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Abstract

Data warehouse mai ntenance a gorithms usually work off-line, making the warehouse un-
available to users. However, since most organizations require continuous operation, we need
be able to perform the updates online, concurrently with user queries. To guarantee that user
gueries access a consistent view of the warehouse, online update a gorithms introduce redun-
dancy in order to store multiple versions of the data objects that are being changed. In this
paper, we present an online warehouse update algorithm, that stores multiple versions of data
as separate rows (vertical redundancy). We compare our algorithm to another online algorithm
that stores multipleversionswithin each tuple by extending the table schema (horizontal redun-
dancy). We haveimplemented both a gorithmson top of an Informix Dynamic Server and mea-
sured their performance under varying workloads, focusing on their impact on query response
times. Our experiments show that, except for alimited number of cases, vertical redundancy is
a better choice, with respect to storage, implementation overhead, and query performance.
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1 Introduction

Datawarehouses contain replicated datafrom several external sources, collected to answer decision
support queries. The degree of replication is further extended by introducing other derived data to
facilitate query processing and maintenance. The derived datainclude al kinds of indices, materi-
alized views, summary tables, multidimensional aggregate views such as the data cube, and so on.
We refer to all these with the most general term “materialized views’ ([Rou98]).

When data at the external sources change, updates are sent to the warehouse, which hasto per-
form arefresh operation. Except for updating the base data tables, materialized views also need to
be updated in order for the warehouse to reach afully consistent state. Executing the refresh op-
eration poses a serious trade-off. On the one hand, the sheer volume of data stored in warehouses,
makes the refresh operation a costly procedure. On the other hand, in order to avoid having stale
data, the warehouse needs to be refreshed frequently. In current business practices, the warehouse
istaken off-linefor the duration of therefresh operation. During refresh, thewarehouseisdown and
no queries are alowed to run (since they would access inconsistent data) and because of that, the
refresh operation is usually scheduled overnight. However the new world order of globalizationin
operation shrinks or completely eliminates the overnight down-timewindow ([DDWJR98]), since
it isaways daytime in some part of the world.

One possible solution is to try to minimize down-time and thus make the effects of the ware-
house being off-lineas little as possible ([CGL*96]). Another, even better, solutionisto eliminate
down-time altogether, by using an online update algorithm, and thus accommodate the continuous
operation requirement of organizations ([B*98]). Such an online algorithm would allow the user
gueriesto run concurrently with the refresh process at the warehouse, assuming that the queriesare
protected from accessing inconsistent data.

As afirst approach towards an online algorithm, one could smply keep two separate copies of
the entire database: one only for the readers and one only for the maintenance operations. In this
setup, the refresh operation does not interfere with read-only queries. Except for the huge storage
overhead however, thereisabig cost to pay, when the updated database i s copied over theread-only
database, which renders this approach impractical.

For a second approach towards an online algorithm, one could rely on traditional database tech-
nology and “enclose” the refresh operation in one long transaction, which would guarantee! that
al the warehouse querieswill be able to access the changes to the warehouse only after the refresh
iscomplete. Thislong update transaction should include both the updatesto the base table dataand
the incremental updatesto all the affected materialized views, in order to bring the warehouse into
afully consistent state. Obviously, such a transaction would be prohibitively long and hence is not
aplausible solution.

A better ideaisto keep multiple versions of the data objects stored in the warehouse (i.e. in-

4f running with at least isolation level 2 ([BBG*95]).



troduce redundancy), and with some bookkeeping, always be able to present afully consistent ver-
sion of the warehouse to the queries while the warehouse is being updated. Multiversioning has
been used extensively to provide concurrency control and recovery in (distributed) database sys-
tems ([Ree83, SR81, CFL 82, BS83, BG83, AS93, SA93, MWY C96, IMR97, LST97]). Special-
ized multiversion access structures have also been proposed ([LS89, LS90, dBS96, BC97, VV 97,
MOPW98])

In the context of OLTP systems, long read-only queries can be alowed to access an older, fully
consistent version of the database, whilethe update transactionsare operating on adifferent version
of the database ([BC92b, BC924a]). This approach is known as transient versioning ((MPL92)),
since the multiple versions of data objects are not kept forever, in contrast to historic databases.

The main difference between OLTP systems and data warehousing systems, is that the updater
processin datawarehousesisusually only one (but long), compared to the many short update trans-
actions that OLTP systems usually have. This means that in the data warehouse case there are no
write conflicts, but there still isalot of data contention between the updater process and user queries
(which aretypically long & complex).

The absence of write conflicts, allows for simpler online update algorithms that use multiver-
sioning, but don’t requirelocking. Quass & Widom presented such an algorithm, 2VNL, in[QW97],
which extends each tuplein order to store the “before” values (horizontal redundancy). We present
another aternativewhere multipleversionsare stored as multipletuples (vertical redundancy). For
both online update algorithms, the update process is expected to run in the background, and from
time to time “release” new, fully consistent versions of the warehouse for queries to access. Old
versions of objects can be deleted later, after making sure that no user query accesses them.

In the next section we present the details of our online update algorithm. In section 3 we briefly
describe horizontal redundancy and compare it to vertical redundancy. In section 4 we present the
results of our experiments, followed by our conclusions.



2 Vertical Redundancy: MVNL

One way to support online warehouse updatesis by vertical redundancy: multipleversions of each
tuple are stored as multiplerowsin thetable. By adding control information to each record, queries
can aways access a transaction consistent view of the warehouse, and the refresh process does not
delay readers asit does not have to acquire any locks.

Of course, supporting online warehouse updates does not come for free. Except for the minor
schema changes, there must be a distinction between logical and physical update operations. For
example atuple deletion cannot result in the tuple being physically deleted right away, asit might
be used by thereaders. Instead, it has to be just marked as deleted and be actually deleted at alater
time (garbagecollection). Similarly, updates on data cannot be donein-place, but instead, care must
be taken so that the old values remain accessible to the readers.

In the following paragraphs we present the details of our algorithm, MVNL, which stands for
Multi-Version No Locking and is named after the classic MV 2PL algorithms on which it is based.
First we give a short introduction on how versionswork in the system, followed by alist of modifi-
cationsrequired to support the algorithm. Then we outline our approach on garbagecollection. Last
we describe a mechanism to track version numbers among the updater, the query and the garbage
collection processes.

2.1 Multiversioning

MVNL supports multiple versions by using Time Travel ([Sto87]). Each row has two extra at-
tributes, 7,,.;,., theinsertion timestamp, and 7,,,...., the deletion timestamp. The insertion timestamp
gets assigned when the tupleisfirst inserted into the database, whereas the del etion timestamp gets
assigned when the tuple is marked as deleted. These timestamps are used by queries to filter out
rows that are “younger” than the queries and are not supposed to be “visible”.

There are three timestamp variables in the system:

o T,,.in: iSAprivateverson number? counter that is used by the maintenance process. It is
initialized at 1, and is incremented by 1 each time a warehouse refresh operation has been
completed. It correspondsto the version of the database that the maintenance processis cur-
rently updating. Tuples that areinserted get 7,.;, = Thnaine @d T, = oo, Whereas tuples
that are marked deleted get 7', = 1haint-

o T.,s. iSaglobal version counter, that the maintenance process updates every time arefresh
operation iscompleted. It correspondsto the maximum (most recent) version in the database
that is consistent.

2We use the terms timestamp and version number interchangeably.



o T,..ry ISaprivatevariable, which isinitialized with the current value of 7., a the start
of each query process. It correspondsto the version of the database that the query is alowed
to access. User queries are only alowed to access tuples that were created sometime in the
past, and have not yet been marked as deleted. In timestamp arithmetic, the visible tuples
should have 7', <= Tyuery @A Tyyery < Thae (remember that if atuple is not deleted it
has 7)., = ).

Updates insert(r) delete(r)

ita s time

risnotinthe : tupleris 1 tupleris . tupleris | tuple ris invisible

warehouse : invisible | visible : visible i (marked deleted)
Queries j
| L

Figurel: Lifecycleof atuple

Toillustrate the use of timestamps, we follow thelife-cycle of atupler (seefigure 1). At some
pointintime, ¢, tupler will beinserted into the database by the update process. However, thetuple
will not be visibleto user queriesuntil the update process finishes with the entire batch of updates,
at t,. At that point, 7, . will be updated and the new version will be released. Queries starting
after ¢, will be “allowed” to access tuple r. The deletion of tuple r works similarly. Although the
tuple gets marked as deleted (at point ¢5), thisfact will not be visibleto user queriesuntil the update
process finishes the entire batch of updates and releasesthe new version at ¢,. Queries starting after
t4 will “se€” that tuple r has been marked deleted.

2.2 Modifying therelation schema

In order to support multiversioning, we must modify the schemaonly for therelationsthat might get
updates. The required changes are straightforward after the discussion in the previous section. We
simply need to add two integer attributes, 7}, , to storethe insertion timestamp, and, 7’,,,..., to store
the del etion timestamp. In other words, if the pre-MVNL schemafor arelationwas (a1, as, . . ., ax),
where «; isan attribute and % is the total number of attributes, it will have to be modified into:

(Tm’iTm Tmal’7 1,02, ..., Clk)

We can calculate the storage overhead for keeping the extra versions of datain multiple rows.
Let us assume that initially, relation R has k attributes {ay, as, ..., ax}, and N rows, each of size
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Shase = .11 Sl zeof («;) . Also assume that there were N7 new rows inserted to the relation,
Np rowsdeleted, and NV, rows modified. If A, isthe set of adl attributesfrom relation R that get
modified, thenlet Smog be thetotal size of the all these attributes, or Smog = >~,,c4,, Si Zeof (a;) .

If we wish to apply the updates but also keep the previous version of the data, we will need to
keep the deleted tuples and al so store the modifications separately. In this case, the minimum total
storage requirement would be:

TSorma = (N + NI) X Shase + Nt X Smod (1)

Under MVNL we store extra control information together with all the database tuples, and we
also keep the previous versions of the data as separate tuples. The storage requirement is:

TSwwaL = (N + N7 4+ Nag) X (Spase + Smwne) (2
where Syvn = Si zeof (1),:,) +si zeof (1}...) -

2.3 Maodifying the updater

We assumethat updatesfrom the external datasourcesarrive at the datawarehouse® asynchronously,
but are delivered in-order? , i.e. updates from the same source arrive at the warehouse in the same
order by which they were sent. The continuous update stream is split into batches of work by the
updater process. In order to guarantee that these batches do not cross transaction boundaries, data
sources annotate the update streams with transaction begin/end markers which are later observed
when splitting the stream. Each of these batches will correspond to one version of the warehouse.

Theupdater processkeepsaprivateversion counter, 7,,.:,.:, which usesto “mark” all thechanges
it makesto thewarehouse. All update operationsthat belong to the same batch get marked with the
same version number. When the batch is complete, the value of 7,,..,.; is made public by assign-
iNg Tsqfe = Tnaine (iN effect “releasing” that version) and is also incremented by 1. This protocol
ensures that either all of the updatesin abatch are visible to the queries or none of them.

In order for the updater process to support multiversioning, it must make the distinction be-
tween logical and physical update operations. Logica operations are those suggested by the data
sources, and physical operations are the ones that will actually be executed because of multiver-
sioning through MVNL. For example, a deletion, cannot be executed right away, as there might be
gueries still accessing the version of the warehouse the deleted tuple belongs to.

Inthefollowing paragraphs, we givedetail son the mapping between logical and physical update
operations, whichisdictated by MVNL. Inour examples, relation R, hask attributes: (a4, as, . . ., ax),
of which «,, isthe primary key, and v; isthe value that corresponds to attribute «;.

3We use the terms database and warehouse interchangeably.
41f ordered delivery is not guaranteed, it can be implemented with a simple sequencing scheme at the data sources
and a slight modification of the updater.



\ Logical operation \ Physical operation(s)

linsert values ((vi,vs,...,v5); |insert values ( Tyaint,00,01,02,...,0;);

|delete fromR wherea,=v,; | update R set Tmax =T Wherea,=v,; |

where a, = v, ; insert values ( T,uint,00,01,02,...,0%);

update R set * = ( vy,vg,...,v;) | Update R set Tmax =71, Wherea,=v,;

Table 1: Mapping of logical to physical update operations

Insertions Physical insertions are amost identical to logical insertions. To support MVNL we
only need to store the version information at each tuple. So, alogical insert(vy, v, ..., v;) istrans-
lated into aphysical insert(7,,qin:, 00, V1, V2, - . . , V).

Deletions As explained earlier, logica deletions cannot be trandated directly to physical dele-
tions since other queries should be able to have access to the tuplethat is to be deleted. Therefore,
instead of deleting such tuples, we ssimply mark them as deleted. So, alogical delete(v,), istrans-
lated into aphysical update(7,,.. «— Traint, Wherea, = v,). At alater time, when no reader needs
to access the tuple, it gets physically deleted by garbage collection.

Updates The handling of updates in MVNL adheres to the copy-on-write principle. Since old
versions of data are possibly needed by readers, the updater cannot perform tuple modifications
in place. Instead, all logica update operations are mapped into a pair of logical deletion and log-
ical insertion operation, which are then trandated, as described earlier, into a physical update and
aphysical insert operation. So, alogical update(a; = v;, where a, = v,), is mapped into a log-
ical delete(v,) and alogical insert(vy, vs, ..., v;). These two are then trandated into a physical
update(7’,q. < Taint, Wherea, = v,,) and aphysical insert(vy, vs, . . ., vg).

Example 1 Let us consider the or der table from the TPC-D benchmark. Assume that an up-
dater process (with 7,,.;,; = 100) wants to insert into or der the information on the order with
or der key = 12345. After theinsertion, theor der tablewill look like this:

| tmin | tmax | orderkey | custkey | orderstatus | ... | comment |
| 100| oo| 12345| .. | P | ... | Special kidswrapping needed |

Now supposethat at alater time, there needsto be an updateto thisentry, for example a change
in the orderstatus (from Pending to Completed). If the updater process that performs this change
hasT,,.;.: = 103, then theor der tablewill look like this:

| tmin | tmax | orderkey | custkey | orderstatus | ... | comment |
100 | 103 12345 P ... | Special kidswrapping needed
103 o0 12345 C ... | Special kidswrapping needed
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Finally, supposethat after along time, thisentry needsto be deleted. If the updater process that
performsthischangehasT,,.;,; = 202, thentheor der tablewill look like this:

| tmin | tmax | orderkey | custkey | orderstatus | ... | comment |
100 | 103 12345 P ... | Special kidswrapping needed
103 | 202 12345 C ... | Special kidswrapping needed

Example 1 brings up afew points worth mentioning. First of al itis clear that the readers need
to be modified in order to “distinguish” the right version of the data, since multiple versions are
kept in the warehouse. We describe the necessary modificationsfor the readersin the next section.
Secondly, itisaso clear that having all those tuples hanging around after they arelogically deleted
will pose someread overhead. Periodically, the garbage collection will clean tuplesthat are marked
asdeleted, but thereisatrade-off between read overhead and the one imposed by garbage collection.
Finally, one might notice that in the update operation, we had to duplicate the entire row, despite
the fact that only one attribute was modified. In the general case we don’t know in advance which
tuples can be modified, but if we can restrict the set of the updateabl e attributes, then we might use
adifferent approach. Section 3.1 briefly describes a solution presented in [QW97] which is based
on that observation.

2.4 Modifyingthereaders

Each reader process, upon startup, initializes a private variable, 7,.,,, to the current “released”,
fully consistent version of the warehouse (= 7', ). 1.y 1S Used asaguideto filter out tuples that
are supposed to be invisibleto the reader. More specifically, the reader process should only access
tuples that have:

Tonin <= Tyuery A Tpyery < Do ©)

The first part of the expression ssmply prohibits accessing any newly inserted tuples, whereas the
second part guarantees that tuples marked as deleted in the past will not be visible to the query. All
user queries have to be rewritten using the query modification technique ([Sto75]) to include this
congtraint in their wher e clause.

A positive side-effect of thisapproachisthat, in effect, it guarantees aRepeatable Read isolation
level ([BBG195]) for the readers, since the value of 7,,.,, stays the same for the duration of the
user query.



2.5 GarbageCollection

Periodically we will need to physically delete the tuples that have been marked as deleted, but do
not belong to a version that is currently being used by areader. Although this garbage collection
procedure reduces read overhead, it is not necessary for correctness. Readersin MVNL will always
see aconsistent view of the database no matter how many old versions are kept. The reason behind
garbage collection is performance. By removing unused tuples we reduce the storage overhead
imposed on the warehouse by the online algorithm. This means that relation scans will be shorter
and indexes will be smaller, leading to faster query responses.

Garbage collection should be executed periodically, or when server load permitsit. It can run
concurrently with the updater, and the readers. To perform garbage collection, we need to know
the highest version number that is not being accessed by any reader, 7}.;;. The SQL to removethe
“invisible” tuplesisthen:

delete fromR where Tmax <=7}
In order to find 7}, there has to be some minimal coordination between the updater, the readers
and the garbgage collection process, which we describe in the next paragraph.

2.6 Version Management

All of the processes that we have described so far (Updater, Readers, Garbage Collector) should be
able to run concurrently, with amost no interaction among them. The only points of coordination
that exist are the setting of the 7', ;. and 1}; variables. The T, ;. variable needs to be assigned to
thevaueof 7, .., after each update batch is completed, so that queries can find out the number of
the latest consistent version (i.e. Thaint — Tsafe — Tyuery). The Ty variable holds the highest
version number not being accessed by any reader.

We present one possible implementation of this coordination through arelationa table, vet a
(short for VErsion TAble), but it should be fairly straightforward to implement it in main memory
instead® . In order to store both 7, ;. and the T,,..., variables of al active readers, tablevet a has
two attributes:

e type, which can taketwo values. * U for Updater or ' R for Reader, and,

¢ vn, which storesthe version number. If type="U thenvn=1,,;., otherwisevn=1,,.,, of
one reader.

After describing the schema for vet a, we will present in detail the steps the Updater, Reader,
Garbage Collection processes need to take in order to coordinate with each other.

SHowever, a main memory implementation might not be significantly faster than the relational table one, as we
expect the table to remain in main memory sinceit isrealy small.
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The updater, upon completion of a batch of updates, will “release” the current version by up-
dating the vet a table asfollows:
insert in veta values ("U, T,un);
delete fromveta where type ='U and vn = T, —1;
After thisis completed, the updater will increment its private 7,,.,;,.; variable.

The reader, upon startup, will first read the current 7', 4. :

Ts.;e=sel ect max(vn) fromveta where type = 'U,;
and after it copiesit to its private 7., variable (1},,.,, < Ts.z.), it will recordin vet a the fact
that it isusing thisversion:

insert into veta values ("R, Tiuy);

The reader, upon completion, should record in vet a thefact that it isno longer using that version
(so that the garbage collector will be able to identify which versions are currently active):
delete fromveta where type = 'R and vn = T,

Finally, the garbage collection process, upon startup should determine the minimum version num-
ber currently in use and deduct one to get the maximum version that is not being used (and can be
deleted):

Twin = (sel ect min(vn) fromveta where type = 'R )—1
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3 Vertical Redundancy vs Horizontal Redundancy

Another way to support online warehouse updatesiswith horizontal redundancy: multipleversions
of data objectsare stored withinthe sametuple, by extending the table schema. Control information
at each record allows queries to aways calculate a transaction consistent view of the warehouse,
while the refresh process does not delay readers asit does not have to acquire any long-term locks.

In the following sections we briefly describe horizontal redundancy, compare it to vertical re-
dundancy and, finally, give some details about their implementation.

3.1 Horizontal Redundancy: 2VNL

Quass and Widom presented in [QW97] an online warehouse update algorithm, 2VNL, that uses
horizontal redundancy. The idea behind the algorithm isto extend each tuple to hold the “before”
values of the attributesthat change. Up to two different versions of the data are stored in the ware-
house, one being used by the update process, and one being accessed by user queries, which allows
user queriesto run concurrently with the update process and always “see” a consistent view of the
warehouse. To implement 2VNL one has to make changes in the relation schema, in the update
process and in the user queries. We outline these modificationsin the following paragraphs.

Modifyingtherelation schema Before we augment the existing relation schemato support hor-
izontal redundancy, we need to identify which attributes from each relation are updateable, i.e.
might be modified by an update statement. When deciding if an attribute is updateable or not, we
should always take a conservative approach: first characterize all attributes as updateable by de-
fault, and then, only if we can guarantee that for the entire life of our system there will not be an
update operation on an attribute, we could exclude it from the list. This conservative approach is
necessary sincewewon’t be ableto service an update operation on an attribute that has been deemed
non-updateabl e.

Let R be arelation with & attributes. (a4, as, ..., ax), and suppose m of these attributes are
updateable: {a,,,a.,,...,a,, }, wherel < z; < k. The extended relation schema would then be:

(tupleVN, operation, ay, as, ..., a4k, GpyyGpyye. .y ay,))

where tupleVN contains the version number of the maintenance process that performed the last op-
eration on the tuple and operation isthe last operation performed (insert, delete or update). Clearly,
the worst case would be when m = £, where we would have to approximately double the size of
the warehouse.

We can cal culate the storagerequirement for keeping the before val ues of data by extending each
tuple. Let us assume that relation R has IV rowsinitially, each of Size Spae = Y., Si zeof (a,) .
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Also, let Smog be the total size of al the updateable attributes, or Smoq = >-72, Si zeof (a,,) .
Finally, let us assume that there were N7 new rows inserted to the relation, Np rows deleted, and
N rows modified. Under 2VNL, we need to allocate extra space to store the before-values of the
updateable attributes for all tuples in the warehouse. The total storage requirement for relation i
would be:

TS = (N 4 Nz) X (Shase + Smod + S2wnL) 4
where Soyn. = Si zeof (tupleVN) + si zeof (operation) .

Modifyingtheupdater To support multiversioning through horizontal redundancy wemust again
make the distinction between logical and physical update operations:

e Logical insertions, aretrandated into physical insertionswith the addition of thetupleVN and
operation attributes.

e Logica deletions, are trandated into physical updates, where the tuple is ssimply marked as
deleted by properly setting the tupleVN and operation attributes.

e Logica updates, are trandated into physical updates. Care istaken so that the old values of
the attributes, are “copied” to the area inside each tuple allocated to store the before-values.

One other rule that appliesto all kinds of update operations under 2VNL isthat, in order for the
algorithm to work, we need to identify the net effect of operations that are encountered inside the
same “batch”. If for example we have an insertion of atuple r, followed by an update on tuple r,
then wemust record the combination of these two operationsasan insertion, with theinserted values
being the ones after the update operation. Thisis not a problem in MVNL, since it can “tolerate’
multiple instances of the same tuplein the warehouse, provided that only one is marked as valid.

Modifying thereaders With 2VNL, readers are able to access an old, but transaction consistent
version of the warehouse, while the maintenance process workson afuture, “un-released” version.
For that reason, all user queries need to be modified to filter out tuples that are not supposed to be
“visible” to them (by adding afew predicatestothewher e clause) and also choosethe before-value
on dataitemsthat are being changed (using CA SE expressions from SQL 92).

Since there are only two versions kept, there is always the chance, if a user query istoo long,
that the version of the database the query was assigned upon startup will expire before the query
finishes. This can be detected, but unfortunately the query will have to be restarted or it would ac-
cess inconsistent data. The authors outline a solution to this problem which would require keeping
more than 2 versionsin the warehouse. We briefly discuss thisin the next section.
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Garbage Collection Performinglogical deletions by marking the tuple as deleted and not physi-
cally removing it hasthe drawback of creating “garbage”, i.e. warehouse tuples which after a point
are not visible to any reader. Periodically, a garbage collection process can run in the background
and remove those tuples from the database, reclaiming that space.

3.2 Horizontal Redundancy: n-VNL

With 2VNL, reader sessions will “expire” if they span more than one maintenance transaction, and
would have to be restarted. The solution to this problem is to extend the algorithm to support »
versions, and thus handle the case of areader overlapping with at most (n — 1) maintenance trans-
actions. Theresulting algorithm, n-VNL, was presented in [QW97] and is able to make »n versions
of the warehouse available at the same time.

The modifications to the relation schema are similar to those of 2VNL, but instead of allocat-
ing space for one more extra version, we need to allocate space for n — 1 versionsin every tuple.
So, if R isarelation with k attributes: (a4, az, ..., ax), and m of these attributes are updateable:

{az,, 0z, ... a5, , Wherel < x; < k, theschemafor n-VNL will be:
1 1 -1 -1
(tupleVN,, ... . tupleVN, _;, 0p;, ..., 0D, 1, @1,z py psonsly s oeny Gy )
274 version n'" version

In the worst case, where m = £, the size of the warehouse will grow approximately n-fold. In
the general casg, if relation R had N rowsinitially, and there were N7 new rowsinserted, Np rows
deleted, and NV, rows modified, the minimum total storage requirement for £ would be:

TS = (N + Nz) X (Spbase + (n — 1) X (Smod + S2va)) (5

where Spase = S8, si zeof (a;), Smoa = 7, si zeof (a,,) and

Sowne = Si zeof (tupleVN) + si zeof (operation) .

The updater under n-VNL would have to trandate logical update operationsinto physical oper-
ations exactly like 2VNL. The only differenceisthat for each new version that we have to store, we
need to first “push back” the data for the previous versions, thus eliminating the »** version. This
shifting will cause significant overhead making the choice of »n avery important design decision.

Readers would also need to be modified in a manner similar to the 2-version algorithm. How-

ever, the predicates and the CA SE expressions used to provide user queries with aconsistent view
of the warehouse are expected to be noticeably more complex.
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3.3 Comparison

Although MVNL and 2VNL are both based on multiversioning, they have alot of differences. We
explore the most important of these differencesin the next paragraphs.

Concurrent execution of readers & updater The major drawback of off-line update algorithms
isthat user queries cannot run while the warehouse isbeing updated. No user query will be allowed
to start during the refresh operation and any query that ends inside the update window will have to
be aborted (Fig. 2).

Updates p———  —

Queries ! T

I I
I 1 { F { F 11 ot i} 1
I I I I I
I . I I . I I
| | | | . |
i i | | time
I I . I I

P

Aborted

Queries

Figure 2: No Concurrent Execution: Off-line algorithms

Online algorithms on the other hand, allow for concurrent execution of the maintenance trans-
action and user queries by introducing redundancy. 2VNL, which employs horizontal redundancy,
stores up to two versions of warehouse data, which allows user queriesto run while the warehouse
is being updated. However, user queries can overlap with at most one maintenance transaction
(Fig. 3). When areader spans more than two maintenance transactions, its session will expire and
will have to be restarted. A solution to thisisto increase the amount of redundancy, by storing »
versions of data (wheren is specified) and use n-VNL. However, the storage cost of thissolutionis
prohibitively high, as, in the worst case, the warehouse can grow n-foldin size.

Updates } | ! { ' i
—— . 1
Queries |t i | | HH M : : i
| 1 1 | —
| | | | time |
P = |
Aborted ‘ ‘ ‘ ‘
N f— P
Queries w w ! !

Figure 3: Concurrent Execution: 2VNL

MVNL, which employs vertically redundancy, also enables user queriesto run while the ware-
house is being updated. However, unlike 2VNL, there is no limit to the number of maintenance
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transactions a query can overlap with during its execution (Fig. 4). Queries can be arbitrary long,
warehouse update “transactions’ can be arbitrary short and they would till be allowed to run con-
currently.

Updates 3 | ' | ' |

|
=

Queries

(-~ L1 -

time

Figure 4: Concurrent Execution: MVNL

Storage overhead We have aready calculated the minimum storage requirement for all online
algorithms, but to be able to compare them we calculate the net storage overhead for each one.
Recall that TS,oma 1S the minimum storage required to keep the old versions of data after applying
the updates (givenin Eq. 1), TSywn. isthe storage requirement for MVNL (giveninEq. 2), TSy is
the requirement for 2VNL (givenin Eq. 4), and TS,y iSthe storage requirement for n-VNL (given
in EQ. 5).

We calculate the storage overheads for MVNL, 2VNL and n-VNL respectively:

Owne = TSawne — TSwoma = Nag X (Sbase — Smod) + (N 4+ Nz 4+ Nag) X S (6)
Ot = TS — TSoma = (N 4+ Nz — Naq) X Smod + (N 4+ Nz) X Soune (7)
Onwnt = TSewL — TSoma = ((n—1) X (N 4+ Nz) — Namt) X Smod

+(n—=1) x (N + Nz) x Saune (8

Clearly, the storage overhead for the n-version horizontal redundancy algorithm, n-VNL, ispro-
hibitively high (even for small n since the entire warehouse population needs to be replicated).

To compare the storage overhead for vertical redundancy with the one for horizontal redun-
dancy, we solve OZVNL > OMVNL- Assumlng that SMVNL ~ SZVNL 6 we get:

Smod N
O O 1
oL > Umwne <= oo > (14 ¢) x N+ N, 9

where S IS the size of the updateable attributes, Spas 1S the tuple size of the relation originally,
c= Sg’t')% = % ¢ < 1, N isthe number of rowsin therelationinitially, N, isthe number
of rows modified by the set of updates and N7 is the number of rows inserted.

81n our implementation we have Spyyne = Soyn. = 2 x si zeof (INTEGER) .
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Weplot Eq. 9inFig. 5, for ¢ = 5% and for N, upto 10% of (N + N7). Notethat in typical
warehouses, the percentage of modifications is expected to be much lower (almost close to 0%)
since we mostly have insertions and deletions.

Fig. 5illustrateswhich casesfavor hori-
2VNL < MVNL

L% -/ oo : zontal redundancy and which favor vertical
Ny | redundancy. Horizontal redundancy algo-
N+N, SUNL > MUNL | rithms extend each tuple to hold the modi-

fied values, so, in effect they “assume” that
the amount of modificationsis going to be
comparable to the size of the database. As
‘ expected, they have low storage overhead
o, only in cases where the percentage of mod-
ificationsisreally high. On the other hand,
vertical redundancy agorithmscopy an en-
Figure5: Storage Overhead: MVNL vs 2VNL tiretupleto hold the modifications, so, they
havevery low overhead when the modifica-
tion is a significant portion of atuple. Since both agorithms handle insertions of new tuples and
deletions of existing tuples similarly, modifications are the operations that determine which of the
two schemes is best. Overal, we can see that in typica warehouse configurations, vertical redun-
dancy should be amore economical solution in terms of storage overhead, compared to horizontal
redundancy.

5%

0%

0% Smod

Sbase

Implementation complexity Implementing MVNL isrelatively easy. The changesto be madeon
therelation schemaaretrivial (adding two integer attributes). The updater process needsto conform
with the mapping of logical to physical update operations (Tab. 1), and the read-only queries have
to be modified to include an extravisibility predicate.

Implementing 2VNL isamore complex task. In order not to duplicate the entire warehouse, one
hasto have knowledge of the application domain and decide on the set of updateable attributes. The
updater process will have to map logical update operationsinto the equivaent physical operations
with the same “net effect”. This forces the use of cursors, as the previous version of the tupleis
required in order to decide what the next physical operation should be. Finally, read-only queries
have to be modified in two ways. @) include an extravisibility predicate (smilarly to MVNL), and,
b) choose the current or before-value for every attribute in the projection list (through a CASE ex-
pression).

4 Experiments

We have implemented both online update algorithms, MVNL and 2VNL as user defined functions
(writtenin C) on an Informix Dynamic Server with Universal DataOptionver 9.12. Infact, we have
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implemented two variationsof 2VNL, onein which thereisonly one updateable attribute (2VNL/1)
and one where all the attributes are updateable (2VNL/K). We used dbgen, the data generator from
the TPC-D Benchmark ([Tra98]), to populate the warehouse for our experiments and also to gen-
erate the updates. However, we have made two extensions to the original generator:

¢ \We annotate the update workload, with begin/end markers around each transaction’. Thisis
required in order to be able to observe transaction boundaries when splitting the workload in
batches.

e Weadd asmall percentage of modification operationsto the update workload. Recall that the
original TPC-D specification only hasinsertions and an equal amount of deletions. However,
in areal environment there are bound to be at least afew modifications, for exampleto alow
corrections to existing entries.

Since we areinterested in updates, we only used the two tables from TPC-D that have updates,
namely or der andl i nei t em For 2VNL/1, we chosethe updateableattributetobeor der st at us
fortheor der table,andl i nest at us forthel i nei t emtablewhich areboth of type CHAR( 1) .
Choosing just only one attribute as updateable is probably unredlistic, but we wanted to compare
MVNL withthe*“theoretic” best case scenario for 2VNL. To judgethe performanceof 2VNL overall,
one should take the average between the best case, 2VNL/1, and the worst case, 2VNL/k.

For al our experimentswe used a SUN UltraSparc 1 model 170, with 256M B of main memory,
running Solaris 2.5. We stored our database in araw disk partition in order to by-pass any Unix
buffering and averaged our measurements over multiple runs.

We ran a number of experiments of which we only present the most important ones because of
gpace limitations. In the first two experiments we scal e the database size and the update workload
and measure thetime each algorithm takesto complete the updates. The third experiment compares
the slowdown that queries face when they are modified to support multiversioning under MVNL or
2VNL. Finally, the last experiment, examines the speed of read-only querieswhen they run concur-
rently with the warehouse update algorithms.

4.1 Scaling the database size

In our first experiment, we scaled the database size by changing the scaling factor of TPC-D. We
tried three different scaling factors:

e 0.2, which corresponds to 300K tuplesintableor der and 1200K tuplesinl i nei t em

’One transaction contains all the operations on one particular order. It can contain for example theinsertionson all
tablesthat have to be made to successfully record a new order, or al the del etionsthat correspond to removing an order
from the warehouse.
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e 0.4, which corresponds to 600K tuplesin tableor der and 2400K tuplesinl i nei t em

e 1.0, which corresponds to 1500K tuplesintable or der and 6000K tuplesinl i nei t em

We kept the update workload constant at 150K maintenance transactions, split evenly among
insertions and deletions. This workload corresponds to 50%, 25% and 10% of the database for
scaling factors 0.2, 0.4 and 1.0 respectively. We also added a few modification operations (1% of
the insertions) to make the update workload more realistic, since a real system should be able to
handle correctionstoo.
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Figure 6: Scaling the database size

Ineach experiment wefirst |oaded the database from scratch and builtindexesfor theor der key
attribute on both or der and | i nei t emtables (thisis necessary to handle the deletions). Then
we ran the update algorithm, and, performed garbage collection at the end. Although we report the
total timeto complete each of these phases, the time to complete the update phase is obvioudy the
most important measurement.
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Fig. 6ab,c have the plots for each individual algorithm, for the different scaling factors. We
can see that al algorithms scale really well. The time to perform the updates does grow with the
size of the database, but unlike the loading & index creation phase, it isnot linear in the size of the
database.

Fig. 6d plots the time each algorithm takes to complete the updates, grouped by scaling factor.
From thisexperiment, we find that MVVNL is alwaysfaster or at least asfast as2VNL/1 (thetheoretic
“best” case for 2VNL) whereas 2VNL/k (the worst case for 2VNL) consistently takes much longer
(54% for SF=0.2, 34% for SF=0.4 and 27% for SF=1.0). This can be explained by the fact that
2VNL/k, because of the schema duplication, has to scan almost twice as much data as MVNL or
2VNL/1 which results in the degradation in performance.

4.2 Scaling the maintenance wor kload

In the next set of experiments, we kept the database size constant, but varied the update workload
and compared the time each algorithm needed to perform the updates.

In the first experiment, we scaled the size
of theupdate workload from 30K maintenance 12288 _
transactions to 150K, in 30K increments. In 8000
all cases, the workload was equally composed 7000
of insertions and deletions, and we also had a o
small percentage of modifications (=1% of the 4000
insertions). Wereport the timeto completethe 3000
updates (insertions, del etionsand modifications) oy
for each agorithm. Fig. 7 hastheresults of our 0
experiments, grouped by algorithm. For each
algorithm the first column corresponds to the
timeto compl ete 30K updates, the second col- Figure 7: Scaling the maintenance workload
umn to the time to complete 60K updates, etc.

As expected, the time to compl ete the updates is always linear in the size of the update workload.
That holds for al algorithms, although again we see that MVNL ties the “best case” for 2VNL,
whereas the worst case for 2VNL is on average 36% sower.

B30K
W 60K
090K
120K
O 150K

Updates Time (secs)

2VNL/1 2VNL/k
Algorithm

In the second experiment, we varied the percentage of modifications in the maintenance work-
load. At ascaling factor of 0.5 and an update workload of 60K maintenance transactions (about
8% of the database), we run three experiments, one with no modifications at all (Fig. 8a), one with
1% modifications (Fig. 8b) and one with 10% modifications® (Fig. 8c), reporting the total time to
complete the updates for each algorithm.

8AIl percentages are based on the number of insertions, 30K.

19



4000 4000 4500
3500 3500 4000
& 3000 Z 3000 7 3500
k3 — — 8 2000
p 2500 — % 2500 | e 3000
£ 2000 £ Emod £ 2500 7
8 1500 4 Bnstce 20007 r 2000 4 Dins+del
T o o
£ 1000 ] g 157 3 1500
> 00 51000 + 5 1000 1
0 . . 500 - 500 -
MVNL 2VNL/1 2VNL/K 0 T T 0
Algorithm MVNL 2VNL/1 2VNL/K MVNL 2VNL/1 2VNL/K
Algorithm Algorithm
(@) no modifications (b) 1% modifications (c) 10% modifications

Figure 8: Modifications as % of the insertions

Theseresultsillustratethe only “weak point” of update algorithmsthat use vertical redundancy:
modifications. Since all modifications have to be trandated into two physical operations (one to
mark the previous value as deleted and and one to insert a new tuple with the new values), it is
expected that workloads with abig number of modificationswill be processed sower than with al-
gorithmsthat employ horizontal redundancy (and perform modificationsin-place). However, even
having to perform two operations for every modification, we can see that MVNL is still faster than
2VNL/k, and we believe this will also be the case with n-VNL. Overadl, we expect that in typical
systems the amount of modificationswill be extremely small, for example TPC-D has none what-
soever, so thiswill not be a problem.

Running the update agorithms by themselves does provide some indication of their behavior,
but to be able to better assess their performance we need to run them in conjunction with user
gueries. We present the results from these experiments in the next two sections.

4.3 Effect on queries. Schema changes

The online update algorithmsrequire making changesto the relation schema and also force all user
gueries to be modified accordingly. These changes affect the response time of queries. In this se-
ries of experiments, wefirst ran the online update algorithms, and, after the warehouse has been re-
freshed, we executed some “benchmark” queries and measured their response times. We compare
these response times to see which algorithm poses the most overhead to query execution. Sincethe
algorithms were not running concurrently with user queries, this experiment should reflect slow-
down on queries because of schema changes and query modifications mandated by each algorithm.

This series of experimentsran on a TPC-D database with scaling factor 0.5, whereas the update
workload consisted of 75K maintenance operations (split evenly among insertions and deletions,

with an extra 1% modifications), which correspond to roughly 10% of the warehouse. We ran two
sets of experiments:

¢ onewith dynamic queries, which accessed the portion of the warehouse that got updated, and,
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¢ one with static queries, which accessed only parts of the warehouse that were not affected at
all by the updates.

To get a representative query mix for each experiment, we also varied the query selectivity. We
had three groups of queries, low selectivity queries (that return just 0.1% of the table = 750 tu-
ples), medium selectivity queries (that return 1% = 7500 tuples), and high selectivity queries (that
return 10% = 75K tuples). Furthermore, each query group was composed of two queries. one on
the or der tableand oneonthel i nei tem t abl e. For every experiment, we report the total
response time for each query group (averaged over multipleruns).
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Figure9: Dynamic queries Figure 10: Static queries

Fig. 9 hastheresultsof our experimentsfor dynamic queries, grouped by query selectivity. The
first column correspondsto MVNL with the addition of agarbage collection phase (MVNL/g) before
running thequeries. The second columnisMVNL, thethirdone2VNL/1 and thelast one2VNL/k. As
we can see fromthe plots, in all experimentswith dynamic queries, MVNL had thelowest response
times, significantly lower (up to 30%) than the best case for 2VNL and almost half the response
time of the worst casefor 2VNL. MVNL after garbage collection was, as expected, an improvement
over MVNL with 30% lower response times on average. The superiority of MVNL over 2VNL can
be explained by the fact that, while both algorithms add an extra qualification clause to filter out
tuples that are supposed to be “invisible’ to the query, 2VNL must also choose at the tuple level
which “version” of the attribute to return back to the query (using a CASE expression), which fur-
ther delays each query.

Fig. 10 contains the results for static queries, grouped by query selectivity. Garbage collection
will not influence the portion of the warehouse that is being accessed by static queries, so we did
not include the case of MVNL after garbage collection in this plot. Moreover, al qualifying tuples
in a static query should be “visible” to the queries, and hence, differences in response times are
mainly because of differencesin the relation schema and the evaluation of the CASE expression®.

9Although the queries access tuples that have not been modified, query modification should have blindly included
the CASE expression in al queries.
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Indeed, our results show that MVVNL is again the best of all aternatives, with significant “distance”
from 2VNL/1 (30% faster for low selectivity queries, 46% faster for medium and 48% faster for
high selectivity queries). The gap between MVNL and 2VNL/K is even bigger, up to 55%, whichis
expected, since 2VNL/K in effect doubles the relation size.

4.4 Effect on queries. Concurrent updates

We repeated the experiment of the previous section, but thistimewe let the queriesrun concurrently
with the update algorithms. We used amix of one low, one medium and one high selectivity query
group (which, again, consisted of queriesto both or der and | i nei t emtables), and report the
total response time for each query set (aggregated over multiple runs).

Our results for dynamic queries are in Fig. 11, where we run the queries while updating the
warehouse using MVNL, 2VNL/1 and 2VNL/k. We can see a clear “win” for MVNL (with queries
running 24% faster than with 2VNL/1), and a “dissapointing” slowdown for 2VNL/k (with more
than double the query response time of queries running concurrently with MVVNL).
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Figure 11: Concurrent, Dynamic queries Figure 12: Concurrent, Static queries

Theresultsfrom our experimentswith static queriesarein Fig. 12. Thistime, MVNL and 2VNL/1
produced similar query response times, whereas 2VNL/K, as expected, is exhibiting realy bad per-
formance (50% sl owdown compared to the other two).

By comparing the results from these two experiments we realize that while on the dynamic
gueries case, MVNL is exhibiting much better performance than 2VNL/1, in the static queries case,
MVNL and 2VNL/1 have similar performance. The reason behind thisisthat in the static case, there
is no data contention between the updater process and the user queries, so any sowdown in the
performance of queries comes mainly from the load on the warehouse server. In our first series of
experiments (Sec. 4.1) we have established that both MVNL and 2VNL/1 take approximately the
same time to compl ete the updates, which means smilar server loads.
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5 Conclusions

In this paper, we described an online warehouse update al gorithm, MVNL, which uses multiversion-
ing to alow the update process to run in the background whil e the queries execute concurrently and
access afully consistent version of the warehouse. MVNL employs vertical redundancy and stores
new versions as separate tuples. We compared our algorithm to onethat uses horizontal redundancy
and stores the before-values of attributes by extending the relation schema. We have calculated the
storage requirements for each algorithm and concluded that vertical redundancy is almost always
more economical than horizontal redundancy.

We have implemented both algorithms on top of an Informix Dynamic Server and ran experi-
ments using the TPC-D workload with scaling factor up to 1.0. We ran three series of experiments:
running only the update algorithms and measuring the total time to complete the updates, running
gueries after the updates where performed and comparing the response time of the queries, and,
running the update a gorithms concurrently with queries and comparing the total response time of
the queries. In all experiments, vertical redundancy exhibited significantly better performance than
horizontal redundancy, with the exception of afew cases where the best case for horizontal redun-
dancy matched the performance of vertical redundancy.

Overall, vertical redundancy is a more robust solution, since it needs no tuning and no knowl-
edge of the application domain to implement it, unlike horizontal redundancy where identifying
the updateable attributes is an important design decision. Its good performance and small storage
overhead, make vertical redundancy the best choice for an online warehouse update algorithm.
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