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Abstract

Data warehouse maintenance algorithms usually work off-line, making the warehouse un-
available to users. However, since most organizations require continuous operation, we need
be able to perform the updates online, concurrently with user queries. To guarantee that user
queries access a consistent view of the warehouse, online update algorithms introduce redun-
dancy in order to store multiple versions of the data objects that are being changed. In this
paper, we present an online warehouse update algorithm, that stores multiple versions of data
as separate rows (vertical redundancy). We compare our algorithm to another online algorithm
that stores multiple versions within each tuple by extending the table schema (horizontal redun-
dancy). We have implemented both algorithms on top of an Informix Dynamic Server and mea-
sured their performance under varying workloads, focusing on their impact on query response
times. Our experiments show that, except for a limited number of cases, vertical redundancy is
a better choice, with respect to storage, implementation overhead, and query performance.
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1 Introduction

Data warehouses contain replicated data from several external sources, collected to answer decision
support queries. The degree of replication is further extended by introducing other derived data to
facilitate query processing and maintenance. The derived data include all kinds of indices, materi-
alized views, summary tables, multidimensional aggregate views such as the data cube, and so on.
We refer to all these with the most general term “materialized views” ([Rou98]).

When data at the external sources change, updates are sent to the warehouse, which has to per-
form a refresh operation. Except for updating the base data tables, materialized views also need to
be updated in order for the warehouse to reach a fully consistent state. Executing the refresh op-
eration poses a serious trade-off. On the one hand, the sheer volume of data stored in warehouses,
makes the refresh operation a costly procedure. On the other hand, in order to avoid having stale
data, the warehouse needs to be refreshed frequently. In current business practices, the warehouse
is taken off-line for the duration of the refresh operation. During refresh, the warehouse is down and
no queries are allowed to run (since they would access inconsistent data) and because of that, the
refresh operation is usually scheduled overnight. However the new world order of globalization in
operation shrinks or completely eliminates the overnight down-time window ([DDWJR98]), since
it is always daytime in some part of the world.

One possible solution is to try to minimize down-time and thus make the effects of the ware-
house being off-line as little as possible ([CGL+96]). Another, even better, solution is to eliminate
down-time altogether, by using an online update algorithm, and thus accommodate the continuous
operation requirement of organizations ([B+98]). Such an online algorithm would allow the user
queries to run concurrently with the refresh process at the warehouse, assuming that the queries are
protected from accessing inconsistent data.

As a first approach towards an online algorithm, one could simply keep two separate copies of
the entire database: one only for the readers and one only for the maintenance operations. In this
setup, the refresh operation does not interfere with read-only queries. Except for the huge storage
overhead however, there is a big cost to pay, when the updated database is copied over the read-only
database, which renders this approach impractical.

For a second approach towards an online algorithm, one could rely on traditional database tech-
nology and “enclose” the refresh operation in one long transaction, which would guarantee1 that
all the warehouse queries will be able to access the changes to the warehouse only after the refresh
is complete. This long update transaction should include both the updates to the base table data and
the incremental updates to all the affected materialized views, in order to bring the warehouse into
a fully consistent state. Obviously, such a transaction would be prohibitively long and hence is not
a plausible solution.

A better idea is to keep multiple versions of the data objects stored in the warehouse (i.e. in-

1If running with at least isolation level 2 ([BBG+95]).
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troduce redundancy), and with some bookkeeping, always be able to present a fully consistent ver-
sion of the warehouse to the queries while the warehouse is being updated. Multiversioning has
been used extensively to provide concurrency control and recovery in (distributed) database sys-
tems ([Ree83, SR81, CFL+82, BS83, BG83, AS93, SA93, MWYC96, JMR97, LST97]). Special-
ized multiversion access structures have also been proposed ([LS89, LS90, dBS96, BC97, VV97,
MOPW98])

In the context of OLTP systems, long read-only queries can be allowed to access an older, fully
consistent version of the database, while the update transactions are operating on a different version
of the database ([BC92b, BC92a]). This approach is known as transient versioning ([MPL92]),
since the multiple versions of data objects are not kept forever, in contrast to historic databases.

The main difference between OLTP systems and data warehousing systems, is that the updater
process in data warehouses is usually only one (but long), compared to the many short update trans-
actions that OLTP systems usually have. This means that in the data warehouse case there are no
write conflicts, but there still is a lot of data contention between the updater process and user queries
(which are typically long & complex).

The absence of write conflicts, allows for simpler online update algorithms that use multiver-
sioning, but don’t require locking. Quass & Widom presented such an algorithm, 2VNL, in [QW97],
which extends each tuple in order to store the “before” values (horizontal redundancy). We present
another alternative where multiple versions are stored as multiple tuples (vertical redundancy). For
both online update algorithms, the update process is expected to run in the background, and from
time to time “release” new, fully consistent versions of the warehouse for queries to access. Old
versions of objects can be deleted later, after making sure that no user query accesses them.

In the next section we present the details of our online update algorithm. In section 3 we briefly
describe horizontal redundancy and compare it to vertical redundancy. In section 4 we present the
results of our experiments, followed by our conclusions.
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2 Vertical Redundancy: MVNL

One way to support online warehouse updates is by vertical redundancy: multiple versions of each
tuple are stored as multiple rows in the table. By adding control information to each record, queries
can always access a transaction consistent view of the warehouse, and the refresh process does not
delay readers as it does not have to acquire any locks.

Of course, supporting online warehouse updates does not come for free. Except for the minor
schema changes, there must be a distinction between logical and physical update operations. For
example a tuple deletion cannot result in the tuple being physically deleted right away, as it might
be used by the readers. Instead, it has to be just marked as deleted and be actually deleted at a later
time (garbage collection). Similarly, updates on data cannot be done in-place, but instead, care must
be taken so that the old values remain accessible to the readers.

In the following paragraphs we present the details of our algorithm, MVNL, which stands for
Multi-Version No Locking and is named after the classic MV2PL algorithms on which it is based.
First we give a short introduction on how versions work in the system, followed by a list of modifi-
cations required to support the algorithm. Then we outline our approach on garbage collection. Last
we describe a mechanism to track version numbers among the updater, the query and the garbage
collection processes.

2.1 Multiversioning

MVNL supports multiple versions by using Time Travel ([Sto87]). Each row has two extra at-
tributes, Tmin, the insertion timestamp, and Tmax, the deletion timestamp. The insertion timestamp
gets assigned when the tuple is first inserted into the database, whereas the deletion timestamp gets
assigned when the tuple is marked as deleted. These timestamps are used by queries to filter out
rows that are “younger” than the queries and are not supposed to be “visible”.

There are three timestamp variables in the system:� Tmaint is a private version number2 counter that is used by the maintenance process. It is
initialized at 1, and is incremented by 1 each time a warehouse refresh operation has been
completed. It corresponds to the version of the database that the maintenance process is cur-
rently updating. Tuples that are inserted get Tmin = Tmaint and Tmax = 1, whereas tuples
that are marked deleted get Tmax = Tmaint.� Tsafe is a global version counter, that the maintenance process updates every time a refresh
operation is completed. It corresponds to the maximum (most recent) version in the database
that is consistent.

2We use the terms timestamp and version number interchangeably.
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� Tquery is a private variable, which is initialized with the current value of Tsafe, at the start
of each query process. It corresponds to the version of the database that the query is allowed
to access. User queries are only allowed to access tuples that were created sometime in the
past, and have not yet been marked as deleted. In timestamp arithmetic, the visible tuples
should have Tmin <= Tquery and Tquery < Tmax (remember that if a tuple is not deleted it
has Tmax =1).

4 time
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Figure 1: Life cycle of a tuple

To illustrate the use of timestamps, we follow the life-cycle of a tuple r (see figure 1). At some
point in time, t1, tuple r will be inserted into the database by the update process. However, the tuple
will not be visible to user queries until the update process finishes with the entire batch of updates,
at t2. At that point, Tsafe will be updated and the new version will be released. Queries starting
after t2 will be “allowed” to access tuple r. The deletion of tuple r works similarly. Although the
tuple gets marked as deleted (at point t3), this fact will not be visible to user queries until the update
process finishes the entire batch of updates and releases the new version at t4. Queries starting aftert4 will “see” that tuple r has been marked deleted.

2.2 Modifying the relation schema

In order to support multiversioning, we must modify the schema only for the relations that might get
updates. The required changes are straightforward after the discussion in the previous section. We
simply need to add two integer attributes, Tmin, to store the insertion timestamp, and, Tmax, to store
the deletion timestamp. In other words, if the pre-MVNL schema for a relation was (a1; a2; : : : ; ak),
where ai is an attribute and k is the total number of attributes, it will have to be modified into:(Tmin; Tmax; a1; a2; : : : ; ak)

We can calculate the storage overhead for keeping the extra versions of data in multiple rows.
Let us assume that initially, relation R has k attributes fa1; a2; : : : ; akg, and N rows, each of size
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Sbase = P1:::k sizeof(ai). Also assume that there were NI new rows inserted to the relation,ND rows deleted, and NM rows modified. If AM is the set of all attributes from relation R that get
modified, then let Smod be the total size of the all these attributes, or Smod = Pai2AM sizeof(ai).

If we wish to apply the updates but also keep the previous version of the data, we will need to
keep the deleted tuples and also store the modifications separately. In this case, the minimum total
storage requirement would be:

TSnormal = (N +NI)� Sbase +NM � Smod (1)

Under MVNL we store extra control information together with all the database tuples, and we
also keep the previous versions of the data as separate tuples. The storage requirement is:

TSMVNL = (N +NI +NM)� (Sbase + SMVNL) (2)

where SMVNL = sizeof(Tmin)+ sizeof(Tmax).

2.3 Modifying the updater

We assume that updates from the external data sources arrive at the data warehouse3 asynchronously,
but are delivered in-order4 , i.e. updates from the same source arrive at the warehouse in the same
order by which they were sent. The continuous update stream is split into batches of work by the
updater process. In order to guarantee that these batches do not cross transaction boundaries, data
sources annotate the update streams with transaction begin/end markers which are later observed
when splitting the stream. Each of these batches will correspond to one version of the warehouse.

The updater process keeps a private version counter,Tmaint, which uses to “mark” all the changes
it makes to the warehouse. All update operations that belong to the same batch get marked with the
same version number. When the batch is complete, the value of Tmaint is made public by assign-
ing Tsafe = Tmaint (in effect “releasing” that version) and is also incremented by 1. This protocol
ensures that either all of the updates in a batch are visible to the queries or none of them.

In order for the updater process to support multiversioning, it must make the distinction be-
tween logical and physical update operations. Logical operations are those suggested by the data
sources, and physical operations are the ones that will actually be executed because of multiver-
sioning through MVNL. For example, a deletion, cannot be executed right away, as there might be
queries still accessing the version of the warehouse the deleted tuple belongs to.

In the following paragraphs, we give details on the mapping between logical and physical update
operations, which is dictated by MVNL. In our examples, relationR, has k attributes: (a1; a2; : : : ; ak),
of which ap is the primary key, and vi is the value that corresponds to attribute ai.

3We use the terms database and warehouse interchangeably.
4If ordered delivery is not guaranteed, it can be implemented with a simple sequencing scheme at the data sources

and a slight modification of the updater.
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Logical operation Physical operation(s)

insert values ( v1; v2; : : : ; vk ); insert values ( Tmaint;1; v1; v2; : : : ; vk );
delete from R where ap = vp ; update R set Tmax = Tmaint where ap = vp ;
update R set * = ( v1; v2; : : : ; vk ) update R set Tmax = Tmaint where ap = vp ;

where ap = vp ; insert values ( Tmaint;1; v1; v2; : : : ; vk );
Table 1: Mapping of logical to physical update operations

Insertions Physical insertions are almost identical to logical insertions. To support MVNL we
only need to store the version information at each tuple. So, a logical insert(v1; v2; : : : ; vk) is trans-
lated into a physical insert(Tmaint;1; v1; v2; : : : ; vk).

Deletions As explained earlier, logical deletions cannot be translated directly to physical dele-
tions since other queries should be able to have access to the tuple that is to be deleted. Therefore,
instead of deleting such tuples, we simply mark them as deleted. So, a logical delete(vp), is trans-
lated into a physical update(Tmax Tmaint, where ap = vp). At a later time, when no reader needs
to access the tuple, it gets physically deleted by garbage collection.

Updates The handling of updates in MVNL adheres to the copy-on-write principle. Since old
versions of data are possibly needed by readers, the updater cannot perform tuple modifications
in place. Instead, all logical update operations are mapped into a pair of logical deletion and log-
ical insertion operation, which are then translated, as described earlier, into a physical update and
a physical insert operation. So, a logical update(ai = vi, where ap = vp), is mapped into a log-
ical delete(vp) and a logical insert(v1; v2; : : : ; vk). These two are then translated into a physical
update(Tmax Tmaint, where ap = vp) and a physical insert(v1; v2; : : : ; vk).

Example 1 Let us consider the order table from the TPC-D benchmark. Assume that an up-
dater process (with Tmaint = 100) wants to insert into order the information on the order with
orderkey = 12345. After the insertion, the order table will look like this:

tmin tmax orderkey custkey orderstatus : : : comment

100 1 12345 ... P : : : Special kids wrapping needed

Now suppose that at a later time, there needs to be an update to this entry, for example a change
in the orderstatus (from Pending to Completed). If the updater process that performs this change
has Tmaint = 103, then the order table will look like this:

tmin tmax orderkey custkey orderstatus : : : comment

100 103 12345 ... P : : : Special kids wrapping needed
103 1 12345 ... C : : : Special kids wrapping needed
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Finally, suppose that after a long time, this entry needs to be deleted. If the updater process that
performs this change has Tmaint = 202, then the order table will look like this:

tmin tmax orderkey custkey orderstatus : : : comment

100 103 12345 ... P : : : Special kids wrapping needed
103 202 12345 ... C : : : Special kids wrapping needed

Example 1 brings up a few points worth mentioning. First of all it is clear that the readers need
to be modified in order to “distinguish” the right version of the data, since multiple versions are
kept in the warehouse. We describe the necessary modifications for the readers in the next section.
Secondly, it is also clear that having all those tuples hanging around after they are logically deleted
will pose some read overhead. Periodically, the garbage collection will clean tuples that are marked
as deleted, but there is a trade-off between read overhead and the one imposed by garbage collection.
Finally, one might notice that in the update operation, we had to duplicate the entire row, despite
the fact that only one attribute was modified. In the general case we don’t know in advance which
tuples can be modified, but if we can restrict the set of the updateable attributes, then we might use
a different approach. Section 3.1 briefly describes a solution presented in [QW97] which is based
on that observation.

2.4 Modifying the readers

Each reader process, upon startup, initializes a private variable, Tquery , to the current “released”,
fully consistent version of the warehouse (= Tsafe). Tquery is used as a guide to filter out tuples that
are supposed to be invisible to the reader. More specifically, the reader process should only access
tuples that have: Tmin <= Tquery and Tquery < Tmax (3)

The first part of the expression simply prohibits accessing any newly inserted tuples, whereas the
second part guarantees that tuples marked as deleted in the past will not be visible to the query. All
user queries have to be rewritten using the query modification technique ([Sto75]) to include this
constraint in their where clause.

A positive side-effect of this approach is that, in effect, it guarantees a Repeatable Read isolation
level ([BBG+95]) for the readers, since the value of Tquery stays the same for the duration of the
user query.
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2.5 Garbage Collection

Periodically we will need to physically delete the tuples that have been marked as deleted, but do
not belong to a version that is currently being used by a reader. Although this garbage collection
procedure reduces read overhead, it is not necessary for correctness. Readers in MVNL will always
see a consistent view of the database no matter how many old versions are kept. The reason behind
garbage collection is performance. By removing unused tuples we reduce the storage overhead
imposed on the warehouse by the online algorithm. This means that relation scans will be shorter
and indexes will be smaller, leading to faster query responses.

Garbage collection should be executed periodically, or when server load permits it. It can run
concurrently with the updater, and the readers. To perform garbage collection, we need to know
the highest version number that is not being accessed by any reader, Tkill. The SQL to remove the
“invisible” tuples is then:

delete from R where Tmax <= Tkill;
In order to find Tkill there has to be some minimal coordination between the updater, the readers
and the garbgage collection process, which we describe in the next paragraph.

2.6 Version Management

All of the processes that we have described so far (Updater, Readers, Garbage Collector) should be
able to run concurrently, with almost no interaction among them. The only points of coordination
that exist are the setting of the Tsafe and Tkill variables. The Tsafe variable needs to be assigned to
the value of Tmaint after each update batch is completed, so that queries can find out the number of
the latest consistent version (i.e. Tmaint ! Tsafe ! Tquery). The Tkill variable holds the highest
version number not being accessed by any reader.

We present one possible implementation of this coordination through a relational table, veta
(short for VErsion TAble), but it should be fairly straightforward to implement it in main memory
instead5 . In order to store both Tsafe and the Tquery variables of all active readers, table veta has
two attributes:� type, which can take two values: ’U’ for Updater or ’R’ for Reader, and,� vn, which stores the version number. If type = ’U’ then vn = Tsafe, otherwise vn = Tquery of

one reader.

After describing the schema for veta, we will present in detail the steps the Updater, Reader,
Garbage Collection processes need to take in order to coordinate with each other.

5However, a main memory implementation might not be significantly faster than the relational table one, as we
expect the table to remain in main memory since it is really small.
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The updater, upon completion of a batch of updates, will “release” the current version by up-
dating the veta table as follows:

insert in veta values (’U’, Tmaint);
delete from veta where type = ’U’ and vn = Tmaint � 1 ;

After this is completed, the updater will increment its private Tmaint variable.

The reader, upon startup, will first read the current Tsafe:Tsafe= select max(vn) from veta where type = ’U’;
and after it copies it to its private Tquery variable (Tquery  Tsafe), it will record in veta the fact
that it is using this version:

insert into veta values (’R’, Tquery);
The reader, upon completion, should record in veta the fact that it is no longer using that version
(so that the garbage collector will be able to identify which versions are currently active):

delete from veta where type = ’R’ and vn = Tquery;
Finally, the garbage collection process, upon startup should determine the minimum version num-
ber currently in use and deduct one to get the maximum version that is not being used (and can be
deleted):Tkill = (select min(vn) from veta where type = ’R’)� 1
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3 Vertical Redundancy vs Horizontal Redundancy

Another way to support online warehouse updates is with horizontal redundancy: multiple versions
of data objects are stored within the same tuple, by extending the table schema. Control information
at each record allows queries to always calculate a transaction consistent view of the warehouse,
while the refresh process does not delay readers as it does not have to acquire any long-term locks.

In the following sections we briefly describe horizontal redundancy, compare it to vertical re-
dundancy and, finally, give some details about their implementation.

3.1 Horizontal Redundancy: 2VNL

Quass and Widom presented in [QW97] an online warehouse update algorithm, 2VNL, that uses
horizontal redundancy. The idea behind the algorithm is to extend each tuple to hold the “before”
values of the attributes that change. Up to two different versions of the data are stored in the ware-
house, one being used by the update process, and one being accessed by user queries, which allows
user queries to run concurrently with the update process and always “see” a consistent view of the
warehouse. To implement 2VNL one has to make changes in the relation schema, in the update
process and in the user queries. We outline these modifications in the following paragraphs.

Modifying the relation schema Before we augment the existing relation schema to support hor-
izontal redundancy, we need to identify which attributes from each relation are updateable, i.e.
might be modified by an update statement. When deciding if an attribute is updateable or not, we
should always take a conservative approach: first characterize all attributes as updateable by de-
fault, and then, only if we can guarantee that for the entire life of our system there will not be an
update operation on an attribute, we could exclude it from the list. This conservative approach is
necessary since we won’t be able to service an update operation on an attribute that has been deemed
non-updateable.

Let R be a relation with k attributes: (a1; a2; : : : ; ak), and suppose m of these attributes are
updateable: fax1; ax2; : : : ; axmg, where 1 � xi � k. The extended relation schema would then be:(tupleVN; operation; a1; a2; : : : ; ak; ax1; ax2; : : : ; axm)
where tupleVN contains the version number of the maintenance process that performed the last op-
eration on the tuple and operation is the last operation performed (insert, delete or update). Clearly,
the worst case would be when m = k, where we would have to approximately double the size of
the warehouse.

We can calculate the storage requirement for keeping the before values of data by extending each
tuple. Let us assume that relation R has N rows initially, each of size Sbase = Pki=1 sizeof(ai).
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Also, let Smod be the total size of all the updateable attributes, or Smod = Pmi=1 sizeof(axi).
Finally, let us assume that there were NI new rows inserted to the relation, ND rows deleted, andNM rows modified. Under 2VNL, we need to allocate extra space to store the before-values of the
updateable attributes for all tuples in the warehouse. The total storage requirement for relation R
would be:

TS2VNL = (N +NI) � (Sbase + Smod + S2VNL) (4)

where S2VNL = sizeof(tupleVN)+ sizeof(operation).

Modifying the updater To support multiversioning through horizontal redundancy we must again
make the distinction between logical and physical update operations:� Logical insertions, are translated into physical insertions with the addition of the tupleVN and

operation attributes.� Logical deletions, are translated into physical updates, where the tuple is simply marked as
deleted by properly setting the tupleVN and operation attributes.� Logical updates, are translated into physical updates. Care is taken so that the old values of
the attributes, are “copied” to the area inside each tuple allocated to store the before-values.

One other rule that applies to all kinds of update operations under 2VNL is that, in order for the
algorithm to work, we need to identify the net effect of operations that are encountered inside the
same “batch”. If for example we have an insertion of a tuple r, followed by an update on tuple r,
then we must record the combination of these two operations as an insertion, with the inserted values
being the ones after the update operation. This is not a problem in MVNL, since it can “tolerate”
multiple instances of the same tuple in the warehouse, provided that only one is marked as valid.

Modifying the readers With 2VNL, readers are able to access an old, but transaction consistent
version of the warehouse, while the maintenance process works on a future, “un-released” version.
For that reason, all user queries need to be modified to filter out tuples that are not supposed to be
“visible” to them (by adding a few predicates to thewhere clause) and also choose the before-value
on data items that are being changed (using CASE expressions from SQL 92).

Since there are only two versions kept, there is always the chance, if a user query is too long,
that the version of the database the query was assigned upon startup will expire before the query
finishes. This can be detected, but unfortunately the query will have to be restarted or it would ac-
cess inconsistent data. The authors outline a solution to this problem which would require keeping
more than 2 versions in the warehouse. We briefly discuss this in the next section.
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Garbage Collection Performing logical deletions by marking the tuple as deleted and not physi-
cally removing it has the drawback of creating “garbage”, i.e. warehouse tuples which after a point
are not visible to any reader. Periodically, a garbage collection process can run in the background
and remove those tuples from the database, reclaiming that space.

3.2 Horizontal Redundancy: n-VNL

With 2VNL, reader sessions will “expire” if they span more than one maintenance transaction, and
would have to be restarted. The solution to this problem is to extend the algorithm to support n
versions, and thus handle the case of a reader overlapping with at most (n� 1) maintenance trans-
actions. The resulting algorithm, n-VNL, was presented in [QW97] and is able to make n versions
of the warehouse available at the same time.

The modifications to the relation schema are similar to those of 2VNL, but instead of allocat-
ing space for one more extra version, we need to allocate space for n � 1 versions in every tuple.
So, if R is a relation with k attributes: (a1; a2; : : : ; ak), and m of these attributes are updateable:fax1; ax2; : : : ; axmg, where 1 � xi � k, the schema for n-VNL will be:(tupleVN1; : : : ; tupleVNn�1; op1; : : : ; opn�1; a1; a2; : : : ; ak; a1x1; : : : ; a1xm| {z }2nd version

; : : : ; an�1x1 ; : : : ; an�1xm| {z }nth version

)
In the worst case, where m = k, the size of the warehouse will grow approximately n-fold. In

the general case, if relationR had N rows initially, and there were NI new rows inserted, ND rows
deleted, and NM rows modified, the minimum total storage requirement for R would be:

TSn-VNL = (N +NI)� (Sbase + (n � 1) � (Smod + S2VNL)) (5)

where Sbase = Pki=1 sizeof(ai), Smod = Pmi=1 sizeof(axi) andS2VNL = sizeof(tupleVN)+ sizeof(operation).

The updater under n-VNL would have to translate logical update operations into physical oper-
ations exactly like 2VNL. The only difference is that for each new version that we have to store, we
need to first “push back” the data for the previous versions, thus eliminating the nth version. This
shifting will cause significant overhead making the choice of n a very important design decision.

Readers would also need to be modified in a manner similar to the 2-version algorithm. How-
ever, the predicates and the CASE expressions used to provide user queries with a consistent view
of the warehouse are expected to be noticeably more complex.
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3.3 Comparison

Although MVNL and 2VNL are both based on multiversioning, they have a lot of differences. We
explore the most important of these differences in the next paragraphs.

Concurrent execution of readers & updater The major drawback of off-line update algorithms
is that user queries cannot run while the warehouse is being updated. No user query will be allowed
to start during the refresh operation and any query that ends inside the update window will have to
be aborted (Fig. 2).

Aborted

Updates

Queries

time
night day night day

Queries

Figure 2: No Concurrent Execution: Off-line algorithms

Online algorithms on the other hand, allow for concurrent execution of the maintenance trans-
action and user queries by introducing redundancy. 2VNL, which employs horizontal redundancy,
stores up to two versions of warehouse data, which allows user queries to run while the warehouse
is being updated. However, user queries can overlap with at most one maintenance transaction
(Fig. 3). When a reader spans more than two maintenance transactions, its session will expire and
will have to be restarted. A solution to this is to increase the amount of redundancy, by storing n
versions of data (where n is specified) and use n-VNL. However, the storage cost of this solution is
prohibitively high, as, in the worst case, the warehouse can grow n-fold in size.

Aborted

Updates

Queries

time

Queries

Figure 3: Concurrent Execution: 2VNL

MVNL, which employs vertically redundancy, also enables user queries to run while the ware-
house is being updated. However, unlike 2VNL, there is no limit to the number of maintenance
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transactions a query can overlap with during its execution (Fig. 4). Queries can be arbitrary long,
warehouse update “transactions” can be arbitrary short and they would still be allowed to run con-
currently.

Queries

Updates

time

Figure 4: Concurrent Execution: MVNL

Storage overhead We have already calculated the minimum storage requirement for all online
algorithms, but to be able to compare them we calculate the net storage overhead for each one.
Recall that TSnormal is the minimum storage required to keep the old versions of data after applying
the updates (given in Eq. 1), TSMVNL is the storage requirement for MVNL (given in Eq. 2), TS2VNL is
the requirement for 2VNL (given in Eq. 4), and TSn-VNL is the storage requirement for n-VNL (given
in Eq. 5).

We calculate the storage overheads for MVNL, 2VNL and n-VNL respectively:OMVNL = TSMVNL � TSnormal = NM � (Sbase � Smod) + (N +NI +NM)� SMVNL (6)O2VNL = TS2VNL � TSnormal = (N +NI �NM)� Smod + (N +NI)� S2VNL (7)On-VNL = TSn-VNL � TSnormal = ((n� 1) � (N +NI)�NM)� Smod+ (n� 1)� (N +NI)� S2VNL (8)

Clearly, the storage overhead for the n-version horizontal redundancy algorithm, n-VNL, is pro-
hibitively high (even for small n since the entire warehouse population needs to be replicated).

To compare the storage overhead for vertical redundancy with the one for horizontal redun-
dancy, we solve O2VNL > OMVNL. Assuming that SMVNL ' S2VNL

6 we get:O2VNL > OMVNL , SmodSbase
> (1 + c)� NMN +NI (9)

where Smod is the size of the updateable attributes, Sbase is the tuple size of the relation originally,c = SMVNLSbase
= S2VNLSbase

, c � 1, N is the number of rows in the relation initially, NM is the number
of rows modified by the set of updates and NI is the number of rows inserted.

6In our implementation we have SMVNL = S2VNL = 2� sizeof(INTEGER):
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We plot Eq. 9 in Fig. 5, for c = 5% and for NM up to 10% of (N + NI). Note that in typical
warehouses, the percentage of modifications is expected to be much lower (almost close to 0%)
since we mostly have insertions and deletions.

Fig. 5 illustrates which cases favor hori-

100%0%
0%

I

S
modS

base

10%

5%

2VNL < MVNL

2VNL > MVNL
N N

NM

Figure 5: Storage Overhead: MVNL vs 2VNL

zontal redundancy and which favor vertical
redundancy. Horizontal redundancy algo-
rithms extend each tuple to hold the modi-
fied values, so, in effect they “assume” that
the amount of modifications is going to be
comparable to the size of the database. As
expected, they have low storage overhead
only in cases where the percentage of mod-
ifications is really high. On the other hand,
vertical redundancy algorithms copy an en-
tire tuple to hold the modifications, so, they
have very low overhead when the modifica-

tion is a significant portion of a tuple. Since both algorithms handle insertions of new tuples and
deletions of existing tuples similarly, modifications are the operations that determine which of the
two schemes is best. Overall, we can see that in typical warehouse configurations, vertical redun-
dancy should be a more economical solution in terms of storage overhead, compared to horizontal
redundancy.

Implementation complexity Implementing MVNL is relatively easy. The changes to be made on
the relation schema are trivial (adding two integer attributes). The updater process needs to conform
with the mapping of logical to physical update operations (Tab. 1), and the read-only queries have
to be modified to include an extra visibility predicate.

Implementing 2VNL is a more complex task. In order not to duplicate the entire warehouse, one
has to have knowledge of the application domain and decide on the set of updateable attributes. The
updater process will have to map logical update operations into the equivalent physical operations
with the same “net effect”. This forces the use of cursors, as the previous version of the tuple is
required in order to decide what the next physical operation should be. Finally, read-only queries
have to be modified in two ways: a) include an extra visibility predicate (similarly to MVNL), and,
b) choose the current or before-value for every attribute in the projection list (through a CASE ex-
pression).

4 Experiments

We have implemented both online update algorithms, MVNL and 2VNL as user defined functions
(written in C) on an Informix Dynamic Server with Universal Data Option ver 9.12. In fact, we have
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implemented two variations of 2VNL, one in which there is only one updateable attribute (2VNL/1)
and one where all the attributes are updateable (2VNL/k). We used dbgen, the data generator from
the TPC-D Benchmark ([Tra98]), to populate the warehouse for our experiments and also to gen-
erate the updates. However, we have made two extensions to the original generator:� We annotate the update workload, with begin/end markers around each transaction7. This is

required in order to be able to observe transaction boundaries when splitting the workload in
batches.� We add a small percentage of modification operations to the update workload. Recall that the
original TPC-D specification only has insertions and an equal amount of deletions. However,
in a real environment there are bound to be at least a few modifications, for example to allow
corrections to existing entries.

Since we are interested in updates, we only used the two tables from TPC-D that have updates,
namelyorder andlineitem. For 2VNL/1, we chose the updateable attribute to beorderstatus
for theorder table, andlinestatus for thelineitem table which are both of typeCHAR(1).
Choosing just only one attribute as updateable is probably unrealistic, but we wanted to compare
MVNL with the “theoretic” best case scenario for 2VNL. To judge the performance of 2VNL overall,
one should take the average between the best case, 2VNL/1, and the worst case, 2VNL/k.

For all our experiments we used a SUN UltraSparc 1 model 170, with 256MB of main memory,
running Solaris 2.5. We stored our database in a raw disk partition in order to by-pass any Unix
buffering and averaged our measurements over multiple runs.

We ran a number of experiments of which we only present the most important ones because of
space limitations. In the first two experiments we scale the database size and the update workload
and measure the time each algorithm takes to complete the updates. The third experiment compares
the slowdown that queries face when they are modified to support multiversioning under MVNL or
2VNL. Finally, the last experiment, examines the speed of read-only queries when they run concur-
rently with the warehouse update algorithms.

4.1 Scaling the database size

In our first experiment, we scaled the database size by changing the scaling factor of TPC-D. We
tried three different scaling factors:� 0.2, which corresponds to 300K tuples in table order and 1200K tuples in lineitem

7One transaction contains all the operations on one particular order. It can contain for example the insertions on all
tables that have to be made to successfully record a new order, or all the deletions that correspond to removing an order
from the warehouse.
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� 0.4, which corresponds to 600K tuples in table order and 2400K tuples in lineitem� 1.0, which corresponds to 1500K tuples in table order and 6000K tuples in lineitem

We kept the update workload constant at 150K maintenance transactions, split evenly among
insertions and deletions. This workload corresponds to 50%, 25% and 10% of the database for
scaling factors 0.2, 0.4 and 1.0 respectively. We also added a few modification operations (1% of
the insertions) to make the update workload more realistic, since a real system should be able to
handle corrections too.
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Figure 6: Scaling the database size

In each experiment we first loaded the database from scratch and built indexes for theorderkey
attribute on both order and lineitem tables (this is necessary to handle the deletions). Then
we ran the update algorithm, and, performed garbage collection at the end. Although we report the
total time to complete each of these phases, the time to complete the update phase is obviously the
most important measurement.
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Fig. 6a,b,c have the plots for each individual algorithm, for the different scaling factors. We
can see that all algorithms scale really well. The time to perform the updates does grow with the
size of the database, but unlike the loading & index creation phase, it is not linear in the size of the
database.

Fig. 6d plots the time each algorithm takes to complete the updates, grouped by scaling factor.
From this experiment, we find that MVNL is always faster or at least as fast as 2VNL/1 (the theoretic
“best” case for 2VNL) whereas 2VNL/k (the worst case for 2VNL) consistently takes much longer
(54% for SF=0.2, 34% for SF=0.4 and 27% for SF=1.0). This can be explained by the fact that
2VNL/k, because of the schema duplication, has to scan almost twice as much data as MVNL or
2VNL/1 which results in the degradation in performance.

4.2 Scaling the maintenance workload

In the next set of experiments, we kept the database size constant, but varied the update workload
and compared the time each algorithm needed to perform the updates.

In the first experiment, we scaled the size
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Figure 7: Scaling the maintenance workload

of the update workload from 30K maintenance
transactions to 150K, in 30K increments. In
all cases, the workload was equally composed
of insertions and deletions, and we also had a
small percentage of modifications (=1% of the
insertions). We report the time to complete the
updates (insertions, deletions and modifications)
for each algorithm. Fig. 7 has the results of our
experiments, grouped by algorithm. For each
algorithm the first column corresponds to the
time to complete 30K updates, the second col-
umn to the time to complete 60K updates, etc.
As expected, the time to complete the updates is always linear in the size of the update workload.
That holds for all algorithms, although again we see that MVNL ties the “best case” for 2VNL,
whereas the worst case for 2VNL is on average 36% slower.

In the second experiment, we varied the percentage of modifications in the maintenance work-
load. At a scaling factor of 0.5 and an update workload of 60K maintenance transactions (about
8% of the database), we run three experiments, one with no modifications at all (Fig. 8a), one with
1% modifications (Fig. 8b) and one with 10% modifications8 (Fig. 8c), reporting the total time to
complete the updates for each algorithm.

8All percentages are based on the number of insertions, 30K.
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Figure 8: Modifications as % of the insertions

These results illustrate the only “weak point” of update algorithms that use vertical redundancy:
modifications. Since all modifications have to be translated into two physical operations (one to
mark the previous value as deleted and and one to insert a new tuple with the new values), it is
expected that workloads with a big number of modifications will be processed slower than with al-
gorithms that employ horizontal redundancy (and perform modifications in-place). However, even
having to perform two operations for every modification, we can see that MVNL is still faster than
2VNL/k, and we believe this will also be the case with n-VNL. Overall, we expect that in typical
systems the amount of modifications will be extremely small, for example TPC-D has none what-
soever, so this will not be a problem.

Running the update algorithms by themselves does provide some indication of their behavior,
but to be able to better assess their performance we need to run them in conjunction with user
queries. We present the results from these experiments in the next two sections.

4.3 Effect on queries: Schema changes

The online update algorithms require making changes to the relation schema and also force all user
queries to be modified accordingly. These changes affect the response time of queries. In this se-
ries of experiments, we first ran the online update algorithms, and, after the warehouse has been re-
freshed, we executed some “benchmark” queries and measured their response times. We compare
these response times to see which algorithm poses the most overhead to query execution. Since the
algorithms were not running concurrently with user queries, this experiment should reflect slow-
down on queries because of schema changes and query modifications mandated by each algorithm.

This series of experiments ran on a TPC-D database with scaling factor 0.5, whereas the update
workload consisted of 75K maintenance operations (split evenly among insertions and deletions,
with an extra 1% modifications), which correspond to roughly 10% of the warehouse. We ran two
sets of experiments:� one with dynamic queries, which accessed the portion of the warehouse that got updated, and,
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� one with static queries, which accessed only parts of the warehouse that were not affected at
all by the updates.

To get a representative query mix for each experiment, we also varied the query selectivity. We
had three groups of queries, low selectivity queries (that return just 0.1% of the table = 750 tu-
ples), medium selectivity queries (that return 1% = 7500 tuples), and high selectivity queries (that
return 10% = 75K tuples). Furthermore, each query group was composed of two queries: one on
the order table and one on the lineitem table. For every experiment, we report the total
response time for each query group (averaged over multiple runs).
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Figure 10: Static queries

Fig. 9 has the results of our experiments for dynamic queries, grouped by query selectivity. The
first column corresponds to MVNL with the addition of a garbage collection phase (MVNL/g) before
running the queries. The second column is MVNL, the third one 2VNL/1 and the last one 2VNL/k. As
we can see from the plots, in all experiments with dynamic queries, MVNL had the lowest response
times, significantly lower (up to 30%) than the best case for 2VNL and almost half the response
time of the worst case for 2VNL. MVNL after garbage collection was, as expected, an improvement
over MVNL with 30% lower response times on average. The superiority of MVNL over 2VNL can
be explained by the fact that, while both algorithms add an extra qualification clause to filter out
tuples that are supposed to be “invisible” to the query, 2VNL must also choose at the tuple level
which “version” of the attribute to return back to the query (using a CASE expression), which fur-
ther delays each query.

Fig. 10 contains the results for static queries, grouped by query selectivity. Garbage collection
will not influence the portion of the warehouse that is being accessed by static queries, so we did
not include the case of MVNL after garbage collection in this plot. Moreover, all qualifying tuples
in a static query should be “visible” to the queries, and hence, differences in response times are
mainly because of differences in the relation schema and the evaluation of the CASE expression9.

9Although the queries access tuples that have not been modified, query modification should have blindly included
the CASE expression in all queries.
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Indeed, our results show that MVNL is again the best of all alternatives, with significant “distance”
from 2VNL/1 (30% faster for low selectivity queries, 46% faster for medium and 48% faster for
high selectivity queries). The gap between MVNL and 2VNL/k is even bigger, up to 55%, which is
expected, since 2VNL/k in effect doubles the relation size.

4.4 Effect on queries: Concurrent updates

We repeated the experiment of the previous section, but this time we let the queries run concurrently
with the update algorithms. We used a mix of one low, one medium and one high selectivity query
group (which, again, consisted of queries to both order and lineitem tables), and report the
total response time for each query set (aggregated over multiple runs).

Our results for dynamic queries are in Fig. 11, where we run the queries while updating the
warehouse using MVNL, 2VNL/1 and 2VNL/k. We can see a clear “win” for MVNL (with queries
running 24% faster than with 2VNL/1), and a “dissapointing” slowdown for 2VNL/k (with more
than double the query response time of queries running concurrently with MVNL).
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Figure 12: Concurrent, Static queries

The results from our experiments with static queries are in Fig. 12. This time, MVNL and 2VNL/1
produced similar query response times, whereas 2VNL/k, as expected, is exhibiting really bad per-
formance (50% slowdown compared to the other two).

By comparing the results from these two experiments we realize that while on the dynamic
queries case, MVNL is exhibiting much better performance than 2VNL/1, in the static queries case,
MVNL and 2VNL/1 have similar performance. The reason behind this is that in the static case, there
is no data contention between the updater process and the user queries, so any slowdown in the
performance of queries comes mainly from the load on the warehouse server. In our first series of
experiments (Sec. 4.1) we have established that both MVNL and 2VNL/1 take approximately the
same time to complete the updates, which means similar server loads.
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5 Conclusions

In this paper, we described an online warehouse update algorithm, MVNL, which uses multiversion-
ing to allow the update process to run in the background while the queries execute concurrently and
access a fully consistent version of the warehouse. MVNL employs vertical redundancy and stores
new versions as separate tuples. We compared our algorithm to one that uses horizontal redundancy
and stores the before-values of attributes by extending the relation schema. We have calculated the
storage requirements for each algorithm and concluded that vertical redundancy is almost always
more economical than horizontal redundancy.

We have implemented both algorithms on top of an Informix Dynamic Server and ran experi-
ments using the TPC-D workload with scaling factor up to 1.0. We ran three series of experiments:
running only the update algorithms and measuring the total time to complete the updates, running
queries after the updates where performed and comparing the response time of the queries, and,
running the update algorithms concurrently with queries and comparing the total response time of
the queries. In all experiments, vertical redundancy exhibited significantly better performance than
horizontal redundancy, with the exception of a few cases where the best case for horizontal redun-
dancy matched the performance of vertical redundancy.

Overall, vertical redundancy is a more robust solution, since it needs no tuning and no knowl-
edge of the application domain to implement it, unlike horizontal redundancy where identifying
the updateable attributes is an important design decision. Its good performance and small storage
overhead, make vertical redundancy the best choice for an online warehouse update algorithm.
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