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Abstract: Safe operation of unmanned aerial vehicles (UAVs) over populated areas 

requires reducing the risk posed by a UAV if it crashed during its operation.  We 

considered several types of UAV risk-based path planning problems and developed 

techniques for estimating the risk to third parties on the ground. The path planning 

problem requires making trade-offs between risk and flight time.  Four optimization 

approaches for solving the problem were tested; a network-based approach that used a 

greedy algorithm to improve the original solution generated the best solutions with the 

least computational effort.  Additionally, an approach for solving a combined design and 

path planning problems was developed and tested.  This approach was extended to solve 

robust risk-based path planning problem in which uncertainty about wind conditions 

would affect the risk posed by a UAV. 
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CHAPTER 1: INTRODUCTION 

1.1 MOTIVATION 

In recent years interest in UAV operation over public areas has increased significantly, 

however for larger UAVs operation over public areas can create a risk of injuring people 

on the ground in the event of an accident.  In the event of a crash UAV systems are 

generally not capable of controlling the location of where they crash, creating a risk of 

injuring any third parties present at the crash location.  The risk associated with this type 

of incident can be affected by a variety of factors, such as the population density in the 

region affected by a crash, local weather conditions or the flight speed of the UAV.  

Ultimately the risk posed by a UAV to third parties on the ground is heavily influenced 

by the path that the UAV uses to fly through a region, as avoiding densely populated 

areas will reduce the risk harming third parties in the event of a crash.  However, 

mitigating risk in this manner can increase flight time, which UAV operators generally 

seek to minimize as much as possible, as paths that mitigate the risk of injuring third 

parties are likely to take long, indirect routes in order to avoid densely populated areas.  

Thus a conflict exists between the objectives of mitigating third party risk and 

minimizing the flight time for a path.  In order to effectively determine how a UAV can 

be safely flown along a path while still taking account preferences in terms of how long it 

takes to fly those paths, it is thus necessary for UAV operators to be able to explore the 

trade-offs between these two objectives when determining what the flight path should be 

for their vehicle.  
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Adjusting the path taken by an UAV is not the only way in which the risk posed by an 

UAV can be minimized.  The design of both the physical and operational parameters of 

an UAV can also affect the risk that it ends up posing to third parties on the ground.  

However, such parameters may not universally reduce the risk being posed, depending on 

how the population along the path being flown is distributed.  It is thus necessary to 

consider what the optimal parameters for a UAV should be while also considering what 

the optimal path should be for those parameters.  The problem of solving both of these 

problems simultaneously can be called combined design optimization and path planning.  

Solving such problems can be useful for determining operation parameters for UAVs 

such as flight speed, or for adjusting the design of an UAV in order to reduce the risk the 

UAV will pose on a typical flight path for it.  Similar types of combined design 

optimization and path planning problems can appear in other autonomous system related 

applications, such as in optimizing manufacturing processes or determining an optimal 

design and mission plan for other types of robotic systems. 

 

Another issue in determining risk minimal paths for UAVs is that the risk posed by the 

UAV might be a function of external variables that might not be well known at flight 

time.  For example, the direction that the wind is blowing in can bias a UAV towards 

crashing in a certain direction, particularly in the presence of wind gusts.  Thus a risk 

minimal path should be the path that has the lowest possible risk given the worst possible 

set of external variables that affect risk.  Such paths would be robust to the external 

variables, we thus refer to the task of finding such path as a robust risk-based path 

planning.  It can be observed that this problem has a similar structure to the task of 
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combined design and path planning, however instead of aiming to determine the best 

possible design to minimize an objective the goal is to instead find the worst possible set 

of external parameters in order to maximize the objective.  Since a maximization problem 

can be converted into a minimization problem by simply inverting the sign of the 

objective, it should be expected that by approaches developed for solving the design and 

path planning optimization problem can thus be converted into approaches for solving 

robust path planning problems. 

 

1.2 RESEARCH QUESTIONS 

In this thesis we will discuss methods for performing risk-based path planning for UAVs 

and how such methods can be integrated into a design process for designing an UAV.  To 

achieve this risk metrics will be discussed for UAVs for quantifying third-party risk.  

Most risk metrics for UAVs require some representation of the region in which a UAV 

can crash in relative to its point of failure, methods for determining this will be discussed 

and compared.  Specific questions to be answered include how to these various methods 

compare against each other in terms of solution quality and performance.  Additionally, 

we will explore whether the use of graph based path planning in a design and path 

planning optimization context can produce superior results to using waypoint based path 

planning optimization techniques.  Furthermore, we will also explore how approaches for 

design and path planning optimization problems can be adapted for solving robust risk-

based path planning problems.  Thus our goals are to answer the following questions: 

• How can we quantify third-party risk for a path taken by a UAV?  
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• What are the best methods for determining paths for UAVs that trade off the risk 

posed by the UAV and the time needed to traverse the path? 

• How can we solve design and path planning optimization problems and what are 

the benefits to using graph based planning techniques in these problems? 

• How can we account for sources of uncertainty in risk-based path planning 

problems in order to obtain a robust solution? 

1.3 PROBLEM DEFINITIONS 

The primary problems discussed in this thesis are those of risk-based path planning, 

combined design optimization and path planning and robust risk-based path planning.  

Both problems discussed here either are path planning problems or contain a path 

planning problem as a subproblem, in all cases the problem consists of determining the 

path between two points that minimizes a cost function.  The problem of risk-based path 

planning is defined a path planning problem where the cost function to be minimized 

represents the risk to third parties posed by the path  being solved for.  In addition to path 

planning, the problem of combined design optimization and path planning also involves a 

design optimization subproblem.  In this thesis, the design optimization problems 

considered will always be to minimize a cost function by manipulating the values of a set 

of design variables defined on continuous intervals.  The problem of combined design 

optimization and planning as discussed in this thesis is the problem of simultaneously 

solving a path planning problem and a design optimization problem where both problems 

share and can influence a cost function.  For the problem of risk-based combined design 

optimization and path planning considered in this thesis, the cost function used will 

represent the risk associated with an UAV flying over a specific path.  For the problem of 
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robust path planning, we view the problem as finding the path that minimizes the 

objective under consideration, while that objective is being maximized with respect to a 

set of variables defined of continuous intervals.  Thus the problem of robust risk-based 

path planning is a robust path planning problem where the objective is the risk associated 

with an UAV flying over a specific path.   

 

1.4 ORGANIZATION 

The chapters of this thesis are organized as follows.  Chapter 2 discusses methods for 

risk-based path planning and defines the risk metric that will be used throughout this 

thesis.  Chapter 3 discusses methods for risk-based combined design optimization and 

path planning.  Chapter 4 discusses methods and results for robust risk-based path 

planning approaches based off the algorithm developed in Chapter 3.  Chapter 5 discusses 

the conclusions that can be drawn from the work discussed in the previous chapters. 
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CHAPTER 2: RISK-BASED PATH PLANNING OPTIMIZATION METHODS 

FOR UAVs OVER INHABITED AREAS 

(The material in this chapter originally appeared as [30]) 

NOMENCLATURE 

c(e) cost (weighted sum of the time and risk) of an edge 
d  distance between two adjacent points in the discrete probability distribution 

kD  population density of a census tract 

( ), 1D i i +  expected crash location population density along a leg  

f(X) cost objective function 

xf   fraction (“tolerance”) for the x-coordinates 

yf   fraction (“tolerance”) for the y-coordinates 

( )1 2,G n n  edge between nodes 1n  and 2n  

1K  expected number of crashes per 100,000 flight hours 

2K  expected area in which persons will be killed if the vehicle crashes 
n number of waypoints 
N  number of whole intervals in a leg 

xn  number of points in a row in the grid 

yn  number of points in a column in the grid 

jkp  probability associated with a point in the bivariate distribution 

( ), 1r i i +  risk of flying a leg 

r normalization constant for risk 
( ), 1t i i +  time to travel a leg 

t   normalization constant for time 
V  vehicle airspeed  

rw   weight on risk 

tw   weight on time  

( ),S Sx y  start point of the flight plan 

( ),F Fx y  finish point of the flight plan 

( ),i ix y  coordinates of a waypoint  

,L Ux x   lower and upper bounds for waypoint x-coordinates 
,L Uy y  lower and upper bounds for waypoints y-coordinates 

X x- and y-coordinates of a list of waypoints 
XN list of waypoints in solution obtained from network optimization  

x∆   horizontal distance between adjacent nodes (vertices) in the grid 

y∆  vertical distance between adjacent nodes (vertices) in the grid 

( ),jk jkx y∆ ∆  rotated coordinates of a point in the bivariate distribution 

kΓ  census tract polygon  
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2.1 INTRODUCTION 

In the United States, the use of UAVs by government agencies, commercial 

enterprises, and others requires mitigating the risk to persons on the ground.  A UAV 

operator must demonstrate that the activity poses little risk; that is, the expected number 

of persons harmed by the activity must be sufficiently small (less than one fatality per ten 

million flight hours [4]).  The risk depends upon the size and reliability of the UAV, the 

weather conditions, the number of persons who are on the ground close to the path of the 

UAV, the shelters that protect these persons, and other factors.   

Because the risk to persons on the ground depends upon the UAV flight path, UAV 

operators are interested in approaches (techniques) that can find low-risk flight paths 

between the start and finish points of the activity.  In some areas, the flight paths with the 

lowest risk are excessively long and indirect because the least-populated areas are too 

remote.  Thus, UAV operators are concerned about the tradeoff between risk and flight 

time.  In some cases, risk acceptance criteria may set an upper bound on the risk; in other 

cases, UAV fuel capacity or other operational issues may set upper bounds on the time.  

In general, it is important to find the tradeoffs between these two objectives (risk versus 

time). 

A wide variety of methods exist for solving path planning problems for UAVs [11]. 

An important distinction to make amongst these methods is between methods that merely 

find a feasible path (a path that satisfies all constraints present) and methods that find an 

optimal path (a path that optimizes some objective in addition to satisfying constraints). 

In the context of risk-based path planning for UAVs, most methods define some form of 
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cost metric to represent the type of risk being minimized and then formulate the problem 

as a multiobjective optimization problem where the objectives are the risk metric and 

another metric representing the length of the path (such as distance traversed along the 

path or time needed to traverse the path).  Examples of types of risk considered in such 

methods include risk posed due to environmental hazards and terrain [21][31][7], risk 

posed due to large scale obstacles such as radar or heavily populated areas  [3][19],  the 

risk of a mid-air collision [34][16][5] or the risks to persons on the ground [19]. 

In general most methods for solving UAV path planning optimization problems 

utilize either discrete graph-based planning approaches or mathematical optimization 

techniques that optimize a fixed number of waypoints.  A discussion of methods for 

solving graph based planning problems with multiple objectives can be found in [26]. 

Many mathematical optimization techniques for risk-based planning utilize evolutionary 

optimization algorithms [13] [8]. 

The risk posed by a UAV to people on the ground can be described in terms of the 

expected number of fatalities associated with a given flight, which can be determined by 

identifying the possible crash locations and multiplying the probability of a UAV crash 

by the number of people present in the potential crash location [4].  Typically this is 

quantified as a 2-dimensional probability distribution representing the likelihood of 

crashing at a certain distance away from the point of the failure.  For example, Pikaar et 

al. [24] used data about historical crashes at airports to generate a crash location 

distribution for the specific scenarios of takeoff and landing.  For the more general case 

of a UAV in flight, Wu and Clothier used worst case assumptions to bound the potential 

crash area [36], which can be used as a distribution with the assumption of a uniform 
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distribution in those bounds.  Ford and McEntee [10] generated a bivariate crash location 

distribution using simple assumptions about the flight dynamics of an unpowered UAV.  

Lum et al. [15] determined a non-uniform distribution of potential crash locations for a 

particular UAV by performing Monte-Carlo simulations of that UAV failing and crashing 

to the ground.     

The author of this thesis is unaware of any risk-based path planning approach that has 

considered the distribution of where a UAV will crash and the population density of the 

areas in and near the flight path.  The problem is computationally difficult, and this work 

considers approaches that can quickly find high-quality solutions. More specifically, this 

chapter presents a risk-based optimization approach for exploring the tradeoffs between 

the risk to persons on the ground and flight time and describes the results of a 

computational study that evaluated the performance of these optimization algorithms for 

some specific instances.  The approach is a novel combination of multiple elements: (1) a 

flight dynamics model that predicts the crash location for a UAV that loses power at a 

given altitude and velocity, (2) a Monte Carlo simulation to generate a probability 

distribution of crash locations, (3) a risk assessment method that incorporates the crash 

location distribution (not the worst case) and the population density near the flight path 

(based on census data), (4) an efficient algorithm for finding a flight path that minimizes 

both time and risk, (5) two different solution improvement techniques, (6) a bi-objective 

framework for generating a set of non-dominated solutions, and (7) a set quality metric 

for evaluating and comparing sets of bi-objective solutions.   

The rest of the paper is organized as follows. Section 2 formulates the problem, and 

Section 3 describes the solution approaches.  Section 4 presents the design of the 
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experiments that were conducted, and Section 5 discusses the results.  Section 6 is the 

summary and conclusions. 

2.2 PROBLEM DEFINITION 

Given a start point A, a finish point B, a planned altitude, and the UAV velocity, the 

objective is to find the UAV’s flight plan from A to B to minimize risk and time.  In 

theory, the flight plan can be any continuous path from A to B.  However, here, it is 

treated as a piecewise linear path passing through n waypoints ( ),i ix y . The first waypoint 

is the start point ( ) ( )0 0, ,S Sx y x y= , and the last waypoint is the end point 

( ) ( )1 1, ,F F
n nx y x y+ + = . 

In theory, there are no constraints on the locations of the waypoints.  In practice, of 

course, flight plans must avoid different types of restricted airspace, which are ignored in 

this study (but these could easily be added as constraints if needed).  For computational 

purposes, locations of the waypoints were restricted to remain within upper and lower 

bounds on the x- and y-coordinates, in order to place a limit on the size of the region 

being considered. 

The total time of a flight path is the sum of the time for each leg.  In this study, the 

time ( ), 1t i i +  equals the distance from ( ),i ix y  to ( )1 1,i ix y+ +
 divided by the vehicle’s 

airspeed V. 

In this study, the risk measure is the expected number of deaths.  The total risk for a 

flight plan equals the sum of the risk for each leg.  The risk measure depended upon the 

population density at the potential crash locations, which are determined by the flight 

path.  This study did not consider the influence of shelter.   
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2.3 OPTIMIZATION APPROACHES 

The risk-based path planning optimization problem had two stages: (Stage 1) estimate 

the probability distribution of the crash location based on planned altitude and velocity of 

the UAV; and (Stage 2) determine the flight paths that minimize time and risk. 

Table 2.1 INITIAL CONDITIONS FOR MONTE CARLO 
SIMULATIONS. 
Velocity (m/s) Mean Deviation 
xɺ  50 50 
yɺ  0 10 
zɺ 0 10 
Position (m)   
x 0 0 
y 0 0 
z 1,524 0 
Orientation, Euler angles (degrees)   
Φ 0 11.25 
Θ 0 11.25 
Ψ  0 11.25 
Angular Velocity (degrees/s)   
P 0 11.25 
Q 0 11.25 
R 0 11.25 
Control surface deflection 
(degrees) 

  

Elevator Deflection (��) 0 11.25 
Rudder Deflection (��) 0 11.25 
Aileron Deflection (��) 0 11.25 
Control surface deflection rates 
(degrees/s) 

  

Elevator deflection rate (��
�) 0 0 

Rudder deflection rate (��
�) 0 0 

Aileron deflection rate (��
�) 0 0 

 

To obtain a crash location distribution, a Monte Carlo simulation of a UAV crashing 

was used to generate sample crash locations.  To model a UAV crashing, a dynamics 

simulation of an unpowered UAV with freely moving control surfaces (unpowered) was 

implemented using the non-linear ODE models detailed in [33] and [32].  By solving this 

non-linear ODE numerically using MATLAB’s ode45 solver [18] it was thus possible to 
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simulate the trajectory of how a UAV would crash given specific initial conditions.  An 

example of a crash trajectory from this simulation can be seen in Figure 2..  The final 

crash location of the UAV was determined to be the point at which the UAV had a height 

(z) of zero from the ground, meaning it had hit the ground.  By varying the initial 

conditions of the UAV randomly about a fixed initial state, it was thus possible to 

simulate a range of possible crash locations by repeatedly running this simulation from 

those initial conditions.  A list of the state variables used in the model, the baseline case, 

and the distributions of the random perturbations can be found in Table 2.1. The 

aerodynamic coefficients and physical properties used for the UAV being simulated were 

based on those provided for a Cessna 182 aircraft [27].  The crash distribution was then 

used to compute the risk presented to people on the ground. The crash distribution was 

discretized into a 2-dimensional grid of bins for computational efficiency.  A heat map of 

this discretized distribution can be found in Figure 2.2.  In this distribution, the 

probabilities of landing in the central cells are much greater than those of other cells, but 

the small cell size (relative to the lengths of the edges and the size of the census tracts) 

makes the distribution adequate.   
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Figure 2.1 EXAMPLE UAV CRASH 
TRAJECTORY. THE CIRCLE DENOTES THE 
START POINT AND THE “×” DENOTES THE 
FINAL CRASH LOCATION. 

Figure 2.2 DISCRETIZED HEAT MAP OF CRASH 
DENSITY DISTRIBUTION.  THE SCALE 
CORRESPONDS TO THE PROBABILITY THAT 
THE VEHICLE WILL LAND IN THAT CELL. 

 

The process of discretizing the crash distribution yielded a two-dimensional discrete 

probability distribution that specifies, for each discrete point in an m-by-m grid, the 

probability that the UAV will land at that spot.  By choosing m to be an odd number, the 

center of this discrete probability distribution is the location of the UAV when the failure 

occurs and it begins to crash.   

To compute the risk for a single leg of the flight plan, the risk was sampled at the 

midpoints of N intervals of length d along the leg, where d was 3 times the length of the 

bins used to discretize the crash distribution. 

Next, the points in the probability distribution are rotated by the bearing along the leg 

for which the risk is being evaluated.  There are m rows of points in the bivariate 

distribution, each with m points.   

A “cloud” of (m + N - 1)m points is created as follows:  

Step 1. For a = 1, …, m, do the following: 

For b = 1, ,N… , 1ab b ax x x= + ∆ɶ , 1ab b ay y y= + ∆ɶ . 

-1000
-800

-600
-400

-200
0

200

-200

0

200

400

600

800
0

500

1000

1500

x (meters)y (meters)

z 
(m

et
er

s)

-1040 -694 -347 0 347 694 1040
-1040

-694

-347

0

347

694

1040  

x (meters)

 

y 
(m

et
er

s)

0.05

0.1

0.15

0.2

0.25

0.3

0.35



14 
 

For b = 1, , 1N N m+ + −… , , 1ab N a b Nx x x − += + ∆ɶ , , 1ab N a b Ny y y − += + ∆ɶ  

Step 2. If m N≤ , then the probabilities for each point can be determined as follows: 

For b = 1, , 1m−… , 
1

1 b

ab ak

k

p p
N

=

= ∑ɶ .  

For b = , ,m N… , 
1

1 m

ab ak

k

p p
N

=

= ∑ɶ . 

For b = 1, , 1N N m+ + −… , 
1

1 m

ab ak

k b N

p p
N

= − +

= ∑ɶ . 

Step 3. If m N> , then the probabilities for each point can be determined as follows: 

For b = 1, , 1N −… , 
1

1 b

ab ak

k

p p
N

=

= ∑ɶ .  

For b = , ,N m… , 
1

1 b

ab ak

k b N

p p
N

= − +

= ∑ɶ . 

For b = 1, , 1m N m+ + −… , 
1

1 m

ab ak

k b N

p p
N

= − +

= ∑ɶ . 

Step 4. Loop over the census tracts.  For each census tract k, determine which points in 

the “cloud” are in that tract’s polygon kΓ  and, for ( , )ab ab kx y ∈ Γɶ ɶ , set 
ab kd D=ɶ .  Calculate the 

likelihood of crashing into census tract k:  

 
( , )ab ab k

k ab

x y

p

∈Γ

Π = ∑
ɶ ɶ

ɶ  (2) 

Step 5.  Determine the expected population density along this leg: 

 
1

1 1

m N m

ab ab k k

a b k

D p d D

+ −

= =

= = Π∑ ∑ ∑ɶɶ  (3) 

The risk of flying from ( ),i ix y  to ( )1 1,i ix y+ +
 can thus be determined as shown in 

Equation 4. 
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 ( ) ( ) ( )1
2, 1 , 1 , 1

100, 000

K
r i i t i i K D i i

 
+ = + + 

 
 (4) 

Multiple optimization approaches were used for Stage 2, which generated the flight 

paths, but all of them involved the same procedure for calculating D  for a leg. The 

approaches used for Stage 2 generated a set of flight paths by solving a set of path-

planning problems.  Biobjective optimization was performed using a weighting method, 

in which the overall objective function (“cost”) is defined to be the weighted sum of the 

scaled risk and time objectives, as detailed in Equation 5.  Thus two weighting constants 

are defined, the time weighting constant tw  and the risk weighting constant rw . The 

quantities tw  and rw must be non-negative and satisfy 1t rw w+ = : 

 ( )
( ) ( )

0 0

, 1 , 1n n

t r

i i

t i i r i i
f X w w

t r
= =

+ +
= +∑ ∑  (5) 

By varying the weights tw  and rw  and minimizing the value of Equation 5 it was 

possible to generate a set of different flight paths with the optimization approaches 

discussed in this chapter.  

As detailed next, the optimization approaches included network-based approaches 

and a non-network approach that used only continuous variable optimization methods. 

2.3.1 NETWORK OPTIMIZATION APPROACH 

The network optimization step created a network with a grid of nodes and the start 

and finish points, evaluated the time and risk of every edge in the graph, and then found 

the minimum-cost path from the start to the finish point.  The network consisted of a 

uniformly spaced grid of nodes with horizontal spacing ( ) ( )/ 1U L
x xx x n∆ = − −  and vertical 

spacing  ( ) ( )/ 1U L
y yy y n∆ = − −  and the points ( ),S Sx y  and ( ),F Fx y .  Nodes outside the 
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census tracts of states being considered in the optimization were deleted.  This type of 

network was chosen for its simplicity, which makes it easy to create.   

Each node in the grid was connected with edges going to the eight nodes neighboring 

it in the grid.  In addition, for the points ( ),S Sx y  and ( ),F Fx y , edges were added from each 

point to the four corners of the grid element that contained that point.  A visual 

representation of this can be seen in Figure 2.3. 

Next, the time and risk of each edge ( , )i j  was determined followed by the calculation 

of the cost (weighted sum of the time and risk) of an edge: 

 ( ) ( ) ( ) ( )( ( , , , )) , / , /i i j j t rc G x y x y w t i j t w r i j r= +  (6) 

The network optimization approach found the minimal cost path XN using Dijkstra’s 

algorithm [9].  Changing the values of the weights tw  and rw  required only recalculating 

the edge costs and optimizing; it was not necessary to build the network and evaluate the 

time and risk of every edge every time.   
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Figure 2.3 IN THIS SECTION OF THE GRID, THE SOLID 
CIRCLES ARE NODES IN THE GRID, THE DIAMOND IS 
THE START (OR FINISH POINT), AND THE 
ADDITIONAL EDGES SHOW HOW THAT POINT IS 
CONNECTED TO THE NODES IN THE GRID. 

2.3.2 LOCAL IMPROVEMENT APPROACH 

The local improvement approach used the output of the network optimization step as 

its initial solution and then found a solution near that solution by solving a continuous 

variable optimization problem with Equation 5 as its objective function and subject to the 

additional constraints defined by Equation 7 that kept each waypoint close to a waypoint 

of the initial solution.  The constraints are determined by the tolerances xf  and 
yf : 

 
N N
i x x i i x x

N N
i y y i i y y

x f x x f

y f y y f

− ∆ ≤ ≤ + ∆

− ∆ ≤ ≤ + ∆
 (7) 

Pseudocode: 
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X Minimize f X X Eq

=

=
 

2.3.3 GREEDY IMPROVEMENT APPROACH 

The greedy improvement approach also used the output of the network optimization 

step as its initial solution and then searched for a solution near that solution using a 
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continuous variable optimization method subject to the constraints imposed by Equation 

7.  However, the greedy improvement approach solved a sequence of n subproblems, one 

for each waypoint in turn.  This way each subproblem that was solved had only two 

variables (the coordinates for one waypoint) which was solved relatively quickly 

(compared with the time needed to optimize all of the waypoints at the same time).  

Additionally, since only one waypoint was being optimized at a time, the objective 

function defined in Equation 5 only needed to be evaluated for two legs: the ones 

immediately before and after the waypoint being optimized. 

Pseudocode: 

[ ] [ ]( )( )
[ ] [ ]

0

0

0
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sol

sol

X X

For i n

X i Minimize f X i X Eq

X i X i

End

=

= …

=

=

  

 2.3.4 NON-NETWORK APPROACH 

The non-network approach did not require the network optimization step because it 

used a straight-line path between the start and finish points as the initial solution.  The 

number of waypoints was fixed (at 5, 10, 14, or 20), and their coordinates were 

constrained by the lower and upper bounds (not the nodes of the network).  In the initial 

solution, the waypoints divided the straight-line path into legs with the same distance. 

2.4 EXPERIMENTAL DESIGN 

Multiple studies were conducted to compare the performance characteristics of the 

methods described above.  In particular, the computational experiments were designed to 

provide insights into the tradeoffs between the quality of the solutions that were 
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generated and the computational effort required.  Throughout these studies two different 

scenarios were considered, a flight traveling from Patuxent River Naval Air Station, 

Maryland, to Camp David, Maryland (the “Pax River case”), and a flight traveling from 

College Park Airport in College Park, Maryland, to Virginia Tech Executive Airport in 

Blacksburg, Virginia (the “College Park case”).   

A set of solutions was generated by solving the problem with different combinations 

of weights, with tw  = 0, 0.1, 0.2, …, 1.0, and 1r tw w= − . For the network optimization 

step the dimensions of the grid (the number of points in each direction) were varied 

between several sizes: 30×12, 40×16, 50×20.  (For example, the 30×12 grid began with 

360 nodes arranged in 30 columns and 12 rows.)  Examples of the types of grids used can 

be seen in Figure 2.4 and Error! Reference source not found..  Solutions for the greedy 

and local improvement approaches were computed for each grid size and for three 

different values of the tolerance parameters xf  and 
yf : 0.25, 0.5 and 0.75 times the size 

of each grid element. See Table 2.2 for a comparison of sizes.  The non-network-based 

approach was used to generate solutions with 5, 10, 14, and 20 waypoints.  MATLAB’s 

fmincon [17] function was used to solve the continuous optimization problems in the 

local improvement, greedy improvement, and non-network-based approaches. 

Table 2.2 HORIZONTAL AND VERTICAL EDGE LENGTHS FOR DIFFERENT CASES Table 2.2 HORIZONTAL AND VERTICAL EDGE LENGTHS FOR DIFFERENT CASES 
CONSIDERED. 

Case  Grid size 

Horizontal edge 
length (°longitude) 
(∆	) 

Vertical edge length 
(°latitude) 
(∆
) 

College  30x12 0.2989 0.3707 
Park  40x16 0.2223 0.2875 
  50x20 0.1769 0.2146 
Pax River  30x12 0.3092 0.5414 
  40x16 0.2299 0.3970 
  50x20 0.1830 0.3134 
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Each approach generated a set of solutions (one for each value of the weights, see 

Equation 6).  In order to quantify and compare the quality of a set of solutions, a 

closeness metric based on the method detailed in [35] was developed.  To calculate this 

metric, the time and risk of every solution generated was scaled so that the scaled time 

and risk of all of the solutions generated for that case ranged from 0 to 1.  The metric can 

be defined as the left handed Riemann sum of the points comprising a Pareto frontier 

with two additional points added to the frontier at (max objective 1, min objective 2) and 

(min objective 1, max objective 2) (where the min and max objective function values are 

relative to all Pareto frontiers being compared), these two additional points represent the 

worst case values for any regions not covered by the Pareto frontier being evaluated.  

Note that if the values of each objective function are scaled onto [0,1] using a min-max 

scaling these two added points become (1,0) and (0,1). Figure 2.5 shows a visual example 

of this metric.  A lower value for this closeness metric will represent a higher quality 

solution as the solution set will be closer to the ideal point of (0,0). 

 

Figure 2.4 EXAMPLE GRID (40x16 NETWOR FOR THE COLLEGE PARK CASE).  THE GRAY 
LINES SHOW THE CENSUS TRACTS IN VIRGINIA, MARYLAND, AND THE DISTRICT OF 
COLUMBIA.  THE BLACK LINES SHOW THE EDGES IN THE GRID.  THE CYAN CIRCLE 
SHOWS THE START POINT (COLLEGE PARK, MD), THE CYAN TRIANGLE IS THE END 
POINT (BLACKSBURG, VA). 
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2.5 RESULTS 

The results were generated using a computer equipped with an Intel i5 2400 processor 

and 4 GB RAM.  MATLAB’s fmincon was used with its default tolerances and the active 

set method as its optimization algorithm.  To generate the crash distribution, all of the 

relevant error tolerances in MATLAB’s ode45 solver were set as 10-3.  For each case, 

three grids were generated.  For each grid, the network optimization and the local and 

greedy improvement approaches were used, each with three different values for the 

tolerances (which yielded seven sets of solutions per grid and 21 network-based sets of 

solutions).  The non-network approach was also used with four different values for the 

number of waypoints, which generated four more sets of solutions.  Thus, there were 25 

sets of solutions for each case.  Figures 2.9 and 2.10 show the average computation time 

required for each approach (the average is taken over the different values for the weights) 

and the closeness of the sets of solutions that were generated.  

 
Figure 2.5. EXAMPLE OF CLOSENESS METRIC, THE 
BLACK POINTS ARE THE PARETO FRONTIER, THE 
BLACK AREA SHOWS THE AREA CONSIDERED IN THE 
METRIC FROM [35], AND THE GRAY AREA SHOWS 
THE ADDITIONAL AREA THAT IS CONSIDERED BY 
THE METRIC DETAILED HERE. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 2.6. SELECTED PARETO FRONTIER RESULTS FOR THE COLLEGE PARK CASE: (a) 
GREEDY APPROACH, 30x12 GRID, (b) LOCAL APPROACH, 30X12 GRID, (c) GREEDY 
APPROACH, 40x16 GRID, (d)  LOCAL APPROACH, 40x16 GRID, AND FOR PAX RIVER CASE (e) 
GREEDY APPROACH, 40x16 GRID, (f) LOCAL APPROACH, 40x16 GRID. 
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Figure 2.7. PARETO FRONTIER RESULTS FOR 
THE COLLEGE PARK CASE USING THE NON-
NETWORK METHOD FOR DIFFERENT 
NUMBERS OF WAYPOINTS. 

Figure 2.8. PARETO FRONTIER RESULTS FOR 
THE PAX RIVER CASE USING THE NON-
NETWORK METHOD FOR DIFFERENT 
NUMBERS OF WAYPOINTS. 

 

 
 

 
Figure 2.9. CLOSENESS AGAINST COMPUTATION TIME FOR THE COLLEGE PARK 
CASE. 

2 2.5 3
0

1

2

x 10
-4

ri
s
k

time(hours)

 

5 waypoints

10 waypoints

14 waypoints

20 waypoints

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
x 10

-4

ri
s
k

time(hours)

 

5 waypoints

10 waypoints

14 waypoints

20 waypoints



24 
 

 
Figure 2.10. CLOSENESS AGAINST COMPUTATION TIME FOR THE PAX RIVER CASE. 

The results displayed in Figure 2.6 show that the different approaches generate very 

different sets of solutions.  For the College Park case, the network optimization approach 

generated a variety of solutions, including some with moderate values of both time and 

risk, as shown in Figure 2.6.  The local improvement and greedy improvement 

approaches similarly generated a variety of solutions that improved upon those generated 

by the network approach.  The non-network approach also generated a variety of 

solutions, as shown in Figure 2.7.   

The network optimization approach for the Pax River case generated only two distinct 

solutions (a nearly straight, minimum-time solution and a wandering minimum-risk 

solution).  As a result, the local improvement and greedy improvement approaches 

generated sets of solutions that had many solutions near the minimum-time solution and 

one solution near the minimum-risk solution (as shown in Figure 2.6).  The non-network 

approach was unable to find a low-risk solution; it generated solutions near the initial 

straight-line solution, as shown in Figure 2.7 and Figure 2.8.  
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The closeness metric shows that the quality of the solutions generated by the local 

improvement and greedy improvement approaches were superior to the quality of the 

solutions that the network optimization step generated.  This was true for both approaches 

in the College Park case.  In the Pax River case, the greedy approach with the 40×16 and 

50×20 grids generated solutions that reduced closeness.  The tolerance value did not 

show any consistent trend in how it affected the closeness of the solutions.  As can be 

seen in Error! Reference source not found. and Error! Reference source not found., 

the Pareto frontiers generated by these approaches either dominate or are non-dominated 

by those produced by only using the network approach.  The greedy and local approaches 

both produce superior results to using only the network optimization approach.  The 

Pareto frontiers in Figure 2.7 and Figure 2.8 show that the non-network approach was 

unable to construct long, low-risk solutions like those that the network approaches found.  

The lack of low-risk solutions is due to the non-network approach converging to local 

optima that are near the initial straight-line solution, which prevents the approach from 

finding solutions near the better solutions that the network-based approaches find. 

Several examples of the differences between these two types of solutions can be seen in 

Figure 2.11. The greedy and local approaches appear to be the best of the approaches that 

were considered in this chapter (that is, they produced the best Pareto frontiers of 

solutions). 

As can be seen in Figure 2.9 and Figure 2.10, neither the local improvement approach As can be seen in Figure 2.9 and Figure 2.10, neither the local improvement approach 

nor the greedy improvement approach was substantially better than the other in terms of 

solution quality; the computational effort, however, was quite different: the local 

improvement approach required more effort than the greedy improvement approach (the 
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computational effort for both includes the computational effort for the network 

optimization step).  The computational effort of the non-network approach increased as 

the number of waypoints increased, which is expected given that an increase in waypoints 

means that the optimizer has more variables that it needs to manipulate. Additionally, as 

the grid becomes finer (includes more nodes), the computation time required for the 

greedy improvement approach does not grow at the same rate as the computation time 

required for the local improvement approach does, which suggests that the difference in 

the computation time for the two methods would likely increase for larger problems. 

The quality of the solutions and the computational effort of the network optimization 

step varied as the grid size varied, but no trend was evident.  In general the solution 

quality should improve as the grid resolution becomes finer (and the network has more 

points), though it should be noted that exceptions to this can exist if the nodes at a certain 

resolution allow for a solution that does not exist for nearby grid resolutions.  This issue 

can be avoided by using a significantly finer grid, though it should be noted that doing so 

will increase the computational effort of obtaining solutions accordingly. Although the 

computation time needed to construct the network is low compared to the computation 

time needed for the non-network approach, the network optimization step does require 

sufficient memory to store the network and the time and risk of every edge.  The number 

of edges is proportional to the number of nodes, which will increase as the resolution of 

the grid increases.  Methods that use mathematical optimization techniques (such as the 

non-network approach used in these experiments) do not store the graph and do not 

require the associated memory.  
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In terms of both computation time and solution quality, the greedy approach produces 

the best results of the methods considered.  While the local approach does also provide a 

similar level of improvement in quality over the network solution, the substantially lower 

time required for the greedy approach would make it more useful in practice. 

 

(a) (b) 

(c) (d) 
Figure 2.11. EXAMPLES OF THE SOLUTIONS GENERATED BY THE NETWORK APPROACH WITH THE 
40X16 GRID (RED) AND THE NON-NETWORK APPROACH WITH 20 WAYPOINTS (ORANGE) FOR THE 
COLLEGE PARK CASE: (a) 0, 1t rw w= =  (b) 0.3, 0.7t rw w= = (c) 0.6, 0.4t rw w= = (d) 1, 0t rw w= = . 

2.6 CONCLUDING REMARKS 

This chapter presented a bi-objective path planning optimization framework for 

exploring the tradeoffs between risk and flight time for UAVs. A risk assessment 
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technique and bi-objective optimization methods were developed to find low-risk and 

time (flight path) solutions. Computational experiments were performed to evaluate the 

relative performance of the proposed optimization methods. The optimization methods 

considered were based on a network optimization approach, followed by improvements 

by a local approach and a greedy approach that used the network optimization results. A 

fourth approach did not use the network results but locally optimized the coordinates of a 

fixed number of waypoints. 

The results from the computational experiments described the relative performance of 

the four methods and illustrated the tradeoffs involved.  These results indicate that in 

terms of both computation time and solution quality, the greedy improvement approach 

produces the best results of the methods considered. 

The proposed framework can be extended to incorporate factors such as the shelter 

provided by buildings that would affect the risk calculations.  It can also be extended to 

incorporate other types of risks (including the risk of mid-air collisions). Future work will 

consider testing other approaches for generating the initial solutions for the non-network 

approach, using approximations to evaluate solutions faster, using higher resolution 

population data for takeoff and landing patterns, using time-dependent population data 

(time of day, seasonality, special events), developing consistent heuristics for risk for use 

in an A* search and incorporating shelter data.  The problem formulation can be 

expanded to include selecting the altitude and velocity of each leg (which affects crash 

location distribution) and avoiding no-fly zones. 
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CHAPTER 3: MULTI-OBJECTIVE DESIGN AND PATH PLANNING 

OPTIMIZATION OF UNMANNED AERIAL VEHICLES (UAVS) 

29 
(The material in this chapter originally appeared as [29]) 

3.1 INTRODUCTION 

There are several potential benefits to combining UAV’s design and path planning 

optimization problems.  Optimizing a path for a fixed design or optimizing a design for a 

fixed path can yield solutions that are inferior to those found by optimizing the design 

and the path together.  Additionally, the ability to adjust the design as well as the path 

during optimization can allow for a wider variety of solutions to multi-objective UAV 

optimization problems as changes to a design can allow for a much wider possible range 

of values for objective functions than would be possible with changing only the path. 

Previous works have considered the issue of path planning for the purposes of 

minimizing risk to third parties or other safety related objectives.  Medeiros and Da Silva 

[20] constructed a visibility graph around highly populated areas and then used discrete 

path planning algorithms such as Dijkstra's algorithm to generate paths by solving the 

shortest path problem. Narayan et al. [22] considered a trajectory optimization approach 

for the problem of optimizing multiple objectives using weighted sum methods and 

dynamic programming.  Rudnick-Cohen et al. [28] compared multiple methods for risk-

based path planning for a given UAV.  They used Monte Carlo simulations of a flight 

dynamics model to determine a crash location distribution, which was used to estimate 

the expected fatalities of a flight over inhabited areas. Their results showed that a 

network approach, combined with a greedy algorithm to improve the best path on the 
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network, generated high-quality solutions more quickly than other approaches tested.  For 

a more in depth survey of methods for UAV path planning in general, consult [11]. 

 

Although there has been little work looking into the specific problem of combined 

UAV design and path planning optimization, there have been several works that have 

considered issues related to this problem.  Kallrath [12] discussed mixed integer 

programming solutions to production planning and network design problems in the 

process industry, which have some similarities to design and path planning problems.  

There are some similarities also to the work done on design and control optimization 

[25], in that both the design of a system and how the system moves were both optimized.  

Nigam and Kroo [23] studied the optimization of both the design and mission of a UAV 

(or multiple UAVs) for surveillance tasks using an approach based around coordinating 

two optimizers to solve two subproblems that decompose the primary problem being 

considered with a third coordinating “system-level” optimizer.  The approach described 

by Rastegar et al. [5] avoids having the two optimizers directly interact; instead, the third 

optimizer mediates any conflicts between them.  In this chapter we also consider a similar 

decomposition scheme using two separate subproblems. That is, instead of solving the 

problems independently, we will present a new algorithm which takes advantage of the 

coupled nature of the subproblems in order to solve the path planning subproblem while 

keeping it independent from the aspects of the design optimization subproblem that 

would normally compromise the optimality of typical methods for path planning.  We 

will also discuss what these aspects of the design optimization subproblem are and the 
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situations where they can cause a conventional path planning method to arrive at 

suboptimal solution for the combined path planning and design optimization problem.  

 

The organization of this chapter is as follows:  Section II defines the problem, 

including the objectives considered and the specific scenario under consideration.  

Section III discusses the two models that are considered and compared.  Section IV 

details the approach used to implement these models.  This includes a description of the 

algorithm proposed for solving the path planning subproblem while the UAV design is 

considered and also a description of the issues the can arise in attempting to use a 

conventional path planning method.  Section V presents the scenario we used for testing 

the two models, results from applying each of the models to that scenario and a 

discussion of the results. Section VI presents some concluding remarks and directions for 

future research. 

3.2 PROBLEM DEFINITION 

The problem instance considered in this work is to find the optimal design and path for 

a UAV travelling from College Park Airport in College Park, Maryland, to Virginia Tech 

Executive Airport in Blacksburg, Virginia.  The UAV design consists of the speed that 

the UAV will be flying along the path and the wing reference area of the UAV.  Two 

objectives were optimized using a weighted sum method to convert the optimization 

problem into a single objective optimization form in order to generate a Pareto frontier.  

The two objectives considered were the time needed to traverse the path from starting 

point to the destination and the risk to the human population on the ground associated 

with that path.  The time objective was based off the assumption that speed of the UAV 
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would remain constant throughout the flight, thus defining it as simply being the length 

of the path divided by the speed of the vehicle.  The risk objective was defined using the 

risk metric defined in [28].  The crash location probability distribution was parametrized 

in terms of the design variables under considerations, which was used to optimize the risk 

objective.  The crash location distributions used in the model were generated by running 

Monte Carlo simulations of an unpowered UAV crashing such as the ones done in [28].  

Multiple distributions were generated for different design variable combinations, the 

parametrization used these distributions to estimate the distribution for arbitrary design 

variable combinations within the bounds of the design variables using Delaunay 

triangulation.  For the exact formulae for the objectives used see Section 2.3 of Chapter 2. 

3.3 PROPOSED MODEL 

We solved and compared results from two different models, which are described in 

Sections 3.3.1 and 3.3.2.  In both models we considered the bi-objective problem of 

minimizing the risk associated with a path and a design and the time needed to traverse 

the path. 

3.3.1 INTEGRATED MODEL 

The first model considers design and path planning optimization problem in an all-at-

once (AAO) model. This model defines the flight path as a path that travels through a 

finite number of waypoints and then treat the coordinates of those waypoints as design 

variables. This model also considers the design of the UAV.  This approach allows for 

the use of standard optimization techniques, making this a fairly conventional approach 

to attempt to solve the problem as a single (integrated) optimization problem. 

3.3.2 DECOMPOSED MODEL 
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The second model entails separating the problem into two subproblems, a design 

subproblem and a path planning subproblem, both of which have the same objective 

functions.  There are two sets of design variables: DX , for the UAV design variables, and 

PX , for the UAV path design variables (i.e., coordinate of waypoints) located between 

the start and end points.  The objective function is ( ),D Pf X X .  In this model, the two 

subproblems interact by solving the design optimization subproblem for partial and 

complete solutions to the path planning subproblem and then feeding those solutions back 

into the algorithm we have developed for solving problems of this type. The structure of 

this decomposed model is depicted in Figure 3.1.   

 

    
Figure 3.1: The two subproblems considered for the decomposed model 

3.4 APPROACH 

With the proposed decomposed approach, it is not possible to use a typical graph-

based method such as Dijkstra’s algorithm [9] for solving the path planning sub-problem. 

This is because it is possible that the optimal design and path for reaching a location on 

the optimal path from the starting point to the goal will not be part of the optimal path to 

reach the goal.  This situation can occur when the optimal design to reach the goal may 

need to compensate for some part of the optimal path to reach the goal that is not part of 

the optimal path to a location on the optimal path to the goal. Consequently the optimal 

path to reach that location on the optimal path may not be a Section of the optimal path to 

reach the goal. 

 

Design Subproblem 
min ( ),D Pf X X  

w.r.t. DX  

 

Path Planning Subproblem 
min ( ),D Pf X X  

w.r.t. PX  
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To get around this issue we developed a new algorithm for handling the path planning 

subproblem that was capable of accounting for the issues introduced by the capability of 

the design to change.  We can provide a brief high level description of this algorithm as 

follows.  The algorithm works by first using Dijkstra’s algorithm, with each edge cost 

being determined for the optimal path to that edge as determined by solving the design 

optimization problem.  Once a path is found that connects the start node to the goal node, 

alternate paths from the start to the goal are generated by merging the paths that 

Dijkstra’s algorithm has found with a path from the start to the goal and solving a design 

optimization subproblem for the resulting path from the start to the goal.  As this is done 

for nodes, they are removed from the part of the graph being considered by the Dijkstra’s 

algorithm portion of this approach.  This causes the algorithm to search alternate paths to 

nodes, which accounts for the issue of past edges becoming sub-optimal choices due to 

edges located further ahead in the path. 

 

 To describe the specific algorithm used for the decomposed approach the 

following definitions and step by step process are provided: 

 

Node: Represents a location that a path can travel through, keeps track of the best partial 

or complete solution that involves a path traveling through it. 

Solutions Lists:  Lists of nodes that depend on other nodes in the solution list for their 

best solutions, the algorithm will not consider edges that connect to nodes in the same 

solution list when generating candidate solutions 
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Edge:  Represents that it is possible to travel from the start node of the edge to the 

destination node of the edge. 

Partial Solution:  A solution that consists of an incomplete solution to the path planning 

problem (in the form of an incomplete path that starts from either the start or end node 

and does not reach the other node) and a solution to the design problem. 

Complete Solution:  A solution that consists of a complete solution to the path planning 

problem (a path that travels from the start node to the end node) and a solution to the 

design optimization problem. 

 

Steps: 

1. Initialize two partial solution lists, 1 for the start node and 1 for the goal node, 

each list should only consist of a single node at this point. 

2. For each edge of each node in each solution list that does not go to another node 

in that solution list, compute the partial or complete optimal solution by solving 

the design problem for that edge.  For complete solutions, determine the path by 

taking the start nodes path up until that node occurs in its path and then go to the 

destination node’s path starting from where the destination node is in its path.  

Add solutions that are better than a node’s current best known solution to this list 

of candidate solutions. 

3. Select the best solution from the list of candidate solutions to add to the solution 

lists, if no solutions remain in the list, terminate. 

4. With the selected best solution so far two different actions can be taken depending 

on whether the solution is a complete solution or not.  Add partial solutions to the 
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partial solution list of the start node of the edge associated with the selected 

solution.  For complete solutions, if the destination node of the edge associated 

with the selected solution is the last node in its solution list, add it to the edge’s 

start node’s solution list, otherwise add the complete solution to a new solution 

list. 

5. Set all edges leading to and from the edge associated with the selected solution 

destination node to be recomputed and remove any nodes in the partial solution 

list that may have depended on the node associated with the solution added if that 

node was originally in a partial solution list.  Go back to step 2. 

3.5 RESULTS 

A version of the AAO model was implemented for a small number of waypoints.  In 

the model, risk is determined by determining a distribution of possible UAV crash 

locations and evaluating the risk level, as defined in [4].  For the population density data 

needed for the model, data from the US census was used.  The risk was evaluated along 

with path segments, which are straight lines between waypoints.  To evaluate the risk 

along the path being followed, the risk was calculated at multiple points along each 

segment of the flight path in order to approximate the value of the risk along the entire 

segment.  Flight time was calculated by dividing the length of the path by the airspeed. 
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Figure 3.2: The grid used by the decomposed approach for the region under 

consideration.  The cyan circle indicates the start point at the College Park, 

Maryland airport and the cyan triangle indicates the end point at Virginia Tech 

Executive Airport in Blacksburg, Virginia [3] 

 

For the integrated model, three waypoints were considered along with the airspeed (V) 

and the wing reference area (S) of the vehicle.  The start point was the College Park, 

Maryland airport and the destination was Virginia Tech Executive Airport in Blacksburg, 

Virginia.  The locations of the two points relative to the region under consideration can 

be seen in Figure 3.2. Figure 3.2 also depicts the grid that was used for the decomposed 

approach.  The upper and lower bounds were set to keep the waypoints within a box 

enclosing the region being considered and to keep design variables within the range of 

values used for Monte Carlo simulation.  The initial conditions used for optimization 

were a straight line path for the waypoint variables, an airspeed of 50 m/s, and a wing 

reference area of 16.17 m2.  Optimization was done using MATLAB’s fmincon [1] 

function for the integrated model. 

 

For the decomposed approach a 40×16 node grid was created and then pruned to 

remove any nodes outside the states that were being considered in the grid.  The initial 
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solution for the design problem was the same as the one that was used for the integrated 

approach. 

 

For both models, the integrated and decomposed, 11 equally spaced weights between a 

100%  and 0% weighting on the risk objective and the time objective were used to 

generate a range of solutions for different objectives.  The results from this are provided 

in Figure 3.3.  

 

 
Figure 3.3: Pareto front of risk vs. time for both approaches 
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Design variables Waypoint coordinates 

V(m/s) S(m)2  x1(deg) x2(deg) x3(deg) y1(deg) y2(deg) y3(deg) 

70.00 16.13 -76.79 -77.60 -79.64 39.12 39.31 37.18 

70.00 16.48 -77.15 -78.36 -79.53 39.20 39.25 38.71 

62.62 16.28 -77.14 -77.91 -79.13 39.28 38.82 37.80 

66.43 16.34 -76.88 -77.63 -79.09 38.77 38.48 38.18 

70.00 16.10 -76.91 -76.90 -79.41 38.76 38.77 37.75 

70.00 16.18 -77.10 -77.52 -79.83 38.80 38.61 37.57 

70.00 16.66 -76.95 -77.09 -78.43 38.94 38.85 38.29 

70.00 16.15 -77.03 -78.07 -78.69 38.96 38.42 38.13 

70.00 16.14 -77.22 -78.25 -79.62 38.85 38.30 37.64 

70.00 16.17 -78.34 -79.06 -79.49 38.28 37.91 37.69 

Design variables Objectives 

V(m/s) S(m)2  t(hours) risk 

70.00 16.13 1.81 5.86×10-5  

70.00 16.48 1.74 5.88×10-5 

62.62 16.28 1.62 6.48×10-5 

66.43 16.34 1.53 9.18×10-5 

70.00 16.10 1.50 9.46×10-5 

70.00 16.18 1.45 1.21×10-4 

70.00 16.66 1.45 1.34×10-4 

70.00 16.15 1.44 1.46×10-4 

70.00 16.14 1.44 1.64×10-4 

70.00 16.17 1.44 1.74×10-4 

Table 3.1: Solutions from Figure 3.3 for integrated approach 

 
Table 3.1 depicts the design variable values for the solutions shown in Figure 3.3 for 

the integrated approach.  The variables x1, x2, x3 and y1, y2, y3 describe the 3 waypoints 

in terms of their longitudes (x) and latitudes (y). As expected most solutions are close to 

the upper bound for speed (70 m/s) as currently no constraints are being enforced that can 

limit the speed based off any of the other design variables and the objective function used 

for risk can be reduced by reducing the time needed to traverse a path, which is 

minimized by maximizing the speed of the UAV.  Several solutions did deviate from the 

maximum speed allowed, indicating that the optimal solution is not necessarily always to 
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travel at the maximum possible speed.  Variations in the optimal wing reference area 

indicate that while there may not exist a specific trend, it was possible to reduce the risk 

for a given path by adjusting the wing reference area.  The lack of a trend here is 

expected, as adjusting the wing reference area will change the shape of the crash location 

distribution, but the optimal shape of the distribution will depend on the population 

distribution along the path taken, meaning that the optimal wing reference area for a 

specific path could be significantly different depending on what sort of distribution is 

best for that path.  These results demonstrate the capability for this type of optimization 

for generating a variety of solutions for multiobjective problems as the variation in the 

wing reference area in conjunction with the variation of the waypoint locations create a 

clear trade-off between time and risk. 

Design variables Objectives 

V(m/s) S(m2) t(hours) risk 

70.00 16.17 1.59 1.65×10-4  

70.00 16.17 1.59 1.27×10-4 

70.00 16.17 1.59 1.27×10-4 

70.00 16.17 1.59 1.27×10-4 

70.00 16.17 1.59 1.24×10-4 

70.00 16.17 1.63 8.63×10-5 

70.00 16.17 1.63 8.63×10-5 

70.00 16.17 1.71 4.65×10-5 

70.00 16.18 1.71 4.64×10-5 

70.00 16.18 1.76 3.80×10-5 

70.00 16.17 2.48 2.73×10-5 

Table 3.2: Solutions from Figure 3.3 for decomposed approach 

 
Table 3.2 depicts the design variable values for the solutions shown in Figure 3.3 for 

the decomposed approach.  The decomposed approach is capable of generating superior 

solutions in terms of the risk objective as unlike the integrated approach the decomposed 

approach will not get stuck and local optima and will thus actually reach globally optimal 
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solutions for both objectives.  However, the solutions generated are restricted to 

remaining on the grid, which prevents the solutions from taking the most direct possible 

routes to the goal, consequently the integrated approach is able to generate solutions that 

take more direct paths to the goal and thus solutions that are more optimal with respect to 

the time objective.  This can be seen in Figure 3.4, as the solutions for the decomposed 

approach are forced to make small detours instead of following a direct straight line path.  

The results from Table 3.2 also indicate different trends in terms of the optimal design 

variables in that the results for the decomposed approach indicate the existence of an 

ideal point for the design optimization problem.  The optimal wing reference areas all 

tended to be near the initial condition chosen for that variable, which is likely due to the 

presence of a local optimal located there.  A possible cause for this may be that the 

optimal wing reference area may be very sensitive to the locations of the waypoints that 

make up the path, since the decomposed approach does not have the ability to make small 

adjustments to where it places waypoints since its path is defined between elements 

located on a grid. 

 

(a) (b) 



42 
 

Figure 3.4: Plots of solution paths for: (a) integrated approach, (b) decomposed 

approach, with thickness of a path corresponding to the amount of risk for that 

path, the thicker the line path the lower the risk 
 

Figure 3.4 also provides a comparison of the paths generated by the different 

approaches.  As can be seen, the more globally optimal solutions that the decomposed 

approach generates for the cases with a heavier weight on risk follow fundamentally 

different paths than the solutions generated by the integrated approach for those weights.  

As discussed before, the cause for this is due to the integrated approach getting stuck at 

local optima, which keeps it from finding more globally optimal solutions such as the 

ones found by the decomposed approach.  A major difference between the paths 

generated by the two methods is that the paths generated by the integrated approach cross 

over into  

West Virginia, while the paths generated by the decomposed approach remain inside the 

2 states (Maryland, Virginia) plus Washington D.C. under consideration for this scenario.  

This is due to the fact that the integrated approach has to use a bound constraint to limit 

the region where waypoints can be placed, which leads to a Section of West Virginia 

being present in the feasible region for waypoint placement.  However, with the 

decomposed approach, it is possible to always restrict the paths under consideration to 

stay within the 3 states being considered as by not placing nodes outside those states the 

paths found will never be able to go outside them. 

3.6 CONCLUDING REMARKS 

A new algorithm was presented for solving path planning subproblem within a 

decomposed approach for solving path planning and design optimization subproblems.  

The decomposed approach was able to find more globally optimal solutions than an 
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integrated approach, though it did suffer some restrictions that resulted from the discrete 

nature of how it determined the optimal path.  Future work on this topic will likely 

include the development of approaches that can handle constraints that relate the design 

variables of both subproblems, methods for refining the size of the grid used for the path 

planning subproblem inside the algorithm to reduce computational cost and consideration 

of additional design variables relating the physical design of a UAV and its operating 

parameters.  
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CHAPTER 4: ROBUST RISK-BASED PATH PLANNING FOR UNMANNED 

AERIAL VEHICLES 

 

4.1 MOTIVATION 

Although a UAV operator controls some of the variables that affect the risk of UAV 

operations, such as the design of the UAV or operational parameters such as flight speed, 

there are also variables affecting the risk which cannot be controlled or even known in 

advance.  The uncertainty in these variables creates uncertainty about the risk associated 

with a path.  In practice this uncertainty can lead to the optimal path changing depending 

on the values taken by uncertain variables. In order to determine a path for a UAV that is 

optimal with respect to uncertainty, it is necessary to determine a path that is optimal 

under any possible combination of uncertain variables, thus we need to find an optimal 

path that is robust with respect to uncertainty. 

4.2 LITERATURE REVIEW 

Uncertainty can enter path planning problems in a variety of ways, such as uncertainty 

about the effects of actions being taken, uncertainty about the location or state of a 

vehicle, uncertainty about a vehicles sensor reading and uncertainty about the cost of a 

path being taken [14].  Robust path planning approaches attempt to determine either an 

optimal or feasible path while accounting for sources of uncertainty such as the ones 

discussed. 

 

Much of the existing work on robust path planning for robotic systems primarily focuses 

on dealing with either uncertainty affecting constraints or uncertainty about the effects of 

actions taken.  Dadkhah and Mettler [6] provides a survey of how these types of methods 



45 
 

have been applied for use in UAV systems. These approaches do not extend to be able to 

minimize an objective subject to uncertainty, as their primary goal is to determine a 

feasible path with respect to uncertainty, rather than an optimal one.  When dealing with 

robust risk-based path planning, uncertainty affects the risk associated with a given path, 

meaning that a path planning technique that takes into account uncertainty in the 

objective function is necessary.   

 

In terms of the more general area of robust optimization, the problem of handling 

uncertainty in an objective function can be more easily described.  Beyer and Sendhoff 

[2] provides an overview of the general concept of robust optimization and the forms that 

robust optimization problems can take.  In the case of robust risk-based path planning, 

using a min-max structure makes the most sense, where the inner problem consists of 

determining the worst case risk of a path while the outer problem consists of minimizing 

the cost of the path with respect to the objective in use.  An important concept about 

robust optimization that needs to be considered here is that the worst case being found for 

a path needs to be the largest possible risk for that path, locally maximal risk values will 

not result in a truly robust solution.  Thus we need a method for solving our robust risk-

based path planning problem globally, rather than locally. 

 

It can be observed that determining the worst case cost for a path where the cost of the 

path is parameterized by some function is a similar problem to the problem of design and 

path planning discussed in Chapter 3.  Instead of solving a design optimization problem 

which consists of minimizing the cost of an objective function, determining the worst 
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case cost would consist maximizing the cost of an objective function instead.  These two 

problems are equivalent, as negating the sign of the objective function in a maximization 

problem converts that problem into a minimization problem.  In this chapter we discuss 

how an approach based off this strategy can be developed for solving a robust risk-based 

path planning problem. 

4.3 PROBLEM FORMULATION 

 

In order to perform robust risk-based path planning our goal is to determine the optimal 

path under worst case for possible wind conditions that can occur along the path.  Let the 

wind conditions along the path be represented by associating sets of wind conditions with 

specific spatial region making up the area being traversed.  The solution to the problem 

should consist of an optimal path and the worst case wind conditions for all spatial 

regions that the optimal path passes through. 

 

Formally written, our problem is:  

Let p = a path from point A to point B, which consists of multiple legs 

p = a sequence of legs making up the path: e1, e2, ..., en 

Let P = the set of all possible paths from point A to point B 

Let e = a leg of a path, representing an edge in the graph used for path planning 

e = A pair of points denoting the startpoint and endpoint of the leg 

Let T(p)  = time to travel along path p 
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Let T(e) = time to travel across leg e 

Let Rmax(p) = worst-case expected number of fatalities associated with using path p 

Let Sworst(p) = Wind conditions that produce Rmax(p)for a given path p 

Let R(e,s) = expected number of fatalities (risk) for leg e under wind conditions s 

Let s = a combination of wind conditions that can affect the risk of a path 

s = a mapping of vectors of windspeeds to specific regions where they occur 

Let S = the set of all possible wind conditions being considered in this problem 

w = weighting coefficient used to combine objectives to get multiobjective solutions 

 

We can formally write the problem that we need to solve as: 

Given: 

T(p) = T(e1) + T(e2) + ... + T(en) 

Rmax(p) = R(e1, Sworst(p)) + R(e2, Sworst(p)) + … R(en, Sworst(p)) 

Sworst(p) = 
78	 

9 : ;
∑ =(>?, @)A  

Solve: 

For a given weight C D [0,1] 

Find the path probust, such that  

probust =  
8HI7?J  

A : K
 w T(p) + (1-w) Rmax(p) 

 

Figure 4.1 depicts the representation chosen for the wind conditions across the area being 

traversed.  Each region is represented a box with an associated windspeed vector 

representing the wind in that region.  For a given path, the risk of that path can only be 

affected by the wind conditions for regions that the path actually passes over, thus when 
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determining Sworst(p) for a path p, we only need to maximize risk with respect to the 

wind conditions in regions that the path actually passes through.  This is important, as the 

area being traversed can easily consist of hundreds of regions, attempting to maximize 

risk with respect to the wind conditions in all of these regions simultaneously would 

require a significant amount of computational time. 

 

Figure 4.1: Visual representation of how wind is represented for the 

model used for robust path planning.  Each square represents a region 

where the wind speed in that region is defined as a 2 dimensional 

vector.  The path taken through the regions is indicated by the dashed 

line and the highlighted wind regions indicate the regions which the 

path passes through. 
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To model the effects of how the wind conditions along a path can affect the risk 

associated with that path, we model how different wind conditions can change the crash 

distribution of the UAV, by using this modified crash distribution we can determine what 

the risk should be for a path under a specific set of wind conditions.  The current model 

in use for this is based off linearly shifting the crash distribution of the UAV in the 

presence of no wind, this model was calibrated by generating crash distributions for 

multiple possible wind conditions through the use of monte-carlo simulation approach 

detailed in Chapter 2.  The slopes used in the linear shift model were a slope of 0.0728 m 

per m/s windspeed in the X direction and 0.1207 m per m/s windspeed in the Y direction, 

the maximum windspeed considered in both the X and Y directions was +-15.1994 m/s 

(corresponding to 34 mph).  The linear shift model is used due it being relatively accurate 

as a method of approximating the changes in the crash distribution and also being 

extremely fast to evaluate. The linear shift model’s main limitation is that it does not 

represent changes that can occur in the shape of the crash distribution due to wind, 

however such effects have a much smaller impact on the risk associated with a path 

relative to the effects of the crash distribution shifting.  However, the approach detailed in 

this document will work for any model for the crash distribution as a function of wind 

conditions, thus more sophisticated models can still be used with the robust planning 

approach discussed. 

4.4 SOLUTION APPROACH 

As shown in Chapter 2, risk-based path planning approaches for minimizing the risk to 

third parties on the ground can suffer from issues due to local optima if a graph based 

approach is not used for representing the path.  However, the wind conditions in each 
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region are continuous variables, which cannot be efficiently represented using a graph.  

In order to account for this, we employ the design and path planning approach developed 

in Chapter 3, where the design problem considered is the problem of determining the 

wind conditions that maximize the risk of a path.  This allows us to obtain the global 

optimality benefits in terms of the path planning aspects of this problem.  However, for 

robust optimization global optimality is needed for both the variables being optimized 

and also the uncertain variables being used to maximize risk.  We thus need to extend the 

approach from Chapter 3 in order to be able also perform a global search on the uncertain 

variables in this problem, which are the wind conditions that occur along the path. 

 

Recall that we defined the risk of a path as R(p, s) = R(e1, s) + R(e2, s) + … R(en, s). 

 

We perform robust path planning in two steps: (1) a local search step that solves the 

problem formulated in Section 4.3 to find a locally optimal solution and (2) a global 

search step that checks the global optimality of the Step 1 solution by attempting to find a 

new worst case for it.  A graphical representation of this algorithm is provided in Figure 

4.2.   

 

Step 1 utilizes the combined design and path planning approach presented in Chapter 3 to 

solve a discrete path planning optimization problem on a graph to determine the optimal 

path p* under worst case wind conditions and a worst case local maximization problem to 

determine the worst case wind conditions s*.   
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Step 2 performs a global search on possible wind conditions in order to determine if the 

wind conditions s* found in Step 1 lead to the global maximum risk for the path p* found 

in Step 1.  This is done using a random search on the uncertain variables (the wind 

conditions) in order to try to find a new worst case scenario.  If a new worst case scenario 

s’ is found such that R(p*,s’) > R(p*,s*), a local maximization is done (using the new 

worst case scenario s’ as the initial solution) to find the worst case scenario s” that 

maximizes R(p*, s).  

 

After finding the worst case scenario s”, the algorithm calculates R(p*, s”) and then 

returns to Step 1 to search for a better path p that minimizes wT(p) + (1-w)R(p, s”).  If no 

path better than p* can be found, then the algorithm returns to Step 2 in order to continue 

the global search.  Otherwise, p* is updated (it is a new, potentially better path), and the 

algorithm returns to Step 2 to perform a global search on the wind conditions for p*.  

This causes the algorithm to eventually converge to the globally optimal solution to the 

problem formulated in section 4.3.  When the algorithm has converged to the globally 

optimal solution, Step 2 should not be able to find a new worst case for the path found.  

Thus the algorithm should be terminated when the optimal path p* and its worst case 

scenario s* remain constant for a large number of iterations. 
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Figure 4.2: High level flowchart for the robust path planning approach described 

4.5 EXPERIMENTAL SETUP 

The robust path planning approach was tested in a single specifically chosen scenario 

which had a noticeable variation between the risk not accounting for the effects of wind 

on the crash distribution and the worst case risk accounting for the effects of wind.  The 

case considered was determining a route going through the region consisting of 

Maryland, Virginia and Washington D.C, with a startpoint at (-76.00154, 36.8792) and an 

endpoint at (-79.95189, 37.52974).  The robust path planning approach was run until a 

global solution appeared to be observed, meaning that the approach was unable to find a 

worse solution for the current optimal path for a large number of iterations.  In order to 

obtain multiobjective solutions, the same approach was used as in Chapter 2, with the 

robust path planning approach being run for 11 equally spaced weights between a purely 

risk weighted case and a purely time weighted case.  Unlike the approach in Chapter 2, 

US census block data was used instead of census tract data, this was done in order to take 

advantage of the higher resolution population information available in the census block 
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data.  This allows for a more accurate representation of the risk of a path traveling 

through an area, which is necessary for being able to consider the effects of shifts in the 

crash distribution on the risk.  In order to test the validity of the solutions being generated 

by the robust path planning approach, a deterministic risk-based path planner similar to 

the non-network approach discussed in Chapter 2 was also tested with the same objective 

as the robust path planning approach except that the windspeeds were all held to be zero. 

 

4.6 RESULTS 

 

Figure 4.3: Plot of Pareto frontier and dominated solutions for case considered, note 
that all risk values provided for the Robust Pareto frontier are the worst case risk 
values as determined by the robust path planning approach 
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Figure 4.3 depicts the Pareto frontiers for the results from both the robust path planning 

approach and from the deterministic path planner.  It can be seen that outside of the 

solutions that only minimize risk, the solutions found by the robust path planning 

approach are similar to those found by the deterministic path planner.  This is expected as 

the uncertainty considered here only affects the risk objective, thus as more weight is put 

on the time objective, less weight is put on accounting for uncertainty in the risk 

objective, leading to solutions that are similar to what would be found when not 

considering uncertainty.  In particular, the time optimal case actually leads to what would 

appear to be the exact same solution for both time and risk as found by the deterministic 

path planner.  However, it should be noted that the reason for this is due to the fact that in 

the time optimal case, the robust path planning approach cannot actually do anything to 

account for uncertainty in the risk objective, since the risk objective will have no 

contribution to the objective function being considered.  This is why there is also a robust 

solution above the deterministic time optimal solution, the robust solution above that 

solution corresponds to the case where the most of the weight is put on the time 

objective, but some weight is still put on the risk objective, which allows the robust path 

planning approach to determine what the worst case risk should actually be for the path in 

question.  For the pure risk case the robust path planning approach obtained a 

significantly different solution when compared with the deterministic path planner.  In 

this case the robust path planning approach was able to identify a solution with a slightly 

higher worst case risk than deterministic solution’s risk.  In this case the path found by 

the robust path planning approach is a different path than the path found by the 

deterministic path planner, this indicates that the worst case risk for the path found the 
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deterministic path planner is actually higher than the robust path planning approach’s 

solution’s risk, as the robust path planning approach would have searched through this 

solution in the process of reaching the solution which it obtained. 

 

 

Figure 4.4: Solution history of the global search step of the robust path planning 
approach, pure risk case, gaps indicate multiple objective function calls being needed 
for optimization 

 

The process the robust path planning approach went through in order to obtain a solution 

in the pure risk case is depicted in Figure 4.4.  Each time the solution increases in value 

indicates that the robust path planning approach identified a new worst case for a 

solution, each time the solution decreases in value indicates that the robust path planning 

approach determined that an alternate path has a lower objective function value than the 
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current one.  A total of 110 different paths are searched in the pure risk case, however 

many of these paths are searched multiple times due to the robust path planning approach 

not finding the true worst case for these paths the first time that they are considered.  As a 

result of this, the pure risk case requires an extremely large number of objective function 

calls before finally converging to its final solution. 

 

 

Figure 4.5: Solution history of the global search step of the robust path planning 
approach, 60% time weight, 40% risk weight, gaps indicate multiple objective function 
calls being needed for optimization 

 

Figure 4.5 shows the process the robust path planning approach goes through for a 

different combination of objective weights, to provide a reference for how much longer 

the pure risk case took to compute.  As can be seen, a significantly smaller number of 
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objective function calls are needed in this case.  A total of only 2 different solutions are 

considered in this case, the final solution arrived at is the same as the initial solution that 

the global search step starts from.  The second solution is initially considered because its 

initial worst case appears to be better the first solutions, however after a single iteration 

of the global search step a worse solution is identified for it, causing the first solution to 

become the minimal objective value solution again. 

 

 

4.7 DISCUSSION 

 

4.7.1 COMBINED RISK AND TIME 

In the case considered the primary benefit of using a robust path planning approach 

over one that doesn’t account for uncertainty is that the resulting paths will not increase 

in risk due to the effects of wind.  Consequently a side effect of this is that the solutions 

found by the robust approach will have a higher risk values than would be found by a 

deterministic approach.  In the case considered, for the pure risk weighting on the 

objective this actually leads to a solution that does better on the time objective.  The 

reason for this is that the robust solution avoids the cost of small detours in the 

deterministic solution that make the path longer, but lower the risk of the path when not 

accounting for uncertainty.  It is expected that cases should also exist where the time 

objective should increase due to detours being needed for a more robust solution, but we 

did not consider such a case in the study conducted here. 
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It can be observed that the robust path planning solutions follow a similar shape in 

their Pareto frontier compared to the deterministic solutions.  This structure is also fairly 

similar to the Pareto frontiers observed in Chapters 2 and 3, with a risk optimal solution 

spaced out away from the rest of the solutions, which then quickly move towards a 

vertical asymptote at the time optimal solution.  The solutions near the time optimal 

solution tend to be paths that are fairly close to the time optimal solution, so it makes 

sense that these solutions would not be significantly changed by introducing uncertainty 

into the risk objective. 

4.7.2 PURE RISK 

The large number of objective function calls needed for the pure risk case is one of 

the main limitations of the approach discussed here, as it causes the approach to take an 

extremely long time to optimize that particular case.  A possible method for better 

handling this issue in cases like in the pure risk case would be to make the maximization 

problem solved in the global search step of the approach a global maximization problem 

rather than a local one.  While global optimization methods can typically not truly 

guarantee a globally optimal solution, they can get near one when run for a finite number 

of iterations, by running such a method for a fixed number of iterations the global worst 

case for a path could be found more quickly, minimizing the number of times a path 

might get considered again due to not having reached its global worst case.  Additionally 

the implementation of the approach used in order to generate the results seen here has a 

number of inefficiencies built into it that existed for the purposes of being able to 

effectively test out code.  Future implementations of this approach should be able to run 
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significantly more quickly, which will affect not only the speed of slow cases such as the 

pure risk case but also all of the other cases as well. 
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CHAPTER 5: CONCLUSION 

5.1 SUMMARY 

We have explored the problem of risk-based path planning for UAVs and developed a 

number of approaches for solving different types of risk-based path planning problems.  

In order to quantify risk we simulated the dynamics of a UAV crashing under a variety of 

conditions in order to determine the distribution of possible crash locations of the UAV, 

which we used to define a metric for risk-based off the expected number of fatalities 

along a flight path.  Using this risk metric we detailed a weighting method which allows 

for multiobjective studies comparing the risk posed by a UAV flying over a path against 

the time needed to fly along the path.  The results of several different path planning 

approaches were compared in terms of solution quality and computational performance, 

the approaches considered were a network based approach, a non-network approach 

based off optimizing waypoint locations and two hybrid approaches which considered 

different strategies for optimizing the locations on waypoints generated by the network 

based approach.  It was found that an approach based off greedily refining the path 

produced by the network approach had the best overall performance in terms of solution 

quality and computational time.   

 

The problem of combined design and path planning was also explored using similarly 

structured problem.  A model correlating a limited number of design variables to the 

crash distribution of a UAV was developed using a Delaunay triangulation.  An approach 

was detailed for solving combined design and path planning problems using a network 

based path planning approach while still allowing for a continuously valued 
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representation to be used for the design.  The results from this approach were compared 

to an integrated approach using continuous variables to represent both the design 

variables and the path being optimized.  It was found that the proposed approach for 

solving combined design and path planning problems was more effective than the 

integrated approach considered.   

 

The approach developed for solving combined design and path planning problems was 

then adapted and extended in order to solve the problem of robust risk-based path 

planning, taking into account the effects of uncertainty about the wind speed when 

determining the optimal paths.  Results for the robust risk-based path planning approach 

were presented and compared with the results produced by a deterministic path planning 

approach that did not consider any uncertainty. 

 

5.2 CONTRIBUTIONS 

1. We developed a risk metric for representing the risk posed by UAVs to third 

parties on the ground that can be used to quantify the risk associated with a 

specific flight path.   

2. Methods were developed for determining the distribution of possible crash 

locations of a UAV in order to aid in computation of this metric.   

3. Techniques were developed for determining not only risk optimal paths subject to 

the risk metric developed, but also for determining the multiobjective trade-offs 

between the risk of a path and the time needed to traverse it.   
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4. The topic of combined design and path planning was also explored in the context 

of multiobjective risk-based path planning for UAVs.   

5. A MDO based approach was developed for solving this problem by decomposing 

the problem into a graph based path planning optimization subproblem and a 

design optimization subproblem.   

6. The results of the MDO approach developed were compared with an all-in-one 

approach that considered both path planning and design optimization as a single 

problem.   

7. An approach for solving robust risk-based path planning problems was developed 

based off the approach developed for solving combined design and path planning 

problems. 

 

5.3 CONCLUSIONS 

Throughout this thesis, there has been a consistent trend of graph based techniques for 

path planning related problems outperforming waypoint optimization based techniques in 

terms of global optimality.  Risk-based path planning problems contain a large number of 

local optima due to the nature of how the population in a region is distributed, making it 

very important that risk-based path planning approaches be able to avoid getting trapped 

in local optima.  In both the work discussed here on risk-based path planning and 

combined design and path planning, these local optima typically compromise the 

performance of approaches that rely purely on local optimization, such as the non-

network approach for risk-based path planning or the integrated approach for combined 

design and path planning.  This loss in performance is most noticeable for when these 
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approaches are being used for purely risk-based path planning, as the globally optimal 

solution often needs to go significantly out of the way in order to reach a destination, 

leaving local optimization based approaches to get trapped at local optima before getting 

near that solution.  Use of local optimization as a technique for refining the solutions of 

graph based path planners, which are limited to a discrete set of edges for where they can 

plan paths demonstrated the ability to improve the quality of the solutions found.  

Furthermore, using strategies such as the one employed by the greedy approach for risk-

based path planning, it was possible to obtain these benefits without significantly 

increasing the time needed to solve the planning problem.  In the context of combined 

design and path planning and the approach developed for robust path planning, the 

combination of an optimization problem being solved via local search with a graph based 

path planner allowed for complex problems to be represented in a relatively simple way, 

without incurring a large number of local optima.  These approaches utilize a stronger 

concept of optimality compared to the results from the greedy and local approaches for 

risk-based path planning, as the approaches based off the algorithm for combined design 

and path planning are based around solving both the local optimization and the graph 

planning problem optimally at the same time.  This is not an issue for risk-based path 

planning, as both the graph search and local search are solving the same problem, 

however this optimality is more important when the graph search and local search aren’t 

solving the same problem, such as in the combined design and path planning and robust 

path planning approaches.  The advantages of taking this into account are demonstrated 

in the experiments conducted on the robust path planning approach, as the problem 

considered would have an enormous number of local optima if considered using an 
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approach similar to the integrated approach used for combined design and planning in 

Chapter 3.  By using an approach that could actually avoid dealing with the local optima 

from the path planning aspects of the problem it was possible to limit the global 

searching needed to just the uncertain variables, allowing for a computationally feasible 

approach to solving the problem. 

 

5.4 FUTURE WORK 

A number of possible extensions to the work detailed in this thesis exist.  While risk-

based path planning considered here primarily focuses on the task of determining routes 

that are low risk, there are a number of different actions that can be taken while actually 

traversing routes which can further mitigate risk.  An example of this would be 

identifying areas where large numbers of people are gathered in real time so as to avoid 

flying over crowds.  By incorporating the possibility of cases like this occurring into the 

task of route planning, it becomes possible to take into account the need to avoid such 

risks in real time when initially determining a route.  Another type of uncertainty that can 

cause a similar type of issue is inclement weather, which can force a UAV to have to 

change routes.  Planning while taking these types of factors into account would fall under 

the topic of feedback planning, determining not only an optimal route, but also what 

should be done if certain scenarios crop up when actually following the route.  Many of 

these factors also intersect with the goals of robust risk-based path planning, thus it 

would likely be practical to pursue these issues from the perspective of developing a 

robust feedback planning approach.  Unlike a conventional feedback planning approach 

that typically uses probabilities in order to determine the expected costs of a plan, a 
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robust feedback planning approach would need to determine a method for optimizing the 

costs across the wide variety of scenarios that could occur without assuming any form of 

probability distribution for the scenarios. 

 

The approach developed here for the problem of combined path planning and design 

optimization can likely be extended to the more general problem of combined planning 

and design optimization.  A number of problems of considerable interest can fall under 

this topic, such as optimizing both the design of a part and how the part is being 

manufactured, or integrating task planning problems with motion planning problems.  

While the approach discussed here can be applied to these problems to an extent, it is 

limited by the fact that the constraints present in these problems must be independent of 

any planning decisions that are made.  There a large number of planning problems where 

the decisions that make up the plan affect the constraints that apply to the problem, thus 

this is a key limitation of the approach discussed here, and consequently an important 

area for future research on this type of problem. 
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