


ABSTRACT

Title of Dissertation: ESTIMATING THE SPATIAL AND TEMPORAL

DISTRIBUTION OF SNOW WATER EQUIVALENT WITHIN

A WATERSHED

Michael Charles Menoes, Doctor of Philosophy, 2003

Dissertation directed by: Associate Professor Kaye L. Brubaker
Department of Civil and Environmental Engineering

The goal of this research was to develop a spatial-temporal model to forecast the

snow water equivalent (SWE) within a watershed.  This model defined the relationship

between the physical parameters of a watershed and the spatial distribution of SWE

within that watershed.  Many models of snowmelt runoff rely on snow depletion curves,

which describe the seasonal decline of snow covered fraction and SWE, assuming some

interannual uniformity of basin response.  The null hypothesis associated with this

research was that the spatial and temporal variability of SWE within a watershed is a

random process that is independent of the physical characteristics of the watershed.  

A conceptual model of spatially distributed SWE accumulation and depletion

that can be calibrated and validated with spatially distributed observations was created. 

The effects of the physical variables and parameters on the SWE distribution within a

watershed were demonstrated, and both significant and insignificant physical variables



and parameters were identified.  How data were used in the calibration/validation of the

model was demonstrated, including showing the benefit of additional data on model

accuracy.  Finally, the proper calibration and validation of the model using an actual

watershed was demonstrated on three different watersheds. 

Results of the research were mixed in terms of accepting or rejecting the null

hypothesis.  Created SWE maps and satellite images of the Upper Rio Grande

Watershed visually suggested that similar SWE patterns exist for this watershed.  An

analysis of the data from the SNOTEL sites within the Upper Rio Grande Watershed

also suggested the existence of similar interannual SWE patterns within the watershed. 

This analysis supports the Depletion Curve Theory. 

However, an analysis of the SWE distributions for the three watersheds,

performed utilizing the Kolmogorov-Smirnov Two-Sample Nonparametric Test,

suggested that consistent interannual SWE patterns do not exist for the watersheds

studied.  This analysis contradicts the Depletion Curve Theory.    
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CHAPTER ONE 

 INTRODUCTION

1.1 IMPORTANCE OF SNOWMELT

This research is inspired by the fact that snowmelt accounts for 50% - 80% of

the annual stream flow in many areas of the world, including the Sierra Nevada, the

Rockies, the Alps, the Andes, and the Himalayan Mountains (Ferrris and Congalton,

1989).  Large quantities of snow, associated with rapid melting is often associated with

severe flooding, while a small snowpack often results in summer water shortages.  By

monitoring and estimating the spatial and temporal variation of the snow pack until the

end-of-winter snow accumulation, and through the ablation period, it is possible to

construct worst case scenarios of spring floods, or summer water shortages early in the

season.  Thus, to better be able to forecast these events, a means of estimating the snow

content during the accumulation season and  through the melt season is needed. 

In addition, water derived from snowmelt is being used for the generation of

hydropower, irrigation, and domestic and industrial water supply.  In the western United

States, in 1980, the annual value of snowmelt water was estimated between six and sixty

billion dollars (Castruccio et al., 1980).  This same study indicated that a mere 1.5

percent increase in Colorado River forecast accuracy would result in a net economic

benefit of 5.1 million dollars. 

Two important concepts that will appear throughout this dissertation shall be

defined at this time.  These two concepts are snow water equivalent, or SWE, and snow-
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covered area, or SCA.  SWE can be defined as the depth of water that would result from

the complete melting of the snow water covering a unit area.  By definition, SWE

involves the measurement of a three-dimensional quantity.  However, it is recorded as a

depth. SCA can be defined as the portion of the unit area that is covered by snow.  SCA

involves the measurement of only a two-dimensional quantity.  Consequently, SCA is

an easier quantity to observe than SWE.    

1.2 EXISTING SNOWMELT MODELS

Empirical snowmelt runoff models have traditionally been used for operational

runoff volume forecasts.  However, these models supply little information on the timing,

rate, or magnitude of discharge.  In addition, these models often are of little use in

situations outside of the original conditions for which they were set up.  Attempts to

more accurately predict runoff associated with snowmelt have led to the development of

physically based, spatially distributed snowmelt models.  These models require

information concerning the spatial distribution of snowpack water storage.  As Elder

(1989) points out, however, a widely suitable method does not currently exist to directly

map SWE within a watershed.  Konig and Sturm (1998) also concluded that it is

currently practical to use remote sensing (aerial photography and satellite imagery) to

determine the extent of snow, or SCA, but not the depth of snow, or SWE.  A spatially

distributed model should be calibrated and validated with spatially distributed data, and

the lack of knowledge as to the necessary snow cover data required to perform this task

remains a significant obstacle.
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Several snowmelt runoff models, such as the Snowmelt Runoff Model (SRM),

utilize the depletion curve theory.  Depletion curve theory describes the seasonal decline

of snow covered area (SCA) as a function of time or accumulated melt.  A consequence

of using snowmelt runoff models which utilize the depletion curve theory is that

assumptions must be made as to the degree of uniformity of basin response from year to

year.  These assumptions have yet to be properly addressed in terms of relevance and

accuracy.

The spatial distribution of snow cover can be measured with the aid of remote

sensing tools.  However, as Cline (1998) points out, direct measurement of SWE by

remote sensing is not yet possible.  As a result, the measurement of the spatial

distribution of SWE and total snow volume within a basin must be performed by

intensive field sampling to capture the large spatial variability that exists in basin

snowpacks.  Economic and safety limitations generally restrict the number of field

samples that may be obtained (Elder, 1989).  Consequently, the task of determining the

volume and distribution of SWE within a watershed remains difficult.

1.3 ADVANCING THE STATE OF THE ART

In order to advance the field of physically based, spatially distributed snowmelt

models, new developments in the estimation of SWE are required.  These advances

should be based upon the physical parameters of the watershed in study and should be

able to define the heterogeneous snow pack of the watershed, which changes markedly

in time and space.
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The successful development of a model capable of accomplishing the objectives,

as described in the abstract, will hopefully progress the state of the art in the field of

snowmelt-runoff forecasting in two ways.  The first way will be accomplished by

attempting to provide the spatially distributed snowmelt models with a more accurate

depiction of the spatial and temporal distribution of SWE and total snow volume within

a watershed, thus allowing for more accurate predictions from these snowmelt models. 

Second, models can provide insight into how the spatial distribution of SWE

affects watershed response by providing estimates of runoff volume, over time, based on

projected depletions from different portions of the watershed.  Because both SWE and

energy are nonuniform, the delivery of meltwater to the soil and as surface runoff is also

nonuniform.  Just as the spatial distribution of rainfall affects watershed response, so

does the spatial distribution of melt water input.      
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CHAPTER TWO

LITERATURE  REVIEW

2.1 INTRODUCTION

This chapter provides an overview of current literature addressing the spatial and

temporal distribution of SWE within a watershed.  The following pages provide a brief

summary of recent work being performed in this field, which will provide the reader

with an introduction to pertinent concepts regarding the objectives and methodology

associated with this study.  The topics discussed in the following sections relate to the

goals of the proposed research and indicate current practices involved in the

methodology of snow modeling.

2.2 CONCEPTUAL MODELS OF SWE DISTRIBUTION

The goal of the proposed research was to develop a spatial-temporal model to

forecast the snow water equivalent (SWE) within a watershed.  The following

paragraphs describe current undertakings aimed at accomplishing this same task.  An

understanding of these current efforts will help in the formulation of the proposed

model. 

Liston (1999) noted that models used to simulate snowmelt commonly represent

study areas by a collection of finite areas or grid cells.  He maintained that within each

grid cell, three fundamental features are required to describe the evolution of seasonal

snow cover from the end of winter through spring melt.  These are the within-grid SWE
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distribution, the gridcell melt rate, and the within-grid depletion of snow covered area.  

Liston noted that this relationship is borrowed from Cline (1998), and demonstrated

how knowledge of any two of them allows generation of the third.  Liston also indicated

that numerous studies have noted that the depletion of snow-covered area is strongly

related to runoff, and that such an accounting for the snowmelt volume within each grid

cell could be used directly as input for sophisticated snowmelt models.

Skaugen (1999) developed theoretical means to estimate the mean SWE over an

area by analytically combining the frequency of precipitation events and information

from satellite images.  He reported that the mean areal SWE can be estimated by

modeling the snow accumulation process in time and space as sums of random gamma

distributed variables.  He stated that from snow pillows and precipitation gauges, the

value of daily accumulated precipitation/snow has been found to be well represented by

a two-parameter gamma distribution.

Luce, Tarboton, and Cooley (1998) presented and tested a physically based

lumped model of snowpack evolution for a small watershed that uses a depletion curve

parameterization to relate the basin-averaged SWE to SCA.  They also presented a

method for deriving the depletion curve from snowpack measurements at peak

accumulation.  Their work showed that through the use of an areal depletion curve, it

was possible to obtain lumped snowmelt model simulations that agree well with

distributed models and observed data.

Swamy and Brivio (1996) used Landsat Multispectral Scanning System and

Thematic Mapper in order to evaluate the SCA variation within an alpine catchment. 
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DEM, slope and aspect parameters were developed as part of their analysis.  The

Landsat Multispectral Scanning System has a spatial resolution of about 79 meters,

while the Thematic Mapper has a spatial resolution of 30 meters.  Five sets of data were

analyzed covering the April to July period.  A second-order polynomial was used to

approximate the depletion of SCA and to estimate the daily areal extent of SCA.  The

results indicated that approximating snow depletion curves for various elevation zones

using a second-order polynomial fit was encouraging.

Cline, Bales, and Dozier (1998) presented a modeling approach that couples

information about SCA from remote sensing with a distributed energy balance model to

calculate the spatial distribution of SWE in a mountain basin at the peak of the

accumulation season.  They borrowed upon the earlier work of Martinec and Rango

(1981) to define a mathematical relationship between SWE and energy exchange as 

SWE i = f(D,E)          (2-1)

where SWE i is the snow water equivalent associated with grid cell i, D is the duration of

snow cover at grid cell i, and E is the energy exchanges occurring at grid cell i. The

modeling approach presented here produced an estimate of the magnitude and

distribution of SWE in the test basin at peak accumulation that compared well to field

measurements that had been obtained as part of an earlier study.

Konig and Sturm (1998) presented a descriptive method for mapping the end-of-

winter snow distribution in the arctic using aerial photographs taken during the melt. 

They believed that the photos show a distinctive number of snowmelt patterns that arise

reliably year after year, and demonstrated that data and results from an energy balance
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melt model indicate that the patterns are not caused by differential melt but instead

represent areas of distinctive end-of-winter snow depth.  The results indicated that these

snowmelt patterns can be used to map the end-of-winter snow distribution for any basin,

providing that the basin has sufficiently smooth topography.

2.3 EFFECTS OF PHYSICAL VARIABLES ON SWE  

One of the objectives of the proposed research was to demonstrate the effects of

the physical variables and parameters on the SWE distribution within a watershed.  The

following paragraphs describe research relating physical properties of a watershed with

the distribution of SWE.  A better understanding of this relationship could ultimately

lead to better accuracy for snow distribution modeling. 

Donald, Kouwen, and Pietroniro (1995) looked to create a model for land cover-

based snow depletion curves for short grass, ploughed fields, and deciduous forests. 

The basin being studied was divided into different subunits based upon homogeneous

land cover.  To develop the model theory, they drew upon previous studies that have

indicated that maximum accumulation depth is a function of vegetation, elevation, and

topography.  They also noted that these same studies indicate the tendency of the

snowpack to follow consistent patterns from year to year.   

Copland (1998) evaluated snow cover on an alpine glacier.  He states that the

improved evaluation of snowpack conditions may be possible by combining terrain

zonation (division of the glacier into areas of similar terrain) with elevation-based

regression predictions.  He used a digital elevation model (DEM) to calculate the terrain
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parameters of elevation, slope angle, aspect, profile curvature, and planform curvature. 

He anticipated that these terrain topographic features will help to control the snow cover

distribution.  His study shows that in terms of estimating SWE, elevation is the most

important terrain parameter. 

Elder, Dozier, and Michaelsen (1989) discussed the relationship between snow

accumulation and terrain features and vegetation.  They drew upon past studies that had

shown snow accumulation to be dependent on vegetation and topographic roughness

from small-scale localized effects to large-scale terrain features such as ridges and

valleys.

Konig and Sturm (1998) believed that abrupt changes in snow depth arose from

two basic processes: flow separation of wind from the ground and the snow-holding

capacity of the landscape.  They argued that topography is the primary factor that

controls the snow distribution, and thus, snow patterns should remain the same from

year to year, assuming that the  wind direction does not change significantly.

Derksen et al. (1999) sought to relate North American prairie snow cover to

archived atmospheric teleconnections (climatic anomaly that is a distant consequence of

another climatic anomaly, such as the El Nino-Southern Oscillation).  Using a rotated

principal components analysis (PCA) of pentad resolution imagery, they hoped to

identify a relationship between atmospheric patterns and prairie SWE and SCA.  This

study produced no evidence to support snow cover as a forcing variable on atmospheric

circulation.  The study also explored time lagged correlations between SWE

distribution, SCA extent, and atmospheric teleconnections.  Their study concluded that
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total prairie SWE and SCA are poorly autocorrelated over time (based upon a monthly

time series).

Hellstrom (1999) developed a pragmatic procedure for measuring and modeling

the effects of forest cover on snow depth.  He explored the magnitude of longwave and

shortwave radiation, precipitation, and wind speed beneath different types of forest

cover.  Based upon his findings, Hellstrom developed sub-models for simulation of sub-

canopy radiation, wind speed, and precipitation, which can be incorporated into remote

sensing image interpretation and numerical models.

Shook, Gray and Pomeroy (1993) used fractal geometry as a basis for

developing a relationship for the area-frequency and perimeter-area characteristics of

soil and snow patches that form during ablation.  They concluded that snow patches

were not random and that their size distribution is predictable, such that the perimeter-

area ratio of the soil and snow patches decreased with increased patch size.

Yamazaki and Kondo (1992) developed a snowmelt and heat-balance model in

forested areas.  They developed a two-layer model.  The first layer described the effect

of canopy on the heat balance and wind-speed profile, and the second layer incorporated

this information into determining snowmelt.

Liston and Sturm (1998) developed a snow-transport model which described the

interactions between wind, vegetation and topography, and their effect on the

distribution of SWE.  Their model attempts to divide the domain into blowing-snow

source and sink regions based on topography and vegetation characteristics.  They warn

that their model does not take into account the affects that tree stands have on blowing
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snow, and thus indicate that the model is not applicable to forested areas.  

2.4 DETERMINATION OF THE EXTENT OF REQUIRED DATA

Another one of the objectives of the proposed research was to show the benefit

of additional data on model accuracy and when and where to collect the data.  The

following paragraphs describe studies which dealt directly with the amount of spatial

and temporal data required for accurate research results.  A better understanding of the

types and amount of required data will help in model formulation.  

Liston (1999) noted the interactions among weather, climate, hydrology, and

ecosystems.  He maintained the importance of daily observations of atmospheric and

hydrologic processes and their affects on SCA.  In this regard, Liston stated that “data

obtained at frequencies less than daily still are valuable but will contribute to errors

resulting from accumulation and ablation events that occur at higher frequencies.” 

Skaugen (1999) used snow courses as a data source for his research.  He briefly

discussed some previous studies that made recommendations for snow course sampling. 

These suggestions included: sampling with at least 50 meter to 100 meter intervals in

order to avoid redundant information; in order to double the precision of the mean,

approximately five times the number of sampling points is needed; and snow courses

which are surveyed as a straight line or as a circle produce the smallest standard error.  

Konig and Sturm (1998) mapped the end-of-winter snow distribution in the

arctic based upon a number of distinctive snowmelt patterns that were associated with

topography.  They determined that the snow depths in individual patterns did not
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correlate well with one another.  As a result, they decided that direct snow depth

measurements in each type of identified pattern was necessary to assign values to

patterns for each year.

Williams and Tarboton (1999) developed an energy driven snowmelt model that

is topographically dependent.  Their model differs from most other models in that it

used direct measurements of melt to drive the model, rather than utilizing

meteorological variables to estimate melt.  For their model simulations of a hypothetical

basin, five index points (to collect melt data) were deemed sufficient for their small

study area (~ 40 Ha.).  The authors go on to say that they have not yet determined the

index point density required for larger study areas.  They claim that this is a question for

further research related to the scale and variability of snow accumulation and melt.

2.5 CALIBRATION AND VALIDATION OF MODELS

An additional research objective was to calibrate/validate the proposed model

using an actual watershed.  The following paragraphs discuss calibration efforts taken

during several studies.  A better understanding of the different calibration/validation

methodology could allow for greater model flexibility.  

Skaugen (1999) calibrated his model using an existing model called HBV.  The

HBV- model is a commonly used rainfall-runoff model in the Nordic countries and

includes a snowfall routine that accounts for the development of the snowpack. 

Skaugen claimed that previous studies had calibrated the HBV-model for all of the

catchments within his study basin.
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Donald, Kouwen, and Pietroniro (1995) performed snow surveys of the their

study area. The surveys were conducted on sixteen different days during the course of

two separate winters.  The data were used to establish empirical snow cover distribution

curves to which the modeled snow cover depletion curves were compared. 

Elder, Dozier, and Michaelsen (1989) performed an extensive field program to

measure SWE within their study basin.  The program resulted in hundreds of depth

measurements used to validate the results of the developed accumulation model.

Cline, Bales, and Dozier (1998) chose to study the same basin as had Elder,

Dozier, and Michaelsen (1989).  As a result, Cline et al. calibrated their model based

upon the field data that had been collected for the earlier study and compared the

modeled total basin volume of runoff to the volume of runoff predicted using Elder’s

model.

Liston and Sturm (1998) developed end-of-winter snow distribution maps that

were a combination of ground-based depth and density measurements and aerial

photographs.  Three sets of aerial photographs were taken for each study year.  For each

of the three sets, maps were drawn outlining the snow-vegetation boundaries, to which

the SWE observations were added.  Analysis showed that the map could be used to

extrapolate snow depth data where no direct measurements had occurred.  This map was

used to compare the accuracy of model simulation results.
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2.6 INPUTTING THE SWE MODEL INTO AN EXISTING WATERSHED
RUNOFF MODEL

Ultimately, it is hoped that the proposed SWE model will act as a more accurate

input for runoff models predicting stream discharge.  The following paragraphs discuss

efforts taken to incorporate more accurate SWE information into runoff models. 

Swamy and Brivio (1997) developed a model to approximate snow depletion

and to estimate daily snow cover areal extent for three different elevation zones within

their study basin.  This model was then used as input for the Snowmelt Runoff Model

(SRM) to predict stream flows.

Although not actually proceeding in this manner, Liston (1999) discussed that

the calculated snowmelt volume within each model grid cell could provide the

meltwater inputs to a land surface hydrology model.  He stated that the resulting

hydrographs could be compared to observed river and stream discharges, providing a

validation tool for assessing the snow evolution simulation. 

2.7 THE TREATMENT OF SNOW IN CURRENT FORECAST MODELS

The National Weather Service River Forecast System models snow

accumulation and ablation by means of the SNOW-17 snow model.  The SNOW-17

operation is a snow accumulation and ablation model developed by the Hydrologic

Research Laboratory of the Office of Hydrology (Anderson, 1973).  The model is

conceptual, each physical process affecting snow accumulation and snowmelt is

mathematically represented in the model.  The current version of the model is
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essentially the same as that described by Anderson (1973). 

There are six major parameters in the snow cover model, the most important of

which is the areal depletion curve which is not a single-valued parameter.  There are

also six minor parameters in the snow model.  The user’s manual for this model

suggests that most of the effort during calibration should be devoted to determining the

proper value of the major parameters. The model uses air temperature as the index to

snow cover energy exchange.  The manual explains that the two reasons for this are: 1)

air temperature data are normally readily available from both climatological and

operational hydrometeorological networks; and 2) it has been shown in many studies

that air temperature is probably the best single index to areal snow cover energy

exchange. 

In the SNOW-17 snow model, the excess liquid-water is first lagged and then

attenuated.  Lag is a function of the water-equivalent of the ice portion of the snow

cover, and the excess liquid-water.  The attenuation part of the liquid-water transmission

process uses a withdrawal rate which is the portion of the excess liquid-water which

drains from storage within the snow cover during a given time interval.  The manual

states that the functional forms of the equations used to determine lag and attenuation

were developed by plotting experimental data and using regression analysis.

Although the manual states that each of the physical processes affecting snow

accumulation and snowmelt is mathematically represented in the model, there are

several physical processes not explicitly included in the model.  These processes are:

water vapor transfer, interception of snow, and redistribution of snow.  The manual
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reports that these processes were not included in the model because an adequate

quantification of these processes would require additional data that may be difficult to

obtain.  The manual also claims that utilization of the areal depletion curve helps to

incorporate the effects of these processes.

The manual also describes some of the shortcomings of the SNOW-17 snow

model.  One such example is : if a watershed is subdivided into too many parts, it

becomes difficult to determine reasonable unique parameter values based solely from a

single output hydrograph.  Additionally, the manual states that the model gives best

results when day to day and year to year variability in meteorological conditions

affecting snow cover accumulation and energy exchanges are small.  The following

quote from the manual indicates this fact.  

“The distribution of the snow cover during the accumulation period is influenced
by topography, vegetation cover, storm type, and wind conditions.  Because these
factors are stationary or similar from year to year, the snow cover accumulation patterns
are also similar.  Snowmelt patterns are influenced by topography, vegetation cover, and
weather conditions and are also similar from year to year.  Because of these similarities
in snow accumulation and melt patterns, each area should have a reasonably unique
areal depletion curve.”

This quote implies that there exist interannual similarities in the distribution of SWE

from year to year within a watershed.  However, the literature does not adequately

address this topic as to the validity of the statements made by the user’s manual.

2.8 COMMON THEMES THROUGHOUT THE LITERATURE

Several themes emerge from the literature review that have a direct bearing on

the proposed research.  The first theme is that new methods are being developed to



17

increase the accuracy of SWE estimations within a basin.  An important note, however,

is that these methods provide information on the spatial distribution of SWE after the

end of the melt season.   Since these studies, such as the ones performed by Liston

(1999), Konig and Sturm (1998), and Cline, Bales, and Dozier (1998) do not provide the

critical SWE information during the accumulation and ablation period, these methods

provide little use in present year forecasting.  

One of the goals of many of these new methods was to provide past data that

could possibly be used in future forecasting.  This can be summed up in a quote from

Cline (1998): “Although the post facto determination of SWE distributions might

appear to be too late for forecasting the timing, rate and magnitude of snowmelt runoff,

it is conceivable that similarities in SWE patterns within basins from year to year would

make back-calculated SWE estimates from previous years useful for current

forecasting.”

A second theme involves the collection of data.  The necessity of an abundance

of spatially distributed data to describe the spatial and temporal variability of SWE

within a watershed is acknowledged.  The difficulty in acquiring this data is also

acknowledged.  From a spatial standpoint, efforts are made to minimize the amount of

field surveying required.  Some studies, such as the one performed by Cline (1998),

perform no surveys at all.  The sources of data for Cline’s study was a time series of

SCA from remote sensing measurements, a meteorological record during the snowmelt

season, and a DEM of the watershed.  Some studies, such as the one performed by

Elder, Dozier, and Michaelsen (1989), limit the amount of snow surveying required by
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limiting the size of the watershed in study.  Some studies, such as the one performed by

Luce, Tarboton, and Cooley (1998), select watersheds that have been the site of many

previous hydrologic investigations. 

A third theme is that the studies indicate some consistency in the spatial

distribution of snow, or SWE from year to year within a variety of study areas.  As a

result of the research performed by Donald, Kouwen, and Pietroniro (1995), it was

concluded that the snowpack at Waterloo, Ontario, had a tendency to follow consistent

patterns from year to year.  These findings, they argued, were consistent with a study

performed in 1991 by Burkard that indicated that a significant difference did not exist in

same-type land unit snow cover distributions from site to site in southern Ontario.

In addition, the spatial variability of SWE is, to some undetermined degree,

affected by the surrounding physical parameters of the study area.  Studies performed by

Hellstrom (1999), Copland (1998), Konig and Sturm (1998), and Donald, Kouwen, and

Pietroniro (1995) showed that the topography of the study area directly affects the snow

cover distribution. 
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CHAPTER THREE

MODEL  DEVELOPMENT

3.1 INTRODUCTION

As previously mentioned, the goal of this research is to develop a spatial-

temporal model to predict the spatial distribution of SWE within a defined region, such

as a watershed. This chapter presents the  design goals of the model, pertinent

information regarding the theory behind the model development, and the derivation of

the equations that define the model.

3.2 MODEL DESIGN GOALS

The design goals of the model are: simplicity, physically based, and distributed

over a study area or watershed.  The main goal of the model is simplicity, in terms of

both required data input and operation.  An attempt has been made to limit the required

input to readily accessible meteorological data so that the model can be easily used

without being restricted by unavailable data.  Additionally, an attempt has been made to

simplify the complex physical processes responsible for the spatial and temporal

variability of SWE within a watershed.  Simplifying these processes will reduce the

required number of input variables, while not necessarily compromising the accuracy of

the model.  This last point is often discussed in the literature and summed up well by

McCuen (2000): “Yet, studies have shown that accuracy is not highly correlated with

model complexity.  Increasing the complexity of a model does not necessarily imply that
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the prediction accuracy increases significantly.”

The second design goal is that the model should be physically based so that the

model becomes applicable to all watersheds while minimizing the need to calibrate a

large number of parameters at each location.  This characteristic helps to reduce the

uncertainty that may be introduced during calibration, from such processes as subjective

optimization.

 The final design goal is that the model must allow inputs that are spatially 

distributed over a watershed.  A distributed model is required to account for the spatial

variability within the watershed. This characteristic is required to help test the

hypothesis that spatial and temporal patterns of SWE exist within the watershed, and

these patterns remain similar from year to year.      

3.3 BACKGROUND 

It is important to emphasize the drivers of spatial variability in SWE ( spatially

varying snowfall, redistribution of snow, spatially varying melt, etc.).  Part of this

variability may be explained by fixed features of the watershed (topography, vegetation,

etc.) while part may be explained by the directionality of weather systems (precipitation,

wind, etc.).  The former can be assumed to be fixed, at least on a seasonal time scale,

and the latter is likely to follow certain patterns typical of weather systems for a given

region and season.  There will still be some pure randomness in the SWE distribution,

but ample evidence of certain basic patterns will be evident.
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The conceptual model describes the response of the snowpack to these drivers. 

The model output will be of a nature that it can be calibrated and validated with

spatially-distributed observations of SWE.  The model will not be calibrated by

inputting its results into an existing runoff model and comparing streamflow totals.  As

Bloschl discusses (1998), the common practice of calibrating a model with a large

number of free parameters to a single observed variable, such as streamflow, can

produce the correct answer for the wrong reasons, and can mask physically unrealistic

treatments or compensating errors in the mathematical model.

The model will need to work in the forecast mode.  It is likely that only large-

scale average precipitation and temperature forecasts would be available; therefore, the

model must contain provisions for downscaling or distributing the forecast to the

spatially-distributed watershed subunits.  The method for performing this task will be

discussed in a later chapter.

As previously mentioned, Liston (1999) has noted that models used to simulate

snowmelt commonly represent study areas by a collection of grid cells.  This approach

will also be utilized in the development of the model.  The model will be based upon

hydrologic response units (HRUs), that are flexible in shape and scale.  Donald et al.

(1995) define an HRU as a region in a watershed that is considered to be homogeneous,

having a distinct hydrological response.  Based upon this definition, it is proposed that a

watershed be discretized into elements that shall be sized to accomplish the following:

(1) to be approximately homogeneous in vegetation and topography, and (2) to allow for

an approximately nonvarying value of SWE within each element.  The topographic
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features of the watershed will help determine the element size based upon the first

criterion, while both topographic and meteorological parameters will help determine the

element size based upon the second criterion.  Since topographic characteristics will

remain constant in time, under the model, once a network of elements have been

established for a specific watershed, they can remain constant from year to year.

Although topographic characteristics of a watershed remain constant in time, the

model will be capable of simulating some land use changes.  Additionally, forecasting

could also be performed to model the effects of some land use changes on snow

accumulation and ablation within a watershed.  Deforestation is a good example of such

a land use change. 

The next step in model development is to formulate the equations governing the

accumulation and ablation of SWE over a unit area.  The model will be based upon a

mass balance approach.  A three-dimensional mass balance equation will need to be

solved to determine the SWE within each element.  This equation will include the

effects of precipitation, sublimation, transport, and surplus water input.  The general

form of the equation can be written as follows:

dSWE / dt = f(precipitation, sublimation, transport, surplus water input)    (3-1)

where precipitation includes both rain and snow, transport includes wind effects and

avalanching, and surplus water input includes both infiltration and runoff.  The concept

of surplus water input is described by Dingman (1994) as largely determining the

amount and timing of streamflow and ground-water recharge.  Figure 3-1 shows the

mass balance of a general element.
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Figure 3-1. Mass Balance of a Hypothetical HRU

To solve Eq. (3 - 1), additional equations must be included for each of the

predictor variables found in this equation.  As an example, the generalized equation for

transport is as follows:

transport = f(wind speed and direction, vegetative cover,...)              (3-2)

The complexity of these additional equations includes determining the number of

significant predictor variables, realizing that these predictor variables can be functions

of both space and time, and that additional equations may need to be developed for

some of these predictor variables.  Energy exchange is an example of this last point. 

This parameter will be a predictor variable required to estimate surplus water input, and

itself is made up of many predictor variables such as cloud cover, snow albedo, etc.  
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Once the equations defining SWE have been developed, the simulation model

will be constructed.  This model will produce a time series of SWE maps for a particular 

watershed.  These maps will demonstrate the spatially varying SWE distributions within

the watershed for different time periods.

3.4 THE HRU SUBDIVISION PROCESS

Recent research has incorporated the concept of HRU subdivisions for the

purpose of watershed analysis.  The methods used to subdivide watersheds as part of

these studies shall provide structure for the methodology used by the proposed model.

Jeton and Smith (1994) indicate that digital data were used to develop a GIS data

base and HRU classification for the American River and Carson River basins.  The

following criteria were used by the authors in delineating HRUs: (1) Data layers are

hydrologically significant and have a resolution appropriate to the watershed’s natural

spatial variability, (2) the technique for delineating HRUs accommodates different

classification criteria and is reproducible, and (3) HRUs are not limited by

hydrographic-subbasin boundaries.  The article points out that HRUs so defined are

spatially noncontiguous.

For the Jeton and Smith study, HRUs were delineated assuming that watershed

properties could be grouped according to hydrologically significant characteristics even

if the corresponding areas do not lie within contiguous areas.  The watershed was first

divided into 100-by-100-meter areas or representative cells, and all possible

combinations of five data layers (altitude, land cover, soil, slope, and aspect) for a given
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basin were identified and tabulated.  Each cell was then characterized by a pattern or

combination of the five data layers. 

The study indicates that to determine the sensitivity of hydrologic response to

watershed characteristics, an analysis of individual HRU water and energy budgets is

required.  Such issues as the optimum resolution of source data, and determining the

minimum number of HRUs required to model basinwide hydrologic processes need to

be addressed by further research.  

Mashriqui and Cruise (1997) used the modeling strategy of the “grouped

response unit” concept whereby land classes were identified within similar regions and

used as hydrologic and sediment response units.  These grouped response units were

called computational units.  The computational units (CUs) were defined on the basis of

homogeneity of topography and soil characteristics using frequency histograms of

relevant parameters as objective criteria.  The CUs were based on topographic and

climatological similarities.

The authors suggested that perhaps the most important step in the modeling

process was the determination of the computation units.  The subdivision process began

with the basic soils map.  This map was then modified by deleting the minor secondary

soil series that occurred within an area of a dominant soil type.  The soils and slope

images were then overlayed.  The goal was to use these images to divide the Rosario

Basin into a minimum number of homogeneous computation units.  The authors

indicate that this was done interactively using the Map II software system.  Frequency

histograms of slope values were then computed for each CU in order to determine the
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distribution of slopes across the CU.  The goal was to obtain histograms that were

distributed about the dominant slope value with a minimum amount of variance.

Gorokhovich, et al. (2000) indicated that one of the main types of GIS models

used in hydrology include hydrologic response units (HRUs).  They went on to define

HRUs as hydrologically similar areas derived by overlaying land use properties and soil

properties.  Hydrologic properties for this study were runoff and infiltration, derived

from combinations of land use classes and hydric soil groups.  All spatial analysis was

done using ARCINFO, produced by ESRI.

Creation of HRUs required an overlay procedure to combine several datasets:

soils, land use, and slope.  The resulting dataset looked like a mosaic consisting of

multiple HRU planes, each with a single runoff value.  Precipitation data was then

paired to each HRU to estimate runoff from each HRU. 

Kouwen, et al. (1993) utilized the methodology of subdividing a watershed by

grouping hydrologic response units that have similar response characteristics on the

basis of classified land-cover maps.  These are regions that have a locally uniform

hydrologic response to meteorologic stimuli.  The authors went on to point out that the

number of HRUs required for a watershed varies with basin characteristics.

The authors argued that, in practice, the number of HRUs that can be used is

limited by data availability.  For example, prediction of a hydrograph using a sparse rain

gauge network is unlikely to improve by applying uncertain interpolated rainfall

estimates to a collection of HRUs no matter how well defined they are.  In fact, the

forecast may degrade due to model errors arising from calibrations with limited data.
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Davis, et al. (1992) used ground-based field estimates to estimate regional fluxes

and biophysical conditions by subdividing the study area into HRUs and extrapolating

field measurements.  The study region was stratified into 14 different terrain units based

on land use and land cover and topographic variables that were hypothesized to have

strong influence on surface biophysical properties. The authors stated that the

stratification of land surfaces for climatological studies requires classification of the

terrain into surface strata that are relatively uniform in terms of surface fluxes of energy

and matter.

The authors developed various site stratification methodologies to attempt to

determine the optimal way to subdivide the study area.  Standard analysis of variance

(ANOVA) techniques were used to test the significance of the variance reductions

produced by four different site stratifications of increasing complexity. 

In summary, various spatially distributed physical properties of a watershed or

study area have been used in the delineation of smaller, similar response units.  Some

issues, such as determining the optimum resolution of source data and the minimum

number of HRUs required to model a basin, need to be addressed by further research. 

Several studies have indicated that the subdivision process produces HRUs that can be

spatially noncontiguous; the approach used in the present study required  HRUs to be

contiguous. 
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3.5 REQUIRED INPUT DATA

3.5.1 Required HRU Topographical and Land Use Data

The proposed model requires the following topographic data from each of the

HRUs within the watershed: area - AREA (hectares), relative ground roughness - COVER

(unitless), mean elevation - ELEV (m), forest cover - F (fraction), general type of trees

(coniferous or deciduous) - TREE (unitless), mean latitude - LAT (degrees), orientation -

ORIENT (degrees), and mean slope - SLOPE (degrees).  

AREA is required to determine the volume of SWE that may be transported into or

out of an HRU by means of wind transport or avalanching.  AREA is also required to help

determine the limiting size of an HRU.  As previously mentioned, HRUs will be sized

to allow for an approximately nonvarying value of SWE to be maintained within the

HRU.  Significant wind deposition within an HRU is not possible, because it will

produce significant variations of SWE within the HRU.  Therefore, HRUs must be sized

to accommodate the average distance of snow transport for that particular terrain. 

Various  terrain will accommodate differing snow transport distances.  For example,

snow transport in mountainous regions is greatly limited by topography, unlike snow

transport through a prairie.  Without properly sizing the HRUs, snow transport becomes

inconsequential with larger size HRUs.  Gray and Male (1981) provide just such

distances.  For mountainous terrain, Gray and Male (1981) indicate that snow transport

due to blowing wind can be limited to 50 meters or less, whereas for prairies or

relatively flat terrain, snow transport due to blowing snow can occur for up to 1.5

kilometers.  
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Relative ground roughness is required to help determine if an avalanche within

an HRU is possible.  Both Armstrong and Williams (1986) and McClung and Schaerer

(1993) provide rules of thumb for the minimum snow depth required for avalanching to

occur, which depend on the average surface roughness.  The model ensures that this

minimum snow depth is satisfied before avalanching can occur.  Relative ground

roughness is primarily determined by vegetative and soil composition.  Relatively

smooth ground cover requires a snow depth of 0.3 m, average terrain with some

boulders and shrubs requires a depth of 0.6 m, and rough terrain with large boulders and

tree stumps require a snow depth of 1.0 m. 

The mean elevation is required because both the total precipitation and the 

temperature depend on elevation.  Many literature examples, such as Elder, Dozier, and

Michaelsen (1989) and Cline, Bales, and Dozier (1998) cited orographic effects on total

precipitation and temperature.  Tarboton and Luce (1996) discussed the importance of

subdividing a watershed into elevation zones as recommended by a review of eleven

different snowmelt runoff models by the World Meteorological Organization in 1986.

Forest cover, F, is a significant characteristic of an HRU.  Buttle and McDonnell

(1987), Davis et al. (1997), Hedstrom and Pomeroy (1998), and Hellstrom (1999),

among others, discussed the effects of canopy cover on the distribution of SWE. 

Hellstrom (1999) indicated that modeling and field studies suggest that forest cover

generally decreases received shortwave radiation at the forest floor, increases incoming

longwave radiation, decreases wind speed leading to reduced turbulent heat exchanges

and wind-driven snow transport, and decreases precipitation accumulation at the forest
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floor.

Along with forest density, the general type of trees within the forest can be

significant.  Tree type refers to the species of tree and allows the modeler to differentiate

between, as an example, balsam fir and jack pine.  Hedstrom and Pomeroy (1998) and

Pomeroy et al. (1998) discussed the importance of tree type on the maximum and actual

interception totals, and canopy sublimation rates.

The mean latitude and orientation are important factors in estimating the

incoming solar radiation.  Dingman (1994) discussed the importance of latitude and

orientation when estimating incoming solar radiation.  The watershed orientation is also

important in determining SWE transport caused by the prevailing wind direction.

Copland (1998) examined the effect that orientation has on the snow cover over an

alpine glacier.

The mean slope can have a significant impact on many processes regarding SWE

distribution.  Slope affects incoming solar radiation.  Dubayah and Rich (1995)

discussed how variability in ground slope can create strong local gradients in solar

radiation.  Slope can also affect variations in snow depth induced by wind drift. 

Additionally, slope is the most important topographic factor in determining avalanche

possibility.  As Armstrong and Williams (1986) point out, a 260 slope represents the

angle of repose for granular substances such as sand and dry, unbonded snow; therefore,

this is the minimum ground slope in which an avalanche can occur.
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3.5.2 Required Meteorological Data

The model was designed to be driven by meteorological inputs of average daily

air temperature TAvg (
oC), relative humidity RH (fraction), total precipitation PT (cm /

day), wind speed WS ( m / s), wind orientation WO (degrees), cloud cover CC (fraction),

and incoming solar radiation SR (cal / cm2*day).  

Some meteorological stations report maximum daily air temperature, TMax (
oC)

and minimum daily air temperature, TMin (
oC), rather than the average daily air

temperature.  When this is the case, average daily air temperature is computed as

follows:

TAvg = (TMax + TMin) / 2                                      ( 3 - 3 )

If average daily air temperature is available, the model bypasses Eq. 3-3.

Many meteorological stations do not record relative humidity.  When these data

are not available, the model estimates relative humidity by means of the following

equation:

         (3-4)

This equation comes from Thornton et al. (1997), in which the assumption is made that 

TMin is a reasonable surrogate for the dew-point temperature.  If relative humidity data

are available, the model bypasses Eq. 3-4.

Many meteorological stations also do not record incoming solar radiation. 

When these data are not available, the model estimates incoming solar radiation by
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means of the following equation:

(3-5)

where SR is in (cal / cm2 day), KCS is the received clear sky radiation, ALB is the albedo

of the snowpack, Sh is a shading factor used to reduce incoming solar radiation based

upon surrounding topography, f3(F) comes from Dunne and Leopold (1978), and is a

continuous function dependent upon tree type which relates forest canopy density, F, to

the ratio of solar radiation received under forest to that in the open.  KCS comes from

standard equations for celestial geometry accounting for attenuation of diffuse and direct

solar radiation in the atmosphere.  KCS takes into account the time variable

transmissivity of the clear sky, which is dependent upon the near surface vapor pressure

(ea ).  Dingman (1994) provides a complete derivation of KCS.  If incoming solar

radiation data are available, the model bypasses Eq 3-5.

Albedo is defined as the ratio of the reflected radiation to the incident radiation. 

The albedo governs the amount of radiant energy absorbed by a snowpack and

ultimately influences the rate of melt.  Gray and Male (1981) made a distinction

between the albedo for a deep mountain snowpack and a shallow, prairie snowcover. 

They borrowed on previous work performed by the Army Corps of Engineers which

showed that gradual changes in albedo occur on a deep mountainous snowpack while

rapid changes in snowpack albedo occur on a shallow, prairie snowpack.  This

difference is a result of the exposed ground associated with patchy snowcover.  Gray

and Male (1981) provided a figure with plots of albedo data for both a deep mountain
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snowpack and a shallow prairie snowcover.  This figure was copied and used to derive

the formulas for the albedo that the model uses.  Figure 3-2 shows the copied plots of

the albedo data and the curve fitting involved in formula derivation.  Curve fitting was

accomplished by means of Microsoft Excel Solver, which uses a generalized reduced

gradient nonlinear optimization code.

a)
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b)

Figure 3-2 Determination of snowpack albedo as per Gray and Male (1981): 
a) for a mountain snowpack and b) for a prairie snowcover  

A review of Figure 3-2a shows that the albedo range for a mountain snowpack is

approximately 40 to 87.  These values are consistent with findings for deep snowpacks

presented in Maidment (1993). The equation used by the model to estimate snowpack

albedo for an alpine region in Figure 3-2a is:

     (3-6)

where COUNT refers to the number of days since the last snowfall.  A review of Figure 3-

2b shows that the albedo range for a prairie or valley snowpack is approximately 18 to

80.  Again, these values are consistent with findings for prairie snowpacks presented in
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Maidment (1993) and Gray and Male (1981).  The equation used to estimate snowpack

albedo for a prairie in Figure 3-2b is:

                ( 3 - 7 )

where COUNT is as defined above.  Since valleys are prone to patchy snow cover, similar

to that of a prairie, an assumption has been made that the snowcover properties (depth,

etc.) for a valley would be more similar to that of a prairie than that of an alpine region. 

The model defines HRUs as being either alpine or prairie/valley, and then uses the

appropriate albedo equation. 

A new variable, WCAN, is calculated to take into account the effect of forest

canopy on wind speed.  As Dingman (1994) points out, wind speed measurements (WS)

are generally recorded in fields or clearings and must be adjusted for forest canopy. 

Dingman (1994) presents an equation for calculating this effect that he borrows from

Dunne and Leopold:

            (3-8)

where Fd is the forest density (dimensionless).  If the HRU lacks a forest cover,      

WCAN (m / s) equals WS.  Table 3-1 contains a summary of required input data for each

HRU.
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Table 3-1. Summary of the Required Input Data for Each HRU.

Topographic and Land Use Data Meteorological Data

area average daily air temperature

relative ground roughness relative humidity

mean elevation total precipitation

forest cover wind speed

conifer versus deciduous wind orientation

mean latitude cloud cover

orientation incoming solar radiation

mean slope

alpine versus valley/prairie

3.6 MODEL MODULES

3.6.1 Introduction

The model will be broken up into several modules.  Each module will define one

of the processes pictured in Figure 3-3.  The daily results of each module will represent

the amount of SWE entering or leaving an HRU based upon the process that is defined

by that particular module.  As seen in Figure 3-3, all modules will be summed on a daily

basis to determine the net increase or decrease of SWE for each HRU. 
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Figure 3-3.  Simplified schematic of the model operation

3.6.2 Precipitation Module 

When precipitation occurs, it generally falls as either rain or snow.  If snow

occurs, SWE accumulation occurs, and the resulting total SWE value is dependent upon

the total snow accumulation and the density of the newly fallen snow.  If rain occurs,

energy received is added to the snowpack.  If the snowpack is not yet ripe, the rain

results in SWE accumulation equal to the depth of rainfall while bringing the snowpack

closer to a ripe condition.  If the snowpack is already ripe, the rain does not increase

SWE accumulation, but does increase the snowpack melt rate, thus causing SWE

ablation.  The concept of a ripe snowpack will be discussed in more detail in the next

section.  Figure 3-4 depicts a simplified schematic of the precipitation module.
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The phase in which precipitation occurs is temperature dependent.  The

equations used to make this determination are used by many models, such as the Utah

Energy Balance Snow Accumulation and Melt Model (Tarboton and Luce, 1996), and

are borrowed from the equations developed by the Army Corps of Engineers (1956). 

These equations are as follows:

RT = PT if TAVG > 3 0C

RT = PT(TAVG - (-1)) / (3 - (-1)) if -1 0C < TAVG < 3 0C              (3-9)

RT = 0 if TAVG < -1 0C

ST = PT - RT        ( 3 - 1 0 )

where PT (cm) is the amount of total precipitation, RT (cm) is the portion of precipitation

that occurs as rain, ST (cm) is the portion of precipitation that occurs as snow.

Figure 3-4.  Simplified schematic of the precipitation module
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If snow has occurred, and the measurement of the snow has been given in cm of

depth, a method of converting snowfall depth to an equivalent value of SWE is required. 

As earlier mentioned, this requires determining the density of the newly fallen snow. 

Many studies, such as Sevruk (1985), Schmidt (1980), and Hedstrom and Pomeroy

(1998), have shown that the density of fresh snow is dependent upon the wind speed and

air temperature.  The model uses the following equation, which draws upon a study

performed by Sevruk (1985), to estimate the new snow density based upon the wind

speed and air temperature:

SDENS = 0.0768 + 0.0106WCAN + 0.0017TAVG if TAVG < -2.5  0C

SDENS = 0.0959 + 0.01WCAN - 0.004TAVG 2

 if TAVG > -2.5  0C        (3-11)

where SDENS is the determined density of the fresh snow (g / cm3), and WCAN and TAVG

are as previously defined.  These equations were developed from figures presented by

Sevruk (1985) by again utilizing the Microsoft Excel Solver.  While Sevruk’s results

were developed from data collected in the Swiss Alps, his findings follow the generally

accepted principles that new snow density increases with rising temperature and greater

wind speed. Additionally, because of a general lack of other published data regarding

this topic, this equation will be used by the model and applied to watersheds outside of

Sevruk’s study area.  Since Sevruk’s results do coincide with accepted beliefs regarding

the relationship between air temperature, wind speed, and new snow density, it is

believed that using these equations for watersheds outside of the Swiss Alps region will

still provide rational and useful results. 
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If snowfall has been reported in terms of depth, once a new snow density has

been determined, the depth of snowfall can be converted to SWE by the following

equation:

          (3-12)

where SWEsnow (cm) is the amount of SWE resulting from the new snowfall, and DEPTH

is the depth of the new snowfall.

As previously mentioned, if rain falls on a snowpack that is not ripe, the depth of

rainfall is added to the SWE total, as defined by the following equation:

          (3-13)

where SWErain (cm) is the amount of SWE resulting from the new rainfall.  If rain falls

on a snowpack that is ripe, no additional SWE accumulation results.  The net energy

effect caused by rainfall shall be discussed in the following section. 

3.6.3 Melt Energy Module   

  The period of general increase in the SWE of a snowpack is commonly referred

to as the accumulation period.  During this time, the net input of energy to the snowpack

is generally negative, which causes an increase in the cold content of the snowpack and

a decrease in the average temperature of the snowpack.  The melt period of a seasonal

snowpack typically begins when the net input of energy to the snowpack becomes

continually positive.  The positive net energy input first acts to warm the snowpack, thus

reducing the cold content to zero and raising the average temperature of the snowpack

also to 0 0 C.  Once the snowpack becomes isothermal at 0 0 C, the snowpack  becomes
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ripe.  Further positive input of net energy causes melt to occur and a release of surface

water input.  Figure 3-5 depicts a simplified schematic of the melt energy module, as

discussed in this section.   

Figure 3-5.  Simplified schematic of the melt energy module

The energy exchanges that determine the progress of snowmelt include the

following processes: shortwave (solar) radiation, longwave radiation, sensible heat,

latent heat, advective (rain) energy, and conductive heat exchange with the ground. 

Thus the equation for net energy is as follows:

                           (3-14)



42

where ENET (cal / cm2 day) is net energy, LW (cal / cm2 day) is the net received longwave

radiation, SH (cal / cm2 day) is the turbulent exchange of sensible heat with the

atmosphere, LH (cal / cm2 day) is the turbulent exchange of latent heat with the

atmosphere, PMELT (cal / cm2 day) is the advective energy derived from rain, and SOH

(cal / cm2 day) is the conductive heat exchange with the underlying ground.

Longwave radiation is the energy flux emitted by all matter, and is frequently

referred to as terrestrial radiation.  The net input of longwave energy is the difference

between the incident flux emitted by the atmosphere, clouds and overlying forest

canopy, and the outgoing radiation from the snowpack.  The equation for estimating

longwave radiation is as follows:

     (3-15)

where TSURF (
0 C) is the temperature of the surface of the snowpack, SB is the Stefan-

Boltzmann constant (1.19 E-7 cal / cm2 day K4), eSS is the emissivity of snow (0.97), and 

eat is the integrated effective emissivity of the atmosphere and canopy.  The following

equation from Dingman (1994) can be used to estimate eat:

         (3-16)

where ea is the near surface vapor pressure.  
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The following equation from Dingman (1994) can be used to estimate ea:

          (3-17)

Sensible heat can be defined as the turbulent flux of energy exchanged at the

surface of the snowpack due to a difference in temperature between the snowpack

surface and overlying air.  In terms of the energy balance of the snowpack, a positive

value for the sensible heat flux indicates heat being transferred into the snow.  Dingman

(1994) defines sensible heat by the following equation:

        (3-18)

where  ca is the heat capacity of air (0.24 cal / g oC ), ra is the mass density of air

(0.0012 g / cm3), zm (cm) is the height at which the wind speed and air temperature are

measured, and z0 (cm) is the roughness height, which depends on the irregularity of the

snow surface.

Dingman (1994) indicates that wind speed and air temperature readings are

typically taken at a height of 2 meters.  He also states that the roughness height can be

highly variable both spatially and temporally.  As a result, Dingman (1994) suggests

using a value of 0.15 cm for zo.  Making the same assumptions as Dingman and

substituting all of these values into Eq. 3-18 yields a more direct expression for sensible
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heat:

            (3-19)

Several authors, including Dingman (1994) and Tarboton and Luce (1996),

indicated that Eqs. 3-18 and 3-19 apply strictly to conditions of neutral atmospheric

conditions.  These authors define neutral atmospheric conditions as occurring when the

actual temperature gradient in the air near the snow surface equals the adiabatic lapse

rate.  The authors go on to state that these conditions typically exist when the air

temperature is less than the temperature of the snowpack surface.  For cases in which

the air temperature is greater than the temperature of the snowpack surface, the authors

suggest using a stability correction factor.  This factor will reduce turbulent heat

exchange with the snowpack mimicking the results of having a temperature gradient

less steep than the adiabatic lapse rate.  Dingman (1994) defined this factor as:

                                                (3-20)

where fs is unitless.

Utilizing the stability correction factor yields the final equation for sensible heat:

if  TAVG < TSURF

   if TAVG > TSURF            (3-21)
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Latent heat can be defined as the turbulent flux of energy exchanged at the

surface of the snowpack due to vapor movement as a result of a vapor pressure

difference between the snowpack surface and the overlying air.  In estimating latent

heat, it is important to note that two phase changes may be involved.  If the vapor-

pressure gradient is away from the snowpack, water vapor will move from the snow to

the air and evaporation will occur.  If the vapor-pressure gradient is towards the

snowpack, water will move from the air to the snow and condensation will occur. 

Evaporation represents a loss of latent heat from the snowpack, while condensation

represents a gain of latent heat to the snowpack. Dingman (1994) defines latent heat flux

for these two phases as follows:

    if  TAVG > TSURF            (3-22)

 if TAVG < TSURF

where ess is the vapor pressure at the snow surface.  Eq. 3-22 also features the same

assumptions as does Eq. 3-21. The vapor pressure at the snow surface can be estimated

as follows:

        (3-23)

As with the sensible heat flux, the same authors also recommend using the

stability correction factor at those times when the air temperature is greater than the

snow surface temperature.  Applying this factor to Eq. 3-22 yields the following
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equation to estimate latent heat flux:

if  TAVG > TSURF            (3-24)

 if TAVG < TSURF

In order to estimate values for sensible and latent heat fluxes, a method for

estimating the temperature of the snowpack surface is required.  Although many

references cite the need to determine the temperature of the snowpack surface, few

references provide procedures for actually estimating this variable.  When the air

temperature is above the freezing mark, many snowmelt models utilizing an energy

balance approach, such as HEC-1, Streamflow Synthesis and Reservoir Regulation

(SSARR), and the National Weather Service River Forecast System (NWSRFS),

assume that the snowpack surface temperature is at freezing (0 oC).  This assumption

will also be used in the model.

For times when the air temperature is below the freezing mark, it will be

assumed that the equation for the snowpack surface is as follows:

                               (3-25)

where Tf is a temperature factor defining the difference between the air temperature and

the snow surface temperature.  This relationship was borrowed from a study performed

in Vermont by Brubaker, Rango, and Kustas (1996) where measured snow surface

temperature data were available.  The result of their research showed that Tf = 2.5 for

the study area.  Applying this equation to watersheds outside of the Vermont area will
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most likely introduce error.  As a result, it is proposed that a sensitivity analysis be

performed on this variable to determine its importance on a watershed by watershed

basis.

When rain falls on a snowpack that is ripe, the rainwater is cooled to the

snowpack temperature, and the heat given up by the rainwater is used to melt the

snowpack.  For this particular case, the rainfall component to the energy balance can be

computed as follows:

          (3-26)

Where PMELT is in units of cal / cm2 day, rw is the density of water (assumed to be 1.0 g /

cm3), cw is the heat capacity of water (1.0 cal./ /g oC), and TRAIN (oC)  is the temperature

of the rain.  As per Dingman (1994), Maidment (1993), Tarboton and Luce (1996)

among others, rain temperature is almost always assumed to be equal to the air

temperature.  Making this substitution into Eq. 3-25 yields:

          (3-27)

When rain occurs on a snowpack that is not yet ripe, the rain will first be cooled

to the freezing point, giving up sensible heat, and then freeze, releasing latent heat.  For

this particular case, the rainfall component to the energy balance can be computed as

follows:

       (3-28)
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where lf  is the latent heat of fusion (79.7 cal / g).  Once again, the assumption will be 

made that air temperature is a reasonable approximation for the rain temperature.  This 

substitution into Eq. 3-28 will yield:

        (3-29)

Combining Eqs. 3-27 and 3-29 yields the final equation for estimating the rainfall

component to the energy balance:

if  ColdC  = 0            (3-30)

if   ColdC > 0

In order to estimate the melt energy provided by rain, another variable, ColdC,

must first be estimated.  ColdC represents the cold content of the snowpack.  Gray and

Male (1981) point out that it was the Army Corps of Engineers, in 1956,  that first

introduced the idea of a snowpack cold content to monitor the energy change in a

snowpack.  These authors defined cold content as the amount of heat required per unit

area to raise the temperature of the snowpack to 0 oC.

For the case where a snowpack does not exist, ColdC also does not exist (or

equals 0).  For the case where the snowpack is comprised entirely of the most recent

snow, ColdC can be computed as follows:

           ( 3 - 3 1 )

where ColdC is in units of cal / cm2 day, ci is the heat capacity of ice (0.502 cal./ /g oC),

SWE (cm) is the snow water equivalent of the snowpack, and TPACK is the average
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temperature of the snowpack.  TPACK is assumed to be equal to TAVG for this particular

case.  For the case where a snowpack already exists, ColdC can be calculated from the

following equation:

         (3-32)

where ColdCt-1  represents the value of the cold content on the previous day.  Combining

the three cases produces the following equation for ColdC:

 if SWE = 0
  

  if SWEt-1 = 0 and ST >0        (3-33)

   if SWEt-1  > 0           

where SWEt-1 represents the snow water equivalent of the snowpack on the previous

day.

The final term in the net energy Eq. 3-14 involves the energy exchange between

the snowpack and the underlying soil by heat conductance.  Dingman (1994), Gray and

Male (1981), Maidment (1993), among others, point out that the ground heat flux is

typically the smallest component of the daily energy balance and that its effect on total

snowmelt can be ignored.  Tarboton and Luce (1996) provided an expression for

determining the ground heat flux in their Utah Energy Balance Snow Accumulation and

Melt Model.  This model also indicates that, if the required soil data are not available to

estimate the ground heat flux, this variable should be set equal to 0.  Based upon the

above statements and keeping with the design goal of model simplicity, SOH will be set

equal to 0 to avoid the need for soils data input into the model.
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Once ENET has been calculated, the amount of melt that has occurred for a

specific day can be determined.  If a snowpack does not exist, melt obviously equals 0. 

If a snowpack exists, but the snowpack is not ripe (ColdC > 0), then melt also equals 0. 

If a snowpack both exists and is ripe, but the net energy for the day is negative (heat

energy is being lost by the snowpack), melt will still equal 0.  Only when a ripe

snowpack exists and the net energy for a particular day is positive (heat energy is being

added to the snowpack), will melt occur on that day.  When this occurs, melt can be

determined by the following equation:

 if SWE > 0, ColdC = 0 and ENET > 0        (3-34)

where MeltSWE has units of cm of SWE.  For all other cases described above,

MeltSWE equals 0.

3.6.4 Sublimation Module

Sublimation can be defined as the change in phase from ice directly to water

vapor.  Maidment (1993), Pomeroy and Essery (1999), and Pomeroy et al. (1998)

discuss that sublimation is primarily a function of the following three factors: air

temperature, wind speed and relative humidity.  In general, sublimation increases as

wind speed increases, air temperature increases, and relative humidity decreases.  Figure

3-6 shows a simplified schematic of the sublimation module, as discussed in this

section.  Maidment (1993) demonstrates the relationship between sublimation and wind

speed, air temperature and relative humidity.  The following equation for estimating
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sublimation was borrowed from Maidment (1993):

  

for WCAN > 5 m/s     ( 3 - 3 5 )

for WCAN < 5 m/s            (3-36)

where SubSWE is in units of cm.

Figure 3-6.  Simplified schematic of the sublimation module

Eqs. 3-35 and 3-36 indicate that a threshold wind speed (5 m/s) is required for

sublimation to occur.  Consequently, on days where the average daily wind speed does

not exceed this threshold speed, the model will predict that no SWE is lost from a

snowpack due to sublimation.  The question that arises is how realistic is this?  On days

where the daily average wind speed equals 4.5 m/s, it seems highly likely that for some

portion of the day the wind speed will actually be greater than the threshold value, but
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the model will still predict that no sublimation has occurred. This problem has been

experienced by other snow-transport models.  One such example is the snow-transport

model for complex terrain created by Liston and Sturm (1998).  Their model also

operates on a daily time step and simulates three-dimensional snow-depth evolution

over topographically variable terrain.  Among the required meteorological data are

average daily wind speed.  The authors conclude that “If the meteorological inputs fail

to resolve brief but intense periods of snowfall or high wind, then the actual drift

accumulation or erosion will not be simulated.”  This quote indicates that more frequent

wind data would most likely increase model accuracy, but the trade-off would be

increased computational time, if decreasing the model time step, or increased data

requirements. 

A proposed method to increase model accuracy without the above mentioned

negative implications is to utilize conditional probability on the input data.  Conditional

probability can be defined as : P(A l B) = the probability of A occurring, given that B

has already occurred, or 

 P(A l B)         (3-37)

where is the probability of the intersection of A and B, and P(B) is the

probability of B occurring.  For the above hypothetical situation in which the average

daily wind speed is 4.5 m/s, P(B) would be equal to 1.0 because it is known that the

daily average wind speed is less than 5.0 m/s.  Additionally, can be
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determined by examining the hourly wind data to determine how many hourly values

are greater than the threshold value, given that the daily average is 4.5 m/s.  The model

then could estimate sublimation occurring for that portion of the day that the wind speed

was determined to be greater than the threshold wind speed based upon conditional

probability.  The use of conditional probability will be incorporated into the model in an

attempt to increase the accuracy of sublimation totals.

3.6.5 Wind Transport Module

Most hydrologic studies regarding wind transport, such as Li and Pomeroy 

(1997), Liston and Sturm (1998 ), Schmidt (1980), and Schmidt (1984), have focused

on the redistribution of snow and the effect on the spatial variability in SWE.  Wind

transport typically comprises three components: creep, saltation, and suspension.  Creep

refers to the movement of large, heavy snow particles that roll along the snowpack

surface.  Maidment (1993) indicated that creep typically is a very small portion of the

amount of snow that is transported by wind.  Saltation refers to the movement of snow

particles by jumping along the snow surface.  The transport rate of saltating snow

typically depends upon the vertical distribution of wind, the texture of the snowpack

surface, the fetch distance, and the existence of vegetation or other elements protruding

from the snow surface.  A typical jump may be 1 cm high and 20 cm long.  Suspension

refers to the movement of snow particles suspended in the airstream above the

snowpack surface.  The concentration of suspended snow is typically highest just above

the saltation layer and decreases with height at a rate that is dependent upon the wind
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speed.  Figure 3-7 shows a simplified schematic of the wind transport module. 

 Figure 3-7.  Simplified schematic of the wind transport module

Equations were borrowed from Maidment (1993) to estimate wind transport. 

The following equation is used by the model to estimate wind transport out of an HRU

in alpine regions:

    (3-38)

if WCAN > 5 m / s       

where WindSWEOUT is in units of cm of SWE, and Perpwidth (m) refers to the

perpendicular width (to the wind speed) along an HRU with which snow transport will

occur.  The following equation is used by the model to estimate wind transport out of an

HRU in a prairie region:

       (3-39) 
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    if WCAN > 6.5 m / s

For the model development, it is assumed that valley regions of an alpine watershed are

more represented by Eq. 3-39 than by Eq. 3-38.  Studies indicated that threshold wind

speeds are greater for alpine regions than for prairies due to the greater surface

roughness. 

Studies by Li and Pomeroy  (1997), Liston and Sturm (1998 ), Schmidt (1980),

and Schmidt (1984) have also noted the importance of a threshold wind speed that must

be exceeded before wind transport can occur.  This theme is also represented in Eqs. 3-

38 and 3-39.  Since these equations utilize a threshold wind speed, the model also

incorporated conditional probability to better estimate wind transport based upon the

same setup as for sublimation.

The model also estimated the amount of wind transport that will enter an HRU,

WindSWEIN (cm).  This value was determined by the model by means of first

calculating all values of WindSWEOUT for all HRUs, and then, based upon the wind

orientation, WOR, determine how much wind transport leaving an HRU was directed

toward the various adjacent HRUs.

3.6.6 Avalanching Module

An avalanche is a rapid downslope movement of a large mass of snow.  The

essential elements for avalanches are deep snow and steep slopes, but variations of

snow, terrain conditions and meteorological conditions affect the form and sizes of

avalanches.     
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Armstrong and Williams (1986), and McClung and Schaerer (1993) explained

that the start of an avalanche is the outcome of the relationship between the stress and

strength within the snowpack on an incline.  Failure occurs when the stress exceeds the

strength at some point.  Stresses in a snowpack are increased by the weight of additional

snowfall, the accumulation of drifting snow, or the weight of rainfall.  Decreases in

snowpack strength most frequently result from a significant rise in air temperature or a

“rain on snow” event. 

Figure 3-8.  Simplified schematic of the avalanche module

Armstrong and Williams (1986), McClung and Schaerer (1993), Sulakvelidze

and Dolov (1973), Fohn, et al (1977), and Hopfinger and Tochon-Danguy (1991) made

reference to the fact that the process of avalanching is random.  The contention is that

two identical snowpacks under the same meteorological conditions may or may not
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respond identically in terms of avalanching.  The consequence of this contention is that

modeling the process of avalanching with meteorological data creates a stochastic

process as opposed to a deterministic process.  This is undesirable in terms of the model

development because the proposed model should be able to create reproducible results. 

To deal with the stochastic element of avalanching, the model will be developed so that

a specific combination of physical conditions of the HRU and meteorological conditions

will always produce an avalanche.  Conversely, if these conditions are not met, the

model will predict that no avalanche occurs.  Figure 3-8 shows a simplified schematic of

the avalanche module.

The three physical parameters of the HRU that affect avalanching are slope,

forest cover and surface roughness.  As previously mentioned, a 260 slope represents the

angle of repose for granular substances such as sand and dry, unbonded snow, therefore

this is the minimum ground slope in which an avalanche can occur.  Forest cover is

important in terms of providing an anchor against avalanching.  Armstrong and

Williams (1986) stated that “A dense stand of trees can easily provide enough anchors

to prevent avalanches from releasing.”  The model will require that an HRU has an Fd

(forest density fraction) less than 0.7 in order for an avalanche to occur.  As previously

mentioned, both Armstrong and Williams (1986), and McClung and Schaerer (1993)

discussed the importance of surface roughness.  Both discussed that the rougher the

ground surface, the greater the depth of snow on the ground that is required to cover the

ground anchors (such as boulders and large rocks).  Both provide the following rules of

thumb for the minimum depth of ground snow required for an avalanche to occur under
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various surface conditions: less than 9 inches of snow (not SWE) seldom produces an

avalanche; 9 inches to 15 inches of snow can produce small slides on relatively smooth

ground cover; 15 inches to 27 inches can produce large slides on average terrain

containing some brush and boulders; and 27 inches to 36 inches can produce large slides

on rough terrain with many boulders and tree stumps.  The model will require an HRU,

based upon its COVER (relative ground roughness) parameter, to have a minimum snow

depth that corresponds to the above values. 

The three meteorological parameters that most significantly affect avalanching

are snowfall (total depth and intensity), rainfall and wind transport.  Hopfinger and

Tochon-Danguy (1991) indicated that more than 80% of all avalanches occur during or

shortly after a storm.  In addition, Armstrong and Williams (1986) stated that a snowfall

intensity of 1 inch / hour or greater, that is sustained for ten or more hours, is generally a

“red flag” indicating avalanche danger.  Armstrong and Williams (1986) also discussed

that “rain on snow” events often trigger avalanches because the rain provides additional

weight to the avalanche slope but does not provide additional strength to the snowpack. 

McClung and Schaerer (1993) discussed the significance of wind transport in

determining avalanches.  They reported that significant snow deposition due to wind

transport can often start avalanches because a great amount of weight can be added to

the snowpack in a relatively short period of time, more than offsetting the strength

added to the snowpack.  The model will require that any one of the three following

meteorological conditions exist in order for an avalanche to occur within an HRU: total

snowfall (depth not SWE) for the current day is greater than 25 cm, total rainfall for the
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current day is greater than 5 cm, or WindSWEIN for the current day is greater than 1.5

cm of SWE.

The model will first check the HRU parameters to see if they are in compliance

with the requirements for an avalanche occurring.  If the HRU parameters indicate that

an avalanche cannot occur, the model will bypass the rest of the code dealing with

avalanching.  If the HRU parameters indicate that an avalanche can occur, the model

will next check the meteorological parameters.  If the meteorological parameters

indicate that an avalanche cannot occur for that day, the model will bypass the

remainder of the avalanching code.  If the meteorological parameters indicate that an

avalanche does occur for that particular day, the model will continue with the avalanche

code by calculating the volume of SWE associated with the avalanche.

The next step of the model would be to determine the amount of SWE lost from

an HRU because of an avalanche.  Sulakvelidze and Dolov (1973) provided a method

for determining the volume of an avalanche.  The first step of their method is to

determine the height of the existing snow.  The model determines the height of the

existing snow by means of the variable DEPTH (cm).  The DEPTH of snow on a given day is

based upon the snowpack depth from the day before, taking into account that the

snowpack density generally increases through settlement and compaction, the total

amount of snow that may have fallen on that day, and the depth of snow that may have

been lost due to melt.  The model uses the following equation to determine the

snowpack depth for a given day:
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(3-40)

if SWE > 0         

where DEPTHt refers to the depth of the snowpack on day t, and DEPTHt-1 refers to the depth

of the snowpack on day t-1.  The second step of Sulakvelidze and Dolov’s (1973)

method is to calculate the critical height of the new snow.  The model performs this task

by means of the following equation:

(3-41)
      

where HCRIT is the critical height of new snow (cm), and DENS is the density of the

existing snowpack (g / cm3).  The model determines the density of the snowpack based

upon the following equation:

       (3-42)

The final step of Sulakvelidze and Dolov’s (1973) method is to determine the volume of

the avalanche.  The model accomplishes this by utilizing the following equation:

         (3-43)

where AvalSWEOUT is the amount of SWE leaving an HRU due to an avalanche (cm).

In addition to SWE leaving an HRU due to avalanching, SWE may enter an

HRU due to avalanching if the adjacent HRU is capable of producing an avalanche.  All
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values of AvalSWEOUT leaving HRUs will be recorded by the model and then the model

will determine which HRUs these SWE values will enter as AvalSWEIN (cm).

3.6.7 Forest Cover Module

As previously mentioned, forest cover results in decreased received shortwave

radiation at the forest floor (Eq. 3-5), increased incoming longwave radiation (Eq. 3-15),

decreased wind speed (Eq. 3-8) leading to reduced turbulent heat exchanges (Eqs. 3-21

and 3-24) and wind driven snow transport (Eqs. 3-38 and 3-39), and decreased

precipitation accumulation at the forest floor as compared to open areas.  This final

point will be examined in greater detail.

Pomeroy et al. (1998) helped demonstrate the significance of properly modeling

snow interception through the following quote: past studies in forest snow interception

and sublimation suggest that in “boreal, montane and subalpine forests over one-half of

cumulative seasonal snowfall can remain intercepted in midwinter, and 25 - 45% of the

annual snowfall can sublimate from snow intercepted in the canopy.”  

Figure 3-9 shows a simplified schematic of the forest cover module discussed in

this section.  The first step in modeling forest snow interception and sublimation is to

determine the maximum amount of snow interception that can occur based upon forest

 conditions.  Hedstrom and Pomeroy (1998) provided a method of estimating the 

maximum possible interception by means of the following equation:

          (3-44)
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where MAXINT is the maximum possible interception that can occur (cm of SWE), Smean

is the mean maximum snow load per unit area of branch (kg / m2), and LAI is the leaf

area index (unitless).  

Figure 3-9.  Simplified schematic of the forest cover module

Hedstrom and Pomeroy (1998) estimated that Smean for conifers is 6 kg / m2 and use an

average value of 3 for estimating the LAI for conifers.  A review of the literature did not

yield analogous values for deciduous trees, but logic indicates that both values will be

significantly smaller for deciduous trees than for conifers because leaves fall from

deciduous trees during the winter.  For deciduous trees, the model uses a value of 1.5 kg

/ m2 when estimating Smean, and a value of 0.5 when estimating LAI.  Sensitivity analysis

will be performed for these two parameters to determine the effect that parameter

uncertainty has on model output.    
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The next step in modeling forest snow interception and sublimation was to

estimate the total snowfall that is intercepted by the canopy during a snow event on a

particular day.  Hedstrom and Pomeroy (1998) provided a method of estimating daily

interception by means of the following equation:

          (3-45)

where IntSNOW (cm of SWE) is the amount of snow that is intercepted by a canopy, CP

(unitless) is the canopy-leaf contact area per unit area of ground, InterSWE (cm of

SWE) is the amount of existing SWE that the canopy has currently intercepted. 

Hedstrom and Pomeroy (1998) suggested that CP be set equal to 1 if the wind speed

through the canopy, WCAN, is greater than 2 m / s, and equal to forest density, Fd, if the

wind speed through the canopy is less than 2 m / s.

Now that methods have been presented for estimating maximum interception

and actual interception that occurs over a canopy during a snow event, a summation of

total interception must be kept during a complete accumulation and ablation season. 

The model does this through the variable InterSWE by means of the following equation:

InterSWEt= InterSWEt-1 + IntSNOW - IntWIND - IntSUB       ( 3 - 4 6 )

where InterSWEt (cm of SWE) is the amount of interception that exists on day t, 

InterSWEt-1 is the amount of interception that exists on day t-1, IntWIND (cm of SWE) is

the amount of interception lost from the canopy due to wind transport, and IntSUB (cm of

SWE) is the amount of interception lost from the canopy due to sublimation.  If Eq. 3-
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46 yields a negative value, InterSWEt is set equal to 0 cm of SWE. 

Hedstrom and Pomeroy (1998) estimated IntWIND by means of the following

equation:

      (3-47)

where U is an unloading rate coefficient, and t is time (days).  These authors went on to

define a dimensionless loading coefficient, C, as follows:

      (3-48)

Additionally, Hedstrom and Pomeroy (1998) determined a mean value of 0.678 for C

for a weekly time period.  Determining a corresponding daily value of C (by dividing

the mean value for a weekly time period by 7 days) and substituting this value back into

Eq. 3-47 yields the following equation:

      (3-49)

Snow that is lost from the canopy because of wind transport, IntWIND, will be added to

the underlying snowpack total of SWE.

Hedstrom and Pomeroy (1998), Lundberg, Calder and Harding (1998), Pomeroy, 

et al. (1998), and Yamazaki and Kondo (1992) have all studied the complexity of 

sublimation rates which occur from a canopy.  In an attempt for modeling simplicity, the

model incorporates the following equation to estimate daily sublimation from a canopy:

IntSUB = 0.24 cm / day for InterSWE > 0.24 cm 
        (3 - 50)

IntSUB = 0 for InterSWE < 0.24 cm
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This equation is based upon a quote from Pomeroy,  et al. (1998) who stated that

previous studies have measured or estimated a long term average sublimation rate from

a snow covered canopy of approximately 0.1 mm / hr (or 0.24 cm / day).   

3.6.8 Final SWE Module

The ultimate goal of the model is to determine the SWE on the ground within an

HRU throughout the accumulation and ablation period of a snow season.  The model

performs this task by means of the following equation:

SWEt =  SWEt-1 + (AvalSWEIN - AvalSWEOUT) + (WindSWEIN - WindSWEOUT) +

PrecipSWE + IntWIND - MeltSWE - SubSWE         ( 3 - 5 1 )
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CHAPTER  FOUR

DATA  ACQUISITION  AND  MODEL SETUP  

4.1 INTRODUCTION

The following three watersheds have been chosen for analyzing the proposed

model: the Upper Rio Grande Watershed in Colorado, the Reynolds Creek Watershed in

Idaho, and the Emerald Lake Watershed in California.  These watersheds have been

chosen for several reasons.  First, all three watersheds are known to have a continuous

seasonal snowpack, which is essential if a spatial and temporal pattern of SWE

distribution is to be established.  Second, measured and recorded data are available. 

These data are required to perform the calibration/validation of the developed model. 

Third, the watersheds differ in size by several orders of magnitude, which will help to

test the issue of scaling.  Bloschl (1998) notes the difference in the scale of physical

processes from wind drift at hillslopes, significant to the nearest meter, to differences in

climatic conditions, significant to tens of kilometers.  Does model accuracy depend

upon watershed size?  This research aims to address this question.

4.2 UPPER RIO GRANDE WATERSHED

4.2.1 Description

The Rio Grande River originates in Colorado, flows through New Mexico and

Texas, and eventually to the Gulf of Mexico.  Approximately 75% of the average annual

flow is the result of snowmelt.  The headwaters of the basin are located to the east of the
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continental divide in Colorado.  The portion of the watershed examined for this study

includes only those headwaters upstream of Del Norte.  The watershed is centered at

approximately 1070 W, 370 7' N, and has an area of approximately 3,450 square

kilometers.  The basin is bounded on the east by the San Luis Valley and Sangre De

Cristo Mountains.  The elevation range is from approximately 2432 m to 4215 m.  The

terrain is fairly rugged, with an average slope of 15 % (Dubayah, 1994).

Annual precipitation ranges from 25 cm in the foothills to 130 cm in the high

mountains, over 60 % of which occurs as snowfall.  Roughly 60 % of the region is

forested.  The alpine regions have dense forests consisting chiefly of pine, fir and aspen. 

The subalpine zone is composed largely of spruce-fir trees.  Alpine vegetation consists

predominantly of meadows and grasslands (Dubayah, 1994).  Figure 4-1 shows the

location of the watershed.

Figure 4-1.  Location of Upper Rio Grande Watershed



68

4.2.2 Creating HRUs Based on DEM and Watershed Data

Digital elevation map (DEM) data were gathered from the United States

Geological Survey (USGS, 2003).  DEMs used from this site have a 30-m resolution.  A

geographic information system program (GIS), ArcView, utilized the watershed DEMs

to help determine the land slope and orientation of each pixel contained within the

watershed.  Land use data from 1998 for the watershed were gathered from the United

States Environmental Protection Agency (USEPA, 2003).  This data were used to

determine forest cover, type (conifer or deciduous) and extent, throughout the

watershed.

Based upon the DEM and watershed data, the watershed was subdivided into

HRUs.  As previously mentioned, the rationale behind the subdivision process is to

produce subunits where it is reasonable to assume that the average SWE value is

representative of the entire subunit for any given day.

The first step of the process of subdividing the watershed into HRUs was to

utilize the “Blockstats” command in ArcView to combine single pixels into groupings

of (35 pixels x 30 pixels) 1050 pixels.  The grouping size of 1050 pixels was selected

subjectively.  ArcView was then used to determine the required physical parameters for

each grouping.  For the elevation, slope and forest density parameters, values were

determined by ArcView utilizing the mean value of all 1050 pixels.  For the area

parameter, values were determined by ArcView as the sum of the areas of all of the

pixels.  For the orientation parameter, values were determined by ArcView based upon

the median value of all of the pixels.  
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 Ideally, each of these groupings could have become separate HRUs.  This was

not feasible for two reasons.  The first reason has to do with the creation of input files. 

Each grouping had an area of 0.945 square kilometers.  Based upon the watershed being

approximately 3,450 square kilometers, the total number of HRUs would be

approximately 3,651.  Each HRU needs an input file defining the physical parameters of

the watershed as well as potentially 9 yearly input files defining the required

meteorological parameters (TMAX, TMIN, TAVG, PT, WS, WO, SR, RH, and CC).  Given that

the proposed model will run for 8 years for this particular watershed, a total of nearly

266,500 input files would potentially need to be created for this watershed.  The second

reason has to do with the limited availability of calibration data.  Although it is logical

to assume that smaller HRUs will produce more accurate results, not enough field

measurements exist to determine if subdividing the watershed into smaller and smaller

HRUs increases the model accuracy.

 The procedure of combining these groupings into the final HRUs was based

primarily upon the elevation and forest cover of the 1050 pixel groupings.  Tarboton and

Luce (1996) point out that in 1986, the World Meteorological Organization compared

11 different snowmelt models from several countries.  Among the conclusions of the

study were: (1) subdivision of basins into elevation zones is very important, and (2) the

recognition of snow interception is important, especially to forecast land change effects. 

A map of the watershed showing the groupings of the 1050 pixels was created along

with a table of the physical parameters of the pixel groupings.  The map was inspected,

and the physical parameters of each adjacent pixel grouping were examined.  Based



70

upon the two primary criteria of elevation and forest cover, adjacent pixel groupings

were subjectively combined if their elevations did not differ by more than 200 m and

their forest cover was approximately equal.  The physical parameters of the subdivided

HRUs were calculated in a manner similar to that of the 1050 pixel groupings.  Based

upon the above procedure, the watershed was subdivided into 83 HRUs.  Note that the

above procedure is subjective and that the final creation of HRUs is not unique. 

Possible automated procedures for subdividing a watershed into HRUs is the subject of

further research, and are discussed in Chapter 10.  Since this procedure is subjective,

sensitivity analysis was performed on the procedure regarding the subdivision of HRUs. 

This analysis determined the effect that the subjective decisions regarding the

subdivision of HRUs had on model output.  Table 4-1, found in Appendix A, contains a

listing of HRUs created for the Upper Rio Grande Watershed and their pertinent

physical parameters .  The HRUs are treated as homogeneous units in the model.  Pixel

properties were analyzed for each HRU to demonstrate that the hydrologically and

climatologically important physical characteristics cluster fairly closely around their

mean values in the HRUs.  Plots shown in Appendix B depict the range of values for the

created HRUs.   One of the plots in Appendix B depicts equivalent latitude.  The

formula for computing equivalent latitude is given by the following equation:

(4-1)
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where b is the angle of inclination of the slope (positive downward), a is the azimuth

of the slope (clockwise from north), and L is the actual latitude (Dingman 1994).  An

inspection of the plots found in Appendix B indicate that the slope distribution is more

skewed than the other plots.  The reason for this is that slope was considered the least

important of the physical characteristics of the watershed during the process of

combining pixels.  Figure 4-2 contains a depiction of the watershed divided into HRUs

with numbering corresponding to the Table 4-1.

4.2.3 Collecting Meteorological Data 

Temperature, precipitation, and SWE data for this watershed were downloaded

from the Colorado Snow Telemetry (SNOTEL) site, operated by the Natural Resources

Conservation Services (NRCS, 2003) .  Data were gathered from four sites within the

watershed: Beartown, Upper Rio Grande, Middle Creek, and Wolf Creek Summit. 

Figure 4-3 shows the location of the SNOTEL sites in relationship to the watershed. 

Summary information regarding the SNOTEL sites is contained in Table 4-2.



Figure 4-2.  Delineation of HRUs for the Rio Grande Watershed

72
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Figure 4-3. Location of SNOTEL sites in the Upper Rio Grande Watershed

Table 4-2. Summary of the SNOTEL sites used for the Upper Rio Grande
Watershed

Site ID SNOTEL
ID No.

SNOTEL Station Name Elevation
(m)

Annual Average
Precipitation (cm)
for 1993 - 2001

1 07M32S Beartown 3536 106.5

2 07M21S Middle Creek 3529 105.8

3 07M16S Upper Rio Grande 2865 59.9

4 06M17S Wolf Creek Summit 3353 135.9
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A review of the SNOTEL website showed temperature, precipitation and SWE

data available as far back as the 1930s for some of the stations.  However, a closer

inspection of the stations included in Table 4-2 showed that the data records are mostly 

incomplete through the early 1990s, often missing up to two months worth of data in

any given year.  The inspection helped determine that temperature, precipitation, and

SWE data records were nearly complete for the water years 1993 through 2000 (a water

year begins on October 1 of the preceding year) .  As a result, it was decided to operate

the proposed model for the Upper Rio Grande Watershed for these water years.

Sporadic data were missing from these water years for the stations listed in

Table 4-2.  The largest number of missing temperature data for the 8-year study period

was 15, with the average number of missing data being 9. To estimate values for the

missing temperature data on a particular day, the arithmetic average value was

determined for that day from the remaining years of existing data.  This average value

was then used as the unknown temperature value.    

The largest number of missing precipitation data for the 8-year study period was

18, with the average number of missing data being 7.  To estimate values for the

missing data, the “normal-ratio method” (McCuen, 1989) was applied.  The general

formula for computing a missing data point is given by the following equation:

          (4-2)

where is the unknown data point, Pi is the parameter value at station I, and wi is the
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weight given to station I.  Each station weight is determined by the following equation:

                          (4-3)

where Ai is the average annual parameter value at station I, Ax is the average annual

parameter value at the station with the missing data, and n is the number of stations.  

McCuen (1989) states that the normal-ratio method is preferred in areas when “the

average annual catches differ by more than 10%,” such as locations where orographic

effects are present, as is the case for this watershed.  A review of the average annual

precipitation values for the four SNOTEL sites in Table 4-2, indicate that a difference of

more than 10% does exist between most of the stations.

Wind data were not available at the SNOTEL sites, but were downloaded from

the National Climatic Data Center (NCDC, 2003).  Wind data were collected at the four

closest stations to the Upper Rio Grande watershed, which are: Alamosa Municipal

Airport, Durango / La Plata, Gunnison, and Telluride Regional Airport. Summary

information regarding the NCDC sites is contained in Table 4-3.  Figure 4-4 shows the

location of the NCDC sites in relationship to the watershed. 

Table 4-3. Summary of the NCDC sites used for the Upper Rio Grande Watershed

Site ID NCDC ID No. NCDC Station Name Elevation
(m)

1 724620 Alamosa Municipal Airport 2299

2 724625 Durango / La Plata 2038

3 724677 Gunnison 2339

4 724627 Telluride Regional Airport 2769
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Figure 4-4. Location of the NCDC sites in relationship to the Upper Rio Grande
Watershed.
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A review of Figure 4-4 indicates that most of the available wind data for this

watershed originate from 50 to 75 kilometers outside of the watershed, and are recorded

at elevations much lower than those found throughout the watershed.  At these

distances, it is questionable whether or not the wind speed data recorded at the four

NCDC sites approximates the actual wind speeds within the watershed.  A deviation

sensitivity analysis will be performed on the wind data to determine the potential error

to SWE estimates due to the data uncertainty. 

Sporadic daily wind data were missing from the NCDC sites listed in Table 4-3. 

No effort was made to estimate the missing data since the literature does not provide

estimation methods similar to those for precipitation.  As a result, on days that wind

data were missing from a particular station, data were substituted from the other stations

in which data existed for that particular day.  

 Cloud cover data were also downloaded from NCDC (2003).  Most NCDC sites

do not collect cloud cover data, so finding these data in proximity to the watershed was

problematic.  Cloud cover data were collected from the  Alamosa Municipal Airport for

the time span of October 1996 through July 2001, and from Grand Junction for the span

of October 1993 through October 1996.  The NCDC station at Grand Junction is

approximately 180 kilometers northwest of the watershed (see Figure 4-4).  Similarly to

the wind data, the actual cloud cover conditions occurring at the watershed may be quite

different from the available data.  Again, a deviation sensitivity analysis will be

performed on this data to determine the potential error to SWE estimates due to the data

uncertainty. 
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Solar radiation and relative humidity data were not available within close

proximity to the watershed.  Consequently, the proposed model will estimate these

values utilizing Eq. 3-5 to determine incoming solar radiation, and Eq. 3-4 to calculate

relative humidity.  The model is designed to accept remotely sensed solar radiation data,

such as the data that can be found at http://www.atmos.umd.edu/~srb/gcip/webgcip.htm,

when this data are available.  Data correction for elevation differences may be required. 

4.2.4 Spatially Distributing Meteorological Data to the HRUs

Temperature data were spatially distributed from the SNOTEL sites to the 83

HRUs by means of the nearest-neighbor approach with a lapse rate adjustment for

elevation.  McCuen (1989), Gray and Male (1981) and many others cite the relationship

between elevation and temperature.  Based upon the literature, a lapse rate of 0.7220 C /

100 m was used in estimating temperature data for the HRUs.

Precipitation data were spatially distributed from the SNOTEL sites to the 83

HRUs by means of the hypsometric method as described in Dingman (1994).  This

method is appropriate for regions in which orographic effects are important, where

precipitation for the period of interest is a strong function of elevation.  Additionally,

this method requires a relationship between precipitation and station elevation and

generally takes the linear form of:

                 (4-4)

where is the estimated precipitation value (cm), z is the station elevation (m), and a

http://www.atmos.umd.edu/~srb/gcip/webgcip.htm,
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and b represent the intercept and slope of the line, respectively.  Precipitation data were

plotted against station elevation for the Upper Rio Grande watershed for the years of

interest (Figure 4-5).

Figure 4-5.   Establishing the relationship between precipitation and station elevation
for the SNOTEL sites within the Upper Rio Grande Watershed

A review of Figure 4-5 indicates that the slope of the line is 0.08.  This indicates

that there is an approximate increase of 82 mm in precipitation per 100 m increase in

elevation.  The intercept of the line is -168.63 cm of precipitation, which is irrational. 

Consequently, the developed relationship should be limited to a range of station

elevations used in developing the equation (2850 m to 3550 m).  Although the sample

number is small (n = 4) and the coefficient of determination has a moderate value      
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(R2 = 0.6011), Singh and  Singh (2001) report that the linear relationship and slope of

the relationship, as shown in Figure 4-5, is consistent with several previous studies

conducted in this watershed regarding precipitation.

Dingman (1994) states that in some cases, the relationship between precipitation

and elevation may vary systematically with a region, for example, the windward side of

a mountainous region that may have a more rapid elevational increase in precipitation

than the leeward side.  In these instances, it is suggested to apply the hypsometric

method separately for each identified subregion.  Unfortunately, this last point could not

be tested for this watershed.  A review of Figure 4-3 and the NCDC wind data, shows

that all SNOTEL sites within the watershed are located on the windward side of the

watershed.  This may suggest more accurate precipitation and thus SWE predictions for

the HRUs on the windward side of the watershed than the leeward side.

Wind data were spatially distributed from the SNOTEL sites to the 83 HRUs by

means of the nearest-neighbor approach.  This simple approach was chosen because the

literature does not provide any more sophisticated means of spatially distributing wind

data.  Luce and Tarboton (2000) point out that interpolation of the wind field in

mountainous terrain is difficult and in practice seldom done.

Cloud cover data were assumed constant over the entire watershed.  This

approach was taken for two reasons.  First, on any specific day, cloud cover data were

available at only one site.  Second, the literature again does not provide any more

sophisticated means of spatially distributing cloud cover data.  Remote sensing satellite

images form the National Operational Hydrological Remote Sensing Center (NOHRSC,
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2003) could provide more accurate cloud cover data, however, these images are

typically only available for approximately 20 days out of the water year. 

4.2.5 Creating Required Input Files

Once the physical parameters of the HRUs had been determined and the

meteorological data had been spatially distributed, input files required to run the

proposed model were created.  An input parameter file was created for each HRU,

containing values that remained constant from year to year.  This input file consisted of

six values: SLOPE, ORIENT, LAT, F, TREE, and TYPE.  The TYPE parameter refers to whether

the HRU is an alpine or valley HRU, and affects the albedo calculation.  The parameter,

COVER, was not required for the Upper Rio Grande input files because the transport of

snow between HRUs by avalanching became inconsequential for such large size HRUs. 

This was demonstrated by the fact that several 1050 pixel groupings had an average

slope value greater than the required 26 degrees.  However, once these groupings were

combined to form the 83 HRUs, the average slopes of all HRUs were less than 26

degrees.   

For each HRU, meteorological input files were created for TMAX, TMIN, TAVG, WS,

and PT, for each of the study years.  These files contained daily values for each variable. 

Input files were not created for SR and RH as these data were not available and were

internally estimated by the model by means of Eqs. 3-5 and 3-4, respectively.  Input files

were not created for WO because uniform wind transport from an HRU is negligible due

to the large size HRUs, as per Gray and Male (1981).  Although wind transport from
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HRU to HRU would occur along HRU borders, the simplified approach was taken, and

it was assumed that wind transport would only occur within the HRUs and would not

significantly alter a spatially uniform SWE value throughout the HRU.

4.2.6 Conditional Probability Analysis on Wind Data  

As discussed in section 3.5.4, conditional probability analysis was performed on

the wind data to increase the accuracy of the sublimation predictions.  The purpose of

the analysis was to determine the probability that the required threshold wind speed (4.8

m / s) was exceeded on an hourly interval given that the daily average wind speed was

less than the threshold wind speed.  Hourly wind data were downloaded from the

Alamosa Municipal Airport and the Durango/La Plata NCDC sites.  A sample of four

years, two years from both sites, of hourly data were analyzed and the number of hours

in a particular day that the threshold wind speed was exceeded was recorded along with

the average daily wind speed.  Table 4-4 (Appendix C) contains a summary of the

results of the conditional probability analysis for the daily average wind speed, based

upon the hourly wind data.

The values from Table 4-4 will be incorporated into the proposed model to more

accurately estimate sublimation on days that the average daily wind speed does not

exceed the threshold value.  The model will accomplish this task in two steps.  First, the

total sublimation for the day will be estimated as if the threshold wind speed had been

exceeded.  Then, the total sublimation estimate will be multiplied by the probability

value found in Table 4-4, depending on the actual average daily wind speed.  As an
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example, if the daily average wind speed on day t was determined to be 3.2 m / s, the

model would calculate the total sublimation (by means of Eq. 3-35) as if the average

wind speed was greater than the threshold wind speed (4.8 m / s).  Next, based upon

Table 4-4, the model would multiply this total sublimation value by 0.31 to determine

the actual sublimation total that occurred on day t.  This method assumes that the

threshold wind speed is exceeded for a fraction of the day, as estimated by the

probabilities found in Table 4-4.  For days in which the average wind speed exceeds the

threshold wind speed, the model will calculate the sublimation total based upon        

Eq. 3-35.  Additional discussion of conditional probability and its effect on threshold

processes can be found in Chapter 10. 

4.3 REYNOLDS CREEK WATERSHED

4.3.1 Description

Reynolds Creek is a third-order perennial stream that drains north to the Snake

River.  The watershed is approximately 239 square kilometers and is located in the

Owyhee Mountains of southwestern Idaho, approximately 80 kilometers southwest of

Boise, Idaho.  Elevations within the watershed range from 1101 m at the outlet to 2241

m.  Precipitation varies from about 23 cm at the northern lower elevations, to over 110

cm in the higher regions at the southern and southwestern watershed boundaries where

75 % or more of the annual precipitation occurs as snowfall (Slaughter et al., 1998).

Sagebrush-grasslands dominate most of the watershed, while mountain

sagebrush, aspen, sub-alpine fir, and Douglass fir trees are found in areas of higher
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snow accumulation.  Soils derived from volcanic and lake sediments are present on the

watershed and range from shallow, desertic soils at lower elevations to deep organic

soils at the higher elevations, which are dominated by forests (Slaughter et al., 1998). 

Figure 4-6 shows the location of the watershed. 

4.3.2 Creating HRUs Based on DEM and Watershed Data

The Reynolds Creek watershed is a government-sponsored experimental

watershed under the auspices of the United States Department of Agriculture -

Agricultural Research Service (USDA-ARS).  Hydrologic data and geographic data are

publicly available and can be accessed at the USDA-ARS (2003).  Included as part of

these data is a 30-m DEM of the watershed derived from USGS contour and land use

shapefiles.  The DEM and forest cover shapefiles were downloaded and used to

subdivide the watershed into HRUs.  The process used to create the HRUs is the same

process as used for the Upper Rio Grande Watershed.  Table 4-5 (Appendix A) contains

a summary of the physical parameters of the 28 HRUs created for the Reynolds Creek

Watershed.  Plots shown in Appendix D depict the range of values for the created

HRUs.
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Figure 4-6.   Location of the Reynolds Creek Watershed

Again, due to the time constraint involved with creating a large number of input

files and lack of additional SWE data, 1050 pixel groupings were recombined to create

the HRUs.  Consequently, this process will again prevent analyzing wind transport and

avalanching between HRUs for this watershed.  Figure 4-7 contains a depiction of the

watershed divided into HRUs with numbering corresponding to the above table.  
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Figure 4-7. Delineation of HRUs for the Reynolds Creek Watershed

4.3.3 Collecting Meteorological Data

All necessary meteorological data were obtained from climate stations within the

Reynolds Creek Watershed.  Three stations record daily and hourly values for maximum

and minimum air temperature, hourly values for relative humidity, hourly values for

solar radiation, and daily and hourly values for wind speed and wind direction.  A

review of the available data indicated that all required data were available for the water

years 1988 through 1996.  As a result, the proposed model was operated for these years. 

Slaughter et al. (1998) describe the methodology that was used to estimate missing data
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from these stations.  Figure 4-8 shows the climate stations within the watershed, and

Table 4-6 contains summary information regarding the climate stations.

Figure 4-8. Location of the climate stations within the Reynolds Creek Watershed

Table 4-6. Summary of the climate stations used for the Reynolds Creek Watershed

Site ID Station
Designation

Elevation
(m)

Beginning of
Station Records

1 076 x 59 1202 1/1/64

2 127 x 07 1653 1/1/67

3 176 x 14 2097 1/1/67
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Precipitation data were gathered from a more extensive network of sites within

the basin.  The watershed originally had 53 precipitation gauges, however, only 16 of

them were operating through 1996 ( Slaughter et al., 1998).  Of the 16 precipitation

gauges that operated through 1996, data were gathered from six of these sites.  The sites

were chosen due to the fact that the gauges have the longest active record (35 years) and

that Slaughter et al. (1998) used these sites to develop the spatial and temporal

precipitation characteristics within the watershed.  This previous study will be utilized

to spatially distribute precipitation from the gauges to the HRUs. In addition, Slaughter   

 et al. (1998) describe that missing daily and hourly precipitation data from these gauges

were estimated based upon data from nearby sites.  Summary information regarding the

precipitation gauges is included in Table 4-7.  Additionally, Figure 4-9 identifies the six

precipitation gauges within the watershed used for data collection. 

Table 4-7. Summary of the precipitation gauges used for the Reynolds Creek 
Watershed.

Site ID Station
Designation

Elevation
(m)

Annual
Precipitation (cm)

1 057 x 96 1188 23.6

2 076 x 59 1207 27.5

3 116 x 91 1459 47.1

4 155 x 07 1654 71.2

5 163 x 20 2170 112.3

6 176 x 07 2061 99.4
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Figure 4-9. Location of the precipitation gauges within the Reynolds Creek Watershed

For calibration purposes, SWE data were collected from five different locations

within the watershed.  These locations can bee seen on Figure 4-10.  Of the five SWE

measurement sites, only data collected at two of them were used.  Slaughter et al. (1998)

state that the SWE measurements taken at: 144 x 62, 163 x 98 and 176 x 07 are in close

proximity to areas of significant localized snow-drifting.  Due to this reason, it is

believed that measurements taken at these sites will not accurately represent the

surrounding vicinity and thus these sites will not be used in the calibration process.



90

Figure 4-10. Location of SWE measurement sites within the Reynolds Creek Watershed

4.3.4 Spatially Distributing Meteorological Data to the HRUs

Temperature data were spatially distributed from the climate stations to the 28

HRUs in the same manner as previously described for the Upper Rio Grande Watershed. 

Wind data were also spatially distributed from the climate stations to the HRUs in the

same manner as described for the Upper Rio Grande Watershed.  

In addition, solar radiation and relative humidity data were spatially distributed

from the climate stations to the HRUs by means of the nearest-neighbor approach. 

Solar radiation data were collected on a hourly time step, and these data were converted
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to daily values by summing the hourly values that comprised a particular day.  Relative

humidity data were also collected on an hourly time step.  These data were converted to

daily values by taking the arithmetic mean of the 24 hourly values that comprised a

particular day. 

Precipitation data were spatially distributed from the climate stations to the 28

HRUs in the same manner as previously described for the Upper Rio Grande Watershed. 

For the Reynolds Creek Watershed, however, a new relationship had to be determined

between gauge elevation and precipitation.  This analysis was performed by Slaughter  

et al. (1998) and is given by the following equation:

                  (4-5)

where is the estimated precipitation value (cm) and z is the station elevation (m).  

This relationship was developed from data from six sites with a correlation coefficient

equal to 0.92.

The relationship shown in Eq. 4-4 indicates that precipitation increases at a rate

of approximately 86 mm per increase in station elevation of 100 m.  Although not

mentioned in the analysis performed by Slaughter et al. (1998), it must be assumed that

the relationship presented in Eq. 4-4 is applicable only for the range of station elevations

(1188 m to 2170 m) used to perform this analysis.  The range of precipitation stations

approximates the range of ground elevations found within the watershed (1101 m to

2241 m).
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Similar to the Upper Rio Grande Watershed, cloud cover data were assumed

constant over the entire watershed. This assumption was made for the same reasons

described earlier.  Cloud cover data were obtained from the regional airport at Salt Lake

City, Utah. 

4.3.5 Creating Required Input Files

Input files were created for the Reynolds Creek Watershed in the same manner

as described for the Upper Rio Grande Watershed.  An input parameter file was created

for each of the 28 HRUs that remained constant from year to year.  The input file

consisted of six values: SLOPE, ORIENT, LAT, F, TREE and TYPE.  As was the case with the

Upper Rio Grande Watershed, the parameter, COVER, was not required for these input

files because the transport of snow between HRUs by avalanching became

inconsequential for such large HRUs.  Additionally, a review of Table 4-5 indicates that

no HRU has a large enough ground slope to initiate avalanching.

For each HRU, meteorological input files were created for TMAX, TMIN, TAVG, WS,

RH, SR, and PT, for each year.  These files contained daily values for each variable.  Input

files were not created for WindOrient.  As was the case with the Upper Rio Grande

Watershed, uniform wind transport from an HRU was assumed negligible due to the

large HRUs.
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4.3.6 Conditional Probability Analysis on Wind Data

As discussed in section 4.2.6, conditional probability analysis was performed on

the wind data to increase the accuracy of the sublimation predictions. A sample of four

years of hourly wind data was gathered from the three climate stations located within

the watershed.  Table 4-8 (Appendix E) contains a summary of the results of the

conditional probability analysis for the daily average wind speed, based upon the hourly

wind data.    The results of this analysis have been incorporated into the proposed model

to improve the accuracy of the sublimation estimates.  The method to accomplish this

task is the same as described for the Upper Rio Grande Watershed.

4.4 EMERALD LAKE WATERSHED

4.4.1 Description

The Emerald Lake Watershed is located in California in the Sequoia National

Park along the western slope of the Sierra Nevada.  The watershed is centered at

approximately 360 35' N, 1180 40' W and has an area of 120 hectares.  Elevations within

the watershed range from approximately 2800 m at the outlet to 3416 m.  The terrain is

rugged, composed mainly of granite with steep slopes, averaging 31 degrees (Sierra

Nevada Watershed Group, 1999). 

Precipitation in the basin is strongly seasonal, with snowfall accounting for most

of the deposition.  Avalanching from the steep slopes onto the lake is a common

occurrence. Typically, snow cover disappears by mid June, but may persist until mid

July or early August when unusually large snowpacks exist.  Vegetation is sparse 
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throughout the watershed, consisting of scattered conifers, low woody shrubs, and

grasses (Sierra Nevada Watershed Group, 1999).  Figure 4-11 shows the location of the

watershed.

4.4.2 Creating HRUs Based on DEM and Watershed Data

As with the Upper Rio Grande Watershed, digital elevation model (DEM) data

were gathered from the United States Geological Survey (USGS, 2003) and land use

data for the watershed were gathered from the United States Environmental Protection

Agency (USEPA, 2003).  The process used to create the HRUs is the same process as

described for the previous two watersheds but with one difference.  Whereas the

“BlockStat” command in ArcView combined 1050 pixels into groupings for the first

two watersheds, this command combined sixteen pixels into groupings for the Emerald

Lake Watershed.  This smaller number could be used for pixel groupings due to the

small size of the watershed.  Table 4-9 contains a summary of the physical parameters

of the 8 HRUs created for the Emerald Lake Watershed.  A review of Table 4-9

indicates that HRU sizes are small enough and slopes are steep enough for both wind

transport and avalanching to be significant at this scale.  Figure 4-12 contains a

depiction of the watershed divided into HRUs with numbering corresponding to Table

4-9 (Appendix A).  Plots shown in Appendix F depict the range of values for the created

HRUs. 
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Figure 4-11.  Location of the Emerald Lake Watershed (Sierra Nevada Watershed
Group, 1999)

Figure 4-12.  Delineation of HRUs for the Emerald Lake Watershed
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4.4.3 Collecting Meteorological Data

Meteorological data for this watershed are part of a snow hydrology database

that is maintained by the University of California at Santa Barbara (UCSB, 2003).  All

such data were obtained, with permission, from UCSB (2003).  Within the watershed,

one primary meteorological station exists within close proximity to the lake.  From this

station, temperature, precipitation, and wind speed and direction data were gathered.  

Figure 4-13 shows the location of the meteorological station.  A review of the available

data indicates that complete records for the required data exists for the water years 1992,

1993, 1996, 1997, and 1998.  As a result, the proposed model will be run for these

years.

Figure 4-13.  Location of Meteorological Station within the Emerald Lake Watershed    
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Cloud cover data were collected from the closest NCDC site, located at the

Fresno Air Terminal.  This site is approximately 100 km southwest of the Emerald Lake

Watershed.  Solar radiation and relative humidity data were not available for this

watershed from the database.  As a result, the proposed model will estimate these values

by means of Eqs. 3-5 and 3-4, respectively.

Additional precipitation data were gathered from outside of the watershed from

nearby precipitation gauges.  These additional data were required to attempt to

determine the relationship between gauge elevation and precipitation for the

surrounding region.  Precipitation data were gathered from five additional gauges

operated by the California Department of Water Resources (CDWR, 2003).  Figure 4-14

shows the location of these additional gauges in respect to the Emerald Lake Watershed. 

Table 4-10 contains a summary of the CDWR precipitation gauges used to estimate the

relationship between gauge elevation and precipitation for the Emerald Lake region.

Table 4-10. Summary of the CDWR precipitation gauges used for the Emerald Lake
Watershed  

Gauge ID CDWR Gauge
Name

Elevation
(m)

Annual Average
Precipitation (cm)
for 1990 - 2000

1 Ash Mountain 520.6 92.2

2 Bear Trap Meadow 2072.6 119.9

3 Big Meadow 2316.5 172.6

4 Grant Grove 2011.7 137.9

5 Lodgepole 2058.2 138.8
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SWE measurements were taken at 5 random field locations throughout the

watershed during the spring months and these field measurements were also

downloaded.  The location of these SWE measurement sites can be seen in Figure 4-15. 

The numbering of these sites corresponds with the number of the HRUs (Figure 4-12).

Figure 4-14.  Location of the CDWR gauges in relationship to the Emerald Lake 
              Watershed

4.4.4 Spatially Distributing Meteorological Data to the HRUs   

Temperature data were spatially distributed from the meteorological station by

means of a lapse rate as previously discussed.  Cloud cover, wind speed, and wind

orientation data were assumed to be equal for all HRUs.  Precipitation data were
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spatially distributed by means of a lapse rate, similar to the temperature data.  The

precipitation lapse rate was determined using the data from the CDWR gauges.  These

data were plotted to determine a linear relationship between gauge elevation and

precipitation.  This plot can be found on Figure 4-16.

Figure 4-15.  Location of SWE field measurement sites within the Emerald Lake
Watershed

Although the sample number of gauges is small (n = 5), the coefficient of

determination has a significant value (R2 = 0.7091).  A hypothesis test was performed

on the R value to determine if this relationship is significant.  The results of the

hypothesis test indicate that it is for a level of significance of 0.01.  The relationship

determined in Figure 4-16 should be limited to the range of station elevations used in

the regression.  The slope of the regression line indicates that precipitation increases
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approximately 34 mm for every station elevation increase of 100 m.  Unlike the similar

analysis performed for the Upper Rio Grande watershed, no other studies could be

found in the literature to confirm the  relationship.

Figure 4-16. Establishing the relationship between precipitation and station elevation
for the CDWR gauges surrounding the Emerald Lake Watershed 

4.4.5 Creating Required Input Files  

Input files were created for this watershed in the same manner as described for

the earlier watersheds.  An input parameter file was created for each of the eight HRUs

that remained constant from year to year.  Unlike the earlier watersheds, the input file

consisted of seven values: SLOPE, ORIENT, LAT, F, TREE, TYPE, and COVER.  A review of
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Table 4-8 indicates that COVER was required for these HRUs since most had a ground

slope of at least 26 degrees, which indicates the possibility of avalanching.

For each HRU, meteorological input files were created for TMAX, TMIN, TAVG, WS,

WO, and PT, for each year.  These files contained daily values for each parameter. 

Unlike the earlier watersheds, input files for WindOrient were required to model wind

transport between HRUs.

4.4.6 Conditional Probability Analysis on Wind Data

A wind speed analysis was performed on a sample of four years of hourly wind

data gathered from the meteorological station located within the watershed.  The

rationale and procedure of the analysis have been discussed earlier.  For this watershed,

the analysis had to be extended to include both sublimation and wind transport.  Table

4-11 (Appendix G) contains a summary of the results of the conditional probability

analysis for the sublimation process in which the threshold wind speed is 4.8 m / s.  All

results from the conditional probability analysis will be incorporated into the model as

discussed for the first two watersheds.

For wind transport, two separate analyses had to be performed.  The reason for

this is that the model differentiates between wind transport from an alpine HRU and a

valley or prairie HRU.  Table 4-12 (Appendix H) contains a summary of the results of

the conditional probability analysis for the wind transport process for an alpine HRU in

which the threshold wind speed is 5.0 m / s and Table 4-13 (Appendix I) contains the

results for a valley or prairie HRU in which the threshold wind speed is 6.5 m / s.
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CHAPTER 5

 IMPLEMENTATION AND CALIBRATION OF  THE MODEL
FOR THE UPPER RIO GRANDE WATERSHED

5.1 INTRODUCTION

For the proposed SWE model, it is important to include an analysis that shows

the accuracy of the model in which the parameters are set by information that is

independent of the hydrologic data for that watershed.  This is referred to herein as the

pre-calibration phase.  The accuracy of these cases can be compared using graphical

results, standard goodness-of-fit statistics (such as the sample mean error and the mean

relative error) and physically-based statistics, such as peak SWE for a water year.  

The calibration process involves varying the model parameters to obtain an

optimal agreement between the model output and the measured SWE data.  This process

should include a discussion of what type of calibration is being performed and why.  It

should also include a discussion of the goodness-of-fit criterion, the parameters to be

optimized, and the rationale as to why the specific parameters were chosen for

optimization.  This is referred to herein as the subjective optimization process.  The  

calibration process should also include an analysis that shows the improvement in

model accuracy achieved as a result of the process by comparing modeled results with

those obtained during the pre-calibration phase.  This is referred to in this chapter as the

post-calibration phase.  The improvement in accuracy for these cases can be compared

using the same measures as outlined for the pre-calibration phase.
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Once a calibrated model has been developed, the reliability of the model must be

confirmed or validated by running the model for a new data set (or several data sets). 

This task must be performed before the model can be used with confidence to make

predictions.  This is referred to herein as model validation.  

5.2 PRE-CALIBRATION MODEL RESULTS

For the Upper Rio Grande Watershed, the model was initially run for the water

year 1993, for the following three hydrologic response units (HRUs): 1, 40 and 50. 

These HRUs correspond to the SNOTEL sites: Beartown, Middle Creek, and Wolf

Creek Summit, respectively.  Meteorological data were initially collected from a fourth

SNOTEL site, Upper Rio Grande.  However, SWE data were unavailable at this site, so

this site could not be included in the calibration process.  The results of the initial model

run for these HRUs are presented graphically in Figures 5-1 through 5-3.

Figures 5-1 through 5-3 are plots of model predicted SWE values along with

SNOTEL SWE values for the three HRUs for the water year 1993.  A visual inspection

of Figures 5-1 through 5-3 indicates that the proposed model does not accurately match

the SNOTEL SWE data.  For Figures 5-1 and 5-2, which correspond to HRUs 1 and 40

respectively, the model severely under predicts the SNOTEL data.  For both figures, the

onset of melt occurs too early in the ablation period and the model predicts melt ensuing

throughout portions of the ablation period that does not match the SNOTEL data.  This

occurrence is caused by an excess of net energy received during the accumulation period

at these HRUs, which causes the snowpack to ripen, thus melt results too soon.  For
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Figure 5-3, which corresponds to HRU 50, the model accurately matches the SNOTEL

SWE data to approximately the middle of March.  After this time period, the model over

predicts the peak SWE value and poorly matches the ablation period.  This occurrence is

caused by a deficit in the accumulation of net energy during the accumulation period at

this HRU.  This causes a delay in the ripening of the snowpack, which increases peak

SWE and delays melt.    

Figure 5-1.  Initial model results for HRU 1 for 1993
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Figure 5-2.  Initial model results for HRU 40 for 1993

 Figure 5-3.  Initial model results for HRU 50 for 1993
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In addition to a visual inspection, statistical analyses were performed on these

initial runs to assess the accuracy of the proposed model for the measured SNOTEL

SWE data.  The statistical parameters computed include: the sample mean error ( e ), the

mean relative error ( e / Y ), the standard deviation of the measured data (Sy), the

standard error of the estimate (Se), and the ratio of the standard error of the estimate to

the standard deviation of the measured data (Se / Sy).    Analyses were performed for the

entire water year, the accumulation season, and the ablation season to help determine if

the proposed model was more accurate for a specific part of the water year. 

In addition to these statistical parameters, additional calculations were made to

determine how accurately the proposed model matched physically significant values of

the measured SNOTEL SWE data; comparing the algebraic and percent differences in

the modeled peak SWE and measured SNOTEL SWE for the water year, comparing the

difference in the date at which the snowpack becomes ripe with the date in which the

model predicts that the snowpack becomes ripe, and comparing the difference in the

length of the ablation period (defined as the time period from the date of snowpack

ripening to date of snow disappearance) for each particular HRU.  Comparing the peak

modeled and measured SNOTEL SWE value is significant in that it provides a crude

estimate for the approximate volume of runoff that may be generated during the ablation

season.  Comparing the date at which the snowpack becomes ripe is significant in that it

gives an approximation to the date in which stream discharge becomes affected by snow

ablation.  Comparing the length of the ablation period for an  HRU is significant

because it can help identify severe discharge events.  For the same snowpack, an
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ablation season of 40 days could potentially trigger severe stream discharge events

compared to an ablation period that lasts 120 days.

For the SNOTEL SWE data, the date in which the snowpack becomes ripe will

be approximated by the day that the melt begins.  No field data exists for these sites that

directly indicates on which date the snowpack becomes ripe, but the onset of melt is

generally accepted as a good approximation.  This assumption was discussed by Gray

and Male (1981) which cite a study performed by the Army Corps of Engineers in 1956. 

This study found that for watersheds with areas greater than 200 km2, the lag time

between the ripening of the snowpack and the beginning of melt can be ignored.  Since

this watershed is much greater in area than 200 km2, this assumption should hold true. 

For the modeled results, the date at which the snowpack becomes ripe can be identified

as the date in which the cold content of the snowpack becomes equal to 0. 

The results of the pre-calibration statistical analyses can be found in Tables 5-1

through 5-3.  These tables contain a summary of the goodness-of-fit statistics and the

physically-based statistics discussed above for the entire water year, the accumulation

period, and the ablation period respectively, for the water year 1993, for the HRUs 1,

40, and 50.  
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Table 5-1. Summary of the goodness-of-fit statistics for the water year 1993 for the
HRUs 1, 40, and 50

Parameter HRU 1 HRU 40 HRU 50

e (cm) -13.5 -7.6 30.6

e / Y -0.74 -0.51 0.86

Se (cm) 22.4 11.4 26.1

Se / Sy 1.11 1.05 0.89

Peak SWE modeled (cm) 29.5 18.2 96.9

Peak SWE measured (cm) 52.3 42.9 89.2

Peak SWE (cm) -22.8 -24.7 7.7

Peak SWE / Peak SWE measured -43.6% -57.6% 8.6%

Modeled date of snowpack ripening Feb. 28 April 12 May 30

Estimated date of snowpack ripening
from SNOTEL SWE measurements

May 4 May 5 May 4

Date of snowpack ripening (days) -35 -23 26

Modeled length of snowpack ablation
period (days)

74 62 70

Measured length of snowpack ablation
period (days)

29 30 52

length of snowpack ablation (days) 45 32 18

  

Table 5-2. Summary of the goodness-of-fit statistics for the measured accumulation
period of the water year 1993 for the HRUs 1, 40, and 50

Parameter HRU 1 HRU 40 HRU 50

e (cm) -11.1 -7.9 17.5

e / Y -0.52 -0.46 0.49

Se (cm) 20.0 11.3 20.1

Se / Sy 0.97 0.99 0.79
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Table 5-3. Summary of the goodness-of-fit statistics for the measured ablation
period of the water year 1993, for the HRUs 1, 40 and 50

Parameter HRU 1 HRU 40 HRU 50

e (cm) -32.1 -6.2 62.0

e / Y -3.12 -0.67 1.79

Se (cm) 35.7 10.6 65.6

Se / Sy 1.25 1.64 1.65

A review of Table 5-1 indicates that the proposed model does not accurately fit

the field data for any of the three HRUs.  This fact can be seen by looking at the sample

mean error values, which represents a systematic error or bias.  These values indicate

the average difference between the modeled SWE values and the measured SNOTEL

SWE values for each day over the entire water year.  All three of the absolute values are

high indicating that the modeled values differ significantly from the SNOTEL values

during the entire water year.  The values for the mean relative error are also high.  Large

magnitudes, such as these, indicate that the mean error is nearly as large as the mean

SNOTEL SWE value, which indicates poor accuracy.  This fact can also  be seen by the

high values of Se and Se / Sy for each HRU.  The Se / Sy for all three HRUs are close to

1.0, which indicates that the model has not performed successfully and has not provided

estimates more accurate than the mean SNOTEL SWE.  The fact that the proposed

model does not accurately fit the SNOTEL data is also evident from the high disparity

between the modeled and measured values for the physically significant parameters. 

The difference in the peak modeled SWE and the peak SNOTEL SWE is significant for

HRUs 1 and 40, while this difference is moderate for HRU 50.  Attempts to estimate the
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available runoff from these peak modeled SWE values will lead to significant errors and

could have potentially devastating effects on downstream communities dependent upon

snow melt. Additionally, the difference in the date of snowpack ripening is significant 

for all three HRUs.  This can be seen in Table 5-1 by large values found for the

difference in snowpack ripening.  HRUs 1 and 40 predict snowpack ripening

approximately one month earlier than is the case, while HRU 50 predicts snowpack

ripening approximately one month later than what the SNOTEL SWE data indicates. 

An attempt to estimate when the stream discharge may be potentially affected by melt

will be off by a significant length of time.  Finally, Table 5-1 indicates that the length of

the ablation period differs significantly for all three HRUs.  Attempts to identify

potential flooding events will prove difficult since the model predicts longer ablation

period than what the SNOTEL SWE data actually indicate.  Improvement in the

goodness-of-fit and physically-based statistics is required before the proposed model

can be considered accurate.

Tables 5-2 and 5-3 indicate that the proposed model does not accurately fit the

measured SNOTEL SWE for either the accumulation period or the ablation period for

the three HRUs during the water year 1993.  The best indication of this is that the Se / Sy

values found in both tables are close to or greater than 1.0, which indicates that the

model estimates are not better predictors than is the mean SNOTEL SWE.

   A review of these tables also indicates that the goodness-of-fit statistics are

better for the three HRUs during the accumulation period than during the ablation

period.  This is indicated by the improved mean relative error values and the Se / Sy
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values as determined during the accumulation period.  This result was anticipated and

indirectly supported by the literature.  The distinction between these two periods

(accumulation and ablation) is determined by the ability of the model to estimate the

energy balance for each HRU within a watershed.  Luce and Tarboton (2000), Gray and

Male (1981), and Foster et al. (1996), among others, describe the difficulties involved in

modeling the energy balance at each point in a basin.  This difficulty leads to model

uncertainty that ultimately causes errors in estimating SWE. 

 As discussed in the literature, net energy is typically negative during the

accumulation period, while the cold content of the snowpack is typically greater than

zero.  During this time period, a significant error in estimating the energy balance at a

point will still result in a negative value for net energy and greater than zero value for

the snowpack cold content.  Any precipitation that may occur during this time will add

to the depth of SWE, and if precipitation does not occur, the SWE total will remain

constant during this time.  The end result of a significant error in the energy balance at a

point during this time period has a minimal affect on the SWE total.  

As also discussed in the literature, net energy is typically positive during the

ablation period, while the cold content of the snowpack is typically zero, which

indicates that the snowpack is ripe and melt is imminent.  During this time period, a

significant error in estimating the energy balance at a point, will result in too large or

too small a positive value for net energy.  This in turn could cause significant errors in

estimates of melt, which would ultimately lead to errors in SWE estimates.  If this

pattern occurs regularly, significant errors in SWE estimates will occur during the



112

ablation period.       

In addition to the earlier mentioned goodness-of-fit statistics, it was desired to

determine if the model is significantly biased.  In order to accomplish this, a hypothesis

test using the “t” statistic was proposed.  To perform this hypothesis test, the number of

independent observations must be known.  To determine this value, it must be

determined if the time series of SWE values is autocorrelated.  Haan (1976) indicates

that in an autocorrelated series, each observation represents part of the information

contained in the previous observation, and thus the observations are not independent.  A 

correlogram was computed for the SWE values for 1993 for the Beartown SNOTEL site

(Figure 5-4).  Figure 5-4 indicates a very high level of autocorrelation between the SWE

values even after a 20-day lag.  As a result, a determination must be made as to the

number of independent SWE observations if a hypothesis test is to be performed.  Haan

(1977)  references the following equation:

             (5-1)

where ne is the effective number of observations, n is the actual number of observations,

and r1  is the auotcorrelation value for a lag of 1.  Using Eq 5-1 on the 1993 Beartown

SWE data, the effective record length equals 1.5 observations.  Due to the small

effective record length, performing a hypothesis test using the “t” statistic was not

feasible.  Similar calculations performed for the Middle Creek and Wolf Creek Summit
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SWE data also indicated an effective record length too small for conducting hypothesis

tests.  An effective record length of this size indicates that one predictor point can define

an entire time series and that the bias experienced for that predictor point would be

continuous for the entire time series.  Erroneous conclusions could be drawn from

reviewing this time series.

Figure 5-4.  Correlogram for the Beartown 1993 SWE data

5.3 SUBJECTIVE OPTIMIZATION PROCESS

As discussed in Chapter 3, one of the design goals of the proposed model was

that the model would be applicable to any watershed without having to be calibrated at

each location.  This design goal was desirable to help reduce the uncertainty that may be
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introduced during calibration, especially if the model is calibrated by a subjective

optimization process.  Unfortunately, due to uncertainty in the values of some input

data, subjective optimization must be used on the proposed model in order to attempt to

minimize error output associated with the model.

The input parameters chosen to be modified are: Sh, Fd, f3(F), and Tf.  These

parameters were selected because of the uncertainty of their initial values.  Whereas data 

was available for the other input parameters, the initial values for these parameters were

derived from educated guesses.  These parameters will be calibrated on a basin-wide

approach and not calibrated for each HRU. Sh is a term found in the solar radiation

equation (Eq. 3-5) used to reduce the amount of incoming solar radiation due to the

shading caused by the surrounding topography.  This value was estimated based upon

the elevation and ground slope of an HRU and adjacent HRUs, during the initial run and

needs to be adjusted during the calibration process.  The range of values that this

parameter may have is from 0 to 1.0.  A value of 1.0 indicates that incoming solar

radiation is not reduced by the shading factor, whereas a value of 0 indicates that no

incoming solar radiation is being received at an HRU because of shading, although a

value of 0 is not physically possible because of diffuse irradiance from the sky. 

Calibration of this term could perhaps be avoided by incorporating more sophisticated

methods of estimating incoming solar radiation based upon topography, such as the

model by Dubayah and Rich (1995).  

Fd is a term that describes the density of a forest cover and is used in Eq. 3-8 to

determine wind speed through a forested region.  The land use data  provided
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information on forest cover but not on the density of forest cover.  Two pixels that have

both been identified as having only the same land use, “forest cover,” could have very

different forest densities.  The range of values that this parameter may have is from 0 to

1.0.  The greater the parameter value, the more dense the canopy. Aerial photography

could be used to estimate this value for  forested areas of a watershed.  However, for a

watershed the size of the Upper Rio Grande, this would be an expensive and time-

consuming process.  

The third calibration parameter, f3(F), is a term found in Eq. 3-5 and used to

diminish incoming solar radiation based upon forest cover.  The value for this term is

based upon the specific tree type that comprises a forested region.  Dingman (1994)

provides values for f3(F) for various tree species, borrowed from Dunne and Leopold. 

These values indicate that f3(F) should range from approximately -1.6 for jack pine to

approximately -3.6 for balsam fir.  As was the case with Fd, typical land use data do not

provide information regarding this term.  The land use data indicate whether the

forested region is coniferous, deciduous, or a combination, but the f3(F) term requires

information regarding the type of coniferous forest such as balsam fir, jack pine, spruce,

etc.  This information is required because each tree species has an f3(F) value associated

with it.  If tree species are known within a watershed, f3(F) could be set to an exact

value.

Tf is found in Eq. 3-25 to determine the surface temperature of the snowpack,

based on near-surface air temperature.  As discussed in Chapter 3, limited information

exists in the literature about the estimation of the surface temperature of a snowpack. 
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Gray and Male (1981) indicated that the difference in temperature between the snow

surface and surrounding air for most areas in the United States is typically 0-5 0C.  In the

preliminary application, Tf was set equal to 2.5 based upon previous work performed by

Brubaker, Rango, and Kustas (1996).  As mentioned also, this value, as determined by

Brubaker, Rango, and Kustas (1996), was based upon measurements taken in Vermont

and may not be suitable for the watersheds of this study.  Typically, snow surface

temperature measurements are only available for heavily instrumented, small research

watersheds.  Data could be collected regarding snowpack surface temperature from each

watershed to better determine the relationship between air temperature and snowpack

surface temperature.  Due to this fact, it was not feasible to collect this data as part of

this research.

Based upon Figures 5-1 through 5-3, an initial strategy was developed for

adjusting these input parameters.  As previously discussed, these figures show that the

model tends to under predict SWE values for the Beartown and Middle Creek SNOTEL

sites while the model over predicts SWE values for the ablation period for Wolf Creek

Summit.  As also previously mentioned, difficulties exist in estimating the energy terms

that comprise the ENET parameter (Eq. 3-14).  The uncertainty in estimating the terms

found in Eq. 3-14 lead to SWE prediction errors during the ablation period.  Based upon

these statements, the net energy should be decreased on HRU 1 (Beartown) and HRU 40

(Middle Creek), while the net energy should be increased on HRU 50 (Wolf Creek

Summit).  Initial changes to these parameters attempted to accomplish these objectives. 
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Now that the input parameters have been identified, the criterion for the

subjective optimization procedure must be established.  The criterion consisted of two

parts.  The first part was to optimize all previously discussed goodness-of-fit statistics

and physically-based statistics.  This objective was performed by means of  utilizing

systematic educated guesses.  The second part was to ensure a physically realistic range

of values for the input parameters, which is necessary to ensure that the calibration

process does not yield physically unrealistic input parameters.  Based upon these

criteria, changes were made to the identified input parameters, model runs were

conducted, and the resulting SWE values were recorded.  From these SWE values, new

goodness-of-fit statistics and physically-based statistics were calculated.  These statistics

were compared to determine if the model had improved in accuracy.  No additional runs 

occurred when execution of the model failed to produce improvements in the goodness-

of-fit and physically-based statistics.  Table 5-4 provides a summary of pre-calibration

and post-calibration values for the identified input parameters.  Figures 5-5 through 5-7

show the post-calibration results for the water year 1993, for the HRUs 1, 40, and 50.  A

comparison of these figures with Figures 5-1 through 5-3 indicates the improvement due

to calibration.
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Table 5-4. Summary of the basin-wide pre-calibration and post-calibration values
for the identified input parameters

Parameter Physically realistic
range of values

Pre-calibration
value

Post-calibration
value

Sh 0 to 1.0 0.90 0.83

Fd 0 to 1.0 0.90 0.80

f3(F) -3.6 to -1.6 -2.6 -1.6

Tf 0 to -5 -2.5 -1.2

                 

Figure 5-5.  Post-calibration results for HRU 1 for 1993
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Figure 5-6.  Post-calibration results for HRU 40 for 1993

Figure 5-7.  Post-calibration results for HRU 50 for 1993
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Figures 5-5 through 5-7 show that visually, the proposed model matches the

field data for 1993 for these sites much better than do the original model runs.  To verify

this, all statistics were recalculated for the post-calibration model runs and compared to

the pre-calibration results (Table 5-5).   Tables 5-6 and 5-7 contain a comparison of the

goodness-of-fit statistics for the accumulation and ablation periods for the post-

calibration and pre-calibration 1993 runs for the HRUs 1, 40, and 50.  One potential

problem seen in Figures 5-5 through 5-7 is that the model still shows a bias for all three

HRUs during the ablation period.  Further discussion of this will follow.  

A comparison of Tables 5-1 through 5-3 with Tables 5-5 through 5-7 indicates

that the post-calibration model is more accurate compared to the SNOTEL SWE data

for this watershed than the pre-calibration model.  The goodness-of-fit and physically-

based statistics are significantly better for the post-calibration model runs, with the

exception being the pre-calibration sample mean error and mean relative error values for

the ablation period for HRU 40. Twelve trials were necessary to fit the model.  The

statistical values in Tables 5-5 through 5-7 represent the best run of the 12 trials.
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Table 5-5. Comparison of the pre and post-calibration goodness-of-fit statistics for
the water year 1993 for the HRUs 1, 40, and 50.

Parameter HRU 1 HRU 40 HRU 50

------- Pre Post Pre Post Pre Post

e (cm) -13.5 -5.0 -7.6 2.9 30.6 0.5

e / Y -0.74 -0.27 -0.51 0.19 0.86 0.01

Se (cm) 22.4 13.2 11.4 7.1 26.1 9.9

Se / Sy 1.11 0.79 1.05 0.60 0.89 0.40

Peak SWE modeled (cm) 29.5 46.7 18.2 41.2 96.9 81.3

Peak SWE measured (cm) 52.3 52.3 42.9 42.9 89.2 89.2

Peak SWE (cm) -22.8 -5.6 -24.7 -1.7 7.7 -7.9

Peak SWE / Peak SWE
measured

43.6% 10.7% 57.6% 4.0% 8.6% 8.9%

Modeled date of
snowpack ripening

Feb. 28 April
10

April
12

April
29

May
30

May
11

Estimated date of
snowpack ripening from

SNOTEL SWE
measurements

May 4 May 4 May 5 May 5 May 4 May 4

Date of snowpack
ripening (days)

-35 -24 -23 -6 26 7

Modeled length of
snowpack ablation period

(days)

74 33 62 56 70 70

Measured length of
snowpack ablation period

(days)

29 29 30 30 52 53

length of snowpack
ablation (days)

45 4 32 26 18 17
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Table 5-6. Comparison of the pre and post-calibration goodness-of-fit statistics for
the measured accumulation period of the water year 1993, for the HRUs
1, 40 and 50.

Parameter HRU 1 HRU 40 HRU 50

-------- Pre Post Pre Post Pre Post

e (cm) -11.1 -1.5 -7.9 0.7 17.5 -3.2

e / Y -0.52 -0.07 -0.46 0.04 0.49 -0.09

Se (cm) 20.0 8.3 11.3 2.6 20.1 4.4

Se / Sy 0.97 0.64 0.99 0.24 0.79 0.19

Table 5-7. Comparison of the pre and post-calibration goodness-of-fit statistics for
the measured ablation period of the water year 1993, for the HRUs 1, 40
and 50.

Parameter HRU 1 HRU 40 HRU 50

-------- Pre Post Pre Post Pre Post

e (cm) -32.1 -31.1 -6.2 12.3 62.0 11.1

e / Y -3.12 -3.02 -0.67 1.34 1.79 0.32

Se (cm) 35.7 34.5 10.6 8.6 65.6 18.0

Se / Sy 1.25 1.12 1.64 1.18 1.65 0.68

A review of Table 5-5 indicates that the model accurately fits the SNOTEL SWE

data for HRU 50, as evident from the low values of the sample mean error, the mean

relative error, and Se / Sy.  The sample mean error and mean relative error indicate that

the modeled SWE values nearly match the SNOTEL SWE values for the entire water

year.  The model accurately approximates the date on which the snowpack ripens, with a

difference of 7 days between the modeled and measured values.  Using this information

to predict the date on which snowmelt may affect stream discharge will provide a close
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approximation.  The model also produces an acceptable value for the peak SWE.  The

post-calibration value for predicted peak SWE is within 9% of the measured peak SWE

value.   The model, however, does not accurately predict the length of the ablation

period.  The model predicts an ablation period that is seventeen days longer than

predicted with the SNOTEL SWE data, which would lead to an under estimate of the

downstream stream discharge that results from snowmelt.  This could have significant

impact on downstream communities because the flood stage of severe discharges would

be underestimated. 

Based upon the goodness-of-fit statistics, Table 5-5 also indicates that the model

matches the SNOTEL SWE data for HRU 40 moderately well.  The sample mean error

and the mean relative error indicate that predicted SWE values are close in magnitude to

SNOTEL SWE values throughout the water year. However, the Se / Sy value of 0.60 

indicates that the predicted SWE values are only modestly better than the mean

SNOTEL SWE values.  The model accurately matches the peak measured SWE value, 

with the difference being only 4.0%.  Estimates of potential snowmelt runoff should

prove accurate based upon the close proximity of the peak values.  The model also

accurately predicts the date of snowpack ripening, with the difference between

measured and modeled being six days.  Using this information to predict the date in

which snowmelt contributes to stream discharge will provide a close approximation. 

The model, however, does not accurately predict the length of the ablation period.  The

model predicts an ablation period that lasts 26 days longer than indicated by the

SNOTEL SWE data, which would lead to significant under predictions of downstream
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discharges that result from snowmelt.

Table 5-5 shows that the model inaccurately matches the SNOTEL SWE data for

HRU 1.  Although the sample mean error and mean relative error indicate that the

predicted SWE values do not differ significantly from the SNOTEL SWE data, the Se /

Sy value of 0.79    indicates that the modeled results do not provide significant

improvement in accuracy over the mean SNOTEL SWE.  In addition, the calibrated

model predicts the ripening of the snowpack at a significantly earlier time than which

physically occurs.  Using this information to predict the date on which snowmelt

contributes to stream discharge will result in an error of approximately one month.  This

fact could have a significant impact on downstream communities.  For example, crop

planting based upon this early estimation may cause damage to the crops based upon a

lack of streamflow from delayed snowmelt.  The difference in the modeled peak SWE

and SNOTEL SWE is 10.7%.  Values over 10% could lead to significant error in

estimating potential snowmelt runoff, again having significant impact on downstream

communities relying on snowmelt.  Surprisingly, the model matches the length of the

ablation period well for this HRU, with the difference being only four days. 

Tables 5-6 and 5-7 indicate that the model performs significantly better for all

three HRUs for the accumulation period than for the ablation period, which as

previously discussed, is not surprising.  The sample mean errors (Table 5-7) indicate

that the model significantly under predicts SWE for HRU 1 and over predicts SWE for

HRU 40 and 50.  These values indicate the existence of model bias during the ablation

period, and the possibility that the model is neglecting an important physical process. 
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Suggestions for minimizing modeled output error during the ablation period will be

discussed in Chapter 10.

5.4 MODEL VALIDATION

The model was calibrated using the SNOTEL SWE data from 1993.  This year

was chosen for calibration because the mean peak SWE value throughout the watershed

was approximately equal to the average mean peak SWE value for the eight water years.

The remaining seven years of data were used to validate the calibrated model.  It was

decided to validate the model with seven years of data to provide the largest possible

sample size for determining model robustness.  The calibrated model was run for the

seven years using the finalized input parameters (Table 5-4) as determined by the

subjective optimization process.  All previously calculated goodness-of-fit and

physically-based statistics (Tables 5-1 through 5-3) were determined for each of the

seven years.  Tables 5-8 through 5-10 contain the results of the statistical analyses for

the three HRUs for the seven remaining water years.  Within each table for each

statistical parameter, three values are reported.  These values correspond to the largest,

smallest, and (seven year) average value determined for the particular parameter during

the seven year period.
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Table 5-8. Summary of the post-calibration average goodness-of-fit statistics for the
water years 1994 - 2000 for the HRUs 1, 40, and 50.

Parameter HRU 1 HRU 40 HRU 50

--------- Low Mean High Low Mean High Low Mean High

e (cm) -0.6 4.9 6.1 -2.2 3.3 5.8 -3.1 3.2 4.9

e / Y -0.11 0.30 0.44 -0.21 0.32 0.41 -0.33 0.16 0.33

Se (cm) 7.8 15.6 21.9 5.9 9.4 12.5 5.7 9.0 12.6

Se / Sy 0.44 0.69 0.79 0.43 0.56 0.71 0.26 0.34 0.42

Peak SWE
modeled (cm)

72.8 77.6 80.8 52.1 56.0 60.4 85.1 90.0 96.5

Peak SWE
measured (cm)

75.2 75.2 75.2 56.9 56.9 56.9 92.2 92.2 92.2

Peak SWE
(cm)

-2.4 2.4 5.6 -4.8 -0.9 3.5 -7.1 -2.2 4.3

Peak SWE /

Peak SWE

measured (%)

-3.2 3.2 7.4 -8.4 -1.6 6.2 -7.7 -2.4 4.7

Modeled date of

snowpack ripening
May

3
May
16

May
25

April
10

April
20

April
30

April
21

April
29

May
8

Estimated date of

snowpack ripening

from SNOTEL

SWE

measurements

April
23

April
23

April
23

April
18

April
18

April
18

April
26

April
26

April
26

Date of

snowpack ripening

(days)

10 23 32 -8 3 13 -7 4 13

Modeled length of

snowpack ablation

period (days)
32 38 46 58 66 72 55 67 76

Measured length of

snowpack ablation

period (days)
52 52 52 47 47 47 50 50 50

length of

snowpack ablation

(days)

-20 -14 -6 11 19 25 5 17 26
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Table 5-9. Summary of the post-calibration average goodness-of-fit statistics for the
measured accumulation period for the water years 1994 - 2000, for the
HRUs 1, 40 and 50.

Parameter HRU 1 HRU 40 HRU 50

------ Low Mean High Low Mean High Low Mean High

e (cm) -3.7 -2.4 0.7 -1.1 0.4 2.3 -1.8 0.2 2.3

e / Y -0.27 -0.18 0.09 -0.17 0.10 0.25 -0.20 0.05 0.22

Se (cm) 4.2 6.2 8.1 2.1 4.0 6.6 2.1 2.9 4.3

Se / Sy 0.25 0.31 0.45 0.19 0.26 0.43 0.08 0.12 0.26

Table 5-10. Summary of the post-calibration average goodness-of-fit statistics for the
measured ablation period for the water years 1994 - 2000, for the HRUs
1, 40 and 50. 

Parameter HRU 1 HRU 40 HRU 50

------ Low Mean High Low Mean High Low Mean High

e (cm) -5.6 24.2 33.5 6.7 11.6 17.3 5.8 11.4 17.2

e / Y -0.59 2.17 3.07 0.78 1.24 1.69 0.22 0.41 0.69

Se (cm) 22.5 31.6 39.8 11.2 16.5 23.4 14.1 16.3 20.7

Se / Sy 1.06 1.58 2.21 1.02 1.41 1.92 0.50 0.59 0.74

          

A review of Table 5-8 indicates that most goodness-of-fit statistics and

physically-based statistics, for the three HRUs for the remaining seven years of data,

approximate the level of accuracy determined for the calibration year 1993.  The one

exception to this statement is the peak SWE values.  These values for all three HRUs

are improved, with the improvement for HRUs 1 and 50 being significant.  The mean

values for this statistic for all three HRUs indicate that using the model to estimate the

potential volume of snowmelt runoff should provide accurate results.  
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Tables 5-9 and 5-10 confirm that the model matches the accumulation period for

all three HRUs much better than the model matches the ablation period for the HRUs. 

All of the goodness-of-fit statistics found in Table 5-9 suggest that the model works

very well for all three HRUs for the remaining seven water years during the

accumulation period.  All of the goodness-of-fit statistics found in Table 5-10 show that

the model poorly predicts during the ablation period for HRUs 1 and 40 for the

remaining seven water years, and that the model shows moderate prediction accuracy

during the ablation period for HRU 50 for the remaining water years.  

A review of Figure 4-3 shows that all of the SNOTEL sites are located in the

southwest quadrant of the watershed, or the windward side of the watershed.  Greater

uncertainty exists for that portion of the watershed in which no SNOTEL sites are

located in close proximity.  This could be especially problematic if a “rain shadow” is

prevalent on the eastern (leeward) side of the watershed.  If this is the case,

extrapolating precipitation data as described in section 4.2.4 could introduce significant

errors, without any means of measuring these errors.  Ultimately, a greater level of

confidence exist in the proposed model performance for the watershed region in which

the SNOTEL sites exist.

5.5 BIAS ANALYSIS

Figures 5-5 through 5-7 support the existence of a significant bias in the ablation

period.  This bias indirectly points to a systematic error in the model that could possibly

be corrected by adding an additional component to the model to better predict SWE
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values during the ablation period.  Further inspection into the model output suggests that

this is not the case.  

For HRU 1, the first reason for the significant bias that exist during the ablation

period is the fact that the SWE time series has a high level of autocorrelation.  As

explained earlier, knowing that one SWE value is under predicted during the ablation

period means that the likelihood is great that all SWE values will be under predicted

during the ablation period.

For this HRU, the second reason for the significant bias that exists during the

ablation period can be found by comparing the sample mean error from Table 5-7        

(-31.1 cm), for the 1993 ablation period, to the sample mean error from Table 5-10 

(24.2 cm), for the 1994 -2000 ablation periods.  For the ablation period of 1993, the

model results show that the SWE values are under predicted when compared to the

SNOTEL SWE values.  However, for the remainder of the years studied, the sample

mean error associated with HRU 1 indicates that the model over predicts when

compared to the SNOTEL SWE data during the ablation period.  When the sample

mean error is inspected for the ablation period for each of the water years, when

compared to the SNOTEL SWE data, the modeled results over predicts for four of the

water years, under predicts for two of the water years, and matches the data accurately

for two of the water years.  Figure 5-8 shows the model predicted SWE values along

with SNOTEL SWE values for HRU 1, for the water year 1997.  This figure clearly

shows that the model is over predicting during the ablation period when compared to the

SNOTEL SWE data.  Figure 5-9 shows the model predicted SWE values along with
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SNOTEL SWE values for HRU 1, for the water year 2000.  This figure clearly shows

that visually, the model accurately matches the SNOTEL SWE data during the ablation

period.  Although the sample size is small (n = 8), the results for these water years (for

this HRU) seem to indicate that the residuals associated with the ablation period do not

represent a systematic bias.  As previously discussed, the bias that does exist is the

result of modeling uncertainties regarding net energy.  

Figure 5-8.  Validation results for HRU 1 for 1997
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Figure 5-9.  Validation results for HRU 1 for 2000

Unlike HRU 1, a review of the goodness-of-fit statistics for the studied water

years does appear to indicate the presence of a systematic bias during the ablation period

for both HRUs 40 and 50.  The sample mean error for both of these HRUs indicates that

the model significantly over predicts SWE values when compared to the SNOTEL SWE

data, for all eight water years.  Evidence of this can be found in Tables 5-7 and 5-10.

The contention is that this consistent over predicting during the ablation period

does not represent a flaw in the model but actually indicates that the model is

functioning properly.  A review of Table 4-1 shows that HRU 1 has no forest cover,

whereas HRUs 40 and 50 have complete forest cover.  The SNOTEL sites in these

HRUs are placed in such a location so as to measure and record data while minimizing
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recording error from nearby obstruction, such as forest canopy.  Figure 5-10 shows the

SNOTEL site at Wolf Creek Summit (Santos, 2002).  This figure shows that although

some canopy exist in proximity to the SNOTEL station, the station has been placed in a

relatively open location.  This means that the SNOTEL data is representative of an HRU

that has little or no canopy cover, which is not the case for HRUs 40 and 50. 

The consequence of this fact for these two HRUs is that the SNOTEL SWE data

are subjected to a net energy time series during the ablation period that is relatively

canopy-free, whereas the modeled SWE values are subjected to a net energy time series

during ablation that is completely canopy covered.  This fact helps to explain why the

canopy covered modeled results consistently over predict SWE when compared to the

SNOTEL canopy-free data.  Net energy received at the SNOTEL site will be greater

during the ablation period than the net energy received at the remainder of the canopy

covered HRU.  This increase in net energy during the ablation period will result in melt

occurring earlier and more rapidly at the SNOTEL station than for the remainder of the

HRU, as predicted by the model.    

The reason that the SNOTEL station receives a greater amount of net energy

than does the remaining canopy covered HRU is that the wind speed through a canopy is

reduced (Eq. 3-8).  This reduction in wind speed effectively reduces both the latent and

sensible heat exchange between the snowpack and the atmosphere.  The net turbulent

heat exchange is typically positive during the ablation period [Dingman (1994), Gray

and Male (1981), Foster, et al. (1996)], indicating that the canopy cover reduces the

positive net energy experienced at a point.  Additionally, canopy cover reduces
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incoming solar radiation, but this reduction is essentially offset by an increase in

longwave radiation caused by canopy cover.  For all water years studied, the model

predicts a positive net turbulent heat exchange for the forest covered HRUs 40 and 50.

Figure 5-10.  SNOTEL station at Wolf Creek Summit

5.6 COMPARISON OF MODEL RESULTS WITH SATELLITE IMAGERY

Previous work by Brubaker, Rango, and Menoes (2001) utilized satellite

imagery of the Upper Rio Grande Watershed to help construct snow depletion curves. 

For their study, satellite images were obtained from the National Operational

Hydrologic Remote Sensing Center (NOHRSC) for the water years 1990 through 1999. 

These satellite images have a pixel resolution of 1 km2, and show the progression of
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snow covered area throughout a water year by depicting the area within the watershed as

either snow covered or snow free.

Appendix J contains a comparison of available satellite images (on the left side

of the page) with modeled SWE results (on the right side of the page) for the water years

1993 through 1999.  These years coincide with the intersection of years that the model

was run for the Upper Rio Grande Watershed, 1993 through 2000, and the years that the

satellite imagery were available, 1990 through 1999.  The day refers to the day of year

that the satellite image was taken and that the modeled SWE results represent.  Day 1

refers to January 1, day 32 refers to February 1, etc.   

For the satellite images, the limits of the watershed are outlined by the black

border.  Areas covered by snow within the watershed are depicted by the color white,

and areas that are snow free are depicted by the color grey.  For the modeled SWE

results, the watershed is divided into HRUs as first depicted in Figure 4-2.  If the model

predicted SWE for a particular HRU on a particular day, the HRU has the color white,

and if the model predicts no SWE for a particular HRU on a particular day, the HRU

has the color grey.

A review of the figures in Appendix J show that similar ablation patterns exist

for both the satellite images and the modeled SWE output.  Ablation, for both sets of

figures, typically begins in the lower elevations of the eastern region of the watershed

near the outlet. As the melt season progresses, snow next typically recedes through the 

central stream valley with the center and eastern sections of the watershed becoming

snow free.  Typically, the higher elevations of the watershed found in the western
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section and along the northern and southern borders of the watershed are the final areas

to become snow free.

The similar ablation patterns that exist for the satellite imagery and modeled

SWE results help support the research hypothesis that the spatial variability of SWE

within a watershed can be defined by a system of physical variables defining the

watershed. The physical variables defining the Upper Rio Grande Watershed help to

create a temporal pattern of SWE within the watershed, and as can be seen in Appendix

J, this pattern remains similar from year to year. 

Table 5-11 contains a summary of the snow covered areas, as predicted by both

the satellite imagery and the modeled SWE output for the available days for the water

years 1993 through 1999.  The results of the comparison found in Table 5-11 support

the earlier claim that the model performs more accurately during the accumulation

period than the ablation period.  This can best be seen by the smaller differences in

snow covered area between the satellite images and the modeled SWE results for the

earlier days in each water year.  These earlier days represent the accumulation period

before the snowpack has ripened, and (except for 1996) the difference in SCA is

typically 10% or less.  Substantial differences exist for the days associated with the

ablation period.  The difference between SCA as seen on the satellite images and

predicted by the model output is as great as 57%.

Model over prediction of SCA is to be expected due to the assumption of equal

SWE across the HRU.  The area of an HRU is considered “snow covered” if its SWE >

0.  In actuality, as SWE approaches 0, a fraction of the HRU would be snow free.  Many
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snow accumulation and melt models use depletion curves to relate SWE to SCA. 

Adding depletion curves to this model would require the estimation of at least two

additional parameters for each HRU. 

Table 5-11. A comparison of snow covered area as predicted by satellite imagery and
modeled SWE results for the water years 1993 through 1999.   

Year Day % Snow Covered Area
- Satellite Imagery

% Snow Covered Area -
Modeled SWE Results

Difference
% cover

1993 75 99.9 100 0.1

91 91.8 90.8 -1.0

98 83.6 90.8 7.2

115 71.5 87.6 16.1

130 53.2 84.5 31.3

150 28.6 73.0 44.4

171 11.2 38.9 27.7

181 6.4 16.3 9.9

1994 63 87.7 90.9 3.2

72 79.0 90.9 11.9

90 76.9 85.9 9.0

102 70.1 85.9 15.8

128 49.8 81.8 32.0

140 30.9 76.5 45.6

149 21.3 47.7 26.4

1995 91 98.9 90.9 -8.0

101 91.3 88.1 -3.2

156 47.2 19.9 -27.3

169 40.0 4.5 -35.5
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Table 5-11. A comparison of snow covered area as predicted by satellite imagery and
modeled SWE results for the water years 1993 through 1999, continued.

Year Day % Snow Covered Area
- Satellite Imagery

% Snow Covered Area -
Modeled SWE Results

Difference
% cover

1995 177 19.2 3.9 -15.3

1996 79 71.3 91.9 20.6

93 56.9 91.9 35.0

107 48.0 88.0 40.0

128 40.3 75.1 34.8

144 11.5 68.9 57.4

171 6.2 42.6 36.4

1997 72 100.0 90.9 -9.1

84 99.6 90.9 -8.7

126 59.5 86.6 27.1

147 37.6 63.8 26.2

165 28.1 46.3 18.2

182 15.0 6.7 -8.3

1998 71 99.1 90.7 -8.4

85 88.3 87.8 -0.5

97 90.2 87.8 -2.4

118 58.4 83.4 25.0

132 40.4 76.7 36.3

146 35.4 47.2 11.8

167 25.3 44.5 19.2

180 12.7 5.8 -6.9

1999 73 83.4 92.5 9.1

82 81.9 87.6 5.7

98 67.8 86.4 18.6
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Table 5-11. A comparison of snow covered area as predicted by satellite imagery and
modeled SWE results for the water years 1993 through 1999, continued.

Year Day % Snow Covered Area
- Satellite Imagery

% Snow Covered Area -
Modeled SWE Results

Difference
% cover

1999 133 57.3 67.5 10.2

140 53.3 67.5 14.2

5.7 CREATION OF SWE MAPS THROUGHOUT THE WATER YEAR

Within the ArcView program, SWE maps were created for each of the eight

water years studied for the Upper Rio Grande Watershed.  These maps depict the

amount of SWE contained in each HRU throughout the watershed on a particular date. 

During the accumulation period, estimated to be from November 1 to May 1, maps were

created every seven days.  During the ablation period, estimated to be from May 2 to

July 26, maps were created every five days.  Appendix K contains these SWE maps, as

well as a legend defining the color schematic for the maps.

As was seen with the satellite images, the SWE maps in Appendix K show that

modeled results indicate that similar ablation patterns exist.  Ablation typically begins in

the eastern region of the watershed, then progresses through the central stream valley,

and finally on to the western section and along the northern and southern borders of the

watershed.  The SWE maps found in Appendix K also show that modeled results

indicate that similar accumulation patterns exists, which are typically the opposite of the

ablation patterns. 
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The similar patterns that exist for the modeled SWE results again help support

the alternative hypothesis of the research that the spatial variability of SWE within a

watershed can be defined by a system of physical variables defining the watershed. The

physical variables defining the Upper Rio Grande Watershed help to create a temporal

pattern of SWE within the watershed, and as can be seen in Appendix K, this pattern

remains similar from year to year. 

5.8 SUMMARY OF RESULTS

The results presented in this chapter for the Upper Rio Grande Watershed

indicate that the calibrated model performs very well during the accumulation period

and provides accurate peak predictions when compared to the SNOTEL SWE data. 

This suggests that using the model to estimate potential runoff from a snowpack should

provide an accurate estimate.  The ability to accurately estimate potential runoff could

prove significant in predicting potential downstream water shortages from a small

seasonal snowpack or in planning a seasonal cropping strategy downstream of the

snowpack.

The results from Tables 5-7 and 5-10, and the discussion from section 5-5  also

show that the model does not perform accurately during the ablation period for the

nonforested HRU.  This implies the existence of a bias that is caused by the inability to

accurately model net energy at a point.  As a result, it is not recommended to use this

model to make predictions during the ablation period, such as identifying possible

severe stream discharge events based upon the length of the ablation period.
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The results discussed in section 5-5 also imply that the spatial variability of

SWE within a watershed is partially controlled by the physical characteristics of the

watershed. The model results for the forested HRUs (40 and 50) show that two similar

HRUs, differing only in forest cover, will consistently have different ablation periods

associated with them.  The effect of forest cover on the SWE distribution provides

insight into what may occur from land use changes involving forest cover.  The model

implies that widespread deforestation could potentially result in more frequently

occurring severe discharge events downstream by increasing net energy to the

landscape, thus shortening the ablation period.   
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CHAPTER 6

 IMPLEMENTATION AND CALIBRATION OF  THE MODEL
FOR THE REYNOLDS CREEK  WATERSHED

6.1 INTRODUCTION

As discussed in Chapter 5, proper modeling technique should include an analysis

that demonstrates the accuracy of the model in which the parameters are independent of

the hydrologic data for a watershed.  This analysis is referred to herein as the pre-

calibration phase.  The accuracy of the pre-calibration results can be compared using

graphical results, standard goodness-of-fit statistics, and physically-based statistics.  

Additionally, as discussed in Chapter 5, the subjective optimization process will

be demonstrated as to what type of calibration is being performed and why, the

goodness-of-fit criterion, the parameters to be optimized, and the rationale as to why the

specific parameters were chosen for optimization.  Next, a post-calibration analysis will

include an analysis that shows the improvement in model accuracy achieved as a result

of the subjective optimization process by comparing modeled results with those

obtained during the pre-calibration phase.  Finally, model validation will be assessed by

determining the reliability of the model by running the model for a additional data sets. 

This task must be performed before the model can be used with confidence to make

predictions.
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6.2 PRE-CALIBRATION MODEL RESULTS

For the Reynolds Creek Watershed, the model was initially run for the water

year 1988, for the following two HRUs: 26 and 28.  These HRUs correspond to the

SWE measurement locations: 155 x 54 and 167 x 07, respectively.  The results of the

initial model run for these HRUs are presented graphically in Figures 6-1 and 6-2.  As

can be seen in these figures, unlike the Upper Rio Grande Watershed, daily field

measurements of SWE were not available.  On average, bimonthly field measurements

were made per water year at each of the two locations.  The effect of having bimonthly

SWE data as opposed to having daily SWE data on model performance and accuracy

will be explored in more detail in Chapter 8 by means of sensitivity analysis.

A visual inspection of Figures 6-1 and 6-2 shows that the proposed model

matches the SWE field measurements fairly accurately up through approximately the

middle of March.  After this date, the model diverges significantly from the SWE field

measurements.  At this time, the SWE field measurements become smaller in magnitude

due to ablation, and the modeled SWE values continue to increase.  This fact suggests

that the model is under predicting the net energy received at these HRUs, causing a

delay in the date of snowpack ripening, and thus a delay in the beginning of the melt

season.    These initial findings seem consistent with the results of the calibration

process for the Upper Rio Grande Watershed, that the model matches the SWE field

measurements more accurately during the accumulation period than during the ablation

period, due to the model being more sensitive to errors in the net energy received during

the ablation period than during the accumulation period.  
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Figure 6-1.  Initial model results for HRU 26 for 198

Figure 6-2.  Initial model results for HRU 2 for 1988
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Statistical analyses were performed on these initial runs to assess the accuracy of

the proposed model for the measured SWE data.  The same goodness-of-fit and

physically-based statistics that were used for the Upper Rio Grande Watershed were

also calculated for the Reynolds Creek Watershed.  The analyses were also performed

for the entire water year, the accumulation season, and the ablation season. Estimations

of the date of snowpack ripening were accomplished by inspection of the field SWE

data.  Tables 6-1 through 6-3 contain a summary of the goodness-of-fit statistics for the

entire water year, the accumulation period, and the ablation period respectively for the

water year 1988, for the HRUs 26 and 28.

A review of Table 6-1 shows that the proposed model does not accurately match 

the field data for either of the HRUs.  This fact can best be seen by the high values of   

Se / Sy for each HRU.  These values indicate that the model has not provided estimates

more accurate than the mean measured SWE value.  This fact can also be seen by

examining the sample mean error values.  These values are high indicating that the

modeled SWE values differ significantly from the measured SWE values during the

entire water year.  There also exists a high disparity between modeled and measured

values for most of the physically significant parameters.  The difference between peak

predicted and measured SWE is significant.  Attempts to estimate potential runoff from

snow melt will result in significant errors, which could have a detrimental impact 

downstream.  Significant differences also exist in the estimation of snowpack ripening.

The model predicts snowpack ripening much later in the year.  Estimates of when

stream discharge may be affected by melt will differ significantly.
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Table 6-1. Summary of the pre-calibration goodness-of-fit statistics for the water
year 1988, for the HRUs 26 and 28. 

Parameter HRU 26 HRU 28

e (cm) 8.8 10.4

e / Y 1.05 0.83

Se (cm) 13.4 17.3

Se / Sy 1.24 1.25

Peak SWE modeled (cm) 31.4 46.4

Peak SWE measured (cm) 22.6 27.2

Peak SWE (cm) 8.8 19.2

Peak SWE / Peak SWE measured 38.9% 70.6%

Modeled date of snowpack ripening April 25 May 29

Estimated date of snowpack ripening from field
SWE measurements

March 16 March 16

Date of snowpack ripening (days) 40 74

Modeled length of snowpack ablation period (days) 32 30

Measured length of snowpack ablation period
(days)

31 45

length of snowpack ablation (days) 1 -15

 

Table 6-2. Summary of the pre-calibration goodness-of-fit statistics for the
accumulation period of the water year 1988, for the HRUs 26 and 28.

Parameter HRU 26 HRU 28

e (cm) 2.3 2.9

e / Y 0.20 0.19

Se (cm) 3.1 3.1

Se / Sy 0.35 0.32



146

Table 6-3. Summary of the pre-calibration goodness-of-fit statistics for the ablation
period of the water year 1988, for the HRUs 26 and 28.

Parameter HRU 26 HRU 28

e (cm) 23.5 27.3

e / Y 4.70 3.94

Se (cm) 23.8 30.9

Se / Sy 2.83 6.43

A review of Tables 6-2 and 6-3 indicate that the proposed model fits the

measured data more accurately for the accumulation period for both HRUs.  The values

found in Table 6-2 indicate that the model performs very well for the accumulation

period, indicating an accurate model.  This fact can best be seen by the low values for  

Se / Sy  for each HRU.  These values imply that the model has significantly improved

the reliability of prediction over the mean measured SWE value.  The sample mean

error in Table 6-2 are also low, indicating that the predicted SWE values are close in

magnitude to the measured SWE values during the accumulation period.  Using model

results to make any predictions regarding SWE accumulation during this period will

provide accurate results.  However, the values found in Table 6-3 indicate that the

model does not accurately match the measured SWE data for the ablation period for the

water year 1988.  This is best shown by the fact that the Se / Sy values for both HRUs

during the ablation period are greater than 1.0.  Additionally, the sample mean error for

both HRUs are very high, signaling that the predicted SWE values differ significantly

from the measured SWE values.  Using model results to make any predictions regarding

runoff from melt during this period will result in substantial error.
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As was the case for the Upper Rio Grande Watershed, the high degree of

autocorrelation between the time series of SWE values prevented a hypothesis test being

performed to determine if the model is significantly biased.  Using Eq 5-1 on the 1988 

SWE data for HRUs 26 and 28 to determine the effective record lengths yields values of 

2.1 and 2.3, respectively.  These values indicate that two predictor points define the

entire SWE time series and that the bias experienced by these two predictor points

should be continuous for the entire time series.  Due to the small effective record length,

performing a hypothesis test using the “t” statistic was not feasible.

6.3 SUBJECTIVE OPTIMIZATION PROCESS

As for the Upper Rio Grande Watershed, the same subjective optimization

process was performed for the Reynolds Creek Watershed.  The same input parameters

as identified and discussed earlier were chosen to be modified, and the same criterion

was used for the subjective optimization procedure.  Based upon Figures 6-1 and 6-2,

attempts were made to increase net energy received at these HRUs so as to induce an

earlier beginning to the modeled ablation period.  This was accomplished by altering the

selected parameters (which cannot be estimated directly from measurements or maps)

accordingly.  Table 6-4 contains a summary of the pre-calibration and post-calibration

values for the previously identified input parameters.  Figures 6-3 and 6-4 show the

post-calibration results for the water year 1988, for the HRUs 26 and 28.
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Table 6-4. Summary of pre-calibration and post-calibration values for the identified
input parameters 

Parameter Physically realistic
range of values

Pre-calibration
value

Post-calibration
value

Sh 0 to 1.0 0.90 0.85

Fd 0 to 1.0 0.90 0.78

f3(F) -3.6 to -1.6 -2.6 -1.8

Tf 0 to -5 -2.5 -1.5

Figure 6-3.  Post-calibration results for HRU 26 for 1988
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Figure 6-4.  Post-calibration results for HRU 28 for 1988

A review of Figures 6-3 and 6-4 indicate that visually, the proposed model

matches the field SWE data for 1988 for these HRUs more accurately than for the

original model runs.  These figures also show an apparent bias in the ablation period

which will be further investigated.  To verify model improvement, all statistics were

recalculated for the post-calibration model runs.  The results of these calculations, and

the pre-calibration results can be found in Table 6-5.  Tables 6-6 and 6-7 contain the

summary of the goodness-of-fit statistics for the 1988 accumulation and ablation periods

for the pre-calibration and post-calibration runs for HRUs 26 and 28.

An inspection of Tables 6-5 through 6-7 indicate that the post-calibration model

fits the measured SWE data for this watershed more accurately than for the pre-



150

calibration model.  The goodness-of-fit and physically-based statistics are significantly

better for the post-calibration model runs. Fourteen trials were necessary to fit the

model.  The statistical values in Tables 6-5 through 6-7 represent the best run of the 14

trials. 

A review of Table 6-5 shows mixed results in terms of model accuracy.  The

sample mean error values for both HRUs are low indicating that the modeled SWE

values match the measured SWE values well during the water year. However, the Se / Sy

values are both moderately high, indicating that the predicted SWE value does not

provide a significant improvement in accuracy over using the mean SWE value.  The

model does provide accurate predictions in approximating the peak SWE values for

both HRUs for the water year. Estimating potential runoff from snow melt based upon

modeled results should provide accurate values.  This fact could provide crucial

information to downstream communities when developing a water budget for the

upcoming summer season.  The model also provides accurate estimates for the length of

the ablation period.  The results for predicting the date of snowpack ripening are mixed. 

The model does an accurate job of predicting this date for HRU 26 (7 day difference),

but does a poor job of predicting this date for HRU 28 (31 day difference).  Table 6-5

also indicates that the model matches the measured SWE data for HRU 26 better than

for HRU 28.    
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Table 6-5. Summary of the pre and post-calibration goodness-of-fit statistics for the
water year 1988 for the HRUs 26 and 28.

Parameter HRU 26 HRU 28

---------- Pre Post Pre Post

e (cm) 8.8 1.5 10.4 4.0

e / Y 1.05 0.18 0.83 0.27

Se (cm) 13.4 5.2 17.3 8.1

Se / Sy 1.24 0.61 1.25 0.79

Peak SWE modeled (cm) 31.4 22.6 46.4 27.9

Peak SWE measured (cm) 22.6 22.6 27.2 27.2

Peak SWE (cm) 8.8 0 19.2 0.7

Peak SWE / Peak SWE
measured

38.9% 0% 70.6% 2.6%

Modeled date of snowpack ripening April 25 March 23 May 29 April 16

Estimated date of snowpack
ripening from field SWE

measurements
March 16 March 16 March 16 March 16

Date of snowpack ripening
(days)

40 7 74 31

Modeled length of snowpack
ablation period (days)

32 28 30 37

Measured length of snowpack
ablation period (days)

31 31 45 44

length of snowpack ablation
(days)

1 -3 -15 -7
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Table 6-6. Summary of the pre and post-calibration goodness-of-fit statistics for the 
accumulation period of the water year 1988, for the HRUs 26 and 28.

Parameter HRU 26 HRU 28

---------- Pre Post Pre Post

e (cm) 2.3 0.1 2.9 0.5

e / Y 0.20 0.01 0.19 0.03

Se (cm) 3.1 2.2 3.1 1.2

Se / Sy 0.35 0.28 0.32 0.12

Table 6-7. Summary of the pre and post-calibration goodness-of-fit statistics for the
ablation period of the water year 1988, for the HRUs 26 and 28.

Parameter HRU 26 HRU 28

---------- Pre Post Pre Post

e (cm) 23.5 5.7 27.3 11.9

e / Y 4.70 1.14 3.94 1.72

Se (cm) 23.8 9.7 30.9 14.6

Se / Sy 2.83 1.05 6.43 1.65

The goodness-of-fit values found in Table 6-6 show that the model performs

accurately during the accumulation period for both HRUs.  The sample mean error and

the mean relative error show that the predicted SWE values nearly match the measured

SWE values during this period.  In addition, the Se / Sy values strongly suggest that the

model has improved the reliability of prediction for the accumulation period over the

mean measured SWE value.  The  goodness-of-fit values found in Table 6-7 show that

the model does not perform accurately during the ablation period for both HRUs.  The

sample mean error and the mean relative error show that the predicted SWE values
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differs significantly from the measured SWE values during this period.  In addition, the

Se / Sy values are both greater than 1.0, which suggest that the model has not been

successful in predicting SWE values during the ablation period.

As discussed above, and as was the case for the Upper Rio Grande Watershed,

the proposed model performs significantly better for both HRUs for the accumulation

period than for the ablation period. This fact initially points to the earlier discussion

from Chapter 5 concerning the difficulty of measuring net energy for each of the HRUs,

and that errors in net energy will cause more pronounced errors in SWE during the

ablation period than during the accumulation period. 

6.4 MODEL VALIDATION

The model was calibrated using the measured SWE data from 1988. This year

was chosen for calibration because the mean peak SWE value throughout the watershed

was approximately equal to the average mean peak SWE value for the eight water years 

The seven years of remaining data were used to validate the model results.  It was

decided to validate the model with seven years of data to provide the largest possible

sample size for determining model robustness.  The model was run for these years using

the finalized input parameters (Table 6-4) and all previously calculated goodness-of-fit

and physically-based statistics were determined for each of the seven years.  Tables 6-8

through 6-10 contain the results of the statistical analyses for both of the HRUs for the

seven remaining water years.  Within each table for each statistical parameter, three

values are reported.  These values correspond to the largest, smallest, and (seven year)
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average value determined for the particular parameter during the seven year period.

A review of Table 6-8 indicates that most goodness-of-fit statistics and

physically-based statistics, for the two HRUs for the remaining seven years of data,

approximate the level of accuracy determined for the calibration year 1988. The

goodness-of-fit statistics determined during the validation period are similar to the post-

calibration values for both HRUs.  The range of sample mean error and the mean

relative error values determined during the validation period are low indicating an

accurate model, while the range of Se / Sy  values indicate only a modest improvement in

predictive ability over the mean measured SWE value.  

The validation and post-calibration physically-based statistics are comparable for

HRU 26, but the same statistics show a significant improvement for HRU 28 for the

validation period date of snowpack ripening.  The validation period range of values

for this statistic indicate a significantly higher level of accuracy in predicting the date of

snowpack ripening.  Ultimately, these values again show that using the model to

estimate potential runoff should provide accurate estimates, providing useful

information for downstream communities.  Additionally, using the modeled results to

approximate the date of snowpack ripening, or the length of the ablation period should

yield estimates that are useful to these same communities, but not as accurate as the

potential volume of runoff.  
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Table 6-8. Summary of the post-calibration average goodness-of-fit statistics for the
water years 1989 - 1995 for the HRUs 26 and 28.

Parameter HRU 26 HRU 28

--------- Low Mean High Low Mean High

e (cm) -2.1 1.3 3.7 -9.9 3.5 5.6

e / Y -0.18 0.10 0.28 -0.49 0.19 0.27

Se (cm) 3.2 4.3 5.9 7.2 9.9 11.9

Se / Sy 0.48 0.55 0.66 0.58 0.71 0.80

Peak SWE modeled
(cm)

18.0 20.6 25.4 33.0 37.6 39.4

Peak SWE measured
(cm)

22.1 22.1 22.1 34.5 34.5 34.5

Peak SWE (cm) -4.1 -1.5 3.3 -1.5 3.1 4.9

Peak SWE / Peak
SWE measured

-18.6% -6.7% 14.9% -4.3% 8.9% 14.2%

Modeled date of
snowpack ripening

Feb. 9 Feb. 16 March
1

March
22

April 5 April
16

Estimated date of
snowpack ripening

from field SWE
measurements

Feb. 22 Feb. 22 Feb. 22 March
25

March
25

March
25

Date of snowpack
ripening (days)

-13 -6 7 -3 11 22

Modeled length of
snowpack ablation

period (days)
48 58 66 39 50 58

Measured length of
snowpack ablation

period (days)
45 45 45 44 44 44

length of snowpack
ablation (days)

3 13 21 -5 6 14
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Table 6-9. Summary of the post-calibration average goodness-of-fit statistics for the
accumulation period for the water years 1989 - 1995, for the HRUs 26
and 28.

Parameter HRU 26 HRU 28

-------- Low Mean High Low Mean High

e (cm) -1.4 1.8 3.1 -0.8 3.7 4.5

e / Y -0.17 0.15 0.28 -0.07 0.19 0.26

Se (cm) 2.6 3.2 3.5 4.0 4.8 5.7

Se / Sy 0.30 0.41 0.48 0.39 0.47 0.55

Table 6-10. Summary of the post-calibration average goodness-of-fit statistics for the
ablation period for the water years 1989 - 1995, for the HRUs 26 and 28.

Parameter HRU 26 HRU 28

------- Low Mean High Low Mean High

e (cm) -1.5 2.2 3.4 -1.1 8.7 9.5

e / Y -0.37 0.44 0.53 -0.14 0.86 0.93

Se (cm) 4.0 4.5 5.1 10.1 11.2 12.0

Se / Sy 0.54 0.64 0.75 0.88 1.01 1.13

 Tables 6-9 and 6-10 confirm that the model matches the measured SWE data

more accurately for both of the HRUs during the accumulation period than for the 

ablation period.  The difference, however, is not as significant as was found for the

Upper Rio Grande Watershed.  Tables 6-9 suggests that the model works moderately

well during the accumulation period for both HRUs.  The sample mean error for both

HRUs are low during the accumulation period indicating that the predicted SWE values

are close in magnitude to the measured SWE values.  However, the Se / Sy values  for
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both of the HRUs are between 0.4 and 0.5 suggesting that the model has improved the

reliability of prediction over the mean measured SWE value only moderately.  Table 6-

10 shows that the proposed model works moderately well for HRU 26 during the

ablation period, but predicts poorly for HRU 28 during the ablation period.  The sample

mean error for HRU 26 is low indicating accurate predictions during the ablation period

for this HRU but an Se / Sy value of 0.64 indicates only marginal improvement over

using the mean measured SWE value.  The sample mean error and the Se / Sy value are

both high for HRU 28 indicating that the model does not accurately fit the measured

SWE data during the ablation period for this HRU. 

As was the case with the Upper Rio Grande Watershed, both calibration sites,

for the Reynolds Creek Watershed, exist in one section of the watershed.  In this case,

both sites are located at the southern end of the watershed indicating less certainty about

model accuracy for the northern half of the watershed.  It is hypothesized that the

uncertainty is less for this watershed than for the Upper Rio Grande Watershed.  The

reasoning for this claim is that although no SWE data exists in the north sector of the

watershed, meteorological and precipitation data were available.  This was not the case

for the Upper Rio Grande Watershed, where the input and validation data were all

measured in the south/southwest sector of the watershed (see Figure 4-3).

6.5 BIAS ANALYSIS

A review of Figures 6-3 and 6-4 show that a bias exists in the ablation period for

both HRUs, for the water year 1988.  As was discussed for the Upper Rio Grande
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Watershed, this bias could suggest a systematic error in the model that needs to be

addressed.  Further inspection into the model output for all of the water years, however,

suggests that the error occurring during the ablation period is a random bias and not

indicative of a shortcoming in the model.  

  For HRU 26, when the sample mean error is inspected for the ablation period

for each of the water years, when compared to the field measured SWE data, the

modeled results over predict for five of the water years, under predict for two of the

water years, and match the measured SWE data accurately for one of the water years. 

Figure 6-5 shows the model predicted SWE values along with field measured SWE

values for HRU 26, for the water year 1990.  This figure clearly shows that the model is

under predicting during the ablation period when compared to the field measured SWE

data.  The corresponding sample mean error for this period of the water year is -2.1 cm. 

Figure 6-6 shows the model predicted SWE values along with the field measured SWE

values for HRU 26, for the water year 1992.  This figure clearly shows that visually, the

model accurately matches the field measured SWE data during the ablation period.   

The corresponding sample mean error for this period of the water year is 0.08 cm. 

Although the sample size is small (n = 8), the results for these water years (for this

HRU) indicate that the residuals associated with the ablation period represent a random

bias.  As previously discussed for the Upper Rio Grande Watershed, this bias is the

result of modeling uncertainties regarding net energy, or regarding total accumulation.  
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Figure 6-5.  Post-calibration results for HRU 26 for 1990

Figure 6-6.  Post-calibration results for HRU 26 for 1992
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A similar analysis can be performed for HRU 28.  When the sample mean error

is inspected for the ablation period for each of the water years, when compared to the

field measured SWE data, the modeled results over predict for five of the water years,

and under predict for three of the water years.  Figure 6-7 shows the model predicted

SWE values along with field measured SWE values for HRU 28, for the water year

1994.  This figure clearly shows that the model is under predicting during the ablation

period when compared to the field measured SWE data.  The corresponding sample

mean error for this period of the water year is -9.9 cm.  Again, with a limited sample

size (n = 8), the results for these water years (for this HRU) indicate that the residuals

associated with the ablation period represent a random bias, again as a result of

modeling uncertainties regarding net energy.  

Figure 6-7.Post-calibration results for HRU 28 for 1994
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A review of Table 4-5 indicates that both HRUs 26 and 28 are forested.  This

suggests that the results of this bias analysis should match the results performed for

HRUs 40 and 50 (both forested) of the Upper Rio Grande Watershed (Section 5-5). 

However, this is not the case.  The reason that the results are different for these forested

HRUs is that the field measured SWE values were not isolated from canopy obstruction

as were the SNOTEL measurements for the Upper Rio Grande Watershed.  The SWE

values obtained for the Reynolds Creek Watershed in HRUs 26 and 28 were

representative of the entire HRU, unlike the SNOTEL SWE values.  HRUs 26 and 28

are only partially forested and the forest type is a mixture of deciduous and coniferous

(see Table 4-5), as opposed to the HRUs 40 and 50 from the Upper Rio Grande

Watershed which were both completely forested by conifers (see Table 4-1).

6.6 SUMMARY OF RESULTS 

The results presented in this chapter for the Reynolds Creek Watershed indicate

that the model performs well during the accumulation period and provides accurate peak

predictions when compared to the field measured SWE data.  This suggests that using

this model to estimate the volume of potential runoff from a snowpack should provide

an accurate estimate.  This could prove significant in predicting potential downstream

water shortages from a small seasonal snowpack, or in predicting the potential

generation of hydroelectric power downstream of the snowpack.

The results also show that the model does not perform accurately during the

ablation period for the forested HRU.  This implies the existence of a random bias that



162

is caused by the inability to accurately model net energy at a point.  As a result, it is not

recommended to use this model to make predictions during the ablation period, such as

identifying possible severe stream discharge events based upon the length of the

ablation period.  Results were not available for nonforested HRUs, because both sites

with field measured SWE data were forested, but it is highly probable that the results

would mirror the results for the nonforested HRU for the Upper Rio Grande Watershed

in which the model did not perform accurately during the ablation period, due to

inaccuracies in modeling net energy at a point.
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CHAPTER 7

 IMPLEMENTATION AND CALIBRATION OF  THE MODEL
FOR THE EMERALD LAKE  WATERSHED

7.1 INTRODUCTION

As discussed for the two previous watersheds, one of the objectives of the

research is to demonstrate the proper calibration and validation of the model using data

collected from various watersheds.  This chapter will accomplish this task by discussing

the implementation, calibration, and validation of the proposed model for the Emerald

Lake Watershed.  Pre-calibration results of the model will be compared using graphical

results, standard goodness-of-fit statistics, and physically-based statistics.  The

subjective optimization procedure, as discussed in Chapter 5,  used to improve upon the

accuracy of the model results, will also be demonstrated.   An analysis showing the

improvement in model accuracy achieved as a result of the optimization process will be

demonstrated by comparing modeled results with those obtained during the pre-

calibration phase.  This is referred to in this chapter as the post-calibration phase.  The

improvement in accuracy for these cases can be compared using the same techniques as

outlined for the pre-calibration phase. Model validation will be performed by running

the model with additional years of data.  Finally, the model performance will be

assessed.
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7.2 PRE-CALIBRATION MODEL RESULTS

For the Emerald Lake Watershed, the model was initially run for the water year

1996, for the following HRUs: 1, 2, 5, 6 and 8.  These HRUs correspond to the SWE

measurement locations shown on Figure 4-14.  The water year 1996 was chosen as the

calibration year because it provided the most SWE field measurements.  Unlike the

Upper Rio Grande Watershed, which had daily SWE data, or even the Reynolds Creek

Watershed, which had approximately bimonthly SWE data, SWE data for the Emerald

Lake Watershed consists of approximately four measurements taken during the water

year.  The trade-off from the earlier mentioned watersheds, is that SWE data exists in

more of the HRUs for the Emerald Lake Watershed than in the two previous

watersheds.  As a result, greater assurance on how the model is functioning throughout

the entire watershed for Emerald Lake can be ascertained than for either of the previous

watersheds.  The results of the initial model run for these HRUs are presented

graphically in Figures 7-1 through 7-5.
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Figure 7-1.  Initial model results for HRU 1 for 1996 

Figure 7-2.  Initial model results for HRU 2 for 1996
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Figure 7-3.  Initial model results for HRU 5 for 1996

Figure 7-4.  Initial model results for HRU 6 for 1996
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Figure 7-5.  Initial model results for HRU 8 for 1996

A review of Figures 7-1 through 7-5 demonstrates that the pre-calibration model

does not accurately match the field measured SWE data for this watershed.  These

figures show that for all HRUs, the ablation period is occurring too early in the water

year.  This fact suggests that the model is over predicting the net energy received at

these HRUs, causing the premature occurrence of the date of snowpack ripening.  As a

result, the beginning of the melt season occurs too early.  During the calibration period,

free parameters affecting the net energy received for these HRUs were altered to address

the identified problem.    

As was the case for the previous watersheds, statistical analyses were performed

on these initial runs to help determine how well the proposed model fit the measured
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data.  Unlike the previous watersheds, the analysis was only performed for the entire

water year, and not the accumulation season and the ablation season.  The reason for

this is that the sample size is already very small (n = 4).  To further subdivide these few

data points would be fruitless.  The same goodness-of-fit statistics that were used for the

Upper Rio Grande and Reynolds Creek watersheds were also calculated for the Emerald

Lake Watershed.  However, the physically-based statistics previously calculated could

not be used for this watershed due to a lack of measured SWE data.  With only four data

point, predicting peak measured SWE, estimating when the snowpack has ripened, or

determining the length of the ablation period is not possible.  Table 7-1 contains a

summary of the goodness-of-fit statistics discussed above for the entire water year 1996,

for the HRUs 1, 2, 5, 6 and 8.

Table 7-1. Summary of the goodness-of-fit statistics for the water year 1996, for the
HRUs 1, 2, 5, 6 and 8.

-------- e (cm) e / Y Se (cm) Se / Sy

HRU 1 -33.4 -0.32 26.5 3.79

HRU 2 -44.8 -0.37 33.9 3.13

HRU 5 -28.0 -0.20 55.4 4.81

HRU 6 -12.7 -0.11 29.2 3.87

HRU 8 -106.4 -0.59 142.8 2.81

A review of Table 7-1 indicates that the proposed model does not accurately

match the field SWE data for any of the HRUs.  This fact can best be seen by the very

high values of Se / Sy for each HRU.  These values are all greater than 1.0, indicating
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that the interannual mean SWE value provides a more accurate prediction for SWE than

the model results.  This fact can also be seen by the high values for the sample mean

error, the mean relative error, and the standard error of the estimate.  Attempts to use

this model to make any predictions regarding SWE for this watershed will result in

significant errors.  Substantial improvement in all of these parameters is required before

the proposed model can be considered accurate.

Autocorrelation between the time series of measured SWE values was not tested

due to the small sample size.  The small sample size dictated that it was not feasible to

perform a hypothesis test using the “t” statistic to test for model bias.

7.3 SUBJECTIVE OPTIMIZATION PROCESS

As was the case with the previous two watersheds, the same subjective

optimization process was performed for the Emerald Lake Watershed.  The same input

parameters, as identified earlier, were chosen to be modified, and the same criterion was

used for the subjective optimization procedure.  As mentioned earlier, attempts were

made to decrease net energy received at these HRUs by altering the input parameters

accordingly, to allow for later seasonal snow ablation.  Table 7-2 contains a summary of

the pre-calibration and post-calibration values for the identified input parameters.  

Figures 7-6 through 7-10 show the post-calibration results for the water year

1996, for the HRUs 1,2, 5, 6 and 8.  A review of Figures 7-6 and 7-10 indicate that

visually, the proposed model matches the field data for 1996 for these sites more

accurately than for the original model runs, although the model fit for HRU 8 remains
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poor.  Except for Figure 7-10, these figures show a marked improvement in more

accurately matching the measured SWE data at the onset of the ablation period than did

Figures 7-1 through 7-5.  To verify model improvement, all statistics were recalculated

for the post-calibration model runs.  The results of these calculations can be found in

Table 7-3.

Table 7-2. Summary of pre-calibration and post-calibration values for the identified
input parameters.

Parameter Physically realistic
range of values

Pre-calibration
value

Post-calibration
value

Sh 0 to 1.0 0.90 0.78

Fd 0 to 1.0 0.90 0.80

f3(F) -3.6 to -1.6 -2.6 -2.0

Tf 0 to -5 -2.5 -1.2

Figure 7-6.  Post-calibration results for HRU 1 for 1996
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Figure 7-7.  Post-calibration results for HRU 2 for 1996

Figure 7-8.  Post-calibration results for HRU 5 for 1996
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Figure 7-9.  Post-calibration results for HRU 6 for 1996

Figure 7-10.  Post-calibration results for HRU 8 for 1996
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Table 7-3. Comparison of the pre and post-calibration goodness-of-fit statistics for
the water year 1996 for the HRUs 1, 2, 5, 6 and 8.

-------- e (cm) e / Y Se (cm) Se / Sy

Pre Post Pre Post Pre Post Pre Post

HRU 1 -33.4 6.0 -0.32 0.08 26.5 9.1 3.79 0.97

HRU 2 -44.8 -7.4 -0.37 -0.06 33.9 10.6 3.13 0.93

HRU 5 -28.0 4.4 -0.20 0.05 55.4 9.9 4.81 0.86

HRU 6 -12.7 2.5 -0.11 0.04 29.2 6.3 3.87 0.83

HRU 8 -106.4 -50.2 -0.59 -0.28 142.8 61.6 2.81 1.21

A review of Table 7-3 indicates that the post-calibration model fits the measured

SWE data for this watershed more accurately than for the pre-calibration model.  All

goodness-of-fit statistics are significantly better for the post-calibration model runs.

Seventeen trials were necessary to fit the model.  The statistical values in Table 7-3

represent the best of the 17 runs.    

A review of Table 7-3 shows mixed results, in terms of model accuracy.  The

sample mean error, and mean relative error values for these HRUs are low (all but HRU

8), indicating that the model predictions match the field measured SWE values well. 

However, the Se values are moderately high, and the Se / Sy values are very high, all

close to, or greater than 1.0, indicating that the predicted SWE value does not provide a

significant improvement in accuracy over using the interannual mean SWE value.  

Due to such a small sample size (n = 4), a great deal of confidence cannot be

placed in the goodness-of-fit statistics.  With this in mind, it is difficult to directly

analyze the accuracy of the proposed model based solely upon the results found in Table
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7-3.  Although the results found in Table 7-3 indicate mixed results in terms of model

accuracy, Figures 7-6 through 7-10 at least visually indicate that the model does match

the measured SWE values relatively well, except for HRU 8.

A hypothesis for why the model accuracy is not as good for this watershed as it

was for the other two watersheds is that the model predicts that significant avalanching

occurs during the water year 1996.  A review of Table 7-3 shows that the model

accuracy is lowest for HRU 8.  This HRU is in the low-lying section of the watershed,

and the model predicts 75 cm of SWE being transported into HRU 8, from the

surrounding HRUs, due to avalanching.  Figure 7-11 shows a time series of SWE

received at HRU 8 due to avalanching during the water year 1996.  According to

Sulakvelidze and Dolov (1973), the developed equation for avalanching transport

generally yields SWE values that are within  + 15% of the actual SWE value. 

Additionally, the model predicts avalanching based upon the daily meteorological

conditions, and these events may or may not occur in nature as predicted by the model. 

These facts are most likely the greatest source of error in estimating the SWE value for

all the HRUs and especially HRU 8.

7.4 MODEL VALIDATION

Unlike the previous watersheds, only one additional year of remaining data was

available to validate the model results.  The remaining three years of existing data

contain only two SWE measurements during the water year, so goodness-of-fit statistics

were not calculated for these three years.  The goodness-of-fit statistics were determined 
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for 1997, the additional year with four measured SWE values.  Table 7-4 contains the 

statistical values for the HRUs for the water years 1996 and 1997.

Figure 7-11.  SWE received at HRU 8 due to avalanching for 1996

Table 7-4. Summary of the post-calibration goodness-of-fit statistics for the water
years 1996 and 1997 for the HRUs 1, 2, 5, 6 and 8 (1996 is the
calibration year and 1997 is the validation year). 

-------- e (cm) e / Y Se (cm) Se / Sy

1996 1997 1996 1997 1996 1997 1996 1997

HRU 1 6.0 4.8 0.08 0.11 9.1 7.9 0.97 0.72

HRU 2 -7.4 8.1 -0.06 0.14 10.6 10.9 0.93 0.76

HRU 5 4.4 6.4 0.05 0.09 9.9 10.3 0.86 0.73

HRU 6 2.5 3.5 0.04 0.09 6.3 6.6 0.83 0.67

HRU 8 -50.2 -20.3 -0.28 -0.14 61.6 18.6 1.21 0.89
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A review of Table 7-4 indicates that the model accuracy has modestly improved 

for the HRUs 1, 2, 5, and 6 for the water year 1997, as compared to 1996.  The sample

mean error, relative mean error, and Se values are nearly the same for these HRUs for

1996 and 1997.  These values are low, again indicating that the model predictions match

the field measured SWE values well for the water year 1997.  The improvement in

model accuracy for these HRUs can be found in the modest improvement in the Se / Sy

values.  Although improved, these Se / Sy values still do not indicate a significant

improvement in predictive accuracy over the interannual mean value of measured SWE.

The goodness-of-fit statistics for HRU 8, found in Table 7-4 show significant

improvement in model accuracy for the water year 1997 when compared to 1996.  The

sample mean error, relative mean error, and Se values are significantly better for this 

HRU.  Additionally, the Se / Sy value is modestly improved for HRU 8 for the water

year 1997.  Although improved, the goodness-of-fit statistics for HRU 8 still indicate

low model accuracy.

 The improvement in goodness-of-fit statistics for the water year 1997,

especially for HRU 8, most likely coincides with the fact that the model predicts much

less avalanching for the water year 1997 than for the water year 1996.  HRU 8 received

only 5 cm of SWE via avalanching from the other HRUs during the water year 1997, as

opposed to the 75 cm of SWE received by HRU 8 during the water year 1996.  The

prediction of less avalanching for the water year 1997, leads to less model uncertainty in

SWE transport between HRUs, and would account for an increase in model accuracy, as

depicted for 1997.
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7.5 SUMMARY OF RESULTS

The goodness-of-fit statistics indicate mixed results in model accuracy for the

Emerald Lake Watershed.  However, with only four field SWE measurements for two

water years, the information learned from the statistical analyses is limited.

The model results for this watershed do demonstrate the difficulties in accurately

predicting avalanching.  These difficulties include determining if an avalanche occurs,

and if it does, what volume of SWE is transported because of it.  Not surprising, the

goodness-of-fit statistics were better for the water year 1996, a year of little predicted

avalanching, than for 1997, a year of significant predicted avalanching.  The

consequence of this difficulty would not affect crudely estimating the potential volume

of runoff from this watershed.  The total SWE within the watershed has been calculated

by the model, and the difficult in avalanche predicting will only mean errors in the

distribution of SWE to the various HRUs but not the total volume of SWE within the

watershed.  Significant errors could occur if the model is used to predict events

associated with the ablation period, such as extreme discharge events, because the

timing of the melt process will be influenced by errors in the spatial distribution of SWE

throughout the watershed. 
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CHAPTER 8

SENSITIVITY ANALYSIS 

8.1 INTRODUCTION

Two objectives of the research are: (1) to demonstrate the effects of the physical

variables and parameters on the SWE distribution within a watershed, and (2) to show

the benefit of additional data on model accuracy and when and where to collect the data. 

These objectives can be accomplished by means of performing post-calibration

sensitivity analyses.  A sensitivity analysis performed on the model input parameters can

assess the relative importance of the input parameters and examine the effect of error in

the input parameters on error in the model output.  Additionally, a sensitivity analysis

can be performed on the available SWE data for the watersheds to determine if the

availability of daily, bimonthly, or sporadic SWE measurements plays a role in model

accuracy. 

A sensitivity analysis can also be performed on the procedure of subdividing the

watershed into HRUs, to determine the sensitivity of the model output to the

subdivision process.  As previously mentioned in Chapter 4, the process of subdividing

the watershed into HRUs is subjective; therefore, a watershed can be subdivided many

different ways.  The proposed model can be implemented for several variations, and the

model output compared and analyzed for these different variations. 
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8.2 ANALYSIS OF OPTIMIZATION PARAMETERS

8.2.1 Introduction

As discussed in Chapters 5 through 7, several input parameters were optimized

primarily due to difficulty in collecting the measured data required to estimate them. 

These parameters were: Sh, Fd, f3(F), and Tf.  Sensitivity analyses was used to establish

the relative importance of these uncertain input parameters.  Sensitivity analyses was

also used to determine the consequences, in terms of error in the model output, of the

uncertainty in these input parameters.  Relative sensitivity ($r) is defined as the

percentage change in one factor due to a 1% change in another factor, and was used to

evaluate the relative importance of these uncertain input parameters.  The equation for

relative sensitivity is as follows:

(8-1)

Relative sensitivity values are dimensionless.  Additionally, deviation sensitivity ($d) is

defined as a change in a factor due to a change in a second factor, and will be used to

examine the effect of errors in the identified input parameters on error in the model

output. The equation for deviation sensitivity is as follows:

              (8-2)

Deviation sensitivity values have units of the output variable Y, or in this case, SWE. 

Performing these analyses will provide information to the model user in terms of the
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importance of data collection for the four identified input parameters.  If these analyses

show that these four parameters have little impact on model output, then this would

justify setting these parameters as constants as opposed to spending the time and money

required to field collect these data.  This would also indicate that model accuracy is not

significantly dependent upon the values chosen for these parameters.  If these analyses

show the opposite results, this would indicate to the modeler that proper data collection

for these input parameters are essential for model accuracy.

The sensitivity analysis was performed by changing the value for one of the four

identified input parameters in the model programming.  The next step was to rerun the

model for each of the three watersheds, for all of the previously examined water years. 

Next, the resulting model output was compared to the initial model output for each day

of the water year.  From this comparison, the following values were calculated: 1) the

mean difference in daily SWE, 2) the range of differences in daily SWE, and 3) the

difference in peak SWE value.  These calculated difference were then used along with

Equations 8-1 and 8-2 to calculate the relative sensitivity and deviation sensitivity for

these four parameters, for an average SWE value during the entire water year, a range of

SWE values during the water year, and for the peak SWE value.  Finally, the mean

value of relative and deviation sensitivity for all of the alternate runs were determined, 

for the mean difference in SWE for the entire water year, the range in SWE over the

entire water year, and for the difference in peak SWE values.

The analysis was subdivided into three categories: HRUs that are completely

forested, HRUs that are partially forested, and HRUs that lack a forest cover.  This
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subdivision was deemed necessary because the model sensitivity to these four input

parameters was expected to vary depending upon canopy cover.  Two of the four input

parameters, Fd and f3(F), are only prevalent for forested HRUs, and a third parameter, Sh,

is most likely significantly dependent upon HRU forest cover.  To further explain, to

simplify calculating net solar radiation, the model has a greater sensitivity to the terrain

shading factor, Sh, for a nonforested HRU than for a forested HRU.  This is due to the

fact that the model algorithm used to calculate incoming solar radiation has been set up

so that canopy cover greatly diminishes the amount of received incoming solar radiation

to an HRU and thus changes in the terrain shading factor will result in smaller changes

in received incoming solar radiation for a forested HRU compared to a nonforested

HRU.

8.2.2 Sensitivity Analyses for Completely Forested HRUs

Table 8-1. Summary of the mean relative sensitivity values for the four input
parameters for a completely forested HRU.

Rank Parameter
Range of $r for

daily SWE values
for entire water

year

$r  for mean SWE
value for entire

water year

$r  for peak SWE
value

1 Fd 0 to -3.68 -2.33 -1.98

2 f3(F) 0 to -2.45 -1.61 -1.08

3 Tf 0 to -2.07 -1.19 -0.85

4 Sh 0 to -0.11 -0.01 -0.008

Table 8-1 contains a summary of the mean relative sensitivity values for the four
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input parameters for a completely forested HRU.  A review of this table shows two

generalizations.  First, all values found in these tables are negative.  This fact indicates

that as the parameters increase in magnitude, the predicted SWE values decrease in

magnitude.  Based upon the equations that contain these parameters, this finding is

rational and lends credence to the sensitivity analysis being performed correctly. 

Second,  the relative sensitivity values for all four of the parameters are greater in

absolute magnitude when analyzing the sensitivity of the mean SWE value for the entire

water year than for analyzing the sensitivity of the peak SWE value.  The reason for this

is that changes in these input parameters significantly affect net energy received at an

HRU, and as previously discussed, thus greatly affect SWE values during the ablation

period.  This causes greater SWE differences late in the ablation period than at the time

of snowpack ripening, corresponding to peak SWE values.

This second generalization can further be substantiated by realizing that the

largest values for the relative sensitivity of daily SWE occur at the end of the melt

season for all four parameters.  Changes in these four parameters result in changes in net

energy received during the water year.  In turn, changes in net energy result in changes

in the date in which the snowpack ripens and melt begins, and changes in the date in

which the snowpack has completely ablated.  When the input parameters are increased,

the snowpack disappears on an earlier date.  Consequently, the largest relative

sensitivity values for all four parameters occur on days when the predicted snowpack

has been completely ablated (using the increased parameters), and these values are

compared to days when the snowpack exists under controlled modeled conditions.  The
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opposite of this is true when the input parameters are decreased.  

A review of Table 8-1 shows that the relative sensitivity values are significant

(an absolute value greater that 1.0) for Fd, f3(F), and Tf  in terms of the mean SWE value

for the entire water year.  These values indicate that the model is very sensitive to

changes in these three input parameters for completely forested HRUs. In terms of

model sensitivity to the mean SWE value, Fd is twice as important a parameter as is Tf,

and Fd is one and one-half times more important a parameter than f3(F).  Consequently,

these facts indicate that in order to achieve credible modeling results for forested HRUs,

accurate input data for these parameters are important, and if resources are limited, data

should be collected first for Fd, then for f3(F), and finally for Tf.  Not surprisingly, Table

8-1 demonstrates that for forested HRUs, Sh is insignificant.  As mentioned earlier, the

model has been set up so that incoming solar radiation is greatly reduced for a

completely forested HRU, and changes in the terrain shading parameter have little effect

on total net energy received at a point, and thus SWE. 

A review of Table 8-1 also shows that the relative sensitivity values are

significant for Fd, f3(F), and Tf  in terms of the peak SWE value.  These values indicate

that peak SWE is very sensitive to changes in these three input parameters for

completely forested HRUs. In terms of model sensitivity of the peak SWE value, Fd is

twice as important a parameter as is f3(F), and Fd is two and one-half times more

important a parameter than Tf.  Consequently, these facts indicate that in order to

achieve credible modeling predictions of peak SWE for forested HRUs, accurate input

data for these parameters are important, and if resources are limited, data should be
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collected first for Fd, then for f3(F), and finally for Tf.  Again, as expected, Table 8-1

demonstrates that for forested HRUs, Sh is insignificant in controlling peak SWE.  

Table 8-2. Summary of the mean deviation sensitivity values for the four input
parameters for a completely forested HRU.

Parameter Physically
realistic

value range

Change in
parameter

value

$d  for mean SWE
value for entire water

year (cm)

$d  for peak SWE
value (cm)

f3(F) -3.6 to -1.6 +/- 10% +/- 0.43 +/- 0.32

Tf 0 to -5 +/- 10% +/- 0.73 +/- 0.71

Fd 0 to 1.0 +/- 10% +/- 0.59 +/- 0.48

Sh 0 to 1.0 +/- 10% +/- 0.03 +/- 0.01

Table 8-2 contains a summary of the mean deviation sensitivity values for the

four input parameters for a completely forested HRU.  Typically, a deviation analysis

involves determining the expected error in the criterion variable due to inaccuracies of

the input data.  The assumption made for this table is that the inaccuracies associated

with these input parameters are +/- 10%.  Extensive on-site data collection would be

required at all three watersheds to better determine the actual inaccuracies of these input

parameters, but this was not feasible for this study.  The deviation sensitivity values

found in this table are based upon this assumption of +/- 10% input parameter

inaccuracy.  Consequently, 10% was added to and subtracted from the actual parameter

value to determine the deviation sensitivity values. 

As was the case for the relative sensitivity values found in Table 8-1, all of the

deviation sensitivity values associated with errors in the mean SWE values are greater



185

than the deviation sensitivity values associated with errors in the peak SWE values. 

Again this generalization is due to greater SWE errors being realized late in the ablation

period due to the uncertainty of modeling net energy at a point.

Table 8-2 shows that significant errors could occur in estimating SWE for

completely forested HRUs when errors exist in the parameters Fd, f3(F), and Tf. 

Potential for greater errors in SWE exist with inaccuracies in f3(F) and Tf, than for Fd. 

The reason for this is that f3(F) and Tf have a greater physical range in value than does

Fd.  This is especially true for Tf, which could be in error by several degrees Celsius.  

Table 8-2 also indicates that inaccuracies in Sh have almost no effect on SWE

output.  As discussed earlier, inaccuracies in the shading factor are inconsequential for

HRUs that are completely forested.

8.2.3 Sensitivity Analyses for Partially Forested HRUs

Table 8-3 contains a summary of the mean relative sensitivity values for the four

input parameters for a partially forested HRU.  A review of this table shows the same

two generalizations that were noted, and discussed, in Table 8-1.  The highest values

found for the daily relative sensitivity values again coincide with the end of the ablation

period, the explanation for which has been discussed in Section 8.2.2.
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Table 8-3. Summary of the mean relative sensitivity values for the four input
parameters for a partially forested HRU.

Rank Parameter
Range of $r for

daily SWE values
for entire water

year

$r  for mean SWE
value for entire water

year

$r  for peak
SWE value

1 Sh 0 to -2.32 -1.24 -0.19

2 f3(F) 0 to -1.87 -1.05 -0.15

3 Fd 0 to -1.01 -0.35 -0.06

4 Tf 0 to -0.87 -0.33 -0.02

Table 8-3 shows that the relative sensitivity values are significant for Sh, and

f3(F)  for the mean value for the entire water year.  These values indicate that the model

results  for partially forested HRUs are very sensitive to changes in these two input

parameters.  Table 8-2 also shows that the model has little sensitivity to changes in Fd

and Tf  for partially forested HRUs.  In terms of model sensitivity to the mean SWE

value, Sh and f3(F) are approximately the same and are three times as important as are Tf

and Fd.  This table suggests that modeling results, in terms of mean SWE values for

partially forested HRUs, will greatly depend upon accurate input data for Sh and f3(F).  

This table also shows that the model is not sensitive to changes in these four

input parameters in terms of changes to peak SWE values.  In terms of model sensitivity

of the peak SWE value, Sh and f3(F) are again approximately the same and are three

times as important as is Fd, and are approximately twelve times more important than Tf.

Ultimately, this table indicates that in order to achieve credible modeling results

for partially forested HRUs, accurate input data for the parameters Sh and f3(F) are
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important, and if resources are limited, data should be collected first for Sh, then for

f3(F), and finally for the less important parameters Fd and Tf. 

Table 8-4 contains a summary of the mean deviation sensitivity values for the

four input parameters for a partially forested HRU.  An assumption again is made for

this table that the inaccuracies associated with these input parameters are +/- 10%. As

was the case for the relative sensitivity values found in Table 8-3, all of the deviation

sensitivity values associated with errors in the mean SWE values are greater than the

deviation sensitivity values associated with errors in the peak SWE values.  Again this

generalization is due to greater SWE errors being realized late in the ablation period due

to the uncertainty of modeling net energy at a point. 

Table 8-4. Summary of the mean deviation sensitivity values for the four input
parameters for a partially forested HRU.

Parameter Physically
realistic

value range

Change in
parameter

value

$d for mean SWE
value for entire water

year (cm)

$d for peak SWE
value (cm)

f3(F) -3.6 to -1.6 +/- 10% +/- 0.23 +/- 0.13

Tf 0 to -5 +/- 10% +/- 0.39 +/- 0.22

Fd 0 to 1.0 +/- 10% +/- 0.21 +/- 0.12

Sh 0 to 1.0 +/- 10% +/- 0.73 +/- 0.23

Table 8-4 shows that moderate errors occur in estimating the mean SWE value

for partially forested HRUs when inaccuracies exist in all four parameters.  This is

especially true for Tf.  This parameter could contain an error of several degrees Celsius,

and if this is the case, the resulting error in the mean SWE value would become
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significant. This table suggests the importance of accurately collecting data for these 

input parameters so as to minimize the error in the mean SWE value for partially

forested HRUs. 

Table 8-4 also shows that significant errors do not occur in estimating the peak

SWE value for partially forested HRUs even when the maximum errors exist in the

parameters Fd, f3(F), and Sh.  This fact indicates that estimating these input parameters

for a partially forested HRU will not significantly affect the peak SWE model

prediction.  This is not the case, however, for Tf.  If this parameter is off by several

degrees Celsius, the resulting error in the peak SWE value would become significant. 

8.2.4 Sensitivity Analyses for Nonforested HRUs

 Table 8-5 contains a summary of the mean relative sensitivity values for the

four input parameters for a nonforested HRU.  A review of this table shows the same

two generalizations that were noted, and discussed, in Table 8-1.  The highest values

found for the daily relative sensitivity values again coincide with the end of the ablation

period, the explanation for which has been discussed in Section 8.2.2. 

In terms of the mean SWE value, this table indicates that the only significant

value is for the terrain shading factor, Sh, indicating that the model is sensitive to

changes in Sh,  for nonforested HRUs.  As a result, modeling results for nonforested

HRUs will greatly depend upon accurate input data for Sh.  In terms of model sensitivity

of the mean SWE value, Sh is six times as important a parameter as is Tf. 
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Table 8-5. Summary of the mean relative sensitivity values for the four input
parameters for a nonforested HRU.

Rank Parameter
Range of $r for

daily SWE values
for entire water

year

$r for mean SWE
value for entire water

year

$r for peak SWE
value

1 Sh 0 to -3.06 -1.92 -0.32

2 Tf 0 to -0.78 -0.30 -0.02

3 f3(F) NA NA NA

4 Fd NA NA NA

In terms of the peak SWE value, this table indicates that the modeled SWE

output is not sensitive to the changes in any of the four input parameters for nonforested

HRUs.  In terms of relative importance, Sh is three times as important as is Tf.  

This table suggests that modeling results in terms of mean SWE values for

nonforested HRUs will greatly depend upon accurate input data for Sh.  Also, this table

indicates that in order to achieve credible modeling results for nonforested HRUs,

accurate input data for the parameter Sh are important, and if resources are limited, data

should be collected first for Sh, and then for the less important parameter Tf.  Table 8-5

contains no sensitivity values for f3(F) and Fd because these parameters are only used for

HRUs that have some degree of forest cover.
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Table 8-6. Summary of the mean deviation sensitivity values for the four input
parameters for a nonforested HRU.

Parameter Physically
realistic

value range

Change in
parameter

value

$d for mean SWE
value for entire
water year (cm)

$d for peak SWE
value (cm)

f3(F) -3.6 to -1.6 +/- 10% NA NA

Tf 0 to -5 +/- 10% +/- 0.33 +/- 0.15

Fd 0 to 1.0 +/- 10% NA NA

Sh 0 to 1.0 +/- 10% +/- 1.03 +/- 0.67

 Table 8-6 contains a summary of the mean deviation sensitivity values for the

four input parameters for a nonforested HRU.  An assumption again is made for this

table that the inaccuracies associated with these input parameters are +/- 10%.  As was

the case for the relative sensitivity values found in Table 8-5, all of the deviation

sensitivity values associated with errors in the mean SWE values are greater than the

deviation sensitivity values associated with errors in the peak SWE values.  Again this

generalization is due to greater SWE errors being realized late in the ablation period due

to the uncertainty of modeling net energy at a point. 

Table 8-6 shows that significant errors could occur in estimating SWE for      

nonforested HRUs when errors exist in the parameter Sh.  This could also be the case for

Tf, if this parameter is off by several degrees Celsius.  If small inaccuracies exist in this

parameter, the resulting error in SWE output would be insignificant.  

8.2.5 Conclusions Regarding the Input parameters    

Tables 8-1 through 8-3 indicate that as the HRU becomes more forested, the
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model becomes more sensitive to changes in Fd, f3(F), and Tf, while the model becomes

less sensitive to changes in Sh.  These tables also shows that for different degrees of

forest cover, all four of the optimized parameters are significant in terms of model

sensitivity, indicating the need for accurate input data.  Consequently, for a watershed

that contains HRUs having varying forest cover, rigorous data collection of all four of

these input parameters is essential to ensure model accuracy.

Tables 8-4 through 8-6 show that significant errors in SWE prediction can occur

if appreciable errors exist in these four input parameters.  The calibration process for the

three watersheds studied involved calibrating these four input parameters for only a

small number of HRUs within each watershed.  For the Upper Rio Grande Watershed

and the Reynolds Creek Watershed, the number of calibrated HRUs represented a small

percentage of the total watershed.  This last fact strongly suggests that accurate data

collection of these input parameters is essential.  To clarify this point, during the

calibration process for the Upper Rio Grande Watershed, the final value for f3(F) was

determined to be -1.6, based upon the results from HRUs 40 and 50.  This value for

f3(F) indicates that the canopy within these HRUs are jack pine (Dingman, 1994).  As

discussed in Chapter 4, several different tree species exist within this watershed.  Each

tree species will have a different f3(F) value associated with it.  Yet, the calibration

process assumes a value of -1.6 for f3(F) for all of the forested HRUs.  If an HRU

actually has balsam fir, which would have a corresponding f3(F) value of -3.6 (Dingman,

1994), a significant error in both input parameter and SWE value would occur.  To

prevent this from happening, accurate data should be collected for these four input
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parameters for each HRU within the watershed.  This would ensure that each HRU had

spatially accurate data, as opposed to calibrating a single value for the entire watershed. 

These values could then be included in the input file created for each HRU, as described

in Chapter 4, as opposed to being a generalized input parameter utilized by the model

for all HRUs.

The terrain shading factor, Sh, was determined to be a significant parameter for

nonforested and partially forested HRUs.  Several sources suggest a more realistic

approach to estimating this parameter.  Dubayah (1994) and Tarboton and Luce (1996)

note that a terrain shading factor should vary with location and time, as the sun’s

incidence angle changes through the season.

8.3 ANALYSIS OF METEOROLOGICAL INPUT VARIABLES

8.3.1 Introduction

Tarboton and Luce (1996) quoted a previous study performed by Charbonneau

(1981) in which Charbonneau tested different snowmelt runoff models, and “concluded

that the choice of interpolation procedures for input data such as air temperature and

precipitation is much more crucial than the level of sophistication of individual

snowmelt models.”  This quote underscores the importance of assessing the impact of

meteorological input data upon the accuracy of the developed model.  Post-calibration

determination of model sensitivity to meteorological data will provide the model user

with significant information about the amount and type of required meteorological data,

and may help to show the benefit of additional data on model accuracy. 
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Both relative sensitivity and deviation sensitivity analyses was performed on the

meteorological data.  Relative sensitivity analysis can provide information to the model

user as to which of the meteorological input data are most important.  Collecting and

processing data can be difficult and expensive, and the results of the relative sensitivity

analysis can help the model user determine what type of and how much meteorological

data need to be collected.  Deviation sensitivity analysis can provide useful information

to the model user by estimating the expected error in SWE output based upon the

precision of the data collection network.

The basic procedure performed to carry out these analyses is the same as

described in Section 8.2, with one exception.  The exception involves the fact that for

the four optimized input parameters described in Section 8.2, the values of the

parameters were changed within the program and the model was rerun.  For the

meteorological parameters, however, new input files had to be created for the entire

water year, and these new input files were utilized by the model to calculate daily SWE. 

As a result, new meteorological input files were created by altering the input variable by

a constant (systematic) one percent for the entire water year.  These new, altered input

files where then called by the model during the model run.  After this task, the

procedure for the analyses was the same as for the four optimized parameters.  These

analyses were performed for all three watersheds for all of the water years.  As was the

case for the earlier analyses, the results were divided into three categories: HRUs that

are completely forested, HRUs that are partially forested, and HRUs that lack a forest

cover.  This categorization was deemed necessary because the model sensitivity to the
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meteorological input variables was expected to vary depending upon canopy cover. 

8.3.2 Sensitivity Analyses for Completely Forested HRUs 

Table 8-7 contains a summary of the mean relative sensitivity values of modeled

SWE to the meteorological input variables for a completely forested HRU.  A review of

this table shows the same two generalizations that were found for the optimized 

parameters.  The first is that all values found in these tables are negative, except for total

precipitation, PT.  This fact indicates that as input data increase in magnitude, the

predicted SWE values decrease in magnitude, regardless of HRU canopy cover. 

Conversely, as total precipitation increases, the predicted SWE values increase in

magnitude, regardless of HRU canopy cover.  Based upon the equations that these

meteorological parameters are contained in, these facts are rational and lends credence

to the sensitivity analysis being performed correctly.  The second generalization found

in these tables is that the relative sensitivity values to all of the input variables are

greater in absolute magnitude when analyzing the sensitivity of the mean SWE value for

the entire water year than for analyzing the sensitivity of the peak SWE value, again

regardless of HRU canopy cover.  The reason for this is that, except for PT, changes in

these input parameters significantly affect net energy received at an HRU, and as

previously discussed, thus greatly affecting SWE values during the ablation period. 

This causes greater SWE differences late in the ablation period than at the time of

snowpack ripening, corresponding to peak SWE values.  This second generalization can
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further be substantiated by looking at the range of values for the relative sensitivity of

daily SWE values.  The largest values for all of the meteorological parameters occur at

the end of the melt season. The reason for this was discussed in Section 8.2.2.  In the

case of PT, the relative sensitivity values are approximately the same for the mean SWE

value and for the peak SWE value, indicating that the model sensitivity to changes in

total precipitation is relatively uniform throughout the entire year.  Unlike the other

meteorological data, PT has units of mass and is not affected by the cyclical

accumulation and ablation seasons.  This point can be further illustrated by the fact that

the largest daily relative sensitivity value (2.01) is approximately the same as the mean

value throughout the entire water year (1.87).

Table 8-7. Summary of the mean relative sensitivity values for the meteorological
input variables for a completely forested HRU.

Rank Parameter
Range of $r for

daily SWE values
for entire water

year

$r for mean SWE
value for entire water

year

$r for peak SWE
value

1 PT 0 to 2.01 1.87 1.82

2 TMax 0 to -2.21 -1.11 -0.89

3 TMin 0 to -2.03 -1.09 -0.87

4 WS 0 to -0.41 -0.19 -0.08

5 CC 0 to -0.16 -0.08 -0.05

6 RH NA NA NA

7 SR NA NA NA

Note: relative humidity and incoming solar radiation data were only available for the
Reynolds Creek Watershed which contained no completely forested HRUs.
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A review of Table 8-7 shows that the relative sensitivity values are significant

for PT, TMax, and TMin,  in terms of the both the water year mean SWE and the peak SWE

value.  These values indicate that the model is very sensitive to changes in these three

meteorological parameters for completely forested HRUs. Additionally, PT is nearly

twice as important a parameter as is TMax and TMin.  Table 8-7 also shows that the relative

sensitivity values for WS and CC are insignificant in terms of the mean or peak SWE

value for the entire water year.  These values indicate that the model is not sensitive to

changes in these two meteorological parameters for completely forested HRUs. 

Consequently, these facts indicate that in order to achieve credible modeling

results for forested HRUs, accurate input data for PT, TMax, and TMin  are important, and if

resources are limited, data should be collected first for PT, and then for TMax  and TMin,

before data is collected for WS and CC.  Table 8-7 contains no relative sensitivity values

for both RH and SR.  The reason for this is that data for relative humidity and solar

radiation were only available for the Reynolds Creek Watershed.  This watershed did

not contain any HRUs that were completely forested (see Table 4-5), therefore these

sensitivity values could not be determined.  For the Upper Rio Grande Watershed,

which contained many completely forested HRUs, RH was estimated by means of Eq.

(3-4), and SR  was estimated by means of Eq. (3-5).

Table 8-8 contains a summary of the mean deviation sensitivity values for the

meteorological input parameters for a completely forested HRU.  This table contain a

column with the heading “Change in parameter value”.  When deviation sensitivity

analyses were performed for the input parameters in the previous section, an assumption
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was made that the inaccuracies associated with these input parameters were +/- 10% of

the nominal variable value.  Similarly, assumptions were made regarding the accuracy

of the meteorological data, and the values found in the “Change in parameter

value”column reflect these assumptions.

Table 8-8. Summary of the mean deviation sensitivity values for the meteorological
input variables for a completely forested HRU.      

Parameter Change in parameter
value 

$d for mean SWE value
for entire water year (cm)

$d for peak SWE
value (cm)

PT +/- 0.1 (cm) +/- 2.8 +/-7.3

TMax +/- 1.0 (0C) +/- 0.8 +/- 0.8

TMin +/- 1.0 (0C) +/- 0.8 +/- 0.7

WS +/- 1.0 (m/s) +/- 0.3 +/- 0.2

CC +/- 0.1 +/- 0.2 +/- 0.2

RH +/- 0.1 NA NA

SR +/- 1.0 (cal/cm2 day) NA NA

The usefulness of the values found in this tables is to provide the model user

information in terms of the expected errors in modeled SWE output based upon the

accuracy of the recording instruments, and more importantly, the accuracy of the

method for distributing gauge measurements to ungauged HRUs.  As an example, if the

accuracy of the precipitation gage within one of the studied watersheds is known to be

+/- 0.1 cm, then the maximum expected error in SWE could be found in the above

tables.  By knowing instrument accuracy, the model user can produce a range of SWE

output, similar to a confidence interval, that would incorporate the data recording errors.
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Table 8-8 contains maximum SWE errors because the meteorological input files

were systematically altered so that each daily value was increased or decreased

uniformly throughout the water year.  In reality, however, if a precipitation gage’s

accuracy was known to be +/- 0.1 cm, the daily precipitation totals would most likely be

over predicted for some of the days, and would be under predicted for some of the days. 

This would result in smaller errors in modeled SWE output in terms of both mean SWE

value throughout the water year, and for peak SWE value than if the daily precipitation

totals were over or under predicted uniformly throughout the entire water year.  Again,

Table 8-8 contains no deviation sensitivity values for both RH and SR.  The reason for

this was explained above.

Table 8-8 indicates that significant errors could occur in SWE output even if the

accuracy of the precipitation gauge is within +/- 0.1 cm.  Significant errors could also

occur in SWE output if the accuracy of the recording thermometers are within several

degrees Celsius.  This indicates to the model user or field technician the importance of

knowing equipment accuracy, and operating and maintaining equipment to ensure the

greatest degree of accuracy possible.  Table 8-8 also suggest that low accuracy in the

recording of wind speed and cloud cover data will cause minimal error in SWE output

for completely forested HRUs. 

8.3.3 Sensitivity Analyses for Partially Forested HRUs   

Table 8-9 contains a summary of the mean relative sensitivity values for the

meteorological input parameters for a partially forested HRU.  A review of this table
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shows the same generalizations that were found, and discussed, in Table 8-7. 

Table 8-9. Summary of the mean relative sensitivity values for the meteorological
input variables for a partially forested HRU.

Rank Parameter
Range of $r for

daily SWE values
for entire water

year

$r for mean SWE
value for entire water

year

$r for peak
SWE value

1 PT 0 to 2.18 2.02 1.91

2 SR 0 to -2.37 -1.41 –0.51

3 RH 0 to -2.23 -1.12 -0.45

4 TMin 0 to -1.91 -1.03 -0.32

5 TMax 0 to -1.86 -1.00 -0.29

6 WS 0 to -1.84 -0.82 -0.29

7 CC 0 to -0.23 -0.11 -0.08

A review of Table 8-9 shows that the relative sensitivity values are significant

for PT, SR, RH, TMax, TMin, and WS  in terms of the mean SWE value for the entire water

year.   These values indicate that the model is sensitive to changes in these

meteorological parameters for partially forested HRUs.  In terms of model sensitivity to

the mean SWE value, PT is nearly one and one-half times as important a parameter as is

SR, and is approximately twice as important a parameter as is RH, TMax,  TMin, and WS.

The value for CC is insignificant in terms of the mean SWE value for the entire water

year, and this value indicates that the modeled mean SWE value is not sensitive to

changes in CC for partially forested HRUs. 

This table also shows that the relative sensitivity values are significant for PT,

and moderately significant for SR and RH in terms of the peak SWE value.  These values
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indicate that the peak modeled SWE value is sensitive to changes in these

meteorological parameters for partially forested HRUs.  In terms of model sensitivity to

the peak SWE value, PT is approximately four times as important a parameter as SR or

RH.  Table 8-9 also shows that the relative sensitivity values for TMax,  TMin, WS, and CC

are insignificant in terms of the peak SWE value.  These values indicate that the peak

modeled SWE value is not sensitive to changes in these four meteorological parameters

for partially forested HRUs. 

Ultimately, this table indicates that in order to achieve credible modeling results

for partially forested HRUs, accurate input data for PT, SR, RH, TMax, TMin, and WS are

important.  Additionally, if resources are limited, data should be collected first for PT,

and then for  SR, RH, TMax, TMin, and WS, in that order.  

Table 8-10. Summary of the mean deviation sensitivity values for the meteorological
input variables for a partially forested HRU.

Parameter Change in parameter
value 

$d for mean SWE value
for entire water year (cm)

$d for peak SWE
value (cm)

PT +/- 0.1 (cm) +/- 3.0 +/-7.5

TMax +/- 1.0 (0C) +/- 0.5 +/- 0.6

TMin +/- 1.0 (0C) +/- 0.6 +/- 0.5

WS +/- 1.0 (m/s) +/- 0.7 +/- 0.6

CC +/- 0.1 +/- 0.2 +/- 0.2

RH +/- 0.1 +/- 0.8 +/- 0.8

SR +/- 1.0 (cal/cm2 day) +/- 0.7 +/- 0.6

Table 8-10 contains a summary of the mean deviation sensitivity values for the
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meteorological input parameters for a partially forested HRU.  The values found in the

“Change in parameter value”column reflect the same assumptions regarding the

accuracy of the meteorological data as were made for completely forested HRUs found

in Table 8-8.

Table 8-10 indicates that significant errors could occur in SWE output even if

the accuracy of the precipitation gauge or the interpolation method is within +/- 0.1 cm. 

Significant errors could also occur in SWE output if the accuracy of the recording

devices are only within several units for air temperature, wind speed, relative humidity,

and solar radiation. Table 8-10 also suggest that low accuracy in the recording of cloud

cover data will cause minimal error in SWE output for partially forested HRUs. 

8.3.4 Sensitivity Analyses for Nonforested HRUs

Table 8-11. Summary of the mean relative sensitivity values for the meteorological
input variables for a nonforested HRU.

Rank Parameter Range of $r for
daily SWE values
for entire water

year

$r for mean SWE
value for entire water

year

$r for peak SWE
value

1 PT 0 to 2.37 2.21 2.20

2 SR 0 to -2.62 -1.75 -0.66

3 WS 0 to -2.12 -1.07 -0.57

4 TMax 0 to -1.84 -0.91 -0.51

5 TMin 0 to -1.80 -0.88 -0.52

6 RH 0 to -1.44 -0.63 -0.49

7 CC 0 to -0.25 -0.19 -0.11
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 Table 8-11 contains a summary of the mean relative sensitivity values for the

meteorological input parameters for a nonforested HRU.  A review of this table shows

the same generalizations that were found, and discussed, in Tables 8-7 and 8-9.

A review of Table 8-11 shows that the relative sensitivity values are significant

for PT, SR, WS,  TMax, and TMin,  and moderately significant for RH  in terms of the mean

SWE value for the entire water year.  These values indicate that the modeled mean SWE

value is sensitive to changes in these meteorological parameters for nonforested HRUs. 

In terms of model sensitivity to the mean SWE value, PT is nearly twenty percent more

important a parameter than SR, is approximately twice as important a parameter as is

TMax,  TMin, and WS, and is approximately three and one-half times as important a

parameter as is RH.   Table 8-9 also shows that the relative sensitivity value for CC is

insignificant in terms of the mean SWE value for the entire water year.  This value

indicates that the modeled mean SWE is not sensitive to changes in this meteorological

parameters for nonforested HRUs. 

This table also shows that the relative sensitivity values are significant for PT,

and moderately significant for SR, WS,  TMax, TMin, and RH in terms of the peak SWE

value.  These values indicate that the modeled peak SWE value is sensitive to changes

in these meteorological parameters for nonforested HRUs. In terms of model sensitivity

to the peak SWE value, PT is approximately four times as important a parameter as is SR,

 WS,  TMax, TMin, and RH.  Table 8-9 also shows that the relative sensitivity value for CC is

insignificant in terms of the peak SWE value.  This values indicate that peak SWE is not

sensitive to changes in this meteorological parameters for nonforested HRUs.
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This table indicates that in order to achieve credible modeling results for

nonforested HRUs, accurate input data for PT, SR, WS,  TMax, TMin, and RH are important,

and if resources are limited, data should be collected first for PT, and then for  SR, WS, 

TMax, TMin, and RH, in that order.  CC data is unimportant and this parameter could be set

equal to a constant.

Table 8-12 contains a summary of the mean deviation sensitivity values for the

meteorological input parameters for a nonforested HRU.  The values found in the

“Change in parameter value”column reflect the same assumptions regarding the

accuracy of the meteorological data as were made for completely forested and partially

forested HRUs found in Table 8-8 and 8-10.

Table 8-12 indicates that significant errors could occur in SWE output even if

the accuracy of the precipitation gauge or interpolation method is within +/- 0.1 cm. 

Significant errors could also occur in SWE output if the accuracy of the recording

devices, interpolation, or estimation methods are only within several units for wind

speed, and solar radiation. Moderate errors could also occur in SWE output if the

accuracy of the recording devices are only within several units for air temperature, and

relative humidity.  Table 8-12 also suggest that low accuracy in the recording of cloud

cover data will cause minimal error in SWE output for nonforested HRUs.  
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Table 8-12. Summary of the mean deviation sensitivity values for the meteorological
input variables for a nonforested HRU.

Parameter Change in parameter
value 

$d for mean SWE value
for entire water year (cm)

$d for peak SWE
value (cm)

PT +/- 0.1 (cm) +/- 3.3 +/-7.7

TMax +/- 1.0 (0C) +/- 0.4 +/- 0.4

TMin +/- 1.0 (0C) +/- 0.3 +/- 0.5

WS +/- 1.0 (m/s) +/- 1.2 +/- 1.1

CC +/- 0.1 +/- 0.2 +/- 0.2

RH +/- 0.1 +/- 0.4 +/- 0.3

SR +/- 1.0 (cal/cm2 day) +/- 1.4 +/- 1.3

8.3.5 Conclusions Regarding the Meteorological Parameters

An overview of Tables 8-7, 8-9, and 8-11 indicate that total precipitation is the

most important meteorological parameter, regardless of canopy cover.  This result is

logical and not surprising.  Additionally, the relative sensitivity value of PT increases as

the canopy cover diminishes.  This is also logical.  As the canopy diminishes over an

HRU, less precipitation is intercepted and ultimately lost, thus yielding a relative

sensitivity value for SWE that is larger in magnitude.  These tables also show that the

model becomes more sensitive to solar radiation as the canopy cover decreases.  Canopy

cover reduces incoming solar radiation, and as canopy cover decreases, incoming solar

radiation increases, thus the model becomes more sensitive to SR as the canopy cover

declines.  
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Tables 8-9 and 8-11 indicate that as canopy cover is reduced, the model becomes

less sensitive to relative humidity.  Modeled results indicate that for completely forested

HRUs, longwave radiation is the dominant term in the energy equation.  Incoming solar

radiation is greatly reduced by the canopy.  Additionally, sensible and latent heat

exchanges are significantly reduced because of their dependence upon the wind speed,

which is significantly reduced by canopy cover.  Therefore, longwave radiation becomes

the dominant energy term under canopy cover.  RH is an important component of

calculating longwave radiation (see Eqs. (3-15) through (3-17)).  As canopy cover is

reduced, longwave radiation ceases to be the dominant term in the energy equation, and

thus reduces the importance of RH.  This explains why the model becomes less sensitive

to relative humidity as the canopy cover diminishes.

Tables 8-7, 8-9, and 8-11 indicate that the model becomes slightly less sensitive

to changes in air temperature as the canopy cover decreases.  Two factors affect this

outcome.  The first factor is as described above for RH.  TMax and TMin are used to

calculate longwave radiation (see Eq. (3-3) and Eqs. (3- 15) through (3-17)).  As the

canopy cover decreases, longwave radiation becomes less dominant, and thus the model

becomes less sensitive to changes in TMax and TMin.  However, as the canopy cover

decreases, wind speed increases, which ultimately increases the sensible heat exchange

between the snowpack and the surrounding atmosphere.  Air temperature is a

component of sensible heat (see Eqs. (3-3) and (3-21)).  As the canopy cover decreases,

sensible heat exchange becomes more important, indicating that the model would

become more sensitive to changes in TMax and TMin.  The net result of these two
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phenomena is that the change in longwave radiation is greater in magnitude than the

change in sensible heat exchange, which explains why overall, the model becomes

slightly less sensitive to TMax and TMin as the canopy cover diminishes.

Tables 8-7, 8-9, and 8-11 indicate that the model becomes more sensitive to

changes in wind speed as the canopy cover is reduced.  As previously discussed, canopy

significantly reduces wind speed, and thus wind speed increases as canopy cover is

diminished.  Wind speed is also a component of both sensible and latent heat exchange

(see Eqs. (3-21) and (3-24)).  As canopy cover decreases, sensible and latent heat

exchange become more important, indicating that the model becomes more sensitive to

WS.

Tables 8-7, 8-9, and 8-11 indicate that the model is not sensitive to changes in

cloud cover regardless of the canopy cover.  Cloud cover affects both solar and

longwave radiation.  When the HRU is heavily forested, both solar and longwave

radiation are dependent upon the canopy cover, indicating that the model will not be

sensitive to changes in CC.  When the HRU has little or no forest cover, both solar and

longwave radiation become dependent upon cloud cover.  For these HRUs, however, a

change in cloud cover causes approximately the same change in magnitude of both solar

and longwave radiation, but the changes are of opposite sign, thus resulting in a net

change in radiation of nearly zero.  So, even for HRUs with little to no forest cover, the

model is not sensitive to changes in CC.  The lumped treatment of clouds in the model is

simplistic.  It makes sense that enhanced longwave radiation would partially balance

lost shortwave radiation.  A more realistic treatment, accounting for cloud height, type,
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thickness, and air temperature, would probably yield different results..

Several inferences can be made regarding data collection based upon this

analysis.  This first of which is that despite the fact that the cloud cover data for the

watersheds studied was gathered at significant distances from the watersheds, the model

accuracy did not suffer.  This indicates one of two possibilities.  First, spending a great

deal of time or money collecting this data to run the model is unnecessary.  This turns

out to be fortuitous since only sparse cloud cover data exist.  Cloud cover could actually

be set as a constant in the program.  The other possibility is that the model not being

sensitive to changes in CC may point out a weakness in the algorithms used by the

model to calculate incoming solar and longwave radiation. 

Secondly, for heavily forested HRUs and/or watersheds, accurate air temperature

and relative humidity data are essential; whereas accurate solar radiation and wind speed

data are less important.  Thirdly, for HRUs or watersheds with little or no canopy cover,

accurate solar radiation, air temperature, wind speed, and relative humidity data are

essential.  The final inference is that regardless of canopy cover, total precipitation data

are the most essential to ensure model accuracy.  In an ideal situation, an analysis

similar to one presented by Dingman (1994) could be performed to determine the

optimal number of precipitation gages required for sufficient collection of precipitation

data.  This finding also underscores the need for research to improve both interpolation

methods and techniques for distributed precipitation measurements using remote

sensing.
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8.4   ANALYSIS OF AVAILABLE SWE DATA FOR CALIBRATION

8.4.1 Introduction

As previously discussed in Chapters 5 through 7, daily measured SWE data were

available for the Upper Rio Grande Watershed, whereas only bimonthly measured SWE

data were available for the Reynolds Creek Watershed.  Measured SWE data were even

more sparse for the Emerald Lake Watershed, with only a few measured SWE data

available for the entire season.  These SWE data were used to calibrate/validate the

model.  How does the availability of this data affect the calibration process?  To what

extent does additional SWE data for a water year improve the calibration process?  Is

daily measured SWE data required to properly calibrate the model?  These questions

will be analyzed using SWE data collected for the Upper Rio Grande Watershed along

with modeled SWE output.  Calibrated results for HRUs 1, 40, and 50, corresponding to

the Beartown, Middle Creek, and Wolf Creek Summit SNOTEL site, respectively, for

the water year 1993 shall be used as a baseline to compare results obtained using less

frequent SWE data.  The results utilizing daily SNOTEL SWE data were originally

presented in Chapter 5 (see Table 5-5).

8.4.2 Simulating the Availability of Bi-monthly SWE Data

The measured SWE data for the Reynolds Creek Watershed were collected at

approximately a two-week interval, with the first measurement occurring in early

December.  For this particular analysis, it was assumed that the SNOTEL SWE data at

the three sites (Beartown, Middle Creek, and Wolf Creek Summit) within the Upper Rio
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Grande Watershed were also only available at a two-week interval.  As part of this

analysis, fourteen trials were examined with the first trial consisting of SNOTEL SWE

data available on December 1, December 15, December 29, etc. . .  The second trial

consisted of SNOTEL SWE data available on December 2, December 16, December 30,

etc. . .  The last of the trials consisted of SNOTEL SWE data available on December 14,

December 28, January 11, etc. . .  The analysis was stopped after fourteen trials because

the fifteenth trial would have begun on December 15, and would have mirrored the first

trial, except for the first and last SNOTEL SWE points.  For each of the fourteen trials,

the model was run, and then calibrated using the bi-monthly SNOTEL SWE data along

with the same methodology described in Chapter 5.  

Table 8-13. Summary of the basin-wide post-calibration values for the calibrated
input parameters for the Upper Rio Grande Watershed using bimonthly
SWE data.

Parameter
Daily SWE 

data available

Simulating
bimonthly SWE  -

average value

Simulating
bimonthly SWE -
range of values

Sh 0.83 0.86 0.82 : 0.89

Fd 0.80 0.77 0.74 : 0.82

f3(F) -1.6 -1.4 -1.6 : -1.3

Tf -1.2 -1.4 -1.7 : -1.2

Table 8-13 contains a comparison of the final values determined by the

calibration process for the previously identified input parameters.  The values found in

column two represent the calibrated values utilizing daily SWE values (see Table 5-4). 

The values found in column three represent the average calibrated values of the input

parameters for all of the fourteen trials.  The values in column four represent the range
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of calibrated values of the input parameters determined from the fourteen trials.  A

review of this table indicates that the calibrated values determined by utilizing bi-

monthly SNOTEL SWE data do not significantly differ from the calibrated values found

using daily SNOTEL SWE data.  In fact, the range of calibrated values found using

bimonthly data encompass the calibrated value found using daily SWE data. 

Tables 8-14 through 8-16 contain the results of the calibration analysis.  These

tables show the previously displayed results for the three HRUs of the Upper Rio

Grande Watershed (see Table 5-5) for the water year 1993.  These original results

utilized daily available SNOTEL SWE data, and all goodness-of-fit and physically

based statistics were calculated using daily SWE data.  Also shown in this table,

contained in column three, are the mean values determined for the fourteen trials which

simulate having only bimonthly SNOTEL SWE data available.  The final column in

these tables show the range of results for each statistic to help indicate the maximum

and minimum differences that occurred in the statistics due to the limitation of the

bimonthly SNOTEL SWE data.  All goodness-of-fit and physically based statistics

found in columns three and four were calculated utilizing SWE data available only on a

bi-monthly basis.
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Table 8-14. Comparison of the goodness-of-fit statistics for the water year 1993, for
HRU 1 of the Upper Rio Grande Watershed using bimonthly SWE data.

Parameter
Daily SWE 

data available
Simulating
bimonthly

SWE  -
average value

Simulating
bimonthly SWE

- range of
values

e (cm) -5.0 -5.9 -7.1 : -5.1

e / Y -0.27 -0.36 -0.43 : -0.27

Se (cm) 13.2 14.3 13.4 : 14.6

Se / Sy 0.79 0.84 0.82 : 0.91

Peak SWE modeled (cm) 46.7 47.8 46.7 : 49.2

Peak SWE measured (cm) 52.3 50.6 49.3 : 52.3

Peak SWE (cm) -5.6 -2.8 -5.6 : -0.1

Peak SWE / Peak SWE
measured

-10.7% -5.9% -10.7% : -0.2%

Modeled date of snowpack
ripening

April 10 April 13 April 8 : 
April 17

Estimated date of snowpack
ripening from SNOTEL SWE

measurements
May 4 April 22

April 10 : 
May 7

Date of snowpack ripening
(days)

-24 -10 -31 : 7

Modeled length of snowpack
ablation period (days)

33 36 31 : 40

Measured length of snowpack
ablation period (days)

29 24 17: 33

length of snowpack ablation
(days)

4 9 -2 : 24
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Table 8-15. Comparison of the goodness-of-fit statistics for the water year 1993, for
HRU 40 of the Upper Rio Grande Watershed using bimonthly SWE data.

Parameter
Daily SWE 

data available

Simulating
bimonthly SWE
- average value

Simulating
bimonthly SWE 

- range of
values

e (cm) 2.9 2.2 0.9 : 3.1

e / Y 0.19 0.17 0.12 : 0.24

Se (cm) 7.1 7.2 3.5 : 8.2

Se / Sy 0.60 0.62 0.44 : 0.74

Peak SWE modeled (cm) 41.2 42.4 40.9 : 44.3

Peak SWE measured (cm) 42.9 41.2 39.4: 42.9

Peak SWE (cm) -1.7 1.2 -2.0 : 4.9

Peak SWE / Peak SWE
measured

-4.0% 2.9% -4.6% : 12.4%

Modeled date of snowpack
ripening

April 29 April 26 April 23 : 
May 1

Estimated date of snowpack
ripening from SNOTEL SWE

measurements
May 5 May 10 May 4: May

14 

Date of snowpack ripening
(days)

-6 -14 -21 : -4

Modeled length of snowpack
ablation period (days)

56 58 55 : 60

Measured length of snowpack
ablation period (days)

30 28 26 : 35

length of snowpack ablation
(days)

26 30 20 : 34
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Table 8-16. Comparison of the goodness-of-fit statistics for the water year 1993, for
HRU 50 of the Upper Rio Grande Watershed using bimonthly SWE data.

Parameter Daily SWE 
data available

Simulating
bimonthly SWE
- average value

Simulating
bimonthly SWE

- range of
values

e (cm) 0.5 -1.2 -1.9 : 0.4

e / Y 0.01 -0.10 -0.14 : 0.05

Se (cm) 9.9 9.6  6.8 : 11.2

Se / Sy 0.40 0.44 0.26 : 0.63

Peak SWE modeled (cm) 81.3 80.5 80.0 : 82.2

Peak SWE measured (cm) 89.2 87.8 86.6 : 89.2

Peak SWE (cm) -7.9 -7.3 -9.2 : -4.4

Peak SWE / Peak SWE
measured

-8.9% -8.3% -10.3% :-5.1%

Modeled date of snowpack
ripening

May 11 May 14 May 9 :
 May 21

Estimated date of snowpack
ripening from SNOTEL SWE

measurements
May 4 May 9 May 4: May

14

Date of snowpack ripening
(days)

8 6 -6 : 18

Modeled length of snowpack
ablation period (days)

70 67 62 : 73

Measured length of snowpack
ablation period (days)

53 56 51 : 63

length of snowpack ablation
(days)

17 12 -1 : 23

The results found in Tables 8-14 through 8-16 indicate that the availability of

only bimonthly data significantly affects the goodness-of-fit and physically significant
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statistics that were calculated for these HRUs during the calibration process.  This

impact could lead to erroneous conclusions regarding model accuracy.  It could also

lead to erroneous predictions using the model output.

The values found in the three tables for the sample mean error, the mean relative

error, and the standard error of the estimate show a relatively small range for all of the

trials using only bimonthly SNOTEL SWE data.  All of these bimonthly values are

relatively close in value to the originally calculated values for the three HRUs, found in

column two.  The same conclusions initially drawn from these statistics concerning

model accuracy would not differ using the bimonthly data.  However, a significant

difference exists for the Se / Sy statistic.  Whereas a relatively small range in these values

exist in Table 8-14, the range is larger in the other two tables, especially Table 8-16. 

The range for Se / Sy values in this table is 0.26 to 0.63.  A value of 0.26 indicates that

the model has greatly improved the reliability of prediction, and would be interpreted as

a high level of model accuracy.  A value of 0.63, however, indicates that the model has

not significantly improved the reliability of prediction, and would be interpreted as a

lack of model accuracy.

For the physically significant statistics, the values found in these tables also have

mixed results.  In determining the difference in measured and modeled peak SWE, only

having bimonthly SWE data does not appear to create a significant difference.  All of

these values are close in magnitude to the values calculated during the calibration

process using daily SNOTEL SWE data.  However, a much larger range exists when

estimating the difference in the date of snowpack ripening when using only the
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bimonthly data.  Table 8-14 contains the largest range with the estimated length varying

from -31 days to +7 days.  This large range could lead to significant consequences.  If

the model is calibrated using only bimonthly data, the model user may believe that the

model output matches the measured data well in terms of estimating the date of

snowpack ripening, when in fact, it could be off by several weeks.  This would cause a

delay in predicted snowmelt runoff, which could lead to problems with downstream

crop planting.  Additionally, a large range exists when estimating the difference in

length of the ablation period.  The largest range again exists in Table 8-14 where the

difference in the length of the ablation period is -2 to +24 days. This significant

uncertainty could again lead to errors in calibration and again could have significant

downstream consequences.  The model user may anticipate that the length of the

ablation period can be closely estimated based upon an erroneous calibration process. 

This could lead to problems identifying possible extreme stream runoff events based

upon the length of the ablation period.

The results of these three tables show that bimonthly SWE data is insufficient to

adequately calibrate the model.  Using only bimonthly data, the modeler may believe

that the model is significantly more accurate, or significantly less accurate than what it

actually is, and could be properly determined if daily SWE data exist. This could cause

serious consequences if the model is then used to make predictions.  This also indicates

that the results presented in Chapter 6, regarding the calibration/validation of the

Reynolds Creek Watershed based upon bimonthly measured SWE data, are less reliable

than the results presented in Chapter 5 for the Upper Rio Grande Watershed.
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8.4.3 Simulating the Availability of Weekly SWE Data

Collecting SWE data requires significant time and resources and can also be

dangerous.  It has been demonstrated that bimonthly SWE data is insufficient to

properly calibrate the model.  However, if it can be shown that data collected less

frequently than daily is adequate for model calibration/validation, time, resources, and

perhaps lives, can be saved.  For this next analysis, it was assumed that SNOTEL SWE

data at the three sites were available at a one-week interval.  Seven trials were examined

with the first trial consisting of SWE data available on December 1, December 8,

December 15, etc. . .  The second trial consisted of SWE data available on December 2,

December 9, December 16, etc. . .  The last of the trials consisted of SNOTEL SWE

data available on December 7, December 14, December 21, etc. . .  The analysis was

stopped after seven trials because the eighth trial would have begun on December 8,

which would have mirrored the first trial, except for the first and last SNOTEL SWE

points.  For each of the seven trials, the model was run, and then subjectively calibrated

using weekly SNOTEL SWE data along with the methodology described in Chapter 5.  

Table 8-17. Summary of the basin-wide post-calibration values for the calibrated
input parameters for the Upper Rio Grande Watershed using weekly
SWE data.

Parameter
Daily SWE 

data available

Simulating weekly
SWE  - average

value

Simulating weekly
SWE - range of

values

Sh 0.83 0.85 0.83 : 0.87

Fd 0.80 0.79 0.76 : 0.81

f3(F) -1.6 -1.5 -1.6 : -1.4

Tf -1.2 -1.3 -1.5 : -1.2
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Table 8-17 contains a comparison of the final values determined by the

calibration process for the previously identified input parameters.  The values found in

columns two, three, and four are similar to the values found in the corresponding

columns in Table 8-13.  A review of this table indicates that the calibrated values

determined by utilizing weekly SNOTEL SWE data do not significantly differ from the

calibrated values found using daily SNOTEL SWE data.  In fact, the range of calibrated

values found using weekly data encompass the calibrated value found using daily SWE

data.  Additionally, the values contained in columns three and four are closer to the

values determined for these input parameters utilizing daily SNOTEL SWE data. 

Tables 8-18 through 8-20 contain the results for the calibration analysis.  These

tables show the previously displayed results for the three HRUs of the Upper Rio

Grande Watershed (see Table 5-5) for the water year 1993 in column two.  Also shown

in this table, contained in column three, are the mean values determined for the seven

trials which simulates having only weekly SNOTEL SWE data available.  The final

column in these tables show the range of results for each statistic to help indicate the

maximum and minimum differences that occurred in the statistics due to the limitation

of the weekly SNOTEL SWE data.
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Table 8-18. Comparison of the goodness-of-fit statistics for the water year 1993, for
HRU 1 of the Upper Rio Grande Watershed using weekly SWE data.

Parameter Daily SWE 
data available

Simulating
weekly SWE -
average value

Simulating
weekly SWE - 
range of values

e (cm) -5.0 -5.5 -5.9 : -5.1

e / Y -0.27 -0.31 -0.37 : -0.27

Se (cm) 13.2 13.7 13.4 : 14.1

Se / Sy 0.79 0.82 0.79 : 0.87

Peak SWE modeled (cm) 46.7 47.2 46.3 : 48.3

Peak SWE measured (cm) 52.3 51.7 50.8 : 52.3

Peak SWE (cm) -5.6 -4.5 -6.0 : -2.4

Peak SWE / Peak SWE
measured

-10.7% -8.7% -11.4% : –4.7%

Modeled date of snowpack 
ripening

April 10 April 12 April 9 : 
April 15

Estimated date of snowpack
ripening from SNOTEL SWE

measurements
May 4 May 2 April 30: May 6

Date of snowpack ripening
(days)

-24 -28 -27 : -16

Modeled length of snowpack
ablation period (days)

33 32 30 : 35

Measured length of snowpack
ablation period (days)

29 25 23 : 30

length of snowpack ablation
(days)

4 7 0 : 12
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Table 8-19. Comparison of the goodness-of-fit statistics for the water year 1993, for
HRU 40 of the Upper Rio Grande Watershed using weekly SWE data.

Parameter Daily SWE 
data available

Simulating
weekly SWE - 
average value

Simulating
weekly SWE - 
range of values

e (cm) 2.9 2.5 1.7 : 2.9

e / Y 0.19 0.18 0.16 : 0.21

Se (cm) 7.1 7.2 6.2 : 7.6

Se / Sy 0.60 0.63 0.58 : 0.71

Peak SWE modeled (cm) 41.2 41.7 41.0 : 42.2

Peak SWE measured (cm) 42.9 41.8 40.6: 42.9

Peak SWE (cm) -1.7 -0.1 -1.9 : 1.6

Peak SWE / Peak SWE
measured

-4.0% -0.2% -4.4% : 3.9%

Modeled date of snowpack
ripening

April 29 April 26 April 24 : 
April 30

Estimated date of snowpack
ripening from SNOTEL SWE

measurements
May 5 May 8 May 6 : May 11

Date of snowpack ripening
(days)

-6 -12 -17 : -6

Modeled length of snowpack
ablation period (days)

56 58 56 : 60

Measured length of snowpack
ablation period (days)

30 28 26 : 31

length of snowpack ablation
(days)

26 30 25 : 34
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Table 8-20. Comparison of the goodness-of-fit statistics for the water year 1993, for
HRU 50 of the Upper Rio Grande Watershed using weekly SWE data.

Parameter Daily SWE
data available 

Simulating
weekly SWE - 
average value

Simulating
weekly SWE - 
range of values

e (cm) 0.5 0.7 -0.3 : 1.3

e / Y 0.01 0.05 -0.02 : 0.09

Se (cm) 9.9 9.7  7.9 : 10.5

Se / Sy 0.40 0.42 0.36 : 0.50

Peak SWE modeled (cm) 81.3 82.1 80.3 : 84.5

Peak SWE measured (cm) 89.2 88.5 87.9 : 89.2

Peak SWE (cm) -7.9 -6.4 -8.9 : -3.4

Peak SWE / Peak SWE
measured

-8.9% -7.2% -9.9% : -3.9%

Modeled date of snowpack
ripening

May 11 May 9 May 7 : May 13

Estimated date of snowpack
ripening from SNOTEL SWE

measurements
May 4 May 6 May 4: May 10

Date of snowpack ripening
(days)

7 3 -3 : 9

Modeled length of snowpack
ablation period (days)

70 72 68 : 75

Measured length of snowpack
ablation period (days)

53 55 52 : 59

length of snowpack ablation
(days)

17 17 11 : 23

The results found in Tables 8-18 through 8-20 using weekly SWE data matches

the goodness-of-fit and physically significant statistics that were calculated for these

HRUs better than when only bimonthly SWE data was available.  This improvement
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could help mitigate any erroneous conclusions that may be made regarding model

accuracy.  It could also help to buffer any erroneous predictions made using the model

output.

The goodness-of-fit statistics found in these three tables show an average value

closer to the value obtained using daily SNOTEL SWE data, than when compared to the

results for the bimonthly SWE data.  More importantly, the range of values for these

statistics are much smaller than for the bimonthly SNOTEL SWE data.  This can best be

seen by examining the range of Se / Sy values found in Table 8-20.  These values range

from 0.35 to 0.52.  The difference in this range is not significant enough to draw varying

conclusions concerning model accuracy.  This was not the case, however, when looking

at these same values corresponding to bimonthly SWE data.  The range for Se / Sy values

found in Table 8-16 was 0.26 to 0.63.  As previously discussed, a value of 0.26  would

be interpreted as a high level of model accuracy, whereas a value of 0.63 would be

interpreted as a lack of model accuracy.  This is a significant difference between the two

analyses utilizing different SWE data sets. 

For the physically significant statistics, the values found in Tables 8-18 through

8-20 also are closer in value to the calibration result for daily SNOTEL SWE data than

are the bimonthly results.  Again, more importantly, the range of values for these

statistics are much smaller than for the bimonthly SNOTEL SWE data. As an example,

the range of the difference in the dates for estimating snowpack ripening found in Table

8-18 is -3 to +9 days.  This range coincides well with 7 days established using daily

SNOTEL SWE data.  However, the corresponding values in Table 8-14 estimated the
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range of the difference in the dates of snowpack ripening from -6 to +18 days.  As

mentioned earlier, using this range for snowpack ripening, established from the

bimonthly SWE data, could lead to significant consequences.  This however, would not

be the case for the range in snowpack ripening determined from weekly SWE data. 

Additionally, the range for estimating the length of the ablation period found in Table 8-

18 is much smaller and closer to the value calibrated with daily SWE data than is the

corresponding range found in Table 8-14. This smaller range would decrease the

likelihood of problems arising from using the model output for predicting purposes,

such as identifying possible extreme stream runoff events based upon the length of the

ablation period.

The results of Tables 8-18 through 8-20 show that weekly SWE data appear to

be sufficient to adequately calibrate the model.  The results of these three tables indicate

that the goodness-of-fit and physically based statistics are close in value, when

comparing modeled results, for daily SWE data and weekly SWE data.  Using weekly

SWE data should not lead the modeler to erroneous conclusions regarding model

accuracy.  If SWE data is field measured and collected for a watershed, knowing this

fact could lead to significant savings in time and resources, and may limit the risk faced

by the data collectors.

8.5   ANALYSIS OF THE HRU SUBDIVISION PROCESS

8.5.1 Introduction

As discussed in Chapter 4, the first step of the process of subdividing the



223

watershed into HRUs was to utilize the “Blockstats” command in ArcView to

automatically combine single pixels into larger groupings.  For the Upper Rio Grande

and Reynolds Creek watersheds, single pixels were combined into groupings of 1050

pixels, whereas for the much smaller Emerald Lake Watershed, pixels were combined

into groupings of sixteen pixels.  After this was accomplished, ArcView was then used

to determine the required physical parameters for each grouping.  From this point,

groupings were then subjectively combined again, based upon their physical

characteristics, to form HRUs.  The question that arises from this procedure is: how

different would the spatial and temporal distributions of SWE be if the pixels were

combined differently to form different subdivisions of HRUs with different physical

characteristics?

This point will be examined for the Emerald Lake Watershed.  This watershed

was selected from the three studied because of its small size.  The watershed’s small

size will result in fewer HRUs created during the alternative subdivision processes,

which will also result in fewer required HRU and meteorological input files.  

For this analysis, three different variations of HRU subdivisions were examined. 

These three variations were created by defining different pixel groupings using the

“Blockstats” command.  This command originally combined sixteen pixels into

groupings.  For these variations, the number of pixels combined using this command

were: four, nine, and twenty.  Once these groupings were created, the same procedure as

originally used for further combining pixel groupings into HRUs was utilized.
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8.5.2 Analysis of Alternative Pixel Groupings

Table 8-21. Summary of the physical parameters of the HRUs created for the
Emerald Lake Watershed for the alternative pixel grouping of four.

HRU ID Elevation
(m)

Slope
(degrees)

 % Forest
 Cover*

Aspect
(degrees)

Latitude
(degrees)

Area
(hectares)

1 2820 12 0 180 36.6 11

2 2845 22 0 270 36.6 9

3 3073 42 90 - Con 45 36.6 10

4 3096 34 0 15 36.6 9

5 3003 18 0 270 36.6 11

6 2947 37 0 45 36.6 15

7 3149 29 0 270 36.6 15

8 3062 24 0 0 36.6 13

9 3266 34 0 15 36.6 18

Figure 8-1.  Delineation of HRUs for the Emerald Lake Watershed for

the alternative pixel grouping of four.
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Table 8-22. Summary of the physical parameters of the HRUs created for the
Emerald Lake Watershed for the alternative pixel grouping of nine.

HRU ID Elevation
(m)

Slope
(degrees)

 % Forest
 Cover*

Aspect
(degrees)

Latitude
(degrees)

Area
(hectares)

1 2820 11 0 200 36.6 12

2 3065 28 0 225 36.6 13

3 3091 36 85 - Con 45 36.6 9

4 3103 31 0 0 36.6 13

5 3030 20 0 300 36.6 12

6 3023 27 0 45 36.6 11

7 3129 26 0 270 36.6 12

8 2855 18 0 270 36.6 10

9 3268 33 0 300 36.6 19

* Con - coniferous forest

Figure 8-2.  Delineation of HRUs for the Emerald Lake Watershed for 

the alternative pixel grouping of nine.
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Table 8-23. Summary of the physical parameters of the HRUs created for the
Emerald Lake Watershed for the alternative pixel grouping of twenty.

HRU ID Elevation
(m)

Slope
(degrees)

 % Forest
 Cover*

Aspect
(degrees)

Latitude
(degrees)

Area
(hectares)

1 2830 21 0 180 36.6 12

2 3025 23 0 225 36.6 11

3 3091 21 0 270 36.6 8

4 3071 30 70 - Con 45 36.6 10

5 2955 33 0 270 36.6 11

6 2969 35 0 45 36.6 14

7 3051 32 0 0 36.6 15

8 2880 15 0 0 36.6 10

9 3227 36 0 300 36.6 20

* Con - coniferous forest

Figure 8-3.  Delineation of HRUs for the Emerald Lake Watershed for the

        alternative pixel grouping of twenty.       
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Tables 8-21 through 8-23 and Figures 8-1 through 8-3 show the three alternative HRU

configurations, along with the physical characteristics of the created HRUs for the three

different pixel configurations.  These figures and corresponding tables can be compared

to the original HRU configuration (see Figure 4-12), and the HRU physical

characteristics (see Table 4-8) for the Emerald Lake Watershed.  The number of HRUs

for the four configurations are similar, as is the range of values of the physical

characteristics of the HRUs for the four configurations.  Analyses of model runs will

determine how different the spatial and temporal distribution of SWE is for the various

configurations.    

Once the HRUs had been created for the alternate pixel groupings, all

corresponding HRU and meteorological input files were created in the same manner as 

for the initial configuration for the Emerald Lake Watershed.  The model was then run

for these three alternatives, and calibrated based upon the methodology described in

Chapter 5.  Table 8-24 contains a summary of the post-calibration values for the input

parameters for the initial model run and for the three alternatives.  Results of the

alternatives were plotted along with the original SWE output and the measured SWE

values for each of the five SWE measurement locations (see Figure 4-14), and can be

found in Figures 8-4 through 8-8.  

Tables were also created from these plots to compare peak SWE values, mean

SWE values, date of snowpack ripening, and length of ablation period between the

original model run, and the alternate HRU subdivisions.  The information in these tables
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will give an indication of how sensitive the model is to the HRU subdivision process.   

Table 8-24. Summary of post-calibration values for the input parameters for the
initial model run and for the three alternatives.

Parameter Initial
Value

4 Pixel Grouping
Value

9 Pixel Grouping
Value

20 Pixel Grouping
Value

Sh 0.78 0.76 0.79 0.78

Fd 0.80 0.78 0.82 0.81

f3(F) -2.0 -1.9 -2.2 -2.0

Tf -1.2 -1.2 -1.1 -1.1

 

Figure 8-4.  Comparison of Results for the different HRU subdivisions for the 
      Emerald Lake Watershed for the SWE measurement at location 1.
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Table 8-25. Summary of the SWE results for the four HRU configurations for the
SWE measurement at location 1.

Parameter Original
Grouping

4 Pixel
Grouping

9 Pixel
Grouping

20 Pixel
Grouping

Mean SWE (cm) 74.3 63.2 64.4 70.1

D Mean SWE (cm) - 11.1 9.9 4.2

% Difference Mean SWE - 14.9 % 13.3 % 5.6 %

Peak SWE (cm) 120.2 133.3 130.2 137.2

D Peak SWE (cm) - -13.1 -10.0 -17.0

% Difference Peak SWE - -10.9 % -8.3 % -14.1 %

Date of Snowpack Ripening May 30 March 21 May 3 May 13

D Date of Ripening - 70 27 17

Length of Ablation Period (days) 51 87 49 41

D Length of Ablation Period (days) - -36 2 10

Figure 8-5.  Comparison of Results for the different HRU subdivisions for the 
Emerald Lake Watershed for the SWE measurement at location 2.
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Table 8-26. Summary of the SWE results for the four HRU configurations for the
SWE measurement at location 2.

Parameter Original
Grouping

4 Pixel
Grouping

9 Pixel
Grouping

20 Pixel
Grouping

Mean SWE (cm) 74.6 61.5 70.7 74.8

D Mean SWE (cm) - 13.1 3.9 -0.2

% Difference Mean SWE - 17.5 % 5.2 % -0.3 %

Peak SWE (cm) 120.6 122.9 125.6 126.3

D Peak SWE (cm) - -2.3 -5.0 -5.7

% Difference Peak SWE - -1.9 % -4.1 % -4.7 %

Date of Snowpack Ripening May 31 April 23 May 18 May 24

D Date of Ripening - 38 14 8

Length of Ablation Period (days) 50 57 51 54

D Length of Ablation Period (days) - -7 -1 -4

Figure 8-6.  Comparison of results for the different HRU subdivisions for the     
Emerald Lake Watershed for the SWE measurement at location 5.
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Table 8-27. Summary of the SWE results for the four HRU configurations for the
SWE measurement at location 5.

Parameter Original
Grouping

4 Pixel
Grouping

9 Pixel
Grouping

20 Pixel
Grouping

Mean SWE (cm) 97.5 99.2 94.4 98.1

D Mean SWE (cm) - -1.7 3.1 -0.6

% Difference Mean SWE - -1.7 % 3.2 % -0.6 %

Peak SWE (cm) 151.6 165.4 161.5 154.7

D Peak SWE (cm) - -13.8 -9.9 -3.1

% Difference Peak SWE - -9.1 % -6.5 % -2.0 %

Date of Snowpack Ripening June 21 May 21 June 8 June 18

D Date of Ripening - 31 14 2

Length of Ablation Period (days) 41 60 43 49

D Length of Ablation Period
(days)

- -19 -2 -8

Figure 8-7.  Comparison of Results for the different HRU subdivisions for the      
Emerald Lake Watershed for the SWE measurement at location 6.
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Table 8-28. Summary of the SWE results for the four HRU configurations for the
SWE measurement at location 6.

Parameter Original
Grouping

4 Pixel
Grouping

9 Pixel
Grouping

20 Pixel
Grouping

Mean SWE (cm) 82.8 83.3 79.4 82.9

D Mean SWE (cm) - -0.5 3.4 -0.1

% Difference Mean SWE - -0.6 % 4.1 % -0.1 %

Peak SWE (cm) 123.1 123.3 122.7 123.9

D Peak SWE (cm) - -0.2 0.4 -0.8

% Difference Peak SWE - -0.2 % 0.3 % -0.6 %

Date of Snowpack Ripening July 5 July 10 June 21 July 6

D Date of Ripening - -5 15 -1

Length of Ablation Period (days) 39 49 45 46

D Length of Ablation Period (days) - -10 -6 -7

Figure 8-8.  Comparison of Results for the different HRU subdivisions for the  
Emerald Lake Watershed for the SWE measurement at location 8.
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Table 8-29. Summary of the SWE results for the four HRU configurations for the
SWE measurement at location 8.

Parameter Original
Grouping

4 Pixel
Grouping

9 Pixel
Grouping

20 Pixel
Grouping

Mean SWE (cm) 94.1 74.6 80.3 76.1

D Mean SWE (cm) - 19.5 13.8 18.0

% Difference Mean SWE - 20.7 % 14.7 % 19.1 %

Peak SWE (cm) 231.4 169.9 210.6 197.2

D Peak SWE (cm) - 61.5 20.8 34.2

% Difference Peak SWE - 26.6 % 9.0 % 14.8 %

Date of Snowpack Ripening March 16 April 18 March 4 March 6

D Date of Ripening - -28 12 10

Length of Ablation Period (days) 90 46 91 85

D Length of Ablation Period (days) - 44 -1 -5

Figure 8-4 shows a plot of the SWE time series for HRU 1 for the four different

HRU configurations along with the field SWE data measured at location 1 (see Figure

4-14 for locations of SWE measurements).  This figure shows that the SWE distribution

for the initial pixel grouping of 16 has a smaller peak SWE value associated with it, and

also begins its ablation period later in the year than do the SWE time series for the three

alternate pixel groupings.  Table 8-25 substantiates these claims.  This table shows that

the peak SWE values for the three alternate pixel groupings are greater than the peak

SWE value for the initial pixel grouping by a range of 8.3% to 14.1%.  Also, the date of

snowpack ripening for the three alternate pixel groupings occurs earlier in the year than
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the date of snowpack ripening for the initial pixel grouping by a range of 17 to 70 days. 

Significant differences also exist between the initial pixel grouping and the alternate

groupings of 4 and 9 pixels in terms of mean SWE values.  The mean SWE values for

these alternate groupings are 14.9% and 13.3% smaller than the mean SWE value for

the initial pixel grouping.  In terms of length of ablation period, the alternate pixel

groupings of 9 and 20 match closely to the initial grouping, but the alternate 4 pixel

grouping has an ablation period that is 36 days longer than the ablation period for the

initial pixel grouping.

A review of the HRU physical characteristics for the four different

configurations help to explain the variations in the SWE time series.  For the initial

HRU configuration, HRU 1 has a mean slope of 30 degrees.  This slope is steep enough

to induce avalanching, and in fact, SWE is lost from HRU 1 during the initial run for the 

water year 1996 because of avalanching.  Additionally, no other adjacent HRU

contributes SWE to HRU 1 due to avalanching because of the slope and orientation of

the adjacent HRUs.  HRU 1, for the three alternate HRU configurations, all have slopes

too mild for avalanches to occur.  As a result, no SWE is lost from HRU 1 for any of the

alternate configurations due to avalanching.  Additionally, HRU 1, for the three

alternate configurations, can receive SWE due to avalanching from adjacent HRUs. 

This explains the increase in peak SWE experienced by the alternate configurations.

For the initial configuration, HRU 1 is approximately 100 m higher in elevation

than the for HRU 1 for the three alternate configuration.  This fact means that

temperatures throughout the year are colder for the initial configuration, ultimately
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meaning less sensible heat exchange occurring during the ablation period.  Also, HRU 1

for the initial configuration faces west, whereas for the alternate configurations, HRU 1

faces more south.  This fact indicates that less incoming solar radiation is being received

at HRU 1 for the initial configuration.  Thus, significantly less net energy is  being

received at HRU 1 for the initial configuration, which leads to the snowpack ripening

later in the year.    

Figure 8-5 shows a plot of the SWE time series for HRU 2 for the four different

HRU configurations along with the field SWE data measured at location 2 (see Figure

4-14 for locations of SWE measurements).  This figure shows that the peak SWE 

values for the various configurations are approximately the same, and also that HRU 2

for the initial configuration begins its ablation period later in the year than do the SWE

time series for the three alternate pixel groupings.  Table 8-26 substantiates these

claims.  This table shows that the peak SWE values for the three alternate pixel

groupings vary from the peak SWE value for the initial pixel grouping by a range of

only  2.3% to 5.7%.  The mean SWE values are also close in proximity for the initial

HRU configuration and for the configuration utilizing the 9 and 20 pixel groupings. 

The mean SWE value, however, differs significantly between the initial configuration

and the 4 pixel grouping configuration.  This difference is 17.5% and is due not to the

difference in peak SWE but rather to the much earlier onset of melt for the 4 pixel

grouping alternate.   As previously mentioned, the date of snowpack ripening for the

three alternate pixel groupings occur earlier in the year than the date of snowpack

ripening for the initial pixel grouping.  The 9 and 20 pixel grouping alternates are
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relatively close to the initial configuration, differing by 14 and 8 days, respectively.  In

terms of length of ablation period, the alternate pixel groupings match closely to the

initial grouping, with a range in length of ablation period that is from 1 to 7 days longer

than the ablation period for the initial pixel grouping.

A review of Table 4-8 and Tables 8-21 through 8-23 show that the physical

characteristics for HRU 2 for the four different configurations are similar.  The only

notable exception is that the mean elevation for HRU 2 for the 4 pixel grouping

configuration is approximately 200 m less than HRU 2 for the other configurations. 

This fact means that temperatures throughout the year are warmer for the 4 pixel

grouping  configuration, ultimately meaning greater sensible heat exchange occurring

during the ablation period. This results in a significant increase in net energy being

received at HRU 2 for this configuration, which leads to the snowpack ripening

significantly earlier in the year.

Figure 8-6 shows a plot of the SWE time series for HRU 5 for the four different

HRU configurations along with the field SWE data measured at location 5 (see Figure

4-14 for locations of SWE measurements).  This figure shows that the SWE distribution

for the initial configuration and for the 20 pixel grouping configuration are very similar,

whereas the SWE time series for the 4 and 9 pixel grouping configurations are very

similar.  Table 8-27 substantiates these claims.  This table shows that the mean SWE

values, peak SWE values, date of snowpack ripening, and length of ablation period are

very similar for the initial configuration and for the 20 pixel grouping configuration. 

The same can be said for the 4 and 9 pixel grouping alternates, although these values are
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not as quite as close.

A review of the HRU physical characteristics for the four different

configurations show that the mean slope for the initial configuration and for the 20 pixel

grouping configuration are both great enough for avalanching to occur.  This is not the

case for the 4 and 9 pixel grouping configurations.  These configurations do not

transport SWE from HRU 5 because of avalanching, and this helps to explain why these

two configurations have greater peak SWE values.  These smaller slopes also help these

HRUs to receive more incoming solar radiation, which results in an increase in net

energy being received at HRU 5 for these two configurations.  This explains why the

snowpack ripens earlier in the year for the 4 and 9 pixel grouping configurations.

Figure 8-7 shows a plot of the SWE time series for HRU 6 for the four different

HRU configurations along with the field SWE data measured at location 6 (see Figure

4-14 for locations of SWE measurements).  This figure shows that the four SWE  time

series are nearly indistinguishable except for some differences that exist during the

ablation period.  Table 8-28 substantiates this claim.  This table shows that the mean

SWE values and the peak SWE values for the three alternate pixel groupings differ from

the mean SWE and peak SWE values for the initial pixel grouping by less than 5.0%,

with nearly all values differing by less than 1.0%.  As previously mentioned, the date of

snowpack ripening for the three alternate pixel groupings differ from the date of

snowpack ripening for the initial pixel grouping.  The 4 and 20 pixel grouping alternates

have a snowpack that ripens later in the year as compared to the initial configuration,

but the dates are relatively close to the initial configuration, differing by 5 and 1 days,
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respectively.  The 9 pixel grouping alternate has a snowpack that ripens earlier in the

year as compared to the initial configuration, and differs in ripening date by 15 days.  In

terms of length of ablation period, the alternate pixel groupings match fairly closely to

the initial grouping.  All are longer in length with a range of 6 to 10 days longer than the

ablation period for the initial pixel grouping.

A review of Table 4-8 and Tables 8-21 through 8-23 show that the physical

characteristics for HRU 6 for the four different configurations are very similar.  The

mean elevations are all within 50 m of one another, indicating that temperatures

throughout the year are approximately equal for the various configurations. The aspect

for HRU 6 for the various configurations are the same, and the mean slopes are also

similar in value.  The differences in slope results in small differences in received solar

radiation, which results in the minor difference in date of snowpack ripening and length

of ablation period.

Figure 8-8 shows a plot of the SWE time series for HRU 8 for the four different

HRU configurations along with the field SWE data measured at location 8 (see Figure

4-14 for locations of SWE measurements).  This figure shows that the SWE distribution

for the initial configuration has a larger mean SWE and peak SWE value associated

with it than do the SWE time series for the three alternate pixel groupings.  This figure

also shows that the length of the ablation period for the initial configuration appears to

be similar in length to the ablation period for the 9 and 20 pixel grouping

configurations.  Table 8-29 substantiates these claims.  This table shows that the peak

SWE values for the three alternate pixel groupings are smaller than the peak SWE value
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for the initial pixel grouping by a range of 9.0% to 26.6%.  The mean SWE values for

the three alternate pixel groupings are smaller than the mean SWE value for the initial

pixel grouping by a range of 14.7% to 20.7%.  Also, the date of snowpack ripening for

the 9 and 20 pixel groupings occur earlier in the year than the date of snowpack ripening

for the initial pixel grouping, but the difference is relatively small (9 and 5 days,

respectively) for these configurations.  These two configurations are also close to the

initial configuration in terms of length of ablation period, but the alternate 4 pixel

grouping has an ablation period that is 44 days shorter than the ablation period for the

initial pixel grouping, due to a peak SWE value that is 62.7 cm less than for the initial

configuration.

A review of the HRU physical characteristics for the four different

configurations help to explain the variations in the SWE time series.  For the 4 pixel

grouping configuration, HRU 8 has a mean slope large enough to cause avalanching. 

During the model run, this HRU lost a significant amount of SWE during the 1996

water year because of avalanching.  Thus, this HRU has a significantly smaller peak

SWE value than for the other configurations. 

For the 4 pixel grouping configuration, HRU 8 is approximately 200 m higher in

elevation than the for HRU 8 for the other three configurations.  This fact means that

temperatures throughout the year are colder for the 4 pixel configuration, ultimately

meaning significantly less sensible heat exchange occurring during the ablation period.   

This fact indicates that less net energy is  being received at HRU 8 for the 4 pixel

configuration, which leads to the snowpack ripening later in the year. 
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8.5.3 Conclusions Regarding the HRU Subdivision Process

In summary, these findings indicate that the model is sensitive to different HRU

subdivisions because of the resulting changes to the HRU physical characteristics.  Peak

SWE values appear only to be sensitive to changes in mean slope.  This is the case

because slope  indicates whether or not avalanching can occur, and as was the case for

HRU 8 for the different configurations, peak SWE values differed significantly between

HRUs that did and did not have a sufficient slope for avalanching to occur.  When

avalanching is not a significant consideration for a watershed, peak SWE values for

HRUs within the watershed, appear not to be sensitive to different HRU configurations.

Snowpack ripening, length of ablation period, and resulting mean SWE values

are sensitive to significant changes in elevation, mean slope, or aspect.  Significant

changes in these parameters greatly affect net energy received at an HRU, thus affecting

the melt season.  The results of this analysis could help to explain some of the

uncertainties regarding model output during the melt season.  It has been demonstrated

that modeling net energy at a point is difficult, and if the modeling of net energy is

sensitive to changes in HRU configuration, this will lead to greater uncertainties in

modeled SWE output during the ablation period.  

Ultimately, the results of the analysis regarding the HRU Subdivision Process

suggest that smaller HRUs provide more accurate SWE predictions.  The analysis

showed that joining adjacent pixel groupings may produce mean values for the physical

characteristics, such as elevation and slope, that have a large variance associated with

them.  By decreasing the number of pixel groupings combined, and thus the size of the
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HRUs, the variance in the mean values of the physical characteristics can be reduced. 

Reducing the size of the HRUs does have its drawbacks.  More HRUs means requiring

more interpolation of input variables, such as precipitation and air temperature, which

could lead to greater input error.  Further research is required to determine an optimal

sizing of HRUs.  This sizing should balance minimizing the variance of mean physical

characteristic values, and thus improving SWE prediction ability, with the cost of the

additional time required to produce an increased number of required input files and

calibrate the model. 



242

CHAPTER NINE

DETECTING  PATTERNS IN SNOW WATER EQUIVALENCE

9.1 INTRODUCTION

Many snowmelt runoff models rely on snow depletion curves, which describe

the seasonal decline of snow-covered fraction as a function of time or accumulated melt. 

A consequence of using these curves in forecasting is that an assumption is made

regarding some uniformity in snowmelt basin response from year to year.  Up until this

point, the validity of this assumption regarding snowmelt basin uniformity has not been

adequately addressed in the literature.  

Verifying this assumption would demonstrate the value of depletion curve theory

for short-term and extended hydrologic forecasting, and would contribute to creating

generalized methods for estimating SWE in data-sparse regions.  As discussed in

Chapter 1, minor improvements in hydrologic forecasting, based upon enhanced SWE

estimates, could result in significant economic impact in downstream communities.

The existence of similar, interannual spatial and temporal SWE patterns within a

watershed could be identified by several methods.  The first method would be to

compute the first two statistical moments (mean and variance) of the SWE distributions

within a watershed at various intervals throughout the water year, and analyze these

values for any similarities or trends.  The second method would be to determine if the

spatial distribution of SWE at various times throughout the year was similar from year

to year.  This determination would be made using the Kolmogorov-Smirnov two-sample
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nonparametric test.  The final method would involve ranking the SWE for each HRU

within the watershed at various intervals within the water year.  These rankings would

then be compared for specific dates from year to year to determine if any similarities or

trends exists. 

The SWE model has been developed and tested.  It shall now be used in the

analysis and investigation of the proposed question concerning similar, interannual

spatial and temporal SWE patterns.  Previous chapters (5 through 7) have shown that

the model is not perfect, but the level of accuracy is sufficient to aid in this analysis.  

9.2 DETERMINING SWE PATTERNS BY MEANS OF ANALYZING THE
FIRST TWO MOMENTS OF THE SWE DISTRIBUTION

9.2.1 Distribution Comparison Using Statistical Moments for the Upper Rio Grande
Watershed

Examining the mean SWE value throughout the watershed during a water year

provides insight into the evolution of the probability density function of the SWE

distribution in time.  Realizing that the mean SWE value throughout the watershed may

vary significantly from year to year does not mean that the SWE distribution throughout

the watershed does not exhibit similarities from year to year.  If the peak mean SWE

value throughout the watershed occurs at approximately the same time from year to

year, this would indicate that the shape of the probability density function of the SWE

distribution shows similarities from year to year.  Examining the variance of SWE

throughout the watershed during a water year provides insight into the melt process of

the watershed.  If the peak mean SWE value and the variance of SWE are both
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decreasing during the melt season, this would indicate that melt is occurring throughout

the watershed and the difference in SWE between the HRUs that comprise the

watershed is decreasing.  If the peak mean SWE value is decreasing, but the variance of

SWE is increasing during the melt season, this would indicate that (a) snow is melting at

different rates, or (b) melt is occurring in part of the watershed, while accumulation is

occurring in other parts of the watershed; in either case, the difference in SWE between

the HRUs that comprise the watershed is increasing.  If the values of the variance of

SWE follow similar patterns from year to year, this would imply that similar melt

patterns are occurring throughout the watershed from year to year.  

Based upon the modeled SWE output for the entire Upper Rio Grande

Watershed, the first two statistical moments (mean and variance) of the SWE

distribution were computed and the mean and standard deviation were plotted at the

beginning and middle of each month for each of the water years (Appendix L).  Again,

due to the high level of autocorrelation between daily SWE values, it was decided that

computing the statistical moments on a bimonthly interval was sufficient. 

Upon inspection of the plotted moments, two significant trends emerge.  The

first trend is that the greatest mean value of SWE, throughout the watershed, occurs at

the beginning of May for seven of the eight years studied.  The exception is 1999, where

the greatest mean value occurs near the beginning of April.  This trend indicates that

melt begins for a significant portion of the watershed approximately at the beginning of

May, thus causing a decrease in SWE after this date.  Melt may occur before this time

for part of the watershed, but the percent of area experiencing melt must be small as
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offset by the increasing mean value of SWE throughout the watershed.  Recognition of

this trend could provide valuable information to downstream communities regarding the

time frame as to when snow melt may begin to significantly affect stream discharge. 

The second trend involves the variance, or dispersion, of the modeled SWE

output.  The greatest variance of the SWE output occurs in a period from the beginning

of May to the beginning of June.  This trend indicates that by the beginning of June, the

snowpack throughout the watershed is ripe and that melt has ensued.  SWE is increasing

in portions of the watershed while decreasing in other areas.  A review of the SWE

maps created for the Upper Rio Grande Watershed (Appendix K) show that for each of

the water years studied, some HRUs continue to accumulate SWE after other HRUs are

decreasing in SWE due to melt. Recognition of this trend could provide valuable

information to downstream communities by identifying the approximate date at which

the entire watershed is contributing melt.  This date would then help determine the

length of the overall ablation period of the watershed and the length of time that snow

melt may significantly affect stream discharge.

9.2.2 Distribution Comparison Using Statistical Moments for the Reynolds Creek
Watershed 

The first two statistical moments of the SWE distribution were computed and

the mean and standard deviation were plotted at the beginning and middle of each

month for each of the water years (Appendix M) based upon the modeled SWE output

for the entire Reynolds Creek Watershed.  Upon inspection of the plotted moments,
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several trends emerge.  The first trend is that the greatest mean value of SWE

throughout the watershed occurs between the beginning of March and the beginning of

April for all eight years studied.  This trend indicates that melt begins for a significant

portion of the watershed approximately from the beginning of March to the beginning of

April, thus causing a decrease in SWE after this time period.  Melt may occur before

this time for part of the watershed, but the percent of area experiencing melt must be

small as offset by the increasing mean value of SWE throughout the watershed. 

Recognition of this trend could provide valuable information to downstream

communities regarding the time frame as to when snow melt may significantly affect

stream discharge. 

The second trend involves the variance of the modeled SWE output.  For years

in which the snowpack is small (mean SWE < 10 cm), the greatest variance of the SWE

output occurs approximately at the same time the greatest mean SWE value occurs. 

These water years include 1989, 1990, 1991, 1993, and 1994  This trend indicates that

for years with small snowpacks, by the time the maximum mean SWE value occurs

within the watershed, the snowpack throughout the watershed is ripe and that melt is

imminent.  Recognition of this trend could provide valuable information to downstream

communities by approximating the length of the overall ablation period of the watershed

and the length of time that snow melt may significantly affect stream discharge. 

The third trend also involves the variance of the modeled SWE output.  For

years in which the snowpack is deep (mean SWE > 10 cm), the greatest variance of 

SWE occurs approximately at the beginning of May.  These water years include 1988,
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1992, and 1995.  This trend indicates that by the beginning of May, the snowpack

throughout the watershed is ripe and that melt has ensued.  This indication again shows

that during the period from the beginning of May to the beginning of July, SWE is

increasing in portions of the watershed (an unripe snowpack), while decreasing in other

areas.

9.2.3 Distribution Comparison Using Statistical Moments for the Emerald Lake
Watershed 

Two statistical moments (mean and variance) were computed and the mean and

standard deviation were plotted at the beginning and middle of each month for each of

the water years (Appendix N) based upon the modeled SWE for the entire Emerald Lake

Watershed.  Upon inspection of the plotted moments, two significant trends emerge. 

The first trend is that the greatest mean value of SWE throughout the watershed occurs

during the month of April for all five water years studied.  This trend indicates that melt

begins for a significant portion of the watershed during the month of April, thus causing

a decrease in SWE after this time period.  As previously discussed, melt may occur

before this time for part of the watershed, but the percent of area experiencing melt must

be small as offset by the increasing mean value of SWE throughout the watershed.  

The second trend involves the variance of the modeled SWE output.  The

greatest variance of the SWE output occurs at a later date than the greatest mean SWE

value for all of the water years.  This trend indicates that after the date that the

maximum mean SWE has occurred, the snowpack for most of the watershed is ripe and
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melt has ensued.  Additionally at this time, the remainder of the snowpack is not ripe,

and this portion is still accumulating SWE. 

9.3 DETERMINING PATTERNS BY COMPARING SWE DISTRIBUTIONS

9.3.1 Distribution Comparison Utilizing the Kolmogorov-Smirnov Two-Sample
Nonparametric Test for the Upper Rio Grande Watershed 

Histograms were created and plotted for each watershed to depict the SWE

distribution on specific days throughout the water year.  The histograms depict the total

area of watershed that have a specific range of SWE for the first day of each month. 

Appendix O contains a series of histograms for an entire water year shown on one plot,

for each of the water years studied.  These series of histograms show how the SWE

distribution increases during the accumulation period and then recedes during the

ablation period.  Again, due to the high level of autocorrelation between daily SWE

values, it was decided that examining these histograms on the first day of each month

was sufficient.  From these histograms, the Kolmogorov-Smirnov two-sample test was

used to determine if similar SWE distributions (patterns) exist interannually.  As an

example, does the modeled SWE distribution from January 1, 1994,  match the modeled

SWE distributions for January 1 of the other study years?

The K-S two-sample test was set up so that the null hypothesis was that the

SWE distributions tested on various days from different years were similar.  The

acceptance of the null hypothesis would indicate similar SWE distributions, and would

suggest similar interannual SWE patterns.  Conversely, the alternate hypothesis was that
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the SWE distributions tested on various days from different years were not similar.  The

acceptance of the alternate hypothesis would indicate dissimilar SWE distributions, and

would suggest that similar interannual SWE patterns do not exist.  

It was decided to utilize the K-S two-sample test only on dates in which the

mean SWE values were similar.  This decision was based upon the fact that the K-S

two-sample test is sensitive to differences in the central tendency of the two sample

distributions.  If the mean SWE values of the two distributions varied significantly, the

results of the K-S two-sample test would then indicate that the two SWE distributions

are not similar.  The results of the K-S two-sample tests were also divided into two

subgroups: sample distributions tested during the accumulation period and sample

distributions tested during the ablation period.  This was done to determine if similar,

interannual SWE patterns are more likely to exist during a specific time of the water

year.    

 Appendix P contains the results of the K-S two-sample tests for both the

accumulation and ablation periods for the Upper Rio Grande Watershed.  The results of

the nonparametric tests indicate that for the Upper Rio Grande Watershed, SWE

distributions with similar mean values were not similar from year to year for any level

of significance.  These results apply to both the accumulation and ablation period. 

These results suggest that significant model input variability exists.  Since the physical

characteristics of a watershed remain fairly constant in time (aspect, slope, etc.), the

input variability is most likely found in the meteorological input parameters.  This

variability is most likely caused by short term meteorological phenomena, such as 
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random storm patterns and wind patterns.  This claim will be examined in more detail in

section 9.4.

  The results of the K-S two-sample nonparametric tests suggest that the SWE

distribution for a particular day within the watershed is affected by meteorological

variability, which produce random distributions from year to year.  Consequently, 

meteorological variability within the watershed may hinder the formation of similar

SWE patterns from year to year.

9.3.2 Distribution Comparison Utilizing the Kolmogorov-Smirnov Two-Sample
Nonparametric Test for the Reynolds Creek Watershed 

As was the case for the Upper Rio Grande Watershed, histograms were created

and plotted for the Reynolds Creek Watershed to depict the SWE distribution on

specific days throughout the water year.  Again, the histograms depict the total area of

watershed that have a specific range of SWE for the first day of each month.  Appendix

Q contains a series of histograms for an entire water year shown on one plot, for each of

the water years studied. The K-S two-sample test was again utilized to determine if the

modeled SWE distributions showed similar, interannual patterns during the

accumulation and ablation periods.

 Appendix R contains the results of the K-S two-sample tests for both the

accumulation and ablation periods for the Reynolds Creek Watershed. The results of the

nonparametric tests during the accumulation period are mixed for the Reynolds Creek

Watershed.  During the accumulation period, three of the tests (1, 4, and 9) indicate that
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the tested SWE distributions were similar for any level of significance.  Four of the tests

(2, 5, 6, and 8)  indicate that the tested SWE distributions were not similar for any level

of significance.  Two of the tests (3 and 7)  indicate that the tested SWE distributions

were not similar when the level of significance was high, but were similar for lower

values of the level of significance.  These results suggest that during the accumulation

period, model input variability exists which is responsible for the variability in modeled

SWE output.  As discussed for the previous watershed, the input variability is most

likely found in the meteorological input parameters.  It appears that, unlike the previous

watershed, the degree of variability is not large enough to prevent some similar,

interannual SWE patterns from occurring. 

The results of the nonparametric tests during the ablation period suggest that the

SWE distributions with similar mean values were not similar from year to year for most

values of the level of significance.  Four of the tests (1, 3, 6, and 8) suggest that the 

SWE distributions were not similar from year to year for any level of significance.  Four

of the tests (2, 4, 5, and 7) indicate that the tested SWE distributions were not similar

when the level of significance was high, but were similar for lower values of the level of

significance.  

  These results suggest that greater input variability exists during the ablation

period for the Reynolds Creek Watershed.  This could be caused by one of two things. 

The first possibility could be, as discussed in chapters 5 through 7, that greater model

error occurs during the ablation period.  The second possibility is that greater

meteorological variability occurs during the ablation period.                
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9.3.3 Distribution Comparison Utilizing the Kolmogorov-Smirnov Two-Sample
Nonparametric Test for the Emerald Lake Watershed

As was the case for the previous two watersheds, histograms were created and

plotted for the Emerald Lake Watershed to depict the SWE distribution on specific days

throughout the water year.  As previously discussed , the histograms depict the total area

of watershed that have a specific range of SWE for the first day of each month. 

Appendix S contains a series of histograms for an entire water year shown on one plot,

for each of the water years studied. The K-S two-sample test was again utilized to

determine if the modeled SWE distributions showed similar, interannual patterns during

the accumulation and ablation periods. 

           Appendix T contains the results of the K-S two-sample tests for both the

accumulation and ablation periods for the Emerald Lake Watershed.  The results of the

nonparametric tests during the accumulation period are mixed for the Emerald Lake

Watershed.  During the accumulation period, test 2 indicates that the tested SWE

distributions were similar for any level of significance.  Four of the tests (1, 3, 4, and 6) 

indicate that the tested SWE distributions were not similar for any level of significance. 

Test 5 indicates that the tested SWE distributions were not similar when the level of

significance was high, but were similar for lower values of the level of significance.    

These results suggest that during the accumulation period, model input

variability exists which is responsible for the variability in modeled SWE output.  As

discussed for the previous watersheds, the input variability is most likely found in the

meteorological input parameters.  The variability could also be the result of additional
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SWE transport phenomena, most notably avalanching.  It appears that, like the Reynolds

Creek Watershed, the degree of variability is not large enough to prevent some similar,

interannual SWE patterns from occurring. 

The results of the nonparametric tests during the ablation period suggest that the

SWE distributions with similar mean values were not similar from year to year for any 

level of significance.  It should be noted that only two tests were run during the ablation

period due to the widely varying mean SWE values.  Consequently, conclusions are

difficult to reach based upon such a limited sample size. 

9.4 DETERMINING PATTERNS BY RANKING SWE AND
METEOROLOGICAL INPUTS FOR HRUs CONTAINING
METEOROLOGICAL STATIONS

9.4.1 Distribution Comparison by a Ranking Method for the Upper Rio Grande
Watershed

As stated in Chapter 5, HRUs 1, 40, and 50 coincide with SNOTEL stations at

Beartown, Middle Creek, and Wolf Creek Summit.  For these three HRUs, SWE values

and meteorological input data were ranked on the first day of each month for each of the

water years studied.  The purpose of this ranking was to determine, at least on a limited

basis, if similar rankings exist in these HRUs in terms of SWE totals from year to year. 

Similar SWE rankings would suggest the existence of similar, interannual SWE

patterns.  If similar SWE patterns exist from year to year, the SWE ranking for an HRU

should be approximately the same for that particular date from year to year.  These

HRUs were chosen for this analysis because actual field measured data were available at
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the SNOTEL stations.  If similar interannual SWE patterns exist for the Upper Rio

Grande Watershed, a pattern should emerge in terms of SWE rankings, such as HRU 50

almost always has more SWE than HRU 1, which almost always has more SWE than

HRU 40.

The Upper Rio Grande Watershed was chosen for this analysis because this

watershed had the most meteorological stations (3) that had both SWE data and

meteorological data available.  The Reynolds Creek Watershed had only one such

station and no such stations existed for the Emerald Lake Watershed.

As stated in Chapter 4, the meteorological input parameters for the Upper Rio

Grande Watershed were: cloud cover, wind speed, total precipitation, and air

temperature.  Other required meteorological inputs, such as solar radiation and relative

humidity, were not available at the SNOTEL stations and thus were estimated by

equations developed for the model.  As also mentioned in Chapter 4, cloud cover data

were uniform throughout the watershed, meaning each HRU had the same cloud cover

input data.  Consequently, the cloud cover data were not ranked.  As a result, SWE,

daily wind speed, total precipitation, and average air temperature were ranked for HRUs

1, 40, and 50 within the Upper Rio Grande Watershed.  Wind speed data were corrected

for an HRU’s canopy cover as per Eq. 3-8.  Appendix U contains a summary table of

these rankings.       

The SWE ranking values contained in Appendix U for each date are based upon

the actual SWE values in each HRU on that particular date.  As an example, on

November 1, 1993, the SWE rankings for HRUs 1, 40, and 50 show that HRU 50 has
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the most SWE on that date, HRU 40 has the second most SWE on that date, and that

HRU 1 has the lowest amount of SWE on that date.  The meteorological ranking values

contained in Appendix U for each date are based upon an average value determined

from the previous month.  As an example, on November 1, 1993, the precipitation

rankings for HRUs 1, 40, and 50 show that HRU 50 had the highest average, daily

precipitation value throughout the month of October, 1993, HRU 1 had the second

highest average, daily precipitation value throughout October, 1993, and that HRU 40

had the lowest average, daily precipitation value throughout October, 1993.  Average

values from the previous month for meteorological inputs were chosen, as opposed to an

actual daily value for a particular day, because a single daily value could produce an

anomaly that an average monthly value would help to minimize.

A review of Appendix U shows an interesting development in the interannual

SWE rankings for HRUs 1, 40, and 50.  For the eight water years studied, a great deal of

variability exists in the SWE rankings during the early accumulation period.  Six

different rankings of SWE  occur on November 1.  On December 1, the number of

different SWE rankings drops to four.  On January 1, the number of different SWE

rankings drops to three.  On this same date, four of the years have a ranking of 1, 3, 2,

indicating that for these years, HRU 1 has the greatest amount of SWE, followed by

HRU 50, and then HRU 40.  Additionally, HRU 40 has the lowest SWE for seven of the

eight years studied.

As the accumulation progresses, the SWE rankings continue to increase in

uniformity.  On February 1, the number of different SWE rankings drops to two.  On
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this date, five of the years have a ranking of 2, 3, 1, indicating that for these years, HRU

50 has the greatest amount of SWE, followed by HRU 1, and then HRU 40. 

Additionally, HRU 40 has the lowest SWE for all eight years studied.  On March 1 and

April 1, seven of the years have a ranking of 2, 3, 1, with the exception being 1999,

which shows HRU 1 having the greatest amount of SWE, followed by HRU 50, and

then HRU 40.  Again, HRU 40 has the lowest SWE for all eight years studied, for both

of these dates.

As the ablation period begins, greater variability can again be seen in the SWE

rankings.  On May 1, the number of different SWE rankings increases to three.  On this

date, five of the years still have a ranking of 2, 3, 1, and for seven of the years, HRU 40

still has the lowest SWE.  On June 1, the number of different SWE rankings is still

three.  However, no single ranking is prevalent.  For only five of the years does HRU 40

contain the least amount of SWE.

The question that arises is what causes the similarities and differences found in

the SWE rankings for HRUs 1, 40, and 50 for the eight water years studied.  The

similarities in SWE ranking could be the result of the physical parameters of the

watershed.  The slope, elevation, aspect, etc. of an HRU remain constant from year to

year and could be responsible, at least partially, for similar SWE rankings.  The

differences in SWE rankings suggest the existence of yearly variability associated with

the meteorological input data.  If the physical parameters of the watershed and the

meteorological input data were consistent in ranking from year to year, the SWE

rankings for each HRU would most likely also be consistent from year to year. 
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With this fact in mind, it would be logical to assume that there may exist a 

correlation between the ranking of meteorological input data and the corresponding

ranking of SWE.  A review of Appendix U indicates that the ranking of SWE for the

three HRUs does not appear to be correlated to the ranking of average daily air

temperature.  The ranking of average daily air temperature is somewhat consistent from

month to month and from year to year for the three HRUs.  HRU 50 consistently has the

highest (of the three HRUs) average daily air temperature.  The average daily air

temperature for HRUs 1 and 40 are very similar, and this fact is reflected in the

rankings.  These results are not surprising.  A review of Table 4-2 shows that Wolf

Creek Summit (HRU 50) is approximately 180 meters lower in ground elevation than

Beartown (HRU 1) and Middle Creek (HRU 40).  Consequently, it is expected that

Wolf Creek Summit would have the highest average air temperature of the three HRUs. 

Beartown is close in ground elevation to Middle Creek, and thus these two HRUs

typically have similar average daily air temperatures.  If a strong correlation existed

between the ranking of average air temperature and the ranking of SWE, it would then

be expected that the SWE ranking of HRU 50 would typically be the lowest of the three

due to the greatest average daily air temperature.  This lowest ranking would be

expected because a greater average daily air temperature would result in a greater

percentage of total precipitation occurring as rain, and this would also increase the

sensible heat exchange at this HRU throughout the water year.  A review of Appendix U

shows that HRU 50 rarely has the lowest SWE ranking suggesting that a strong

correlation does not exist between average daily air temperature ranking and SWE
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ranking for these three HRUs.    

A similar analysis can be made regarding the average daily wind speed for the

three HRUs.  HRU 1 consistently has the highest average daily wind speed, while HRUs

40 and 50 consistently have approximately the same average daily wind speed, and thus

the same lower ranking than HRU 1.  Again, these results are not surprising.  A review

of Table 4-1 shows that HRU 1 has no canopy cover.  However, HRUs 40 and 50 are

completely forested with conifers.  Thus, the wind speed through HRUs 40 and 50 are

greatly reduced by the canopy cover.  If a significant correlation existed between

average daily wind speed ranking and SWE ranking, it would be anticipated that the

SWE rankings for HRUs 40 and 50 would be similar since the rankings for average

daily wind speed for these two HRUs are the same.  A review of Appendix U shows that

the SWE rankings for HRUs 40 and 50 frequently, especially from February to May,

indicate that HRU 50 has the most SWE while HRU 40 has the least amount of SWE. 

Consequently, there does not appear to be a correlation between SWE ranking and

average daily wind speed ranking for these three HRUs.  

Relative sensitivity analysis discussed in Chapter 8 indicated that the most

important meteorological input data were precipitation.  With this fact in mind, it would

be logical to assume that there would exist a strong correlation between the ranking of

average daily precipitation and the ranking of SWE.  However, the results found in

Appendix U do not support this assumption.  Only on one date (January 1) does the

ranking of average daily precipitation match the ranking of SWE for a majority of the

years (five).  Additionally, on December 1 and on June 1, only one of the years has
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similar ranking for both average daily precipitation and SWE.

The ranking of meteorological input data suggest that the variability found in the

SWE rankings may be caused by a combination of the variability found in the different

meteorological data.  Additionally, the variability found in the SWE rankings appears to

be greatest early in the accumulation period and late in the ablation period.  This fact

would lend credence to the claim that the variability in SWE rankings may be caused by

a combination of the variability found in the different meteorological data.  During the

early accumulation and late ablation periods, fluctuations in the average daily air

temperature can have a significant impact on SWE by affecting whether precipitation

occurs as rain or snow.  Fluctuations in the average daily air temperature during these

periods can also have an impact on SWE by affecting the sensible heat exchange, total

net energy received at an HRU, and thus the melt rate.  Similarly, fluctuations in the

average daily wind speed during these periods can also have an impact on SWE by

affecting the turbulent heat exchanges, total net energy received at an HRU, and thus the

melt rate.  

 

9.5 CONCLUSIONS  

The results of the tests performed to determine if similar SWE patterns exist 

interannually indicate that significant variability occurs within the SWE distribution

from  year to year, for all three watersheds.  Based upon the plotted moments, some

generalizations could be made regarding the SWE distributions for each watershed. 

Valuable knowledge regarding the total amount of SWE, and the length of the ablation
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period, among other information, could be learned by downstream communities from

these generalizations.  These generalizations do not provide information concerning the

spatial or temporal distribution of SWE within the watershed, and therefore do not

provide information or evidence of similar or dissimilar SWE patterns from year to year.

The results from the Kolmogorov-Smirnov Two-Sample test were mixed for all

three watersheds.  Some interannual uniformity in the spatial SWE distributions were

noted, but most test results indicated that the SWE distributions were not similar from

year to year.  As discussed earlier, these results could be caused by one of two things:

model error, or meteorological variability.       

The results of the HRU rankings for the Upper Rio Grande watershed suggest

that significant meteorological input variability occurring early in the accumulation

period and late in the ablation period causes significant variability in SWE rankings, and

thus SWE patterns.  This meteorological variability is minimized during the remainder

of the water year which seems to help minimize the variability in SWE patterns during

this period also.

How do the results presented in this chapter affect depletion curve theory?  The

results of the K-S two-sample tests suggest that meteorological variability may prevent

the formation of similar, interannual SWE patterns within a watershed.  The results of

the HRU rankings for the Upper Rio Grande Watershed suggest that meteorological

variability during the early accumulation period and late ablation period may also

prevent the formation of similar, interannual SWE patterns within a watershed. 
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However, the results of the HRU rankings for the Upper Rio Grande Watershed

also suggest that meteorological variability may be minimized during the remainder of

the water year, thus allowing the formation of similar, interannual SWE patterns within

the watershed.  This fact indicates that the spatial probability density functions of SWE

are most similar at the beginning of the melt season.  These results seem to validate the

depletion curve theory.  Several key assumptions of depletion curve theory occur during

the time period in which similar patterns occurred for the Upper Rio Grande Watershed. 

As an example, depletion curve theory applies when a snowpack becomes ripe and melt

(depletion) occurs.  The SWE rankings for the Upper Rio Grande Watershed during the

months of March and April indicate uniformity in SWE rankings.  Results presented in

Chapter 5 also indicate that the snowpack of HRUs 1, 40, and 50 typically become ripe

during this time period.  Consequently, while using depletion curve theory, if

assumptions are made concerning the ripening of the snowpack for the Upper Rio

Grande Watershed, the results of the SWE rankings suggest that minimal error would be

associated with these assumptions. 

It should be noted that these conclusions are based upon data from three

SNOTEL sites for eight water years.  A more thorough investigation is necessary.  
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CHAPTER TEN

CONCLUSIONS AND RECOMMENDATIONS

10.1 INTRODUCTION

Studies, such as the one performed by Ferrris and Congalton (1989), have

indicated that snowmelt accounts for a significant percentage of the annual stream flow

in many areas of the world, including the Sierra Nevada, the Rockies, the Alps, the

Andes, and the Himalayan Mountains.  The western United States and other parts of the

world rely heavily upon the annual economic value of snowmelt water.  Additionally,

studies such as the one done by Castruccio et al. (1980), indicated that a minor increase

in river forecast accuracy would result in significant economic benefits to downstream

communities.   

To improve upon the quality of stream discharge forecasting, means of more

accurately estimating the snow content during the accumulation season and through the

melt season is needed.  Thus one goal of the research was to provide more accurate

input to river forecasting models by developing a spatial-temporal model to forecast the

SWE within a watershed.

Most accumulation and ablation models, such as the National Weather Service

River Forecast System SNOW-17 snow model, do not attempt to model the

redistribution of snow by means of wind transport and avalanching.  The developed

SWE model improved upon existing snow models by incorporating all of the physical

processes involving snow accumulation and ablation, including wind transport and
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avalanching.   Many models, such as the SNOW-17 snow model and the SRM, rely on

snow depletion curves.  The developed SWE model does not incorporate the depletion

curve theory because the current literature does not adequately address its validity. 

Several models exist which estimate the redistribution of SWE by means of wind

transport, such as the Snow-Transport Model for Complex Terrain created by Liston and

Sturm (1998).  However, these models, as well as the developed SWE model, typically

rely upon daily average wind speed as opposed to hourly data.  Unlike these other

models, the developed SWE model utilized conditional probability to improve upon the

wind transport estimates.  

The conceptual model of spatially distributed SWE accumulation and depletion

was calibrated and validated with spatially distributed observations from three

watersheds.  The effects of the physical variables and parameters on the SWE

distribution within a watershed was demonstrated.  How data were used in the

calibration/validation of the model,  including showing the benefit of additional data on

model accuracy was also demonstrated.

10.2 MODEL PERFORMANCE

As presented in Chapters 5, 6, and 7, statistical analyses were performed for all

three watersheds to determine model performance.  The analyses performed were

consistent for all three watersheds.  Additionally, the results of the analyses were

consistent in that it indicated that the model produced accurate results during the

accumulation period for all three watersheds.  Similarly, the same analyses indicated
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that the model produced less accurate results during the ablation period for all three

watersheds.

For the three watersheds during the accumulation period, goodness-of-fit

statistics consistently indicated that the model accurately matched the field measured

SWE data.  The  sample mean error, mean relative error, standard deviation of the

measured data, standard error of the estimate, and the ratio of the standard error of the

estimate to the standard deviation of the measured data consistently indicated that the

model produced accurate results during this period for all three watersheds. 

Additionally, the peak modeled SWE matched closely to the measured peak SWE for

the water years studied for all three watersheds.

These goodness-of-fit statistics and accurate prediction of the peak SWE

indicate that the model can be useful in providing estimates of available snowmelt

runoff to downstream communities.  This information can ultimately result in

significant economic benefit to these downstream communities.  Optimizing crop

planting strategy is just one example of the economic benefit that can be gained by

having more accurate estimates of peak SWE.     

For the three watersheds during the ablation period, goodness-of-fit statistics

consistently indicated that the model did not accurately match the field measured SWE

data.  The sample mean error, mean relative error, standard deviation of the measured

data, standard error of the estimate, and the ratio of the standard error of the estimate to

the standard deviation of the measured data consistently indicated that the model did not

improve the reliability of prediction as compared to the interannual mean SWE during
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the ablation period for all three watersheds.  

Additionally, it was determined that the model did not accurately match the 

physically significant values of the measured SWE data during the ablation period. 

Significant differences existed when comparing the measured and modeled date at

which the snowpack became ripe, and the measured and modeled length of the ablation

period. 

These goodness-of-fit statistics and inaccurate predictions of the snowpack

ripening date, and the length of the ablation period indicate that the model should not be

used to make predictions during the ablation period.  Inaccurate predictions, such as

identifying an extreme discharge event, could have a deleterious impact on downstream

communities, perhaps resulting in loss of property or life.  Methods for improving

model accuracy are discussed in the following section. 

The developed SWE model utilized conditional probability to improve upon the

accuracy of estimating sublimation rates, or wind transport rates.  Conditional

probability was used to estimate the portion of a day that the threshold wind speed was

exceeded given the fact that the daily average wind speed was less than the threshold

wind speed.  This allowed for a more accurate representation of the sublimation and

wind transport processes.

10.3 IMPROVING MODEL ACCURACY

To increase the usefulness of the model, ways of improving the model accuracy

during the ablation period should be investigated.  As previously discussed in Chapters
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5 through 7, this task can best be accomplished by improving upon the methods of

measuring and modeling net energy at a point.  As shown in Eq. 3-14, the processes that

constitute total net energy are: solar radiation, longwave radiation, sensible heat, latent

heat, advective (rain) energy, and conductive heat exchange with the ground.  As also

previously discussed, advective (rain) energy and conductive heat exchange with the

ground represent a very small portion of total net energy.  As a result, efforts should be

made to increase the accuracy of estimating solar radiation, longwave radiation, sensible

heat, and latent heat. 

As shown in Eq. 3-5 for solar radiation, the parameters that affect incoming solar

radiation are: received clear sky radiation (KCS ), cloud cover (CC), the snowpack albedo

(ALB), a shading factor (Sh), and a tree type factor (f3(F)).  Received clear sky radiation is

dependent upon the day of year, and other constant watershed parameters, such as

latitude and ground slope.  As discussed in Chapter 3, many references exist for

determining the albedo of a snowpack.

As demonstrated in Chapter 8, sensitivity analysis showed that cloud cover is an

unimportant input for the overall net energy received at a point and that modeled output

is insensitive to changes in cloud cover values. This was due to the effects that cloud

cover had on longwave and incoming solar radiation.  The unimportance of cloud cover

is a result of the simplistic approach of modeling cloud cover.  A more realistic

approach of taking into account the height of the cloud cover as well as the air

temperature would improve upon the accuracy of estimating both solar radiation and

longwave radiation. 
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As previously mentioned, the algorithm for estimating net solar radiation is

simplified.  A more realistic distinction between modeling direct and diffuse solar

radiation would improve the overall accuracy of estimating incoming solar radiation. 

Additionally, improving the ability to estimate incoming solar radiation can be

made by improving the ability to estimate Sh and f3(F).  The shading factor for an HRU

could be improved by a site investigation.  An HRU could be examined to determine

what percentage of the day the HRU is significantly shaded.  This percentage could then

be the value for the shading factor.  The tree type factor for an HRU could also be

improved by a site investigation, or by aerial photography.  As discussed in Chapter 3,

this tree type factor is dependent upon tree species, which again could be ascertained by

either of these methods.  

With improved estimates for both Sh and f3(F), each HRU should have a unique

value for these inputs as opposed to a single value representing the entire watershed. 

These unique values could then be entered into the HRU physical characteristics input

file, as opposed to setting these values as constants for all HRUs.

High resolution Lidar Swath mapping (e.g., NOVA Digital Systems,

Incorporated, 2001. “LiDAR Mapping”) can be used to improve the accuracy and

precision of DEMs, and thus could contribute to better estimates of terrain slope and

shading.  To further improve estimates of incoming solar radiation, GIS could be used

to create a time series of terrain shading factors for each HRU of the watershed.  These

time series could reflect the physical spatial variation of the watershed and account for

the incidence angle of the sun as the seasons change. 
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As shown in Eq. 3-15 for longwave radiation, the parameters that affect

longwave radiation are: the snowpack surface temperature (TSURF ), and the effective

emissivity of the atmosphere and canopy (eat).  In turn, as per Eqs. 3-16, 3-17, 3-4, and

3-25, the inputs affecting TSURF and eat are: average daily air temperature, minimum

daily air temperature, cloud cover, forest cover, and a temperature factor defining the

difference between the air temperature and the snow surface temperature (Tf).  As

previously mentioned, cloud cover is an unimportant input in the model as it presently

treats net radiation.  Values for forest cover are determined by means of land use data,

and as long as these data are accurate, the corresponding forest cover values should also

be accurate.  Values for minimum and average daily air temperature should be accurate

provided the field instruments are functioning properly.    

Consequently, improvements in longwave radiation estimates could be made by

monitoring or measuring snowpack surface temperatures on a regular basis.  As

demonstrated in Chapter 8, relative and deviation sensitivity analyses found that Tf is an

important input for HRUs that are completely forested.  Sensitivity analysis also showed

that modeled output was sensitive to changes in Tf, especially for completely forested

HRUs.  Field measurements of TSURF could significantly improve the accuracy of this

variable, which in turn could increase the accuracy of longwave radiation estimates.  For

large watersheds, such as the Upper Rio Grande Watershed, TSURF field measurements

should be taken at several locations.  Remote sensing may also prove useful in the

estimation of TSURF .     
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As shown in Eq. 3-21 for sensible heat exchange, the parameters that affect

sensible heat are: average daily air temperature, snowpack surface temperature, wind

speed through the canopy, if a canopy exists (WCAN), and a stability correction factor (fs). 

In turn, as per Eqs. 3-20 and 3-8, the inputs affecting WCAN and fs are: daily average air

temperature, snowpack surface temperature, forest cover (F), forest density (Fd), and

wind speed.  Possible improvements in daily average air temperature, snowpack surface

temperature, and forest cover have been discussed earlier in this chapter.

As previously discussed in Chapter 4, no current methods exist to extrapolate

and distribute wind speeds from measurement sites to the watershed.  Therefore

improvements in wind speed estimates would involve recording more wind

measurements on site, if feasible.  Improvements in wind speed estimates could also be

made by incorporating developing meteorological models designed to improve upon

wind forecasting.  Estimates for forest density could be improved upon by site

inspection or by aerial photography.  With improved estimates for Fd, each HRU should

have a unique value for this input as opposed to a single value representing the entire

watershed.  This unique value could then be entered into the HRU physical

characteristics input file, as was recommended for Sh and f3(F). 

As shown in Eqs. 3-24 for latent heat exchange, the parameters that affect latent

heat are: wind speed through the canopy, if a canopy exists, a stability correction factor ,

the vapor pressure at the snow surface (ess), and the near surface vapor pressure (ea). 

Possible improvements in WCAN and fs have been discussed earlier in this chapter.  

As per Eqs. 3-17, 3-4, and 3-23, the inputs affecting ess and ea are: average daily
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air temperature, minimum daily air temperature, and the snowpack surface temperature. 

Possible improvements in all of these inputs have been discussed earlier in this chapter.

Improvements in estimating the net energy received at a point will increase the

accuracy of the model during the ablation period.  This would result in better estimates

of the date in which the snowpack ripens and the length of the ablation period.  These

improvements would ultimately allow the model user to utilize model output for

predictive purposes such as identifying possible extreme stream discharge events or

estimating the date at which stream discharge is affected by snowmelt.  Ultimately, the

developed SWE model should not be used for forecasting until model accuracy is

increased during the ablation period.

As discussed in Chapter 4, conditional probability was utilized as an attempt to

determine what percentage of a day the actual wind speed may have been greater than a

threshold wind speed when the average wind speed for that particular day was less than

the threshold wind speed.  Figure 10-1 shows a plot of the conditional probability

analysis performed on the wind data for the Upper Rio Grande Watershed.  This figure

suggests that for days in which the average wind speed was greater than the threshold

wind speed (4.8 m/s), a fraction of these days still experienced wind speeds less than the

threshold.  This indicates that wind driven physical processes, such as wind transport of

SWE, were over predicted on days that the average daily wind speed was greater than

the threshold wind speed.  Further work should incorporate a more thorough analysis of

conditional probability.



271

Figure 10-1. Plot of conditional probability analysis performed on the wind data for
the Upper Rio Grande Watershed.

10.4 RESULTS OF THE SENSITIVITY ANALYSIS

The results of the sensitivity analyses presented in Chapter 8 regarding

meteorological input data indicated that total precipitation is the most important

meteorological parameter, regardless of canopy cover.  Additionally, the relative

sensitivity value of PT increases as the canopy cover diminishes, corresponding to a

decrease in interception.  These results also indicated that model sensitivity to solar

radiation, relative humidity, air temperature, and wind speed is dependent upon the

canopy cover of an HRU.  Additionally, these results indicated that the model was not

sensitive to changes in cloud cover regardless of the canopy cover.  These analyses

ultimately aid the model user by identifying which input data are most important in



272

terms of data collection.

The results of the sensitivity analyses regarding the availability of SWE data

suggest that weekly SWE data are sufficient to adequately calibrate the model. 

Knowing this fact could lead to significant savings in time and resources by requiring

weekly, as opposed to daily, SWE field measurements, and thus may limit the risk faced

by the data collectors.  Additionally, if less than weekly SWE data are available, as was

the case for the Reynolds Creek Watershed, greater uncertainty exists when attempting

to calibrate/validate the model.

The results of the sensitivity analysis regarding the HRU subdivision process

indicated that the model is sensitive to different HRU subdivisions because of the

resulting changes to the HRU physical characteristics.  Peak SWE values appeared to be

sensitive primarily to changes in mean slope.  Snowpack ripening, length of ablation

period, and the resulting mean SWE values appeared to be sensitive to significant

changes in elevation, mean slope, or aspect, resulting from the varying subdivision

process.  The results of the analysis regarding the HRU subdivision process ultimately

suggest that smaller HRUs provide more accurate SWE predictions.  However, smaller

HRUs mean more HRUs and more parameters to estimate.  A model user must use

judgement to find the proper balance.   

10.5 ASSESSING THE SIMILARITY OF SWE PATTERNS

As presented in Chapter 9, variability exists in the interannual SWE distributions

for all three watersheds.  The Kolmogorov-Smirnov two-sample nonparametric test was
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used to test two different distributions.  This test is sensitive to differences in any

characteristics of a distribution, such as central tendency, dispersion, or skewness.  As a

result, the distributions tested were required to have similar means, or the results of the

test would always indicate that the distributions were dissimilar.  Results of the

Kolmogorov-Smirnov two-sample nonparametric tests suggest that model input

variability prevents similar interannual SWE distributions from consistently occurring

for all three watersheds.  Since the physical characteristics of a watershed remain

essentially constant in time, the input variability must be contained in the

meteorological data.  This variability is most likely the result of short- term phenomena,

such as storm and wind patterns.  In addition to input variability, nonlinear transport

processes, such as wind transport and avalanching, could also prevent similar

interannual SWE distributions from consistently occurring.

The results of the SWE and meteorological rankings for the Upper Rio Grande

Watershed support the claim that model input variability prevents similar interannual

SWE distributions from consistently occurring during the early accumulation period and

late ablation period.  However, the results of the rankings also indicated that similar

interannual SWE distributions occur consistently during the remainder of the water year

despite meteorological variability during this same time period.  These results suggest

that meteorological variability has much less effect on SWE distributions during this

time period, approximately January to May for the Upper Rio Grande Watershed.

The results of the rankings for the Upper Rio Grande Watershed seem to validate

the depletion curve theory.  Most of the assumptions regarding the depletion curve
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theory apply at the time of snowpack ripening.  One such example is estimating the date

in which a snowpack becomes ripe and thus melt (depletion) begins.  During this time,

SWE rankings for the Upper Rio Grande Watershed were fairly consistent from year to

year suggesting the existence of similar, interannual SWE patterns.  These similar,

interannual SWE patterns allow for the assumptions made regarding the depletion curve

theory in the early part of the melt season.

10.6 RECOMMENDED FUTURE RESEARCH

Future research should be concentrated on three tasks.  The first task has been

previously discussed, and is the improvement of model accuracy.  Improvements to the

model accuracy must be made during the ablation period if the model is to be used for

predicting or forecasting.  As previously discussed, efforts should center upon

increasing the accuracy of predicting net energy at a point.

The second task involves additional analyses of identifying similar, interannual

SWE patterns.  Many methods of stream forecasting utilize the depletion curve theory. 

The assumptions of this theory have not been adequately tested.  The results from the

Upper Rio Grande Watershed appear to support the theory early in the ablation period. 

However, these results are based on a few years in a single watershed.  Additional

watersheds need to be tested to determine the validity of the depletion curve theory.  To

test the depletion curve theory will require analytical tools to study the temporal

evolution of the spatial probability density function of SWE, as well as accurate, finely

resolved maps of SWE, whether from remote sensing or from improved distributed
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models.

Part of the analyses of identifying interannual SWE patterns involved the

creation of a time series of SWE maps for the Upper Rio Grande Watershed.  To fully

determine if these maps support the existence of interannual SWE patterns, additional

analyses involving spatial statistics need to be performed.

The final task involves utilizing modeled SWE output as input for an existing

hydrologic runoff model.  If modeled SWE output can be used to improve upon stream

discharge forecasting, downstream communities could reap significant benefits. 

Accurate melt predictions of SWE on a warm, windy day, accompanied by heavy rain,

could help to identify a severe discharge event which could not only result in an

economic benefit to downstream communities, but could also quite possibly help to

save lives. 
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Appendix A

Summary of the Physical Characteristics of the HRUs Created for

the Three Watersheds
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Table 4-1. Summary of the physical parameters of the HRUs created for the Upper
Rio Grande Watershed.

HRU ID Elevation
(m)

Slope
(degrees)

 % Forest
 Cover*

Aspect
(degrees)

Latitude
(degrees)

Area
(km2)

1 3716 4 0 135 37.7 27.6

2 3691 5.2 0 135 37.8 110.2

3 3472 2 10 - Con 135 37.6 12.4

4 3404 4.8 70 - Con 135 37.6 38

5 3675 6.7 10 - Con 45 37.6 21.9

6 3634 3.9 20 - Con 45 37.6 12.4

7 3560 7.6 80 - Con 90 37.6 58.9

8 3625 8.1 90 - Con 45 37.6 15.2

9 3178 4.7 90 - Con 60 37.6 64.6

10 3137 3.4 40 - Mix 60 37.6 87.4

11 3427 5.8 60 - Mix 90 37.7 39.9

12 3748 5.2 20 - Con 135 37.9 5.7

13 3286 3.5 70 - Con 135 37.8 88.4

14 3521 4.3 70 - Con 135 37.9 15.2

15 3460 7 90 - Con 45 37.5 26.6

16 3054 4.3 90 - Con 315 37.6 69.4

17 3381 6.5 90 - Con 0 37.6 62.7

18 3622 5.1 20 - Con 25 37.5 15.2

19 3517 6.2 60 - Con 90 37.5 43.7

20 3419 4 70 - Con 225 37.9 86.5

21 3143 3 20 - Con 90 37.8 12.4

22 3059 3 50 - Con 180 37.7 41.9

23 2905 2.4 20 - Con 225 37.6 51.3

 



278

Table 4-1. Summary of the physical parameters of the HRUs created for the Rio
Grande Watershed, Continued.

HRU ID Elevation
(m)

Slope
(degrees)

 % Forest
 Cover*

Aspect
(degrees)

Latitude
(degrees)

Area
(km2)

24 2771 1.1 90 - Con 45 37.6 9.5

25 3285 9.7 100 - Con 0 37.4 22.8

26 3234 6.5 90 - Con 0 37.5 96.9

27 3563 3.4 20 - Con 135 37.8 57

28 3663 6.6 30 - Con 225 37.9 26.6

29 3370 6.3 80 - Mix 45 37.7 37.1

30 2952 5.2 80 - Mix 45 37.6 21.9

31 2754 1 0 315 37.6 30.4

32 2966 6.2 70 - Mix 90 37.6 37.1

33 3459 5.3 80 - Mix 180 37.8 57

34 3045 10.9 70 - Mix 180 37.7 58.9

35 2896 2 0 225 37.6 42.8

36 3483 6.5 90 - Con 0 37.4 96.9

37 2805 6.1 90 - Mix 45 37.6 37.1

38 3221 10.1 100 - Con 45 37.6 49.4

39 3279 6.4 90 - Con 315 37.5 74.1

40 3423 9 100 - Con 0 37.5 44.7

41 3259 5.8 70 - Mix 225 37.8 35.2

42 3591 2.3 30 - Con 180 37.8 10.5

43 3495 4.1 90 - Con 180 37.8 25.7

44 3300 5.2 100 - Con 180 37.7 63.7

45 2922 4.5 90 - Con 225 37.6 58

46 3456 4 10 - Con 180 37.7 20.9
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Table 4-1. Summary of the physical parameters of the HRUs created for the Rio
Grande Watershed, Continued.

HRU ID Elevation
(m)

Slope
(degrees)

 % Forest
 Cover*

Aspect
(degrees)

Latitude
(degrees)

Area
(km2)

47 3249 6.6 100 - Con 45 37.5 96.9

48 3130 5.7 100 - Con 45 37.6 59.9

49 2762 3.8 100 - Con 90 37.6 34.2

50 3391 6.2 100 - Con 60 37.3 26.6

51 3123 7.9 100 - Con 60 37.3 22.8

52 3265 7.3 100 - Con 0 37.3 105.5

53 3267 6.2 100 - Con 330 37.3 93.1

54 3163 7 100 - Con 90 37.4 20.9

55 3009 7.1 100 - Con 90 37.4 34.2

56 2749 5.8 100 - Con 90 37.6 83.6

57 2965 4.2 100 - Con 45 37.4 11.4

58 3324 3.1 100 - Con 45 37.3 20.9

59 2798 6 100 - Con 90 37.4 47.5

60 2592 4.2 90 - Con 90 37.5 14.3

61 3416 3.7 100 - Con 225 37.6 39

62 3530 3.8 90 - Con 90 37.7 17.1

63 3610 3.9 0 225 37.7 6.7

64 3194 5.8 100 - Con 180 37.6 80.8

65 3002 4.9 100 - Con 315 37.4 79.8

66 3244 5.2 100 - Con 225 37.7 12.4

67 3007 7.2 40 - Con 180 37.7 24.7

68 3062 10.8 100 - Con 180 37.6 13.3

69 2734 6.5 100 - Con 135 37.6 7.6
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Table 4-1. Summary of the physical parameters of the HRUs created for the Rio
Grande Watershed, Continued.

HRU ID Elevation
(m)

Slope
(degrees)

 % Forest
 Cover*

Aspect
(degrees)

Latitude
(degrees)

Area
(km2)

70 2822 5.6 0 180 37.6 53.2

71 3338 4.4 90 - Con 315 37.4 96

72 2644 3.4 0 225 37.6 19

73 2999 6.2 100 - Con 0 37.5 23.8

74 2772 4.9 90 - Con 0 37.5 26.6

75 2583 4 60 - Con 60 37.5 53.2

76 2967 7 90 - Con 45 37.6 14.3

77 2490 0.9 0 90 37.5 123.5

78 2657 4 0 135 37.6 87.4

79 3081 8.1 90 - Mix 45 37.4 31.4

80 2926 7.4 0 315 37.4 36.1

81 2907 8.9 0 60 37.5 23.8

82 2659 5.9 0 45 37.5 32.3

83 2920 6.5 70 - Mix 135 37.6 11.4

*Con - coniferous forest; Mix- mixture of coniferous and deciduous forest.
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Table 4-5. Summary of the physical parameters of the HRUs created for the
Reynolds Creek Watershed. 

HRU ID Elevation
(m)

Slope
(degrees)

 % Forest
 Cover*

Aspect
(degrees)

Latitude
(degrees)

Area
(km2)

1 1622 18 50 - Dec 135 43.3 3.8

2 1487.5 17 0 135 43.3 3.8

3 1322.3 9.3 0 160 43.3 6.65

4 1612 19 50 - Mix 135 43.3 2.85

5 1522.4 15.8 30 - Mix 135 43.3 4.75

6 1355.8 12.5 0 90 43.3 6.65

7 1215 6.8 0 90 43.3 8.55

8 1169 4.2 0 60 43.2 11.4

9 1267.5 6.7 0 270 43.2 8.55

10 1577 13.9 50 - Mix 90 43.2 8.55

11 1396 12.6 50 - Mix 90 43.2 7.6

12 1208 5.3 0 45 43.2 11.4

13 1614.3 12.8 40 - Mix 45 43.2 7.6

14 1308 7.2 0 315 43.2 8.55

15 1210.5 2.3 0 0 43.2 5.7

16 1448 12.5 50 - Dec 45 43.2 8.55

17 1282 7 0 0 43.2 5.7

18 1408.5 9.3 0 315 43.2 5.7

19 1527 14 50 - Mix 45 43.1 8.55

20 1402.5 13.5 0 0 43.1 5.7

21 1565.5 12.3 0 315 43.1 5.7

22 1649 10.7 0 315 43.1 5.7

23 1801 15 50 - Mix 290 43.1 2.85
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Table 4-5. Summary of the physical parameters of the HRUs created for the
Reynolds Creek Watershed, continued.

HRU ID Elevation
(m)

Slope
(degrees)

 % Forest
 Cover*

Aspect
(degrees)

Latitude
(degrees)

Area
(km2)

24 1633 15.1 60 - Mix 135 43 9.5

25 1763 14.5 0 270 43 5.7

26 1830.4 13.3 50 - Mix 43 43 7.6

27 1837 12.7 60 - Mix 315 43 6.65

28 1978 12 70 - Mix 45 43 8.55

*Dec - deciduous forest; Mix- mixture of coniferous and deciduous forest.



283

Table 4-9. Summary of the physical parameters of the HRUs created for the
Emerald Lake Watershed.

HRU ID Elevation
(m)

Slope
(degrees)

 % Forest
 Cover*

Aspect
(degrees)

Latitude
(degrees)

Area
(hectares)

1 2935 30 0 260 36.6 11

2 3037 26 0 270 36.6 15

3 3237 30 0 315 36.6 16.5

4 3122 33 0 345 36.6 11

5 3032 27.5 0 0 36.6 19.5

6 2965 34 0 45 36.6 13.5

7 3087 40 80 - Con 60 36.6 6.5

8 2865 17 0 0 36.6 18

*Con - coniferous forest
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Appendix B

Plots Depicting the Characteristics of the HRUs Created 
for the Upper Rio Grande Watershed.
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Note: See Eq. 4-1 on page 69 for determining equivalent latitude.
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Appendix C

The Conditional Probability Analysis Performed on the Wind Data for the
Upper Rio Grande Watershed.
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Table 4-4. Results of the conditional probability analysis performed on the wind
data for the Upper Rio Grande Watershed.

Daily average wind speed
(m / s)

Sample Size
(days)

Probability that the hourly data
exceeded the threshold value

(4.8 m / s) 

0 10 0.00

0.1 12 0.00

0.2 17 0.01

0.3 17 0.03

0.4 15 0.03

0.5 25 0.05

0.6 15 0.04

0.7 17 0.08

0.8 17 0.06

0.9 21 0.10

1.0 18 0.11

1.1 20 0.08

1.2 27 0.13

1.3 24 0.09

1.4 21 0.11

1.5 23 0.14

1.6 35 0.09

1.7 26 0.12

1.8 34 0.10

1.9 27 0.15

2.0 31 0.18
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Table 4-4. Results of the conditional probability analysis performed on the wind
data for the Upper Rio Grande Watershed, Continued.

Daily average wind speed
(m / s)

Sample Size
(days)

Probability that the hourly data
exceeded the threshold value

(4.8 m / s) 

2.1 26 0.20

2.2 31 0.22

2.3 27 0.18

2.4 30 0.22

2.5 34 0.20

2.6 35 0.24

2.7 26 0.24

2.8 40 0.27

2.9 32 0.28

3.0 38 0.31

3.1 41 0.30

3.2 37 0.31

3.3 24 0.35

3.4 41 0.32

3.5 45 0.32

3.6 28 0.34

3.7 39 0.36

3.8 31 0.34

3.9 38 0.37

4.0 22 0.39

4.1 42 0.38
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Table 4-4. Results of the conditional probability analysis performed on the wind
data for the Upper Rio Grande Watershed, Continued.

Daily average wind speed
(m / s)

Sample Size
(days)

Probability that the hourly data
exceeded the threshold value

(4.8 m / s) 

4.2 28 0.40

4.3 28 0.40

4.4 24 0.42

4.5 19 0.45

4.6 27 0.48

4.7 22 0.54

TOTAL 1307 -
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Appendix D

Plots Depicting the Characteristics of the HRUs Created 
for the Reynolds Creek Watershed.
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Note: See Eq. 4-1 on page 69 for determining equivalent latitude.
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Appendix E

The Conditional Probability Analysis Performed on the Wind Data for the 
Reynolds Creek Watershed.
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Table 4-7. Results of the conditional probability analysis performed on the wind
data for the Reynolds Creek Watershed.

Daily average wind speed
(m / s)

Sample Size
(days)

Probability that the hourly data
exceeded the threshold value

(4.8 m / s) 

0 7 0.00

0.1 14 0.00

0.2 11 0.01

0.3 13 0.00

0.4 12 0.02

0.5 12 0.02

0.6 15 0.03

0.7 17 0.08

0.8 17 0.05

0.9 23 0.06

1.0 21 0.10

1.1 16 0.08

1.2 27 0.08

1.3 21 0.10

1.4 20 0.12

1.5 28 0.11

1.6 31 0.07

1.7 24 0.12

1.8 29 0.18

1.9 24 0.17

2.0 26 0.18
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Table 4-7. Results of the conditional probability analysis performed on the wind
data for the Reynolds Creek Watershed, Continued.

Daily average wind speed
(m / s)

Sample Size
(days)

Probability that the hourly data
exceeded the threshold value

(4.8 m / s) 

2.1 14 0.18

2.2 35 0.19

2.3 25 0.26

2.4 30 0.21

2.5 36 0.24

2.6 34 0.23

2.7 28 0.27

2.8 33 0.25

2.9 36 0.31

3.0 31 0.31

3.1 34 0.30

3.2 27 0.32

3.3 33 0.31

3.4 34 0.33

3.5 44 0.33

3.6 34 0.37

3.7 39 0.31

3.8 28 0.34

3.9 35 0.41

4.0 37 0.35

4.1 33 0.38
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Table 4-7. Results of the conditional probability analysis performed on the wind
data for the Reynolds Creek Watershed, Continued.

Daily average wind speed
(m / s)

Sample Size
(days)

Probability that the hourly data
exceeded the threshold value

(4.8 m / s) 

4.2 36 0.36

4.3 28 0.45

4.4 25 0.38

4.5 21 0.48

4.6 23 0.53

4.7 22 0.52

TOTAL 1243 -
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Appendix F

Plots Depicting the Characteristics of the HRUs Created 
for the Emerald Lake Watershed.
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Note: See Eq. 4-1 on page 69 for determining equivalent latitude.
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Appendix G

The Conditional Probability Analysis Performed on the Wind Data for the 
Emerald Lake Watershed
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Table 4-11. Results of the conditional probability analysis performed on the wind
data for the Emerald Lake Watershed concerning sublimation.

Daily average wind speed
(m / s)

Sample Size
(days)

Probability that the hourly data
exceeded the threshold value

(4.8 m / s) 

0 13 0.00

0.1 11 0.00

0.2 13 0.00

0.3 12 0.02

0.4 14 0.05

0.5 16 0.04

0.6 17 0.05

0.7 18 0.05

0.8 19 0.09

0.9 24 0.08

1.0 17 0.08

1.1 18 0.11

1.2 19 0.09

1.3 24 0.07

1.4 24 0.09

1.5 22 0.10

1.6 24 0.11

1.7 28 0.15

1.8 23 0.13

1.9 21 0.14

2.0 23 0.18
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Table 4-11. Results of the conditional probability analysis performed on the wind
data for the Emerald Lake Watershed concerning sublimation,
Continued.

Daily average wind speed
(m / s)

Sample Size
(days)

Probability that the hourly data
exceeded the threshold value

(4.8 m / s) 

2.1 25 0.15

2.2 28 0.16

2.3 29 0.18

2.4 31 0.21

2.5 32 0.22

2.6 34 0.15

2.7 29 0.20

2.8 21 0.19

2.9 31 0.22

3.0 33 0.21

3.1 29 0.27

3.2 32 0.23

3.3 43 0.22

3.4 39 0.26

3.5 36 0.31

3.6 31 0.28

3.7 36 0.30

3.8 32 0.35

3.9 39 0.37

4.0 34 0.40

4.1 36 0.38
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Table 4-11. Results of the conditional probability analysis performed on the wind
data for the Emerald Lake Watershed concerning sublimation,
Continued.

Daily average wind speed
(m / s)

Sample Size
(days)

Probability that the hourly data
exceeded the threshold value

(4.8 m / s) 

4.2 29 0.42

4.3 21 0.47

4.4 23 0.45

4.5 26 0.51

4.6 19 0.50

4.7 21 0.52

TOTAL 1219 -
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Appendix H

The Results of the Conditional Probability Analysis Performed on the
Wind Data for the Emerald Lake Watershed for Wind Transport from an

Alpine HRU
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Table 4-12. Results of the conditional probability analysis performed on the wind
data for the Emerald Lake Watershed for wind transport from an alpine
HRU.

Daily average wind speed
(m / s)

Sample Size
(days)

Probability that the hourly data
exceeded the threshold value

(5.0 m / s) 

0 13 0.00

0.1 11 0.00

0.2 13 0.00

0.3 12 0.01

0.4 14 0.04

0.5 16 0.03

0.6 17 0.04

0.7 18 0.04

0.8 19 0.07

0.9 24 0.08

1.0 17 0.08

1.1 18 0.10

1.2 19 0.08

1.3 24 0.06

1.4 24 0.08

1.5 22 0.10

1.6 24 0.11

1.7 28 0.15

1.8 23 0.13

1.9 21 0.14

2.0 23 0.18
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Table 4-12. Results of the conditional probability analysis performed on the wind
data for the Emerald Lake Watershed for wind transport from an alpine
HRU, continued.

Daily average wind speed
(m / s)

Sample Size
(days)

Probability that the hourly data
exceeded the threshold value

(5.0 m / s) 

2.1 25 0.14

2.2 28 0.15

2.3 29 0.17

2.4 31 0.20

2.5 32 0.21

2.6 34 0.14

2.7 29 0.20

2.8 21 0.19

2.9 31 0.22

3.0 33 0.21

3.1 29 0.27

3.2 32 0.23

3.3 43 0.21

3.4 39 0.25

3.5 36 0.30

3.6 31 0.27

3.7 36 0.29

3.8 32 0.35

3.9 39 0.37

4.0 34 0.39

4.1 36 0.36
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Table 4-12. Results of the conditional probability analysis performed on the wind
data for the Emerald Lake Watershed for wind transport from an alpine
HRU, continued.

Daily average wind speed
(m / s)

Sample Size
(days)

Probability that the hourly data
exceeded the threshold value

(5.0 m / s) 

4.2 29 0.41

4.3 21 0.47

4.4 23 0.44

4.5 26 0.50

4.6 19 0.49

4.7 21 0.49

4.8 18 0.51

4.9 16 0.54

TOTAL 1253 -
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Appendix I

The Results of the Conditional Probability Analysis Performed on the
Wind Data for the Emerald Lake Watershed for Wind Transport from a

Valley or Prairie HRU
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Table 4-13. Results of the conditional probability analysis performed on the wind
data for the Emerald Lake Watershed for wind transport from a valley or
prairie HRU.

Daily average wind speed
(m / s)

Sample Size
(days)

Probability that the hourly data
exceeded the threshold value

(6.5 m / s) 

0 13 0.00

0.1 11 0.00

0.2 13 0.00

0.3 12 0.00

0.4 14 0.00

0.5 16 0.00

0.6 17 0.00

0.7 18 0.00

0.8 19 0.00

0.9 24 0.00

1.0 17 0.00

1.1 18 0.00

1.2 19 0.00

1.3 24 0.00

1.4 24 0.00

1.5 22 0.00

1.6 24 0.0

1.7 28 0.00

1.8 23 0.00

1.9 21 0.00

2.0 23 0.00

2.1 25 0.01
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Table 4-13. Results of the conditional probability analysis performed on the wind
data for the Emerald Lake Watershed for wind transport from a valley or
prairie HRU, continued.

Daily average wind speed
(m / s)

Sample Size
(days)

Probability that the hourly data
exceeded the threshold value

(6.5 m / s) 

2.2 28 0.00

2.3 29 0.00

2.4 31 0.01

2.5 32 0.02

2.6 34 0.02

2.7 29 0.04

2.8 21 0.04

2.9 31 0.02

3.0 33 0.05

3.1 29 0.07

3.2 32 0.08

3.3 43 0.11

3.4 39 0.15

3.5 36 0.10

3.6 31 0.15

3.7 36 0.19

3.8 32 0.17

3.9 39 0.17

4.0 34 0.19

4.1 36 0.18

4.2 29 0.21

4.3 21 0.25
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Table 4-13. Results of the conditional probability analysis performed on the wind
data for the Emerald Lake Watershed for wind transport from a valley or
prairie HRU, continued.

Daily average wind speed
(m / s)

Sample Size
(days)

Probability that the hourly data
exceeded the threshold value

(6.5 m / s) 

4.4 23 0.24

4.5 26 0.30

4.6 19 0.29

4.7 21 0.29

4.8 18 0.31

4.9 16 0.34

5.0 18 0.37

5.1 16 0.36

5.2 16 0.37

5.3 17 0.40

5.4 14 0.40

5.5 15 0.41

5.6 11 0.45

5.7 9 0.43

5.8 14 0.45

5.9 12 0.49

6.0 11 0.46

6.1 9 0.48

6.2 9 0.48

6.3 10 0.51

6.4 8 0.52

TOTAL 1442 -
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Appendix J

A Comparison of Modeled Results With Satellite Imagery for the Upper
Rio Grande Watershed

Note: The maps on the left side differ slightly than the maps on the right side due to
small differences in delineation and projection.
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A Comparison of Modeled Results With Satellite Imagery for the Water
Year 1993

Day 75:

Day 91:

Day 98:
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Day 115:

Day 130:

Day 150:
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Day 171:

Day 181:
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A Comparison of Modeled Results With Satellite Imagery for the Water
Year 1994

Day 63:

Day 72:

Day 90:
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Day 102:

Day 128:

Day 140:
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Day 149:
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A Comparison of Modeled Results With Satellite Imagery for the Water
Year 1995

Day 91:

Day 101:

Day 156:
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Day 169:

Day 177:
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A Comparison of Modeled Results With Satellite Imagery for the Water
Year 1996

Day 79:

Day 93:

Day 107:



326

Day 128:

Day 144:

Day 171:
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A Comparison of Modeled Results With Satellite Imagery for the Water
Year 1997

Day 72:

Day 84:

Day 126:
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Day 147:

Day 165:

Day 182:



329

A Comparison of Modeled Results With Satellite Imagery for the Water
Year 1998

Day 71:

Day 85:

Day 97:
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Day 118:

Day 132:

Day 146:
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Day 167:

Day180:
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A Comparison of Modeled Results With Satellite Imagery for the Water
Year 1999

Day 73:

Day 82:

Day 98:
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Day 133:

Day 140:
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Appendix K

Model-Derived Snow Water Equivalent Maps for 
the Upper Rio Grande Watershed
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Legend Used for the SWE Mapping

The units of SWE are in cm

Note: The model assumes uniform SWE over each HRU.  See Figure 4-2 for diagram
of HRUs.
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SWE Maps for the Water Year 1993

November 1, 1992

November 8, 1992

November 15, 1992

November 22,1992
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November 29, 1992

December 6, 1992

December 13, 1992

December 20, 1992
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December 27, 1992
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SWE Maps for the Water Year 1994
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SWE Maps for the Water Year 1995
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SWE Maps for the Water Year 1996
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SWE Maps for the Water Year 1997
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SWE Maps for the Water Year 1999
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SWE Maps for the Water Year 2000
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Appendix L

Moment Plots for the Upper Rio Grande Watershed
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Appendix M

Moment Plots for the Reynolds Creek Watershed
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Appendix N

Moment Plots for the Emerald Lake Watershed
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Appendix O

Time Series Plots of Modeled Snow Water Equivalent Distributions
for the Upper Rio Grande Watershed
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Appendix P

Results of the Kolmogorov-Smirnov Two-Sample Test for the Upper Rio
Grande Watershed

Note: The null hypothesis associated with the Kolmogorov-Smirnov two-sample test is
that the distributions of the two SWE samples are the same. 
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Table P-1. Results of the Kolmogorov-Smirnov Two-Sample Test during the
accumulation period for the Upper Rio Grande Watershed (n = 304).

Test
Number

Date Mean
SWE
(cm)

Test
Statistic

(D)

Level of
Significance

(a)

Critical
D Value

(Da)
Decision

1 1/1/94 16.98 0.0778 0.1 0.0292 reject

12/1/00 17.37 0.05 0.0329 reject

0.025 0.0358 reject

0.01 0.0394 reject

0.005 0.0419 reject

0.001 0.0472 reject

2 12/1/94 18.99 0.0678 0.1 0.0292 reject

12/1/98 19.40 0.05 0.0329 reject

0.025 0.0358 reject

0.01 0.0394 reject

0.005 0.0419 reject

0.001 0.0472 reject

3 3/1/94 31.89 0.1136 0.1 0.0292 reject

2/1/95 32.43 0.05 0.0329 reject

0.025 0.0358 reject

0.01 0.0394 reject

0.005 0.0419 reject

0.001 0.0472 reject

4 2/1/95 32.43 0.2761 0.1 0.0292 reject

3/1/98 32.33 0.05 0.0329 reject

0.025 0.0358 reject

0.01 0.0394 reject

0.005 0.0419 reject

0.001 0.0472 reject
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Table P-1. Results of the Kolmogorov-Smirnov Two-Sample Test during the
accumulation period for the Upper Rio Grande Watershed, continued.

Test
Number

Date Mean
SWE
(cm)

Test
Statistic

(D)

Level of
Significance

(a)

Critical
D Value

(Da)
Decision

5 3/1/94 31.89 0.2944 0.1 0.0292 reject

3/1/98 32.33 0.05 0.0329 reject

0.025 0.0358 reject

0.01 0.0394 reject

0.005 0.0419 reject

0.001 0.0472 reject

6 1/16/94 18.43 0.5983 0.1 0.0292 reject

1/16/97 18.93 0.05 0.0329 reject

0.025 0.0358 reject

0.01 0.0394 reject

0.005 0.0419 reject

0.001 0.0472 reject

7 11/16/93 8.76 0.2500 0.1 0.0292 reject

11/16/97 8.61 0.05 0.0329 reject

0.025 0.0358 reject

0.01 0.0394 reject

0.005 0.0419 reject

0.001 0.0472 reject

8 12/1/93 13.68 0.2119 0.1 0.0292 reject

1/16/98 13.91 0.05 0.0329 reject

0.025 0.0358 reject

0.01 0.0394 reject

0.005 0.0419 reject

0.001 0.0472 reject
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Table P-1. Results of the Kolmogorov-Smirnov Two-Sample Test during the
accumulation period for the Upper Rio Grande Watershed, continued.

Test
Number

Date Mean
SWE
(cm)

Test
Statistic

(D)

Level of
Significance

(a)

Critical
D Value

(Da)
Decision

9 5/1/94 48.05 0.3378 0.1 0.0292 reject

3/16/01 48.66 0.05 0.0329 reject

0.025 0.0358 reject

0.01 0.0394 reject

0.005 0.0419 reject

0.001 0.0472 reject
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Table P-2. Results of the Kolmogorov-Smirnov Two-Sample Test during the
ablation period for the Upper Rio Grande Watershed (n = 304).

Test
Number

Date Mean
SWE
(cm)

Test
Statistic

(D)

Level of
Significance

(a)

Critical
D Value

(Da)
Decision

1 6/1/94 35.22 0.1086 0.1 0.0292 reject

6/1/01 35.10 0.05 0.0329 reject

0.025 0.0358 reject

0.01 0.0394 reject

0.005 0.0419 reject

0.001 0.0472 reject

2 7/1/94 7.47 0.0865 0.1 0.0292 reject

6/1/96 7.95 0.05 0.0329 reject

0.025 0.0358 reject

0.01 0.0394 reject

0.005 0.0419 reject

0.001 0.0472 reject

3 6/1/96 7.95 0.1856 0.1 0.0292 reject

6/16/00 8.11 0.05 0.0329 reject

0.025 0.0358 reject

0.01 0.0394 reject

0.005 0.0419 reject

0.001 0.0472 reject

4 6/16/94 22.44 0.3350 0.1 0.0292 reject

6/1/98 22.26 0.05 0.0329 reject

0.025 0.0358 reject

0.01 0.0394 reject

0.005 0.0419 reject

0.001 0.0472 reject
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Table P-2. Results of the Kolmogorov-Smirnov Two-Sample Test during the
ablation period for the Upper Rio Grande Watershed, continued.

Test
Number

Date Mean
SWE
(cm)

Test
Statistic

(D)

Level of
Significance

(a)

Critical
D Value

(Da)
Decision

5 5/16/00 23.18 0.3991 0.1 0.0292 reject

6/16/01 22.69 0.05 0.0329 reject

0.025 0.0358 reject

0.01 0.0394 reject

0.005 0.0419 reject

0.001 0.0472 reject

6 6/1/98 22.26 0.2908 0.1 0.0292 reject

5/16/00 23.18 0.05 0.0329 reject

0.025 0.0358 reject

0.01 0.0394 reject

0.005 0.0419 reject

0.001 0.0472 reject

7 6/16/94 22.44 0.3243 0.1 0.0292 reject

6/16/01 22.69 0.05 0.0329 reject

0.025 0.0358 reject

0.01 0.0394 reject

0.005 0.0419 reject

0.001 0.0472 reject

8 6/16/94 22.44 0.1915 0.1 0.0292 reject

5/16/00 23.18 0.05 0.0329 reject

0.025 0.0358 reject

0.01 0.0394 reject

0.005 0.0419 reject

0.001 0.0472 reject
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Table P-2. Results of the Kolmogorov-Smirnov Two-Sample Test during the
ablation period for the Upper Rio Grande Watershed, continued.

Test
Number

Date Mean
SWE
(cm)

Test
Statistic

(D)

Level of
Significance

(a)

Critical
D Value

(Da)
Decision

9 6/1/94 35.22 0.2476 0.1 0.0292 reject

5/16/98 36.11 0.05 0.0329 reject

0.025 0.0358 reject

0.01 0.0394 reject

0.005 0.0419 reject

0.001 0.0472 reject
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Appendix Q

Time Series Plots of Modeled Snow Water Equivalent Distributions
for the Reynolds Creek Watershed
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Appendix R

Results of the Kolmogorov-Smirnov Two-Sample Test for the Reynolds
Creek Watershed

Note: The null hypothesis associated with the Kolmogorov-Smirnov two-sample test is
that the distributions of the two SWE samples are the same. 
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Table R-1. Results of the Kolmogorov-Smirnov Two-Sample Test during the
accumulation period for the Reynolds Creek Watershed (n = 304).

Test
Number

Date Mean
SWE
(cm)

Test
Statistic

(D)

Level of
Significance

(a)

Critical
D Value

(Da)
Decision

1 3/1/89 11.25 0.1078 0.1 0.1120 accept

2/1/93 11.01 0.05 0.1248 accept

0.025 0.1358 accept

0.01 0.1496 accept

0.005 0.1588 accept

0.001 0.1790 accept

2 12/1/88 3.25 0.1841 0.1 0.1120 reject

2/1/90 3.68 0.05 0.1248 reject

0.025 0.1358 reject

0.01 0.1496 reject

0.005 0.1588 reject

0.001 0.1790 reject

3 12/1/88 3.25 0.1213 0.1 0.1120 reject

2/1/94 3.02 0.05 0.1248 accept

0.025 0.1358 accept

0.01 0.1496 accept

0.005 0.1588 accept

0.001 0.1790 accept

4 2/1/90 3.68 0.711 0.1 0.1120 accept

2/1/94 3.02 0.05 0.1248 accept

0.025 0.1358 accept

0.01 0.1496 accept

0.005 0.1588 accept

0.001 0.1790 accept
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Table R-1. Results of the Kolmogorov-Smirnov Two-Sample Test during the
accumulation period for the Reynolds Creek Watershed, continued.

Test
Number

Date Mean
SWE
(cm)

Test
Statistic

(D)

Level of
Significance

(a)

Critical
D Value

(Da)
Decision

5 2/1/90 3.68 0.1841 0.1 0.1120 reject

1/16/91 3.69 0.05 0.1248 reject

0.025 0.1358 reject

0.01 0.1496 reject

0.005 0.1588 reject

0.001 0.1790 reject

6 1/16/96 3.79 0.2092 0.1 0.1120 reject

1/16/91 3.69 0.05 0.1248 reject

0.025 0.1358 reject

0.01 0.1496 reject

0.005 0.1588 reject

0.001 0.1790 reject

7 12/16/88 4.41 0.1221 0.1 0.1120 reject

2/1/91 4.44 0.05 0.1248 accept

0.025 0.1358 accept

0.01 0.1496 accept

0.005 0.1588 accept

0.001 0.1790 accept

8 12/16/88 4.41 0.2061 0.1 0.1120 reject

12/16/92 4.57 0.05 0.1248 reject

0.025 0.1358 reject

0.01 0.1496 reject

0.005 0.1588 reject

0.001 0.1790 reject
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Table R-1. Results of the Kolmogorov-Smirnov Two-Sample Test during the
accumulation period for the Reynolds Creek Watershed, continued.

Test
Number

Date Mean
SWE
(cm)

Test
Statistic

(D)

Level of
Significance

(a)

Critical
D Value

(Da)
Decision

9 2/1/91 4.44 0.1103 0.1 0.1120 accept

12/16/92 4.57 0.05 0.1248 accept

0.025 0.1358 accept

0.01 0.1496 accept

0.005 0.1588 accept

0.001 0.1790 accept
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Table R-2. Results of the Kolmogorov-Smirnov Two-Sample Test during the
ablation period for the Reynolds Creek Watershed (n = 304).

Test
Number

Date Mean
SWE
(cm)

Test
Statistic

(D)

Level of
Significance

(a)

Critical
D Value

(Da)
Decision

1 6/1/89 2.36 0.3412 0.1 0.1120 reject

4/1/92 2.30 0.05 0.1248 reject

0.025 0.1358 reject

0.01 0.1496 reject

0.005 0.1588 reject

0.001 0.1790 reject

2 6/1/89 2.36 0.1688 0.1 0.1120 reject

5/16/90 2.28 0.05 0.1248 reject

0.025 0.1358 reject

0.01 0.1496 reject

0.005 0.1588 reject

0.001 0.1790 accept

3 4/1/92 2.30 0.3975 0.1 0.1120 reject

5/16/90 2.28 0.05 0.1248 reject

0.025 0.1358 reject

0.01 0.1496 reject

0.005 0.1588 reject

0.001 0.1790 reject

4 5/1/95 5.09 0.1444 0.1 0.1120 reject

5/1/91 5.08 0.05 0.1248 reject

0.025 0.1358 reject

0.01 0.1496 accept

0.005 0.1588 accept

0.001 0.1790 accept
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Table R-2. Results of the Kolmogorov-Smirnov Two-Sample Test during the
ablation period for the Reynolds Creek Watershed, continued.

Test
Number

Date Mean
SWE
(cm)

Test
Statistic

(D)

Level of
Significance

(a)

Critical
D Value

(Da)
Decision

5 5/1/95 5.09 0.1585 0.1 0.1120 reject

4/1/94 4.96 0.05 0.1248 reject

0.025 0.1358 reject

0.01 0.1496 reject

0.005 0.1588 accept

0.001 0.1790 accept

6 4/16/95 6.31 0.2314 0.1 0.1120 reject

4/16/90 5.85 0.05 0.1248 reject

0.025 0.1358 reject

0.01 0.1496 reject

0.005 0.1588 reject

0.001 0.1790 reject

7 4/16/95 6.31 0.1514 0.1 0.1120 reject

5/16/96 6.67 0.05 0.1248 reject

0.025 0.1358 reject

0.01 0.1496 reject

0.005 0.1588 accept

0.001 0.1790 accept

8 5/16/89 6.07 0.1854 0.1 0.1120 reject

4/16/90 5.85 0.05 0.1248 reject

0.025 0.1358 reject

0.01 0.1496 reject

0.005 0.1588 reject

0.001 0.1790 reject
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Appendix S

Time Series Plots of Modeled Snow Water Equivalent Distributions
for the Emerald Lake Watershed
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Appendix T

Results of the Kolmogorov-Smirnov Two-Sample Test for the Emerald
Lake Watershed

Note: The null hypothesis associated with the Kolmogorov-Smirnov two-sample test is
that the distributions of the two SWE samples are the same. 
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Table T-1. Results of the Kolmogorov-Smirnov Two-Sample Test during the
accumulation period for the Emerald Lake Watershed (n = 304).

Test
Number

Date Mean
SWE
(cm)

Test
Statistic

(D)

Level of
Significance

(a)

Critical
D Value

(Da)
Decision

1 3/1/93 97.17 0.5083 0.1 0.1572 reject

3/1/98 96.97 0.05 0.1752 reject

0.025 0.1907 reject

0.01 0.2100 reject

0.005 0.2229 reject

0.001 0.2512 reject

2 1/1/93 30.32 0.0083 0.1 0.1572 accept

2/1/99 29.90 0.05 0.1752 accept

0.025 0.1907 accept

0.01 0.2100 accept

0.005 0.2229 accept

0.001 0.2512 accept

3 1/1/93 30.32 0.8017 0.1 0.1572 reject

12/1/96 29.49 0.05 0.1752 reject

0.025 0.1907 reject

0.01 0.2100 reject

0.005 0.2229 reject

0.001 0.2512 reject

4 12/1/96 29.49 0.2583 0.1 0.1572 reject

2/1/99 29.90 0.05 0.1752 reject

0.025 0.1907 reject

0.01 0.2100 reject

0.005 0.2229 reject

0.001 0.2512 reject
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Table T-1. Results of the Kolmogorov-Smirnov Two-Sample Test during the
accumulation period for the Emerald Lake Watershed, continued.

Test
Number

Date Mean
SWE
(cm)

Test
Statistic

(D)

Level of
Significance

(a)

Critical
D Value

(Da)
Decision

5 2/1/94 22.41 0.1782 0.1 0.1572 reject

1/1/99 23.97 0.05 0.1752 reject

0.025 0.1907 accept

0.01 0.2100 accept

0.005 0.2229 accept

0.001 0.2512 accept

6 1/1/93 30.32 0.4267 0.1 0.1572 reject

1/16/98 31.83 0.05 0.1752 reject

0.025 0.1907 reject

0.01 0.2100 reject

0.005 0.2229 reject

0.001 0.2512 reject
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Table T-2. Results of the Kolmogorov-Smirnov Two-Sample Test during the
ablation period for the Emerald Lake Watershed (n = 304).

Test
Number

Date Mean
SWE
(cm)

Test
Statistic

(D)

Level of
Significance

(a)

Critical
D Value

(Da)
Decision

1 7/1/93 30.69 0.3471 0.1 0.1572 reject

6/1/99 31.48 0.05 0.1752 reject

0.025 0.1907 reject

0.01 0.2100 reject

0.005 0.2229 reject

0.001 0.2512 reject

2 6/16/93 39.66 0.5207 0.1 0.1572 reject

6/16/94 39.97 0.05 0.1752 reject

0.025 0.1907 reject

0.01 0.2100 reject

0.005 0.2229 reject

0.001 0.2512 reject
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Appendix U

Snow Water Equivalent and Meteorological Ranking for HRUs With 
SNOTEL Stations for the Upper Rio Grande Watershed
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Date HRU
SWE
Rank

Precipitation
Rank

Wind
Speed
Rank

Average Air
Temperature

Rank

11/1/93 1 3 3 1 3

40 2 2 3 2

50 1 1 3 1

12/1/93 1 3 2 1 2

40 2 3 3 3

50 1 1 3 1

1/1/94 1 2 2 1 2

40 3 3 3 3

50 1 1 3 1

2/1/94 1 2 1 1 3

40 3 3 3 2

50 1 2 3 1

3/1/94 1 2 2 1 2

40 3 3 3 3

50 1 1 3 1

4/1/94 1 2 3 1 3

40 3 2 3 2

50 1 1 3 1

5/1/94 1 3 3 1 3

40 2 2 3 2

50 1 1 3 1

6/1/94 1 3 2 1 2

40 2 1 3 3

50 1 3 3 1
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Date HRU
SWE
Rank

Precipitation
Rank

Wind
Speed
Rank

Air
Temperature

Rank

11/1/94 1 3 3 1 3

40 2 2 3 2

50 1 1 3 1

12/1/94 1 3 2 1 3

40 2 3 3 2

50 1 1 3 1

1/1/95 1 2 2 1 2

40 3 3 3 3

50 1 1 3 1

2/1/95 1 2 2 1 3

40 3 3 3 2

50 1 1 3 1

3/1/95 1 2 2 1 3

40 3 3 3 2

50 1 1 3 1

4/1/95 1 2 2 1 3

40 3 3 3 2

50 1 1 3 1

5/1/95 1 2 3 1 2

40 3 1 3 3

50 1 2 3 1

6/1/95 1 2 2 1 3

40 3 3 3 2

50 1 1 3 1
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Date HRU
SWE
Rank

Precipitation
Rank

Wind
Speed
Rank

Air
Temperature

Rank

11/1/95 1 2 3 1 2

40 3 2 3 3

50 1 1 3 1

12/1/95 1 3 1 1 3

40 1 3 3 2

50 2 2 3 1

1/1/96 1 1 1 1 3

40 3 3 3 2

50 2 2 3 1

2/1/96 1 1 2 1 2

40 3 3 3 3

50 2 1 3 1

3/1/96 1 2 3 1 3

40 3 2 3 2

50 1 1 3 1

4/1/96 1 2 2 1 3

40 3 3 3 2

50 1 1 3 1

5/1/96 1 1 2 1 3

40 3 3 3 2

50 2 1 3 1

6/1/96 1 3 1 1 2

40 3 3 3 3

50 1 2 3 1



483

Date HRU
SWE
Rank

Precipitation
Rank

Wind
Speed
Rank

Air
Temperature

Rank

11/1/96 1 1 1 1 3

40 2 2 3 2

50 3 3 3 1

12/1/96 1 2 3 1 2

40 3 2 3 3

50 1 1 3 1

1/1/97 1 1 2 1 2

40 3 3 3 3

50 2 1 3 1

2/1/97 1 2 2 1 3

40 3 3 3 2

50 1 1 3 1

3/1/97 1 2 2 1 3

40 3 3 3 2

50 1 1 3 1

4/1/97 1 2 3 1 2

40 3 2 3 3

50 1 1 3 1

5/1/97 1 2 2 1 3

40 3 3 3 2

50 1 1 3 1

6/1/97 1 3 1 1 3

40 2 3 3 2

50 1 2 3 1



484

Date HRU
SWE
Rank

Precipitation
Rank

Wind
Speed
Rank

Air
Temperature

Rank

11/1/97 1 3 3 1 3

40 1 2 3 2

50 2 1 3 1

12/1/97 1 3 2 1 2

40 2 3 3 3

50 1 1 3 1

1/1/98 1 3 2 1 3

40 2 3 3 2

50 1 1 3 1

2/1/98 1 2 1 1 2

40 3 3 3 3

50 1 2 3 1

3/1/98 1 2 3 1 3

40 3 2 3 2

50 1 1 3 1

4/1/98 1 2 3 1 3

40 3 2 3 2

50 1 1 3 1

5/1/98 1 2 3 1 2

40 3 1 3 3

50 1 2 3 1

6/1/98 1 2 1 1 2

40 3 3 3 3

50 1 2 3 1



485

Date HRU
SWE
Rank

Precipitation
Rank

Wind
Speed
Rank

Air
Temperature

Rank

11/1/98 1 3 3 1 2

40 2 2 3 3

50 1 1 3 1

12/1/98 1 2 2 1 2

40 3 3 3 3

50 1 1 3 1

1/1/99 1 2 2 1 3

40 3 3 3 2

50 1 1 3 1

2/1/99 1 2 1 1 3

40 3 3 3 2

50 1 2 3 1

3/1/99 1 2 3 1 3

40 3 2 3 2

50 1 1 3 1

4/1/99 1 2 3 1 2

40 3 2 3 3

50 1 1 3 1

5/1/99 1 2 3 1 3

40 3 1 3 2

50 1 2 3 1

6/1/99 1 3 1 1 3

40 2 3 3 2

50 1 2 3 1
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Date HRU
SWE
Rank

Precipitation
Rank

Wind
Speed
Rank

Air
Temperature

Rank

11/1/99 1 1 1 1 3

40 1 2 3 2

50 1 3 3 1

12/1/99 1 1 2 1 2

40 3 1 3 3

50 2 3 3 1

1/1/00 1 1 2 1 2

40 3 2 3 3

50 2 3 3 1

2/1/00 1 1 1 1 3

40 3 3 3 2

50 2 2 3 1

3/1/00 1 1 2 1 3

40 3 3 3 2

50 2 1 3 1

4/1/00 1 1 1 1 2

40 3 2 3 3

50 2 3 3 1

5/1/00 1 1 2 1 3

40 3 3 3 2

50 2 1 3 1

6/1/00 1 3 1 1 2

40 3 3 3 3

50 1 2 3 1
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Date HRU
SWE
Rank

Precipitation
Rank

Wind
Speed
Rank

Air
Temperature

Rank

11/1/00 1 1 2 1 3

40 3 3 3 2

50 2 1 3 1

12/1/00 1 1 2 1 3

40 3 3 3 2

50 2 1 3 1

1/1/01 1 1 1 1 2

40 3 3 3 3

50 2 2 3 1

2/1/01 1 1 2 1 3

40 3 3 3 2

50 2 1 3 1

3/1/01 1 2 2 1 3

40 3 3 3 2

50 1 1 3 1

4/1/01 1 2 3 1 2

40 3 1 3 3

50 1 2 3 1

5/1/01 1 2 2 1 2

40 3 3 3 3

50 1 1 3 1

6/1/01 1 2 1 1 2

40 3 3 3 3

50 1 2 3 1
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