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Control systems theory is an important field of study for many branches of

engineering. Teaching control systems to engineering students, however, is often

difficult due to the abstract nature of the subject. TableSat is a single degree of
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methods undertaken to eliminate those nonlinearities. Linear and truth system

models are created for use in controller design and testing. The system models

are tested and verified and then used to design and test several controllers and



estimators. Results are presented that compare results for the linear model, truth

model, and real TableSat system.



SYSTEM MODELING AND CONTROLLER
DESIGN FOR A SINGLE DEGREE

OF FREEDOM SPACECRAFT SIMULATOR

by

Melissa F. Vess

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2005

Advisory Committee:

Professor Robert M. Sanner, Chairman/Advisor
Professor Ella Atkins
Professor Benjamin Shapiro



c© Copyright by

Melissa F. Vess

2005



ACKNOWLEDGEMENTS

There are many people who have helped me with this endeavor, and without

whom I could not have accomplished this thesis. First, I would like to thank Tom

Stengle, my supervisor, for allowing me the opportunity to pursue this project

and get my Master’s Degree. I would like to thank Dave Mangus and the other

members of the TableSat team for letting me completely change TableSat as they

knew it. I would also like to thank Rob Sanner, my advisor, for his knowledge,

help and support. I would also like to thank my SDO colleagues for putting up

with my ever varying and sometimes inconvenient school schedule. And finally, I

would like to thank Dave Vess, my husband, for his ever present love and support.

Without him, I probably would have given up a long time ago.

ii



TABLE OF CONTENTS

List of Tables ix

List of Figures x

1 Introduction and Background 1

1.1 TableSat Background . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 TableSat Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Project Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Description of TableSat Hardware 11

2.1 Flight Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Analog Outputs . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Attitude and Rate Sensors . . . . . . . . . . . . . . . . . . . . . . 17

iii



2.2.1 Gyro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Coarse Sun Sensors . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Three-Axis Magnetometer . . . . . . . . . . . . . . . . . . 18

2.3 Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Communications Hardware . . . . . . . . . . . . . . . . . . . . . . 22

3 TableSat Onboard Software 24

3.1 TableSat Run Time Program . . . . . . . . . . . . . . . . . . . . 24

3.1.1 TableSat Main Thread . . . . . . . . . . . . . . . . . . . . 25

3.1.2 State Estimator Thread . . . . . . . . . . . . . . . . . . . 27

3.1.3 Controller Thread . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.4 Actuator Thread . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.5 Communications Thread . . . . . . . . . . . . . . . . . . . 40

3.2 TableSat Calibration Routine . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Gyro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Coarse Sun Sensors . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 Three Axis Magnetometer . . . . . . . . . . . . . . . . . . 44

4 TableSat Interface GUI 46

4.1 Low Level Communication . . . . . . . . . . . . . . . . . . . . . . 47

iv



4.1.1 tsat init . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.2 tsat send msg . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.3 tsat register msg . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.4 tsat recv msg . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 TableSat GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Friction Compensation . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Actuator Type . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 Sample Rates . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.4 Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.5 Controller Definition . . . . . . . . . . . . . . . . . . . . . 58

4.2.6 Estimator Definition . . . . . . . . . . . . . . . . . . . . . 61

4.2.7 Update TableSat Parameters . . . . . . . . . . . . . . . . . 63

4.3 Simulink Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . 64

5 System Modeling 68

5.1 TableSat Equations of Motion . . . . . . . . . . . . . . . . . . . . 68

5.2 TableSat Moment of Inertia Test . . . . . . . . . . . . . . . . . . 69

5.2.1 Derivation of the Dynamic Equations . . . . . . . . . . . . 70

5.2.2 Torsional Pendulum Test Procedure . . . . . . . . . . . . . 74

5.3 Friction Characterization . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 TableSat Friction . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.2 Fan Friction . . . . . . . . . . . . . . . . . . . . . . . . . . 79

v



5.4 TableSat Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.1 Fan Time Constant . . . . . . . . . . . . . . . . . . . . . . 83

5.4.2 Voltage to Change in Fan Speed Constant . . . . . . . . . 85

5.4.3 Fan Speed to Fan Force Constant . . . . . . . . . . . . . . 86

5.5 Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.1 TableSat Friction . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.2 Fan Friction and Kwf . . . . . . . . . . . . . . . . . . . . . 89

5.5.3 Fan Time Constant . . . . . . . . . . . . . . . . . . . . . . 94

5.5.4 Fan Voltage to Change in Speed Constant . . . . . . . . . 95

5.6 Sensor Noise Characterization . . . . . . . . . . . . . . . . . . . . 96

5.7 TableSat Truth Model . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Linear Model Development 102

6.1 TableSat Friction Compensation . . . . . . . . . . . . . . . . . . . 102

6.2 Fan Friction Compensation . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Linear Model Verification . . . . . . . . . . . . . . . . . . . . . . . 110

7 Case Studies 120

7.1 Classical Controller Design . . . . . . . . . . . . . . . . . . . . . . 120

7.1.1 Design Methodology . . . . . . . . . . . . . . . . . . . . . 121

7.1.2 Controller Results . . . . . . . . . . . . . . . . . . . . . . . 125

vi



7.2 Sensor Noise Reduction: State Estimators . . . . . . . . . . . . . 132

7.2.1 N-Sample Estimator Design Methodology . . . . . . . . . 133

7.2.2 N-Sample Estimator Results . . . . . . . . . . . . . . . . . 136

7.2.3 Kalman Filter Design Methodology . . . . . . . . . . . . . 139

7.2.4 Kalman Filter Estimator Results . . . . . . . . . . . . . . 143

7.3 Model Based Controller-Observer . . . . . . . . . . . . . . . . . . 145

7.3.1 Design Methodology . . . . . . . . . . . . . . . . . . . . . 145

7.3.2 Controller Results . . . . . . . . . . . . . . . . . . . . . . . 152

7.4 MBCO with Integral Augmentation . . . . . . . . . . . . . . . . . 155

7.4.1 Design Methodology . . . . . . . . . . . . . . . . . . . . . 155

7.4.2 Controller Results . . . . . . . . . . . . . . . . . . . . . . . 158

8 Conclusions 161

8.1 TableSat Hardware Upgrades . . . . . . . . . . . . . . . . . . . . 162

8.2 TableSat Software Upgrades . . . . . . . . . . . . . . . . . . . . . 164

8.3 TableSat System Identification . . . . . . . . . . . . . . . . . . . . 168

8.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.5 Final Conclusions and Future Work . . . . . . . . . . . . . . . . . 172

A TableSat Source Code 174

A.1 Include Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.2 Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

vii



B TableSat GUI Code 240

C TableSat/MATLAB Communications Code 273

D TableSat Truth Model Code 280

Bibliography 290

viii



LIST OF TABLES

3.1 TableSat Messages . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 TableSat Variable Parameter Messages . . . . . . . . . . . . . . . 49

4.2 Additional Messages Sent To TableSat . . . . . . . . . . . . . . . 51

4.3 Messages received from TableSat . . . . . . . . . . . . . . . . . . 51

5.1 Torsional Pendulum Test Data . . . . . . . . . . . . . . . . . . . . 75

5.2 TableSat Spin Test Friction Data . . . . . . . . . . . . . . . . . . 80

ix



LIST OF FIGURES

2.1 TableSat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 TableSat Hub and Spindle . . . . . . . . . . . . . . . . . . . . . . 13

2.3 TableSat flight processor . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 TableSat gyro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 CSS Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 TableSat three-axis magnetometer . . . . . . . . . . . . . . . . . . 19

2.7 TableSat actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 TableSat battery . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 TableSat Wireless Access Point . . . . . . . . . . . . . . . . . . . 23

2.10 TableSat router . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 CSS Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 TableSat GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 GUI: Friction Compensation . . . . . . . . . . . . . . . . . . . . . 54

4.3 Friction Compensation Curve . . . . . . . . . . . . . . . . . . . . 55

4.4 GUI: Actuator Type . . . . . . . . . . . . . . . . . . . . . . . . . 56

x



4.5 GUI: Sample Rates . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 GUI: Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 GUI: Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 Simulink Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.9 GUI: Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.10 Closed-Loop Model . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.11 Open-Loop Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 TableSat Torsional Pendulum Test Setup . . . . . . . . . . . . . . 70

5.2 View of TableSat from above during Torsional Pendulum Test . . 71

5.3 Definition of F1 during the TableSat Torsional Pendulum Test . . 72

5.4 Relationship between ∆ and R during the TableSat Torsional Pen-

dulum Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 TableSat Spin Up - Spin Down Test Data . . . . . . . . . . . . . . 76

5.6 TableSat Angular Acceleration vs. Voltage . . . . . . . . . . . . . 78

5.7 TableSat Fan Friction Curves . . . . . . . . . . . . . . . . . . . . 82

5.8 Angular Velocity Curve Fit . . . . . . . . . . . . . . . . . . . . . 84

5.9 Finding α from Spin Up-Spin Down Test Data . . . . . . . . . . 85

5.10 Truth Model vs. Real TableSat Comparison, Open Loop Control,

Constant Command . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.11 Truth Model vs. Real TableSat Comparison, Open Loop Control,

Constant Command . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xi



5.12 Truth Model vs. Real TableSat Comparison, Open Loop Control,

Constant Command . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.13 Truth Model vs. Real TableSat Comparison . . . . . . . . . . . . 92

5.14 Truth Model vs. Real TableSat Comparison . . . . . . . . . . . . 93

5.15 Truth Model vs. Real TableSat Comparison, Open Loop Control,

Constant Command . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.16 Truth Model vs. Real TableSat Comparison, Open Loop Control,

Constant Command . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.17 α Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.18 Gyro Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.19 TAM Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.20 CSS Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.21 TableSat Truth Model . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Friction Compensation Test . . . . . . . . . . . . . . . . . . . . . 105

6.2 Fan Static Friction Compensation . . . . . . . . . . . . . . . . . . 106

6.3 TableSat Frequency Domain Simulation . . . . . . . . . . . . . . . 109

6.4 TableSat Linear vs. Truth Model Comparison . . . . . . . . . . . 110

6.5 TableSat Linear vs. Truth Model Comparison . . . . . . . . . . . 111

6.6 Linear Model Open Loop Control . . . . . . . . . . . . . . . . . . 113

6.7 Truth Model vs. Real TableSat Comparison, Open Loop Control . 114

6.8 Closed-Loop Sine Waves . . . . . . . . . . . . . . . . . . . . . . . 115

xii



6.9 Closed-Loop Sine Waves . . . . . . . . . . . . . . . . . . . . . . . 117

6.10 Theoretical and Experimental Bode Magnitude Diagram . . . . . 118

7.1 Dual Loop Feedback Compensator . . . . . . . . . . . . . . . . . 122

7.2 GTS(s) ∗ s Root Locus Plot . . . . . . . . . . . . . . . . . . . . . 123

7.3 L(s) Root Locus Plot . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.4 PD Controller Linear Prediction . . . . . . . . . . . . . . . . . . . 126

7.5 PD Controller Results . . . . . . . . . . . . . . . . . . . . . . . . 127

7.6 Truth Model 6 degree step command . . . . . . . . . . . . . . . . 128

7.7 New PD Controller Linear Prediction . . . . . . . . . . . . . . . . 129

7.8 New PD Controller Results . . . . . . . . . . . . . . . . . . . . . 130

7.9 New PD Controller Results with CSS Attitude . . . . . . . . . . . 133

7.10 New PD Controller with 2-Sample Estimator . . . . . . . . . . . . 137

7.11 New PD Controller with 5-Sample Estimator . . . . . . . . . . . . 138

7.12 New PD Controller with Kalman Filter Estimator . . . . . . . . . 144

7.13 Model Based Controller Observer Prediction . . . . . . . . . . . . 153

7.14 Model Based Controller Observer Predicted and Actual Results . 154

7.15 MBCO with Integral Augmentation Prediction . . . . . . . . . . . 159

7.16 MBCO with Integral Augmentation Predicted and Actual Results 160

xiii



Chapter 1

Introduction and Background

Control systems theory and design is an important and ever changing field of

study for many different types of engineers. From the simple feedback controller

that maintains oven temperature, to the complex, multi-degree-of-freedom control

system that steers a spacecraft as it flies through the Solar System, embedded

controllers show up everywhere. And while based in mathematical principles,

controller design is often as much art as it is science. A controller is not a physical

object you can see. It is an algorithm, typically implemented in computer code,

that alters system performance. It is intangible, it is abstract, it is vague, but it

is also very powerful. It allows automatic control of a 3200 kg spacecraft without

human intervention. It maintains an automobile’s speed without having driver

intervention.

The intangibility of the algorithms which enable these feats can make con-

trol systems engineering a difficult topic to teach students. The basic principles

of linearity, stability, robustness, and control can be explained in a mathematical
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sense; Bode, Nyquist, and Root Locus plots can be generated; phase margin,

gain margin, and bandwidth can be defined, but the physical meaning of these

concepts and tools is often a leap that students cannot make based on theory

alone. They cannot see how transforming errors into specific control inputs as

specified by a given transfer function will produce the desired results. To help

answer these questions, students need something that demonstrates a real control

system, something they can see and touch. Something that allows them to see

how a given controller will modify a dynamic system, and how modifying the

controller parameters corresponds and changes system response.

TableSat is an interactive, single degree-of-freedom spacecraft simulator

designed as a tool for demonstrating and teaching control system design. Specif-

ically, it uses hardware and software similar to that found in a current spacecraft

attitude control system (ACS), and therefore can illuminate how the ACS de-

sign interacts with the physics of a spacecraft. TableSat includes a mechanical

structure, an on-board flight processor, attitude and rate sensors, propulsive ac-

tuators, a power supply, and a communications system. These features allow

the user to simulate an ideal spacecraft with unlimited power, attitude control,

communications, etc., as well as a true-to-life spacecraft that includes realistic

limitations on these subsystems. In this manner, students can see how neglecting

things, such as friction, to allow for a linear analysis, can often have detrimental

effects on the controllability and stability of the real system.
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1.1 TableSat Background

TableSat was originally designed as a demonstration tool for a class held at

NASA’s Goddard Space Flight Center entitled Attitude Control Systems for Non-

ACS Engineers. The purpose of this class was to provide a general overview of

what it is that attitude control systems engineers do. Everything from quaternion

math, to bode plots, to types of attitude sensors and actuators was discussed.

This initial version of TableSat provided a way to demonstrate how the theoretical

design of an attitude control system manifests on an actual spacecraft.

The original TableSat used a balanced, 15-inch diameter disc containing a

three-axis magnetometer (TAM), four coarse sun sensors (CSSs), and a single-axis

gyro for attitude sensors; two computer fans for actuators; and two battery packs

for power. The onboard flight processor was a Microchip PIC16F874 8-bit micro

controller, which was programmed in low level assembly language, and utilized

an RF serial link for communications with a ground station. Due to the limited

memory on the micro controller, the flight processor could not provide on-board,

closed-loop feedback control. Instead, sensor readings were sent via the RF link

to a laptop running Mathwork’s Simulink. Data processing, control calculations,

and data plotting were performed in Simulink, and the actuator commands were

uplinked to TableSat using the RF serial link. This Simulink-in-the-loop set up

resulted in a top control rate of approximately 2.5 Hz. The fans were actuated in

a Pulse Width Modulated (PWM) format, with a resolution of four pulse cycles

3



per control cycle.

At the completion of the ACS class, a group of ACS engineers from the

Flight Dynamics Analysis Branch at Goddard started working with TableSat to

extend and improve its uses and capabilities. One of the early such uses of Ta-

bleSat was to demonstrate to middle and high school students the fundamentals

of control systems engineering. A short presentation was put together that incor-

porated simple, hands-on activities to illustrate the concepts of control, stability,

and feedback. At the end of the presentation, TableSat was used to show how

those same ideas are incorporated into the control of a spacecraft.

After the demonstration of TableSat to middle and high school students,

the TableSat team wanted to bring TableSat to colleges and universities as a

teaching tool for undergraduate students. In particular, the TableSat team felt

that an undergraduate course in linear control systems would be the ideal place

to incorporate TableSat because it demonstrates a complete feedback control

system. The goal was to present a demonstration of TableSat, and then the

students would design a controller for TableSat using the tools they learned in

linear control systems.

The TableSat team approached the Aerospace Engineering Department at

the University of Maryland, College Park and met with favorable feedback from

the faculty. A demonstration of TableSat was presented in the spring of 2003

and resulted in enthusiastic responses from the students. However, upon further
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investigation into the feasibility of using TableSat as a design project, it was de-

termined that in its current state, TableSat would not be an effective project for

a linear systems class. As with all “real” systems, TableSat was highly nonlinear,

due most notably to the limitations in the control and actuation rates. In addi-

tion, the TableSat system dynamics were not carefully modelled and analysis by

linear methods proved impossible. Without a system model, it would be difficult

for students to design a linear controller that would effectively control TableSat.

Furthermore, given the nonlinearities in the TableSat system, a controller de-

signed with linear tools would likely not yield the desired response, and would

thus be less effective as a teaching tool.

As a result of these discoveries, the TableSat team decided to redesign Table-

Sat to make it more suitable for showing in a linear systems class, while retaining

the ability to make TableSat a “real” nonlinear system for advanced analysis and

applications. This functionality would allow students to see the response of an

ideal system to a linear controller, then progressively add nonlinearities into the

system to show the effect of those nonlinearities on the system response.

A team at the University of Maryland, headed by Dr. Robert Sanner and

Dr. Ella Atkins, both of the Aerospace Engineering Department, was tasked with

upgrading TableSat to provide a better teaching tool by reducing the nonlin-

earities in the system while retaining most of the current functionalities of the

system. Most importantly, the TableSat team wanted to retain the ability to

5



design and implement controllers using Simulink.

1.2 TableSat Goals

Based on discussions with the Goddard TableSat team, comprised of David Man-

gus, Kristin Makovec, Paul Mason, Oscar Hsu, John VanEeopel, and myself, and

the University of Maryland, a series of specific project goals was established. The

following is a list of these goals.

• Increase the TableSat control, estimation, and actuation loop rates so that

the system can be considered a continuous, linear system.

• Implement analog control of the actuators to provide for a more continuous

system.

• Establish the ability to switch between analog and discrete control of the

actuators.

• Establish the ability to alter controller, estimator, and actuator loop rates.

• Develop TableSat Equations of Motion and characterize system parameters.

• Develop a TableSat truth model including fan and TableSat dynamics, fric-

tion, sensor noise parameters, etc., that can be used to test controllers and

estimators.
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• Identify major nonlinearities in the system, and develop algorithms and

compensation methods to effectively remove those nonlinearities from the

system.

• Retain the ability to add nonlinearities to the system to show the difference

between ideal and “real” systems and for advanced controller and estimator

design.

• Develop a TableSat linear model that can be used to design controllers and

estimators.

• Verify truth and linear models by comparing predicted performance to real

TableSat performance.

• Design controllers and estimators using the system model. Test and com-

pare designed controllers and estimators to real system data.

• Create a simple user interface that allows the user to interact with the

system (e. g. load new controllers and state estimators).

• Retain the ability to use Simulink to design and implement advanced con-

troller and estimator designs.
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1.3 Project Contributors

Over the course of the TableSat project, there have been many people who have

contributed to the success of the project. The following is a list of contributors

to the TableSat project and their main contributions.

• Dr. Ella Atkins, University of Maryland - Design and implementation of

all hardware components; Design and implementation of all digital/analog

circuits; Prometheus OS (QNX) configuration; Low level Prometheus ini-

tialization code

• Dan Proffen, University of Maryland - Low level flight software develop-

ment: initial C code outline; global structure definitions; development of

controller, estimator, and actuator thread timers; initial outline of con-

troller, estimator, and actuator threads

• Dr. Robert Sanner, University of Maryland - Flight software upgrades;

MATLAB-TableSat communications code development

In addition to the above contributors, my contributions to the project in-

clude:

• Low level flight software development: development of controller, estimator,

and actuator thread timers; initial outline of controller, estimator, and ac-

tuator threads; conversion of raw sensor readings to counts; and conversion

of sensor counts to engineering units
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• Sensor calibration routine development

• TableSat GUI development

• Simulink truth model development and tuning

• Sensor noise characterization

• TableSat equations of motion parameter identification

• Linearization of physical system

• Linearized model analysis

• Classical controller development and testing

• Model Based Controller-Observer development and testing

• N-Sample state estimator development and testing

• Kalman Filter development and testing

1.4 Outline of Thesis

This thesis provides a description of the new TableSat system. Chapter 2 gives

an overview and general description of the hardware currently onboard TableSat.

Chapter 3 presents an outline of the new software. Details are provided on the

layout and interaction between the different threads, and how the sensor readings
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are converted into meaningful engineering data. Chapter 4 provides a description

on the different functionalities that TableSat possesses, and explains how the user

interacts with TableSat via the Graphical User Interface (GUI), which allows the

user to change TableSat’s variable parameters. Chapter 5 describes the devel-

opment of the TableSat system model and parameter identification. Chapter 6

explains the efforts undertaken to linearize the system and presents and validates

the linear system model. Finally, Chapter 7 presents case studies of some of

the different functionalities of TableSat, including using different controllers and

state estimators.
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Chapter 2

Description of TableSat Hardware

The complete TableSat system is pictured in Figure 2.1. The hardware is mounted

on a 15-inch diameter disc, which is balanced on a spindle that acts as Table-

Sat’s rotation point. The spindle contact point on TableSat is an aluminium hub

mounted in the center of the TableSat disc. The spindle and pivot hub are pic-

tured in Figure 2.2. From a hardware prospective, TableSat’s main components

are the flight processor, a single-axis gyro, four coarse sun sensors, a three-axis

magnetometer (TAM), two computer fans, a battery, a wireless ethernet access

point, a router, and a voltage regulator card. Note that the router is the only

hardware not mounted to the TableSat disc. Each of these components is dis-

cussed briefly in the sections below. All of the upgrades to the TableSat hardware

were accomplished by Dr. Ella Atkins of the University of Maryland, and a more

complete discussion of the hardware can be found in [1].
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Figure 2.1: Complete TableSat system.

2.1 Flight Processor

The TableSat flight processor, pictured in Figure 2.3 is the Prometheus embed-

ded PC/104 CPU manufactured by Diamond Systems Corporation. This card

integrates three separate modules, CPU, Ethernet, and Analog Input/Output,

on a single card.

2.1.1 CPU

The Prometheus CPU is a 486-DX2, 100 MHz processor with 32 MB SDRAM

system memory and 2 MB flash memory. The CPU operating system is QNX

Neutrino, a UNIX based Real-Time Operating System (RTOS) developed by

QSSL.
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Figure 2.2: TableSat hub and spindle.

2.1.2 Ethernet

The Prometheus includes a 100 Mbps Ethernet connection using 100BaseT wiring.

The Ethernet chip is the National Semiconductor DP83815 MacPhyter chip, and

is connected to the CPU via the Prometheus’s internal PCI bus.

2.1.3 Analog Inputs

The Prometheus has 16 single-ended or 8 differential analog inputs with 16-bit

resolution. A single-ended input attaches to the Prometheus using two wires,

input and ground. The measured input voltage is the difference between the

input and the ground. A differential input attaches to the Prometheus using three

wires, positive input, negative input, and ground. The measured input voltage is

the difference between the positive and negative inputs. One advantage of using

differential inputs is that they have a higher immunity to noise. Because noise

affects the positive and negative input wires equally, the noise will be cancelled
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Figure 2.3: TableSat flight processor: Diamond
Systems Corporation’s Promethus PC/104 CPU

out when the difference is taken. The analog inputs can accept either bipolar or

unipolar, variable input ranges with a maximum range of +/-10V or 0 - 10V and

a minimum range of +/-1.25V or 0 - 2.5V.

Analog to digital (A/D) conversions can be performed on a single channel

or a range of channels, and can be triggered internally or externally. Furthermore,

the Prometheus can operate in scan mode and/or interrupt mode. When a scan

of multiple channels is requested, the A/D conversion for the first channel of

the scan is triggered externally, and the A/D conversions for each subsequent

channel are triggered internally. Up to 48 A/D samples can be stored in the

programmable FIFO (First-In, First-Out) for reliable high-speed sampling and

scan operation. If the FIFO reaches its programmed threshold while in interrupt

mode, an interrupt request will occur, which can trigger an interrupt routine to
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read the data from the FIFO. If the Prometheus is not being operated in interrupt

mode, the A/D status bit has to be monitored. When the status bit is low, the

A/D conversion or scan is complete and the data must be read from the FIFO.

If the data is not read from the FIFO and the FIFO reaches its maximum 48

samples, the next attempt to sample an input will trigger the overflow bit and no

more samples will be accepted until the FIFO is reset. A single A/D conversion

can take up to 5 microseconds to complete. As most processors and software can

run faster than that, it is important to wait until the status bit goes low before

trying to read the A/D converter [3].

The A/D data is stored as a 16-bit value and is read as two 8-bit bytes.

The least significant byte (LSB) must be read before the most significant byte

(MSB) because the data is inserted into the board’s FIFO in that order. The

A/D data may only be read one time because each time the FIFO is read, its

internal pointer advances and that byte is no longer available. The data from

the A/D is a signed integer ranging from -32768 to +32767. That integer can be

converted back to a voltage, and from there into a meaningful engineering unit.

Conversion formulas vary depending on the range of the analog input [3].

Currently, the TableSat Flight Processor is running in differential mode

with the three axes of the TAM, the gyro, and the four CSS’s making up the

eight differential analog inputs. All eight analog inputs have a unipolar range of

0 to 5V. A/D conversions of all eight inputs are performed sequentially using the
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scan mode of the board. The FIFO stores the eight readings until they are read

or another scan is called for.

2.1.4 Analog Outputs

The Prometheus has four analog outputs, each with 12-bit resolution. Like the

analog inputs, the analog outputs can be unipolar or bipolar; however the output

ranges are not variable. The unipolar and bipolar output ranges are 0 to 10V

or +/- 10V, respectively. Because the digital to analog (D/A) converter has a

12-bit resolution, the range of inputs into the D/A converter is 0 to 4095, where

0 corresponds to the lowest output voltage and 4095 corresponds to the largest

output voltage. The resolution of the analog output, therefore, depends on the

total desired voltage range. For a unipolar output, the resolution is 2.44 mV, and

for a bipolar output, the resolution is 4.88 mV [3].

The TableSat Flight Processor currently uses only two analog outputs for

the two 12-Volt computer fans that act as positive and negative thrusters. Each

fan can accept a voltage input ranging from 0 to 12 V, therefore the flight proces-

sor is run in unipolar mode with an output range of 0 to 10 V. To maintain the

full range of fan voltages, the output from the flight processor is sent to the volt-

age regulator card, which amplifies the output voltages such that the commands

sent to the fans cover the full 0 to 12 V range.
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2.2 Attitude and Rate Sensors

The TableSat rate sensor is a single-axis gyro. The attitude sensor suite is com-

prised of four coarse sun sensors and a three-axis magnetometer.

2.2.1 Gyro

The TableSat gyro is the GyroChip Horizon manufactured by BEI Technologies,

Inc. It is small (2.20 x 0.994 x 0.994 inches), lightweight (60 grams), and features

low drift and high reliability.

Figure 2.4: TableSat gyro: BEI Technologies’s
GyroChip Horizon

The Horizon utilizes a one piece, micromachined, vibrating quartz sensing

element. When TableSat rotates, the Horizon produces a voltage proportional

to the rate of rotation. The output voltage can vary between 0.5 and 4.5 Volts,

which corresponds to a spin rate range of +/- 90 degrees per second [2].
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2.2.2 Coarse Sun Sensors

The TableSat Coarse Sun Sensors (CSSs), or photovoltaic detectors, are miniature

silicon solar cells, that convert light impulses directly into electrical charges. The

output from the CSSs approximately resembles a cosine curve. When the light

source is directly aligned with the CSS, the output is at its maximum. When the

light source is 90 degrees away from the CSS, the output is at its minimum. In

between, the output is roughly proportional to the cosine of the angle between

the CSS and the light source. The practical field of view of a single TableSat CSS

is about +/- 80 degrees around an axis normal to the CSS. In ambient lighting,

the TableSat CSSs generate approximately 0.4 Volts, which is then amplified to

produce a signal that ranges between zero and five volts.

TableSat has a total of four CSSs, which are mounted approximately 60

degrees apart on a hexagonal CSS head. With the practical, 80 degree CSS field

of view, this CSS arrangement gives roughly 340 degrees of CSS coverage. The

20 degrees of no CSS coverage is centered about the +/-180 degree line. Figure

2.5 shows three of the CSSs mounted on their hexagonal head. The fourth CSS

is mounted opposite to the one marked CSS1.

2.2.3 Three-Axis Magnetometer

The TableSat three-axis magnetometer (TAM) is the Honeywell HMC2003 Three-

Axis Magnetic Sensor Hybrid. This small, highly sensitive TAM is used to mea-
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Figure 2.5: Coarse Sun Sensor (CSS) layout

sure the strength and direction of an incident magnetic field. It is a combina-

tion of Honeywell’s most sensitive megneto-resistive sensors, the HMC1001 and

HMC1002, and can detect fields less than 40 microgauss and up to +/- 2 gauss.

The HMC2003 interface is completely analog, and outputs are available for each

X, Y, and Z-axis.

Figure 2.6: TableSat TAM: Honeywell’s HMC2003
Three-Axis Magnetic Sensor Hybrid

The HMC2003 is packaged on a small printed circuit board, approximately
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1 inch by 0.75 inches. The output voltage can vary between 0.5 and 4.5 Volts,

which corresponds to a magnetic field strength of +/- 2 gauss. The TAM operates

from a single 6 to 15 Volt power supply [4].

2.3 Actuators

The TableSat actuators are two Sunon KD1209PTS2 12 Volt computer fans

mounted such that they spin TableSat in either a positive (counter clockwise)

or negative (clockwise) direction. The fans are brushless DC fans, approximately

92 x 92 x 25 mm in size, with a mass of 95 g. The have a power consumption of

1.7 Watts and a current draw of 0.14 Amps. The fan speed is proportional to the

applied voltage, with a maximum fan speed of approximately 2500 RPM, and

a maximum volumetric flow rate of 44.5 CFM. Along with power and ground,

these fans also include a third wire that feeds back the actual fan speed and can

be used to close a control loop around the fan speed [8].

2.4 Power Supply

The TableSat power supply is the Polarmate PM111-DC external laptop battery.

It is a lithium-ion battery and has two output voltages: 16 Volts and 19 Volts.

TableSat uses the 16 Volt configuration. It has a capacity of 111 Watt-Hours,

which will power TableSat for approximately ten hours. The battery has an
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Figure 2.7: TableSat Actuator: Sunon’s
KD1209PTS2 12 Volt computer fan.

AC adapter that plugs into a standard wall socket for charging, which can take

between three and five hours depending on the battery’s state of charge. Five

LEDs indicate the battery’s charge state. It has overall dimensions of 7.7 x 4.5 x

1.0 inches, and weighs approximately 1.5 lbs.

Figure 2.8: TableSat Battery: Polarmate’s PM111-
DC external laptop battery.
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2.5 Voltage Regulator

Recall that for TableSat, the analog outputs from the Prometheus output unipo-

lar voltages from 0 to 10 Volts. Recall also that the TableSat actuator fans can

accept inputs from 0 to 12 Volts. The voltage regulator circuit is used to scale

the voltage output from the Prometheus such that the input into the fans range

from 0 to 12 Volts. It also ensures that the correct current flows to the different

components. With the 12-bit D/A converter, the resolution of the output is 2.44

mV. The voltage regulator circuit scales that resolution such that the minimum

change in voltage that can be commanded to the actuators is 2.93 mV.

2.6 Communications Hardware

TableSat communicates to its ground station (laptop) via the OTC Wireless

ASR102 wireless access point routed through a Linksys BEFW11S4 Wireless-B

broadband router.

The ASR102, which can be seen in Figure 2.9, is a portable, high-speed

802.11b wireless access point with a maximum speed of 11 Mbps. It plugs directly

into the ethernet, and the speed adjusts automatically depending on the RF

link condition. It is protected by 64/128-bit WEP security and Dynamic Key

Encryption. Its overall dimensions are 2.125 x 4.625 x 0.7 inches [7].

The BEFW11S4 is a plug-and-play wireless-B broadband router. It has one
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Figure 2.9: TableSat Wireless Access Point: OTC
Wireless’s ASR102.

10/100 RJ-45 port for broadband modem and four RJ-45 switched ports and is

capable of up to 128-bit encryption. Its overall dimensions are 7.31 x 6.16 x 1.88

inches [6].

 
Figure 2.10: TableSat Router: Linksys’s BEFW11S4
Wireless-B broadband router.
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Chapter 3

TableSat Onboard Software

The TableSat software is stored onboard the PC/104 card, which acts as Table-

Sat’s Flight Processor. The software is written in C code and compiled using the

GNU compiler, SCC. It consists of two programs: the Run Time Program and

the Calibration Program. Each routine will be discussed in this chapter.

3.1 TableSat Run Time Program

The TableSat Run Time Program is responsible for the overall control of Ta-

bleSat. It is composed from four parallel threads: the Communications Thread,

the State Estimator Thread, the Actuator Thread, and the Controller Thread.

These four threads run simultaneously at frequencies established by their re-

spective software timers. Each thread will be discussed in detail below. A fifth

thread, the TableSat Main Thread, has overall control of the TableSat Run Time

Program. The user interfaces with the Run Time Program via the Communica-
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tions thread, which communicates via ethernet to an offboard control program

running under Mathwork’s MATLAB and Simulink software. Through the Run

Time Program and MATLAB, the user can control TableSat using the TableSat

Graphical User Interface (GUI), which allows the user to set and change certain

system parameters such as control rate, estimator rate, and actuator rate, con-

troller description, and estimator description. The TableSat GUI and Simulink

interfaces will be discussed in detail in Chapter 4.

3.1.1 TableSat Main Thread

The TableSat Main Thread is responsible for the overall control of the TableSat

Main Routine. It initializes the A/D and D/A hardware on the Prometheus; sets

the software timers used by the other four threads; sets the default parameters

for the controller, state estimator, and actuators; initializes and starts the other

four threads; and waits for those threads to finish before shutting down the Main

Routine.

The first thing the Main Thread does is initialize the input and output

channels on the Prometheus. The A/D converter is initialized to read sensor

inputs from 0.0 to 5.0 Volts, since all the sensors on TableSat output voltages in

that range. In addition, the A/D converter is set up to perform a scan of the

eight A/D channels to which the sensors are attached and allocates memory in

which to store the sensor readings. Finally, the two channels of the D/A converter
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attached to the actuators are initialized to output voltages from 0.0 to 10.0 Volts.

The Main Thread then reads in the calibration constants that will be nom-

inally used to convert the raw sensor readings into meaningful engineering data.

These calibration constants are stored in the TS CalibrationConstants.dat file

and can be modified by running the TableSat Calibration Routine.

Next, the Main Thread initializes the software timers used to set the rates

of the other four threads. The default values for these rates are 100 Hz for the

Communications, Actuator, and Estimator Threads, and 20 Hz for the Controller

Thread. The Actuator, Estimator, and Controller rates can be modified using

the TableSat GUI discussed in Chapter 4.

Once the software timers have been initialized, the Main Thread then ini-

tializes the default parameters for the controller, state estimator, and actuators.

The onboard state vector, x̂ contains five states: θCSS, θTAM , ω, ν1 and ν2. θTAM

is the rotation angle about TableSat’s spin axis as measured by TableSat’s mag-

netometer. An θTAM angle of zero degrees aligns TableSat’s magnetometer X-axis

with the Earth’s magnetic X-axis. θCSS is the rotation angle about TableSat’s

spin axis as measured by the four CSS’s. A θCSS angle of zero degrees aligns

the corner of the hexagonal CSS head between CSS2 and CSS3 with the sun. ω

is the angular velocity of TableSat as measured by the gyro. ν1 and ν2 are the

tachometer feedback from the two fans.

The default controller is a simple Proportional-Derivative (PD) controller
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whose target is zero rate and an θTAM angle of zero degrees. The default state es-

timator simply passes through the raw sensor readings converted into engineering

units. The default actuator type is continuous, which sends voltage commands

directly to the fans from the PD controller. The controller, state estimator, and

actuator parameters can be varied by the user. These variable options will be

presented in the descriptions of each thread and discussed in detail in Chapter 4.

After setting the default parameters for the controller, state estimator, and

actuators, the Main Thread creates the four other threads. These threads will

continue to run until the user decides to turn off TableSat. After receiving a shut

down command, the Main Thread will wait for the other four threads to end

before stopping the TableSat Main Routine.

3.1.2 State Estimator Thread

The State Estimator Thread has three main responsibilities: performing the A/D

scan of the eight sensors, converting the raw sensor readings into engineering

units, and estimating the five states of the TableSat system at each time step.

The state estimate is then passed to the Controller Thread for use in calculating

the actuator voltages.
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Conversion to Engineering Units

The output from the A/D scan is a raw sensor reading in digital counts for each

of the eight sensors. Before the TableSat state estimate can be calculated, those

sensor counts must first be converted back into voltages and then into meaningful

engineering units. Each of the sensors outputs a raw voltage between 0 and 5

Volts. Recall from Chapter 2 that the A/D converter is a 16-bit converter, which

outputs a digital count ranging between -32768 and 32767. To convert back

to voltage, the following equation must be applied to each of the A/D sensor

readings:

V olts = {(Counts + 32768)/65536} ∗ 5.0 (3.1)

Once the sensor counts have been converted back to voltages, they can be

turned into meaningful engineering data using the calibration constants loaded

by the Main Thread.

Gyro To convert the gyro measurement in volts, GyroV olts, to degrees per

second, ωraw, the following equation can be applied:

ωraw = V olts2Dps ∗ (GyroV olts−GyroOffset) (3.2)

Nominally, V olts2Dps is a manufacturer’s specified value used to convert

the gyro measurement in volts to degrees per second. The nominal value was
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then adjusted through experimental determination by commanding a constant

rate and using the magnetometer measurements to determine how fast TableSat

was actually spinning. Recall from Chapter 2 that the gyro is bidirectional, but

its output voltage varies between 0.0 and 5.0 Volts. The GyroOffset, therefore,

is used to recenter the voltage such that zero voltage corresponds to zero rate. In

other words, GyroOffset is the voltage output from the gyro when TableSat is

stationary. For a gyro with an output ranging between 0.0 and 5.0 Volts, the bias

should be approximately 2.5 Volts. The bias, however, can vary depending on

the age of the gyro, its current operational temperature, and many other factors.

Because of this variation, the GyroOffset can be recalculated periodically by

running the TableSat Calibration Routine.

CSS To convert the CSS measurements into a raw θCSS angle, the raw CSS

voltages must first be converted into degrees. Recall from Chapter 2 that the

CSSs output voltages proportional to the cosine of the angle between the sun

and the CSS diode. When the sun is directly illuminating the CSS diode, the

CSS will output its maximum voltage. When the sun is roughly 80 degrees away

from the CSS diode, the CSS will output its minimum voltage. Therefore, to

convert to degrees the following equations are applied to each CSS voltage:

CssNorm = CssV olts/CssMax
CssDeg = arccos(CssNorm) ∗Rad2Deg

(3.3)
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The raw CSS voltage is normalized by CssMax in order to limit CssNorm

to between 0 and 1, where 1 indicates full brightness on the CSS. CssMax varies

for each CSS and will change depending on how bright the light source is and

the ambient light around TableSat. CssMax, therefore, should be recalculated

periodically by running the TableSat Calibration Routine.

Once the CSS voltages have been converted to angles between a given CSS

and the sun, an θCSS,raw angle for TableSat can be determined using the following

algorithm based on the previous θCSS, the CSS layout seen in Figure 3.1, which

CSSs are illuminated, and which CSS sees the most sun, i. e. the CSS for which

CssDeg is smallest.

0 deg

CSS1
90 deg

CSS3
30 deg

-180 deg

CSS4
-90 deg

CSS2
-30 deg

Figure 3.1: Coarse Sun Sensor (CSS) layout and
AzCss angles

30



The following algorithm describes how the four raw CSS angle readings are

converted into a single estimate, θCSS,raw, of TableSat’s orientation with respect

to the primary light source. The CSS layout and θCSS angles can be seen in

Figure 3.1.
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if(MinA >= 80.0)
if(lastAz > 0)
θCSS,raw = 180.0
elseθCSS,raw = −180.0
endif

elseif(MinCss == 0)
if(CssDeg[2] > 60)
θCSS,raw = 90.0 + CssDeg[0]
else
θCSS,raw = ((90.0− CssDeg[0]) + (30.0 + CssDeg[2]))/2.0
endif

elseif(MinCss == 2)
if(CssDeg[0] > 60)
θCSS,raw = ((30.0− CssDeg[2]) + (−30.0 + CssDeg[1]))/2.0
else
θCSS,raw = ((30.0 + CssDeg[2]) + (90.0− CssDeg[0]))/2.0
endif

elseif(MinCss == 1)
if(CssDeg[2] > 60)
θCSS,raw = ((−30.0− CssDeg[1]) + (−90.0 + CssDeg[3]))/2.0
else
θCSS,raw = ((30.0− CssDeg[2]) + (−30.0 + CssDeg[1]))/2.0
endif

elseif(MinCss == 3)
if(CssDeg[1] > 60)
θCSS,raw = −90.0− CssDeg[3]
else
θCSS,raw = ((−90.0 + CssDeg[3]) + (−30.0− CssDeg[1]))/2.0
endif

endif
lastAz = θCSS,raw

(3.4)

where MinA is the minimum CssDeg among the four CSSs, lastAz is the θCSS,raw

angle from the previous time step, and MinCss is the index number (0 through
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3) of the CSS with the smallest CssDeg angle.

TAM To convert the TAM measurements into a raw θTAM,raw angle, the raw

TAM voltages must first be normalized by applying the following equation to

each axis of TAM data:

TamNorm = TamGain ∗ (TamV olts− TamBias) (3.5)

Recall from Chapter 2 that the magnetometer outputs a voltage between

0.0 and 5.0 Volts for each of its three axes. TamBias recenters TamV olts such

that the measurement will oscillate between a positive and negative amplitude.

TamGain then normalizes the TAM measurement such that each axis will range

between +/-1.0. TamBias and TamGain should both be recalculated periodi-

cally by running the TableSat Calibration Routine. Nominally, TamBias is about

2.5 Volts and TamGain varies on an axis by axis basis and is usually about -2.0

Volts for the X-axis, -6.0 Volts for the Y-axis, and 1.0 Volt for the Z-axis.

Since TableSat is restricted to one-dimensional motion, the Z-axis mag-

netometer measurement can be assumed to be constant. A θTAM,raw angle for

TableSat, therefore, can be determined as follows:

θTAM,raw = −arctan2(TamNormY, TamNormX) (3.6)

where arctan2 is a four-quadrant arc-tangent.
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In addition to a θTAM,raw angle, the TAM measurements are also used to

determine a magnetic unit vector for TableSat.

Fans Recall from Chapter 2 that the third wire in the fans can feedback a

signal proportional to the fan speed. Code for converting the feedback signals

into fan speed measurements would also be included in the state estimator thread.

Currently, however, the circuitry has not been constructed to implement the fan

speed feedback functionality.

State Estimation

Once the sensor voltage measurements have been converted into a raw state es-

timate, x̂raw, consisting of θCSS,raw, θTAM,raw, ωraw, ν1,raw, and ν2,raw, the actual

state estimate, x̂, can be calculated with the user-defined Estimator. The Esti-

mator takes on the following form:

ze,k = Aeze,k−1 + Bex̂raw,k−1

x̂k = Ceze,k + Dex̂raw,k
(3.7)

where ze is the vector of Estimator states of length no,where no is the number of

estimator states and can be greater than or equal to zero. x̂raw is the 5x1 vector

of raw state estimates, and x̂ is the 5x1 vector of state estimates that will be used

by the Controller. The matrices Ae, Be, Ce, and De define the Estimator. They

can be set by the user, but care must be taken to ensure that these matrices are
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of the correct dimension. Ae is of dimension noxno, Be is of dimension nox5, Ce

is of dimension 5xno, and De is of dimension 5x5. Ways of defining the Estimator

matrices and some examples of different Estimator can be found in Chapter 4

and Chapter 7, respectively.

Autonomous Gyro Calibration

Also included in the state estimator thread are software “hooks” for advanced,

autonomous gyro calibration. Currently this code is not implemented.

3.1.3 Controller Thread

The Controller Thread is responsible for using the current state estimate to cal-

culate the voltage settings for the fans at each time step. The controller is defined

using a set of six, user-defined matrices. The control law is of the form:

zc,k+1 = Aczc,k + B1cx̂k + B2cxd,k

vk+1 = Cczc,k + D1cx̂k + D2cxd,k
(3.8)

where zc is the vector of controller states of length nc, where nc is the number of

controller states and can be any size. x̂ is the 5x1 vector of state estimates, xd

is the desired target, and v is the output to the actuators. xd is always a 2x1

vector made up of the desired pointing angle (θd) and desired rate (ωd). v is a

vector of length one or two made up of the voltage commands to the fans. The

default is to have v as length one. In this case, only one fan is commanded at any
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given time. If the controller output is positive, the positive fan is commanded. If

the controller output is negative, the negative fan is commanded. The matrices

Ac, B1c, B2c, Cc, D1c, and D2c can be set by the user, but care must be taken

to ensure these matrices are of the correct dimension. Ac is of dimension ncxnc,

B1c is of dimension ncx5, B2c is of dimension ncx2, Cc is of dimension 1xnc,

D1c is of dimension 1x5, and D2c is of dimension 1x2, assuming v is of length

one. Ways of defining these matrices and some examples of different Controllers

are discussed in Chapter 4 and Chapter 7, respectively.

The desired target, xd can be established in one of two ways. The user can

define either a constant target, i. e. a desired angle or rate, or the user can define

a tracking target, i. e. a sine wave with a specified frequency (ω) and amplitude

(A). If the desired target is constant, xd is also constant. If the desired target

is a tracking target, xd varies as a function of time and the Controller Thread

calculates a new desired target at each time step using the following equations:

xd(0) = A sin (ω ∗ (t− t0))
xd(1) = Aω cos (ω ∗ (t− t0))

(3.9)

where t is the current time and t0 is the time at which TableSat control was

started.

In addition to the above control law, the user also has the option of com-

pensating for the friction in the TableSat system. When friction compensation

is turned on, the user can define a friction compensation curve. The Controller
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Thread will calculate the additional voltage required to compensate for the fric-

tion based on the defined friction compensation curve. How to define the friction

compensation curve and examples of different curves are discussed in Chapters 4

and 7.

3.1.4 Actuator Thread

The Actuator Thread is responsible for taking the fan voltages calculated in the

controller thread and applying those inputs to the fans. Recall from Chapter

2 that one fan is mounted to spin TableSat in a positive direction and one fan

is mounted to spin TableSat in a negative direction, but that both fans only

accept positive voltages from 0 to 12 Volts. The Controller will calculate both

positive and negative voltages. The Actuator Thread must ensure that any neg-

ative commands from the Controller are converted into positive voltages applied

to the negative fan. In addition, the Actuator Thread must ensure that the

Controller commands do not exceed the maximum voltage of 12 Volts that the

fans can accept. For commanded voltages within the static friction level of the

fans, both fans are commanded simultaneously to compensate for the fan static

friction. Otherwise, the Actuator Thread must also ensure that only one fan is

commanded at a time, which ensures that the TableSat battery is not unneces-

sarily drained. The specifics of the fan static friction compensation are discussed

in Chapter 6. The actuators can operate in one of three, user-selected actuation
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modes: Continuous Actuation, Bang-Bang Actuation, or PWM Actuation. How

to change between different Actuation modes is discussed in Chapter 4.

Continuous Actuation

In Continuous Actuation mode, the actual analog voltages calculated in the con-

trol thread are applied directly to the fans. The minimum change in voltage

is proportional to the resolution of the D/A converter. Recall from Chapter 2

that the resolution of a unipolar output is 2.44 mV. Recall also that the output

from the D/A converter goes through a voltage regulator to scale the 10 Volts

maximum D/A output to the 12 Volts that the fans can accept. The minimum

output from the D/A converter will be likewise scaled such that the minimum

change in voltage that can be applied to the fans is 2.93 mV.

Bang-Bang Actuation

In Bang-Bang Actuation mode, the fans are commanded to either full on (12

Volts) or off (0 Volts). If the voltage calculated by the Controller is positive and

greater than the user-set deadzone, the positive fan is set to full on. If the voltage

calculated by the Controller is negative and greater than the user-set deadzone,

the negative fan is set to full on. The deadzone is a band of voltage centered

about 0 Volts, the width of which can be set by the user. The fans will not be

turned on if the output from the Controller is less than the deadzone.
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PWM Actuation

In PWM, or Pulse Width Modulation, Actuation mode, the control authority cal-

culated by the Controller is converted into a duty cycle according to the following

calculation:

numPos = (FanV oltage(0)/V MAXFAN) ∗ FreqRatio
numNeg = (FanV oltage(1)/V MAXFAN) ∗ FreqRatio

(3.10)

where numPos and numNeg are the number of positive and negative intervals

within one Controller cycle, respectively. numPos and numNeg are always inte-

gers. If Equation 3.10 does not yield an integer value, only the integer part of the

result is assigned to numPos and numNeg. V MAXFAN is the maximum fan

voltage that can be commanded. In the case of TableSat, that maximum voltage

is 12 Volts. FreqRatio is the integer part of the ratio of the Actuator rate to the

Controller rate. This number tells how many complete Actuator cycles there are

in one Controller cycle, and must be greater than or equal to one, which implies

that the Controller rate must be greater than or equal to the Actuator rate. As

an example, for the default sample rate settings, the controller thread runs at

100 Hz and the actuator thread runs at 20 Hz. FreqRatio, therefore, is equal

to 5 and the PWM actuation produces levels of duty cycle resolution equal to

0%, 20%, 40%, 60%, 80%, or 100%. If FreqRatio is equal to one, then PWM

Actuation becomes the same as Bang-Bang Actuation without a deadzone.

Only one of numPos or numNeg can be greater than zero during any
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one Controller cycle. Unlike the Continuous Actuation mode, only one fan can

ever be commanded at any given time. If numPos is greater than zero, the

positive fan will be commanded full on (12 Volts) for numPos Actuator cycles.

If numPos is less than FreqRatio, the positive fan will be commanded off (0

Volts) for the remaining Actuator cycles within one Controller cycle. The same

logic applies to numNeg and the negative fan. When FreqRatio Actuator cycles

have passed, the Controller will have updated FanV oltage and Equation 3.10

gets recalculated.

3.1.5 Communications Thread

The Communications Thread is responsible for communication between the user

and TableSat. TableSat communications are implemented using the User Data-

gram Protocol (UDP), which is a connectionless transport layer protocol that

belongs to the Internet Protocol (IP) family. UDP is basically a simple interface

between IP and higher level processes. It uses datagrams (packets of raw bytes)

to exchange information over the ethernet between computers. In the case of

TableSat, UDP is used to send data back and forth between the MATLAB GUI

and the TableSat Run Time Process. UDP packets are unstructured and have

no delivery guarantees or error checks. To simplify the structure and add mini-

mal error checks for UDP datagrams, the Space Systems Lab at the University

of Maryland has implemented a package known as DSMP (Distributed Systems
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Messaging Protocol), which is intended to extend the lab’s previous PIVECS

standard for serial communications to the ethernet. In DSMP, each UDP packet

consists of a header byte and an arbitrary amount of data (up to the UDP packet

limit of 64 K). Each header can be bound to a handler function using the com-

mand dsmp RegisterMesg.

The Communications Thread is responsible for handling requests to send

the state or raw data to MATLAB or Simulink for display. When a request for

data comes in from the user, the dsmp functions are used to assemble the UDP

header and data packet containing the requested data. The packet is then sent to

the user via the wireless access point. When the user wishes to change any of the

variable TableSat parameters, a UDP message is sent to TableSat with the desired

change and any new data the change requires. The dsmp RecvMesg function reads

the message, extracts the header, and passes the the data to the correct thread.

Messages can be sent by the user using either the TableSat GUI discussed in

Chapter 4 or via MATLAB command line prompts, which are also discussed in

Chapter 4. Each variable TableSat parameter has a unique message number,

which identifies to TableSat the exact parameter to be changed. Furthermore,

each unique message number may also have additional data identifying the new

parameters. When the user is sending messages to TableSat, care must be taken

to send the correct data with the correct message number. All of the variable

TableSat parameters and their corresponding message numbers and data packet
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descriptions can be found in Table 3.1.

TableSat Messages

Msg. Num Meaning Msg. Data dsmp Handler

2 Send Message Acknowledged byte SendMesg
4 Set Run Mode byte RecvMesg
6 Set Control Mode byte RecvMesg
8 Set Fan Mode byte RecvMesg
10 Set Actuator Mode byte RecvMesg
12 Set Mode byte RecvMesg
15 Set Controller double RecvMesg

Data
21 Set Fan Friction double RecvMesg

Data
24 Set Controller Target double RecvMesg
27 Set Estimator double RecvMesg

Data
30 Set Gyro Auto- double RecvMesg

Calibration Data
33 Set Sample Rates double RecvMesg
60 Send Current double SendMesg

State Data
63 Send Raw Sensor Data double SendMesg
66 Send Status Flags byte SendMesg
81 Request State Data byte RecvMesg
84 Request Raw Sensor byte RecvMesg

Readings
87 Request Status Data byte RecvMesg
99 Request Sensor byte RecvMesg

Recalibration

Table 3.1: TableSat Messages
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3.2 TableSat Calibration Routine

At any time, the user can run the Calibration Routine. The calibration routine

takes approximately 5 minutes to complete. During the first 20 seconds of the

routine, TableSat is held stationary. At the end of the stationary period, the

positive fan is powered on full for 10 seconds to spin up TableSat. Once TableSat

is spinning, the fan power is decreased until TableSat is spinning at a roughly

constant rate, where it remains for the remainder of the calibration routine.

The calibration routine is used to determine the calibration constants for

each of the sensors. As was seen previously, these calibration constants are used

to convert the voltages obtained from each sensor into meaningful engineering

data. The calibration routine should be run each time TableSat is initially set

up, or any time the system is moved. The following subsections discuss how each

of the sensor calibration constants are determined.

3.2.1 Gyro

Recall from Section 3.1.2 that there are two calibration constants needed to con-

vert the gyro voltage reading into the TableSat spin rate in degrees per second,

GyroBias and V olts2Dps. GyroBias is calculated by averaging the gyro volt-

age readings during the 20 second stationary period of the Calibration Routine.

V olts2Dps is an experimentally determined value and is not recalculated during

the Calibration Routine. It is determined by controlling TableSat at a constant
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rate and looking at the time it takes to move from one peak of the CSS voltages

to the next peak.

3.2.2 Coarse Sun Sensors

Recall from Section 3.1.2 that CssMax(i) is the one calibration constant needed

to convert a given CSS voltage into an angle measurement. For each CSS,

CssMax(i) is determined by looking at the voltages of the CSS’s as TableSat

is spinning. The Calibration Routine compares the current CSS voltage reading

to its current maximum. If the current reading is greater than the current max-

imum, that reading becomes the new maximum. At the end of the Calibration

Routine, the maximum readings for each CSS become CssMax(i).

3.2.3 Three Axis Magnetometer

Recall from Section 3.1.2 that two calibration constants are needed to convert the

magnetometer voltages into normalized measurements that can be used to find

θTAM : TamBias and TamGain. For each axis of the magnetometer, TamBias

is found by averaging the voltage readings from that axis of the TAM while

TableSat is spinning. For simplicity, TamGain(2), the gain for the Z-axis of the

TAM, is always set to 1.0, as this reading does not vary during the (nominally)

planar rotations of TableSat. This gain is chosen because TableSat is located on

the Earth, and the Z-axis magnetometer reading will always be constant.

44



Calculation of TamGain(0) and TamGain(1) is slightly more complicated.

While the Calibration Routine is running, the voltage readings from the X- and

Y-axes of the TAM are saved to a file. At the end of the routine, those volt-

ages are read, one at a time, and the TamBias is subtracted from the voltage

readings. This subtraction recenters the voltages such that they now oscillate

between a maximum and minimum amplitude. Recall from Section 3.1.2 that

TamGain is used to scale the X- and Y-axis recentered voltages such that they

oscillate between +/- 1.0. If the absolute value of the X-axis recentered voltage

is close to zero, then the Y-axis is near its amplitude. The absolute value of that

Y-axis recenterd value gets included in a running average called SemiMinor.

If the absolute value of the Y-axis recentered voltage is close to zero, then the

X-axis is near its amplitude. The absolute value of that X-axis recentered volt-

age gets included in a running average called SemiMajor. After all the TAM

data has been read in, SemiMinor is the average of the Y-axis amplitudes, and

SemiMajor is the average of the X-axis amplitudes. TamGain(0) then becomes

the inverse of SemiMajor and TamGain(1) becomes the inverse of SemiMinor.

So, when the recentered voltage of either axis is multiplied by its corresponding

TamGain, the result will oscillate between +/- 1.0.
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Chapter 4

TableSat Interface GUI

TableSat is an extremely versatile tool. It has many variable parameters that can

be set and controlled by the user to establish an infinite number of ways to control

TableSat. In addition, the user also has the option of controlling TableSat using

the on-board flight processor, or by closing the control loop through Simulink to

allow more complex control algorithms than those implemented by the onboard

software. To fully utilize TableSat’s versatility, the user must be able to effectively

communicate with TableSat. The user needs to be able to change TableSat’s user-

definable parameters, start and stop TableSat, and get state information and data

back from TableSat while it is running. In addition, the user also needs to be

able to recalibrate TableSat when necessary.

The primary interface to TableSat is via a combination of MATLAB and

Simulink GUIs. Both of these graphical user interfaces depend upon a set of low-

level MATLAB functions which exchange data with the communications thread

on the TableSat Run Time Process using the established UDP messaging struc-
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ture. While it is possible to feed raw commands to TableSat from the MATLAB

command line, this method of communication is not recommended.

4.1 Low Level Communication

A set of MATLAB functions was created to implement a DSMP-like environ-

ment in MATLAB using the publicly available PNET package, which allows

MATLAB to directly communicate over an ethernet link. PNET is part of the

TCP/UDP/IP Toolbox 2.0.5, and can be downloaded from Mathwork’s MATLAB

Central file exchange. Recall from Chapter 3 that the TableSat communications

thread is a UDP-based protocol, meaning data is sent to and received from Ta-

bleSat in packets via the wireless access point. The following sections briefly

describes each of these low-level functions.

4.1.1 tsat init

Before any messages can be sent to or received from TableSat, tsat init must

be used to initialize the communications port with TableSat. The function has

two inputs, the port number and the IP address of TableSat. The default port

on which TableSat listens for messages is 9877. The function returns the socket

number, which is then used as an input to both tsat send msg and tsat recv msg.
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4.1.2 tsat send msg

The MATLAB function, tsat send msg is used to send messages to TableSat. It

is called only as needed to alter TableSat parameters or request additional data

from TableSat. It takes three inputs: the message number, an integer; the data, a

structure or cell array depending on the type of data sent; and the socket number

returned by tsat init. There are three main types of messages that can be sent to

TableSat: variable parameters messages, state change messages, and data request

messages.

The variable parameters messages are listed in Table 4.1. These messages

are sent to TableSat informing it of any changes in its variable parameters. They

are the same messages that are automatically sent to TableSat when the Table-

Sat GUI is used to change the variable TableSat parameters. They correspond

directly to the GUI subsections discussed above.
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TableSat Variable Parameter Messages

Msg. Num Action Required Data

8 Set fan/friction Cell array with 8-bit integer:
mode 0 = Friction or fan speed

compensation off
1 = Friction/fan speed
compensation on

10 Set actuator type Cell array with 8-bit integer:
0 = Continuous actuation
1 = PWM actuation
2 = Bang-Bang actuation

12 Set gyro auto- Cell array with 8-bit integer:
calibration 0 = Off

1 = On
15 Set controller Structure with doubles:

definition A, B1, B2, D1, D2 matrices
18 Set fan speed Cell array with doubles:

compensation curve Number of compensation points
Vector of fan speeds,
Vector of fan force values

21 Set friction Cell array with doubles:
compensation curve Number of compensation points,

Vector of angular velocities,
Vector of compensation voltages

24 Set controller target Cell array with doubles:
Mode (0 = Stationary, 1 = Sine Wave),
Vector with xd (θd & ωd)
or (A & ω)

27 Set estimator Structure with doubles:
definition A, B, C, D matrices

30 Set gyro auto- Cell array with doubles:
calibration gains P-Gain,

D-Gain
33 Set sample rates Cell array with doubles:

Control rate,
Estimator rate,
Actuator rate

Table 4.1: TableSat Variable Parameter Messages
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Table 4.2 lists the state change and data request messages that can be

sent to TableSat using tsat send msg. State change messages are those that

tell TableSat to change its operational state, for example changing from closed

loop to open loop control, or shutting down TableSat. Data request messages

are messages that request information such as the state estimate or raw sensor

readings from TableSat. Using tsat send msg with data request messages must

be followed with a call to tsat recv msg in order to receive the data that TableSat

sends.

4.1.3 tsat register msg

The MATLAB function tsat register msg is used to bind the message headers to

their respective handler functions.

4.1.4 tsat recv msg

The MATLAB function tsat recv msg is used to receive messages from TableSat.

It reads the packet header, calls the handler bound by tsat register msg, and

passes any included data. It takes only one input, the TableSat socket number

returned by tsat init. It returns the message number and data sent by TableSat.

tsat recv msg is called continuously while TableSat is running in order to allow

the passing of the state data from TableSat for real time plotting. Table 4.3 lists

the message numbers and data that can be received from TableSat.
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Additional Messages Sent to TableSat

Msg. Num Action Required Data

4 Set run mode Cell array with 8-bit integer:
0 = Shut down TableSat
1 = Run TableSat

6 Set control mode Cell array with 8-bit integer:
0 = Off (no fan voltages
commanded)
1 = On (close control loop
on board TableSat)

81 Request state data Cell array with 0
84 Request raw sensor readings Cell array with 0
87 Request status data Cell array with 0
99 Request sensor recalibration Cell array with 0

Table 4.2: Additional messages sent to TableSat

Messages Received from TableSat

Msg. Num Action Required Data

2 Receive acknowledgements None
60 Receive current state data TimeStamp, θCSS, θTAM ,

ω, ν1, ν2

63 Receive raw sensor data TimeStamp, Css1V olts, Css2V olts,
Css3V olts, Css4V olts, GyroV olts,
MagXV olts, MagY V olts, MagZV olts,
Fan1Counts, Fan2Counts

66 Receive status flags TSrunMode, TScontrolMode,
TSfanMode, TSactuatorMode,
TSgyroMode

Table 4.3: Messages received from TableSat
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4.2 TableSat GUI

The easiest method to communicate parameter changes to TableSat is through

the TableSat Graphical User Interface (GUI), which runs using MATLAB. The

GUI is divided into several sections, each of which will be explained in detail

in the sections below. A snap-shot of the TableSat GUI can be seen in Figure

4.1. On the top left corner of the TableSat GUI is the Friction Compensation

section. Below Friction Compensation is the Actuator Type section, followed by

the Sample Rates section. Below Sample Rates is the Target section. On the right

side of the TableSat GUI are the Controller Definition and Estimator Definition

sections. Only one of these sections is visible at a time, and the user can toggle

between them by selecting the correct button on the GUI. Finally, on the bottom

right of the GUI is the Update TableSat Parameters button. When this button

is pressed, the GUI sends messages to TableSat informing it of any parameter

changes made by the user.

4.2.1 Friction Compensation

The Friction Compensation section of the TableSat GUI can be seen in Fig-

ure 4.2. The user has two main options in the Friction Compensation section;

Friction Compensation can be turned on or off. The default is to have Friction

Compensation off, or the box on the TableSat GUI unchecked. When the Friction

Compensation box is checked, Friction Compensation is turned on and three addi-
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Figure 4.1: TableSat Graphical User Interface. Used to change variable TableSat
Parameters.

tional parameters become highlighted: Number of Compensation Points, Angular

Velocity Values, and Compensation Values. These three parameters define the

friction compensation curve that will be used to calculate the additional voltage

needed to compensate for the friction in the TableSat system.

Number of Compensation Points indicates the number of points on the Volt-

age vs. TableSat Angular Velocity plot that will be used to define the friction

compensation curve. Angular Velocity Values (in degrees per second) and Com-

53



5

[-120, -0.1, 0, 0.1
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√

Figure 4.2: TableSat GUI: Friction Compensation section. De-
fault setting has Friction Compensation unchecked and Friction
Compensation curve boxes greyed out.

pensation Values (in Volts) are the corresponding values that actually define the

friction compensation curve. They are vectors whose lengths are equal to the

Number of Compensation Points. The friction compensation curved is actually

defined by connecting the points defined by the (Angular Velocity, Compensation

Values) pairs.

As an example, suppose the user wants to use the friction compensation

curve shown in Figure 4.3. In this case, NumberofCompensationPoints equals

five. AngularV elocityV alues is a vector of length five, whose values are (-120,

-0.1, 0, 0.1, 120) deg/sec. CompensationV alues is also a vector of length five,

and its values are (-4, -4, 0, 4, 4) Volts. TableSat will use the curve defined by

this data, with linear interpolation between points, to compensate for the friction
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Figure 4.3: Example of a friction compensation curve. Number of
Compensation Points equals five, Angular Velocity Values = (-120,
-0.1, 0, 0.1, 120)deg/sec, Compensation Values = (-4, -4, 0, 4, 4)V

in the system.

4.2.2 Actuator Type

The Actuator Type section of the TableSat GUI is pictured in Figure 4.4. The

user can select from the pull down menu one of the three actuator types discussed

in Chapter 3. Recall from Chapter 3 that the three possible actuation types are

Continuous, Bang-Bang, and PWM. If Bang-Bang actuation is chosen, the Dead

Zone box becomes active. The user can then enter the desired size of the actuation

dead zone as a fraction of the 12 Volt maximum voltage.
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Figure 4.4: TableSat GUI: Actuator Type section. Default set-
ting has Continuous actuation selected.

4.2.3 Sample Rates

The Sample Rates section of the TableSat GUI can be seen in Figure 4.5. In this

section, the user can set the sample rates, in Hz, for the Controller, Actuator,

and Estimator threads. Sample rates are limited only by the processor speed of

the TableSat flight processor. The maximum sample rate is approximately 200

Hz. The Actuator rate must be greater than or equal to the Controller rate. The

default rates for the Controller, Actuator, and Estimator threads are 20 Hz, 100

Hz, and 100 Hz, respectively.

4.2.4 Target

The Target section of the TableSat GUI is pictured in Figure 4.6. In this section

of the GUI, the user can define the target at which TableSat will point. The

target can either be a Stationary Target, or a Sine Wave. If the selected target is

stationary, the user can define either an off-point angle (θd), in degrees, or a spin
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Figure 4.5: TableSat GUI: Sample Rates section. Default setting
has sample rates of 20 Hz, 100 Hz, and 100 Hz, for the Controller,
Actuator, and Estimator rates, respectively.

rate (ωd), in degrees per second. Only one of these values should be non-zero

at any given time. If the desired target is a sine wave, the user must input the

Amplitude, A, in degrees, and Frequency, ω, in radians per second, of the desired

sine wave. The default target is a Stationary Target with a θd of 20 degrees.

Figure 4.6: TableSat GUI: Target section. Default setting has a
stationary target with a θd of 20 deg.
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4.2.5 Controller Definition

The Controller Definition section of the TableSat GUI is pictured in Figure 4.7.

The panel comes up when the “Define Controller” button on the GUI is pressed.

In this section of the GUI, the user can define the Controller TableSat will use to

control itself. The controller can be defined in one of three ways: with matrices,

with a Simulink model, or with a MATLAB file.

The first method of controller definition uses explicit matrix definitions.

When the Define Controller box is selected, the user can type the desired A, B1,

B2, C, D1, and D2 matrices directly into the boxes on the GUI. In addition,

Figure 4.7: TableSat GUI: Controller definition section. Default setting has a
simple feedback PD controller with Kp = 20 and Kd = 15
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the user must also define the number of controller states, nc, and the number

of controller outputs, pc. Recall from Chapter 3 that the number of controller

outputs can be either one or two and the number of controller states can be

anything greater than or equal to zero. Furthermore, the length of the estimated

state vector, x̂, is always five (θCSS, θTAM , ω, ν1, ν2). Care must be take by the

user to ensure that the dimensions of the matrices match the length of the state

vectors (A is of dimension ncxnc, B1 is of dimension ncx5, B2 is of dimension

ncx2, C is of dimension pcxnc, D1 is of dimension pcx5, and D2 is of dimension

pcx2). The GUI will not allow a mismatch of dimensions.

The second method of controller definition allows the user to use a stored

Simulink model containing the desired controller. When the Load Simulink Model

box is selected, the user can load a Simulink .mdl file containing the desired

controller. The name of the file with the correct path can be typed directly into

the box on the GUI, or the Browse button can be used to search for any .mdl files.

An example of such a controller is pictured in Figure 4.8. This controller is a

simple feedback PD controller. When using this type of controller definition, the

user must make sure that the Simulink model has two inputs, xd (the target) and

x̂ (the state), and one output (the actuator commands). xd must be a vector of

length two and x must be a vector of length five, corresponding to the state (θCSS,

θTAM , ω, ν1, ν2). Any corresponding gains must be of the correct dimension. As

before, the output, which corresponds to the actuator commands, must be of
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length one or two. The GUI will then compute the A, B1, B2, C, D1, and D2

matrices needed to implement the controller from the Simulink model.

Figure 4.8: Example of a saved Simulink model of a simple
feedback PD controller.

The final method of controller definition allows the user to use a controller

stored in a MATLAB file. When the Load .mat File box is selected, the user can

load a .mat file containing the desired controller. As with the Simulink model, the

name of the file with the correct path can be typed directly into the box on the

GUI, or the Browse button can be used to search for any .mat files. When using

this type of controller definition, the user must make sure that the controller

definition is stored in the correct format. The controller must be a structure

called TS Con. The format of the structure is as follows:
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TS Con.dims = [nc, 5, 2, pc, 5, 2]
TS Con.A = A
TS Con.B1 = B1
TS Con.B2 = B2
TS Con.C = C
TS Con.D1 = D1
TS Con.D2 = D2

(4.1)

where nc is the number of controller states, pc is the number of controller outputs,

and A, B1, B2, C, D1, and D2 are the controller matrices. The structure must

then be saved in a .mat file. The name of the file can be anything the user desires.

4.2.6 Estimator Definition

The Estimator definition of the TableSat GUI is shown in Figure 4.9. In this

section of the GUI, the user can define the estimator that will be used by TableSat

to estimate the state of the system. The Estimator can be defined in one of two

ways: with matrices or with a MATLAB file.

The first method of estimator definition uses explicit matrix definitions.

When the Define Estimator box is selected, the user can type the desired estima-

tor matrices directly into the boxes on the GUI. In addition, the user must also

enter the number of internal estimator states, no. Recall from Chapter 3 that the

number of estimator states can be anything greater than or equal to zero, but

that the state vector is always of length five. Care must be take by the user to

ensure that the dimensions of the matrices match the lengths of the state vectors

(A is of dimension noxno, B is of dimension nox5, C is of dimension 5xno, and
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Figure 4.9: TableSat GUI: Estimator definition section. Default setting has a
simple pass-through estimator.

D is of dimension 5x5). The GUI will not allow a mismatch in dimensions.

The second method of estimator definition allow the user to use an estimator

stored in a MATLAB file. Similar to the Controller Definition, if the Load .mat

File box is selected, the user can load a .mat file containing the desire estimator.

The file name with correct path can be typed directly into the box on the GUI,

or the Browse button can be used to search for .mat files. When using this type

of estimator definition, the user must ensure that the estimator is saved in the
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correct format. The estimator must be defined as a structure, TS Est, whose

format is as follows:

TS Est.dims = [no, 5, 5, 5]
TS Est.A = A
TS Est.B = B
TS Est.C = C
TS Est.D = D

(4.2)

where no is the number of internal observer states and A, B, C, and D are the

estimator matrices. The estimator must then be saved as a .mat file. The name

of the file can be anything the user desires.

4.2.7 Update TableSat Parameters

When the user has finished entering changes in the TableSat GUI, the Update

TableSat Parameters button is pressed. When this button is pressed, a series

of messages is distributed to TableSat, informing TableSat of any changes in its

parameters. Recall from Chapter 3 that these messages are received and parsed

within the Communications thread, and the data received is sent to the correct

threads. Each variable TableSat parameter has one or more messages that are

specific to that parameter. These messages are discussed in detail in Section 4.1.

The GUI automatically sends the correct messages and data for any parameters

changed in the GUI.
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4.3 Simulink Block Diagrams

While the TableSat GUI can be used to change the variable TableSat parameters,

it does not itself start and stop control of TableSat, nor can it send state data to

the user. For that type of communication with TableSat, the user can use one of

two different Simulink block diagrams: tsat CL.mdl or tsat OL.mdl.

Figure 4.10: Simulink model controlling TableSat using the on-board
flight processor.
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When the user selects on-board control from the TableSat GUI, tsat CL.mdl,

shown in Figure 4.10, is automatically opened. This block diagram can also be

opened manually if the user chooses not to use the GUI. The closed-loop block dia-

gram uses the S-Function tsat cl com, which is located inside the TSat CL Source,

block to initialize the communications port with TableSat, start TableSat running

in closed-loop mode using the on-board controller, and feeds state data from Ta-

bleSat to Simulink for visualization. State data from TableSat is then displayed

using the scopes in the Simulink block diagram. All state estimation, control

authority, and actuator commands are calculated using the on-board TableSat

flight processor. All the variable parameters listed in the TableSat GUI and in

Table 4.1 below can be changed when TableSat is operating in closed-loop mode.

If the user opts from the TableSat GUI not to use the on-board control

option, tsat OL.mdl is automatically opened. The open-loop block diagram can

also be opened manually if the user is not using the TableSat GUI. This block di-

agram allows the user to design and create controllers and/or estimators within

Simulink, and test the designs without loading them onto the TableSat flight

processor. The block diagram uses the S-Function, ts ol comm in, which is lo-

cated inside the TSat OL Source block to initialize the communications port with

TableSat and start running TableSat in closed-loop mode with the controller ma-

trices defined as A = [ ], B1 = [ ], B2 = [ ], C = [ ], D1 = 01x5, and D2 = [1, 0].

With this particular controller definition, the calculated control voltage will be
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equal to the target. The S-Function then requests the raw state estimates from

TableSat. In the block diagram, the user designed state estimator estimates the

state, then the controller uses that state estimate to calculate the required con-

trol voltage. That control voltage is then sent back to TableSat as a change in

pointing target using the S-Function, tsat ol comm out. Onboard TableSat, the

controller defined above and the change in pointing target sent from the block

diagram are used to effectively pass the voltages calculated in the block diagram

directly to the actuators.

Figure 4.11: Example of an open-loop Simulink model. No state esti-
mator, PD control based on the magnetometer and gyro measurements.

An example of an open-loop block diagram is shown in Figure 4.11. This

example has no state estimator and uses a simple Proportional-Derivative (PD)

controller based on the magnetometer and gyro measurements. While using the
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open-loop control option, only the sample rates and actuator type parameters

can be changed.
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Chapter 5

System Modeling

One of the main goals of this project is to develop a truth model of the TableSat

system which can be used to design and test controllers and estimators. Ideally,

the model would be linear so that linear controllers can be designed and will

behave as predicted by theory. However, TableSat, like all real systems, is sub-

ject to nonlinearities such as friction and actuator saturation. Therefore, part

of the truth model development includes finding ways to linearize the system by

compensating for and reducing the effects of those nonlinearities in the system re-

sponse. This chapter discusses the development and linearization of the TableSat

model.

5.1 TableSat Equations of Motion

To a first approximation, TableSat is assumed to have the following equations of

motion:
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Iω̇ = lKwf (ν1 − ν2)− fTS(ω) (5.1)

ν̇1 = −αν1 + Kvẇ(Vp − ffan1(ν1) (5.2)

ν̇2 = −αν2 + Kvẇ(Vn − ffan2(ν2)) (5.3)

where I is the TableSat moment of inertia, ω is the TableSat angular velocity, ν1

is the speed of the positive fan, ν2 is the speed of the negative fan, l is the fan

moment arm, fTS is the TableSat friction and could be a function of ω, Kwf is

the fan speed to force constant, Vp is the voltage applied to the positive fan, Vn

is the voltage applied to the negative fan, α is the fan time constant, Kvẇ is the

fan voltage to change in speed constant, and ffan1 and ffan2 are the friction in

the fans and could be functions of ν1 and ν2, respectively. To effectively model

the TableSat system, the constants I, Kwf , Kvẇ, and α, as well as the functions

fTS(ω), ffan1(ν1), and ffan2(ν2) need to be determined.

5.2 TableSat Moment of Inertia Test

To effectively model the TableSat system, its moment of inertia must first be

determined. As TableSat is a one degree-of-freedom system, only the moment of

inertia about the spin axis is needed. There are several ways to experimentally

determine this moment of inertia; the method chosen here is a torsional pendulum

test. A derivation of the dynamic equations used to determine the moment of
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inertia and an explanation of the test procedure are given below.

5.2.1 Derivation of the Dynamic Equations

TableSat is assumed to be a disk of mass M and radius R. As seen in Figure 5.1,

the disk is suspended at its radius by three lines of length L. In the undisturbed

state, the lines will be parallel to the Earth’s gravity vector and the only force

acting on TableSat is gravity. When TableSat is rotated by an angle, θ about

its spin axis, the three pendulum lines are displaced relative to the ceiling by an

angle β and produce forces parallel to TableSat’s disc as seen in Figure 5.2. 

β

θ

L

R

Figure 5.1: TableSat Torsional Pendulum Test
Setup.

These forces, acting at radius, R, produce three torques that generate an

angular acceleration. TableSat, therefore, is governed by the following single axis
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R

I*α F1 F2

Figure 5.2: View of TableSat from above during
Torsional Pendulum Test.

dynamic equation:

Iα = R(F1 + F2 + F3) = 3RF1 (5.4)

To solve for I, we must find R, F1, and α. As mentioned above, R is

the radius of the TableSat disc, and can easily be measured. The force, F1,

as previously discussed, is a function of the displacement of the pendulum line

relative to the ceiling. As the disk is displaced ∆, the pendulum line rotates β

degrees relative to the Earth’s gravity, g, producing the force, F1, which can be

seen in Figure 5.3.

F1 and ∆, therefore, can be written as functions of β:

F1 = −1

3
Mg tan(β) (5.5)
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Lβ

F1 

Figure 5.3: Definition of F1 during the TableSat
Torsional Pendulum Test.

∆ = L sin(β) (5.6)

The displacement, ∆ can be related to the radius vector, R. As TableSat

is rotated θ degrees about its spin axis, its initial radius vector, R, is displaced a

distance, ∆ to R′, as seen in Figure 5.4. ∆, can therefore be written as follows:

∆ = 2R sin

(
θ

2

)
(5.7)

Combining Equations 5.6 and 5.7 and using the small angle approximation,

we can solve for β:

β =
Rθ

L
(5.8)

Continuing the assumption of small angles, Equation 5.8 can be combined
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∆ θ 
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Figure 5.4: Relationship between ∆ and R during
the TableSat Torsional Pendulum Test.

with Equation 5.5 to yield:

F1 = −MgRθ

3L
(5.9)

Substituting the above equation into Equation 5.4, reduces the the dynamic

equation of motion to:

Iα = −MgR2θ

L
(5.10)

Since α is the angular acceleration of TableSat, and hence the derivative of

θ, the above equation can be written as a classic pendulum equation:

α +

(
MgR2

LI

)
θ = 0 (5.11)

The period, τ of a second order oscillator is:

τ = 2π

√
LI

MgR2
(5.12)
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Solving Equation 5.12 for the inertia, I, yields:

I =
MgR2τ 2

4π2L
(5.13)

5.2.2 Torsional Pendulum Test Procedure

The TableSat torsional pendulum test is conducted as follows. First, the mass of

TableSat is measured. Then, TableSat is suspended from the ceiling using three

lines attached about the perimeter of the table. The lines are adjusted until

they are plumb with the ground and TableSat is balanced such that its center of

gravity is located parallel to the table’s spin axis. At this point, the length of

the pendulum lines and the distance from TableSat’s spin axis to each pendulum

line are measured and recorded.

A point on TableSat is identified as the zero point, and TableSat is rotated

about ten degrees from that point and released. TableSat will oscillate about the

zero point, and, as seen in the derivation above, the period of this oscillation is

proportional to TableSat’s inertia. One person counts aloud the number of times

TableSat passes the zero point from left to right. A second person acts as a time

keeper, timing how long it takes TableSat to pass the zero point ten times. That

time is recorded, and the rotation and counting are repeated two more times to

obtain multiple sets of data. Finally, the pendulum lines and the distance from

TableSat’s spin axis to each pendulum line are remeasured and recorded.
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The above test was conducted for TableSat on 14 September 2004. The

resulting data can be seen in Table 5.1. Using this data and Equation 5.13,

TableSat’s inertia was determined to be 0.053 kg ∗m2 +/- 2%.

Torsional Pendulum Test Data

Parameter Value

Table Mass (kg) 3.328
Line 1 Length (in) 52.25
Line 2 Length (in) 52.75
Line 3 Length (in) 52.25
Radius 1 Length (in) 7.625
Radius 2 Length (in) 7.5
Radius 3 Length (in) 7.5
Finish Time 1 (sec) 15.14
Finish Time 2 (sec) 15.41
Finish Time 3 (sec) 15.24
Line 1 Length (in) 52.375
Line 2 Length (in) 52.75
Line 3 Length (in) 52.125
Radius 1 Length (in) 7.625
Radius 2 Length (in) 7.5
Radius 3 Length (in) 7.5

Table 5.1: TableSat Torsional Pendulum Test Data. The data was used to deter-
mine TableSat’s inertia. Where multiple measurements exist, an average value
for that parameter was used.

5.3 Friction Characterization

A series of spin tests were conducted which can be used to help characterize the

TableSat parameters α and fTS(ω). During these tests, a constant voltage is

applied to TableSat, which is running in open-loop mode. The constant voltage
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causes TableSat to spin up. Once TableSat is accelerating and before the gyro

saturates, the voltage is set to zero and the friction in the TableSat system causes

it to spin down to a stop. The angular velocity of TableSat, as measured by the

gyro, can be used to characterize α and fTS(ω). To obtain a representative set of

data, voltages ranging from -12 to 12 volts were applied in half volt increments.

Figure 5.5 shows some plots of the angular velocity data taken during the spin

tests. The sections below discuss how this data was used to parameterize α, and

fTS(ω).
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Figure 5.5: Representative angular velocity data
taken during a series of TableSat spin up - spin
down tests.
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5.3.1 TableSat Friction

The TableSat Friction is composed of two parts: the static friction and the dy-

namic friction. The spin up-spin down tests can be used to characterize both

types of TableSat friction.

Static Friction

The static friction in TableSat can be represented by the voltage magnitude,

applied to either the positive or the negative fan, below which TableSat will not

move. From the spin up-spin down tests, we can find the steady state angular

acceleration of TableSat for each constant voltage applied to TableSat. Figure

5.6 shows the steady state angular acceleration plotted vs. the applied voltage.

As can be seen in the figure, below voltages of ±5.5 Volts, TableSat does not

accelerate. The static friction, therefore, is approximately 5.5 Volts.

Dynamic Friction

The TableSat dynamic friction can be characterized by the shape of the spin

down portion of the angular velocity curve. As can be seen in Figure, 5.5 the

spin down portion of the angular velocity curves are straight lines with roughly

the same slope, i. e. the lines are all parallel. The deceleration of TableSat due

to friction is constant regardless of the spin rate of TableSat. In other words, the

slope of the spin down curve, or the rate of change of TableSat’s angular velocity,
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Figure 5.6: TableSat Angular Acceleration for a
constant applied voltage. State friction is approx-
imately 5.5 Volts.

is constant. Refer back to Equation, 5.1:

Iω̇ = τ − fTS(ω) = S

ω̇ = τ
I
− fTS(ω)

I
= S

(5.14)

where S is the constant slope of the spin down portion of the angular velocity

curve and τ = l ∗ Kwf (ν1 − ν2) is the torque applied to TableSat from the fans.

But, during the spin down portion of the test, no voltage is applied to the fans,

so τ is zero and the TableSat dynamic friction is constant regardless of the speed

that TableSat is spinning. This result implies that the magnitude of the dynamic

friction is equal to the slope, S, of the spin down curve multiplied by the TableSat
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inertia, I. The dynamic friction, fTS, is no longer a function of the magnitude

of ω, but only of its sign. The magnitude of the friction is constant and will

always act against TableSat’s spin direction. Upon further analysis of the above

results, the constant TableSat friction makes sense given that TableSat spins

about a single, constant point of contact. No matter how fast TableSat spins,

that point of contact does not change. The contact force is dependant only upon

TableSat’s mass, which does not change. This single contact point introduces

the complication that the magnitude of the friction is then dependant on the

condition of the contact point. As the spin point wears, friction can increase.

Dirt and debris around the pivot point can also cause an increase in friction.

Conversely, if the pivot point is well lubricated, the magnitude of both the static

and dynamic friction can decrease. Table 5.2 shows the results of the above

friction calculations using the data collected during the spin tests. An average

TableSat dynamic friction magnitude was found to be 4.22e− 3 Nm± 3.2%.

5.3.2 Fan Friction

Like the TableSat friction, the fan friction is composed of two separate parts:

static friction and dynamic friction. Theoretically, the TableSat fans can accept

voltage inputs ranging from 0.0 to 12.0 Volts. With the fans mounted as they

are, these inputs produce torques that can spin TableSat in either the positive or

negative direction. In reality, however, the fan static friction reduces the effective
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TableSat Spin Test Friction Data

V olts τfric/I τfric/I τfric

(V) (deg/s2) (rad/s2) (Nm)

-12.0 4.44 0.0775 4.12e-3
-11.5 4.59 0.0801 4.26e-3
-11.0 4.55 0.0795 4.22e-3
-10.5 4.69 0.0818 4.35e-3
-10.0 4.70 0.0820 4.35e-3
-9.5 4.59 0.801 4.25e-3
-9.0 4.60 0.0804 4.27e-3
-8.5 4.68 0.0816 4.33e-3
-8.0 4.63 0.0808 4.27e-3
-7.5 4.65 0.0812 4.31e-3
-7.0 4.56 0.0795 4.22e-3
-6.5 4.51 0.0787 4.18e-3
-6.0 4.30 0.0751 3.99e-3

6.0 -4.33 -0.0756 -4.02e-3
6.5 -4.54 -0.0792 -4.21e-3
7.0 -4.57 -0.0798 -4.24e-03
7.5 -4.50 -0.0785 -4.17e-03
8.0 -4.55 -0.0794 -4.22e-03
8.5 -4.57 -0.0797 -4.23e-03
9.0 -4.55 -0.0794 -4.22e-03
9.5 -4.61 -0.0805 -4.27e-03
10.0 -4.61 -0.0805 -4.28e-03
10.5 -4.61 -0.0805 -4.27e-03
11.0 -4.62 -0.0807 -4.28e-03
11.5 -4.53 -0.0791 -4.20e-03
12.0 -4.31 -0.0753 -4.00e-03

Table 5.2: TableSat Spin Test Friction Data. The
data was used to determine an average, nominal
value for TableSat’s friction.

voltage range of the fans. There exists a voltage below which the fan motor

cannot turn the fan blades. This static friction voltage can be determined by
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commanding the fans with smaller and smaller voltages until they do not have

enough power to overcome their static friction and thus do not spin. Through

testing, the static friction in the fans was found to be approximately 2.75 Volts,

resulting in an actuator deadband ranging from -2.75 Volts to 2.75 Volts.

To determine the dynamic friction of the fans, assuming both fans have

the same friction characteristics, consider that the fan friction follows the general

friction definition:

ffan(ν) = Ffe
−ν/β + bfν (5.15)

where the friction curve is made up of an exponential term and a linear term.

ffan(ν) is the fan friction in Volts as a function of fan speed, ν, Ff is the static

friction of the fan, β is the time constant of the fan friction, or the fan speed it

takes for the fan friction to decay to 63% of its nominal value, and bf is the slope

of the linear part of the friction curve.

The linear portion of the fan friction curve is modelled as a part of the fan

time constant, α. Included in this term are the motor inductance and the back

EMF from the motor circuit.

More difficult to determine is the time constant of the fan, which determines

the overall shape of the fan friction curve. If the time constant is small, the friction

in the fans essentially drops to zero as the fan speed increases. As β increases,

the fan friction curve decreases at a slower rate until at very large values of β,
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the friction is essentially constant. Figure 5.7 shows plots of different fan friction

curves as β changes.
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Figure 5.7: TableSat fan friction curves for changing values of β. As β
increases, the curve flattens out until fan friction is constant.

Recall from the discussion of α and note again in the spin up portion of

the angular velocity curves in Figure 5.5 that for any given voltage, the angular

acceleration of TableSat reaches a constant steady state value, i. e. TableSat’s

angular velocity increases linearly. From this result, we can determine that the the

exponential portion of the fan friction curve is not exponential at all, but rather

is constant, implying that β is a very large value. If the fan friction were not

constant, TableSat would not accelerate at a constant rate. As the friction in the

fan decreased with increasing fan speed, the rate at which TableSat accelerates

would also change.
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5.4 TableSat Parameters

Now that the TableSat inertia, TableSat friction, and fan friction have been

characterized, we wish to find nominal values for the other parameters in the

equations of motion. A nominal value for α can be found using the data from

the spin up-spin down tests. Nominal values for Kvẇ and Kwf can be determined

using the hardware specifications from the fan and the TableSat equations of

motion.

5.4.1 Fan Time Constant

The fan time constant, α is the time it takes for the fans to reach 63% of their

steady state output force for a given commanded voltage. In other words, it is

a measure of how quickly the fans can respond to a change in input. Without

a tachometer to measure the fan’s rotational speed, it is difficult to determine

the fan time constant directly. However, α can be determined by using the

angular velocity data from the TableSat spin up - spin down tests. During the

spin up portion of the test, the fan’s output is being used to apply a torque to

accelerate TableSat. Under a constant voltage, the fans will spin up until they

reach a constant rotational speed and thus a constant force output. As the fan’s

spin rate changes, TableSat’s angular acceleration will increase until it reaches a

constant angular acceleration. This constant angular acceleration can be noted

in the constant slope of the angular velocity curves seen in Figure 5.5.

83



When looking for α, we are only interested in the first few seconds of the

angular velocity data, the time during which the fan’s spin rate and TableSat’s

angular acceleration are changing. To determine alpha, first find the steady state

angular acceleration of TableSat for a given constant voltage by finding the slope,

a of the spin up portion of the angular velocity data. Then, using the angular

velocity data, ω, plot the curve fit e = at − ω(t) vs. time, which is, ideally, an

exponential curve of the form e = b(1− exp (−αt)). An example of such a curve

fit using spin up-spin down test data can be seen in Figure 5.8

0 5 10 15
−2

0

2

4

6

8

10

Time (sec)

A
n

g
u

la
r 

V
el

o
ci

ty
 E

rr
o

r 
(d

eg
/s

ec
)

Angular Velocity Curve Fit

e(t)
b = ess

Figure 5.8: Angular velocity curve fit using spin up-spin down test
data.

From the plot, find b, the steady state value of e. Then plot the natural log

of e− b vs. time. As can be seen in Figure, 5.9, the first few seconds of the plot

is a straight line, whose slope is negative α. Regardless of the voltage applied to
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the fan, α should stay constant for a given fan. Therefore, the above calculations

can be repeated for all of the spin up data collected, and an average value for α

can be calculated. Using the spin test data from October 15, 2004 an average α

value of 2.0 s−1 was determined.
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Figure 5.9: Finding α using spin up-spin down test data.

5.4.2 Voltage to Change in Fan Speed Constant

To determine a nominal estimate for Kvẇ, recall from Chapter 2 that the TableSat

actuators are 12 volt computer fans, whose speeds are proportional to their input

voltage with a maximum speed of 2500 RPM (15000 deg/sec). Consider the fan

equations in Equations 5.2 and 5.3. For a constant applied voltage, the change

in fan speed will be equal to zero when the fans reach a steady state speed. The
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following equation can then be solved for Kvẇ:

0 = −αν + Kvẇ(Vn − ffan(ν)) = −2 ∗ 15000 + Kvẇ ∗ (12− 2.75) (5.16)

where both fans are assumed to have the same characteristics, and the assumed

voltage is 12, giving a steady state fan speed of 15000 deg/sec. In addition,

we have used the fact that the fan friction is constant and we have established

nominal values for ffan and α. Solving for Kvẇ yields 3242 deg/sec2 V.

5.4.3 Fan Speed to Fan Force Constant

To determine a nominal estimate for Kwf , recall from Chapter 2 that the TableSat

actuators have a maximum volumetric flow rate of 44.5 CFM (0.021 m3/sec) at

2500 RPM (15000 deg/sec) and an approximate diameter of 92 mm. From fluid

dynamics, we know that the thrust force of a fluid exiting a propulsion unit can

be calculated as follows:

Fthrust = ṁeVe − ṁiVi (5.17)

where ṁe and ṁi are the output and input mass flow rates of the fluid, respec-

tively, and Ve and Vi are the output and input velocities of the fluid, respectively.

For TableSat, the fluid being moved is air, and we assume that the input air ve-

locity is zero, which implies that the air coming into the fan is stationary. Strictly
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speaking, if TableSat has a non-zero angular velocity, this assumption would be

false. However, since the input air velocity would be much less than the output

air velocity, the assumption is still reasonable. Based on the above assumption,

we can neglect the second term in Equation 5.17. The output mass flow rate and

fluid velocities can be calculated using the following equation:

ṁ = ρVr = ρAV (5.18)

where V is defined above, ρ is the density of the fluid being moved by the propul-

sive unit, Vr is the volumetric flow rate of the propulsion unit, and A is the area

through which the fluid is being moved. Combining Equations 5.17 and 5.18 and

neglecting the second term of Equation 5.17 yields:

Fthrust =
ρeV

2
re

Ae

(5.19)

where the density of air is 1.29 kg
m3 , A for TableSat can be found using the fan

diameter, and the volumetric flow rate of the TableSat fans is defined above.

The above equation yields a maximum Fthrust of 0.0856 N for the TableSat fans.

This Fthrust occurs when the TableSat fans are spinning at their maximum speed.

Knowing this, Kwf can be approximated as:

Kwf =
Fthrust N

ω degsec
= 5.71 ∗ 10−6 N

deg/sec
(5.20)

87



5.5 Parameter Tuning

Now that we have found nominal values for the parameters found in the TableSat

equations of motion, we can use real TableSat data, along with the data generated

by the truth model discussed in Section 5.7, to tune those parameters. The goal is

to get the truth model response and real TableSat response to match reasonably

well.

5.5.1 TableSat Friction

To check the TableSat friction model, TableSat was commanded in open loop

mode and given a constant command of 8 Volts for about 30 seconds, then 0

Volts were commanded. Figure 5.10 shows the truth model and real TableSat data

plotted together using the nominal truth model system parameters established

above.

As can be seen in the figure, the shape of the two curves are similar, but

the truth model speed changes too quickly. The downward slope of the curve

represents the friction in TableSat itself. It is difficult to tell from the plot, but the

slope of the truth model is slightly less than half that of the real TableSat curve.

This difference in slope implies that there is more friction in the system than what

is being modelled in the truth model. Therefore, to obtain agreement between

the truth model and real system, start by increasing the TableSat friction. Figure

5.11 shows the truth model and TableSat data with an approximately 6% increase
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Figure 5.10: Comparison of the truth model and real TableSat sys-
tem with open loop control and a constant command input of 8 Volts.
Nominal system parameters used in the truth model.

in TableSat friction.

It may be difficult to see in this figure, but the downward slope of the truth

model curve is now approximately the same as the upward slope, which implies

that the TableSat friction is approximately correct.

5.5.2 Fan Friction and Kwf

It is easy to see in Figure 5.11 that the truth model still increases too quickly.

The upward slope of the curve includes a combination of both the TableSat

friction and the fan friction. Since we are now fairly confident that the TableSat
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Figure 5.11: Comparison of the truth model and real TableSat system
with open loop control and a constant command input of 8 Volts. Truth
model TableSat friction increased 6%.

friction is correct, we must now look at adjusting the fan parameters. Start

by just adjusting the fan friction. Recall that the fan friction was assumed to

be constant. From the plots shown above, this assumption can be shown to be

correct. If the time constant of the fan friction were lower, implying that fan

friction decreased as fan speed increased, the truth model speed would increase

at an even faster rate because there would be less friction opposing the fan force.

In fact, the discrepancy in the angular velocity curves actually implies that the

fan friction is greater. Figure 5.12 shows the truth model and TableSat angular

velocity curves with a roughly 23% increase in fan friction.
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Figure 5.12: Comparison of the truth model and real TableSat sys-
tem with open loop control and a constant command input of 8 Volts.
Truth model TableSat friction increased 6%. Truth model fan friction
increased 23%.

As the figure shows, there is now good agreement between the truth model

and real TableSat data for this particular set of data. Now consider a second

set of data. If the fan friction and Kwf are both accurately modelled, the truth

model prediction and real TableSat data should match for another set of data.

Figure 5.13 shows the truth model and real TableSat data for both the 8 Volt

and 10 Volt spin up-spin down tests.

As can be seen in the figure, the 10 Volt truth model data does not match

the real TableSat data. This result implies that adjusting just the fan friction

was not correct. Try instead adjusting both the fan friction and the fan speed
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Figure 5.13: Comparison of the truth model and real TableSat system
with open loop control and a constant command inputs of 8 and 10
Volts. Truth model fan friction increased 23%.

to force constant. Figure 5.14 shows the truth model and real TableSat data

when the fan friction is set at 2.8 Volts and Kwf is decreased to 13% 5.05 ∗ 10−6.

As can be seen in the figure, both sets of curves show fairly good agreement,

giving confidence that the fan friction and fan speed to force constant have been

accurately modeled.

The above plots consider only a spin up of TableSat using the positive fan.

To ensure that the fan friction model and Kwf are also accurate for the negative

fan, consider a spin test with a command of -8 Volts. Figure 5.15 shows the truth

model and TableSat data using the adjusted parameters determined above.
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Figure 5.14: Comparison of the truth model and real TableSat system
with open loop control and a constant command inputs of 8 and 10
Volts. Truth model fan friction at 2.8V, Kwf increased 13%.

Notice that the truth model peak is slightly higher than the real TableSat

data. During the course of the TableSat testing, it has been noted that the

negative fan appears to be slightly less powerful than the positive fan, but the

truth model assumes that both fans are identical. Figure 5.16 shows the truth

model and real TableSat data if the fan speed to force constant, Kwf , for the

negative fan is decreased by 1%. As can be seen in this figure, there is even

better agreement between the two curves, which indicates that the TableSat and

fan friction are modelled accurately.
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Figure 5.15: Comparison of the truth model and real TableSat system
with open loop control and a constant command input of -8 Volts.
Adjusted friction parameters used in truth model.

5.5.3 Fan Time Constant

In Section 5.4 we used the spin up-spin down test data to determine a nominal

value for the fan time constant α. To verify this value, look at the first few seconds

of the spin up-spin down truth model and real TableSat data from Figure 5.14.

Figure 5.17 show a zoom in of the first 4 seconds of data. As can be seen in the

figure, the acceleration of the truth model and real TableSat data match well,

implying that α is correct.
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Figure 5.16: Comparison of the truth model and real TableSat system
with open loop control and a constant command input of -8 Volts.
Adjusted friction parameters and 1% decrease in Kwf for the negative
fan used in truth model.

5.5.4 Fan Voltage to Change in Speed Constant

In Section 5.4 we established a nominal value for the fan voltage to change in

speed constant, Kvẇ, using the hardware specifications for the fan and the fan

equations of motion. This nominal value assumes that the maximum fan speed

matches the 2500 RPM specification. In reality, the maximum fan is probably not

exactly 2500 RPM. Unfortunately, without tachometer feedback from the fan, we

have no way of measuring the real fan speed. If we had fan tachometer data, we

could use that to tune Kvẇ.
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Figure 5.17: Verification of α by comparing the TableSat acceleration
in the truth model and real TableSat data.

5.6 Sensor Noise Characterization

To create an accurate truth model the TableSat system, we need to accurately

characterize the noise of each of the sensors. To characterize the gyro noise,

TableSat is given a target rate of 0 deg/sec. A plot of the gyro signal can be seen

in Figure 5.18. MATLAB was then used to find the standard deviation of the

gyro signal, σg. σg was found to be approximately 0.09 deg/sec.

To characterize the magnetometer noise, TableSat was issued a constant

desired pointing angle. Upon reaching its steady state pointing, the TAM data

was used to find the standard deviation of the TAM noise, σT . Figure 5.19 shows
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Figure 5.18: Gyro Noise, σg = 0.09deg/sec.

the steady state magnetometer angle. The standard deviation of the angle is

approximately σT = 2.3 deg.

To characterize the CSS noise, recall first from Chapter 3 that the θCSS

angle is calculated based on readings from one or two CSS’s. Each CSS will

have slightly different noise parameters, and in addition, the physical relationship

between adjacent CSS’s can also contribute to the noise in the θCSS angle. So, to

characterize the CSS noise, TableSat was rotated manually to different positions

to see how the noise varies from one orientation to another. The CSS data

collected was then adjusted so that the mean CSS value was zero. Figure 5.20

shows the adjusted CSS data collected. As can be seen in the figure, there are
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Figure 5.19: TAM Noise, σT = 2.2deg/sec.

approximately seven different noise levels, depending on TableSat’s orientation.

Some noise levels are very good, while others are quite large. The variation

is due to the fact that the CSS sensors are not permanently mounted flush to

the CSS head. They are slightly canted, therefore the CSS boresight is not

necessarily normal to the CSS head. Calculating the CSS angles as the arccosine

of the normalized CSS measurement is prone to a lot of noise. When the CSS’s

have been permanently mounted, the standard deviation of θCSS, σC , can be

determined. For now, σC was estimated to be about 1.2 deg.
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Figure 5.20: CSS Noise, σC = 1.2deg/sec.

5.7 TableSat Truth Model

Of use in designing and testing controllers is a truth model that accurately sim-

ulates the dynamics of the system in question. A TableSat Truth Model was

created, using MATLAB and Simulink, and can be seen in Figure 5.21. The

truth model integrates the equations of motion shown in Equations 5.1, 5.2, and

5.3 and mimics the actual compensation methods used on board the real Table-

Sat system. These nonlinear compensation methods are presented in Chapter

6. The truth model also includes sensor noise, which is modelled as Gaussian

distributed random noise with a different variance for each type of sensor. The

noise variances were determined through testing and are presented in Section 5.6
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Figure 5.21: TableSat time domain truth model integrating full system
equations of motion.

The truth model has a total of 10 parameters whose values can be varied

in order to change the response of the system. These parameters are: I, l, fTS,

α, Kwf , Kvẇ, Ff , β, fcompTS, and Flagfcomp. The first six parameters are the

same parameters defined in Equations 5.1, 5.2, and 5.3. Ff and β were also
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defined above and represent the magnitude and time constant of the fan friction

as defined in Equation 5.15, where the positive and negative fans are assumed

to have the same friction. fcompTS is the magnitude of the voltage applied to

TableSat to compensate for the constant TableSat friction. Finally, Flagfcomp is

a flag that turns on and off the TableSat friction compensation. Nominal values

for all of these parameters were found earlier in this chapter.

Fine tuning these parameters was discussed in Section 5.5 above and was

accomplished by comparing truth model data to real TableSat data collected for

the same controller. If designed correctly, the time domain simulation should

mimic what is actually happening with TableSat. The parameter values can

be tuned until the truth model data matches the real data. In addition, the

truth model can also be used to test controllers and estimators before actually

running them on the real TableSat system. Chapter 7 shows data generated by

the TableSat truth model for several different controllers.
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Chapter 6

Linear Model Development

In Chapter 5 the TableSat equations of motion were developed and parameterized

and a TableSat truth model was created using these equations of motion. Recall

that the equations of motion include friction terms for the fans and for TableSat

itself, making the model nonlinear in nature. The nature of these friction compo-

nents were identified in Chapter 5. The goal in this chapter is to determine ways

to compensate for these friction terms, effectively eliminating their contributions

to the equations of motion. Without friction in the system, the equations of

motion can be reduced to a linear model of TableSat.

6.1 TableSat Friction Compensation

In Chapter 5 the TableSat friction was determined to be constant in magnitude,

depending only on the direction of TableSat’s angular velocity. This particular

friction model implies that a simple friction compensation curve can be created to
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compensate for the constant TableSat friction, thus eliminating that particular

nonlinearity from the TableSat system. Depending on the direction of spin, a

constant voltage is added to the commanded voltage to overcome the friction

in the system. Recall from Chapter 4 that the TableSat friction compensation

function interpolates between a set of points, (ω, V olts), to determine how much

additional voltage to add to the command voltage to compensate for friction.

This interpolation implies that there must be a deadband around ω = 0, so that

the friction compensation curve is continuous and does not have any discrete

jumps.

Recall from Chapter 5 that a nominal friction value for TableSat was de-

termined to be approximately 6 Volts. A nominal friction compensation curve

would then be: ω = [-120, -0.1, 0, 0.1, 120] deg/sec and V olts = [-6, -6, 0, 6, 6] V.

This particular friction compensation curve would add 6 Volts when TableSat’s

angular velocity is between 0.1 and 120 deg/sec, -6 Volts when TableSat’s angular

velocity is between -0.1 and -120 deg/sec, and would interpolate linearly between

-0.1 and 0.1 deg/sec such that at 0 deg/sec, 0 additional voltage is added. The

width of the deadband may need to be adjusted depending on the noise level of

the angular velocity measurement.

The above suggested friction compensation curve is a nominal estimate of

the friction in TableSat. Recall also from Chapter 5 that the level of friction in the

TableSat system can vary depending on the condition of the contact point. Any
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time TableSat is set up, the friction compensation curve should be checked and

adjusted if necessary. One method for adjusting the friction compensation curve

is to command TableSat in open loop mode. Start with a friction compensation

curve using the nominal voltage compensation values of -6 and 6 Volts. Start

TableSat running with a commanded rate of zero degrees per second. It should

remain at rest. From a rest, manually spin TableSat in the positive direction. If

friction is perfectly compensated for, TableSat should maintain a constant rate.

If the rate drifts downward, increase the voltage in the compensation curve. If

the rate drifts upwards, decrease the voltage in the compensation curve. Iterate

until TableSat maintains a constant rate. Repeat this procedure after spinning

TableSat in a negative direction. Figure 6.1 shows what TableSat’s angular ve-

locity should look like if friction is correctly compensated for. After the initial

transients from each of the positive and negative impulses, a relatively constant

angular velocity is maintained.

6.2 Fan Friction Compensation

Recall from Chapter 5 that the TableSat fan friction was identified to have a linear

component and a constant, static component. The linear friction component is

contained as a part of α, the fan time constant. After the fan’s initial acceleration,

that friction component should not be a factor. The static friction, however,

still needs to be compensated for. One method for removing this deadband
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Figure 6.1: TableSat friction compensation test;
TableSat commanded in open-loop mode and
manually given impulses in positive and negative
direction.

nonlinearity, was to implement a new TableSat actuator commanding that utilizes

the fact that both TableSat fans can be commanded at the same time. Recall

from Chapter 5 that the static fan friction was determined to be approximately

2.8 Volts. If the command issued by the controller, v, is between 0.1 and 3

Volts, the positive fan is commanded at v plus 3 V. At the same time, the

negative fan is commanded at 3 V. The net result is that TableSat will spin in

the positive direction with an effective command of v. If the command issued

by the controller, v, is between -0.1 and -3 Volts, the negative fan is commanded

at −v plus 3 V. At the same time, the positive fan is commanded at 3 V. The
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net result is that TableSat will spin in the negative direction with an effective

command of v. Figure 6.2 shows this fan static friction compensation method in a

graphical form. The above actuator commanding effectively reduces the actuator

static friction such that it now ranges only from -0.1 to 0.1 Volts.
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Figure 6.2: Graphical representation of the Ta-
bleSat fan static friction compensation method.

6.2.1 Linear Model

One of the goals of the TableSat project was to create a linear system model of Ta-

bleSat that can be used to design controllers and state estimators for the system.

Of course, a linear model is only valid if the system itself can be considered linear.

When the friction compensation methods described above are implemented, the
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friction nonlinearities in the system can be virtually eliminated, which implies

that fTS, ffan1, and ffan2 can be neglected in the TableSat equations of motions,

Equations 5.1, 5.2, and 5.3. In addition, because the static fan friction has been

virtually eliminated, the two separate fan equations can be reduced to one equa-

tion, representing a single bi-directional fan. The simplified equations of motion

are then:

θ̇ = ω

ω̇ =
lKwf

I
ν

ν̇ = −αν + KvẇV

(6.1)

which can be written in state space form as:

 θ̇
ω̇
ν̇

 =

 0 1 0

0 0
lKwf

I

0 0 −α

 θ
ω
ν

 +

 0
0

Kvẇ

V

[
θ
ω

]
=

[
1 0 0
0 1 0

] θ
ω
ν

 (6.2)

or

ẋ = Ax + bV
y = Cx

(6.3)

where
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A =

 0 1 0
0 0 8.784e−4

0 0 −2.0



b =

 0
0

3242


(6.4)

For this linear state space model, TableSat is assumed to be a continuous

system (i. e. TableSat is commanded with continuous actuation and the con-

troller, state estimator, and actuator cycles are reasonably fast. The given C

matrix corresponds to the only measurable outputs being θ and ω. This state

space model can be used to design Model Based Controllers, which will be dis-

cussed in Chapter 7, and other state space controllers. For controller and estima-

tor frequency domain analysis and testing, as well as traditional linear controller

design, it is easier to reduce the equations of motion to a single input - single

output linear transfer function that converts from Voltage input to angle output.

Again, assuming TableSat is a continuous system, taking the LaPlace transform

of Equation 6.1 yields:

sθ(s) = ω(s)

sω(s) =
lKwf

I
V (s)

sν(s) = −αν(s) + KvẇV (s)

(6.5)

The above equations can then be solved simultaneously to yield the follow-

ing TableSat transfer function:
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GTS(s) =
θ(s)

V (s)
=

lKwfKvẇ

Is2(s + α)
=

0.1595

0.056s2 + 0.112s
(6.6)
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Figure 6.3: TableSat frequency domain simulation using the linear
model, TTS(s).

GTS(s) is referred to as the TableSat linear model. Using GTS(s) and Sim-

link, a closed loop model of the linearized TableSat system was created. This

model, which is shown in Figure 6.3, can be used to do frequency domain analy-

sis on any controllers or estimators designed for TableSat using the MATLAB

Control Systems Toolbox. The controllers and estimators must be represented

in state space form, where the A and C matrices of the controller and the A, B,

C, and D matrices of the estimator correspond to the respective matrices of the

controller and estimator definitions in the TableSat GUI. The B and D matrices

of the controller relate to the TableSat B1, B2, D1, and D2 matrices as follows:
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B = [B2,B1]
D = [D2,D1]

(6.7)

6.3 Linear Model Verification

Now that a linear TableSat model has been developed, the next step is to verify

that the linear model is a valid approximation of TableSat that can be used in

controller design. To do so, a simple proportional controller was used to control

the TableSat rate. Figure 6.4 shows the the linear and truth models plotted on

the same plot when a step command of 20 degrees/second is issued at time zero.
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Figure 6.4: Comparison of the TableSat Linear and Truth Models with
a simple P controller, KP = 5 and a step input of 20 deg/sec.
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As can be seen in the figure, the linear model shows a much quicker response

and a much higher overshoot; however once the transient has died down, the

plots match quite well. The discrepancy in the transients of the two models can

be explained in that the linear model assumes infinite control, whereas the truth

model (and the real TableSat) actuators will saturate at about 6 volts, depending

on the level of friction compensation. Instead of commanding a step input of 20

deg/sec, which quickly saturates the actuators, try commanding a step input of

2 deg/sec. This command will still saturate the actuators when Kp = 5, but not

nearly as much. Figure 6.5 shows the plots of the two models for the smaller step

input.
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Figure 6.5: Comparison of the TableSat Linear and Truth Models with
a simple P controller, KP = 5 and a step input of 2 deg/sec.
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As can be seen in the figure, the transient responses of the two models are

much closer now. It looks like the truth model has a higher overshoot, but that

could be mostly the noise in the truth model, which is much more prevalent in

this case. Despite the large noise, it can still be seen that the steady state values

of the linear and truth models are both the same. From these plots, it appears

that the linear model is a valid approximation of the TableSat system as long as

you remain within the saturation level of the actuators.

Another way to check the validity of the linear model is to create frequency

response plots using the linear model and comparing that to the truth model

and real TableSat results. To do so, TableSat is commanded in open-loop mode

and issued a sinusoidal rate command with a given frequency and amplitude.

Theoretically, if TableSat is a completely linear system the output rate should

also be a sinusoid, perhaps with a different amplitude. A series of different

frequency sine waves can be commanded and the ratio of the output amplitude

over the input amplitude can be plotted versus the input frequency. If the ratio is

converted to dB and the frequency is plotted on a log scale, the resulting plot is

an experimentally obtained Bode magnitude diagram. To start, Figure 6.6 shows

the linear model prediction for a commanded sine wave with a frequency of 1.0

rad/sec and an amplitude of 5 deg/sec.

As can be seen in the figure, the angular velocity is indeed a sine wave

with an amplitude of about 6 deg/sec, giving an output over input ratio of about
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Figure 6.6: Linear model prediction for open-loop commanded sine
wave.

1.2, or 1.6 dB. Figure 6.7 shows the truth model and real TableSat data plotted

together for the same commanded sine wave.

As can be seen in the figure, both the truth model and real TableSat data

match well. The overall trend in the data is a sinusoid, but the sinusoidal rate

walks away instead of staying constant. Because TableSat is a marginally stable

system (it has two poles at zero), any small nonlinearity will cause the system

to walk away like that, so this behavior implies there is some sort of nonlinearity

that has not been completely compensated for in the system. One possibility is

the fact that the linear part of the fan friction, which is modelled as part of α, is

not being compensated for. Another possibility is the fact that the positive fan
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Figure 6.7: Comparison of the truth model and real TableSat system
with open loop control and a sinusoidal rate input.

is approximately 1% more powerful than the negative fan. A third possibility is

that TableSat and/or fan friction effects at low speeds have not been correctly

modelled and thus compensated for. More system analysis is needed to determine

how to compensate for these nonlinearities. Until the walk away behavior is

compensated for, it is not possible to get open-loop experimental Bode data as

was originally desired.

One possible alternative to creating an experimental open-loop Bode di-

agram, and another way to validate the linearity of the system, is to close a

proportional controller around the TableSat rate and command sine waves at

varying frequencies to create an experimental closed-loop Bode diagram of Ta-
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bleSat. The sine wave data can then be compared to linear and truth model

predictions. A total of 12 different sine wave frequencies was tested. Figure 6.8

shows the input sine waves and output sine waves for the real TableSat system,

linear model predictions, and truth model predictions. The input sine wave in

this case has a frequency of 0.25 rad/sec and an amplitude of 20 deg/sec. The

controller used has a D1c matrix of [0.4, 0] and a D2c matrix of [0, 0, -0.4, 0, 0].

All other controller matrices are empty matrices.
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Figure 6.8: Closed-loop control with sinusoidal input with amplitude
20 deg/sec and frequency 0.25 rad/sec. Input is compared to outputs
from real TableSat, linear model, and truth model.
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As can be seen in the figure, the input sine wave and real TableSat output

match quite well in both amplitude and phase. The linear and truth model

outputs match well in amplitude, but have a slight phase shift. The reason for

this phase shift is unclear. So, at this frequency the system is able to match

the commanded sine wave. As the frequency increases, the system’s ability to

follow the commanded sine wave drops off and there is a decrease in the output

amplitude. Figure 6.9 shows the input and output sine waves for the real TableSat

system, linear model predictions, and truth model predictions for an input sine

wave of amplitude 20 deg/sec and frequency 1.0 rad/sec.

As can be seen in the figure, the output amplitude for all three curves

has dropped, implying that the system cannot keep up with a sine wave of this

frequency. It is important to note that while the real TableSat and linear model

output curves match reasonably well in amplitude, the amplitude of the truth

model output is actually about half the amplitude of the other curves. In is

unclear why there is this discrepancy between the truth model and the linear

model and real TableSat system. More investigation is needed to determine

the cause. All three output curves also show a phase shift, but the phase shift

for the real TableSat output is smaller than for the truth and linear models.

Again, the reason for this discrepancy is unknown. If the output over input

magnitudes, in dB, from each of the sine wave tests are calculated and plotted

against frequency, we can create an experimental Bode magnitude diagram of
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Figure 6.9: Closed-loop control with sinusoidal input with amplitude
20 deg/sec and frequency 1.0 rad/sec. Input is compared to outputs
from real TableSat, linear model, and truth model.

this closed-loop system. Figure 6.10 shows the theoretical Bode magnitude plot

from the linear model along with the experimental Bode magnitude plot from

the real TableSat response.

As can be seen in the figure, the experimental Bode magnitude diagram

does not match exactly with the theoretical Bode magnitude plot; however, the

curves are reasonably close. Both curves show the same bandwidth, but the real

TableSat curve has a resonance that the linear model does not predict. The cause
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Figure 6.10: Closed-loop Bode magnitude diagram for theoretical pre-
diction and real TableSat response.

of this discrepancy is unknown, but likely stems from the fact that TableSat, as we

have already seen, is not completely linear. Another possibility is that TableSat,

because of its rather large moment of inertia, has a slight wobble as it spins,

i. e. its motion is not entirely planer. This wobble could result in a discrepancy

in the output magnitude. A second discrepancy between the two curves occurs at

the higher frequencies tested and is that the experimental Bode plot drops off in

magnitude faster than the theoretical Bode plot. A possible explanation for this

discrepancy is that the real TableSat actuators saturate at the higher frequencies,

which reduces the output magnitude.

From the comparisons presented above, it is clear that more work is needed
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to refine the linearization of the TableSat system. However, despite the small

discrepancies between the linear model, truth model, and real TableSat response,

we feel that with the current nonlinear compensation methods, TableSat captures

the major features of a linear response. We therefore assume that the linear model

can be used to design controllers and state estimators for TableSat. Chapter 7

presents several case studies using the linear model to design controllers and state

estimators.
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Chapter 7

Case Studies

In Chapter 6 a simplified, linearized TableSat system model was developed. This

chapter presents several case studies that use the linear model to develop con-

trollers for TableSat. These case studies show how the TableSat model is used

to develop a Proportional-Derivative (PD), a Model Based Controller-Observer

(MBCO), and a MBCO with Integral Augmentation. In addition, the creation

of a simple, N-sample averaging estimator and a simplified Kalman Filter are

discussed. Results are presented that show how using different estimators can

improve steady state pointing. For all case studies, three sets of results are pre-

sented: linear model, truth model, and real TableSat results.

7.1 Classical Controller Design

In basic linear control systems theory, students learn how to design linear con-

trollers, given a plant transfer function, using various design methods. The prob-
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lem with such design exercises is that they are often purely theoretical. Students

cannot see the effect of their controller on a real system. They cannot visualize

how different design trade-offs result in different controller performances. With

TableSat, such design exercises can be much more effective. This section shows

how linear design methods, specifically designing via Root Locus can be used to

design a simple PD controller for TableSat. The designed controller is then tested

on the real TableSat system. Results are presented that compare the predicted

results, based on the linear and truth models, to results from the actual TableSat.

7.1.1 Design Methodology

Recall from Chapter 5 that the TableSat transfer function is:

GTS(s) =
lKwfKvẇ

Is2(s + α)
(7.1)

Start the design process by looking at the TableSat open loop plant. From

the denominator, it can be seen that TableSat is a marginally stable third order

system. The plant has three open loop poles: two at zero and one at −α. Most

basic linear systems design approaches assume the plant is a second order system.

When the system is of higher order, the higher order terms are neglected during

controller design. This assumption, however, is only valid if the higher order poles

are far into the left hand plan, i. e. the higher order poles are much greater than

the second order poles. Recall from Chapter 5 that α is approximately equal
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to 2, which unfortunately means that the third pole is rather close to zero for

the system to be treated as a second order system. To compensate for that, a

possible design method is to do a dual loop compensator design like that seen in

Figure 7.1.

GTS(s)

θ

Kd*s
ωcmd

θcmd

+

+

-

Kp-+

Figure 7.1: Dual loop feedback compensator.

Start by closing a feedback loop on the plant with C1(s) = Kd ∗ s in the

feedback path. Multiplying the plant by this compensator results in the following

open-loop transfer function.

GTS(s) ∗ C1(s) =
KdlKwfKvẇ

Is(s + α)
(7.2)

which is still a marginally stable system with one pole at zero and one pole at

−α. At this point, because the system is now a second order system, root locus

techniques can be used to design Kd so that the new “plant”, GTS(s) ∗ s, has
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a certain transient response. In this case, the desired transient response is a

percent overshoot of 10% (damping ratio, ζ, of 0.6). This percent overshoot was

chosen because TableSat does not have infinite control authority, and the goal

is to design a controller that can be realistically applied to TableSat. Figure

7.2 shows the root locus of the plant, GTS(s) ∗ s, with the line representing the

desired percent overshoot.

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−3

−2

−1

0

1

2

3
0.591

0.591

G
TS

(s)*s Root Locus

Real Axis

Im
ag

in
ar

y 
A

xi
s

Figure 7.2: Root locus plot of GTS(s) ∗ s with the desired percent
overshoot line.

As can be seen in the figure, the current root locus does cross the desired

percent overshoot line, so the desired Kd will be the gain that results at the point

where the root locus crosses the desired percent overshoot line, and can be found

using the MATLAB command rlocfind. The resulting gain is Kd = 1.0. Now that
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we have found the inner loop gain, we can find the closed-loop transfer function,

L(s), for the inner loop by reducing the inner loop to a single transfer function:

L(s) =
KdlKwfKvẇ

Is2 + Isα + KdlKwfKvẇ

(7.3)

where L(s) can now be used to design the outer loop compensator, C2(s) = Kp.

The root locus of the resulting transfer function can be seen in Figure 7.3. We

wish to maintain the current design point, so use rlocfind to select a gain that is

close to the open loop poles. The resulting gain is Kp = 0.25, and the resulting

closed-loop poles are p1, p2 = −0.85± 1.3 and p3 = −0.303.
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Figure 7.3: Root locus plot of L(s) with closed-loop poles for chosen
Kp.

Combining C1 and C2, the total controller transfer function is then:
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Ctot = Kds + Kp (7.4)

which can be put into the state space form used by the TableSat flight code such

that:

nc = 0
A = [ ]
B1 = [ ]
B2 = [ ]
C = [
D1 =

[
0 −Kp −Kd 0 0

]
D2 =

[
Kp 0

]
(7.5)

7.1.2 Controller Results

The PD controller was tested on the linear model, truth model, and the real

TableSat system with a simple pass through estimator. Figure 7.4 shows the

predicted results for a step input of 20 degrees using the linear model.

As can be seen in the figure, the linear model predicts an overdamped

response, which is not what was anticipated. To explain this result, look again

at the closed-loop poles. The closed-loop system is a third order system, and

all three poles are close to zero. The fact that these poles are so close together

implies we cannot expect a second order, underdamped response. Despite the

overdamped response, the steady state value is still reached fairly quickly, with

the steady state being reached in about 20 seconds. The linear model predicts

no steady state error. Figure 7.5 shows the truth model prediction plotted with
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Figure 7.4: Predicted results for a step input of 50 degrees using the
PD controller.

the real TableSat response for a step input of 50 degrees.

As can be seen in the figure, the truth model responds quicker than the

linear model prediction, reaching its steady state value in under 10 seconds, but

like the prediction, shows no steady state error. The real TableSat results, also

respond faster than the linear model prediction, reaching steady state in about

5 seconds. However, unlike the linear model or truth model, the real TableSat

results show a rather large steady state error of about six degrees. One possible

reason for this discrepancy is that the friction in the real TableSat system is not

completely compensated for. With the gains chosen, a six degree steady state

error would result in a commanded voltage of about 1.5 Volts. In a linear system,

126



0 5 10 15 20 25 30 35 40
−20

−10

0

10

20

30

40

50

60

70
PD Controller

Time (sec)

A
n

g
u

la
r 

V
el

o
ci

ty
 (

d
eg

/s
ec

)
Real TSat
Truth Model

Figure 7.5: Truth model prediction and real TableSat results for a step
input of 50 degrees using the PD controller.

this voltage should be enough to move TableSat to reduce the steady state error.

Figure 7.6 shows the truth model response for a step command of six degrees

with the given PD gains.

As can be seen in the figure, the truth model is also able to respond to such

a step command. In the real TableSat system, however, it appears that at low

speeds and low voltage commands, the system does not act in a linear manner. If

the low voltage commands are the reason for the discrepancy between the truth

model and real TableSat response, then using larger values for Kp and Kd should

result in better agreement between the truth model and real TableSat results. To

that end, new gain values of Kp = 5 and Kd = 19.6 were chosen so that even small
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Figure 7.6: Truth model prediction for a step input of 6 degrees using
the PD controller.

pointing errors would result in relatively large voltage commands. The selection

of these new gains results in a system with closed-loop poles of −0.87± 1.3 and

-0.25. Figure 7.7 shows the linear model prediction for this new PD controller

with the same 50 degree step input.

As can be seen in the figure, this new PD controller also has an over-

damped response that looks similar to the original PD controller. This similarity

in response makes sense when comparing the closed loop poles between the two

designs. The new closed-loop poles are not much different than the original

closed-loop poles. The new controller does have a slightly slower response than

the original PD controller, reaching its steady state in just over 20 seconds. This
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Figure 7.7: Linear model prediction for a step input of 50 degrees using
new PD controller with Kp = 5 and Kd = 19.6.

slower response is to be expected considering the relatively high value of Kd. It

is difficult to see in this plot because of the thickness of the line, but there also

appears to be an oscillation in the transient response. As before, the linear model

shows no steady state error. Figure 7.8 shows the truth model prediction and

real TableSat results for the new PD controller.

As can be seen in the figure, there is much better agreement between the

truth model and real TableSat results for this controller, most likely due to the

higher gains giving larger voltage commands for small errors. There are some

slight discrepancies between the truth model and TableSat results and the linear

model predictions. Both the truth model and TableSat show a slightly faster
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Figure 7.8: Truth model prediction and real TableSat results for a step
input of 50 degrees using the new PD controller with Kp = 5 and
Kd = 19.6.

response than the linear model prediction, reaching steady state in about 12

seconds. Recall that this discrepancy in the transient response was also seen

with the original PD controller. It is unclear at this time why the truth model

and real TableSat respond faster than the linear model prediction. More analysis

is needed to determine the cause.

Both the truth model and real TableSat results also show a slight steady

state error in pointing, on the order of about 3 degrees. The linear model predic-

tion showed no steady state error. One possible explanation for this steady state

error is due to the fan resolution. As mentioned before, the linear model assumes
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infinite control. Not only does infinite control mean no upper bound on the

amount of control the system can receive, it also implies the system can receive

infinite resolution. The system gets exactly the amount of control it asks for. As

the system approaches its target, it will ask for less and less control, which could

potentially be a problem given that there is a finite amount of control resolution

in the real actuators. Recall from Chapter 2 that the real TableSat system has a

12 bit D/A converter. For the voltage range of the fans and the voltage regulator

circuit used, this implies a resolution of 2.93 mV. Control commands to the fans

can only change in 2.93 mV increments. It is possible that the fans cannot give

the level of control requested. However, the actuator resolution is not modelled in

the truth model, and, since the truth model and real TableSat system responses

are almost identical, the actuator resolution cannot be the reason for the steady

state error. Furthermore, as was seen previously, due to the imperfect friction

compensation at low speeds and low voltages, TableSat cannot even respond to

voltages on the level of the fan resolution. A more likely explanation for the

steady state error is that there is a nonlinear interaction between the noise and

the friction compensation, resulting in friction not being completely compensated

for. For example, because the TableSat friction compensation is calculated based

on the angular velocity estimate, a noisy estimate can result in improper friction

compensation. If noisy state estimates are the cause for the steady state errors,

then improving the state estimate should improve the steady state pointing.
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The above controller used the magnetometer as the estimate of the TableSat

attitude. The same PD gains can be used to control TableSat using the CSS

signals. Figure 7.9 shows the truth model and real TableSat results using the

new PD controller with the CSS angle as the attitude estimate. As can be seen

in the figure, the truth model and real TableSat results agree quite well. The

truth model shows more noise, but, as was discussed in Chapter 5 the truth

model CSS noise is only an estimate of the system noise. Once the CSS’s have

been permanently attached to the CSS head, a more realistic noise value can be

determined. As was the case when using the magnetometer, the results show a

slight steady state error and a faster transient response than the linear model

prediction.

7.2 Sensor Noise Reduction: State Estimators

It was hypothesized in the above section that the likely contributor to the steady

state pointing error seen by the new PD controller is the noise in the state esti-

mate. Because the controller uses the default TableSat state estimator to obtain

its state, the sensor measurements get passed directly through to the controller

without any sort of smoothing of the signals. Some of the steady state errors

in the TableSat pointing could conceivably be reduced by employing a state es-

timator to feed better estimates of the state to the controller. One estimator

that is simple to employ is an N-sample averaging estimator. A slightly more
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Figure 7.9: Truth model prediction and real TableSat results for a
step input of 50 degrees using the new PD controller with θCSS as the
attitude estimate.

complicated estimator presented in this section is a simplified, kinematic Kalman

Filter.

7.2.1 N-Sample Estimator Design Methodology

The concept of the N-sample averaging estimator is simple: average the last N

state measurements to reduce the noise on the estimate. Theory states that for

an N-sample averaging estimator, noise on the estimator can be reduced by a

factor of
√

N . The difficulty in the design lies in how to incorporate that simple

concept using the TableSat state estimator definition, which has the form:
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zek+1 = Aezek + Bex̂ rawk

x̂k+1 = Cezek + Dex̂ rawk
(7.6)

where ze is the estimator states, x̂ is the state estimate, x̂ rawk is the vector

of raw sensor measurements, and Ae, Be, Ce, and De are the matrices we are

trying to find.

For simplicity, start by assuming a two sample estimator, i. e. N = 2. The

state estimate would be:

xk+1 =
xk + xk−1

2
=

1

2
xk +

1

2
xk−1 (7.7)

By inspection, it is easy to see that De = 1
2
I5x5, where I5x5 is the 5x5

identity matrix because there are 5 states. Furthermore, zk = xk−1, so that no,

or the number of estimator states is 5 and Ce = 1
2
I5x5. Finally, if zk = xk−1, then

zk+1 = xk; therefore Ae = 05x5 and Be = I5x5.

Next, extend the definition to a three sample filter, i. e. N = 3. The state

estimate would be:

xk+1 =
xk + xk−1 + xk−2

3
=

1

3
xk +

1

3
xk−1 +

1

3
xk−2 (7.8)

Again, by inspection it is easy to see that De = 1
3
I5x5. Furthermore, Cezk =

1
3
(xk−1 + xk−2), which implies that:

zk =

[
xk−1

xk−2

]
(7.9)
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and Ce =

[
1
3
I5x5

1
3
I5x5

]
. If zk is defined as above, then zk+1 =

[
xk xk−1

]T

,

which implies that no = 10 and Ae and Be are defined as follows:

Ae =

[
1
3
I5x5 05x5

05x5 05x5

]

Be =

[
I5x5

05x5

] (7.10)

So, we have found the matrix definitions for two and three sample estimator.

If we continue in this manner, a generic, N -sample estimator can be defined as

follows:

no = 5 ∗ (N − 1)

Ae =


05x5 05x5 05x5 · · · 05x5

I5x5 05x5 05x5 · · · 05x5

05x5 I5x5
. . . . . .

...
...

. . . . . . . . .
...

05x5 05x5 05x5 I5x5 05x5


5(N−1)x5(N−1)

Be =

[
I5x5

05(N−2)x5

]
5(N−1)x5

Ce =
[

1
N

I5x5 · · · 1
N

I5x5

]
5x5(N−1)

De = 1
N

I5x5

(7.11)

Now that the estimator matrices have been established, different sample

estimators can be implemented on TableSat to determine their effect on Table-

Sat pointing. The following results discuss the differences between using a pass

through estimator, a 2-sample averaging estimator, and a 5-sample averaging es-
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timator along with the new PD controller. Results from both the truth model

and the real TableSat system are compared.

7.2.2 N-Sample Estimator Results

According to the Central Limit Theorem of statistics, as you sample a population

with mean, µ, and finite standard deviation, σ, the mean of n independent ran-

dom observations tends towards a normal distribution with mean, µ and standard

deviation, σm = σ/
√

n [5]. This theorem implies that because the noise in the

sensor measurements can be assumed random with zero mean and standard de-

viation σ, then, for a sampling estimator, σ will be reduced by the square root of

N , where N is the number of samples in the estimator. Of course, there are limits

on how much an estimate can improve, given the sampling rate of the estimator.

At some point, because the system is being actively controlled, the samples are

too old to actual improve the estimate, and can, in fact, make the estimate worse.

For TableSat, we decided to try 2-sample and 5-sample estimators.

Recall from Section 7.1 that the new PD controller, coupled with a simple

pass through estimator, resulted in a steady state error of about 3 degrees. It was

hypothesized that one of the causes of this steady state error is the noise in the

sensor measurements. If that is true, then reducing the noise should also reduce

the steady state error. For the angle measurement, θTAM , the standard deviation

of the noise is 2.3 degrees for both the truth model and the real TableSat system.
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Figure 7.10 shows the results when the pass through estimator is replaced by a

2-sample averaging estimator.
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Figure 7.10: Predicted results and real TableSat results using the new
PD controller and a 2-sample averaging estimator.

As can be seen in the figure, the system slowly approaches its desired target

of 50 degrees. The steady state value is reached after about 12 seconds, which is

about the same time as when the pass through estimator was used. However, in

this case the steady state error has decreased to about 1 degree in both the truth

model and real TableSat system. This reduction in steady state error supports

the hypothesis that the sensor noise is causing most of the steady state error

when using this controller. The standard deviation in both the truth model and

real TableSat measurements is 1.6 degrees, which is almost exactly a reduction
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by
√

2 from the pass through estimator.

So, since the 2-sample averaging estimator cut the steady state error by

more than half, the 5-sample averaging estimator should reduce the steady state

error even more. Figure 7.11 shows the system response when the 2-sample

estimator is replaced with a 5-sample estimator.
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Figure 7.11: Predicted results and real TableSat results using the new
PD controller and a 5-sample averaging estimator.

As can be seen in the figure, the system reaches its steady state value in

about 15 seconds, which is slightly longer than the time it took in the previous

example. However, the steady state error is reduced to nothing. The standard

deviation of the angle measurement is about 1.0 degrees for the truth model

and 0.8 degrees for the real TableSat measurement. For the truth model, this
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standard deviation is a reduction by almost exactly
√

5. For the real TableSat,

the reduction in noise is actually greater than the predicted
√

5. It is possible that

implementing an estimator with even more samples could reduce the noise levels

even more. However, as was mentioned before, at some point the larger number of

samples will actually degrade the performance because the measurements become

too old to be of value in improving the estimate. Regardless, these results shows

that a simple averaging estimator can eliminate steady state error for the new

PD controller.

7.2.3 Kalman Filter Design Methodology

In Section 7.2.1 we saw that implementing a simple averaging estimator can

reduce steady state error and reduce the standard deviation of the sensor mea-

surements. We now wish to implement a more advanced filter to try and smooth

our state estimates even more and perhaps improve performance. The Kalman

Filter, first proposed by R. E. Kalman in 1960, is a set of mathematical equations

that recursively estimates the state of a process by minimizing the mean of the

squared error. It is very powerful in that it can predict past, present, and even

future states even if the exact nature of the modelled system are unknown [9].

It is based on a probabilistic treatment of process and measurement noises. The

traditional Kalman Filter design uses the system state equations:
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ẋ = Ax + Bu + Γw1

y = Cx + Du + w2
(7.12)

where w1 and w2 represent the uncertainties in plant dynamics and outputs,

respectively, and are Gaussian distributed white noise, which are uncorrelated

with respect to time. Γ is the matrix that reflects how the model uncertainties

are reflected in the plant dynamics. Furthermore,

E[w1(t)w1(t)
T] = W1

E[w2(t)w2(t)
T] = W2

E[w1(t)w2(t)
T] = 0

(7.13)

where W1 and W2 are symmetric, positive definite matrices representing the

variance of the model uncertainty and output uncertainty, respectively. The goal

is then to design an estimator that minimizes the cost function:

J[x̂] = lim
t→∞

traceE[x̃(t)x̃(t)T] (7.14)

where x̃(t) = x(t)− x̂(t). In other words, the estimator uses the knowledge of the

system dynamic equations, along with the control inputs to predict the future

values of the state. The resulting state dynamics with the estimator are then:

˙̂x = (A− LC)x̂ + Bu + Ly
ŷ = Cx̂ + Du

(7.15)

where L = PoC
TW2

−1 is the observer gain matrix and Po is the symmetric,

positive definite solution to the Algebraic Riccati Equation:
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APo + PoA
T = −ΓW1Γ

T −PoC
TW2

−1CPo (7.16)

With the current arrangement of the generic TableSat state estimator equa-

tion, the state estimator does not have access to the calculated control voltages.

Therefore, we cannot implement a full Kalman Filter estimator. Instead, consider

a simplified, “kinematic” Kalman filter with the state equations:

ẋ = Ax + bv + Γw1[
θ̇
ω̇

]
=

[
0 1
0 0

] [
θ
ω

]
+

[
0
0

]
v +

[
0
1

]
w1

(7.17)

y = Cx + w2[
θ̃
ω̃

]
=

[
1 0
0 1

] [
θ
ω

]
+ w2

(7.18)

where we are using the pure kinematic relationship between θ and ω as the

plant dynamics, and we neglect the control input into the system. As mentioned

before, w1 represents the uncertainty in plant dynamics and w2 represents the

uncertainty in the system outputs. For TableSat, the corresponding uncertainty

matrices were assumed to be:

W1 = 1

W2 =

[
(1.5)2 deg2 0

(0.1)2 deg/sec2

]
(7.19)

The MATLAB command kalman was then used to find the Kalman Filter

gain, L. kalman accepts as inputs the state matrices, A, [ B Γ ], C, and D;
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and returns, among other outputs, the Kalman gain, L. Once the Kalman gain

has been determined, the whole Kalman Filter must be written in the form of

the TableSat state estimator matrices. By inspection, these matrices can be seen

to be:

no = 2
Ae = A− LC
Be =

[
02x1 L 02x2

]
Ce =

 01x2

C
02x2


De = 05x5

(7.20)

where the extra zeros in the Be and Ce matrices correspond with the fact that the

TableSat state estimate, x̂ is of length 5. Up until this point, the Kalman Filter

design process has assumed a continuous system. TableSat, however, is a discrete

system. The resulting Kalman Filter matrices, in TableSat state estimator form,

can be converted into discrete time using the MATLAB function, c2d. We have

assumed the estimator thread will be running at 50 Hz; however any time step

may be chosen as long as it is within the capability of TableSat’s processor speed.

The resulting estimator definition for the kinematic Kalman Filter is then:
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no = 2

Ae =

[
0.9987 −0.0017
−0.0001 0.8190

]

Be =

[
0 0.0013 0.0217 0 0
0 0.0001 0.1810 0 0

]

Ce =


0 0
1 0
0 1
0 0
0 0


De = 05x5

(7.21)

7.2.4 Kalman Filter Estimator Results

Now that the TableSat Kalman Filter has been designed, it can be tested using

the same PD controller used in Section 7.2.2. Figure 7.12 shows the truth model

and real TableSat results for the new PD controller with Kalman Filter estimator.

As can be seen in the figure, the θTAM estimates are much smoother using

the Kalman Filter than using the N -sample estimators. The standard deviation

of the truth model noise is 0.13 degrees and the standard deviation of the real Ta-

bleSat results is 0.33 degrees. With the noise in the estimates virtually eliminated,

an oscillation in the transient response of both the truth model and real TableSat

results is clearly visible. Recall from Figure 7.7, that the linear model predictions

using this controller also showed an oscillation in the transient response. That

oscillation could not be seen in the unfiltered estimates or even after using the

N-sample estimators, but with the Kalman Filter reducing noise so drastically,
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Figure 7.12: Predicted results and real TableSat results using the new
PD controller and the Kalman Filter estimator.

the oscillation is now apparent in the actual TableSat results. This oscillation in

the transient response is caused by the lightly damped, non-dominant poles in

the closed-loop system.

While the noise reduction when using the Kalman Filter is much better than

the noise reduction using N -sample estimators, the agreement between the truth

model and real TableSat results is not as good. Furthermore, the real TableSat

performance appears to degrade slightly. The real TableSat results show a steady

state error of about 1.5 degrees, while the truth model still shows no steady state

error. This discrepancy is, again, probably a result of imperfect friction modelling,

and thus friction compensation, at low speeds and low voltages.
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7.3 Model Based Controller-Observer

In Section 7.2.3 we designed a simplified, kinematic Kalman Filter that assumed

a purely kinematic relationship between θ and ω and neglected the system con-

trol inputs and their affect on ω. We designed the Kalman Filter in this manner,

because the TableSat estimator does not have access to the calculated control

inputs. It would be nice, to be able to design and implement a full Kalman Fil-

ter. One possibility for doing so would be to rewrite the flight code to allow the

state estimator thread access to the control voltages calculated by the controller

thread. A better solution that uses the existing TableSat functionality is to use

the TableSat state space model to design a Model Based Controller-Observer

(MBCO). This solution has the further advantage that it also shows how ad-

vanced, multi-input, multi-output (MIMO) linear theory can be used to design

and implement a controller for TableSat. This section describes the methodology

for using the TableSat plant model to design a MBCO, which can be implemented

on the real TableSat. Results are then shown that compare predicted results to

actual TableSat data.

7.3.1 Design Methodology

Recall from Chapter 6 that the TableSat simplified state space model is:
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ẋ = Ax + bv
y = Cx

(7.22)

with:

A =

 0 1 0

0 0
lKẇf

I

0 0 −α



b =

 0
0

Kvf


C =

[
1 0 0
0 1 0

]
D = 0

(7.23)

and the system state is x = [θ, ω, ν]T . Before designing a model based controller,

first check to see if the system is controllable. For [A,B] to be controllable, the

matrix,

Cc = [ B AB A2B · · · An−1B ] (7.24)

must have full rank, n. Since TableSat has three states, the controllability ma-

trix, Cc = [ b Ab ] must have rank three. Using the A and b matrices from

Equation 7.23, we find that Cc does have rank three, and the system is control-

lable.

Since the system is controllable, we can design a controller to put the closed

loop system poles anywhere in the left hand plane. The proposed control law is
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v = −Kx, where v is the commanded voltage and K is a gain matrix to be

designed. This control law assumes the full state is available for feedback. Note,

however, from the C matrix that the fan speed, ν is not directly measurable. The

system, therefore, does not have full state feedback, and an observer is needed to

estimate the missing state.

In order to design an estimator, the system must be observable. To check

observability, the observability matrix, O, must have full rank, where:

O =


C

CA
CA2

...
CAn−1

 (7.25)

Using the A and C matrices from Equation 7.23, the rank of O is found to

be three, and the system is observable. The proposed state estimator is of the

form:

˙̂x = Ax̂ + bv + L(y − ŷ)− Lyd

ŷ = Cx̂
(7.26)

where x̂ and ŷ are the estimates of the state and output, respectively, yd is

the desired output, and L is the constant gain matrix used to adjust the state

estimates. Combining Equations 7.22 and 7.26 with the new control law, v =

−Kx̂ yields the following closed loop dynamics:
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ẋ = A− bKx̂
˙̂x = (A− bK− LC)x̂ + LCx− Lyd

y = Cx
(7.27)

where yd is the desired output. If we assume x̃ = x− x̂, the above equations can

be rewritten in matrix form as:

[
ẋ
˙̃x

]
=

 A− bK bK

0 A− LC


 x

x̃

 +

 0

L

yd (7.28)

= ACL

 x

x̃

 + bCLyd (7.29)

In the above form, it is easy to see that the closed loop system is stable as

long as the poles of ACL are less than zero, or if the determinant of (sI−ACL)

equals zero. But,

| sI−ACL |=| sI− (A− bK) || sI− (A− LC) | (7.30)

Therefore the closed loop poles of the system are the poles of (A − bK) and

(A− LC). The system will be stable as long as these poles are in the left hand

plane. This result implies that the control gain matrix, K and the state estimator

gain matrix, L can be designed separately, and will not effect the stability of the

overall closed loop system.

Theoretically, because the system is both controllable and observable, K

and L can be designed to place the controller and observer poles anywhere in
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the left hand plane. In a real system like TableSat, however, unlimited K and

L matrices are not practical. The TableSat actuators, for example, will saturate

above a certain voltage. To take that into consideration, consider the following

cost function that weighs the speed of TableSat’s response to the amount of

control required:

J(v) =
1

2

∫ inf

0

(xT (t)Qx(t) + rv(t)2) dt (7.31)

where Q is a symmetric, positive definite matrix, and r is a positive scalar.

Solving for the v which minimizes the above cost function yields v∗(t) = −Kx(t)

with K = r−1bTPc, where Pc is the symmetric, positive semi-definite solution to

the Algebraic Riccati Equation:

PcA + ATPc = −Q + Pcbr−1bTPc (7.32)

Selection of r and Q controls the trade off between speed of response and

required control authority. One method of selecting r and Q takes into consid-

eration the maximum allowable deviation in the output and the saturation level

of the actuator:

Q = CT

 1
θmax

0

0 1
ωmax

C

r = ρ 1
vmax

(7.33)
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where θmax and ωmax are the maximum allowable deviations in TableSat’s angular

position and velocity, respectively, vmax is the actuator saturation level, and ρ is

a single scalar parameter that controls the tradeoff between speed and control.

For TableSat, θmax is set at 5 degrees, ωmax is set at 2 deg/sec, vmax is 12 volts,

and ρ is 0.01. MATLAB can then be used to solve for K using the MATLAB

command care. The above controller definition is called the Linear Quadratic

Regulator.

The observer gain matrix, L can be found in a manner similar to the con-

troller gain matrix. As in the Kalman Filter design, let L = PoC
TW2

−1, where

Po is the steady state covariance of the observer estimates and is the symmetric,

positive definite solution to the Algebraic Riccati Equation:

APo + PoA
T = −ΓW1Γ

T −PoC
TW2

−1CPo (7.34)

where, as before, W1 represents uncertainties in the plant model that cannot be

measured, Γ reflects how those disturbances enter the plat dynamics, and W2

represents the uncertainties in the system outputs, which is assumed to be the

expected noise on the measurements. For TableSat, assume Γ is the 3x3 identity

matrix and W1 and W2 are defined as follows:
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W1 =

 0.5 0 0
0 0.5 0
0 0 0.5


W2 =

[
2.22 deg2 0

0 0.092 deg/sec2

] (7.35)

With the above matrix definitions and the MATLAB command, care, Po

and thus L can be found. With W1 and W2 chosen as they are, the above

optimal state estimator is the full Kalman Filter.

Once K and L have been found, the combined controller/state estimator

needs to be defined in terms of the TableSat controller matrices. Using Equation

7.27 and the fact that v = −Kx̂, the following TableSat controller matrices can

be found:

nc = 3
Ac = A− bK− LC Cc = −K
B1c = [ 03x1 LC 03x1 ] D1c = [01x5]
B2c = −L D2c = [01x2]

(7.36)

where the extra zeros are needed in the B1c matrix to give it correct dimension.

For the TableSat system matrices and chosen Q, r, W1, W2, and Γ matrices, the

predicted closed loop poles of the system are -0.32, -17.3±16.3.

As with the kinematic Kalman Filter designed in Section 7.2.3, the above

MBCO has been designed in the continuous time. Before being implemented

on TableSat, it will have to be converted to discrete time using c2d. It should

be noted that c2d expects only four state space matrices, while the TableSat

controller has six. To account for this, the B1c and B2c can be combined into
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one matrix, Bc = [ B2c B1c
]. Likewise the D1c and D2c can be combined

into one matrix, Dc = [ D2c D1c
] After the system has been discretized using

c2d, the the resulting matrices can be separated into their individual matrices.

After discretization, the resulting controller definition is:

nc = 3

Ac =

 0.9935 −4.98e−4 −3.96e−9

−0.0241 0.746 1.22e−5

−2736 −4670 0.5952



B1c =

 0 0.0065 0.0204 0 0
0 0 0.2135 0 0
0 −9.707 48.48 0 0



B2c =

 −0.0065 −0.0204
0 −0.2135

9.71 −48.48


Cc =

[
−53.67 −89.75 −0.0076

]
D1c = [01x5]

D2c = [01x2]

(7.37)

7.3.2 Controller Results

The MBCO was tested on the linear model, truth model, and real TableSat system

with a simple pass through used as the state estimator. Figure 7.13 shows the

predicted output from the linear model for a step input of 50 degrees. As can

be seen, the linear model predicts an asymptotic approach to the target with a

relatively quick response. Steady state is reached within about 25 seconds. There

is no steady state error in this prediction.
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Figure 7.13: Predicted results from the linear model for a step input of
50 degrees using the MBCO.

This linear prediction can then be compared to the truth model and real

TableSat results. Figure 7.14 shows the predicted and actual response of TableSat

for a desired target of 50 degrees. As can be seen in this figure, both the truth

model and real TableSat responses have the same shape as the linear model,

but, as with the PD controllers, their response times are faster. The responses

are overdamped and approach steady state asymptotically. TableSat reaches its

desired target within about 10 seconds with about a 2 degree steady state error.

One thing that should be emphasized when looking at Figure 7.14 is that

although the state estimate plot looks noisy, the controller is not actually calcu-

lating its control voltage based on these noisy measurements. Remember that the
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Figure 7.14: Predicted results from the truth model plotted with actual
TableSat results using the MBCO with a desired target of 50 degrees.

Kalman Filter is incorporated as a part of the controller itself, and the controller

states themselves are what the controller part of the MBCO uses to calculate

the control voltage. The controller states for the MBCO should look very sim-

ilar to the kinematic Kalman Filter estimates, which explains the steady state

error seen in the plot. Recall that we also saw a steady state error with the kine-

matic Kalman Filter, which was likely caused by imperfect friction compensation.

The smoothed controller states are not outputted from the controller thread; the

data in the plot comes from the state estimator thread, which is still just a pass

through and thus has no noise smoothing.
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7.4 MBCO with Integral Augmentation

The results of the MBCO show a steady state error in the desired pointing angle.

One possible cause of this steady state error is the imperfect friction compen-

sation in the TableSat system. According to the truth model, if the friction

compensation is adequate, the MBCO should be able to point TableSat in the

desired direction with little or no steady state error. However, as was observed

previously, we have not exactly modelled or compensated for all of the friction

in the system, especially friction at low speeds and low voltage commands. In

addition, the MBCO is essentially a Proportional-Derivative controller, meaning

that there is no guarantee that it can remove all steady state error for a step

input. To ensure zero steady state error for a step input, integral augmentation

can be added to the MBCO.

7.4.1 Design Methodology

From single-input, single-output linear controller design theory, we know that

adding an integrator to the forward path of a system will allow the closed loop

system to perfectly track any step input. When extended to multi-input, multi-

output systems, this implies that there must be an integrator in each input (or

output) channel. Consider the augmented TableSat plant dynamics:

155



ẋ = Ax + bu
u̇ = v
y = Cx

(7.38)

which can be written in state space form as follows:

[
ẋ
u̇

]
=

[
A b
0 0

] [
x
u

]
+

[
0
I

]
= Aaxa + bav

y =
[

C 0
] [

x
u

]
= Caxa

(7.39)

As with the MBCO, the control law v = −Kaxa is assumed, but because

TableSat does not have full state feedback, a state estimator is needed to estimate

the missing state. The same state estimator used in the MBCO, the Kalman

Filter, can be used with the augmented plant, yielding the following closed loop

dynamics:

˙̂xa = (Aa − baKa − LaCa)x̂ + LaCaxa − Layd

y = Caxa

v = −Kax̂a

(7.40)

where Ka and La are the controller and estimator gain matrices, respectively, for

the augmented plant. Ka and La can be found in the same manner as K and

L in Section 7.3. For finding Ka, r and Q are defined as in Equation 7.33, with

Ca replacing C. For finding La, W2 is defined as in Equation 7.35 and W1 is

modified to include the additional plant state, u:
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W1 =


0.5 0 0 0
0 1.5 0 0
0 0 0.5 0
0 0 0 0.5

 (7.41)

After finding Ka and La, the MBCO with integral augmentation can be

translated into TableSat form:

nc = 4
Ac = Aa − baKa − LaCa Cc = −Ka

B1c = [ 04x1 LaCa 04x1 ] D1c = [01x5]
B2c = −La D2c = [01x2]

(7.42)

where, as before, the extra zeros in B1c are needed to give the matrix the correct

dimension. As with the MBCO, the above controller is defined in continuous

time and will need to be converted to discrete time before implementing it on

TableSat. The predicted closed-loop poles for the MBCO with integral augmen-

tation (MBCOi) are -0.32, -5.2±10.6, and -15.0. After discretization, the MBCOi

controller definition is:

157



nc = 4

Ac =


0.9935 −1.06e−4 −9.85e−10 −2.02e−8

−2.16e−4 0.7752 1.57e−5 −4.79e−4

−31.69 −1060 1.0096 56.42
−0.9143 −1.303 −6.43e−4 0.7171



B1c =


0 0.0065 0.020 0 0
0 0 0.2244 0 0
0 −0.0739 999.5 0 0
0 −0.0032 −0.454 0 0



B2c =


−0.0065 −0.020

0 −0.2244
0.0739 −999.5
0.0032 0.454


Cc =

[
−53.67 −102.2 −0.036 −15.28

]
D1c = [01x5]

D2c = [01x2]

(7.43)

7.4.2 Controller Results

Like the MBCO, the MBCO with integral augmentation (MBCOi) was tested

on the linear model, truth model, and real TableSat system with a simple pass

through state estimator. Figure 7.15 shows the predicted output from the linear

model with a step input of 50 degrees. As can be seen, the linear model predicts

an overdamped response, with a slightly longer settling time that the MBCO. The

MBCOi reaches its steady state in about 25 seconds. But, as with the MBCO,

the MBCOi predicts no steady state error.

The linear model prediction can now be compared to the predicted results
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Figure 7.15: Predicted results from the linear model for a step input of
50 degrees using the MBCO with integral augmentation.

from the truth model and real TableSat system. Figure 7.16 shows the predicted

and actual TableSat response for a desired target of 50 degrees. As can be seen

in the figure, the truth model prediction and real TableSat results are similar

to the linear prediction, but like the MBCO, the truth model and real TableSat

system respond quicker, reaching steady state in about 10 seconds. From the

figure, it can be seen that the truth model predicts no steady state error, which

is an improvement over the MBCO, which showed a steady state error of about

2.0 degrees. This improvement in steady state pointing implies that the integral

augmentation did remove the steady state error in the truth model as desired.

On the other hand, the real TableSat results still show a steady state error of
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about 2.0 degrees, which implies the integral augmentation did not act exactly

as hoped.
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Figure 7.16: Predicted results from the truth model plotted with actual
TableSat results using the MBCOi with a desired target of 50 degrees.
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Chapter 8

Conclusions

The main goal throughout the TableSat project has been to develop and model

a system that can be used to demonstrate the often abstract concepts of control

systems engineering and show how those concepts can be applied to a real system.

More specifically, TableSat represents a complete, single degree of freedom space-

craft that uses sensors and actuators to estimate and control the attitude and rate

of the system. While the focus has been on using TableSat to demonstrate SISO

linear controls techniques, those taught to undergraduate engineering students, it

was also desirable to show how TableSat could also be used to demonstrate more

complicated multivariable and state space controls techniques. Originally, Table-

Sat started as a highly nonlinear system. To effectively function as a teaching

tool for linear controls theory, however, TableSat needs to act as a linear system;

and it must be possible to accurately model the system. Through hardware and

software upgrades it was possible to reduce some of the nonlinearities in the Ta-

bleSat system. Once the hardware and initial software upgrades were complete,
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system modelling was used to identify and sometimes quantify additional nonlin-

earities in the system. Once identified, in many cases it was possible to eliminate

or reduce these nonlinearities, allowing for the development of a linear system

model and a truth model. Both models were then verified and used to develop

example controllers and state estimators for the new TableSat system. Finally,

these controllers and estimators were tested on the real TableSat system and the

results compared to predictions based on the TableSat models.

8.1 TableSat Hardware Upgrades

Recall from Chapter 1 that the original TableSat flight processor was the PIC16F874

8-bit micro controller programmed in low-level assembly language. The most

important upgrade to the TableSat hardware was replacing the PIC with the

Prometheus embedded PC/104 CPU. The Prometheus, which is discussed in de-

tail in Chapter 2, has a faster processor and more memory than the PIC. These

features allow the flight code to be stored and run onboard TableSat instead of

calculating the state estimate and control from the laptop with sensor measure-

ments and actuator commands sent back and forth via the RF serial link. In

addition, the Prometheus allows the actuator fans to be issued direct voltage

commands instead of using PWM actuation. The faster processor speed and

removing the laptop from the loop greatly increased the speed of the TableSat

control cycle, making it act more like an ideal, continuous system. In addition,
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with the new processor, the flight code could be written in C code. Because C

is a higher level language than assembly language, the code now has more func-

tionality, and can be used to compensate for many of the nonlinearities found in

the TableSat system.

The new flight processor did come with some drawbacks, however. Because

it is a more powerful computer, it also requires more power. Due to the current

draw of the PC/104, the original TableSat battery pack could only supply power

for approximately 30 minutes. It was therefore replaced with the Polarmate

external laptop battery. The new battery, while much heavier than the original

battery pack, is able to run TableSat for at least ten hours before needing to be

recharged. However, because of the increased battery mass, TableSat’s moment

of inertia also increased. To compensate for this increased inertia, the original

TableSat actuator fans were replaced with more powerful computer fans. Both

the new battery and new fans are discussed in Chapter 2.

Originally, the communications between TableSat and the user were accom-

plished via an RF serial link. One of the other upgrades was to replace the RF

serial link with an OTC wireless access point routed through a Linksys router.

The wireless access point has a top speed of 11 Mbs, much faster than the RF

serial link, which increases the speed at which the user can communicate with

TableSat. Because all of the TableSat control can now be performed onboard,

this upgrade does not increase the speed of the control cycle in general, but it
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does allow the user to see how the TableSat state changes in real time. If the user

chooses to command TableSat in “open-loop mode,” i. e. using Simulink in the

loop, then this new communications system does increase the TableSat control

cycle. The new TableSat communications hardware is also discussed in Chapter

2.

8.2 TableSat Software Upgrades

As was mentioned before, the new flight processor allowed for the TableSat flight

code to be written in C code. While this required all of the flight code to be

rewritten from scratch, it allowed for much more functionality in the new code.

The flight code, which is discussed in detail in Chapter 3 is split into five main

threads which run simultaneously on the processor. The main TableSat thread

initializes the TableSat hardware and the other four threads. It then runs in

the background, essentially doing nothing, until stopped. The state estimator

thread reads the TableSat sensors, converts them to meaningful engineering units,

and uses the measurements, as well as a user established state estimator, to

estimate the state of the system. It then makes that state estimate available to

the controller thread. The controller thread uses the state estimate, along with

a user developed controller, to calculate the control authority required to move

TableSat such that its state meets a desired value. It then makes the required

control authority available to the actuator thread. The actuator thread converts
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the desired control authority into the form required by the actuators and sends

those commands to the actuators. In the background runs the communications

thread. The communications thread conveys information to the user and receives

commands from the user and parses them to the correct thread. It allows the user

to start and stop TableSat, change the controller, and change the state estimator,

for example.

As was mentioned earlier, the new flight processor can send analog com-

mands directly to the actuators. The new software takes advantage of this fact

by commanding the fans in a continuous fashion, which means the actuators get

the exact voltage they request within about ±3 mV, or the resolution of the D/A

conversion with voltage regulation. Recall from Chapter 1 that the original Ta-

bleSat software used pulse width modulation (PWM), a highly nonlinear process.

When using PWM, the actuators are commanded at their full voltage for a frac-

tion of a control cycle. The fraction depends on the amount of control desired and

the speed of the actuator cycle. For the original TableSat software, there were

four actuator cycles per control cycle, which resulted in an actuator resolution

of about 3 V. By allowing continuous actuation, the nonlinearity due to using

PWM can be eliminated. One of the other goals of the TableSat project was to

retain the ability to add nonlinearities back into the system if desired. To that

end, the new TableSat software also allows for PWM or Bang-Bang actuation, if

desired.
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The state estimator, controller, and actuator threads can be executed at any

speed up to about 100 Hz, which is the limit of the processor speed. The user can

set the cycle speeds, and, the faster the cycles are run, the more TableSat acts

as an ideal, continuous system. With its original hardware/software compliment,

TableSat’s maximum execution speed was on the order of 2.5 Hz, too slow to be

considered a continuous system.

In addition to the continuous actuation and cycle speed variability, there

exists within some of the software threads additional functions that can be used

to compensate for some of the other nonlinearities in the system. These functions

are discussed in detail in Chapter 4. Most notable is the friction compensation

function, which accepts as input from the user a desired friction compensation

curve. Expressed as voltage per speed, the curve describes the amount of addi-

tional voltage to be applied to the calculated controller voltage to compensate for

friction in the TableSat system. If the friction compensation curve is correctly

identified, this functionality effectively eliminates the nonlinearity due to Table-

Sat’s internal friction. If the user wishes to put friction back into the system, the

friction compensation can be disabled.

Along with the function to compensate for TableSat friction, the flight

code also includes a function that eliminates the dead zone in the actuators.

Each actuator has internal friction, which reduces the effective voltage and thus

the effective control authority of the actuator. Because of this internal friction,
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there is a voltage below which the actuators will not spin. The actuator dead

zone compensation reduces this dead zone from ±2.75 V to ±0.1 V. It does not,

however compensate for the internal actuator friction in any other way. So, the

nonlinearity is reduced, but not completely eliminated.

Accompanying the new software is a new user interface and TableSat Simulink

models with which the user can interact with TableSat. The TableSat GUI and

Simulink models are discussed in detail in Chapter 4. The GUI can be used

to load different controllers and state estimators, enable/disable friction com-

pensation, load new friction compensation curves, and change the cycle speeds,

along with other things. In this way, the user can have TableSat act as a lin-

ear system, or introduce the nonlinearities back into the system to see how the

nonlinearities effect the system response. The TableSat Simulink models allow

the user to start and stop control of TableSat and plot the TableSat state real

time. In addition, the open-loop Simulink model allows the user to design and

implement controllers directly from Simulink, which can allow for more advanced

controller and/or estimator design than that which can be implemented using the

onboard controller and estimator definitions. Being able to design and implement

advanced controllers and state estimators was one of the goals of this project.
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8.3 TableSat System Identification

As was mentioned previously, one of the main goals of the TableSat project was

to develop a model of the TableSat system that can be used to develop and test

controllers and state estimators for the system. Once the hardware and software

upgrades were complete, a series of tests and experiments were performed to

develop the TableSat model. Chapter 5 discusses this model development process

in detail. As a starting point, a system of differential equations was assumed as

the TableSat equations of motion. These equations model the fan and TableSat

dynamics and include nonlinear friction terms for both the fans and TableSat

itself.

Including the friction values, there were a total of nine system parameters

that needed to be determined to establish the TableSat system model. A com-

bination of experimental tests and theoretical equations were used to determine

initial values for each of the parameters and to identify and quantify the non-

linearities in the system. For example, a torsional pendulum test was used to

determine the TableSat moment of inertia, spin up-spin down tests were done to

characterize the TableSat friction, and fluid dynamics equations along with the

fan specifications were used to estimate the fan speed to voltage constant.

There were two main types of nonlinearities found during these tests. The

first was the friction in TableSat itself. From the spin up-spin down tests it was

determined the the friction in TableSat, because it spins about a single point, is
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constant. It can therefore be compensated for using a simple friction compensa-

tion curve that adds additional voltage depending on the direction TableSat is

spinning. This method of friction compensation can easily be employed using the

friction compensation function discussed above.

The second main nonlinearity in the TableSat system is the friction of the

TableSat fans. Through experimentation, it was determined that the fan friction

consists of a constant term and a linear term. Compensation for the fan static

friction, or dead zone, was mentioned above and is discussed in detail in Chapter

5. There is currently no means to compensate for the linear fan friction. That

friction is modelled as a part of the fan time constant. Once the fans have finished

accelerating, that term is effectively gone; however, at low voltages there may be

additional effects that have not be exactly determined.

Once initial values for the system parameters were determined, a TableSat

truth model was developed. The truth model integrates the assumed equations of

motion using the parameter values determined through analysis and testing and

includes representative sensor noise. After creation of the truth model, it was then

used to tune the TableSat parameters by comparing real TableSat data to truth

model data and “tweaking” the parameters until the two sets of data matched

reasonably well. In this manner, the TableSat truth model was determined to be

a reasonable approximation of the real TableSat system.

Once the truth model was developed and the friction nonlinearities iden-
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tified, methods for compensating for those nonlinearities were developed and

implemented. With friction out of the system, the equations of motion reduced

to linear equations of motion that could be solved to obtain a linear model of

TableSat, which was also one of the goals of the project. The linear model was

verified by comparing both closed-loop and open-loop data from the linear model,

truth model, and real TableSat system. The data showed that, when controlling

TableSat in closed-loop mode, the linear model does a good job of modelling

the system as long as you stay within the saturation level of the actuators. The

open-loop data showed that there are still some nonlinearities that are not com-

pensated for in the system. The exact nature of these nonlinearities and how to

compensate for them still needs to be investigated. Despite these nonlinearities,

it is felt that the linear TableSat model is reasonable and can be used to design

controllers and state estimators for TableSat.

8.4 Case Studies

With verification of the TableSat system model accomplished, the model was then

used to develop and test controllers and state estimators for TableSat. Chapter

7 discusses the development of three different controllers, a simple N-sample

averaging state estimator, and a simplified kinematic Kalman Filter. The three

controllers are a PD controller, a Model Based Controller/Observer, and a Model

Based Controller/Observer with Integral Augmentation. In all three cases, linear
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controls methods were employed to develop the controllers. The PD controller

was developed using SISO, Root Locus techniques. The other two controllers were

developed using MIMO, state space techniques. All three controllers were tested

on the linear and truth models as well as the real TableSat system. The results

were discussed and explanations for any discrepancies were attempted. The most

notable difference between the linear model predictions and truth model and

real TableSat responses for all three controllers is that the truth model and real

TableSat consistently respond faster than the linear model predicts. Further

investigation is needed to determine the cause of this discrepancy.

By combining a simple N-sample averaging state estimator to the PD con-

troller, steady state pointing performance could be improved. In addition, noise

in the pointing angle was decreased. The degree of improvement in both steady

state error and noise depends on the number of samples in the estimator. A

2-sample estimator reduced the steady state error by more than a factor of two

and reduced the noise by
√

2. A 5-sample estimator eliminated the steady state

error and reduced the noise by
√

5.

By combining a kinematic Kalman Filter to the PD controller, noise in the

state estimates was essentially eliminated. In addition, the smooth estimates

revealed interesting oscillations in the transient response of TableSat. Further

analysis is needed to determine the cause of these oscillations, but they were also

seen in the linear model prediction. The Kalman Filter also showed that there
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are still some nonlinearities in the system that have not be fully determined and

compensated for. It appears these nonlinearities occur at low speeds and low

voltages. Further investigation is needed to determine these nonlinearities and

ways to compensated for them.

8.5 Final Conclusions and Future Work

All in all, the TableSat project is a success. With the new hardware and software

upgrades that eliminate or reduce most of the nonlinearities in the TableSat

system, TableSat can be assumed to be a fairly linear system. The linear model

developed during the system identification process has been successfully used

to develop and test controllers for the real TableSat system using linear design

methods. The developed controllers have then been tested on the real TableSat

system and performed more or less as expected. Where there were discrepancies

in the predicted and actual steady state performance can be traced to the fact that

TableSat was at a low speed, or the voltage commands were low. It is apparent

that work still needs to be done to determine the exact cause of these discrepancies

and find ways to compensate for them. As was mentioned previously, there were

also discrepancies in the transient responses, the cause of which still needs to

be determined. Of potential use in diagnosing these nonlinearities would be the

tachometer feedback from the fans. We would like to incorporate the circuitry

necessary to use this feature of the fans, which would also be useful in fine tuning
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the fan voltage to speed constant, which was the only parameter unable to be

verified through testing.

Once these nonlinearities have been compensated for, it should be possi-

ble to create experimental Bode diagrams for the real TableSat system. One

major test of whether we have an accurate linear model of TableSat, which we

have been unable to accomplish thus far, would be to compare an experimental

Bode diagram to the theoretical prediction from the linear model. If they match

reasonably well, we can be sure we have successfully modelled and linearized

TableSat.

It is felt at this point that TableSat can be a very effective teaching tool for

linear controls systems. Students can use the TableSat linear model to develop

controllers, test the controllers on the truth model, and see the controllers in

action on the real TableSat. Then, after they see the ideal, linear TableSat

response, the nonlinearities can be reintroduced into the TableSat system to

show how a real system would react. Not only can TableSat help bridge the gap

between theoretical and applied controls, it can also show the differences between

an ideal system and a real system. Hopefully, these hands-on experiences will

show students how much fun control systems engineering can be, and will convince

them to pursue controls, especially Attitude Control Systems, as a field of study.
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Appendix A

TableSat Source Code

A.1 Include Files

TS_ACTUATOR.H

#ifndef _TSACTUATORH_ #define _TSACTUATORH_

#include "../include/TS_Includes.h"

/* Max volts output for D/A on fans */

#define VMAXFAN 12.0

/* Different actuator operating modes */

#define CONTINUOUS 0 #define PWM 1 #define BANGBANG 2

void setFanVoltage(int pc, double *v);

#endif

TS_CONTROLLER.H

#ifndef _TSCONTROLLERH_ #define _TSCONTROLLERH_

#define HOLD 0 #define SINE 1

#include "../include/TS_Includes.h"

void desiredTrajectory(Controller_t *Controller, double *xd,

double t);
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#endif

TS_ESTIMATOR.H

#ifndef _TSESTIMATORH_ #define _TSESTIMATORH_

#include "../include/TS_Includes.h"

#define Deg2Rad 0.017453293 #define Rad2Deg 57.29577951 #define

Cos80 0.173648178

void ConvertToEngineeringUnits(SensorReadings_t*,

SensorCalibration_t*,EngineeringUnits_t*);

#endif

TS_GLOBALS.H

#ifndef TS_GLOBALS_H #define TS_GLOBALS_H

#ifndef TS_TIMERVALS_H

#define EXTERN1 extern

#else

#define EXTERN1

#endif EXTERN1 int numCycles;

#ifndef TS_MAINTABLESAT_H

#define EXTERN2 extern

#else

#define EXTERN2

#endif EXTERN2 EngineeringUnits_t EngineeringUnits; EXTERN2 float

FanVoltage[2]; EXTERN2 void *controller_thread(); EXTERN2 void

*state_est_thread(); EXTERN2 void *actuator_thread(); EXTERN2 void

*communication_thread();

EXTERN2 pthread_rwlock_t SensorDataLock; EXTERN2 pthread_rwlock_t

StateEstimateLock; EXTERN2 pthread_rwlock_t EngineeringLock;

EXTERN2 pthread_rwlock_t ControlDataLock; EXTERN2 pthread_rwlock_t

FanDataLock; EXTERN2 pthread_rwlock_t ObserverDataLock; EXTERN2

pthread_rwlock_t ActuatorDataLock;
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EXTERN2 pthread_rwlock_t StatusDataLock;

EXTERN2 struct timeval start_time;

EXTERN2 timer_t timeridC; EXTERN2 timer_t timeridSE; EXTERN2

timer_t timeridCOM; EXTERN2 timer_t timeridACT;

EXTERN2 int chan_idC; EXTERN2 int chan_idSE; EXTERN2 int

chan_idCOM; EXTERN2 int chan_idACT;

#ifndef TS_PROMINIT_H

#define EXTERN3 extern

#else

#define EXTERN3

#endif

#ifndef TS_TIMERSINIT_H

#define EXTERN4 extern

#else

#define EXTERN4

#endif EXTERN4 struct _pulse pulseSE; EXTERN4 struct _pulse

pulseC; EXTERN4 struct _pulse pulseCOM; EXTERN4 struct _pulse

pulseACT;

#ifndef TS_STATEESTIMATOR_H

#define EXTERN5 extern

#else

#define EXTERN5

#endif EXTERN5 SensorReadings_t SensorReadings; EXTERN5

StateEstimate_t StateEstimate; EXTERN5 double *zo_old, *zo_new;

EXTERN5 double *Ao, *Bo, *Co, *Do;

#ifndef TS_CONTROLLER_H

#define EXTERN6 extern

#else

#define EXTERN6

#endif EXTERN6

#define Deg2Rad 0.017453293 #define Rad2Deg 57.29577951

#endif
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TS_INCLUDES.H

#ifndef _TSINCLUDESH_ #define _TSINCLUDESH_

#include <stdio.h> #include <time.h> #include <pthread.h> #include

<sys/time.h> #include <sys/timeb.h> #include <time.h> #include

<stdlib.h> #include <sys/siginfo.h> #include <sys/neutrino.h>

#include <math.h> #include <string.h> #include

"../include/TS_structs.h"

#endif

TS_INIT.H

#ifndef _TSINITH_ #define _TSINITH_

#include "../include/TS_Includes.h"

void InitCalibration(SensorCalibration_t *theCal); int

MakeTimer(timer_t *theTimer); void InitTimers(struct itimerspec

*timerCptr, struct itimerspec *timerSEptr,

struct itimerspec *timerCOMptr, struct itimerspec *timerACTptr);

void setTimerVal(struct itimerspec *theTimer, double theRate);

#endif

TS_MAIN.H

#ifndef _TSMAINH_ #define _TSMAINH_

#include "TS_Includes.h" #include "TS_Actuator.h"

void *controller_thread(void *); void *state_est_thread(void *);

void *actuator_thread(void *); void *communication_thread(void *);

pthread_rwlock_t SensorLock, StateLock,EstimatorLock;

pthread_rwlock_t ControllerLock, FanLock, ActuatorLock;

pthread_rwlock_t StatusLock;

timer_t timeridC, timeridSE, timeridCOM, timeridACT; int chan_idC,
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chan_idSE, chan_idCOM, chan_idACT; struct _pulse pulseSE, pulseC,

pulseCOM, pulseACT;

pthread_t threadC, threadSE, threadCOM, threadACT;

struct timeval start_time;

unsigned char TSrunMode = TRUE; // Start with tsat running

unsigned char TScontrolMode = OFF; // Start with controller off

unsigned char TSactuatorMode = CONTINUOUS; unsigned char

TSgyroMode = OFF; // Auto gyro calibration off unsigned char

TSfanMode = OFF; // No compensation for fan dynamics

#endif

TS_MATH.H

#ifndef _TSMATHH_ #define _TSMATHH_

#include "../include/TS_Includes.h"

#define TINY 1e-6 #define ABS(X) ( (X) < 0 ? -(X) : (X) )

double interpolateData(double *xvals, double *yvals, int nvals,

double x); sparseMat *makeSparse(double *M, int nrows, int ncols);

void freeSparse(sparseMat *M); void sparseMatVec(sparseMat *Mat,

double *vecIn, double *vecOut, int lenOut); void matVec(double

*mat, double *vec, double *vecres,int nrow,int ncol); void

printSparse(sparseMat *Mat, const char *Mesg);

#endif

TS_MESSAGES.H

#ifndef _TSMESSAGESH_ #define _TSMESSAGESH

#define myID 0

// Message identifiers

// Mode changes from console
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#define MSG_ackMsg 2 #define MSG_setRunMode 4

#define MSG_setControlMode 6 #define MSG_setFanMode 8

#define MSG_setActuatorMode 10 #define MSG_setGyroMode 12

// Controller/observer updates from console

#define MSG_setControlData 15 #define MSG_setFanSpeedData 18

#define MSG_setFanFricData 21 #define MSG_setControlTarget 24

#define MSG_setEstimatorData 27 #define MSG_setGyroCalibData 30

#define MSG_setSampleRate 33

// Requests for vehicle data from console

#define MSG_uplinkStateData 60 #define MSG_uplinkRawData 63

#define MSG_uplinkStatusData 66

// Data uplink packets to console

#define MSG_sendStateData 81 #define MSG_sendRawData 84

#define MSG_sendStatusData 87

// Request to calibrate sensors

#define MSG_calibrateSensors 99

// Prototypes for associated message handlers

typedef int HandlerFunc(byte,byte *);

HandlerFunc setRunMode,setControlMode,setFanMode, setGyroMode,

setActuatorMode; HandlerFunc

setControlData,setFanSpeedData,setFanFricData; HandlerFunc

setControlTarget,setSampleRate; HandlerFunc

setEstimatorData,setGyroCalibData; HandlerFunc sendStateData,

sendRawData, sendStatusData; HandlerFunc calibrateSensors;

// Default TableSat controller console ID

#define SAT_CON 0

#endif
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TS_PACKET.H

#ifndef _TSPACKETH_ #define _TSPACKETH_

#include <sys/types.h> #include <sys/socket.h> #include

<netinet/in.h> #include <arpa/inet.h> #include <stdio.h> #include

<stdlib.h> #include <string.h> #include <errno.h> #include

<sys/time.h> #include <signal.h> #include <unistd.h> #include

<fcntl.h>

typedef unsigned char byte; typedef int

(*HandlerFuncPtr)(byte,byte *);

#define MAXCLI 16 #define MAXLINE 65535 #define dsmpSERV_PORT 9877

#define SA struct sockaddr

int dsmp_Init(unsigned char ident, int portNum); void

dsmp_RegisterClient(byte cliNum, char *cliIP); void

dsmp_RegisterMesg(unsigned char msgNum, unsigned char msgFlags,

HandlerFuncPtr msgHandler, short msgSize);

int dsmp_RecvMesg(void); int dsmp_RecvALL(void); int

dsmp_SendMesg(byte mesgNum, void *mesgData, byte mesgClient); int

dsmp_SendRaw(byte mesgNum, void *mesgData, unsigned short

mesgSize, byte mesgFlags, byte mesgClient); void

dsmp_AcceptMcast(char *addrStr);

#define TRUE 1 #define FALSE 0 #define TS_VARSIZE 32767

#endif

TS_PROMIO.H

#ifndef _TSPROMIOH_ #define _TSPROMIOH_

#include "../include/TS_Includes.h" #undef TRUE #undef FALSE

#undef OFF #undef ON #include <dscud.h>

#define BASEADD 0x280 #define ERROR_PREFIX "Prom Driver ERROR:"

void InitPrometheus(void); int ReadSensors(SensorReadings_t

*sensors); void commandMotor(double *v);
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#endif

TS_STRUCTS.H

#ifndef _TSSTRUCTH_ #define _TSSTRUCTH_

#define NY 5 #define NX 5 #define NU 2

#define TRUE 1 #define FALSE 0

#define OFF 0 #define ON 1

typedef struct {

int col;

double val;

} cvals;

typedef struct {

int nrows;

int *nvals;

cvals **colVals;

} sparseMat;

typedef struct {

double TimeStamp;

double CSS1Volts;

double CSS2Volts;

double CSS3Volts;

double CSS4Volts;

double GyroVolts;

double MagXVolts;

double MagYVolts;

double MagZVolts;

double Fan1Counts;

double Fan2Counts;

} SensorReadings_t;

typedef struct {

double TimeStamp;

double NormToMaxCSS1Volts;

double NormToMaxCSS2Volts;

double NormToMaxCSS3Volts;
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double NormToMaxCSS4Volts;

double AzCss;

double CSSUnitVecX;

double CSSUnitVecY;

double CSSUnitVecZ;

double GyroValue;

double BhatX;

double BhatY;

double BhatZ;

double AzTam;

double Fan1Speed;

double Fan2Speed;

} EngineeringUnits_t;

typedef struct {

double TimeStamp;

double AzCss;

double AzTam;

double omega;

double nu1;

double nu2;

} StateEstimate_t;

typedef struct {

double TamBias[3];

double TamGain[3];

double CssMax[4];

double BEarthRef[3];

double Volts2Dps;

double GyroOffset;

double CssMaxMean;

double Azm;

} SensorCalibration_t;

typedef struct {

int nc, pc;

double *z, *zold;

sparseMat *A, *B1, *B2, *C, *D1, *D2;

double xd[2];

double t0;

double comtorq[2];

unsigned char TrackMode;
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} Controller_t;

typedef struct {

int no;

double *z, *zold;

sparseMat *A, *B, *C, *D;

double xhat[NY];

double adaptGyroGains[2];

double th, thold;

double ahat, bhat;

} Estimator_t;

typedef struct {

double ref_voltage;

double Freq, FreqRatio;

double FanVoltage[2];

double Deadzone;

int counts;

} Actuator_t;

typedef struct {

double *wfric, *wfan;

double *fanFric, *fanForce;

int nFricPts, nFanPts;

} FanData_t;

#endif

TS_TIMERSINIT.H

#ifndef TS_TIMERSINIT_H #define TS_TIMERSINIT_H

#include "TS_Includes.h"

#endif

TS_UNITS.H

#ifndef TS_CONVERTTOENGUNITS_H #define TS_CONVERTTOENGUNITS_H

#include </home/vess/project/TS_Includes.h>
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void SaveCssData(float, double, double, double, double); void

SaveGyroData(float, double); void SaveMagData(float, double,

double, double, double); void SaveCssVolts(float, double, double,

double, double); void SaveGyroVolts(float, double); void

SaveMagVolts(float, double, double, double);

#endif

A.2 Source Code

#include "../include/TS_Actuator.h" #include <math.h>

/* Main Actuator structures */

extern Actuator_t Actuator;

/* Interprocess signalling and synchronization */

extern struct _pulse pulseACT; extern int chan_idACT;

extern pthread_rwlock_t ActuatorLock, StatusLock; extern unsigned

char TSrunMode, TSactuatorMode;

/* Begin actuator thread */

void *actuator_thread(void *TSfoo) {

unsigned char TSrunning=TRUE, actMode=CONTINUOUS;

static double fullPos[2]={VMAXFAN,0.0};

static double fullNeg[2]={0.0,VMAXFAN};

static double fanOff[2] = {0.0,0.0};

static int numPos=0, numNeg=0;

printf("Starting actuator thread\n"); fflush(stdout);

while (TSrunning) {

/* Block until Controller thread pulse */

MsgReceive(chan_idACT, &pulseACT, sizeof(pulseACT), NULL);
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/* Grab actuator read lock */

pthread_rwlock_rdlock(&ActuatorLock);

/* Continuous Mode -- use voltage computed in control law */

if (actMode == CONTINUOUS) {

// No need to do anything

// commandMotor(Actuator.FanVoltage);

}

/* Bang-Bang mode -- full on pos or full on neg */

else if (actMode == BANGBANG) {

if (Actuator.FanVoltage[0]>Actuator.Deadzone) {

Actuator.FanVoltage[0] = fullPos[0];

Actuator.FanVoltage[1] = fullPos[1];

}

else if (Actuator.FanVoltage[1]>Actuator.Deadzone) {

Actuator.FanVoltage[0] = fullNeg[0];

Actuator.FanVoltage[1] = fullNeg[1];

}

}

/* PWM mode -- full pos/neg on for a percentage of time */

else if (actMode == PWM) {

/* Compute % on for next cycle */

if (Actuator.counts++>=Actuator.FreqRatio) {

numPos = (int) (Actuator.FanVoltage[0]/VMAXFAN)*

Actuator.FreqRatio;

numNeg = (int) (Actuator.FanVoltage[1]/VMAXFAN)*

Actuator.FreqRatio;

Actuator.counts = 1;

}

if (Actuator.counts<=numPos) {

Actuator.FanVoltage[0] = fullPos[0];

Actuator.FanVoltage[1] = fullPos[1];

}

else if (Actuator.counts<=numNeg) {

Actuator.FanVoltage[0] = fullNeg[0];

Actuator.FanVoltage[1] = fullNeg[1];

}

}

/* Actually fire off the motors */

commandMotor(Actuator.FanVoltage);
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/* Release actuator read lock */

pthread_rwlock_unlock(&ActuatorLock);

/* Check for status changes */

pthread_rwlock_rdlock(&StatusLock);

TSrunning = TSrunMode;

actMode = TSactuatorMode;

pthread_rwlock_unlock(&StatusLock);

}

commandMotor(fanOff);

}

void setFanVoltage(int pc, double *v) {

double absv=0.0, v1 = 0.0, v2 = 0.0, eps = .1;

absv = (v[0]>=0) ? v[0] : -v[0];

if (absv>=3.0) {

v1 = absv;

v2 = 0.0;

}

else {

v2 = 3.0;

v1 = absv+3.0;

}

if (absv<eps) {

v1 = 0.0;

v2 = 0.0;

}

// printf("volts=%lf\n",volts); fflush(stdout);

/* Grab actuator write lock to update settings settings */

pthread_rwlock_wrlock(&ActuatorLock);

if (pc<2) /* Only using v[0] here! */

{

if (v[0] >= 0.0)
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{

Actuator.FanVoltage[0] = v1;

Actuator.FanVoltage[1] = v2;

}

else

{

Actuator.FanVoltage[0] = v2;

Actuator.FanVoltage[1] = v1;

}

}

else /* Control law will command both motors simultaneously */

/* Don’t allow negative voltages, regardless of

/* controller commands */

/* Motors wired to spin in only one direction! */

{

if (v[0]>0)

Actuator.FanVoltage[0] = v[0];

else

Actuator.FanVoltage[0] = 0.0;

if (v[1]>0)

Actuator.FanVoltage[1] = v[1];

else

Actuator.FanVoltage[1] = 0.0;

}

/* Clip voltages to max allowable */

if (Actuator.FanVoltage[0]>VMAXFAN) {

Actuator.FanVoltage[0]=VMAXFAN;}

if (Actuator.FanVoltage[1]>VMAXFAN) {

Actuator.FanVoltage[1]=VMAXFAN;}

/* Release actuator lock */

pthread_rwlock_unlock(&ActuatorLock);

}

#include "../include/TS_Includes.h" #include

"../include/TS_Packet.h" #include "../include/TS_Messages.h"

/* Interprocess signalling and synchronization */

extern struct _pulse pulseCOM; extern int chan_idCOM;
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extern pthread_rwlock_t StatusLock; extern unsigned char

TSrunMode;

/* Begin communications thread */

void *communication_thread(void *TSfoo) {

unsigned char TSrunning = TRUE;

int dsmpPort;

printf("Starting comm thread\n"); fflush(stdout);

/* Block until Comm thread pulse */

MsgReceive(chan_idCOM, &pulseCOM, sizeof(pulseCOM), NULL);

/* Initialize communications interface on first invocation */

dsmpPort = dsmp_Init(myID,dsmpSERV_PORT);

/* Register messages which we will send and respond to */

printf("Registering messages\n"); fflush(stdout);

/* Outgoing messages (no associated handlers) */

dsmp_RegisterMesg(MSG_ackMsg,0,NULL,sizeof(byte));

dsmp_RegisterMesg(MSG_uplinkStateData,0,NULL,

sizeof(StateEstimate_t));

dsmp_RegisterMesg(MSG_uplinkRawData,0,NULL,

sizeof(SensorReadings_t));

dsmp_RegisterMesg(MSG_uplinkStatusData,0,NULL,5*sizeof(byte));

/* Incoming messages */

/* Mode switches */

dsmp_RegisterMesg(MSG_setRunMode,0,setRunMode,sizeof(byte));

dsmp_RegisterMesg(MSG_setControlMode,0,setControlMode,

sizeof(byte));

dsmp_RegisterMesg(MSG_setFanMode,0,setFanMode,sizeof(byte));

dsmp_RegisterMesg(MSG_setActuatorMode,0,setActuatorMode,
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sizeof(double));

dsmp_RegisterMesg(MSG_setGyroMode,0,setGyroMode,sizeof(byte));

/* Controller/observer data */

dsmp_RegisterMesg(MSG_setControlData,0,setControlData,

TS_VARSIZE);

dsmp_RegisterMesg(MSG_setFanSpeedData,0,setFanSpeedData,

TS_VARSIZE);

dsmp_RegisterMesg(MSG_setFanFricData,0,setFanFricData,

TS_VARSIZE);

dsmp_RegisterMesg(MSG_setControlTarget,0,setControlTarget,

3*sizeof(double));

dsmp_RegisterMesg(MSG_setSampleRate,0,setSampleRate,

2*sizeof(double));

dsmp_RegisterMesg(MSG_setEstimatorData,0,setEstimatorData,

TS_VARSIZE);

dsmp_RegisterMesg(MSG_setGyroCalibData,0,setGyroCalibData,

2*sizeof(double));

/* Data uplink requests */

dsmp_RegisterMesg(MSG_sendStateData,0,sendStateData,

sizeof(byte));

dsmp_RegisterMesg(MSG_sendRawData,0,sendRawData,sizeof(byte));

dsmp_RegisterMesg(MSG_sendStatusData,0,sendStatusData,

sizeof(byte));

/* Vehicle Calibration Request */

dsmp_RegisterMesg(MSG_calibrateSensors,0,calibrateSensors,

sizeof(byte));

printf("Entering main comm loop\n"); fflush(stdout);

/* Main loop */

while (TSrunning) {

/* Block until Controller thread pulse */
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MsgReceive(chan_idCOM, &pulseCOM, sizeof(pulseCOM), NULL);

/* Check for messages, and handle as needed */

dsmp_RecvMesg();

/* Check for any status changes */

pthread_rwlock_rdlock(&StatusLock);

TSrunning = TSrunMode;

pthread_rwlock_unlock(&StatusLock);

}

return(0);

}

#include "../include/TS_Controller.h" #include

"../include/TS_Actuator.h" #include "../include/TS_Math.h"

/* Main Controller structures */

extern Controller_t Controller; extern FanData_t FanData;

/* Helper structures for controller computations */

extern StateEstimate_t StateEstimate;

/* Interprocess signalling and synchronization */

extern struct _pulse pulseC; extern int chan_idC;

extern pthread_rwlock_t StateLock, ControllerLock, FanLock,

StatusLock; extern unsigned char TSrunMode, TScontrolMode,

TSfanMode;

/* Begin Controller thread */

void *controller_thread(void *TSfoo) {

static double xd[2], x[NX], v[NU], theTime;

static double fanOFF[2]={0.0,0.0};

double fricTorq = 0.0;

unsigned char TSrunning=TRUE, controllerOn=TRUE,

unsigned char fanCompOn=FALSE;

int i;
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printf("Starting controller thread\n"); fflush(stdout);

while (TSrunning) {

/* Block until Controller thread pulse */

MsgReceive(chan_idC, &pulseC, sizeof(pulseC), NULL);

if (controllerOn) {

/* Grab read lock for state data */

pthread_rwlock_rdlock(&StateLock);

/* Load state estimate into x */

theTime = StateEstimate.TimeStamp;

x[0] = StateEstimate.AzCss;

x[1] = StateEstimate.AzTam;

x[2] = StateEstimate.omega;

x[3] = StateEstimate.nu1;

x[4] = StateEstimate.nu2;

/* We can release the state data lock now */

pthread_rwlock_unlock(&StateLock);

/* Grab read lock for the controller data and flags */

pthread_rwlock_rdlock(&ControllerLock);

/* Compute desired trajectory */

desiredTrajectory(&Controller,xd,theTime);

/* Compute control law:

zc_{k+1} = Ac*zc_k + Bc1*x_k + Bc2*xd_k

v_k = Cc*zc_k + Dc1*x_k + Dc2*xd_k */

for (i=0;i<NU;i++) Controller.comtorq[i] = 0.0;

if (Controller.nc > 0) {

for (i=0;i<Controller.nc;i++) Controller.z[i] = 0.0;

sparseMatVec(Controller.A,Controller.zold,

Controller.z,Controller.nc);

sparseMatVec(Controller.B1,x,Controller.z,NX);

sparseMatVec(Controller.B2,xd,Controller.z,2);

sparseMatVec(Controller.C,Controller.zold,

Controller.comtorq,Controller.nc);
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}

sparseMatVec(Controller.D1,x,Controller.comtorq,NX);

sparseMatVec(Controller.D2,xd,Controller.comtorq,2);

/* Store the new zc for next iteration */

for (i=0;i<Controller.nc;i++) {

Controller.zold[i] = Controller.z[i];}

Controller.comtorq[0] *= .767;

fricTorq = 0.0;

if (fanCompOn) {

pthread_rwlock_rdlock(&FanLock);

/* Put in nonlinear corrections for */

/* fan T-w curve; include PI terms */

/* Put in nonlinear corrections for spindle/fan friction */

fricTorq += interpolateData(FanData.wfric,

FanData.fanFric,FanData.nFricPts,x[2]);

// printf("Friction=%lf\n",fricTorq);fflush(stdout);

pthread_rwlock_unlock(&FanLock);

} /* End if_fanComp */

Controller.comtorq[0] += fricTorq;

for (i=0;i<NU;i++) v[i] = Controller.comtorq[i];

/* Update the actuator settings */

setFanVoltage(Controller.pc,v);

/* Release the controller data lock */

pthread_rwlock_unlock(&ControllerLock);

// printf("%lf\tTorque=%lf\n",theTime,v[0]);

} /* End if_controllerOn */

/* Check for status changes */

pthread_rwlock_rdlock(&StatusLock);
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TSrunning = TSrunMode;

if (TScontrolMode != controllerOn) {

for (i=0;i<Controller.nc;i++)

Controller.z[i] = Controller.zold[i] = 0.0;

setFanVoltage(Controller.pc,fanOFF);

}

controllerOn = TScontrolMode;

fanCompOn = TSfanMode;

pthread_rwlock_unlock(&StatusLock);

} /* Do-while loop until vehicle shutdown */

}

void desiredTrajectory(Controller_t *Controller, double *xd,

double t) {

static double A, w, t0;

if (Controller->TrackMode == HOLD) {

xd[0] = Controller->xd[0];

xd[1] = Controller->xd[1];

}

else if (Controller->TrackMode == SINE) {

A = Controller->xd[0];

w = Controller->xd[1];

t0 = Controller->t0;

xd[0] = A*sin(w*(t-t0));

xd[1] = A*w*cos(w*(t-t0));

}

}

/* State Estimator Thread is responsible for the following: */

/* 1) Perform A/D scan of the sensors, and save readings */

/* in SensorReadings array. */

/* 2) Perform state estimation (currently take a running */

/* average of sensor readings). */

/* 3) Convert sensor counts into engineering values for */
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/* use by the Controller thread. */

#include "../include/TS_Estimator.h" #include

"../include/TS_PromIO.h" #include "../include/TS_Math.h"

/* Main estimator structures */

extern Estimator_t Estimator; extern StateEstimate_t

StateEstimate;

/* Helper structures for data processing */

EngineeringUnits_t EngineeringUnits; SensorReadings_t

SensorReadings; extern SensorCalibration_t sensorCals;

/* Interprocess signalling and synchronization */

extern pthread_rwlock_t StateLock, EstimatorLock, SensorLock,

StatusLock; extern struct _pulse pulseSE; extern int chan_idSE;

extern unsigned char TSrunMode, TSgyroMode;

/* Begin estimator thread */

void *state_est_thread(void *TSfoo) {

unsigned char TSrunning = TRUE, TSgyroCal = FALSE;

static double xhat_raw[NY];

int i;

printf("Starting estimator thread\n"); fflush(stdout);

while (TSrunning)

{

/* Wait for State Estimator pulse */

MsgReceive(chan_idSE, &pulseSE, sizeof(pulseSE), NULL);

/* Take a write lock for the sensor data */

pthread_rwlock_wrlock(&SensorLock);

/* Read the raw sensor values */

if (!ReadSensors(&SensorReadings)) {

printf("A/D error in ReadSensors -- aborting\n");
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TSrunMode = FALSE;

return;

}

// printf("Starting unit conversion\n");fflush(stdout);

/* Convert to sensor data to engineering units */

ConvertToEngineeringUnits(&SensorReadings,&sensorCals,

&EngineeringUnits);

/* Release sensor data lock */

pthread_rwlock_unlock(&SensorLock);

/* Load the raw state estimate into xhat_raw */

xhat_raw[0] = EngineeringUnits.AzCss;

xhat_raw[1] = EngineeringUnits.AzTam;

xhat_raw[2] = EngineeringUnits.GyroValue;

xhat_raw[3] = EngineeringUnits.Fan1Speed;

xhat_raw[4] = EngineeringUnits.Fan2Speed;

// for (i=0;i<5;i++) printf("xraw[%1d]=%lf\n",i,xhat_raw[i]);

// fflush(stdout);

/* Take a read lock for the estimator data */

pthread_rwlock_rdlock(&EstimatorLock);

/* Filter xhat_raw according to specified estimation strategy

zo_{k+1} = Ao*zo_k + Bo*xhat_raw_k

xhat_k = Co*zo_k + Do*xhat_raw_k */

// printf("Beginning to filter data\n");fflush(stdout);

for (i=0;i<NY;i++) Estimator.xhat[i] = 0.0;

if (Estimator.no > 0) {

for (i=0;i<Estimator.no;i++) Estimator.z[i] = 0.0;

sparseMatVec(Estimator.A,Estimator.zold,Estimator.z,

Estimator.no);

sparseMatVec(Estimator.B,xhat_raw,Estimator.z,NY);

sparseMatVec(Estimator.C,Estimator.zold,Estimator.xhat,

Estimator.no);

}

sparseMatVec(Estimator.D,xhat_raw,Estimator.xhat,NY);
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/* Save the estimator state for the next step */

for (i=0;i<Estimator.no;i++) {

Estimator.zold[i] = Estimator.z[i]; }

/* Implement Julie’s adaptive gyro calib here, eventually */

if (TSgyroCal) {}

/* adaptGyroCalib(&ahat,&bhat,&th_hat,xhat_new[2]); */

/* Release the read lock for observer data*/

pthread_rwlock_unlock(&EstimatorLock);

/* Take a write lock for the State Estimate */

pthread_rwlock_wrlock(&StateLock);

/* Load the filtered estimates into StateEstimate */

StateEstimate.TimeStamp = SensorReadings.TimeStamp;

StateEstimate.AzCss = Estimator.xhat[0];

StateEstimate.AzTam = Estimator.xhat[1];

StateEstimate.omega = Estimator.ahat*Estimator.xhat[2]-

Estimator.bhat;

StateEstimate.nu1 = Estimator.xhat[3];

StateEstimate.nu2 = Estimator.xhat[4];

// for (i=0;i<5;i++) {

// printf("xhat[%1d]=%lf\n",i,Estimator.xhat[i]);}

// fflush(stdout);

/* Release the estimate write lock */

pthread_rwlock_unlock(&StateLock);

/* Check for status changes */

pthread_rwlock_rdlock(&StatusLock);

TSrunning = TSrunMode;

TSgyroCal = TSgyroMode;

pthread_rwlock_unlock(&StatusLock);

} /* Loop until vehicle shutdown */

return;
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}

void ConvertToEngineeringUnits(SensorReadings_t *sensors,

SensorCalibration_t *cals,

EngineeringUnits_t *Eunits)

{

/* Misc. Variables */

double CSS1Volts, CSS2Volts, CSS3Volts, CSS4Volts;

double GyroVolts, MagXVolts, MagYVolts, MagZVolts;

double TamMag, TamTemp[3], BhatX, BhatY, BhatZ, AzTam=0.0;

double CssNorm[4], CssA[4], Az=0.0;

double CssMag, GyroValue, MinA;

static double lastAz=5.0;

short i, MinCss;

float TimeStamp;

/* Get raw sensor readings in Volts */

CSS1Volts = sensors->CSS1Volts;

CSS2Volts = sensors->CSS2Volts;

CSS3Volts = sensors->CSS3Volts;

CSS4Volts = sensors->CSS4Volts;

GyroVolts = sensors->GyroVolts;

MagXVolts = sensors->MagXVolts;

MagYVolts = sensors->MagYVolts;

MagZVolts = sensors->MagZVolts;

TimeStamp = sensors->TimeStamp;

/****************************************************************

/* Convert Volts to Engineering Units*/

/* Gyro */

GyroValue = (cals->Volts2Dps * (GyroVolts - cals->GyroOffset));

/* Tam */

/* Calculate Unit Magnetic Vector (Bhat) */

TamTemp[0] = cals->TamGain[0] * (MagXVolts - cals->TamBias[0]);

TamTemp[1] = cals->TamGain[1] * (MagYVolts - cals->TamBias[1]);
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TamTemp[2] = cals->TamGain[2] * (MagZVolts - cals->TamBias[2]);

TamMag = sqrt( pow(TamTemp[0],2) + pow(TamTemp[1],2) +

pow(TamTemp[2],2) );

BhatX = TamTemp[1]/TamMag;

BhatY = -TamTemp[0]/TamMag;

BhatZ = TamTemp[2]/TamMag;

/* Compute TAM azimuth */

AzTam = -atan2(TamTemp[1],TamTemp[0])*Rad2Deg;

/* CSS */

/* Normalize to CssMax */

CssNorm[0] = CSS1Volts/cals->CssMax[0];

CssNorm[1] = CSS2Volts/cals->CssMax[1];

CssNorm[2] = CSS3Volts/cals->CssMax[2];

CssNorm[3] = CSS4Volts/cals->CssMax[3];

/* Limit to +/- 1.0 */

if (CssNorm[0] > 1.0) CssNorm[0] = 1.0;

if (CssNorm[1] > 1.0) CssNorm[1] = 1.0;

if (CssNorm[2] > 1.0) CssNorm[2] = 1.0;

if (CssNorm[3] > 1.0) CssNorm[3] = 1.0;

/* Find the angle between Cssi and the sun. i = 1, 2, 3 */

CssA[0] = acos(CssNorm[0]) * Rad2Deg;

CssA[1] = acos(CssNorm[1]) * Rad2Deg;

CssA[2] = acos(CssNorm[2]) * Rad2Deg;

CssA[3] = acos(CssNorm[3]) * Rad2Deg;

/* Find the CSS angle which is min */

MinA = 80.0;

for (i=0;i<4;i++) {

if (CssA[i]<MinA) {

MinA = CssA[i];

MinCss = i;

}

}

if (MinA >= 80.0) {

if (lastAz>0) Az = 180.0;
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else Az=-180.0;

}

else if (MinCss==0) {

if (CssA[2]>60)

Az = 90.0 + CssA[0];

else

Az = ( (90.0-CssA[0]) + (30.0+CssA[2]) )/2.0;

}

else if (MinCss==2) {

if (CssA[0]>60)

Az = ( (30.0-CssA[2]) + (-30.0+CssA[1]))/2.0;

else

Az = ( (30.0+CssA[2]) + (90.0-CssA[0]))/2.0;

}

else if (MinCss==1) {

if (CssA[2]>60)

Az = ( (-30.0-CssA[1]) + (-90.0+CssA[3]))/2.0;

else

Az = ( (30.0-CssA[2]) + (-30.0+CssA[1]))/2.0;

}

else if (MinCss==3) {

if (CssA[1]>60)

Az = -90.0-CssA[3];

else

Az = ( (-90.0+CssA[3]) + (-30.0-CssA[1]))/2.0;

}

lastAz = Az;

/*************************************************************/

/* Store Engineering Data */

/* Gyro */

Eunits->GyroValue = GyroValue;

/* Tam */

Eunits->BhatX = BhatX;

Eunits->BhatY = BhatY;

Eunits->BhatZ = BhatZ;

Eunits->AzTam = AzTam;

/* CSS */
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Eunits->NormToMaxCSS1Volts = CssNorm[0];

Eunits->NormToMaxCSS2Volts = CssNorm[1];

Eunits->NormToMaxCSS3Volts = CssNorm[2];

Eunits->NormToMaxCSS4Volts = CssNorm[3];

Eunits->CSSUnitVecX = 0.0;

Eunits->CSSUnitVecY = 0.0;

Eunits->CSSUnitVecZ = 1.0;

Eunits->AzCss = Az;

/* Fan speeds -- must write the code for these */

Eunits->Fan1Speed = 0.0;

Eunits->Fan2Speed = 0.0;

/* Time */

Eunits->TimeStamp = TimeStamp;

return;

}

/* void adaptGyroCalib(double *ahat, double *bhat, double *th_hat,

double wm) */

#include "../include/TS_Init.h" #include

"../include/TS_Actuator.h" #include "../include/TS_Math.h"

double ActRate=100.0; /* Can be modified by InitTimers below

*/ double ControlRate = 20.0; /* Can be modified by InitTimers

below */

void InitController(Controller_t *Controller) {

FILE *fp;

char dummy[50];

double Pgain, Dgain, xd;

double D1[5], D2[2];

if ((fp = fopen("../init/TS_InitController.dat","r")) == NULL)

{

printf("Error opening Controller Vars input file.\n");

exit(-1);

}
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fscanf(fp," %s %lf %s %lf %s %lf", dummy, &Pgain, dummy,

&Dgain, dummy, &xd);

D1[0] = 0.0;

D1[1] = -Pgain;

D1[2] = -Dgain;

D1[3] = 0.0;

D1[4] = 0.0;

D2[0] = Pgain;

D2[1] = 0.0;

/* Initialize controller to be PD tracking at "sun" offset xd */

Controller->nc=0;

Controller->pc=1;

Controller->z = NULL;

Controller->zold = NULL;

Controller->A = NULL;

Controller->B1 = NULL;

Controller->B2 = NULL;

Controller->C = NULL;

Controller->D1 = makeSparse(D1,1,5);

Controller->D2 = makeSparse(D2,1,2);

Controller->xd[0] = xd;

Controller->xd[1] = 0.0;

Controller->TrackMode = 0; /* 0 = HOLD */

Controller->t0 = 0.0;

Controller->comtorq[0] = 0.0;

Controller->comtorq[1] = 0.0;

printSparse(Controller->D1,"Controller D1 is \n");

printSparse(Controller->D2,"Controller D2 is \n");

}
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void InitEstimator(Estimator_t *Estimator) {

double Do[25];

short i,j;

for (i=0;i<5;i++) {

for (j=0;j<5;j++) {

if (i==j) Do[5*i+j]=1.0;

else Do[5*i+j] = 0.0;

}

}

/* Initialize estimator to simply pass through raw, */

/* scaled readings */

Estimator->no=0;

Estimator->z = NULL;

Estimator->zold = NULL;

Estimator->A = NULL;

Estimator->B = NULL;

Estimator->C = NULL;

Estimator->D = makeSparse(Do,5,5);

for (i=0;i<NY;i++) Estimator->xhat[i] = 0.0;

Estimator->adaptGyroGains[0] = 0.0;

Estimator->adaptGyroGains[1] = 0.0;

Estimator->th = 0.0;

Estimator->thold = 0.0;

Estimator->ahat = 1.0;

Estimator->bhat = 0.0;

}

void InitActuator(Actuator_t *Actuator) {

Actuator->ref_voltage = VMAXFAN;

Actuator->Freq = ActRate;

Actuator->FreqRatio = (int) (ActRate/ControlRate);
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Actuator->FanVoltage[0] = 0.0;

Actuator->FanVoltage[1] = 0.0;

Actuator->Deadzone = 0.0;

Actuator->counts = 1;

}

void InitFanData(FanData_t *FanData) {

int nFricPts = 5;

int nFanPts = 2;

FanData->nFricPts = nFricPts;

FanData->nFanPts = nFanPts;

FanData->wfric = (double *) malloc(nFricPts*sizeof(double));

FanData->wfan = (double *) malloc(nFanPts*sizeof(double));

FanData->fanFric = (double *) malloc(nFricPts*sizeof(double));

FanData->fanForce = (double *) malloc(nFanPts*sizeof(double));

FanData->wfric[0] = -120.0; /* This is deg/sec! */

FanData->wfric[1] = -.1;

FanData->wfric[2] = 0;

FanData->wfric[3] = .1;

FanData->wfric[4] = 120.0;

FanData->wfan[0] = 0.0; /* This is RPM! */

FanData->wfan[0] = 3500.0;

/* Simple stiction + constant rolling friction model */

/* Units are fan volts */

FanData->fanFric[0] = -4;

FanData->fanFric[1] = -4;

FanData->fanFric[2] = 0.0;

FanData->fanFric[3] = 4;

FanData->fanFric[4] = 4;

FanData->fanForce[0] = 0.0;

FanData->fanForce[1] = 1.0;
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/* Nominal linear fan output model */

}

void InitCalibration(SensorCalibration_t *theCals) {

FILE* fp;

/* Calibration Constants from CalibrationConstants.dat: */

/* GyroOffset (Volts), TamBias (Volts), TamGain, */

/* CssMax (Volts), BEarthRef (nT) */

double TamBias[3];

double TamGain[3];

double CssMax[4];

double BEarthRef[3];

double GyroOffset;

double Azm;

char dummy[50];

int i;

/***********************************************************/

/*Read in Calibration constants */

if ((fp = fopen("../init/TS_CalibrationConstants.dat","r"))

== NULL)

{

printf("Error opening Calibration Constant input file.\n");

exit(-1);

}

fscanf(fp," %s %lf %s %lf %lf %lf %s %lf %lf %lf %s %lf

%lf %lf %lf %s %lf %lf %lf %lf %s %lf %lf %lf",

dummy, &GyroOffset, dummy, &TamBias[0], &TamBias[1],

&TamBias[2], dummy, &TamGain[0],&TamGain[1],&TamGain[2],

dummy, &CssMax[0], &CssMax[1], &CssMax[2], &CssMax[3],

dummy, &BEarthRef[0],&BEarthRef[1], &BEarthRef[2]);

fclose(fp);

/************************************************************/

/* Define relevent conversions */

theCals->Volts2Dps = -47.45; /* dps/V (unknown at this point) */

theCals->CssMaxMean = (CssMax[0] + CssMax[1] + CssMax[2])/3.0;

/* Volts */

theCals->Azm = 0.0;

theCals->GyroOffset = GyroOffset;
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for (i=0;i<3;i++) {

theCals->TamBias[i] = TamBias[i];

theCals->TamGain[i] = TamGain[i];

theCals->CssMax[i] = CssMax[i];

theCals->BEarthRef[i] = BEarthRef[i];

}

theCals->CssMax[3] = CssMax[3];

return;

}

int MakeTimer(timer_t *theTimer) {

struct sigevent event;

int connect_id, chan_id;

/************** Open and test the new timer ***************/

if ( (chan_id = ChannelCreate (0) ) == -1) {

printf("Error creating timer channel. \n");

exit(-1);

}

if ( (connect_id = ConnectAttach(0, 0, chan_id, 0, 0) ) == -1) {

printf("Error connecting timer channel.\n");

exit(-1);

}

SIGEV_PULSE_INIT (&event, connect_id,

SIGEV_PULSE_PRIO_INHERIT, 1, 0);

if (timer_create(CLOCK_REALTIME, &event, theTimer) == -1) {

printf ("Error creating timer. \n");

exit(-1);

}

/* Note: timer is now inactive. It will activate with call to

timer_settime in main() after R/W locks are inited. */

return(chan_id);

}

void InitTimers(struct itimerspec *timerCptr, struct itimerspec

*timerSEptr,struct itimerspec *timerCOMptr,
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struct itimerspec *timerACTptr)

{

double EstRate, CommRate;

char dummy[100];

FILE* fp;

if ((fp = fopen("../init/TS_InitTimerVals.dat","r")) == NULL)

{

printf("Error opening Timer Init input file.\n");

exit(-1);

}

fscanf(fp," %s %lf %s %lf", dummy, &EstRate, dummy, &ControlRate);

fscanf(fp," %s %lf %s %lf", dummy, &ActRate, dummy, &CommRate);

fclose(fp);

printf("Est rate = %lf\n",EstRate);

/************* Set timer values ************************/

setTimerVal(timerCptr,ControlRate);

setTimerVal(timerSEptr,EstRate);

setTimerVal(timerCOMptr,CommRate);

setTimerVal(timerACTptr,ActRate);

return;

}

void setTimerVal(struct itimerspec *theTimer, double theRate) {

int theSecs;

long theNanoSecs;

theSecs = (int)(1/theRate);

theNanoSecs = (long)(((1.0/theRate) - theSecs)*1E9);

theTimer->it_value.tv_sec = 1;

theTimer->it_value.tv_nsec = 0;

theTimer->it_interval.tv_sec = theSecs;

theTimer->it_interval.tv_nsec = theNanoSecs;

}
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#include "../include/TS_Main.h" #include "../include/TS_Init.h"

#include "../include/TS_PromIO.h"

/* Declare the fundamental TableSat data structures */

Controller_t Controller; Estimator_t Estimator; Actuator_t

Actuator; FanData_t FanData; StateEstimate_t StateEstimate;

/* Structure to store sensor calibrations */ SensorCalibration_t

sensorCals;

int main() {

/* Declare timers and threads */

struct itimerspec timerC, timerSE, timerCOM, timerACT;

pthread_t threadC, threadSE, threadCOM, threadACT;

/* Store the start time */

gettimeofday(&start_time, NULL);

/* Initialize Prometheus Board */

InitPrometheus();

/* Initialize Sensor Calibration Constants */

InitCalibration(&sensorCals);

/* Initialize Timer settings */

InitTimers(&timerC,&timerSE,&timerCOM,&timerACT);

/* Initialize Estimator parameters */

InitEstimator(&Estimator);

/* Initialize State Estimate */

StateEstimate.TimeStamp = 0.0;

StateEstimate.AzTam = 0.0;

StateEstimate.AzCss = 0.0;

StateEstimate.omega = 0.0;

StateEstimate.nu1 = 0.0;

StateEstimate.nu2 = 0.0;

/* Initialize Controller parameters */
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InitController(&Controller);

/* Initialize Actuator parameters */

InitActuator(&Actuator);

InitFanData(&FanData);

/* Create Timers */

chan_idC = MakeTimer(&timeridC);

chan_idSE = MakeTimer(&timeridSE);

chan_idCOM = MakeTimer(&timeridCOM);

chan_idACT = MakeTimer(&timeridACT);

/* Initialize R/W Locks */

pthread_rwlock_init(&SensorLock, NULL);

pthread_rwlock_init(&StateLock, NULL);

pthread_rwlock_init(&EstimatorLock, NULL);

pthread_rwlock_init(&ControllerLock, NULL);

pthread_rwlock_init(&FanLock, NULL);

pthread_rwlock_init(&ActuatorLock, NULL);

pthread_rwlock_init(&StatusLock, NULL);

/* Start Timers at default rates */

timer_settime(timeridC, 0, &timerC, NULL);

timer_settime(timeridSE, 0, &timerSE, NULL);

timer_settime(timeridCOM, 0, &timerCOM, NULL);

timer_settime(timeridACT, 0, &timerACT, NULL);

/* Spawn threads */

pthread_create(&threadC,NULL,&controller_thread,NULL);

pthread_create(&threadSE,NULL,&state_est_thread,NULL);

pthread_create(&threadCOM,NULL,&communication_thread,NULL);

pthread_create(&threadACT,NULL,&actuator_thread,NULL);

/* Wait for threads to finish */

pthread_join(threadC, NULL);

pthread_join(threadSE, NULL);

pthread_join(threadCOM, NULL);

pthread_join(threadACT, NULL);

return(0);

}
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#include "../include/TS_Math.h"

/* Note: no sanity checking here. Can bomb if 2 successive points

in x array are the same. Clips out-of-range values -- does not

extrapolate */

double interpolateData(double *xvals, double *yvals, int nvals,

double x) {

double *xptr = xvals;

double *yptr = yvals;

if (x<=xvals[0])

return(yvals[0]);

else if (x>=xvals[nvals-1])

return(yvals[nvals-1]);

else {

while (x>*xptr) {xptr++;yptr++;}

xptr--;yptr--;

return( yptr[0] + (yptr[1]-yptr[0])*(x-xptr[0])/

(xptr[1]-xptr[0]) );

}

}

/* Note that the result vector must be initialized to zero by the

caller

if needed/wanted! */

sparseMat *makeSparse(double *M, int nrows, int ncols) {

int i,j;

int *nvals, **cols;

double **vals;

sparseMat *Ms;

nvals = (int *) malloc(nrows*sizeof(int));

cols = (int **) malloc(nrows*sizeof(int));

vals = (double **) malloc(nrows*sizeof(double));

Ms = (sparseMat *) malloc(sizeof(sparseMat));

Ms->nrows = nrows;

Ms->nvals = (int *) malloc(nrows*sizeof(int));

Ms->colVals = (cvals **) malloc(nrows*sizeof(cvals *));
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for (i=0;i<nrows;i++) {

nvals[i]=0;

cols[i] = (int *) malloc(ncols*sizeof(int));

vals[i] = (double *) malloc(ncols*sizeof(double));

for (j=0;j<ncols;j++) {

if (ABS(M[i*ncols+j])>TINY) {

cols[i][nvals[i]] = j;

vals[i][nvals[i]] = M[i*ncols+j];

nvals[i]++;

}

}

}

for (i=0;i<nrows;i++) {

Ms->nvals[i] = nvals[i];

Ms->colVals[i] = (cvals *) malloc(nvals[i]*sizeof(cvals));

for (j=0;j<nvals[i];j++) {

Ms->colVals[i][j].col = cols[i][j];

Ms->colVals[i][j].val = vals[i][j];

}

}

for (i=0;i<nrows;i++) {

free(cols[i]);

free(vals[i]);

}

free(nvals);

free(cols);

free(vals);

return(Ms);

}

void freeSparse(sparseMat *M) {

int i;

if (M==NULL) {

printf("Possible error: freeing empty sparseMat\n");

fflush(stdout);

return;

}
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for (i=0;i<M->nrows;i++) free(M->colVals[i]);

free(M->colVals);

free(M->nvals);

free(M);

}

void sparseMatVec(sparseMat *Mat, double *vecIn, double *vecOut,

int lenIn) {

int i,j,col;

double val;

if (Mat==NULL) {

printf("Error: multiplying by empty sparseMat.\n");

fflush(stdout);

return;

}

for (i=0;i<Mat->nrows;i++) {

for (j=0; j<Mat->nvals[i]; j++) {

col = Mat->colVals[i][j].col;

val = Mat->colVals[i][j].val;

if (col > lenIn-1) {

printf("Size mismatch in sparseMatVec! \n");

return;

}

vecOut[i] += val*vecIn[col];

}

}

}

void printSparse(sparseMat *Mat, const char *Mesg) {

int i,j,col;

double val;

if (Mat==NULL) {

printf("Possible error: attempt to print empty sparseMat\n");

fflush(stdout);

return;
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}

printf("%s",Mesg);

for (i=0;i<Mat->nrows;i++) {

for (j=0; j<Mat->nvals[i]; j++) {

col = Mat->colVals[i][j].col;

val = Mat->colVals[i][j].val;

printf("M[%d][%d]=%lf\n",i,col,val);

}

}

fflush(stdout);

}

void matVec(double *mat, double *vec, double *vecres,int nrow,int

ncol) {

double sum;

short i,j;

for (i=0;i<nrow;i++) {

sum = 0.0;

for (j=0;j<ncol;j++) sum += mat[i*ncol+j]*vec[j];

vecres[i] = sum;

}

}

#include "../include/TS_Includes.h" #include

"../include/TS_Packet.h" #include "../include/TS_Messages.h"

#include "../include/TS_Init.h" #include

"../include/TS_Actuator.h" #include "../include/TS_Math.h"

/* Need read/write access to all of the basic TableSat structures

*/

extern Controller_t Controller; extern Estimator_t Estimator;

extern Actuator_t Actuator; extern FanData_t FanData;

extern StateEstimate_t StateEstimate; extern SensorReadings_t

SensorReadings;

/* Interprocess signalling and synchronization */

extern pthread_rwlock_t ActuatorLock, ControllerLock,
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EstimatorLock; extern pthread_rwlock_t StateLock, SensorLock,

StatusLock, FanLock;

extern timer_t timeridC, timeridSE;

extern byte TSrunMode; extern byte TScontrolMode, TSactuatorMode;

extern byte TSfanMode, TSgyroMode;

extern struct timeval start_time;

/************* Messages to change vehicle status/mode *********/

int setRunMode(byte whoFrom, byte *data) {

static byte thisMesg=MSG_setRunMode;

pthread_rwlock_wrlock(&StatusLock);

memcpy(&TSrunMode,data,sizeof(byte));

printf("Received new run mode: %u\n",TSrunMode);

fflush(stdout);

pthread_rwlock_unlock(&StatusLock);

dsmp_SendMesg(MSG_ackMsg, (void *) &thisMesg, SAT_CON);

return(TRUE);

}

int setControlMode(byte whoFrom, byte *data) {

struct timeval cur_time;

double nowtime;

static byte thisMesg=MSG_setControlMode;

pthread_rwlock_wrlock(&StatusLock);

memcpy(&TScontrolMode,data,sizeof(byte));

printf("Received new control mode: %u\n",TScontrolMode);

fflush(stdout);
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pthread_rwlock_unlock(&StatusLock);

gettimeofday(&cur_time, NULL);

nowtime = ((double) (cur_time.tv_sec - start_time.tv_sec))

+ (((double) (cur_time.tv_usec - start_time.tv_usec))/1.0E6);

pthread_rwlock_wrlock(&ControllerLock);

Controller.t0 = nowtime;

pthread_rwlock_unlock(&ControllerLock);

dsmp_SendMesg(MSG_ackMsg, (void *) &thisMesg, SAT_CON);

return(TRUE);

}

int setFanMode(byte whoFrom, byte *data) {

static byte thisMesg=MSG_setFanMode;

pthread_rwlock_wrlock(&StatusLock);

memcpy(&TSfanMode,data,sizeof(byte));

printf("Received new fan mode: %u\n",TSfanMode);

fflush(stdout);

pthread_rwlock_unlock(&StatusLock);

dsmp_SendMesg(MSG_ackMsg, (void *) &thisMesg, SAT_CON);

return(TRUE);

}

int setActuatorMode(byte whoFrom, byte *data) {

double actModed;

static byte thisMesg=MSG_setActuatorMode;

memcpy(&actModed,data,sizeof(double));

pthread_rwlock_wrlock(&StatusLock);
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TSactuatorMode = (int) actModed;

printf("Received new actuator mode: %u\n",TSactuatorMode);

fflush(stdout);

pthread_rwlock_unlock(&StatusLock);

/* Compute new deadzone, if appropriate for mode */

if (actModed>=BANGBANG) {

pthread_rwlock_wrlock(&ActuatorLock);

Actuator.Deadzone = VMAXFAN*(actModed-BANGBANG);

printf("Actuator deadzone is: %lf\n",Actuator.Deadzone);

fflush(stdout);

pthread_rwlock_unlock(&ActuatorLock);

}

dsmp_SendMesg(MSG_ackMsg, (void *) &thisMesg, SAT_CON);

return(TRUE);

}

int setGyroMode(byte whoFrom, byte *data) {

static byte thisMesg=MSG_setGyroMode;

pthread_rwlock_wrlock(&StatusLock);

memcpy(&TSgyroMode,data,sizeof(byte));

printf("Received new gyro mode: %u\n",TSgyroMode);

fflush(stdout);

pthread_rwlock_unlock(&StatusLock);

dsmp_SendMesg(MSG_ackMsg, (void *) &thisMesg, SAT_CON);

return(TRUE);

}

/********** Messages to uplink vehicle state, measurements, and
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/* status **********/

int sendStateData(byte whoFrom, byte *data) {

pthread_rwlock_wrlock(&StateLock);

pthread_rwlock_rdlock(&ActuatorLock);

StateEstimate.nu1 = Actuator.FanVoltage[0];

StateEstimate.nu2 = Actuator.FanVoltage[1];

pthread_rwlock_unlock(&ActuatorLock);

// printf("Time is %lf\n",StateEstimate.TimeStamp);

fflush(stdout);

dsmp_SendMesg(MSG_uplinkStateData, (void *) &StateEstimate,

SAT_CON);

pthread_rwlock_unlock(&StateLock);

return(TRUE);

}

int sendRawData(byte whoFrom, byte *data) {

// printf("Received request for Raw data:\n"); fflush(stdout);

pthread_rwlock_rdlock(&SensorLock);

// printf("Current CSS volts are %lf\n",

// SensorReadings.CSS2Volts);

// printf("Current Gyro volts are %lf\n",

// SensorReadings.GyroVolts);

// printf("Current TAM volts are %lf\n",

// SensorReadings.MagYVolts);

// fflush(stdout);

dsmp_SendMesg(MSG_uplinkRawData, (void *)

&SensorReadings, SAT_CON);

pthread_rwlock_unlock(&SensorLock);

return(TRUE);

}
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int sendStatusData(byte whoFrom, byte *data) {

byte statusData[5];

printf("Received request for Status data:\n"); fflush(stdout);

pthread_rwlock_rdlock(&StatusLock);

statusData[0] = TSrunMode;

statusData[1] = TScontrolMode;

statusData[2] = TSfanMode;

statusData[3] = TSactuatorMode;

statusData[4] = TSgyroMode;

pthread_rwlock_unlock(&StatusLock);

dsmp_SendMesg(MSG_uplinkStatusData, (void *)

&statusData, SAT_CON);

return(TRUE);

}

/**** Message to adjust the onboard sample rate *******/

int setSampleRate(byte whoFrom, byte *data) {

double newRate[2];

int newSecs;

long newNanoSecs;

struct itimerspec timerC, timerSE;

byte thisMesg = MSG_setSampleRate;

memcpy(&newRate,data,2*sizeof(double));

printf("Received request for new sample rates: %lf\t%lf\n",

newRate[0],newRate[1]);

fflush(stdout);

setTimerVal(&timerC, newRate[0]);

setTimerVal(&timerSE, newRate[1]);

/* Set the control and estimation threads to run at new rates */
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timer_settime(timeridC, 0, &timerC, NULL);

timer_settime(timeridSE, 0, &timerSE, NULL);

/* Update (Actuator rate)/(controller rate) */

/* ratio for PWM (if used) */

pthread_rwlock_wrlock(&ActuatorLock);

Actuator.FreqRatio = (int) (Actuator.Freq/newRate[0]);

pthread_rwlock_unlock(&ActuatorLock);

dsmp_SendMesg(MSG_ackMsg, (void *) &thisMesg, SAT_CON);

return(TRUE);

}

/* Messages to load friction and fan models for controller*/

int setFanFricData(byte whoFrom, byte *data) {

double nFricd;

int dataLen;

byte *dataPtr = data;

byte thisMesg = MSG_setFanFricData;

pthread_rwlock_wrlock(&FanLock);

printf("Old fan friction model with %d points\n",

FanData.nFricPts);

free(FanData.wfric);

free(FanData.fanFric);

memcpy(&nFricd,dataPtr,sizeof(double));

dataPtr += sizeof(double);

FanData.nFricPts = (int) nFricd;

dataLen = FanData.nFricPts*sizeof(double);

printf("New fan friction model with %d points\n",

FanData.nFricPts);

FanData.wfric = (double *) malloc(dataLen);

FanData.fanFric = (double *) malloc(dataLen);

memcpy(FanData.wfric,dataPtr,dataLen);
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dataPtr += dataLen;

memcpy(FanData.fanFric,dataPtr,dataLen);

printf("New fan friction model with %d points\n",

FanData.nFricPts);

printf("First omega is %lf\n",FanData.wfric[0]);

printf("Last omega is %lf\n",FanData.wfric[FanData.nFricPts-1]);

printf("First fric is %lf\n",FanData.fanFric[0]);

printf("Last fric is %lf\n",FanData.fanFric[FanData.nFricPts-1]);

fflush(stdout);

pthread_rwlock_unlock(&FanLock);

dsmp_SendMesg(MSG_ackMsg, (void *) &thisMesg, SAT_CON);

return(TRUE);

}

int setFanSpeedData(byte whoFrom, byte *data) {

double nFricd;

int dataLen;

byte *dataPtr = data;

byte thisMesg = MSG_setFanSpeedData;

pthread_rwlock_wrlock(&FanLock);

printf("Old fan friction model with %d points\n",

FanData.nFanPts);

fflush(stdout);

free(FanData.wfan);

free(FanData.fanForce);

memcpy(&nFricd,dataPtr,sizeof(double));

dataPtr += sizeof(double);

FanData.nFanPts = (int) nFricd;

dataLen = FanData.nFanPts*sizeof(double);

FanData.wfan = (double *) malloc(dataLen);

FanData.fanForce = (double *) malloc(dataLen);
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memcpy(FanData.wfan,dataPtr,dataLen);

dataPtr += dataLen;

memcpy(FanData.fanForce,dataPtr,dataLen);

printf("New fan speed model with %d points\n",

FanData.nFanPts);

printf("First omega is %lf\n",FanData.wfan[0]);

printf("Last omega is %lf\n",FanData.wfan[FanData.nFanPts-1]);

fflush(stdout);

pthread_rwlock_unlock(&FanLock);

dsmp_SendMesg(MSG_ackMsg, (void *) &thisMesg, SAT_CON);

return(TRUE);

}

/** Messages to set other Controller data ******/

int setControlData(byte whoFrom, byte *data) {

int nc, pc;

int Asz, B1sz, B2sz, Csz, D1sz, D2sz;

double *Ac, *B1c, *B2c, *Cc, *D1c, *D2c;

sparseMat *Acs, *B1cs, *B2cs, *Ccs, *D1cs, *D2cs;

static double mSizes[6];

byte *dataPtr=data;

static byte thisMesg=MSG_setControlData;

/* Read in and verify the matrix sizes */

memcpy(mSizes,dataPtr,6*sizeof(double));

nc = (int) mSizes[0];

pc = (int) mSizes[3];

if ( ( (int) mSizes[1] != NX ) || // Cols of B1

( (int) mSizes[2] != 2 ) || // Cols of B2

( (int) mSizes[3] > 2 ) || // Rows of C

( (int) mSizes[4] != NX ) || // Cols of D1
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( (int) mSizes[5] != 2 ) ) // Cols of D2

{

printf("Invalid controller specification!\n"); fflush(stdout);

return(0);

}

/* Read in the fully populated controller matrices */

dataPtr+=6*sizeof(double);

printf("New controller: nc=%d\n",nc);

fflush(stdout);

if (nc>0)

{

Asz = nc*nc*sizeof(double);

B1sz = nc*NX*sizeof(double);

B2sz = nc*2*sizeof(double);

Csz = pc*nc*sizeof(double);

}

D1sz = pc*NX*sizeof(double);

D2sz = pc*2*sizeof(double);

if(nc>0)

{

Ac = (double *) malloc(Asz);

B1c = (double *) malloc(B1sz);

B2c = (double *) malloc(B2sz);

Cc = (double *) malloc(Csz);

}

D1c = (double *) malloc(D1sz);

D2c = (double *) malloc(D2sz);

if (nc>0)

{

memcpy(Ac,dataPtr,Asz);

dataPtr += Asz;

memcpy(B1c,dataPtr,B1sz);

dataPtr += B1sz;

memcpy(B2c,dataPtr,B2sz);

dataPtr += B2sz;
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memcpy(Cc,dataPtr,Csz);

dataPtr += Csz;

}

memcpy(D1c,dataPtr,D1sz);

dataPtr += D1sz;

memcpy(D2c,dataPtr,D2sz);

/* Sparsify the downlinked matrices */

if (nc>0)

{

Acs = makeSparse(Ac,nc,nc);

B1cs = makeSparse(B1c,nc,NX);

B2cs = makeSparse(B2c,nc,2);

Ccs = makeSparse(Cc,pc,nc);

}

D1cs = makeSparse(D1c,pc,NX);

D2cs = makeSparse(D2c,pc,2);

/* Take a write lock on the controller data */

pthread_rwlock_wrlock(&ControllerLock);

/* Free the old controller data */

if (Controller.nc>0)

{

freeSparse(Controller.A);

freeSparse(Controller.B1);

freeSparse(Controller.B2);

freeSparse(Controller.C);

}

freeSparse(Controller.D1);

freeSparse(Controller.D2);

free(Controller.z);

free(Controller.zold);

/* Fill in the new controller data */

Controller.nc = nc;
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Controller.pc = pc;

if (nc>0)

{

Controller.A = Acs;

Controller.B1 = B1cs;

Controller.B2 = B2cs;

Controller.C = Ccs;

}

else

{

Controller.A = NULL;

Controller.B1 = NULL;

Controller.B2 = NULL;

Controller.C = NULL;

}

Controller.D1 = D1cs;

Controller.D2 = D2cs;

if (nc>0)

{

Controller.z = (double *) calloc(nc,sizeof(double));

Controller.zold = (double *) calloc(nc,sizeof(double));

}

else

{

Controller.z = NULL;

Controller.zold = NULL;

}

printSparse(Controller.A,"New controller A matrix:\n");

printSparse(Controller.B1,"New controller B1 matrix:\n");

printSparse(Controller.B2,"New controller B2 matrix:\n");

printSparse(Controller.C,"New controller C matrix:\n");

printSparse(Controller.D1,"New controller D1 matrix:\n");

printSparse(Controller.D2,"New controller D2 matrix:\n");

/* Release controller data lock */

pthread_rwlock_unlock(&ControllerLock);

/* Free the temporary arrays that we used */
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if (nc>0)

{

free(Ac);

free(B1c);

free(B2c);

free(Cc);

}

free(D1c);

free(D2c);

dsmp_SendMesg(MSG_ackMsg, (void *) &thisMesg, SAT_CON);

return(TRUE);

}

int setControlTarget(byte whoFrom, byte *data) {

static byte thisMesg=MSG_setControlTarget;

double theData[3];

pthread_rwlock_wrlock(&ControllerLock);

memcpy(&theData,data,3*sizeof(double));

Controller.TrackMode = (int) theData[0];

Controller.xd[0] = theData[1];

Controller.xd[1] = theData[2];

// printf("Received new controller target: %lf\t%lf\n",

// theData[1],theData[2]);

// fflush(stdout);

pthread_rwlock_unlock(&ControllerLock);

// dsmp_SendMesg(MSG_ackMsg, (void *) &thisMesg, SAT_CON);

return(TRUE);

}

/* Messages to set the Estimator data *****/

int setEstimatorData(byte whoFrom, byte *data) {
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int no;

int Asz, Bsz, Csz, Dsz;

double *Ac, *Bc, *Cc, *Dc;

sparseMat *Acs, *Bcs, *Ccs, *Dcs;

static double mSizes[4];

byte *dataPtr=data;

static byte thisMesg=MSG_setEstimatorData;

/* Read in and verify the matrix sizes */

memcpy(mSizes,dataPtr,4*sizeof(double));

no = (int) mSizes[0];

if ( ( (int) mSizes[1] != NX ) || // Cols of B

( (int) mSizes[2] != NX ) || // Rows of C

( (int) mSizes[3] != NX ) ) // Cols of D

{

printf("Invalid observer specification!\n"); fflush(stdout);

return(0);

}

/* Read in the fully populated estimator matrices */

dataPtr+=4*sizeof(double);

printf("New observer: no=%d\n",no); fflush(stdout);

if (no>0)

{

Asz = no*no*sizeof(double);

Bsz = no*NX*sizeof(double);

Csz = NX*no*sizeof(double);

}

Dsz = NX*NX*sizeof(double);

if(no>0)

{

Ac = (double *) malloc(Asz);

Bc = (double *) malloc(Bsz);

Cc = (double *) malloc(Csz);

}
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Dc = (double *) malloc(Dsz);

if (no>0)

{

memcpy(Ac,dataPtr,Asz);

dataPtr += Asz;

memcpy(Bc,dataPtr,Bsz);

dataPtr += Bsz;

memcpy(Cc,dataPtr,Csz);

dataPtr += Csz;

}

memcpy(Dc,dataPtr,Dsz);

/* Sparsify the downlinked matrices */

if (no>0)

{

Acs = makeSparse(Ac,no,no);

Bcs = makeSparse(Bc,no,NY);

Ccs = makeSparse(Cc,NY,no);

}

Dcs = makeSparse(Dc,NY,NY);

/* Take a write lock on the observer data */

pthread_rwlock_wrlock(&EstimatorLock);

/* Free the old estimator data */

if (Estimator.no>0)

{

freeSparse(Estimator.A);

freeSparse(Estimator.B);

freeSparse(Estimator.C);

}

freeSparse(Estimator.D);

free(Estimator.z);

free(Estimator.zold);

/* Fill in the new controller data */
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Estimator.no = no;

if (no>0)

{

Estimator.A = Acs;

Estimator.B = Bcs;

Estimator.C = Ccs;

}

else

{

Estimator.A = NULL;

Estimator.B = NULL;

Estimator.C = NULL;

}

Estimator.D = Dcs;

if (no>0)

{

Estimator.z = (double *) calloc(no,sizeof(double));

Estimator.zold = (double *) calloc(no,sizeof(double));

}

else

{

Estimator.z = NULL;

Estimator.zold = NULL;

}

printSparse(Estimator.A,"New estimator A matrix:\n");

printSparse(Estimator.B,"New estimator B matrix:\n");

printSparse(Estimator.C,"New estimator C matrix:\n");

printSparse(Estimator.D,"New estimator D matrix:\n");

/* Release observer data lock */

pthread_rwlock_unlock(&EstimatorLock);

/* Free the temporary arrays that we used */

if (no>0)

{

free(Ac);

free(Bc);
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free(Cc);

}

free(Dc);

dsmp_SendMesg(MSG_ackMsg, (void *) &thisMesg, SAT_CON);

return(TRUE);

}

int setGyroCalibData(byte whoFrom, byte *data) {

double gyroGains[2];

static byte thisMesg=MSG_setGyroCalibData;

memcpy(&gyroGains,data,2*sizeof(double));

printf("Received new adaptive gyro calib gains: %lf\t%lf\n",

gyroGains[0],gyroGains[1]);

fflush(stdout);

pthread_rwlock_wrlock(&EstimatorLock);

Estimator.adaptGyroGains[0] = gyroGains[0];

Estimator.adaptGyroGains[1] = gyroGains[1];

pthread_rwlock_unlock(&EstimatorLock);

dsmp_SendMesg(MSG_ackMsg, (void *) &thisMesg, SAT_CON);

return(TRUE);

}

int calibrateSensors(byte whoFrom, byte *data) {

static byte thisMesg=MSG_calibrateSensors;

printf("Received calibrate sensor request: %u\n",TSrunMode);

fflush(stdout);

dsmp_SendMesg(MSG_ackMsg, (void *) &thisMesg, SAT_CON);

return(TRUE);

}
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#include "../include/TS_Packet.h"

void dsmp_PackMesg(byte mesgNum, void *mesgData, byte *mesgBuf);

void dsmp_RecvTimeout(int signo); int dsmp_PacketAvail(int fd, int

usec);

byte mesg[MAXLINE]; HandlerFuncPtr dsmpMesgHandlers[256]={};

unsigned short dsmpMesgSizes[256]={}; unsigned char

dsmpMesgFlags[256]={}; struct sockaddr_in dsmpClients[MAXCLI];

byte dsmpCliReg[MAXCLI]={FALSE};

int dsmpSocket; struct sockaddr_in dsmpAddr;

unsigned char dsmpIdentity;

int numSent=0, numRecv=0;

int dsmpTimeout = 0; // Timeout in microsecs

void dsmp_RecvTimeout(int signo) {

printf("error num is %d\n",errno);

return;

}

int dsmp_Init(unsigned char ident, int portNum) {

int ret;

u_char loop=FALSE;

printf("Initializing dsmp interface\n"); fflush(stdout);

dsmpIdentity = ident;

dsmpSocket = socket(AF_INET, SOCK_DGRAM, 0);

if (dsmpSocket < 0) {

printf("socket error\n");

exit(1);

}

bzero(&dsmpAddr, sizeof(dsmpAddr));

dsmpAddr.sin_family = AF_INET;

dsmpAddr.sin_addr.s_addr = htonl(INADDR_ANY);
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dsmpAddr.sin_port = htons(portNum);

ret = bind(dsmpSocket, (SA *) &dsmpAddr, sizeof(dsmpAddr));

if (ret < 0) {

printf("bind error\n");

exit(1);

}

// Disable multicast loopback by default

ret = setsockopt(dsmpSocket, IPPROTO_IP, IP_MULTICAST_LOOP,

&loop, sizeof(loop));

return(dsmpSocket);

}

void dsmp_RegisterClient(byte cliNum, char *cliIP) {

struct sockaddr_in *cliaddr;

int ret;

printf("Registering client #%u\n",cliNum); fflush(stdout);

cliaddr = dsmpClients+cliNum;

bzero(cliaddr, sizeof(struct sockaddr_in));

dsmpClients[cliNum].sin_family = AF_INET;

dsmpClients[cliNum].sin_port = htons(dsmpSERV_PORT);

ret = inet_pton(AF_INET, cliIP, &dsmpClients[cliNum].sin_addr);

if (ret < 0) {

printf("inet_pton error\n");

exit(1);

}

dsmpCliReg[cliNum]=TRUE;

}

void dsmp_AcceptMcast(char *addrStr) // Not working. . .??? {

int ret;

struct ip_mreq mreq;

struct sockaddr_in mcastAddr;
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byte nhops = 10;

printf("Joining multicast group\n");fflush(stdout);

ret = inet_pton(AF_INET, addrStr, &mreq.imr_multiaddr);

if (ret < 0) {

printf("inet_pton error\n");

exit(1);

}

memcpy(&mreq.imr_interface,&dsmpAddr.sin_addr,sizeof(struct in_addr));

mreq.imr_interface.s_addr = htonl(INADDR_ANY);

ret = setsockopt(dsmpSocket, IPPROTO_IP,IP_ADD_MEMBERSHIP,

&mreq,sizeof(mreq));

if (ret < 0) {

printf("setsockopt error:");

printf("errno is %d\n",errno);

perror(NULL);

exit(1);

}

}

void dsmp_RegisterMesg(unsigned char msgNum, unsigned char

msgFlags, HandlerFuncPtr msgHandler, short msgSize) {

printf("Registering message #%u \n",msgNum); fflush(stdout);

dsmpMesgHandlers[msgNum]=msgHandler;

dsmpMesgSizes[msgNum] = msgSize;

dsmpMesgFlags[msgNum] = msgFlags;

}

int dsmp_PacketAvail(int fd, int usec) {

fd_set rset;

struct timeval tv;

FD_ZERO(&rset);

FD_SET(fd,&rset);
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tv.tv_sec = 0;

tv.tv_usec = usec;

return( select(fd + 1, &rset, NULL, NULL, &tv) );

}

#define DSMP_RECVTOUT 0

int dsmp_RecvAll(void) {

while (dsmp_RecvMesg() != DSMP_RECVTOUT);

}

int dsmp_RecvMesg(void) {

int i,n,ret;

byte mesgNum,mesgFlags,mesgFrom;

unsigned short mesgSize, expectedSize;

HandlerFuncPtr handler;

struct sockaddr_in pcliaddr;

char cliName[80];

socklen_t len = sizeof(pcliaddr);

if (!dsmp_PacketAvail(dsmpSocket, dsmpTimeout)) {

return(0);

} else {

n = recvfrom(dsmpSocket, mesg, MAXLINE, 0, (SA *) &pcliaddr,

&len);

}

if (n<0) {

printf("Receive error:%d\n",errno);

return(-1);

}

// for (i = 0; i < n; i++) printf("%d\t%x\n",i,mesg[i]);

// printf("\n");

mesgNum = mesg[0];

mesgFlags = mesg[1];

mesgSize = 256*mesg[2]+mesg[3];

mesgFrom = mesg[4];

232



// printf("Message number %d is %d\n",numRecv,mesgNum);

// fflush(stdout);

if (dsmpCliReg[mesgFrom]==FALSE) {

inet_ntop(AF_INET,(void *) &pcliaddr.sin_addr, cliName, 80);

printf("Incoming client connection from %s \n",cliName);

fflush(stdout);

dsmp_RegisterClient(mesgFrom,cliName);

}

// Note: if we get an incoming message from an already

// registered client at a new address, we will ignore

// the new address!

handler = dsmpMesgHandlers[mesgNum];

if (handler == NULL) {

printf("Error -- no handler for message %d!\n",mesgNum);

fflush(stdout);

// exit(1);

return(-1);

}

expectedSize = dsmpMesgSizes[mesgNum];

if ((mesgSize != expectedSize) && (expectedSize != TS_VARSIZE)) {

printf("Error -- wrong message size: expected %d received %d",

dsmpMesgSizes[mesgNum],mesgSize);

return(-1);

}

// If we get here everything must check out, so invoke the handler and return

return(handler(mesgFrom,mesg+5));

}

void dsmp_PackMesg(byte mesgNum, void *mesgData, byte *mesgBuf) {

int i;

byte *buf, *dat;

int mesgSize = dsmpMesgSizes[mesgNum];

mesgBuf[0] = mesgNum;
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mesgBuf[1] = dsmpMesgFlags[mesgNum];

mesgBuf[2] = mesgSize / 256;

mesgBuf[3] = mesgSize % 256;

mesgBuf[4] = dsmpIdentity;

dat = (byte *) mesgData;

buf = mesgBuf+5;

for (i = 0; i < mesgSize; i++,dat++,buf++) *buf = *dat;

}

int dsmp_SendMesg(byte mesgNum, void *mesgData, byte mesgClient) {

struct sockaddr_in *cliaddr;

int i,ret;

cliaddr = dsmpClients+mesgClient;

dsmp_PackMesg(mesgNum, mesgData, mesg);

ret =sendto(dsmpSocket, mesg, dsmpMesgSizes[mesgNum]+5,0,

(SA *) &dsmpClients[mesgClient],

sizeof(dsmpClients[mesgClient]));

// for (i = 0; i < dsmpMesgSizes[mesgNum]+5; i++)

// printf("%d\t%x\n",i,mesg[i]);

// printf("\n");

if (ret < 0) {

printf("SendMesg error\n");

printf("errno=%d\n",errno);

return(1);

// exit(1);

}

return(0);

// numSent++;

// printf("Sent message #%d\n",numSent); fflush(stdout);

}

#include "../include/TS_PromIO.h" #include

"../include/TS_Actuator.h"
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#define FLIGHTVERSION

DSCB dscb; ERRPARAMS errorParams; DSCADSCAN dscadscan;

DSCSAMPLE *samples;

extern struct timeval start_time; extern pthread_rwlock_t

SensorLock;

void InitPrometheus(void) {

DSCCB dsccb; // structure containing board settings

DSCADSETTINGS dscadsettings;

// structure containing A/D conversion settings

BYTE result;

#ifdef FLIGHTVERSION

/***** Initialize DSCUD library *****/

if( dscInit( DSC_VERSION ) != DE_NONE )

{

dscGetLastError(&errorParams);

fprintf( stderr, "%s %s\n", ERROR_PREFIX,

errorParams.errstring );

return;

}

#endif

/***** Initialize Prometheus board *****/

dsccb.boardtype = DSC_PROM;

dsccb.base_address = BASEADD;

dsccb.int_level = 5;

dsccb.dma_level = 3;

dsccb.clock_freq = 10000000L;

#ifdef FLIGHTVERSION

if(dscInitBoard(DSC_PROM, &dsccb, &dscb)!= DE_NONE)

{

dscGetLastError(&errorParams);

fprintf(stderr, "%s %s\n", ERROR_PREFIX,
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errorParams.errstring);

return;

}

#endif

/***** Initialize AD settings *****/

dscadsettings.range = RANGE_5;

dscadsettings.polarity = UNIPOLAR;

dscadsettings.gain = GAIN_4;

dscadsettings.load_cal = (BYTE)TRUE;

dscadsettings.current_channel = 0;

dscadsettings.load_cal = 0;

#ifdef FLIGHTVERSION

if( ( result = dscADSetSettings( dscb, &dscadsettings ) )

!= DE_NONE )

{

dscGetLastError(&errorParams);

fprintf(stderr, "%s %s\n", ERROR_PREFIX,

errorParams.errstring);

return;

}

/***** Set D/A polarity *****/

dscDASetPolarity(dscb, UNIPOLAR);

#endif

/***** Initialize scan settings *****/

dscadscan.low_channel = 0;

dscadscan.high_channel = 7;

dscadscan.gain = GAIN_1;

dscadscan.gain = dscadsettings.gain;

samples = (DSCSAMPLE*) malloc(sizeof(DSCSAMPLE)*

(dscadscan.high_channel - dscadscan.low_channel+1));

dscadscan.sample_values = samples;
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return;

}

int ReadSensors(SensorReadings_t *sensors) {

struct timeval cur_time;

double nowtime;

BYTE result;

/* Call for a new A/D Scan */

#ifdef FLIGHTVERSION

if( (result = dscADScan( dscb, & dscadscan, samples) )!= DE_NONE )

{

fprintf(stderr, "%s%s\n", ERROR_PREFIX,

dscGetErrorString(result) );

free(samples);

return(0);

}

#endif

gettimeofday(&cur_time, NULL);

nowtime = ((double) (cur_time.tv_sec - start_time.tv_sec))

+ (((double) (cur_time.tv_usec - start_time.tv_usec))/1.0E6);

/* Take write lock to update sensor readings */

pthread_rwlock_wrlock(&SensorLock);

// printf("Loading sensor data\n");fflush(stdout);

/* Load the sensor structure with current data */

sensors->TimeStamp = nowtime;

sensors->CSS1Volts = (double) (((short) dscadscan.sample_values[7]

+ 32768)/65536.0 * 5.0);

sensors->CSS2Volts = (double) (((short) dscadscan.sample_values[6]

+ 32768)/65536.0 * 5.0);

sensors->CSS3Volts = (double) (((short) dscadscan.sample_values[5]

+ 32768)/65536.0 * 5.0);

sensors->CSS4Volts = (double) (((short) dscadscan.sample_values[4]

+ 32768)/65536.0 * 5.0);

sensors->GyroVolts = (double) (((short) dscadscan.sample_values[0]

237



+ 32768)/65536.0 * 5.0);

sensors->MagXVolts = (double) (((short) dscadscan.sample_values[1]

+ 32768)/65536.0 * 5.0);

sensors->MagYVolts = (double) (((short) dscadscan.sample_values[2]

+ 32768)/65536.0 * 5.0);

sensors->MagZVolts = (double) (((short) dscadscan.sample_values[3]

+ 32768)/65536.0 * 5.0);

/* Release write lock */

pthread_rwlock_unlock(&SensorLock);

// printf("Done!\n");fflush(stdout);

return(1);

}

/* CommandMotor takes the commanded voltages for each fan

in the FanVoltage structure, converts them to counts,

and calls the D/A converter to power the fans. */

void commandMotor(double *v) {

int pos_counts, neg_counts;

// float ref_voltage = 12.0;

int pos_channel, neg_channel;

BYTE result;

/* Must modify these once board configuration is known */

pos_channel = 3;

neg_channel = 1;

/*******************************************************/

pos_counts = (int)(v[0]/VMAXFAN*4095.0);

neg_counts = (int)(v[1]/VMAXFAN*4095.0);

#ifdef FLIGHTVERSION

if( ( result = dscDAConvert(dscb, pos_channel, pos_counts ) )

!= DE_NONE )

{

dscGetLastError(&errorParams);

fprintf(stderr, "%s %s\n", ERROR_PREFIX,

errorParams.errstring);
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return;

}

if( ( result = dscDAConvert(dscb, neg_channel, neg_counts ) )

!= DE_NONE )

{

dscGetLastError(&errorParams);

fprintf(stderr, "%s %s\n", ERROR_PREFIX,

errorParams.errstring);

return;

}

#endif

return;

}
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Appendix B

TableSat GUI Code

function varargout = TSat2(varargin)

% TSAT2 M-file for TSat2.fig

% TSAT2, by itself, creates a new TSAT2 or raises the

% existing singleton*.

%

% H = TSAT2 returns the handle to a new TSAT2 or

% the handle to the existing singleton*.

%

% TSAT2(’CALLBACK’,hObject,eventData,handles,...)

% calls the local function named CALLBACK in TSAT2.M with

% the given input arguments.

%

% TSAT2(’Property’,’Value’,...) creates a new TSAT2 or

% raises the existing singleton*. Starting from the left,

% property value pairs are applied to the GUI before

% TSat2_OpeningFunction gets called. An unrecognized

% property name or invalid value makes property application

% stop. All inputs are passed to TSat2_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE’s Tools menu.

% Choose "GUI allows only one instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help TSat2

% Last Modified by GUIDE v2.5 22-Jun-2004 13:04:53

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1; gui_State = struct(’gui_Name’,mfilename, ...

’gui_Singleton’, gui_Singleton, ...
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’gui_OpeningFcn’, @TSat2_OpeningFcn, ...

’gui_OutputFcn’, @TSat2_OutputFcn, ...

’gui_LayoutFcn’, [] , ...

’gui_Callback’, []);

if nargin & isstr(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before TSat2 is made visible.

function TSat2_OpeningFcn(hObject, eventdata, handles,

varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to betext defined in a future version

% of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to TSat2 (see VARARGIN)

% Choose default command line output for TSat2

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

%UIWAIT makes TSat2 wait for user response (see UIRESUME)

%uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = TSat2_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to betext defined in a future version

% of MATLAB

% handles structure with handles and user data (see GUIDATA)
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% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in FrictionComp.

function FrictionComp_Callback(hObject, eventdata, handles)

if get(hObject,’Value’) == 1

set(handles.NumFricPts,’Enable’,’On’);

set(handles.wValues,’Enable’,’On’);

set(handles.FricCompValues,’Enable’,’On’);

else

set(handles.NumFricPts,’Enable’,’Off’);

set(handles.wValues,’Enable’,’Off’);

set(handles.FricCompValues,’Enable’,’Off’);

end

% --- Executes during object creation, after setting all properties.

function NumFricPts_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function NumFricPts_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1])

user_entry=str2num(get(hObject,’String’)); if isempty(user_entry)

| user_entry<0 | round(user_entry) ~= user_entry

set(hObject,’BackgroundColor’,[1 1 0])

errordlg(’Please Enter a Positive Integer’,

’Invalid Entry’,’modal’)

end

% --- Executes during object creation, after setting all properties.

function wValues_CreateFcn(hObject, eventdata, handles)

if ispc
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set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function wValues_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1])

user_entry=str2num(get(hObject,’String’)); if isempty(user_entry)

set(hObject,’BackgroundColor’,[1 1 0])

errordlg(’Please Enter a Value or Range’,’Invalid Entry’,’modal’)

end

if length(user_entry)~= str2num(get(handles.NumFricPts,’String’))

set(hObject,’BackgroundColor’,[1 1 0])

errordlg(’Number of Angular Velocity Values must equal

Number of Compensation Points’,’Invalid Entry’,’modal’)

end

% --- Executes during object creation, after setting all properties.

function FricCompValues_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function FricCompValues_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1])

user_entry=str2num(get(hObject,’String’)); if isempty(user_entry)

set(hObject,’BackgroundColor’,[1 1 0])

errordlg(’Please Enter a Value or Range’,

’Invalid Entry’,’modal’)

end

if length(user_entry)~= str2num(get(handles.NumFricPts,’String’))

set(hObject,’BackgroundColor’,[1 1 0])
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errordlg(’Number of Friction Compensation Values must equal

Number of Compensation Points’,’Invalid Entry’,’modal’)

end

% --- Executes during object creation, after setting all properties.

function ActType_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

% --- Executes on selection change in ActType.

function ActType_Callback(hObject, eventdata, handles)

if get(hObject,’Value’) == 3

set(handles.DeadZone,’Enable’,’On’);

else

set(handles.DeadZone,’Enable’,’Off’);

end

% --- Executes during object creation, after setting all properties.

function DeadZone_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function DeadZone_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1])

user_entry=str2num(get(hObject,’String’)); if isempty(user_entry)

| user_entry<0 | user_entry>1

set(hObject,’BackgroundColor’,[1 1 0])
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errordlg(’Value must be positive and less than 1’,

’Invalid Entry’,’modal’)

end

% --- Executes during object creation, after setting all properties.

function ContRate_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function ContRate_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1])

user_entry=str2num(get(hObject,’String’)); if isempty(user_entry)

| user_entry<0

set(hObject,’BackgroundColor’,[1 1 0])

errordlg(’Value must be positive’,’Invalid Entry’,’modal’)

end

% --- Executes during object creation, after setting all properties.

function ActRate_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function ActRate_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1])

user_entry=str2num(get(hObject,’String’)); if isempty(user_entry)

| user_entry<0

set(hObject,’BackgroundColor’,[1 1 0])

errordlg(’Value must be positive’,’Invalid Entry’,’modal’)

end
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if user_entry/str2num(get(handles.ContRate,’String’))<1

set(hObject,’BackgroundColor’,[1 1 0])

errordlg(’Actuator Rate must be greater than or equal

to Controller Rate’, ’Invalid Entry’,’modal’)

end

% --- Executes during object creation, after setting all properties.

function EstRate_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function EstRate_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1])

user_entry=str2num(get(hObject,’String’)); if isempty(user_entry)

| user_entry<0

set(hObject,’BackgroundColor’,[1 1 0])

errordlg(’Value must be positive’,’Invalid Entry’,’modal’)

end

% --- Executes on button press in ControllerOn.

function ControllerOn_Callback(hObject, eventdata, handles)

if get(hObject,’Value’) == 0

set(handles.nc,’Enable’,’Off’);

set(handles.pc,’Enable’,’Off’);

set(handles.A,’Enable’,’Off’);

set(handles.B1,’Enable’,’Off’);

set(handles.B2,’Enable’,’Off’);

set(handles.C,’Enable’,’Off’);

set(handles.D1,’Enable’,’Off’);

set(handles.D2,’Enable’,’Off’);

set(handles.FrictionComp,’Enable’,’On’);

set(handles.ActType,’Enable’,’On’);

set(handles.ContRate,’Enable’,’On’);

set(handles.ActRate,’Enable’,’On’);

set(handles.EstRate,’Enable’,’On’);
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set(handles.ContDef,’Enable’,’Off’);

set(handles.ContSim,’Enable’,’Off’);

set(handles.ContMat,’Enable’,’Off’);

set(handles.SimFile,’Enable’,’Off’);

set(handles.MatFile,’Enable’,’Off’);

set(handles.SimBrowse,’Enable’,’Off’);

set(handles.MatBrowse,’Enable’,’Off’);

set(handles.OmegaD,’Enable’,’Off’);

set(handles.ThetaD,’Enable’,’Off’);

set(handles.TargetS,’Enable’,’Off’);

set(handles.SineWave,’Enable’,’Off’);

set(handles.Amp,’Enable’,’Off’);

set(handles.Freq,’Enable’,’Off’);

else

set(handles.nc,’Enable’,’On’);

set(handles.pc,’Enable’,’On’);

set(handles.A,’Enable’,’On’);

set(handles.B1,’Enable’,’On’);

set(handles.B2,’Enable’,’On’);

set(handles.C,’Enable’,’On’);

set(handles.D1,’Enable’,’On’);

set(handles.D2,’Enable’,’On’);

set(handles.FrictionComp,’Enable’,’On’);

set(handles.ActType,’Enable’,’On’);

set(handles.ContRate,’Enable’,’On’);

set(handles.ActRate,’Enable’,’On’);

set(handles.EstRate,’Enable’,’On’);

set(handles.ContDef,’Enable’,’On’);

set(handles.ContSim,’Enable’,’On’);

set(handles.ContMat,’Enable’,’On’);

set(handles.SimFile,’Enable’,’On’);

set(handles.MatFile,’Enable’,’On’);

set(handles.SimBrowse,’Enable’,’On’);

set(handles.MatBrowse,’Enable’,’On’);

set(handles.OmegaD,’Enable’,’On’);

set(handles.ThetaD,’Enable’,’On’);

set(handles.TargetS,’Enable’,’On’);

set(handles.SineWave,’Enable’,’On’);

end

% --- Executes during object creation, after setting all properties.

function nc_CreateFcn(hObject, eventdata, handles)
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if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function nc_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1])

user_entry=str2num(get(hObject,’String’)); if isempty(user_entry)

| user_entry<0

set(hObject,’BackgroundColor’,[1 1 0])

errordlg(’Value must be positive or 0’,

’Invalid Entry’,’modal’)

end

% --- Executes during object creation, after setting all properties.

function A_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function A_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1]);

user_entry=str2num(get(hObject,’String’));

[r,c]=size(user_entry);

nc = str2num(get(handles.nc,’String’));

if nc>0

if (~isempty(user_entry) & (nc>0 & r~=c)) |

(~isempty(user_entry) & (nc>0 & r~=nc))

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’A-matrix must be ncXnc’,

’Invalid Entry’,’modal’)
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end

elseif nc == 0

if ~isempty(user_entry)

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’If nc = 0, A-matrix must be [ ]’,

’Invalid Entry’,’modal’)

end

end

% --- Executes during object creation, after setting all properties.

function B1_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function B1_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1]);

user_entry=str2num(get(hObject,’String’));

[r,c]=size(user_entry);

nc = str2num(get(handles.nc,’String’));

if ~isempty(user_entry) & c~=5

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’B1-matrix must have 5 columns or be [ ])’,

’Invalid Entry’,’modal’)

end

% --- Executes during object creation, after setting all properties.

function B2_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));
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end

function B2_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1]);

user_entry=str2num(get(hObject,’String’));

[r,c]=size(user_entry);

nc = str2num(get(handles.nc,’String’));

if ~isempty(user_entry) & c~=2

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’B2-matrix have 2 columns or be [ ]’,

’Invalid Entry’,’modal’)

end

% --- Executes during object creation, after setting all properties.

function C_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function C_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1]);

user_entry=str2num(get(hObject,’String’));

[r,c]=size(user_entry);

nc = str2num(get(handles.nc,’String’)); pc =

str2num(get(handles.pc,’String’));

if nc>0

if (~isempty(user_entry) & c~=nc) |

(~isempty(user_entry) & r~=pc)

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’C-matrix must be pc X nc or [ ]’,

’Invalid Entry’,’modal’)

end
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else

if ~isempty(user_entry)

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’If nc = 0, C-matrix must be [ ]’,

’Invalid Entry’,’modal’)

end

if sum(user_entry) ~= 0

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’C-matrix must be zeros

(there are no internal controller states)’,

’Invalid Entry’,’modal’)

end

end

% --- Executes during object creation, after setting all properties.

function D1_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function D1_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1]);

user_entry=str2num(get(hObject,’String’));

[r,c]=size(user_entry);

nc = str2num(get(handles.nc,’String’)); pc =

str2num(get(handles.pc,’String’));

if isempty(user_entry) | r~=pc | c~=5

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’D1-matrix must a pc x 5 matrix’,

’Invalid Entry’,’modal’)

end

% --- Executes during object creation, after setting all properties.

function D2_CreateFcn(hObject, eventdata, handles)
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if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function D2_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1]);

user_entry=str2num(get(hObject,’String’));

[r,c]=size(user_entry);

nc = str2num(get(handles.nc,’String’)); pc =

str2num(get(handles.pc,’String’));

if isempty(user_entry) | r~=pc | c~=2

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’D2-matrix must a pc x 2 matrix’,

’Invalid Entry’,’modal’)

end

% --- Executes during object creation, after setting all properties.

function pc_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function pc_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1])

user_entry=str2num(get(hObject,’String’)); if isempty(user_entry)

| user_entry<=0 | user_entry>2

set(hObject,’BackgroundColor’,[1 1 0])

errordlg(’Value must be 1 or 2’,’Invalid Entry’,’modal’)

end
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% --- Executes on button press in TsatParams.

function TsatParams_Callback(hObject, eventdata, handles)

% Initialize TableSat interface

TSsock=tsat_init(9877,’192.168.1.110’);

%************** Friction Compensation ************************

fr=get(handles.FrictionComp,’Value’);

n=str2num(get(handles.NumFricPts,’String’));

w=str2num(get(handles.wValues,’String’));

f=str2num(get(handles.FricCompValues,’String’));

data = [n, w, f];

if fr == 1

%Friction Compensation is on

tsat_send_msg(8,{uint8(1)},TSsock);

tsat_send_msg(21,{data},TSsock);

fprintf(’sending friction comp on message\n’)

fprintf(’sending friction comp message\n’)

else

%Friction Compensation is off

tsat_send_msg(8,{uint8(0)},TSsock);

fprintf(’sending friction comp off message\n’)

end

%********* Actuator Select **********************************

act=get(handles.ActType,’Value’); act = act - 1;

dz=str2num(get(handles.DeadZone,’String’));

if act == 2

data = act+dz;

else

data = act;

end

tsat_send_msg(10,{data},TSsock); fprintf(’sending actuator type

message\n’)

%*********** Sample Rates ***********************************

cr = str2num(get(handles.ContRate,’String’)); ar =

str2num(get(handles.ActRate,’String’)); er =
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str2num(get(handles.EstRate,’String’));

data = [cr, er];

tsat_send_msg(33,{data},TSsock); fprintf(’sending sample rates

message\n’)

%******** Controller Selection ************************

c = get(handles.ControllerOn,’Value’);

cd = get(handles.ContDef,’Value’); cs =

get(handles.ContSim,’Value’); cm = get(handles.ContMat,’Value’);

if c

%tsat_send_msg(6,{uint8(1)},TSsock);

close_system(’tsat_OL.mdl’)

open_system(’tsat_CL.mdl’)

fprintf(’sending controller on message\n’)

else

tsat_send_msg(6,{uint8(0)},TSsock);

close_system(’tsat_CL.mdl’)

open_system(’tsat_OL.mdl’)

fprintf(’sending controller off message\n’)

end

if c & cd

nc = str2num(get(handles.nc,’String’));

pc = str2num(get(handles.pc,’String’));

A = str2num(get(handles.A,’String’));

B1 = str2num(get(handles.B1,’String’));

B2 = str2num(get(handles.B2,’String’));

C = str2num(get(handles.C,’String’));

D1 = str2num(get(handles.D1,’String’));

D2 = str2num(get(handles.D2,’String’));

TS_Con.dims = [nc, 5, 2, pc, 5, 2];

TS_Con.A = A;

TS_Con.B1 = B1;

TS_Con.B2 = B2;

TS_Con.C = C;

TS_Con.D1 = D1;

TS_Con.D2 = D2;
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tsat_send_msg(15,TS_Con,TSsock);

fprintf(’sending controller message\n’)

elseif c & cs

file = get(handles.SimFile,’String’);

%Note: the model is assumed to have 7 inputs,

%the first 2 are xd,

%the last 5 are the state variables, x.

[pathstr,name,ext,versn] = fileparts(file);

open_system(file);

save_system(name, ’temp’)

close_system(’temp’)

[A,B,C,D] = linmod(’temp’);

[r,c] = size(A);

nc = r;

[r,c] = size(C);

pc = r;

TS_Con.dims = [nc, 5, 2, pc, 5, 2];

if ~isempty(A)

TS_Con.A = A;

else

TS_Con.A = [];

end

if ~isempty(B)

TS_Con.B1 = B(:,3:7);

TS_Con.B2 = B(:,1:2);

else

TS_Con.B1 = [];

TS_Con.B2 = [];

end

if ~isempty(C)

TS_Con.C = C;

else

TS_Con.C = [];

end

if ~isempty(D)
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TS_Con.D1 = D(:,3:7);

TS_Con.D2 = D(:,1:2);

else

TS_Con.D1 = [];

TS_Con.D2 = [];

end

tsat_send_msg(15,TS_Con,TSsock);

fprintf(’sending controller message\n’)

elseif c & cm

file = get(handles.MatFile,’String’);

load(file);

tsat_send_msg(15,TS_Con,TSsock);

fprintf(’sending controller message\n’)

end

%******** Estimator Selection ************************

ed = get(handles.EstDef,’Value’); em =

get(handles.MatLoadE,’Value’);

if ed

no = str2num(get(handles.no,’String’));

Ae = str2num(get(handles.Ae,’String’));

Be = str2num(get(handles.Be,’String’));

Ce = str2num(get(handles.Ce,’String’));

De = str2num(get(handles.De,’String’));

TS_Est.dims = [no, 5, 5, 5];

TS_Est.Ae = Ae;

TS_Est.Be = Be;

TS_Est.Ce = Ce;

TS_Est.De = De;

tsat_send_msg(27,TS_Est,TSsock);

fprintf(’sending estimator message\n’)

elseif em

file = get(handles.MatFileE,’String’);

load(file);
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tsat_send_msg(27,TS_Est,TSsock);

fprintf(’sending estimator message\n’)

end

%************ Target Selection **********************

ts = get(handles.TargetS,’Value’); sw =

get(handles.SineWave,’Value’);

if ts

th = str2num(get(handles.ThetaD,’String’));

w = str2num(get(handles.OmegaD,’String’));

data=[0 th w];

tsat_send_msg(24,{data},TSsock);

fprintf(’sending target message\n’)

elseif sw

amp = str2num(get(handles.Amp,’String’));

f = str2num(get(handles.Freq,’String’));

data = [1 amp f];

tsat_send_msg(24,{data},TSsock);

fprintf(’sending target message\n’)

end

clear pnet

% --- Executes on button press in ContDef.

function ContDef_Callback(hObject, eventdata, handles)

if get(hObject,’Value’) == 0

set(handles.nc,’Enable’,’Off’);

set(handles.pc,’Enable’,’Off’);

set(handles.A,’Enable’,’Off’);

set(handles.B1,’Enable’,’Off’);

set(handles.B2,’Enable’,’Off’);

set(handles.C,’Enable’,’Off’);

set(handles.D1,’Enable’,’Off’);

set(handles.D2,’Enable’,’Off’);

else
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set(handles.nc,’Enable’,’On’);

set(handles.pc,’Enable’,’On’);

set(handles.A,’Enable’,’On’);

set(handles.B1,’Enable’,’On’);

set(handles.B2,’Enable’,’On’);

set(handles.C,’Enable’,’On’);

set(handles.D1,’Enable’,’On’);

set(handles.D2,’Enable’,’On’);

set(handles.ContSim,’Value’,0)

set(handles.ContMat,’Value’,0)

set(handles.MatFile,’Enable’,’Off’)

set(handles.MatBrowse,’Enable’,’Off’)

set(handles.SimFile,’Enable’,’Off’)

set(handles.SimBrowse,’Enable’,’Off’)

end

% --- Executes on button press in ContSim.

function ContSim_Callback(hObject, eventdata, handles)

if get(hObject,’Value’) == 0

set(handles.SimFile,’Enable’,’Off’)

set(handles.SimBrowse,’Enable’,’Off’)

else

set(handles.SimFile,’Enable’,’On’)

set(handles.SimBrowse,’Enable’,’On’)

set(handles.ContDef,’Value’,0)

set(handles.ContMat,’Value’,0)

set(handles.MatFile,’Enable’,’Off’)

set(handles.MatBrowse,’Enable’,’Off’)

set(handles.nc,’Enable’,’Off’);

set(handles.pc,’Enable’,’Off’);

set(handles.A,’Enable’,’Off’);

set(handles.B1,’Enable’,’Off’);

set(handles.B2,’Enable’,’Off’);

set(handles.C,’Enable’,’Off’);

set(handles.D1,’Enable’,’Off’);

set(handles.D2,’Enable’,’Off’);

end

% --- Executes on button press in ContMat.

function ContMat_Callback(hObject, eventdata, handles)
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if get(hObject,’Value’) == 0

set(handles.MatFile,’Enable’,’Off’)

set(handles.MatBrowse,’Enable’,’Off’)

else

set(handles.MatFile,’Enable’,’On’)

set(handles.MatBrowse,’Enable’,’On’)

set(handles.ContDef,’Value’,0)

set(handles.ContSim,’Value’,0)

set(handles.SimFile,’Enable’,’Off’)

set(handles.SimBrowse,’Enable’,’Off’)

set(handles.nc,’Enable’,’Off’);

set(handles.pc,’Enable’,’Off’);

set(handles.A,’Enable’,’Off’);

set(handles.B1,’Enable’,’Off’);

set(handles.B2,’Enable’,’Off’);

set(handles.C,’Enable’,’Off’);

set(handles.D1,’Enable’,’Off’);

set(handles.D2,’Enable’,’Off’);

end

% --- Executes during object creation, after setting all properties.

function SimFile_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function SimFile_Callback(hObject, eventdata, handles)

set(h,’BackgroundColor’,[1 1 1]) if isempty(get(hObject,’String’))

% do nothing

elseif exist(get(hObject,’String’))==0

set(hObject,’BackgroundColor’,[1 1 0])

errordlg(’File Does Not Exist As Entered’,

’Invalid Entry’,’modal’)

else

fokay=fileokay(get(hObject,’String’));

if fokay==0

errordlg(’Please load a Simulink Model’,
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’Invalid Entry’,’modal’)

set(h,’BackgroundColor’,[1 1 0])

end

end

function MatFile_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function MatFile_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1]) if

isempty(get(hObject,’String’))

% do nothing

elseif exist(get(hObject,’String’))==0

set(hObject,’BackgroundColor’,[1 1 0])

errordlg(’File Does Not Exist As Entered’,

’Invalid Entry’,’modal’)

else

fokay=fileokay(get(hObject,’String’));

if fokay==0

errordlg(’Please load a .mat file’,

’Invalid Entry’,’modal’)

set(h,’BackgroundColor’,[1 1 0])

end

end

% --- Executes on button press in SimBrowse.

function SimBrowse_Callback(hObject, eventdata, handles)

[filename, pathname] = uigetfile( ...

{’*.mdl’, ’Simulink Model’}, ...

’Select a Simulink Model’);

set(handles.SimFile,’BackgroundColor’,[1 1 1]) if filename==0

% do nothing

else
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file=fullfile(pathname,filename);

set(handles.SimFile,’String’,file)

end

% --- Executes on button press in MatBrowse.

function MatBrowse_Callback(hObject, eventdata, handles)

[filename, pathname] = uigetfile( ...

{’*.mat’, ’Simulink Model’}, ...

’Select a MATLAB File’);

set(handles.MatFile,’BackgroundColor’,[1 1 1]) if filename==0

% do nothing

else

file=fullfile(pathname,filename);

set(handles.MatFile,’String’,file)

fokay=fileokay(file);

if fokay==0

set(handles.MatFile,’BackgroundColor’,[1 1 0])

errordlg(’File is Not in Correct Form’,

’Invalid Entry’,’modal’)

end

end

% --------------------------------------------------------------------

% checks if file is in readable form

function fokay=fileokay(filename)

try

cont=load(filename);

fokay=1;

if isempty(cont)

fokay=0;

end

catch

fokay=0;

end

% --- Executes during object creation, after setting all properties.

function no_CreateFcn(hObject, eventdata, handles)

if ispc
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set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function no_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1])

user_entry=str2num(get(hObject,’String’)); if isempty(user_entry)

| user_entry<0

set(hObject,’BackgroundColor’,[1 1 0])

errordlg(’Value must be positive or 0’,’Invalid Entry’,’modal’)

end

% --- Executes during object creation, after setting all properties.

function Be_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function Be_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1]);

user_entry=str2num(get(hObject,’String’)); [r,c]=size(user_entry);

no = str2num(get(handles.no,’String’));

if (~isempty(user_entry) & c~=5) | (~isempty(user_entry) & r~=no)

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’Be-matrix must have dimension no X 5 or be [ ])’,

’Invalid Entry’,’modal’)

end

% --- Executes during object creation, after setting all properties.

function Ae_CreateFcn(hObject, eventdata, handles)

if ispc
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set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function Ae_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1]);

user_entry=str2num(get(hObject,’String’)); [r,c]=size(user_entry);

no = str2num(get(handles.no,’String’));

if no>0

if (~isempty(user_entry) & (no>0 & r~=c)) |

(~isempty(user_entry) & (no>0 & r~=no))

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’Ae-matrix must be noXno’,’Invalid Entry’,’modal’)

end

elseif no == 0

if ~isempty(user_entry)

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’If no = 0, Ae-matrix must be [ ]’,

’Invalid Entry’,’modal’)

end

end

% --- Executes during object creation, after setting all properties.

function Ce_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function Ce_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1]);

user_entry=str2num(get(hObject,’String’));
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[r,c]=size(user_entry);

no = str2num(get(handles.no,’String’));

if (~isempty(user_entry) & c~=no) | (~isempty(user_entry) & r~=5)

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’Ce-matrix must have dimension 5 X no or be [ ])’,

’Invalid Entry’,’modal’)

end

% --- Executes during object creation, after setting all properties.

function De_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function De_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1]);

user_entry=str2num(get(hObject,’String’));

[r,c]=size(user_entry);

if isempty(user_entry) | c~=5 | r~=5

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’De-matrix must have dimension 5x5’,

’Invalid Entry’,’modal’)

end

% --- Executes on button press in EstDef.

function EstDef_Callback(hObject, eventdata, handles)

if get(hObject,’Value’) == 0

set(handles.no,’Enable’,’Off’);

set(handles.Ae,’Enable’,’Off’);

set(handles.Be,’Enable’,’Off’);

set(handles.Ce,’Enable’,’Off’);

set(handles.De,’Enable’,’Off’);

else
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set(handles.no,’Enable’,’On’);

set(handles.Ae,’Enable’,’On’);

set(handles.Be,’Enable’,’On’);

set(handles.Ce,’Enable’,’On’);

set(handles.De,’Enable’,’On’);

set(handles.MatLoadE,’Value’,0)

set(handles.MatFileE,’Enable’,’Off’)

set(handles.MatBrowseE,’Enable’,’Off’)

end

% --- Executes on button press in MatLoadE.

function MatLoadE_Callback(hObject, eventdata, handles)

if get(hObject,’Value’) == 0

set(handles.MatFileE,’Enable’,’Off’)

set(handles.MatBrowseE,’Enable’,’Off’)

else

set(handles.MatFileE,’Enable’,’On’)

set(handles.MatBrowseE,’Enable’,’On’)

set(handles.EstDef,’Value’,0)

set(handles.no,’Enable’,’Off’);

set(handles.Ae,’Enable’,’Off’);

set(handles.Be,’Enable’,’Off’);

set(handles.Ce,’Enable’,’Off’);

set(handles.De,’Enable’,’Off’);

end

% --- Executes during object creation, after setting all properties.

function MatFileE_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function MatFileE_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1]) if

isempty(get(hObject,’String’))

% do nothing
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elseif exist(get(hObject,’String’))==0

set(hObject,’BackgroundColor’,[1 1 0])

errordlg(’File Does Not Exist As Entered’,

’Invalid Entry’,’modal’)

else

fokay=fileokay(get(hObject,’String’));

if fokay==0

errordlg(’Please load a .mat file’,

’Invalid Entry’,’modal’)

set(h,’BackgroundColor’,[1 1 0])

end

end

% --- Executes on button press in MatBrowseE.

function MatBrowseE_Callback(hObject, eventdata, handles)

[filename, pathname] = uigetfile( ...

{’*.mat’, ’Simulink Model’}, ...

’Select a MATLAB File’);

set(handles.SimFile,’BackgroundColor’,[1 1 1]) if filename==0

% do nothing

else

file=fullfile(pathname,filename);

set(handles.MatFileE,’String’,file)

fokay=fileokay(file);

if fokay==0

set(handles.MatFileE,’BackgroundColor’,[1 1 0])

errordlg(’File is Not in Correct Form’,

’Invalid Entry’,’modal’)

end

end

% --- Executes on button press in DefContButton.

function DefContButton_Callback(hObject, eventdata, handles)

set(handles.ContText,’Visible’,’On’)

set(handles.ControllerOn,’Visible’,’On’)

set(handles.ContDef,’Visible’,’On’)

set(handles.CEFrame,’Visible’,’On’)

set(handles.ContDefText,’Visible’,’On’)

set(handles.statesText,’Visible’,’On’)

set(handles.nc,’Visible’,’On’)
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set(handles.pcText,’Visible’,’On’)

set(handles.pc,’Visible’,’On’)

set(handles.Atext,’Visible’,’On’)

set(handles.A,’Visible’,’On’)

set(handles.B1text,’Visible’,’On’)

set(handles.B1,’Visible’,’On’)

set(handles.B2text,’Visible’,’On’)

set(handles.B2,’Visible’,’On’)

set(handles.Ctext,’Visible’,’On’)

set(handles.C,’Visible’,’On’)

set(handles.D1text,’Visible’,’On’)

set(handles.D1,’Visible’,’On’)

set(handles.D2text,’Visible’,’On’)

set(handles.D2,’Visible’,’On’)

set(handles.ContMat,’Visible’,’On’)

set(handles.MatBrowse,’Visible’,’On’)

set(handles.MatFile,’Visible’,’On’)

set(handles.ContSim,’Visible’,’On’)

set(handles.SimBrowse,’Visible’,’On’)

set(handles.SimFile,’Visible’,’On’)

set(handles.EstText,’Visible’,’Off’)

set(handles.EstDef,’Visible’,’Off’)

set(handles.EstDefText,’Visible’,’Off’)

set(handles.statesEtext,’Visible’,’Off’)

set(handles.no,’Visible’,’Off’)

set(handles.AeText,’Visible’,’Off’)

set(handles.Ae,’Visible’,’Off’)

set(handles.BeText,’Visible’,’Off’)

set(handles.Be,’Visible’,’Off’)

set(handles.CeText,’Visible’,’Off’)

set(handles.Ce,’Visible’,’Off’)

set(handles.DeText,’Visible’,’Off’)

set(handles.De,’Visible’,’Off’)

set(handles.MatLoadE,’Visible’,’Off’)

set(handles.MatBrowseE,’Visible’,’Off’)

set(handles.MatFileE,’Visible’,’Off’)

% --- Executes on button press in DefEstButton.

function DefEstButton_Callback(hObject, eventdata, handles)

set(handles.EstText,’Visible’,’On’)

set(handles.EstDef,’Visible’,’On’)
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set(handles.CEFrame,’Visible’,’On’)

set(handles.EstDefText,’Visible’,’On’)

set(handles.statesEtext,’Visible’,’On’)

set(handles.no,’Visible’,’On’)

set(handles.AeText,’Visible’,’On’)

set(handles.Ae,’Visible’,’On’)

set(handles.BeText,’Visible’,’On’)

set(handles.Be,’Visible’,’On’)

set(handles.CeText,’Visible’,’On’)

set(handles.Ce,’Visible’,’On’)

set(handles.DeText,’Visible’,’On’)

set(handles.De,’Visible’,’On’)

set(handles.MatLoadE,’Visible’,’On’)

set(handles.MatBrowseE,’Visible’,’On’)

set(handles.MatFileE,’Visible’,’On’)

set(handles.ContText,’Visible’,’Off’)

set(handles.ControllerOn,’Visible’,’Off’)

set(handles.ContDef,’Visible’,’Off’)

set(handles.ContDefText,’Visible’,’Off’)

set(handles.statesText,’Visible’,’Off’)

set(handles.nc,’Visible’,’Off’)

set(handles.pcText,’Visible’,’Off’)

set(handles.pc,’Visible’,’Off’)

set(handles.Atext,’Visible’,’Off’)

set(handles.A,’Visible’,’Off’)

set(handles.B1text,’Visible’,’Off’)

set(handles.B1,’Visible’,’Off’)

set(handles.B2text,’Visible’,’Off’)

set(handles.B2,’Visible’,’Off’)

set(handles.Ctext,’Visible’,’Off’)

set(handles.C,’Visible’,’Off’)

set(handles.D1text,’Visible’,’Off’)

set(handles.D1,’Visible’,’Off’)

set(handles.D2text,’Visible’,’Off’)

set(handles.D2,’Visible’,’Off’)

set(handles.ContMat,’Visible’,’Off’)

set(handles.MatBrowse,’Visible’,’Off’)

set(handles.MatFile,’Visible’,’Off’)

set(handles.ContSim,’Visible’,’Off’)

set(handles.SimBrowse,’Visible’,’Of’)

set(handles.SimFile,’Visible’,’Off’)
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% --- Executes on button press in TargetS.

function TargetS_Callback(hObject, eventdata, handles)

if get(hObject,’Value’) == 1

set(handles.SineWave,’Value’,0)

set(handles.ThetaD,’Enable’,’On’)

set(handles.OmegaD,’Enable’,’On’)

set(handles.Amp,’Enable’,’Off’)

set(handles.Freq,’Enable’,’Off’)

else

set(handles.ThetaD,’Enable’,’Off’)

set(handles.OmegaD,’Enable’,’Off’)

end

% --- Executes on button press in SineWave.

function SineWave_Callback(hObject, eventdata, handles)

if get(hObject,’Value’) == 1

set(handles.TargetS,’Value’,0)

set(handles.Amp,’Enable’,’On’)

set(handles.Freq,’Enable’,’On’)

set(handles.ThetaD,’Enable’,’Off’)

set(handles.OmegaD,’Enable’,’Off’)

else

set(handles.Amp,’Enable’,’Off’)

set(handles.Freq,’Enable’,’Off’)

end

% --- Executes during object creation, after setting all properties.

function Amp_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function Amp_Callback(hObject, eventdata, handles)
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set(hObject,’BackgroundColor’,[1 1 1]);

user_entry=str2num(get(hObject,’String’));

if isempty(user_entry) | user_entry<0

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’Please enter a positive Amplitude’,

’Invalid Entry’,’modal’)

end

% --- Executes during object creation, after setting all properties.

function Freq_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function Freq_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1]);

user_entry=str2num(get(hObject,’String’));

if isempty(user_entry)

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’Please enter a Frequency’,’Invalid Entry’,’modal’)

end

% --- Executes during object creation, after setting all properties.

function ThetaD_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function ThetaD_Callback(hObject, eventdata, handles)
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set(hObject,’BackgroundColor’,[1 1 1]);

user_entry=str2num(get(hObject,’String’)); w =

str2num(get(handles.OmegaD,’String’));

if isempty(user_entry)

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’Please enter a desired target angle’,

’Invalid Entry’,’modal’)

elseif user_entry~=0 & w~=0

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’Cannot have non-zero target rate and target angle’,

’Invalid Entry’,’modal’)

end

% --- Executes during object creation, after setting all properties.

function OmegaD_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,

get(0,’defaultUicontrolBackgroundColor’));

end

function OmegaD_Callback(hObject, eventdata, handles)

set(hObject,’BackgroundColor’,[1 1 1]);

user_entry=str2num(get(hObject,’String’)); theta =

str2num(get(handles.ThetaD,’String’));

if isempty(user_entry)

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’Please enter a desired target rate’,

’Invalid Entry’,’modal’)

elseif user_entry~=0 & theta~=0

set(hObject,’BackgroundColor’,[1 1 0]);

errordlg(’Cannot have non-zero target rate and target angle’,

’Invalid Entry’,’modal’)

end
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Appendix C

TableSat/MATLAB Communications Code

function handleOut = handle_uplinkStateData(flags,sock)

global tsat_msg_waits

% Request more yummy data

tsat_send_msg(81,{uint8(0)},TSsock);

% Read the data out of the receive buffer

x=pnet(sock,’read’,6,’double’,’intel’);

handleOut=[81;x(2:4)’];

function handleErr = handle_ackMesg(flags,sock)

global TSgui tsat_msg_waits

theMesg=pnet(sock,’read’,1,’char’,’intel’);

msgNum = ceil(theMesg); tsat_msg_waits(msgNum)=0;

%if (msgNum==6)

% if (TSgui.controllerOn)

% set(TSgui.controlButton,’Value’,0.0);

% disp(’Setting button to 0’);

% else

% set(TSgui.controlButton,’Value’,1.0);

% disp(’Setting button to 1’);

% end

%end

handleErr = [2;0];
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function handleErr = handle_initOK(flags,sock)

% Stub which does nothing except return error!

handleErr = 1;

function handleErr = handle_uplinkRawData(flags,sock)

global tsat_msg_waits oldRawT oldRawCSS oldRawTAM oldRawRate

oldRawFan TSgui

% Read the data out of the receive buffer

x=pnet(sock,’read’,11,’double’,’intel’) handleErr=0; return;

% If not showing the data, just return

if (~TSgui.showData(2))

handleErr=0;

return

end

% Otherwise, draw the graphs

figure(2); if (TSgui.firstTime(2))

oldRawT = x(1);

oldRawCSS= x(2:5);

oldRawRate= x(6);

oldRawTAM= x(7:9);

oldRawFan = x(10:11);

clf;

end

function handleOut = handle_uplinkStateData(flags,sock)

global tsat_msg_waits numrec oldT dttot firstCall

% Read the data out of the receive buffer

x=pnet(sock,’read’,6,’double’,’intel’);

if (firstCall)

firstCall=0;

oldT=x(1);

end
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dttot = dttot+(x(1)-oldT); numrec=numrec+1; oldT=x(1);

handleOut=[81;x(1:6)’];

function handleErr = handle_uplinkStatusData(flags,sock)

global recvState

theMesg=pnet(sock,’read’,5,’char’,’intel’);

recvState = 1;

reply = sprintf(’ Run State is %d\n Controller Mode is

%d\n Fan Mode is %d\n’,theMesg(1),theMesg(2),theMesg(3));

reply2 = sprintf(’ Actuator Mode is %d\n Gyro Mode is

%d\n’,theMesg(4),theMesg(5));

disp([reply,reply2]);

handleErr = 0;

function handleOut = handle_uplinkStateData(flags,sock)

global tsat_msg_waits

% Read the data out of the receive buffer

x=pnet(sock,’read’,6,’double’,’intel’);

handleOut=[81;x(2:5)’];

function sock=tsat_init(port,tsat_addr)

global tsat_msg_headers tsat_msg_handlers tsat_msg_flags

tsat_msg_waits

MAXMSG = 256; % Maximum number of messages (arbitrary!)

bsize = 1; % Size of byte (single char)

dsize = 8; % Size of double

vsize = 32767; % Flag for variably-sized messages

% Open socket on recognized port for listening

sock=pnet(’udpsocket’,port);
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% All outgoing connections will be to tsat_addr

pnet(sock,’udpconnect’,tsat_addr,port);

% Null out all the arrays

for i=1:MAXMSG

tsat_msg_headers{i} = [];

tsat_msg_handlers{i} = @handle_NULL;

tsat_msg_flags(i) = 0;

tsat_msg_waits(i) = 0;

end

% Receive Acknowledgements

Msgs = { {2, @handle_ackMesg,bsize}, ...

% Set run Mode (send 0 to shutdown)

{4, @handle_NULL,bsize}, ...

% Set Control Mode (0=off (default), 1=on)

{6, @handle_NULL,bsize}, ...

% Set Fan Mode (0=no fan comp, 1 = fric/speed comp)

{8, @handle_NULL,bsize}, ...

% Set Actuator Mode (0=Cont (default), 1=PWM, 2=BANGBANG,

% 2.x -> x is deadzone)

{10, @handle_NULL,dsize}, ...

% Set Gyro autocal (0 = off (default), 1 = on)

{12, @handle_NULL,bsize}, ...

% Set controller definition (structure)

{15, @handle_NULL,vsize}, ...

% Set Fan speed data (double npts,vector wpts,

% vector forcepts)

{18, @handle_NULL,vsize}, ...

% Set Fan friction data (double npts, vector wpts,

% vector fricpts)

{21, @handle_NULL,vsize}, ...

% Set controller target (double Mode

% (0 = hold,1=sine track), double xd[2])

{24, @handle_NULL,3*dsize}, ...

% Set estimator definition (structure)

{27, @handle_NULL,vsize}, ...

% Set gyro autocal adaptation gains

{30, @handle_NULL,2*dsize}, ...

% Set controller/estimator sample rates (2 values in Hz)

{33, @handle_NULL,2*dsize}, ...
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% Receive current state estimate from vehicle

{60, @handle_StateData,6*dsize},...

% Receive raw sensor readings from vehicle

{63, @handle_RawData,11*dsize}, ...

% Receive status data flags from vehicle

{66, @handle_StatusData,5*bsize},...

% Request state data from vehicle

{81, @handle_NULL, bsize}, ...

% Request raw sensor readings from vehicle

{84, @handle_NULL, bsize}, ...

% Request status data from vehicle

{87, @handle_NULL, bsize}, ...

% Request recalibration of sensors

{99, @handle_NULL, bsize}, ...

};

% Report success

for i=1:size(Msgs,2)

tsat_register_msg(Msgs{i}{1},0,Msgs{i}{3},Msgs{i}{2});

end

reply=sprintf(’Tablesat communications initialized

on port %d\n’,port);

disp(reply);

function handleOut=tsat_recv_msg(sock)

global tsat_msg_headers tsat_msg_handlers tsat_msg_flags

tsat_msg_watch tsat_msg_waits

handleOut=0;

size=pnet(sock,’readpacket’,65500,’noblock’);

tsat_msg_waits(tsat_msg_watch) =

tsat_msg_waits(tsat_msg_watch)+1;

if (size>0)

% Get the header and message number

header=pnet(sock,’read’,5,’uint8’,’intel’);

msgnum = header(1);
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handler = tsat_msg_handlers{msgnum};

% Look for errors

% Check if message is registered

if (isequal(handler,@handle_NULL))

reply=sprintf(’Message %d received but

not registered for receipt\n’,char(msgnum));

disp(reply);

return;

end

% Check for correct payload length

if (header(3)~=tsat_msg_headers{msgnum}(3) | ...

header(4)~=tsat_msg_headers{msgnum}(4))

reply=sprintf(’Message %d received but with

incorrect payload size\n’,char(msgnum));

disp(reply);

return;

end

% Get message flags and invoke handler

flags = header(2);

handleOut=feval(handler,flags,sock);

%if (handleErr)

%reply=sprintf(’Handler for message

%d reports error %d\n’,char(msgnum),handleErr);

%disp(reply);

%end

end

function tsat_register_msg(msgnum,flags,msgsize,handler)

global tsat_msg_headers tsat_msg_handlers tsat_msg_flags

%handlerAssign = ’handleErr=’;

%handlerArgs = ’(flags,sock);’;

%tsat_msg_handlers{msgnum}=

strcat(handlerAssign,handler,handlerArgs);

tsat_msg_handlers{msgnum} = handler; tsat_msg_flags(msgnum) =

flags;
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tsat_msg_headers{msgnum}=[uint8(msgnum),uint8(flags),

uint8(floor(msgsize/256)),uint8(mod(msgsize,256)),uint8(0)];

reply=sprintf(’Message %d registered\n’,msgnum);

disp(reply);

function tsat_send_msg(msgnum,data,sock)

global tsat_msg_headers tsat_msg_handlers tsat_msg_flags

if (length(tsat_msg_headers{msgnum})==5)

pnet(sock,’write’,tsat_msg_headers{msgnum},’intel’);

if (isstruct(data)) % flatten structures into cell array

data=struct2cell(data);

end

for i=1:length(data) % loop through cells

if (length(data{i})>0)

if (size(data{i},1)>1)

pnet(sock,’write’,data{i}’,’intel’);

else

pnet(sock,’write’,data{i},’intel’);

end

end

end

pnet(sock,’writepacket’);

else

reply=sprintf(’Message %d has not been

registered\n’,msgnum);

disp(reply);

end
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Appendix D

TableSat Truth Model Code

%TableSat Time Domain Sim Initilization

clear all

T_Cont = 0.02; T_Est = 0.02; sigmaTam = 2.2;

sigmaGyro = 0.09;

%Note for the Controller, B = [B2 B1], D = [D2 D1]

% Acd = [];

% Bcd = [];

% Ccd = [];

% Dcd = [1 0 0 0 0 0 0];

load(’E:\Table Sat\TableSat\Controllers\MBCi_t.mat’) Acd =

TS_Con.A; Bcd = [TS_Con.B2 TS_Con.B1]; Ccd = TS_Con.C; Dcd =

[TS_Con.D2 TS_Con.D1];

% load(’E:\Table Sat\TableSat\Estimators\TSatFilter_2Sample.mat’)

% Ae = TS_Est.Ae;

% Be = TS_Est.Be;

% Ce = TS_Est.Ce;

% De = TS_Est.De;

Ae = []; Be = []; Ce = []; De = eye(5,5);

function [sys,x0,str,ts] = sfuntmpl(t,x,u,flag,params)

%SFUNTMPL General M-file S-function template

% With M-file S-functions, you can define you own ordinary

% differential equations (ODEs), discrete system equations,

% and/or just about any type of algorithm to be used within

% a Simulink block diagram.

%
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% The general form of an M-File S-function syntax is:

% [SYS,X0,STR,TS] = SFUNC(T,X,U,FLAG,P1,...,Pn)

%

% What is returned by SFUNC at a given point in time, T,

% depends on the, value of the FLAG, the current state

% vector, X, and the current input vector, U.

%

% FLAG RESULT DESCRIPTION

% ----- ------ -------------------------------

% 0 [SIZES,X0,STR,TS] Initialization, return system

% sizes in SYS, initial state in

% X0, state ordering strings in

% STR, and sample times in TS.

% 1 DX Return continuous state

% derivatives in SYS.

% 2 DS Update discrete states

% SYS = X(n+1)

% 3 Y Return outputs in SYS.

% 4 TNEXT Return next time hit for variable

% step sample time in SYS.

% 5 Reserved for future (root finding).

% 9 [] Termination, perform any cleanup

% SYS=[].

%

%

% The state vectors, X and X0 consists of continuous

% states followed by discrete states.

%

% Optional parameters, P1,...,Pn can be provided to

% the S-function and used during any FLAG operation.

%

% When SFUNC is called with FLAG = 0, the following

% information should be returned:

%

% SYS(1) = Number of continuous states.

% SYS(2) = Number of discrete states.

% SYS(3) = Number of outputs.

% SYS(4) = Number of inputs.

% Any of the first four elements in SYS

% can be specified as -1 indicating that

% they are dynamically sized. The actual

% length for all other flags will be equal
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% to the length of the input, U.

% SYS(5) = Reserved for root finding. Must be zero.

% SYS(6) = Direct feedthrough flag (1=yes, 0=no).

% The s-function has direct feedthrough if

% U is used during the FLAG=3 call. Setting

% this to 0 is akin to making a promise that

% U will not be used during FLAG=3. If you

% break the promise then unpredictable

% results will occur.

% SYS(7) = Number of sample times. This is the

% number of rows in TS.

%

%

% X0 = Initial state conditions or [] if no states.

%

% STR = State ordering strings which is generally

% specified as [].

%

% TS = An m-by-2 matrix containing the sample

% time (period, offset) information.

% Where m = number of sample times. The

% ordering of the sample times must be:

%

% TS = [0 0,

% : Continuous sample time.

% 0 1,

% : Continuous, but fixed in minor step

% sample time.

% PERIOD OFFSET, : Discrete sample

% time where PERIOD > 0 & OFFSET < PERIOD.

% -2 0];

% : Variable step discrete sample time

% where FLAG=4 is used to get time of

% next hit.

%

% There can be more than one sample

% time providing they are ordered such

% that they are monotonically

% increasing. Only the needed sample

% times should be specified in TS.

% When specifying than one

% sample time, you must check for sample
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% hits explicitly by seeing if

% abs(round((T-OFFSET)/PERIOD) - (T-OFFSET)/PERIOD)

% is within a specified tolerance,

% generally 1e-8. This tolerance is

% dependent upon your model’s sampling times

% and simulation time.

%

% You can also specify that the sample time

% of the S-function is inherited from the

% driving block. For functions which

% change during minor steps, this is done by

% specifying SYS(7) = 1 and TS = [-1 0].

% For functions which are held during minor

% steps, this is done by specifying

% SYS(7) = 1 and TS = [-1 1].

% Copyright 1990-2002 The MathWorks, Inc.

% $Revision: 1.18 $

%

% The following outlines the general structure of an

% S-function.

%

switch flag,

%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%

case 0,

[sys,x0,str,ts]=mdlInitializeSizes;

%%%%%%%%%%%%%%%

% Derivatives %

%%%%%%%%%%%%%%%

case 1,

sys=mdlDerivatives(t,x,u,params);

%%%%%%%%%%

% Update %

%%%%%%%%%%

case 2,

sys=mdlUpdate(t,x,u);
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%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

case 3,

sys=mdlOutputs(t,x,u);

%%%%%%%%%%%%%%%%%%%%%%%

% GetTimeOfNextVarHit %

%%%%%%%%%%%%%%%%%%%%%%%

case 4,

sys=mdlGetTimeOfNextVarHit(t,x,u);

%%%%%%%%%%%%%

% Terminate %

%%%%%%%%%%%%%

case 9,

sys=mdlTerminate(t,x,u);

%%%%%%%%%%%%%%%%%%%%

% Unexpected flags %

%%%%%%%%%%%%%%%%%%%%

otherwise

error([’Unhandled flag = ’,num2str(flag)]);

end

% end sfuntmpl

%

%============================================================

% mdlInitializeSizes

% Return the sizes, initial conditions, and sample times for

% the S-function.

%============================================================

%

function [sys,x0,str,ts]=mdlInitializeSizes global fric1 fric2

%

% call simsizes for a sizes structure, fill it in and convert

% it to a sizes array.

%

% Note that in this example, the values are hard coded.
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% This is not a recommended practice as the characteristics

% of the block are typically defined by the S-function

% parameters.

%

sizes = simsizes;

sizes.NumContStates = 4; sizes.NumDiscStates = 0;

sizes.NumOutputs = 4; sizes.NumInputs = 1;

sizes.DirFeedthrough = 0;

sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

%

% initialize the initial conditions

%

x0 = [(180)*pi/180; 0.0*pi/180; 0; 0];

%

% str is always an empty matrix

%

str = [];

%

% initialize the array of sample times

%

ts = [0 0];

% end mdlInitializeSizes

%

%=============================================================

% mdlDerivatives

% Return the derivatives for the continuous states.

%=============================================================

%

function sys=mdlDerivatives(t,x,u,params)

% Parse out state variables

th=x(1); % angle

w = x(2); % rate

nu1 = x(3); % fan 1
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nu2 = x(4); % fan 2

% Get compensation parameters

fcomp = params(10); fmag = params(9);

% Implement friction compensation

if (fcomp)

if (w>=0)

v = u + fmag;

else

v = u - fmag;

end

else

v = u;

end

% Implement actuator deadzone compensation

vmag = abs(v); if (vmag>=3)

v1 = vmag;

v2 = 0.0;

elseif (vmag>=.1)

v2 = 3;

v1 = vmag+3;

else

v1 = 0.0;

v2 = 0.0;

end

% "Jet select" logic for +/- fans

if (v>0)

vp = v1;

vm = v2;

else

vp = v2;

vm = v1;

end

% -----------Compute system dynamics-------------

sys=zeros(4,1);

% Tablesat physical constants
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It = params(1); l = params(2); ft = params(3); ff = params(4);

alpha = params(5);

Kwf = params(6); %speed to force constant

Kvw = params(7); %voltage to speed constant

fanTC = params(8); eps = 0.01;

% Model actuator saturation

if (vp>12)

vp = 12;

elseif (vp<0)

vp = 0.0;

end if (vm>12)

vm = 12;

elseif (vm<0.0)

vm = 0.0;

end

% Model table friction

if (w>0)

Ft = ft;

elseif (w<0)

Ft = -ft;

else

Ft=0;

end

% Model fan 1 friction

if (nu1>eps)

Ff1 = ff*exp(-nu1/fanTC);

else

Ff1 = 0;

end

% Model fan 2 friction

if (nu2>eps)

Ff2 = ff*exp(-nu2/fanTC);

else

Ff2 = 0;

end

sys(1) = w;
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sys(2) = (l*Kwf*nu1 - l*Kwf*.99*nu2 - Ft)/It;

sys(3)=-alpha*nu1 + Kvw*(vp - Ff1);

sys(4) = -alpha*nu2 + Kvw*(vm-Ff2);

% end mdlDerivatives

%

%==================================================

% mdlUpdate

% Handle discrete state updates, sample time hits,

% and major time step requirements.

%==================================================

%

function sys=mdlUpdate(t,x,u)

sys = [];

% end mdlUpdate

%

%===================================================

% mdlOutputs

% Return the block outputs.

%===================================================

%

function sys=mdlOutputs(t,x,u)

sys = [mod(180*x(1)/pi,360)-180;180*x(2)/pi;x(3);x(4)];

% end mdlOutputs

%

%===================================================

% mdlGetTimeOfNextVarHit

% Return the time of the next hit for this block.

% Note that the result is absolute time. Note that

% this function is only used when you specify a

% variable discrete-time sample time [-2 0] in the

% sample time array in mdlInitializeSizes.

%===================================================
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%

function sys=mdlGetTimeOfNextVarHit(t,x,u)

% Example, set the next hit to be one second later.

sampleTime = 1;

sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

%

%===============================================

% mdlTerminate

% Perform any end of simulation tasks.

%===============================================

%

function sys=mdlTerminate(t,x,u)

sys = [];

% end mdlTerminate
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