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Abstract

Some recent results on guardian maps and their application to generalized robust stability
are reviewed and a characterization of the maximum stability range is obtained. This
framework is then applied to the analysis of robust stability in several physically motivated

examples.
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1. Introduction

Recently, the authors developed a new approach for the study of generalized stability
of families of real (or complex) matrices and polynomials using so-called guardian and
semiguardian maps (Saydy et al (1990, 1988a, 1989) and Saydy (1988b)).

In this paper, after recalling some of the main results, we present a closed-form expres-
sion for the maximal range of stability of one-parameter families of matrices or polynomials
relative to many domains of practical interest of the complex plane. The determination
of the maximal range requires finding the zeros of a polynomial which depends on the
family and domain of stability under consideration. This framework is then applied to the
study of three physically motivated examples: (1) crane stabilization with damping and
stability margin specifications, (2) satellite attitude control and (3) control of a digital

tape transport.
2. Guardian Maps and Robust Stability

The guardian map approach was introduced in Saydy et al (1988a, 1988b, 1990) as a
unifying tool for the study of generalized stability of parametrized families of matrices or
polynomials. Some of the basic concepts used in this approach are reviewed below. We

use the notation 5 and 9D to denote the closure and the boundary of a given set D.
2.1. Guardian Maps

Basically, guardian maps are scalar valued maps on the set of real n x n matrices! that
take nonzero values on the set of “stable” matrices and vanish on the boundary of that set.
As the concept of guardian maps is normally applied to to generalized stability problems
(wherein eigenvalues are confined within open subsets of the complex plane other than the
open left-half plane), it is useful to allow the set of stable matrices to be any given open

subset of R™*". Thus we have the following definition.

! While in this paper we restrict ourselves to families of matrices, all results extend

readily to families of polynomials as well (Saydy et al., 1990).
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Definition 1. (Saydy et al, 1990) Let S be an open subset of R"*" and let v map R"*"
into ©. We say that v guards S if for all A € S, the equivalence

W(A)=0 <> AcdS (1)

holds. The map v is said to be polynomic if it is a polynomial function of the entries of its

argument.

Of special interest are sets of the form S(2), where

S@)={Ae R :0(4) C ), @)

Q is an open subset of the complex plane and (A) denotes the spectrum of A. Such sets

S(2) will be referred to as (generalized) stability sets.
For example, the map v : A — det (A® A), where @ denotes Kronecker sum, guards

[o]
the set of n x n Hurwitz stable real matrices S(C-). This follows from the property that
the spectrum of the Kronecker sum of two square matrices A and B consists of all pairwise

sums of eigenvalues of A and B (Lancaster and Tismenetsky, 1985).
2.2. Robust stability

The robust stability problem for parametrized families of matrices or polynomials may be
stated as follows. Let r = (r1,...,rt) € U, where U is a pathwise connected subset of RF,
and let A(r) be an element of R™*™ which depends continuously on the parameter vector
r. Given an open subset S of R"*", we seek basic conditions for A(r) to lie within &
for all values of r in U. The next theorem gives a basic necessary and sufficient condition
for this problem both for guarded sets §. Typically, S is a stability set of the form S(f2)

where 2 is a given subset of the complex plane.

Theorem 1. (Saydy et al, 1990) Let S(R) be guarded by the map v. The family
{A(r) : r € U} is stable relative to Q if and only if

(i) it is nominally stable, i.e., A(r®) € S() for some r® € U, and,

(i) v(A(r)) #0, VreU.



In the case of polynomic guardian maps, the theorem above yields computable con-
ditions for robust stability of polynomially parametrized families of matrices. In Saydy et
al (1990), polynomic guardian maps are constructed for many stability sets of practical

interest.
2.3. Maximal interval of generalized stability

Let 2 be an open subset of the complex plane such that S(Q2) is guarded by a polynomic

map v and consider the one-parameter family of matrices
Alr)=Ao+r41+ ... +rT A, (3)

where Ag,...,An are given real square matrices. Let r’ be a nominal value of interest
and assume that A(r?) is stable relative to (.

Denote
v(r) :=v(A(r)). (4)

We seek to find the largest open interval of parameter values (Tmin, "max ) containing r? for

which

A(T) € S(Q) Vre (rmin,""ma.x)- (5)

Note that since S(Q2) is open and A(r) is continuous in r, the fact that A(r%) € S(Q)
guarantees the existence of an open interval containing r° in which the family above is
stable.

The theorem below easily follows from Theorem 1.

Theorem 2. Let S(€2) be guarded by a polynomic map v and let A(r%) be stable relative
to Q. Let?

2= ={r<r®: u(r) =0} U {—oco} (6)

Z¥={r>r": v(r) =0} U {+o0}. (7)

2 Note that v(r®) # 0 since A(r®) € S(22) and §(9) is guarded by v.
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Then

rmin =max {z: z€ 27} (8)
Tmax =min {z: 2z € Z+} (9)
O

Note that in the case of Hurwitz stability of the convex hull of two matrices, it was shown
in Fu and Barmish (1988), based on a result of Bialas (1985), that the maximum range

can be obtained from the eigenvalues of a suitably constructed matrix.
3. Examples of Application

We apply the results of the previous section to three examples. The last two from Franklin
et al (1986) were studied in Bhattacharyya (1986) (see also Biernacki et al. (1987)) where
controllers achieving robust stabilization within a prescribed set in the the parameter space

were synthesized.
Example 1: Crane

In this first example we treat the case of a crane, a simplified model of which consists
of two masses connected by a light inextensible rod (Fig. 1). This system may be described

in state space form by (Hwang and Schmitendorf (1984))

&(t) = A(r)z(t) + b(r)u

where
0 1 0 0 0
I U T 0 _ 147
AN =14 o 0 L b(r) = 0
0 0 —(1+r) O —(147)

and r := 77 is an uncertain parameter.
Our goal is to synthetize a feedback controller u = kz which stabilizes the above
uncertain system around the nominal value r® = 1 with full information on the maximal

range of stability as well as guaranteed damping ratio and stability margin. To this end,
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let us assume that it is desired to place the eigenvalues of the above uncertain system in
the domain 2 of Fig. 2 specified by a slope @ = 2 and a margin o = 0.5 with complete

knowdelge of the maximal parameter range for which these eigenvalues remain in Q.3
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Fig. 1. Crane of Example 1

Fig. 2. Stability domain for Example 1

3 Note that the controllability of the nominal system makes it possible to prespecify Q.
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Accordingly, let A = {-1 £ 0.5j, —1+ j} C Q be desired closed-loop eigenvalues for
the nominal system. Then one easily finds that the required feedback is [1.25 3.25 —
1.375 1.25] := kq. To determine (Tmin, Tmax), the largest range of stability relative to Q,
we may apply Theorem 2 to Au(r) := A(r) - bkg, provided we can endow S(2) with a
polynomic guardian map. It turns out that the mapping given by v(A) = 11 (A)ra(A),

where

a2 2
V1(A)=det{1 2"‘ A-A- 1+2°‘ A2-I}

and

vo(A) =det (A+oI)-I) det(A+al),
is one such map (Saydy et al, (1990)). We obtain the polynomials
v1(Aa(r)) = 1.93310*(r® + 4.92757 5 4 9.04694 r* + 6.94471 % + 0.828279 2

— 1.62776 r — 0.630638)

1

va(4a(r)) = 7556

1
(187 4 187r? + 80r — 25) = (9r +11)
which vanish at the real values
l {—-1.0, —1.4399487, —0.9490848, 0.4614538252},

{—9.927086, —0.670474, 0.20867, —1.22222},

respectively. Recalling that r® = 1, we conclude by virtue of Theorem 2 that rm;, =
0.4614538252, rmax = +00, i.e. that the closed loop uncertain system is asymptotically
stable for all values r € (Tin, 00) and unstable at r = rp;,. (At this value of r, the closed
loop eigenvalues are —0.76734499 4 7 0.4117427 € Q, and —0.694108944 + 5 1.388217872 €
onN.)

Example 2: Satellite attitude control

A satellite system is modeled as two masses connected by a spring with torque constant %

and viscous damping constant d (Fig. 3). The equations of motion are given by
Jlél -+ d(01 - 02) + k(01 — 92) =T,

Joby + d(6y — 01) + k(6; — 6,) =0



9, 8,
Model
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/ oo (\
—
d

Fig. 3. Sketch of a satellite

where J; and J; are inertias and T, is the control torque. Choosing the state vector to be
z = (6, 92, 91,91) and letting u, r1, ro denote denote T, k and d respectively, we obtain

the state equations

&= A(r1,r2)z + bu

Yy =cx
with

0 1 0 O 0

_rn _rz n 12 0

Aror) =1 ¢ ¢ ¢ 1T |» *={o

. _r2 n 1 A,

J1 Jo 4”4 A

¢ =(0,0,1,0)



Physical analysis leads to the conclusion that the parameters ry and ry vary as a result of

temperature fluctuations within the range (Franklin et al., 1986):

0.09<r £04,

/T /71
. — < <0. —_—
0.04 10__7‘2_02 10

The matrix A(r1,72) is singular for every value of the parameters r; and r; and is hence

Hurwitz unstable. Letting u = —ky for some scalar k, we obtain a closed loop matrix

Ag(ri,re) = A(ry,r2) —k be.

[}
As we have seen, the set of Hurwitz stable matrices S(C-) is guarded by the polynomic
map v : A +— det(A @& A). Rather than using this map (it involves in our case the
computation of a 16 X 16 determinant), we use the alternate (polynomic) guardian map

(see Propositions 7 and 8 in Saydy et al (1990))
v: A 1i(A)a(A)

with
v1(A) =det(A-I)

v3(A) = det(A)

where the matrix A - I denotes the bialternate product of A and I and has dimension 6.4

With J; = J; = 1 we obtain®

v (Ak(r,m)) = (58r3) (1)

1
== '6—4k3T1 T%.
We can therefore conclude using Theorem 1 that if k is any controller which stabilizes

the system for some nominal values r} > 0, r > 0, then it also stabilizes the satellite

4 For an n X n matrix A, the matrices A@ A and A- I, are n? x n? and "("2’1) X "("2"1)

respectively.
5 Computer algebra codes were used to carry out the computations symbolically in both

examples.



system globally in the open first quadrant, i.e. for all strictly positive r; and ra, but

stability is lost if ry or r, vanishes.
Example 3: Control of a digital tape transport sy’s’fem

The objective in this last example is to control the speed and the tension of the tape at

the read/write head. A model of such a system is (Bhattacharyya, 1987)
zt=A(r,r2)c+bu
y=c(r1,r2)z
where A(r1,72) is a 5 X 5 companion matrix with last row given by
As1(r1,72) =0
Asq(ry,r2) = —0.1045 10™*r,
Asa(r1,m2) = —(0.35 107*ry + 0.01045 r3 + 0.2725)
Asg(ry,m2) = —(0.25 10~ *r; + 0.035 rp + 1.5225)
Ass(r1,r2) = —(0.025 rqy 4 2.25)
and where ‘
b=(0,0,0,0,1)T, c(ry,r2) = (0.3 107%ry, 0.03 r2, 0, 0, 0).

It is assumed that the parameters ry and ro are subject to perturbations around their
nominal values of r{ = 4.0 10* and rJ = 20. Let Ax(r1,72) again denote the closed loop
matrix A(r1,72) — bke(ry,72). It is shown in (Bhattacharyya (1987), p. 71) that the gain
k = 0.00827 stabilizes the system robustly with stability margin 9.99. We propose to
analyze the performance of this controller using the approach presented here. Using the

guardian map of the previous example we obtain for & = 0.0827 that
v1 (Ak(r1,72)) = 1.5258 10~23[1.2056 10'? r4 + (5.0782 10° r; + 1.7002 101%)r3
+ (1.7008 107 r? 4 3.9995 10'* r; + 7.8397 101%)r2
+ (1.214 10* r} + 1.4755 10° r} + 1.6002 10'%r; + 1.3643 10" 7)r,
+ (4.1306 10° »$ 4 3.1718 10* r — 1.8761 10'* 7))
vo(Ar(ry,re)) = —2.48 1078 ry,
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Let us freeze one of the parameter at its nominal value, say, r; = r{ = 4.0 10%
Then one can show using Sturm sequences for example that the univariate polynomial
v1(Ak(r?, re) w2 (Ak(r?,r2)) has no zeros in [0, +00), implying by virtue of Theorem 1 that
the family Ag(r?,r) is Hurwitz stable for all values r, € [0,00). Repeating the same
computation in the direction ro = r) = 20 yields the similar conclusion that the fam-
ily Ag(r1,79) is Hurwitz stable for all r; € (0,4o00). This suggests that the controller

k = 0.0827 possibly achieves stability for all positive values of the parameters ry, rs.

To investigate this question we use the following result:

Fact. (Saydy et al., 1990) Let Q be a subset of the complex plane such that S(Q) is guarded
by a given real polynomic map v. Let A := {A(r1,rz): (r1,72) € [a1,01] X [az2, B2]} be
a nominally stable family of real matrices; e.g., A(a1,a2) € S(2). Then the family A
is stable relative to € if and only if U2 = 0 and the univariate polynomials p,,, and

Pry, 71 € UL, have no zeros in [ag,B2]. Here, for each 71, p,, denotes the univariate

polynomial v(A(ry,)),

Ul .= {r1 € [a1, 6] : detB(prl,p'rl) = 0} ,

Us i={r1 € [a1,B1] 1 pry(a2)py, (B2) = 0}.

where B(p, q) denotes the Bezoutian of the polynomials p and ¢ and prime denotes deriva-

tive.

O

Note: the following remarks regarding the application of the fact above are in order:

(i) the interval within which r; lies may be any interval (i.e. not necessarily closed);
(i1) the factor p,(82) may be omitted in U2 if B2 = +o0;
(iii) it is necessary to verify that the polynomial p,, has no zeros in [az, 8] only if UL

turns out to be empty.

Clearly vo(Ak(r1,r2)) does not vanish in the first open quadrant and we can thus rede-

fine p,, as v1(Ak(r1,7r2)). It can be verified using Sturm sequences that the polynomial
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detB(pr, , Py, ), given (modulo a constant factor) by

1.7383 r12 — 2.5952 10* ri' — 4.3427 10° ~{° + 2.013.4:1014 ry
—1.3604 10*® r§ — 1.403 1023 r] +5.2263 10%" r$ — 8.5599 10°! +}

+ 6.5237 10%° r — 2.9793 1038 +3 — 2.4777 10*® 2 + 4.896 10*6 r; + 5.1342 10°°
1 1

has only one zero in (0, +00), namely 14005.4616. With the notation of the fact above and
(r1,72) € (0,400) X [0,+00) we thus have

UL = {r1 € (0,00) : det B(pr,,p.,) = 0} = {14005.4615}

U2 = {r1 € (0,00) : p,,(0) =0} = {5518.349}.

It follows that the closed-loop matrix Ag(r1,72) is not Hurwitz stable for all (r1,72) in
(0,00) x [0,00) since U2 # 0. In fact one can easily check that for r; = 14005.'4615, the
polynomial p,, has no zeros in [0,00). We therefore conclude by virtue of the fact above

that the Hurwitz stability of the closed-loop system is guaranteed in the smaller rectangle

(7‘1,7‘2) € (5518349, +OO) X [0, -I-OO).
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