machine Type Sun SPARC
CPU percentage 98
Other User None
Number of Simulations 494
Simulation Time (Seconds) 2372

Table 4.8: Timing of 3-D Building : Sequential Optimization

87

2.5 - T 1 1 1 1 171 1 7 "li'[T 71 1 ' T 1 T 1 T T T
i 3-D Building i
:—\ -
2 .
% s \ _
o) r 7
a i
- L__\ 1
: A\ j
N
L S, =
L N]
5 L SRR B A I .
0 10 20 30 40 50 60
[teration Number
Figure 4.13: 3-D Building : Objective Values
Timing of 3-D Building : Distributed Optimization
GUI Manager Sim 1 Sim 2 Sim 3
Machine Newton | Lorentz Laplace | Poisson| Taylor
Type SPARC SPARC SPARC SPARC SPARC
CPU (%) 94 90 87 49 66
Other User None None None None None
No. Simulations - - 258 136 197
Time (Seconds) | 526.3 854.2 11815 | 661.5 | 901.5

Table 4.9: Timing of 3-D Building :

S8

Distributed Optimization

.05

B | ' ' } | 1 ' | i . ! l ‘ | | ‘__4
: Infeasible Region :
- _
0 4
5 - 05 |— Feasible Region I
5 i 4
2 _ 4
o

S - .
= i i
R —
£ B]
= B d
3 1
= - | i
- |
- 15 — | Bl
B f 4
-]
N _
TR A
[1 | L R b ! Ll -

o] 20 30 40 50 60

Iterauons

Figure 4.14: 3-D Building : Maximum Constraint Values

3-D Building : Speedup and Efficiency

No Simulators Time (seconds) Speedup Efficiency (%)
1 2372.0 1.00 100
3 1181.5 2.00 66
4 343.3 2.81 70
) T27.5 3.26 66

Table 4.10: 3-D Building : Speedup and Efficiency

89

1000

800

600

Moment of Inertia {in4)

400 }— —
. 4
- 3-D Building : Design Variables -]

200 — —
| Box Conslraints |
Cev b e b e b v b e b v 1y
0 10 20 30 40 50 60

Iteration Nummber

Figure 4.15: 3-D Building : Design Variables

90

Number of Steps

b
N

3-D Building

—
[ee] O
g ¥ I'1VIA‘I l [r“r‘T”T‘ ‘I“‘I““T l”—] T

(]

g

1l\l9|$‘14tl.tn‘|'llll\l

U OSSR Y

MRS

//////2 7.

L_l__l_l__l“Llllli'lllli_,L_l;

T

i[j \1\‘“\

o

Iteratxons

Figure 4.16: 3-D Building : Number of Steps

91

%time

o]
N

cumsecs

1952.

2076
2111

2184,
2203.
2220.

2236
2251

2264.

2277

2295,
2309.
2314.

2318

2326.

2329
2340

2344.
2346.
2357.

2358

2359,
2361.
2363.
2364.
2365.
2365,
2366.
2366.
2367.

2367

2367.
2368.
2368,
2368.
2368,
2369.
2369.
2370.

2371

2371.
2371.

2371
2371
2371
2371
2371
2371
2371

2372,

2372

2372.
2372.

30
.46
.49
65
14
11
.49
.00
69
.93
35
29
46
.79
10
.54
.06
22
02
88
.48
02
57
69
74
34
63
17
90
33
.63
71
52
66
80
94
07
92
89
.03
15
19
.37
.40
.46
.49
.55
.73
.95
02
.04
04
04

#call ms/call
494 3952.02
153140 0.81
494 70.91
43472 0.51
43472 0.39
65213 0.22
495 27.66
21736 0.61
278622 0.03
43472 0.13
43472 0.12
494 8.77
65213 0.06
2165384 0.02
494 4,05
21736 0.08
494 1.26
125 4.80
494 1.09
65208 0.01
65208 0.01
494 0.67
62 4,84
494 0.59
494 0.51
63 3.81
1367 0.15
65208 0.00
494 0.36
494 0.30
21736 0.01
63 2.22
494 0.26
62 1.61

64 0.78
441 0.09
8184 0.00
62 0.48
434 0.07
63 0.32
124 0.08
124 0.08

1 0.00

i 0.00

i 0.00

name
_dLU_Decomposition
_dMatrix_Mult
_dLU_Backsubstitution
_tmat

_bzero

_rotate3d

_free

-elmlib

-profile
_Assemble_Stiffness
_dMatrix_Alloc
_Assign_p_Array
_beamst3d
_check_dconst
_elnt05
_free_dMatrix
_calloc
_Fera_Optimization
_Destin_Array
_pload

-dgp
_Assemble_Nodal_Load
_alloc_dconst_iten
_retrieve_dconst_entities
_print_dconst

_di1l
_Global_Stiffness
_check_dobj
.nngrid

-qphess
_store_dconst_entities
_Fsqpd_General
_calc_dc_size
_Element_Stiffness
_dir

zyprod
_dVector_Copy
-step

_out

_Print_Vector
—qpgrad._

tsolve

_fuscmp

_hesian

-qpprt_

gpsol

_scaprd

_diagnl

.nscaprd

_slope

_check

_fsqpd

_fsqpdil

Figure 4.17

: 3-D Building : Profile for Sequential Implementation

92

CHAPTER

FIV

Conclusion and Future Work

5.1 Summary and Conclusion

In Scction 1.3 it was stated that the purposes of this work were to: (a)
describe the implementation of the Distributed Numerical Computing Environ-
ment, (b) formulate FSQP-DIS, a distributed computing version of the Feasible
Sequentia‘,l Quadratic algorithm that matches the DNC architecture, and (c)
conduct optimization experiments for a small mathematical programming prob-
lem, the optimal design of a very small planar steel frame, and the optimization
of a small sized three-dimensional steel building.

For the simple mathematical programming problem, the overheads associ-
ated with message passing in the DNC architecture are high in comparison to the
mathematical computations required. The sequential implementation is faster.
For the optimal design of the very small planar steel frame, approximately 70%
of the computational work is devoted to finite element analyses. The sequen-
tial and distributed implementations have approximately the same speed. More

than 95% of the total computational work is dedicated to finite element analy-

93

ses in the optimal design of the three-dimensional steel building. A maximum
speedup of 3.26 was achieved when five simulators were employed for the finite
element computations. 3.26 is not close to the theoretical maximum speedup
of 5. Indeed, it is our observation that computational speedup is affected by a
complex interaction of at least four factors. The factors are: (a) the number of
remote simulators, (b) the problem solving strategy within FSQP-DIS, (c) the
number of design variables in an optimization problem, and (d) strategies used
by DNC to assign tasks to remote simulators.

Factor (b) is related to the performance metric of sequential dependency; that
is the fraction of steps in an algorithm that must be sequential because previous
results are needed before a particular computation can commence. Amdahl’s
law [1] states that if f, and f, are the fractions of sequential and parallel
computation, such that f, + f, = 1, then as the number of available remote
workstations becomes large the maximum speedup that can be obtained is 1/ f;.
However, when configurations of DNC are limited to a moderate number of
identical remote workstations (let’s say N), measured speedup cannot exceed N
even if f; < 1/N. Although it is theoretically possible to configure DNC with
20+ workstations, it is unlikely that a user would ever want to manually setup
more than 10 remote simulators (see Section 2.10).

Recall that an iterate of FSQP-DIS contains three main tasks: (1) compu-
tation of the Jacobian matrix, (2) a single additional analysis for d, and (3) the

step length computation. When N is large enough so that all components of Step

94

(1) may be executed in time At, and Step (3) in time At, Steps (1)-(2)-(3) will
still take at least 3A¢ no matter how many remote workstations are available.
The practical implementation of FSQP-DIS is further complicated by factor (c)
interacting with factor (a). If an optimization problem has M design variables
(let’s say 5), then in the current DNC environment there appears to be little
computational advantage in having more than 5 identical remote workstations;
each workstation is assigned one structural analysis during the computation of
partial derivatives in the Jacobian matrix. Moreover, the numerical experiments
indicate that only occasionally are more than 3-4 trials needed in the steplength
computation, so again, Step (3) of FSQP-DIS would rarely exploit the processing
power of 5-10 workstations without wasting analyses. Rather than automati-
cally compute M trial step lengths, a better strategy might be to select only 1-2
trial points, and employ the remaining workstations for Step (1) - i.e. gradient
computations - in the next iteration. Some ideas on how to proceed with the

speculative gradient evaluations are given below.

5.2 Future Work

Future work should focus on reducing the time scale 3At. One option is to
replace the engineering workstations with very fast parallel computers. This is
a long term goal. In the meantime it is recommended that extensions to this
work concentrate on adjustments to the I'SQP-DIS algorithm - factor (b) - and

implementations of smart dispatcher threads - factor (d).

5.2.1 Nonmonotone Search Strategies

A variant of FSQP-AL is the recently developed FSQP-NL algorithm [40].
FSQP-NL uses a nonmonotone line search to force a decrease of the maximum
value of the objective functions within either at most four iterations (if there
are nonlinear constraints [11]), or at most three iterations otherwise [19].
The nonmonotone line search scheme achieves superlinear convergence with no
bending of the search direction, and no function evaluations at auxiliary points.
It is recommended that FSQP-AL be replaced by FSQP-NL, thereby reducing

the timescale {from 3¢ to 2A\d1.

5.2.2 Speculative Gradient Evaluation

This idea arises from the fact that once stepsize ty = 1 satisfies the line
search requirements, it is most likely that ¢, = 1 for the majority of iterations
in the optimization process. Instead of wasting simulations on trial points with
smaller stepsizes, as has been done in this study, a better strategy might be
to start computing gradients needed for the direction calculation in the next
iteration even before the previous iteration is complete. This strategy is called
speculative gradient evaluation because there is no guarantee the design point
for ¢, = 1 will be acceptable. If 1} = 1 fails, then trial points ¢, = 1/2, t; = 1/4,

and so on must be simulated. For a complete discussion, see reference [33].

96

5.2.3 Smarter Dispatcher Threads

The implementation of dispatcher threads in DNC is naive in the sense that
items are fetched from the task queue on a first-in first-out basis. For the struc-
tural analyses described in Chapter 4, this strategy has been acceptable because
all of the remote simulators were running at approximately the same speed, and
each of the simulation tasks required approximately the same computational
work. However, in other applications [3, 6] the amount of computational work
may vary from task to task. The proposed smart dispatcher threads should be
able to monitor the computational speed of the remote simulators, and match
tasks with the most computationaiWork with the fastest simulators. Some

ideas and methods of implementing the assignment are given in Bertsekas and

Tsitsiklis [9].

[1]

[7]

BIBLIOGRAPHY

Amdahl G. M. Validity of the Single-Processor Approach To Achieving
Large Scale Computing Capabilities. In AFIPS Conference Proceedings,
Atlantic City, N.J., volume 30, April 1967.

Austin M. A. CSTRUCT : An Interactive Computer Environment for the
Design and Analysis of Earthquake Resistant Steel Structures. Technical
Report Report No UCB/EERC-87-13, Earthquake Engineering Research
Center, University of California, Berkeley, September 1987.

Austin M. A. High Order Integration of Smooth Dynamical Systems:
Theory and Numerical Experiments. International Journal of Numerical
Methods in Engineering; Submitted November, 1991.

Austin M. A., Pister K. S., Mahin A. S. Beyond DELIGHT.STRUCT
: Current Research and Software Development. In Structures Congress 87,

ASCE, Orlando, August 1987.

Austin M. A., Pister K. S., Mahin A. S. Probabilistic Limit States
Design of Moment-Resistant Frames under Seismic Loading. Journal of the
Structural Division, ASCL, August 1987.

Austin M. A., Voon B. K. Development of a Distributed Computing
Environment for Optimization-Based CAD of Structures. In Computer

Atded Optimum Design of Structures OPT/91, June 1991.

Balling R. J., Ciampi V., Pister K. S., Polak E. Optimal Design of
Seismic-Resistant Planar Steel Irames. Technical Report Report No EERC
§1-20, Earthquake Engineering Research Center, University of California,
Berkeley, December 1931.

Balling R. J., Pister K. S., Polak E. DELIGHT.STRUCT: A Computer-
Aided Design Environment for Structural Engineering. Computer Methods
in Applicd Mechanics and Engineering, pages 237-251, January 1983.

[9]

[10]

[11]

[14]

[15]

[16]

Bertsekas D. P., Tsitsiklis J. N. Parallel and Distributed Computation :
Numerical Methods. Prentice-Hall Inc, New York, NY., 1989.

Birman K., Cooper R., Joseph T., Kane K., Schmuck F. The ISIS System
Manual : Version 1.2. Technical report, Department of Defense Advanced
Research Projects Agency, August 1989.

Bonnans J. F., Panier E., Tits A. Avoiding the Maratos Effect by
Means of a Nonmonotone Line Search. II. Inequality Constrained Problems
— Feasible Iterates. Technical Report Technical Report SRC-TR-89-42r1,
Systems Research Center, University of Maryland, College Park, MD 20742,
1989.

Butala D., Choi K. Y., Fan M. K. H. Multiobjective dynamic opti-
mization of semibatch [ree radical copolymerization process with interactive
cad tools. Technical Report Technical Report TR-87-166, Systems Research
Center, University of Maryland, College Park, MD 20742, 1987.

Byrne R. H. Interactive Graphics and Dynamical Simulation in a Dis-
tributed Processing Environment. Master’s thesis, University Of Maryland,
College Park, 1990.

Chang K. H., Santos J. L. T. Distributed Design Sensitivity Compu-
tations on a Network of Computers. Computers and Structures, 37(3):265-
275, 1990.

Coulouris G. F., Dollimore J. Distributed Systems Concepts and Design.
Addison-Wesley Publishing Company, 1988.

Doeppner T. W. Jr. A Threads Tutorial. Technical Report CS-87-06,

Computer Science Technical Report, Brown University, 1987.

Farhat C., Wilson E. L. A New I"inite Element Concurrent Computer
Architecture. International Journal for Numerical Methods in Engineering,
24:1771-1792, September 1987.

Feldman S. I., Gay D. M., Maimone M. W., Schryer N. L. A Fortran to
C Converter. Technical Report 149, Computer Science Technical Report,
AT & T Bell Laboratories, 1990.

Grippo L., Lampariello F., Lucidi S. A Nonmonotone Line Search Tech-
nique for Newton’s Method. STAM J. Numer. Anal., 1986.

99

[20]

[30]

[31]

Herendeen D. L. Parallel Processing and FEM : Fullfilling the Promise.
Finite Elements in Analysis and Design, 4:193-202, 1988.

Johnson S. C. YACC-Yet Another Compiler Compiler. Computer Science
Technical Report 32, ATT Bell Lab, Murray Hill, N.J., 1975.

Johnsson S. L., Mathur K. K. Data Structures and Algorithms for the

Finite Element Method on a Data Parallel Supercomputer. International
Journal for Numerical Methods in Engineering, 29:881-908, 1990.

Kernighan B. W., Pike R. The UNIX Programming Environment.
Prentice-Hall Software Series, 1984.

Kernighan B. W., Ritchie R. The C Programming Language. Prentice-
Hall Software Series, 1978.

Lampson B. W., Paul M., Siegert H. J. Distributed Systems - Architec-
ture and Implementation. Springer-Verlag, 1983.

Magee J. N., Cheung S. C. Parallel Algorithm Design for Workstation
Clusters. Software-Practice and Erperience, 21:235-250, March 1991.

Martin B. E., Pedersen C. H., Bedfort-Roberts J. An Object-Based
Taxonomy for Distributed Computing Systems. [IEEE Computer, pages
17-66, August 1991.

Nye W. T., Riley D. C., Sangiovanni-Vincentelli A. L., Tits A.
L. DELIGHT.SPLICE: An Optimization-Based System for the Design of
Integrated Circuits. IFEE Trans. CAD Integrated Circuits and Systems,
CAD-7, pages 501-520, 1987.

Nye W. T., Tits A. L. An Application-Oriented, Optimization-Based
Methodology for Interactive Design of Engineering Systems. International
Journal of Conlrol, 43(6):1693-1721.

Panier E. R., Tits A. L. On Combining Feasibility, Descent and Super-
linear Clonvergence in Inequality Constrained Optimization. 1989. to be

appear.

Powell M. J. D. A Fast Algorithm for Nonlinearly Constrained Optimiza-
tion Calculations, 1978. Numerical Analysis, Dundee, 1977, Lecture Notes
in Mathematics 630, G.A. Watson, ed., Springer-Verlag, 14 4-157.

100

[32]

[33]

[39]

40)

[41]

Rees S. A., Black J. P. An Experimental Investigation of Distributed
Matrix Multiplication Techniques. Software-Practice and Ezxperience, pages

1041-1063, October 1991.

Schnabel R. B. Concurrent Function Evaluations In Local And Global
Optimization. Computer Mecthods In Applied Mechanics And Engineering,
pages 537-552, 1987.

Singhal M. Distributed Computing Systems. IEEE Computer, pages 12—
15, August 1991.

Sondhi J. S. Development of C-Based Program called FERA - Finite
Element and Rigid-body Analysis. Master’s thesis, University Of Maryland,
College Park, 1991.

Stevens W. R. Unix Network Programming. Prentice-Hall Software Series,
1990.

Sun Microsystems, Inc. Sun Manual, Copyright 1982, 1988.

Sun Microsystems, Inc. SunView 1 Programmer’s Guide, Copyright 1982,
1988.

Walker N. D. Authomated Design of Larthquake Resistant Multistory
Steel Building Iframes. Technical Report Report No. EERC 77-12, Earth-
quake Engineering Research Center, Univ. of Ca., Berkeley, Ca., May 1977.

Zhou J., Tits A. L. Fast Feasible Direction Methods, With Engineering
Applications. In Furopean Control Conference, pages 194-199, Grenoble,
Paris, July 1991. Hermes, Paris.

Zhou J., Tits A. L. User’s Guide for FSQP Version 2.0 - A Fortran Code
for Solving Optimization Problems, Possible Minimax, with General In-
equality Constraints and Linear Equality Constraints, Generating Feasible

Iterates. Electrical Engineering Department and Systems Research Center,
University of Maryland, College Park, MD 20742, 1991.

101

