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Abstract

An optimal shaping scheme for multidimensional constellations, motivated by some
ideas from a fixed-rate structured vector quantizer (SVQ), was recently proposed by Laroia.
It was shown that optimal shaping could be performed subject to a constraint on the CER;
or PAR; by expressing the (optimally shaped) constellation as the codebook of an 5VQ and
using the SVQ encoding/decoding algorithms to index the constellation points. Further,
compatibility with trellis coded modulation was demonstrated. The complexity of the
proposed scheme was reasonable but dependent on the data transmission rate. In this
paper, we use recent results due to Calderbank and Ozarow to show that complexity of
this scheme can be reduced and made independent of the data rate with essentially no effect
on the shaping gain. Also, we modify the SVQ encoding/decoding algorithms to reduce
the implementation complexity even further. It is shown that SVQ shaping can achieve a
shaping gain of about 1.2 dB with a PAR; of 3.75 at a very reasonable complexity (about
15 multiply-adds/baud and a memory requirement of 1.5 kbytes). Further, a shaping gain
of 1 dB results in a PARs of less than 3. This is considerably less than a PAR;, of 3.75 for
Forney’s trellis shaping scheme that gives about 1 dB shaping gain.

Index Terms: Multidimensional constellations; SVQ shaping; Optimal shaping; Shaping

gain.
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I. Introduction

It was shown in [1] that an N-sphere shaped N-dimensional cubic lattice (Z") based
constellation can be described as the codebook of a structured vector quantizer (SVQ) [2].
The codevector encoding/decoding algorithms of the SVQ (given in [1]) can be used to
index the points of such a constellation. Since an N-sphere has the smallest average energy
for a given volume, N-sphere SVQ shaping leads to optimal shaping gains in N-dimensions.
Such shaping is however not very useful because it results in a high constellation expan-
sion ratio (CER,) and a high peak-to-average power ratio (PAR2) of the constituent 2D
constellation. For a given constraint on the CER; or PAR,, the optimal shaping region is
the intersection of the interiors of an N-sphere and C™/2 (even N) [1], where C is a circle
bounding the constituent 2D constellation and CN/? is the N/2-fold cartesian product of
C with itself. A Z" based constellation bounded by this region can be represented as the
codebook of an SVQ making it possible to achieve the optimal shaping gain for a given
CER; or PAR;. This is very useful because as shown in [3], a significant reduction in both
CER: and PAR; is possible with only a small loss in shaping gain. A cubic lattice by
itself offers no coding gain but a trellis code realizing a significant coding gain can be con-
structed from a redundant cubic lattice [4]. Constellations based on trellis codes therefore
perform significantly better than those based on Z". Compatibility of SV(Q shaping with
trellis coding was also demonstrated in [1]. The SVQ-shaped trellis-coded constellations

thus offer optimal shaping gains and significant coding gains.

The memory requirement of the SVQ shaping scheme presented in [1] is cubic in the
constellation dimension NV and exponential in the rate r (in bits/2D). The computational
requirement per 2D is linear in N and exponential in r. Although this shaping scheme
gives higher shaping gains than trellis shaping [5], its complexity for a shaping gain of
about 1 dB is considerably higher than that of the 4-state trellis shaping scheme.

In this paper, we deal with ways to reduce the implementation complexity of SVQ
shaping without significantly affecting the shaping gain. In the next section we present
SVQ encoding and decoding algorithms that are more efficient than those given in [1].
These algorithms reduce the storage complexity of SVQ shaping from cubic to quadratic
in the constellation dimension N making it more practical to implement large-dimensional
constellations and achieve high shaping gains. The complexity however is still exponential

in the rate r (in bits/2D) of the constellation. This problem is solved in Section III by
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using the results of Calderbank and Ozarow [6] (also see [7]) to show that for high rates
(r > 6 bits/2D) the SVQ shaping complexity can be made independent of the data rate
with a negligible loss in shaping gain. Finally, in Section IV an example of a rate r = 7
bits/2D 64-dimensional SVQ-shaped trellis-coded constellation with a 384 point circular
constituent 2D constellation is given. This corresponds to a shaping CER; = 1.5 and a
coding CER2 = 2 and achieves a shaping gain of 1.20 dB with a PAR; of about 3.75. The
computational and storage complexities associated with the shaping of this constellation

are also reported.

II. SVQ and SVQ Shaping
We start with brief descriptions of the SVQ and SVQ shaping, following which we
present the modified SVQ encoding and decoding algorithms.

II.1 The Structured Vector Quantizer

The SVQ is a special kind of vector quantizer (VQ) in which the codebook structure
is derived from a variable-length quantizer S. Let @ = {qi1,¢2,...,¢n} be the set of n
elements in the alphabet of the quantizer § (Q is also referred to as the SVQ alphabet)
and £ = {{1,03,...,£,} be the corresponding set of positive integer lengths, where ¢;, i €
Jn = {1,2,...,n} is the length associated with the element ¢;. The codebook Z of an
m-dimensional SVQ V derived from § = (@, £) is a subset of Q™ consisting of only those
points (m-tuples) that have a total length no greater than an integer threshold L. The
total length is defined as the sum of the lengths of the individual components and the
threshold L is chosen such that the codebook Z contains (at most) 2™ of the n™ total
points in @™, where r is the desired rate of the SVQ V in bits/sample (r here should not
be confused with its earlier use as the rate of a constellation). This is formally described

by the following definition.
Definition: An m-dimensional SVQ V derived from a variable-length quantizer S = (Q, £)

i1s a VQ with a codebook Z given as,
Z={z2= (21,20, ,2m) € Q" : Lyoy FLyieyy + -+ sy < L}, (1)
where the index function f : @ — J, is defined as,

flgi) =1, 1€ Jy . (2)
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For a rate r bits/sample SVQ, the threshold L is selected as the largest integer such that

the cardinality of Z is no greater than 2™".

With this structure of the SVQ codebook, there exist fast codevector encoding and
decoding algorithms that can index (label) the codevectors of the SVQ. The codevector
encoding and decoding algorithms presented in [2] were modified in [1] to make them
suitable for data transmission purposes. Later in this section we present yet another

version of these algorithms that has a smaller storage complexity.

Since in the present work we use the SVQ in the data transmission context, we define
the threshold L as the smallest integer such that the cardinality of Z is no less than 2™,
This ensures that the SVQ-shaped constellations described next have the required number

of points to transmit at the desired rate.

I1.2 Constellation Shaping Using the SVQ

As shown in [1], the optimally shaped constellations can be represented as the code-
book of an SVQ and the SVQ encoding/decoding algorithms can be used to index the
constellation points. In this paper we confine our attention to quadrature amplitude mod-
ulation (QAM) based systems. An N-dimensional constellation can hence be expressed
as the codebook of an (N/2)-dimensional SVQ (m = N/2) with an alphabet consisting of

points in the constituent 2D constellation.

Under the shaping CER; < § constraint, the optimally shaped N-dimensional con-
stellation has a constituent 2D constellation Ay (C Z?) contained inside a circle C and
consisting of (at most) § = 82" points [1],[3], where r is the constellation rate in bits/2D.
The optimal shaping region in this case is the intersection of the interior of an N-sphere
with the interior of CN/2 [1]. The optimally shaped constellation can be expressed as the
codebook of an (N/2)-dimensional SVQ with: (i) an alphabet consisting of the § points
q1,92,...,95 of Ag, i.e., @ = {q1,q2,...,95}; (i) a set of lengths L = {¢1,0s,...,4s},

with the length ¢;, ¢ € Js, of the point q; given as, ¢; = ||q;||*, where ||q;||? is the squared
Euclidean distance of q; from the origin; and (iii) a threshold L which is determined such

that the constellation has at least 2™" points.
Compatibility of SVQ shaping with trellis coding was also demonstrated in [1]. The
SVQ-shaped trellis-coded constellations can realize optimal shaping and significant coding

gains.



I1.3 Efficient SVQ Encoding and Decoding Algorithms

The encoding and decoding algorithms described here are for the SVQ defined in II.1
and are generalizations of the corresponding algorithms in [1] (for 2-dimensions). These
algorithms assume that the codebook dimension m is a power of 2, i.e., m = 2K, The
understanding of these algorithms will probably be aided by the knowledge of the corre-
sponding algorithms in [1].

Form; = m/20=Y i€ Jxy = {1,2,..., K+1}, let M}, represent the number of m;-
vectors v = (v1,vz,...,Um;) € @™ that have a total length £ ¢,y +£f(yp)+- - AL f(vpn,) = J-

Clearly, M) = MIJ 1s the number of elements in the SV(Q alphabet Q that have a

MK 41)

length equal to j. The M,{u can be determined by the following recursive equation:

71—k
Z Mm(z+1) m( 41)? Vl € JI\7 (3)
where m; = 2m(;;1) and each step doubles the dimension. The sequence Mm , ] =
1,2,3,..., hence results from the convolution of the sequence M}, iy j=1,2,3,..., with

itself. If C’,J;” is the number of m;-vectors v € Q™ with a total length no greater than j,
then
_ J
k=1
The SVQ threshold L is the minimum value of j for which ngl = CJ > 2™ where r is
the desired rate of the SVQ in bits per SVQ dimension.

The encoding and decoding algorithms described below assume that the Mj, Vi €
{2,3,...,K+1}, Vj € Jp and CJ,, Vj € J, are computed once and stored in the memory.
This takes up considerably less storage (especially for a large m) than storing the M,{ for all
k€ Jy_1, asin [1]. It is further assumed that the SVQ alphabet ¢;,qo, ..., q,, is indexed
such that the corresponding lengths £, 05, ..., €, form a non-decreasing sequence, i.e., the

smaller lengths are assigned a smaller index.

The SVQ Encoding Algorithm (constellation point to binary indez)
The encoding function assigns a unique mr-bit binary number to every codevector
of the SVQ. There are several mappings that can accomplish this, two such mapping

are described in [1] and [2], respectively. The algorithm given here encodes an m =
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2K _dimensional codevector by recursively splitting it into two equal parts. Let ‘v =

(vi,v2,...,0m,;) denote an m; = m /20~ _dimensional vector in Q™. Also, let v, =
(v1,v2, .00 Vi, ) and vy = (V(mipay 1) V(m gy +2)s - - ,Um; ) be the first and the second
halves of v, respectively. If z = (21,22,...,2m) € Q™ is the codevector to be encoded,

then let 'v = z.

Represent by E* : @™ — {0,1,2,...}, the encoding function that encodes a vector
iy € Q™ into a non-negative integer. Define EX+1 . @ — {0,1,2,...}, as Eft1(v) =
f(v) — 1, Yv € Q, where f(.) is the index function in the SV(Q definition.

Assume that all *v; and ‘v, in Q™G+ have been indexed using E*+1) ie., B (tvy)
and Ei'H(in) are the indexes of *v; and 'v,, respectively. Order all vectors in Q™
according to the following three rules: (i) a vector ‘u € @™ is “smaller than” ‘w € Q™
(ie., ‘u < *w) if T%("u) < T*(*w), where the function T"(.) gives the total length of an
ms-vector € Q™ ; (i) if T¢(*u) = T?(*w), then ‘u < *w if E't1(*u;) < E*"1(*wy); and (iii)
if Ti(*u) = T'(*w) and Et'(*uy) = B (*wy), then ‘u < ‘w if B (tug) < EF1(Pwy).

The encoding function E*(*v) is now given as the number of vectors in Q™ that are

smaller than *v. This can be expressed as,
Ei(iv) = Ei(iv) + CL (-1, (5)

where £i(*v) is the number of length Ti(*v) vectors in Q™ that are smaller than ‘v and

1s given as,

Ti+1(ivl)_1
i : tiv)— i i Gv)—TU (g i i
E(vy= Y Mb,, MECO=E 4 gy ML CO=T O gt () (6)
k=1

The encoding operation is hence performed by partitioning the input m-tuples into
m /2 pairs and encoding the pairs using E®(.). The pairs are then grouped into 4-tuples
and encoded using Ef~1(.) and so on. The dependence of the storage complexity of this
algorithm on the dimension is m2logm. Its computational complexity is slightly higher than
the corresponding algorithm in [1], but as shown in Section IV, this can be substantially
reduced by repeated use of the ideas of [6] presented in the next section.

Note that to reduce the storage requirement, the CJ, , Vj € Ji are stored in the
memory only for i = 1. For i € {2,3,..., K + 1}, the C,’;H can be sparsely stored — as an
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example, for values of j that are multiples of 4. These can then be used together with the

stored M, to obtain the C}, for other values of j.

The SVQ Decoding Algorithm (binary index to constellation point)

The decoding function takes mr-bit binary numbers and converts them into SVQ code-
vectors in a one-to-one manner and is implemented as the inverse of the encoding function
described above. The aim is to determine z = v € Q™ given an mr-bit binary number
E'('v). This is accomplished by determining E%('v;) and E*('vs) from E'('v). The
problem now reduces to an equivalent (m/2)-dimensional problem which can be similarly
handled.

To determine E*(1vy) and E?(1v,) from E1(1v), first determine £ (*v) and the length
T1(1v) of v using the stored values of CT];” j € Jp. The values T?(Yvy), £2(*vy), T?(1vs)
and £2(1vy) are next determined form &'('v) by repeated subtraction and a division (see
Equation (6)).

The complexity of this decoding algorithm is approximately the same as that of the

encoding algorithm.

II1. SVQ Shaping at High Rates

Calderbank and Ozarow in [6] have shown that it is in principle possible to achieve
most of the maximum shaping gain of 1.53 dB by partitioning a circular 2D constellation
(with a large number of points) into a small number, ¢, of equal area regions (circular shells)
and using all the constellation points in a region with the same probability. Virtually all
of the shaping gain can be achieved with just t = 16 regions and a CER; less than about
2. For t = 8 a shaping gain of over 1.4 dB can be realized. The shaping gain vs. PAR,
plot for t = 32 given in Fig. 4(e) in [6] (the notation in [6] is different from that used here)
is claimed to be indistinguishable from the optimal shaping gain vs. PAR, plot in [3].

These results suggest that nearly optimal SVQ shaping can be performed by par-
titioning a circular constituent 2D constellation into a maximum of ¢ = 16 regions and
requiring that all the points in a region have the same length. This ensures that all points
in the same region of the constituent 2D constellation occur with the same frequency in the
multidimensional constellation. Since SV(Q shaping can minimize the average constellation
energy subject to the above constraint, for a given ¢, it can asymptotically (in dimension)

achieve the performance described in [6]. The shaping gain for a given t is independent
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of the number of points in the constituent 2D constellation (assuming a large number of
points). Therefore, the complexity of this SVQ shaping scheme for nearly optimal shaping
does not continue to increase with the constellation rate r. Numerical results show that
for r greater than about 6 bits/2D, the complexity is independent of the rate.

The above reduction in complexity when combined with the efficient SV(Q encod-
ing/decoding algorithms described in Section II makes it possible to achieve a higher
shaping gain for a given complexity (or a given CER2, PAR; or shaping delay) than any
other shaping scheme proposed so far. In the next section we consider an example that

demonstrates this.

IV. Example of an SVQ-Shaped Constellation

Assume that it is desired to transmit binary data using a 64-dimensional SV(Q)-shaped
uncoded (trellis-coded constellations are considered later) Z%* based constellation at the
rate of 8 bits/2D. The constituent 2D constellation in this case must consist of at least
256 points. A circular 256-point 2D constellation however results in only 0.2 dB shaping
gain (that of a circle over a square). To achieve higher shaping gains, the constituent
2D constellation must be expanded to have more than 256 points. In this example, we
assume that a shaping CER; of 1.5 (corresponding to a 384-point 2D constellation) is
acceptable. The 2D constellation Ag hence consists of 384 points on the translated lattice
Z% +(1/2,1/2) that are enclosed inside a circle of appropriate radius. The circular con-
stellation Ay 1s partitioned into ¢ = 12 subsets (regions) Ry, R, ..., Ri2, each containing
32 points. The subset R; consists of the 32 lowest energy (smallest squared-distance from
the origin) points in Ag, Ry consists of the 32 next higher energy points in Ay and so on.
There are many different ways to pick the subsets Ry, Ro,..., Ry3, and any of these that
preserves the 7 /2 rotational symmetry of Ag can be chosen.

As suggested by the results of [6], close to optimal shaping gain can be achieved
by using all 32 points in any given subset R;, ¢ € Ji; with the same probability. In
the context of SVQ shaping, this can be accomplished by taking the SVQ alphabet as
the 384 points in Ay and assigning the same length to all points in the same subset. The
threshold L can be determined such that the 32-dimensional SVQ codebook (corresponding

to a 64-dimensional constellation) has 23%2%% = 9256

codevectors (constellation points).
Alternatively, in a more efficient formulation, the SV(Q alphabet is taken as the 12 (n =1¢ =

12) subsets, i.e., @ = {¢1,92,...,q12} = {R1, Rz, ..., R12} and to every subset R;, 7 € Jy2,
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is assigned a length ¢; = i. The threshold L in this case is determined such that the
codebook Z of the 32-dimensional SVQ (m = 32) consists of 232*% = 2%¢ codevectors in

9160

Q32, Each codevector here represents 2325 = constellation points.

The transmitter in a QAM based system accepts binary data in blocks of 32 x 8 = 256
bits and transmits each block using 32 2D-points (equivalent to one point on the 64-
dimensional constellation). Out of the 256 bits in each block, the SVQ decoder decodes
96 bits into a codevector in @*?. The additional 5 bits/2D (a total of 160 bits) are used
to determine which point (€ Ag) of each 32-point subset is transmitted. In the receiver,
5 bits/2D are recovered by determining which subset point was received and 96 bits are

recovered by using the SVQ encoder to encode the received codevector.

The 64-dimensional constellation in this example is a cubic lattice based constellation
and realizes no coding gain. As shown in [1], SVQ shaping is compatible with trellis coding
and it is possible to construct a 64-dimensional SVQ-shaped trellis-coded constellation from
the 384-point circular 2D constellation Ay considered above. Assuming that the trellis code

used has a redundancy of 1 bit/2D, a rate of 7 bits/2D coded constellation then has the

same shaping gain as the 8 bits/2D uncoded constellation.

Numerical evaluation shows that the above SVQ-shaped constellations achieve a shap-
ing gain of 1.20 dB and have a PAR; = 3.76. The shaping operation requires about 60
multiply-adds/2D and 3 kbytes of memory. For ¢t = 12, a shaping gain of up to 1.26 dB can
be realized with a PAR; of 5.25 by a 64-dimensional constellation (optimal 64-dimensional
shaping results in up to 1.31 dB shaping gain). This is about 0.25 dB more than the 1 dB
gain of Forney’s 4-state trellis shaping scheme (PAR; =~ 3.75) [5]. Using 64-dimensional
SVQ shaping, a gain of 1 dB results in a PAR; of only 2.9. This is even smaller than the
PAR; of the baseline constellation that gives no shaping gain. Such small values of the
PAR, can be useful for transmission over channels that introduce harmonic distortion at

high signal levels.

The complexity of the shaping scheme in the example above can be further reduced
with little or no effect on the shaping gain. This is done by repeatedly applying the ideas
of Section III to constituent constellations in 4, 8, 16 and 32 dimensions. For instance, the
number M is the total number of length T3(3v) = j points (K = 5 and ®v represents
an 8-tuple in Q%) in the constituent 16-dimensional constellation. The constituent 16-

dimensional constellation can be divided into subsets (regions) of say, 1024 points each.
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The 1024 points with the smallest lengths belong to the first subset, the 1024 points with
the next higher lengths belong to the next subset and so on. All points in the same
subset are assigned the same length (this may be different from the original length of the
points). This corresponds to modifying the numbers Msj, 7 =1,2,3,..., to a new set Mg,
where Mg is the new number of points in the constituent 16-dimensional constellation
with a modified length 73(3v) = j. Also, let C{ be the (new) number of points in the
16-dimensional constellation with (modified) length 73(3v) < j.

The codeword E*(*v) of ®v can now be used to determine 73(®v) and e3(®v) which
is the number of modified length 7°(*v) points in the constituent 16-dimensional constel-
lation that are smaller than 3v.

For this approach, the encoding function of Section II is modified as follows:
Ei('v) = Ei(v) + LV, (7)
where,

T'(vi)-1 . - o
gz(zv) — Z Mk MT‘(’V)~k + ei+l(iv1)MT'('v)—T(’+ )(‘vl) + ez—H(zvz), (8)
k=1

M(it1) M(i41) mMit1)

with
j—1
' i—k k
M, = Z Moy Mngipny» (%)
k=1
' J
Cr]ni = ZMJ:H’ <10)
k=1
and
T('v) = T (vy) + TH 1 (Pv,). (11)

With the above modification, a variety of trade-offs between shaping gain, computa-
tional complexity and storage requirement are possible. Numerical evaluation shows that
with 64-dimensional SV(Q shaping, a shaping gain of about 1.2 dB can be realized at a
PARg of 3.75 with a worst case computational complexity of about 15 multiply-adds/2D

and a storage requirement of around 1.5 kbytes.



V. Conclusions

In this paper we have shown that a considerable reduction in complexity of the SVQ
shaping scheme proposed in [1] is possible with very little effect on the shaping gain.
To reduce the storage complexity, modified SVQ encoding and decoding algorithms were
presented. Next, the results of Calderbank and Ozarow on nonequiprobable signaling over
Gaussian channels [6] were used to show that the complexity of SVQ shaping can be made
independent of the rate of the constellation.

It was shown that shaping gains of up to 1.25 dB can be realized at a very reasonable
complexity. This is considerably higher than any other similar complexity shaping scheme
proposed so far. Further, for a given shaping gain SVQ-shaped constellations result in the
smallest PAR;, CER; and shaping delay of any shaping scheme. For example, a gain of 1
dB with 64-dimensional SVQ shaping results in a PARs of only 2.9. This is significantly less
than the PAR; of about 3.75 for a 4-state trellis shaping scheme [5] with a similar shaping
gain and complexity. The small PAR; offers a considerable advantage for transmission
over channels that introduce harmonic distortion at high signal levels.

For transmission over ISI channels, SVQ shaping can be used together with the pre-

coding scheme presented in [8] to realize shaping gains up to 1.15 dB.
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