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ABSTRACT

We extend the validity of some results on the optimal control of two-server queueing
models with service times of unequal distribution, operating in continuous or discrete time.
The distribution of arrivals can be arbitrary subject to some conditions. Both discounted and
long run average costs are considered. Dynamic programming and probabilistic arguments are
the key tools used to establish the assertion that the optimal policy is of threshold type, i.e.

the slower server should be utilized only when the queue length exceeds a certain threshold

value.
I. INTRODUCTION AND BACKGROUND

The queueing system considered is shown in figure 1. The motivation for studying such
a system comes from problems of dynamic routing in computer systems or communication
networks. For example, the system may model a node in a communication network where
the “customers” represent messages and the “servers” represent communication lines (with
different delays) over which messages are sent. Customers arrive in a single stream (not
necessarily Poisson) and immediately join the queue. The queue is served by two nonidentical
servers. We shall assume that the service times either have the same exponential distribution
with different means or have entirely different distributions (one exponential and one r-stage
Erlangian, again with different means). We shall impose certain conditions on the mean service
and arrival times, to ensure stability of the system. We focus primarily on the discrete time
case, since it provides a more natural framework in a number of digital communications and

computer system applications.

Two cost criteria are considered: discounted and average number of customers in the
system. Our objective is to choose the control actions to minimize these costs. In the average

cost case, this is equivalent to minimizing the mean time a customer spends in the system.

Multiserver queueing systems are of interest in applications such as multi-processor sys-
tems as well as virtual-circuit-switching communication networks. Most of the results obtained
so far rely on the existence of optimal stationary policies for fairly general systems as estab-
lished by Lippman [1]. Larsen [2] has considered a multiserver system with different rate
exponential servers and Poisson arrivals. He conjectured the optimality of threshold policies

and provided a detailed analysis of their performance. Lin and Kumar [3] proved Larsen’s
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conjecture, using a dynamic programming argument. They also gave a closed form expression
for the value of the optimal threshold. Walrand [4] gave a simpler proof of the same result,
using a probabilistic argument. The latter approach however, does not facilitate the simple

calculation of the threshold.

Hajek [5] considered the case of two interacting nonidentical service stations. His frame-
work is quite general, but somewhat different from ours. He showed optimality of switching
type policies. He generalized and unified several earlier results. Bell [6] analyzed related
multiserver systems under different cost criteria. Kumar and Walrand [7] studied individually
optimal controls of multiserver queueing systems, with general arrival and/or service processes.
Hahne (8] , Tsitsiklis [9] and Seidmann and Schweitzer [10] studied the dynamic routing of
customers among multiple servers in queueing systems arising in manufacturing networks. Op-
timality of threshold type policies has been shown in a number of related models ([11], [12]).
Here we generalize the earlier work in two directions: we obtain results for a discrete time
framework and we assume fairly general arrival processes and service time distributions for
the continuous time framework. We use well known techniques (dynamic programming and

probabilistic arguments) to establish our results.

The paper is organized as follows: in section II the control problem for the discrete
time model is formulated in detail. The continuous time models, namely the E,/M/2 and
M/M, E, /2 models, can be simply converted into equivalent discrete time problems ([15]).
Equivalence means that for infinite horizon cost criteria the optimal policies for the two for-
mulations coincide. Since the differences in the two formulations are not essential, they will
not be presented here in detail. For a full description of the continuous time case, see [13].
The optimality of the threshold policy, for the discounted cost criterion, is shown in section
III, using a dynamic programming argument. In section IV, we discuss the average cost crite-
rion for the more general GI/M/2 model with different rate servers and with arrival statistics
satisfying certain conditions. It is claimed that if an optimal policy exists and is unique, it

will be a threshold type policy for any fixed residual interarrival time.
II. CONTROL PROBLEM FORMULATION

Consider the queueing system shown in figure 2. The system operates in discrete time.
Arrivals to the system form a Bernoulli stream, with probability p of an arrival in a given time

slot. The service time at the i-th server is geometrically distributed with parameter ¢;, i.e. the
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probability that the customer completes service in a given time slot is ¢;, when the customer

is being served by server 7, 1 = 1,2.Without loss of generality, we assume that ¢; > ¢..

Let z = (zo,Z1,%2) be the state of the system, where z is the number of the customers
in queue and z; = 1 or 0 depending on whether server + , ¢+ = 1,2 is busy or not. The state
space of the system is X = {0,1,2,...} x{0,1} x {0,1}. Let {E;}, + =0,...,7 denote the events
of possible combinations of arrivals and service completions that may occur during one time

slot. Define the operators @;: X - X , ©=0,...,7 as follows:
Qo(zo, 21, z2) = (%0, %1, T2)

Q1(20,21,22) = (0,21, (z2 — 1)T)
Q2(20,21,22) = (2o, (z1 — 1) T, 23)
Qs(20, %1, 22) = (20, (21 — 1) ¥, (22 = 1))
Q4(zo, 71, 22) = (20 + 1, 21, Z2)
Qs(zo, 21, 22) = (2o + 1,21, (z2 — 1)T)
Qe(zo, 1, 22) = (2o + 1, (z1 — 1)1, z2)
Q1(z0,z1,22) = (2o + 1, (21 — 1), (22 — 1)T)

where nt = maz(n,0). These operators describe the effects of the events { E;} on the system
state.
Define now the following “action” operators, that describe the assignment of customers

to the servers:

Pr(z0, 71, 22) = (%0, 21,22) , domPp =X
Py (z0,%1,22) = (20 — 1,1,23) , domPy={z€ X :20 2 1,21 = o}
Py(z0,71,22) = (0 — 1,21,1) , domPp = {z€X : 20> 1,2, =0}
Py(z0,21,72) = (70 — 2,1,1) , domPy={z€ X120 > 2,71 = T3 = 0}
The P-operators will represent the dispatcher’s decisions: P, denotes holding a customer,

while Py,P,,P; denote customer forwarding to server 1,2 or both respectively. Let, therefore,

h, 1, 2, b represent mnemonically the above actions.
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In each time slot one of eight possible events occurs and the dispatcher may take one
of the above mentioned four actions. Let u 2 (w0, %1, ...,u7) where u; € {h,1,2,b}, i =

0,...,7 denote a control action and U denote the set of all controls. Let U (z) a {veU
Qi(z) € dom P,;, i =0,...,7} denote the set of admissible controls when the system state is

Z.

Our goal is to choose the control actions u(t) so as to minimize

EY | =) 8

t=0

where | z(t) |= 2o + z; + 2, denotes the number of customers in system at time ¢, and B is a

discount factor 0 < 4 < 1.

Let J# (z) denote the optimum cost function, as a function of the initial state z(0) = z.
It is well known that there always exists an optimal policy which is stationary. Here by
a stationary policy we mean any function # : X — U subject to the constraint n(z) €
U(z) Vz e X. When r is adopted as a policy, u = m(z) is applied whenever the system is in

state z.

For any stationary policy , let T, be the dynamic programming operator

(Txf)(2) =l | + ) _ BPr(E:)f(Pu.Qiz)

=0

where Pr(E;) is the probability of occurence of event E;.

It is a standard result in dynamic programming that

Jo(@) = min [ |z|+) BPr(E:)JI°(PuQiz) ] (4)
Jim T f(g) = 7% () (B)

where T is the dynamic programming operator, i.e.

(T1)(=) = min(T, ) (2)
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and T f & T(=1)(Tf)
III. OPTIMALITY OF THRESHOLD POLICIES

We are now going to show that the optimal policy is of threshold type, i.e. the slower
server should be utilized only when the number of customers waiting in queue exceeds a certain
threshold. This threshold may be 400 which simply means that the slower server may never

be used.

Our goal is to show that the following theorem (theorem 5 of [3]) is true. The proof
follows readily from lemmas 1-4.

Theorem: i) There exists an optimal stationary policy which is of threshold type with a
threshold m* < oo.
i) If Jf. (z) < J£+1 (z) for some z € X, then m* <.

We first prove some properties of the optimal cost function in lemma 1. Lemma 2 states
the (intuitively obvious) fact that the faster server should be always kept busy, whenever this
is possible. Lemma 3 states the fact that the policy iteration algorithm produces as its limit
an optimal policy. Finally, in the crucial lemma 4 we show that when we apply the policy
iteration algorithm to a threshold policy, we get as an improvement a threshold policy again.
Moreover the new policy’s threshold is at most 1 unit more than the threshold of the original

policy. All these facts combined, prove the validity of the theorem stated above.

Since the proofs parallel those of [3], they will not be shown here in full details. For a

complete description, see [13].

Lemma 1. The optimal cost function satisfies the following properties:
i) JB(Pyz) < JP(Prz) , Vz € domPy
ii) JA(Pyz) < JA(Pz) , Vz € domP;()domP,

Proof: We have to show that

7 7
| Piz |+ _ BPr(E;) min J?(P.,Q:Prz) <|Puz|+ Y BPr(E:) min J? (P.,Q:Prz) (C)

=0 +=0

7 7
| Piz |+ BPr(B) min J?(Pu,QiP1z) <| P |+ Y BPr(E;) min JP(P,,Q:P:z) (D)

=0 +=0



Consider any function f which satisfies

f(Piz) < f(Prz) (A1)
f(Piz) £ f(Pez) (A2)
fl@)<fly) =<y (43)

It can be easily seen (by comparing corresponding terms) that the differences T'f(Piz) —
Tf(Prz), Tf(P1z) —Tf(Paz),Tf(z) —Tf(y) for z <y are all nonpositive. Thus T'f satisfies
A1-A3 as well. Inductively T(") f satisfies A1-A3 and thus J? = lim,_,o, T(™ f possesses the
desired properties (C) and (D).

Lemma 2: Whenever the faster server is idle, it is optimal to start serving a customer, if one

is waiting for service.
Proof: See [3].

The importance of this lemma is that it enables us to restrict the set of admissible controls

to
Ulz)={ucU(z): (P,Qiz)1=1,i=4-T; (Py,Qiz)1=1,7=0-3 if z0>1}

i.e. to a set of controls where the faster server is always kept busy. Thus the only decision we
need to make is whether to utilize server 2 or not.
Lemma 3. Let {r,}$ denote a sequence of policies generated by the policy iteration algo-
rithm. Let 7*(z) = limg—, 00 7p, (2) , VZ € X. Then 7* is optimal.
Proof: See [3].

Define now the following operator Fi, : X — X

P(z) if z€{z0=0}U{z1=122=1}U{z1 = 1,22 = 0,20 < m}

if z€{z1=0,z2=1,70 2 1} J{z1 =0,22 =0,1 <20 <m+1}

)
Py(z) if z€{z1=1,2; =0,20 >m}
Py(z) if z€ {21=0,2; =0,70 >m+1}

Fp(z) =

Then a threshold policy t,,, with threshold m (i.e. a policy which utilizes the idle server 2 iff

the number of customers in queue is strictly larger than m) is defined as

tm(z) = (Frn(Qoz), Frn(@12), s Frn (Q77))
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If T;,, denotes the dynamic programming operator associated with ¢,,, and me (z) denotes

the (#-discounted) cost obtained by using t,,, then

7
T, JE (2) = JE (2) =| 2| + ) _ BPr(E)JL (FmQiz)
=0
Lemma 4: For any finite ¢+ > O there exists a 7, 0 < 5 < ¢+ 1 such that thJg = TJg.
That is, there exists a policy ¢; which has a threshold not larger than 7+ 1 and which achieves

the minimum cost over all policies. Thus the policy iteration algorithm, when applied to a

threshold policy, produces a threshold policy again.

Proof: Define the cost differences
ho = J£(0,1,0) — J£(0,0,1)

hi = JE(k,1,0) = JE(k—1,1,1) k>1

and examine when the differences change sign.Note that if by > 0 , VI > 7 and h; < 0
, V1 < j— 1,then the new policy will be a threshold policy with threshold 7 — 1. It is shown
in [13] that for ¢ > 3

R >0 , k>i+2 (1)
hp > ﬂPT(Ez)hk_l , k=141 (2)
BPr(E3){hx — hg—1} > —(1 — BPr(E;) — BPr(Es))hr , k=1 (3)

BPr(Ez){hk — ht—1} > BPr(Es){hk+1 — hr}—
(1 - ﬂPr(Eo) — ﬂPr(Ez) - ﬂPT(E4) - ﬂPT(Es))hk ’ 1 S k S 1—1 (4)

Similar relations hold for the special cases t = 0,1,2. The detailed analysis of relations
(1) - (4) is carried over in [13], where it is shown that the differences do change sign for some

0 < 7 <1+ 1. Thus the proof of the lemma is complete.

Note that in principle, the value of the optimal threshold could be computed using the
policy iteration algorithm: Suppose the optimal policy is ¢; for some 5. Then if we start the

policy iteration algorithm with policy ¢o, we reach the optimal policy in exactly j iterations,
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since each iteration will increase the threshold by one. However, we would have to compute
ij (z), which is very difficult, if not impossible. The situation is somewhat different in the
case of the average cost criterion, where a numerical calculation of the optimal cost function

is possible and thus the threshold value can be computed or at least approximated.
A. The M/M,E, /2, E./M/2 models

We shall now briefly formulate the control problem and discuss the optimality of the
threshold policy for the models M/M, E, /2 and E,/M/2. Again for a detailed treatment of
the models see [13].

1. The M/M, E,/2 model

Consider the queueing system shown in figure 3. Customers arrive in a single Poisson
stream of rate A. Server 1 is exponential, with rate p;. Server 2 is r-stage Erlangian with rate
(per stage) p2. We shall assume that p; > p2. Note that Erlangian service-time models the
case of general conéecutive service “stages”, with the restriction that a customer cannot enter
the first stage of service until the preceding one completes the last stage. In a distributed
database system, this could be the case if the customer (i.e. a transaction to be processed)
requests and locks either 1 or r resources. This can happen when the system operates in a two
phase commitment protocol to achieve atomicity of transactions. It is useful to study such a
model for another reason as well: we can approximate an arbitrary service distribution by Er-
langian ones, choosing r appropriately. When r = 1, this model reduces to the M/M/2 model
studied in [2] and [3]. We have not been able to successfully analyze either the M/E,, M/2
model, i.e. the one in which the faster server is Erlangian, or the somewhat more general

M/M, E, /2 model with u; > £% .

As we have mentioned before, the continuous time problem can be converted to a discrete
time equivalent one. Let z = (zo, %1, z2) denote the state of the system just before an arrival
or a departure occurs, (i.e. at t~). We may define arrival, departure and assignment operators
A, Dy, Dy, Py, Py, Py, P, respectively, in a slightly modified way than it was done in [3].
Here we have to take into account that a departure from stage ¢ at the slower server 2 means
transition to the next stage ¢ — 1, while departure from stage 1 is the “real” de};arture of the

customer (i.e. completion of his entire service).
The proof of lemmas 1-4 has a structure similar to those in [3], with the understanding
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that now X = {0,1,2,...}x{0,1} x{0,1,...,7} and that the domains of the various operators
and the state transitions become more complicated. Lemmas 2 and 3 remain unchanged, as

does the proof of the main result, namely theorem 5 in [3].

Since all the necessary details can be found in [13], we shall only describe the set of
threshold policies in this model and outline the proof and its differences with respect to lemma
4, which is the core of the proof of the main result. Notice that the dynamic programming
equation for this model becomes

JA(z) = ué‘%}?z)[ |z| + BAJP(Pu,Az) + Bu1J?(Pu,D1z) + BusJP(Py,D;z)]
where v = (uo,%1,u2) , u; € {h,1,2,b} fori=0,1,2 is the control action and |z| denotes the

number of customers in the system.

Let us define by F,,, : X — X the following operator:

Pi(z) f z€{zo=0}U{zy =1,20 #0}U {2y = 1,22 = 0,20 < m}
P]_(:IJ) if Q:G{.'Bl=0,$2;é0,$0_>_1}U{I1=0,12:0,15$0Sm+1}
Py(z) if z€{z4=122=0,20 > m}

Py(z) if z€{z1=0,2, =0,20 >m+ 1}

Fn(z) =

Then a threshold policy ¢,,, with threshold m, is defined as
tm(z) = (Fm(Az), Fin(D12), Frn(D2))
and if Jtﬂm (z) denotes its cost, we have
Ty, J? (2) = I (z) = |z| + BAIE (FmAz) + BurJE (FmD12) + BuzJL, (FrnD23)
Lemma 4: For any finite 7 > 0, there exists some 7 such that 0 < 7 <¢+ 1 and
Ty, JE = TJS
Proof: Once again, we define the cost differences

ho = JE(0,1,0) — JZ(0,0,7)

hy = J2(k,1,0) — JE(k-1,1,7)
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and determine when the differences change sign. It is shown in [13] that for 1 > 3, k > 2
hy >0, k>1i+2

hy > Buihg—1 , k=1+1

ﬂllq
by > he—1 ,
P T B T B+ B

k=1

—(1 = B)hik + BA(hk41 — ki) < Bpa(hk —he—1) , 2<k<i-1

and that similar expressions hold for the boundary cases k = 1, + = 0,1, 2. It was also shown

that {hy} changes sign for some j <7+ 1 and thus ¢; is also a threshold policy.
2. The E,/M/2 model

Consider now the queueing system shown in figure 4. Each customer arrives at the system
in r stages, r > 1. A customer arrival is assumed complete (and thus the customer can be

forwarded for service) if all r stages of arrival have been completed. The overall arrival rate

is A= )‘TI ,where X’ 1is the arrival rate per stage. The two servers are exponential, with rates
w1 > wz. Each server picks up a bulk of r stages (one customer) at a time. In a communication
network this could be the case when the customer (a message) arrives in parts (r packets let’s
say) in a network node and is served as a whole when all parts have arrived. Also this model

is a better approximation of a physical system than the Poisson arrival model.

The formulation of this problem is analogous to the previous ones with some differences
in notation and proofs, which take into account the fact that now an arrival is completed only
after r stage transitions. For example, zo now represents the number of stages of arrival in
the system, where we understand that an “arrived” customer corresponds to r stages (see [13]
for details). We shall only give here the threshold policy definition for this model, since it is
that threshold definition that is primarily responsible for the difference between the models.

Define operator Fy, : X — X, where X = {0,1,2...} x {0,1} x {0,1} as

Pi(z) ifze€{zo<r}U{zi =1z, =1}U{z1 =1,22 =0, zo <mr+r—1}
F ) Pi(z) ifze{z; =0,22=1,20 > r}U{zy =22 =0,r <z < (Mm+2)r—1}
m(2) = Py(z) ifz€ {z1 =123 =0,20 > (m+1)r}
Py(z) ifz€ {z1 =22 =0,20 > (m+2)r}
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Now t,,, the threshold policy with threshold m is defined as
tm(z) = (Fin(Az), Fin(D12), Fin(D2z))

Notice that if » = 1 the notation reduces to that for the M/M/2 model of [3], as ex-
pected. The results presented so far were first presented in part in [16]. For all these
results, the case of the average cost criterion can be obtained by letting the discount fac-
tor 8 1 1 and then use corollary 3 of [1]. This would require (as in [3]) computation of
limgt; JE (z) 2 J.(z) = Y zex P(z')|2z’| where p(z') is the steady state probability
of state z' in the Markov chain obtained using policy ¢; and starting from state z initially.
However, an analytical computation of p(z’) in any of the models is not tractable, since it

requires solution of polynomial equations of degree 3 or higher.

Since there is an inherent difficulty in calculating the value of the cost function, it is of
interest to consider alternative approaches to showing the optimality of the threshold policy
that may not involve this computation at all. Such an alternative method was proposed in
[4]. Although we do not wish to repeat here the details of this alternative approach, we found
that it is useful in extending the optimality results in the more interesting direction of fairly

general arrival statistics. This is the subject of the next section.
IV. The GI/M/2 Model

The system considered is shown in figure 5. The motivation for studying this model,
besides the generality it allows for arrival processes, is its potential usefulness in studying
interconnections of service stations in networks. For example, customers arriving at a node
are usually the output of another node and therefore the interarrival times are correlated with
their message lengths, which makes the Poisson assumption a poor one. We assume that
customers arrive in a single stream and immediately join a queue served by two exponential
servers of rates g3 > p2. The mean arrival time is % and for stability reasons we assume
that 0 < A < py + pz. We further assume that the interarrival interval lengths obey the
following stochastic dominance property: if X;, X; denote two such lengths, then EX; >
EX; => Pr(Xy>t)> Pr(X;>1t), Vt>0,ie X; >, Xa. Notice that this property is
not very restrictive. For example, the case of Erlangian arrivals satisfies this property [14]. It

is however crucial for the application of the probabilistic methodology proposed in [4].
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We wish again to choose the control actions at departure and arrival instants to minimize

the average cost

hmmf — E/ |zs|ds

where |z,| denotes the number of customers in the system at time s. Let again z, =

(z°, 21, z%),where z° is the number of customers in the queue and 7* = 1 or 0 depending

on whether server ¢ is busy or not.

Clearly the residual interarrival time at a decision instant should be part of the state of
such a system. Furthermore, it is not clear whether the results of [1] about existence and
uniqueness of an optimal policy hold for this model. Assuming that an optimal policy exists
and is unique, we proceed to show that for a given and fixed residual interarrival time at
any decision instant, the optimal policy is of threshold type. In general, the threshold value
depends on the value of that residual time. Thus, in a sense, the overall optimal policy is of
the “switching curve” variety in the state space of queue sizes and residual times. For the
proof it suffices to show that the following lemma (lemma 3.2 of [4]) holds true. Then the
result is an immediate consequence of corollary 1 of [1]. For the sake of brevity, we will only

outline the proof. We follow the notation of [4].
Lemma : The optimal policy 7 has the following properties

1) m(z°,0,0) # (z°,0,0) and 7(2°,0,1) # (2°,0,1) , V 2° > 0 i.e. the policy does not
leave server 1 idle if the queue is not empty.
2) 7(z°,0,0) # (z° — 1,0,1) , V2% >0 i.e. the optimal policy does not “prefer” the

slower server to the faster one.

3) Let A = 2 {m>0|n(m,1,0) = (m-1,1,1)}. Thenify°2°€ Aand y° < 2° <

2% , z°€ A as well, i.e. Ais “compact”.

4) There is no y° such that z° ¢ A , V z° > ¢° ,i.e. Ais not bounded from above.

5) There is a finite 2° = z%(ao,p1,2) €A, VO<a< ag, 0 <A< py+psz, where

e ® = f denotes the discount factor.

Proof: The main idea is to show that the (optimal) policy 7 can be strictly improved if
it does not satisfy one of properties (1)-(4). Properties 1, 2 and 3 can be proved exactly as in

[4], since they do not depend at all on the arrival statistics. One way to show that A is not
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bounded from above is to show that if z ¢ A, then one can find another integer y(z) € A,
such that z < y(z) < co. This guarantees that there exists no integer =’ > y(z), such that
z' ¢ A, since in that case y(z) < z’ < y(2') and y(z),y(z') € A would imply by property 3
that z' € A.

To show that A contains at least one element z°, it suffices to show that if z ¢ A then
z < 2° < z + no, where ng < oo and (2% 1,0) = (z° — 1,1,1). Consequently, we have to
determine ng.

As we show in the Appendix, we can construct ng as in [4], and thus A contains at least
one element.This completes the proof of the lemma and the theorem. The crucial part of the
proof is the one discussed in the Appendix, where the assumption is made that the initial

residual interarrival time has some fixed value R,.
V. Conclusions

We have considered the problem of controlling a multiserver queueing system, in both
continuous and discrete time. The distinguishing characteristic of the system is that the
statistics of the severs are different. Arrivals to the system are assumed to be separated by
intervals that are independent and have arbitrary distributions, subject to a stochastic ordering
property. We have used a combination of dynamic programming and probabilistic arguments

to establish different parts of the extension to earlier results.

Threshold estimation and performance analysis of suboptimal threshold policies merit
further investigation, since the value of the optimal threshold is very difficult to compute
exactly. Generalizations of the result by further relaxing the assumptions on the arrival and
service statistics as well as by increasing the number of servers are also of interest.

Appendix

We prove here property (5) of the lemma in section IV. We consider a GI/M/1 queue,
with service rate p;, and two possible arrival rates: 0 and g = pu; + 2. For a given initial
queue length m, and an initial interarrival residual time R, common for both cases, let 7 be
the first time that one of the queue sizes hits the value 0 or the value n, for some fixed n > m.

Let then

T

$(mym,a) 2 Blt(o <) |

o

o
e *dt — 1(o > 7')/ e *tdi (1)
0
where ¢ is exponentially distributed with rate p,.
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Define 7F as the first time the queue size hits k, when the arrival rate is r (for the fixed

values of m and R,). Obviously 7& = oo , V k > m. Now define 7,(k) a min{7§, Té‘,rﬂ, rl’f}

Note that 7,(k) = min{r$,70,7%¥} = min{s8,7}} since 7§ < 7§ . Let, further, 7)(k) 2
min{7{, 7§}

Notice that ¢(0,k,a) <0 , Vk >0, 0 < a < oy and also that, as 7 — oo (which
happens when m = in — 00), @(m,n,a) > 0. Thus there exist integers 0 < mo < ng < 0o

such that

¢(mo,m0,a) >0 , YVO<a<ag (2)

Consider now a GI/M/1 queue with an intermediate arrival rate A such that 0 < X <
@1+ w2; let the initial queue length be mg as defined by (2) and the initial residual interarrival
time have the same value R, as considered above. Let 7)(no), 7.(no) be the ng-crossing times
for the queues with rates A and p respectively as defined above. We want to prove that
7a(no) Zst Tu(m0); since ¢ increases as 7 increases stochastically, the above ordering implies
that ¢(mo, no, @) is positive for any 0 < A < puy + p2.

Since A > 0, we have that 7§ < 70 ; so it is sufficient to establish the inequality TR0 <ot T)°

for the desired result. We have

L, Ly )
o= X0+ R B = Y X4k Q

j:1 j:l

where X, ,(,j ) and X§j ) denote the 7-th interarrival interval length, when the arrival rate is u or

A respectively. Clearly L, and L, are random and in general not equal.

Recall that we have assumed that the arrival process is such that g > X implies X, <, X.
Then from prop. 2.2.5 of [17] we have that for any L

L L
PT(Z Xf\’)>e) > Pr(Z X&j)>e)

=1 =1

Now let L = L,. It is easily seen that the Ly — th arrival in the queue with arrival rate
u will occur at a time 7y stochastically smaller than 7;°. Moreover, (see theorem 7 of [14]),

it will find a queue size stochastically larger than no , since the two systems have exactly the
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same departures. Thus 70 <, 7'° and 7x(no) >4t 7u(no). So there exist mo,no such that

¢ >0forany 0 < A < py + po. *

[1]

2]

[4]

5]

(6]

[7]

The rest of the argument goes exactly as in [4].
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