
Abstract

Title of Dissertation: Spatial Probabilistic Temporal Databases

Austin Parker, Doctor of Philosophy, 2008

Dissertation directed by: Professor VS Subrahmanian
Department of Computer Science

Research in spatio-temporal probabilistic reasoning examines algorithms for han-

dling data such as cell phone triangulation, GPS systems, movement prediction soft-

ware, and other inexact but useful data sources. In this thesis I describe a probabilistic

model theory for such data. The Spatial Probabilistic Temporal database framework

(or SPOT database framework) provides methods for interpreting, checking consis-

tency, automatically revising, and querying such databases. This thesis examines two

different semantics within the SPOT framework and presents polynomial-time con-

sistency checking algorithms for both. It introduces several revision techniques for

repairing inconsistent databases and compares them to the AGM Axioms for belief

state revision; finding an algorithm that, by only changing the probability bounds in

the SPOT atoms, can repair a SPOT database in polynomial time while still satisfy-

ing the AGM axioms. Also included is an investigation into optimistic and cautious

versions of a selection query that returns all objects in a given region with at least

(or at most) a certain probability. For these queries, I introduce an indexing struc-

ture akin to the R-tree called a SPOT tree, and show experiments where indexing

speeds up selection with both artificial and real-world data. I also introduce query

preprocessing techniques that bound the sets of solutions with both circumscribing

and inscribing regions, and discover these to also provide query time improvements

in practice. By covering semantics, consistency checking, database revision, index-

ing, and query preprocessing techniques for SPOT database, this thesis provides a

significant step towards a SPOT database framework that may be applied to the sorts

of real-world problems in the impressive amount of semi-accurate spatio-temporal

data available today.

Spatial Probabilistic Temporal Databases

by

Austin Parker

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland at College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:

Professor VS Subrahmanian, Chairman/Advisor
Professor Dana Nau
Professor John Grant
Professor Ashoke Agrawala
Associate Professor Subramanian Raghavan

c© Copyright by

Austin Parker

2008

Table of Contents

List of Figures vi

1 Introduction 0

2 Related Work 8

2.1 Probabilistic Spatial Temporal Databases 8

2.2 Work on Probabilistic Databases . 12

2.2.1 Table as the Distribution . 12

2.2.2 Probability Intervals in Probabilistic DBs 14

2.2.3 Probabilities in Attributes 15

2.2.4 ProbView . 17

2.2.5 Efficient Probabilistic Query Evaluation 18

2.2.6 Probabilistic Temporal Databases 18

2.3 Probabilistic Logics . 20

2.4 Repair, Revision, and Update . 22

2.4.1 AGM Contraction and Revision 22

2.4.2 Inconsistent Database Repair and Querying 23

2.4.3 Combining Multiple Knowledgebases 24

ii

2.5 Spatial Databases . 25

2.5.1 Spatial Reasoning . 25

2.5.2 Indexing Spatial Databases 26

3 SPOT Databases: Syntax and Semantics 27

3.1 SPOT Semantics . 27

3.2 Syntax . 29

3.2.1 Preliminary Definitions . 29

3.2.2 SPOT atoms . 30

3.3 Time-Point Semantics . 33

3.4 World-based Semantics . 36

3.5 SPOT Queries . 39

3.5.1 Selection Query Semantics 39

4 Consistency Checking in SPOT Databases 42

4.1 Point-based semantics . 42

4.1.1 Naı̈ve Consistency Algorithm 43

4.1.2 BSP Consistency Checking 44

4.1.3 Atom Clustering . 51

4.1.4 Experimental Results . 56

4.1.5 Comments on Time-Point Consistency Checking 59

4.2 World-based Semantics . 60

4.2.1 World-based Naı̈ve Linear Program 60

4.2.2 Partial Path Probabilities . 62

4.2.3 An Alternative Linear Program: AWLP 70

4.2.4 Experimental Results . 74

iii

4.2.5 Comments on World-Based Consistency Checking 77

5 SPOT Database Revision 79

5.1 Introduction and Motivation . 79

5.2 AGM Axioms . 80

5.3 Consistency Checking . 81

5.4 Some belief revision strategies . 82

5.5 Maximal Consistent Subsets . 82

5.6 Minimizing Spatial Change . 86

5.7 Minimizing Temporal Change . 87

5.8 Minimizing Probability Change . 93

5.9 Comments on Belief Revision . 97

6 SPOT Algebra 99

6.1 SPOT Database Tightness . 99

6.2 Union, Intersection, Difference, and Join 101

6.3 Expected Distance Queries . 103

6.3.1 Expected Distance . 103

6.3.2 Experimental Results . 108

6.3.3 Nearest Neighbor . 111

6.4 Comments on SPOT Algebra . 112

7 Selection Algorithms 113

7.1 Introduction . 113

7.2 Selection Via Consistency Checking 114

7.2.1 Exhaustive Query Check . 114

7.3 SPOT Trees . 115

iv

7.3.1 Necessary Constraints . 116

7.3.2 Composite SPOT atoms . 118

7.3.3 SPOT -Trees . 120

7.3.4 SPOT Tree: Experimental Results 130

7.4 Inscribing and Circumscribing Convex Regions 133

7.4.1 Formalism . 134

7.4.2 Cautious Semantics . 136

7.4.3 Optimistic Semantics . 138

7.4.4 Computing Inscribed and Circumscribed Regions 139

7.4.5 Multiple Inscribed Regions for Cautious Selection 140

7.4.6 Algorithms . 143

7.4.7 Experiments . 144

7.5 Comments on Selection Algorithms 147

8 Conclusion 149

v

List of Figures

3.1 Example SPOT Database . 32

3.2 Several example worlds. 37

4.1 Example regions for SPOT atoms. 45

4.2 An Example BSP . 51

4.3 Running Time Versus Space Size . 57

4.4 Scaling Space . 57

4.5 Running Time Versus Covered Area 58

4.6 World-based Consistency Checking (1) 75

4.7 World-based Consistency Checking (2) 76

4.8 Runtime with Varying Temporal Density 77

5.1 Complexity and AGM-compliance of revision techniques. 97

6.1 LP vs minDistToPoint ftn in space sized 58890. 110

7.1 Localization of vehicles over an area 123

7.2 SPOT tree Creation . 124

7.3 SPOT tree root split . 125

7.4 SPOT tree example . 125

vi

7.5 Area for pruning mechanism . 129

7.6 The DoD Ship Location Dataset . 130

7.7 Scaling experiments with SPOT trees. 132

7.8 SPOT tree performance with optimistic queries 133

7.9 SPOT tree performance with cautious queries 134

7.10 Inscribed ellipsoids for cautious selection. 142

7.11 Results for cautious queries with small query regions 146

7.12 Results for optimistic queries with small query regions 146

7.13 Results for cautious queries with large query regions 146

7.14 Results for optimistic queries with large query regions 146

vii

Chapter 1

Introduction

GIS, GPS, cell tower triangulation, sensor networks, movement prediction software,

traffic cameras and satellite photos are just some of the recently developed technolo-

gies used to generate data about objects’ locations. This data is spatio-temporal –

it gives a region and a time for the object – but it is also inexact [29, 47]. All the

named systems suffer from error due to everything from the dynamics of radio signals

to the inexact technologies used in image recognition. Therefore there is need for a

framework handling probabilistic spatio-temporal data from such systems. The frame-

work should be general enough to use input from several disparate, probabilistic data

sources, and flexible enough to incorporate conflicting data with minimal changes. It

should incorporate and deal appropriately with the error inherent in the data collection

technology; in particular, it should not make supurfluous independence assumptions.

It should be accessible in the sense that it should efficiently answer queries about

objects’ potential locations. The SPOT database system will be my answer to this

problem.

1

Motivation

In this section, I motivate the development of the SPOT framework by detailing sev-

eral potential applications. These examples should be seen as target applications,

whose existence motivates the creation of a framework for correctly and explicitly

handling probabilistic spatial temporal data. All these applications have the potential

to benefit from a system designed for large quantities of probabilistic spatial temporal

data, and the SPOT framework is designed to do exactly that.

The first such application is to cell phone tracking by mobile phone companies.

Mobile phone companies must store phones’ locations in order to scale the routing

algorithms associated with cell phone use: it is much more efficient to start a search

for a given phone with the cell tower most likely to be serving that phone [10]. By

leveraging the data available, cell phone companies can increase efficiency, however

all available data is spatial temporal and probabilistic: cell phone localization based

on cell tower triangulation and movement prediction algorithms are not exact. The

SPOT framework can store and query exactly this kind of probabilistic data, answer-

ing such questions as: “what objects can we expect in the range of a given cell tower

with probability better than 0.75 at some given time.” Further, in such settings there

is likely to be a wide variety of information sources. The SPOT framework provides

correct revision mechanisms allowing for data from multiple sources to be combined

into one database even when such data is mutually inconsistent.

A potential military application for such technology involves handling the data

from probabilistic models of enemy movement. There was a joint project between

BBN, Lockheed Martin, the US Navy, and the University of Maryland where past

sensor readings are used to create predictive models for enemy submarine movement.

These models specify when, where, and with what probability one can expect an en-

2

emy submarine to be in a given region [34]. Another similar system using a diverse

set of ground-based military sensors for specifying vehicle location at some time with

an associated probability, is described in [28]. The data for that system also provides

some probabilistic information on vehicle location at a given time. For military plan-

ners there is clear utility to properly representing the probabilistic spatio-temporal

data acquired from such sources. These applications demand queries asking the prob-

ability of a vehicle being in a given region, nearest-neighbor-type queries, and other

sorts of consistency and distance queries, all of which exist in the SPOT framework.

In imperfect information games, systems similar to the SPOT framework (though

differing in fundamental ways) have already been employed. There is a game called

kriegspiel, where one plays chess without knowledge of the opponent’s moves. Be-

cause one knowns what moves are available and what the eventual locations of the

opponent pieces will be for each move, one can store all possible piece locations in a

knowledgebase known as a metaposition [9]. If one were to apply the SPOT frame-

work in place of the metaposition, one would have a system for storing the same

information, with added capabilities of representing the information in a probabilistic

fashion as well as storing the data in a temporally-dependent fashion. While there is

no guarantee that a SPOT -like representation would be more useful than metapo-

sitions in kriegspiel, such imperfect information planning and decision making envi-

ronments provide a rich potential application domain for SPOT -like frameworks.

In GIS mapping technologies there are many sorts of error [26], some of which

can be mitigated through use of probabilistic data representation. By allowing ob-

jects to be at locations with associated probabilities, and by allowing those objects

to change location over time, one can construct more accurate maps. The SPOT

framework provides this functionality as well as the ability to integrate new prima

3

facie-incompatible information into the database with minimal change to the existing

data. One may have a map in the SPOT format stating that a lake is in a given loca-

tion with 90% probability. However, upon arrival at that location one may discover

no lake. This new knowledge is incompatible with our map and we must somehow

change our current knowledge to incorporate this change. The revision functionality

of the SPOT framework described in Chapter 5 shows how one can revise the current

knowledge to reflect this newly discovered, incompatible fact.

While there have been several approaches to different aspects of these problems,

the SPOT database system is the first to do spatio-temporal probabilistic reasoning

without depending on probability density functions. There have been approaches

dealing with temporal reasoning [20] and approaches dealing with spatial reasoning

[15, 14]. There have been approaches dealing with probability in databases [17, 6,

13, 48] in logic [37, 35] and using Bayesian Networks [42]. The other works apart

from those supporting this thesis that deal with space, and probability is of Tao et al.

[45, 46] and Ni et al. [36]. Ni et al. use a data model where the error associated

with each point’s location is correlated with the error of many other points’ locations.

The system was designed for applications where certain spatial relationships, such

as the relationship between corners of a building, are exactly know regardless of the

actual locations of the points. Their system cannot handle the probability intervals or

multiple region uncertainty that is used in the SPOT framework. Tao el al.’s work,

while an interesting and effective approach for its addressed problem, requires access

to a raw probability distributions. This is a pretty severe requirement for the sorts

of applications we envision; for instance, one is not guaranteed to know the proper

probability distribution for locational data extracted by means of, for instance, image

recognition algorithms. These algorithm may have a tendency to consistently report

4

the location left or right of truth due to systematic things such as imperfections in

the camera lens or non-systematic things such as the wind that day. Without specific

knowledge of the underlying distribution, the SPOT framework is the only formally

studied general approach one can take to represent these kinds of probabilistic spatial

temporal information.

Outline

The SPOT system stores atomic facts of the form “this object is in this region at

this time with a probability in this interval”. For instance, one atomic fact might be:

“Socrates is in the forum at sundown with a probability between 0.5 and 0.75”. This

says that with at least a 50% probability and at most a 75% probability, Socrates is

in the forum at sundown. By collecting sets of such facts, one has a SPOT database.

There are different ways to interpret the meanings of such databases, depending on

whether or not one knows how objects are allowed to move (i.e. a maximum speed or

path-finding software such as web-based direction giving programs). As such I will

introduce two separate semantics for interpreting this data. These semantics are given

in Chapter 3.

One essential algorithm needed for a complete SPOT system is the consistency

checking procedure. It is possible for a set of atomic facts to force inconsistency by

putting an object in two distinct regions with a probability greater than one. Incon-

sistent data is undesirable: one cannot rely on an inconsistent database. Fortunately, I

was able to find efficient, polynomial-time consistency checking algorithms for all the

semantics examined in this thesis. Chapter 4 introduces these algorithms and several

related techniques to further decrease their computation time.

When the database is inconsistent, one might want it to automatically repair itself.

5

As such, I introduce in Chapter 5 several methods for revising an updated database.

These methods can be run on update to guarantee the database’s consistentency. These

methods include traditional methods of considering consistent subdatabases [5, 24],

as well as methods for changing each of the various aspects of a SPOT atom. These

update methods are compared to the AGM axioms [1], a group of axioms that knowl-

edge revision operations should satisfy. I find some of these procedures to satisfy the

AGM axioms, while others to not. Of greatest interest is the probability-revision tech-

nique, which admits a polynomial time algorithm while satisfying the AGM axioms.

This will allow a user of the SPOT system to be able to efficiently fix inconsistent

databases.

Once one has a consistent collection of SPOT atoms, we can use it to answer

questions about which objects will be where, and when. I develop several methods

for efficiently answering these sorts of selection queries. As a canonical application,

imagine such a query telling a cell phone company who they should expect to be in

the region served by a given cell tower, as well as when they will be there. In Chap-

ter 7 I examine several different pruning methods that can substantially increase the

efficiency with which these queries will be answered. One method interfaces with a

“probabilistic region” implicitly specified by a SPOT database. By storing both cir-

cumscribing and inscribed regions of the SPOT database’s probabilistic region, we

are able to quickly prune potential query answers without appealing to the database

itself. Another method appeals to the intuitions behind the R-tree-like indexing data

structures [7, 8, 44]. Called a SPOT tree, this index uses special composite atoms

instead of minimum bounding rectangles to bound the sets of interpretations possible

at a given level of the tree. By indexing in this way, we achieve speedup in experi-

mentation with real-world data.

6

In summary, the contributions in this thesis are:

• The syntax for the SPOT framework and two different semantics (Chapter 3)

– The point-based semantics for efficiently handling spatial probabilistic

temporal data (Section 3.3).

– The world-based semantics for correctly handling object movement con-

straints (Section 3.4).

• Polynomial-time consistency checking algorithms for both semantics (Chap-

ter 4).

• An examination of potential revision techniques for repairing inconsistent databases

(Chapter 5).

– Proof that AGM-compliant revision techniques do not exist for spatial re-

vision (Section 5.6).

– A polynomial-time AGM-compliant probabilistic revision technique (Sec-

tion 5.8).

• A basic algebra and set of queries for SPOT databases (Chapter 6).

• Several algorithms and data structures for speeding up selection queries (Chap-

ter 7).

– SPOT -trees, an R-tree variant for the SPOT framework (Section 7.3).

– A data structure using enclosed regions (rather than bounding regions) for

pruning (Section 7.4).

7

The SPOT database framework represents a new method for handling probabilis-

tic spatio-temporal information. This thesis introduces the framework and addresses

some of the major algorithms necessary for its successful deployment.

8

Chapter 2

Related Work

2.1 Probabilistic Spatial Temporal Databases

While there is much work on probabilistic, spatial, and temporal databases individu-

ally, there is little work covering all these areas. The works that do exist differ from

the SPOT framework in that their representations, while effective for the specific

problems they’re addressing, lack certain kinds of generality.

The most significant related work is that of Tao et al. in [45, 46]. While both

of these works deal with query answering schemes over probabilistic spatial tem-

poral databases, they differ in that they assume access to the underlying probability

distribution function. Indeed, these works provide an interesting, coherent, and effi-

cient method for storing one probability distribution function (PDF) so as to avoid the

computational costs of integration required by the query operations they consider. In

contrast, SPOT framework queries never integrate. The work of Tao is fundamen-

tally distinct from work on SPOT databases: while we can handle exactly one PDF

as input, our framework is geared towards situations where the actual underlying PDF

is unknown and one must reason with data limiting the set of possible PDFs. As such,

9

the work of Tao et al. is related but not comparable to SPOT databases.

In [45], the authors introduce the concept of an “uncertain object” o, which has

a PDF: o.pdf and an “uncertainty region” o.ur. The fundamental query of interest is

a prob-range query, where given a region rq and a threshold pq, one must return all

uncertain objects o such that ∫
o.ur∩rq

o.pdf(x)dx ≥ pq.

For arbitrary PDFs, these are expensive operations due particularly to the fact that

the space covered by o.ur ∩ rq is not limited to some granular grid, but is instead a

continuous subregion of space. The authors of [45] assert that when the PDFs are

not known to be of a certain type (i.e. uniform, gaussian, etc), the best method for

computing these integrals is a Monte Carlo computation. In such a computation, one

draws a large number of points from o.ur according to a uniform distribution and

relates the probabilities of those points in rq to the total probability sampled. With

this method, the authors are able to achieve query answers for each object with about

0.1% error in 130 milliseconds with 108 samples. While this is fairly efficient for one

object, when dealing with a sizeable dataset such numbers are unacceptable.

As an improvement upon the Monte Carlo computation, the authors introduce

several structures leading up to the U-tree, an R-tree-esque indexing structure for in-

dividual spatial PDFs. The first of these structures is the probabilistically constrained

region (PCR). A PCR for an object o is parameterized by a probability p ∈ [0, 0.5].

o.pcr(p) is a set of 2d hyperplanes, two for each dimension. The hyperplanes di-

vide space such that exactly p of the probability mass of o lies on one side of the

line. There are two for each dimension so that there can be one hyperplane l+i such

that the probability p is to the “right” of the hyperplane, and another l−i such that the

probability p is to the “left” of the hyperplane. The PCRs aid query computation by

10

providing pruning: if the query threshold is pq, and the query region is on the wrong

side of a PCR’s hyperplane for some o.pcr(p′) (where p′ < pq), then we may prune

object o without any integration. By pre-computing and storing PCRs for each object

o and applying them in this way, one can hope to decrease the computation necessary

for many probabilistic range queries, though there will always be many cases where

integration is necessary.

A potential issue with the PCR, which the authors bring up and address, is that the

PCRs represent a large amount of additional storage space. Therefore, the authors in-

troduce the conservative functional box (CFB), a structure that linearly approximates

the o.pcr(p) (where o.pcr(p) is considered to be a function with input p). The ap-

proximations are generated such that there are two conservative function boxes, one

to bound the PCRs from the “inside” and one to bound the PCRs from the “outside”.

Thus the CFBs can still be used for pruning in ways similar to the PCRs. Further,

since the CFBs are linear approximations, they can be represented with only a coef-

ficient and a y-intercept, using much less storage space than the PCRs. The CFBs

can then be placed into a U-tree, which is like an R-tree except the minimum bound-

ing rectangles bound the CFBs (in this case, they might more appropriately be called

minimum bounding functions). The authors provide a methodology for constructing

such MBRs from CFBs, and can then apply the standard R-tree insertion and query

methodology wholesale.

In [46], a subset of the authors of [45] examine a simplified version of the above

techniques. They remove the CFBs from the U-tree and simply using PCRs as the

region indexed by in an R-tree structure also called a U-tree. Again, standard R-tree

procedures are applied with sensitivity to the new nature of the MBRs. In both papers,

the experimental evaluation shows these techniques to provide efficient running times

11

for the associated probabilistic queries.

Another work on probabilistic spatial databases is that of Ni, Ravishankar and

Bhanu [36]. They use a probabilistic spatial database framework with a complicated

data model designed to handle correlation between data error. In their model, each

spatial point is part of a “chunk”, and the probabilistic error is associated with entire

chunks. That is, if one point in a given chunk is actually two meters east from the

location specified in the database, then all points in that chunk are actually two meters

east from their specified locations. Such a data model requires careful mathematical

definitions for range, distance, and join operations, and an even more carefully con-

structed index structure. The index structure they develop, called a PrR-tree, addresses

the region that a point may occur in rather than the simple stored point. Also based on

the R-tree, the PrR-tree uses a probability distribution to describe each node’s min-

imum bounding rectangles. The author’s PrR-tree algorithms can correctly handle

their target operations. This contrasts with this thesis in representation and approach:

the SPOT model theory allows for the representation of many separate probability

distributions and handles many different sorts of correlation.

Work by Dai et al. [16] deals with a different kind of probabilistic spatial databases:

instead of assigning a probability to an object’s location, they assign a probability to

an object’s existence. They call this existential uncertainty. Consider a sensor with a

high rate of false positives. Such a sensor reports that an object is at location (x, y) and

due to the potential for false positives one cannot assume an object exists at that point.

There is no probability distribution over the object’s potential locations, just over the

object’s potential to exist. These authors use R-trees to store the spatial locations and

base their algorithms on the nearest neighbor algorithms from the R-tree literature.

The general approach of their algorithms is to extract the neighbors of a location from

12

an R-tree, and then to augment the R-tree results with the associated probabilities of

existence before returning, reordering the R-tree results when appropriate.

Of the works that may be called probabilistic spatial temporal, the SPOT frame-

work is the most general, being the only one capable of representing large classes of

probability distributions.

2.2 Work on Probabilistic Databases

There are several approaches to representing probabilistic data in the database liter-

ature. In this short survey, I first examine Cavallo and Pittarelli’s [13] canonical ap-

proach of specifying mutually exclusive facts in one database table. We then look at an

approach by Zhao, Dekhtyar and Goldsmith [48], which also maintains mutually ex-

clusive facts but uses probability intervals and a more complex query language. From

there, we look at the attribute-based probabilities present in the databases of Barbara

et al. [6] and the system ProbView [31], which details an implementation combining

some of the best techniques in the literature as well as some new techniques.

2.2.1 Table as the Distribution

Cavallo and Pittarelli present one of the first database approaches integrating prob-

abilities. In their approach, a probability distribution is assumed over the tuples in

a single relation. Each tuple is given a probability and it is required that in a single

relation, the tuples’ probabilities add to 1. For instance, there may be the relations R1

13

and R2 (example is from [13]):

R1 =

v1 v2 p(·)

0 0 0.3

0 1 0.3

1 0 0.3

1 1 0.1

, R2 =

v2 v3 p(·)

0 0 0.2

0 1 0.4

1 0 0.2

1 1 0.2

.

On the operations of join and projection, the probabilities are updated. For projection,

this is straightforward: a projected tuple’s probability is the sum of the probabilities

of the tuples it is derived from. For instance:

Πv1(R1) =

v1 p(·)

0 0.6

1 0.4

.

For join, this is less straightforward. First we need to consider the entropy of a given

probabilistic relation. This is defined as is normal: H(q) = −
∑

t∈T q(t) log(t) (q is a

probability distribution over T , where T is a given relation). The information content

of a probabilistic relation is defined to be the difference between the uniform distri-

bution’s entropy (H(u)) and the relation’s entropy. The authors make substantial use

of entropy and information content to define such things as functional dependencies,

project-joins, and multivalued dependencies in the probabilistic database context. For

probabilistic join, the process is simple: join occurs as normal – the tuples are com-

bined according to the conditions. Then the probabilities are assigned in such a way

that when one projects back from the join relation to the base relation, the probabil-

ities are the same as originally in the base relation. Since there are in general many

ways of assigning probabilities to satisfy this condition, the authors avoid ambiguity

by requiring the assignment with maximal entropy is used. This paper is an interest-

14

ing and complete first look at how one might approach probabilistic databases, and

surprisingly, one of the few papers to appeal to entropy in the probabilistic database

literature.

2.2.2 Probability Intervals in Probabilistic DBs

Zhao, Dekhtyar and Goldsmith have produced a methodology by which probability

intervals can be maintained for facts in databases [48]. Their formalism clearly in-

tends to capture the sort of data one acquires through exit polls, surveys, and sampling

techniques whereby percentages can be calculated to be within a given confidence in-

terval. They start their formalization with a simple semistructured probabilistic object

(SPO), which contains1:

• Data specifying the context of the distribution.

• A set of random variables V with possible values dom(V).

• A probability distribution over dom(V).

For instance, one may take an exit poll outside a particular polling station asking if the

voters voted for candidate A or candidate B. In this case, the context would state the

polling station where the survey occurs and the set of random variables would simply

be the candidate the voter voted for (a singleton). dom(V) then just contains the two

candidates: {A, B}, and the probability distribution tells what percentage voted for

each.

To incorporate probability intervals, the authors introduce extended semistruc-

tured probabilistic objects (ESPOs). These objects contain extra contextual informa-

1Paraphrased for presentation purposes.

15

tion, as well as probability bounds for the attributes instead of the bare probabilities

stored in SPOs.

Altogether, the contexts and the ability to store probability bounds combine to

form a very powerful logic and query language capable of asking exactly the kinds

of statistical queries that are both useful and mathematically possible. For instance,

there are projection queries that ask what the probabilities are for one random vari-

able independent of the value of the others. Here the probability interval is of clear

utility when one does not know if a conditional dependence exists. The authors also

introduce a new query: the conditionalization query. Here one asks the what the prob-

ability distribution is for one variable when certain random variables have particular

values. These naturally return ESPOs with the query’s condition as a part of the ES-

POs’ context, and the (new) lower and upper probability distributions. Overall, the

framework provided is coherent and consistent and of clear utility to those wanting to

represent statistical information.

2.2.3 Probabilities in Attributes

Barbara et al. [6] examine a method for handling probabilistic data by associating

probabilities with the values of attributes, including partially specified probability dis-

tributions. One might say their framework introduces the probability distribution as

a new attribute type to be considered on par with traditional types such as “integer”

and “string”. For example, a given schema may be used in a business application

for attempting to determine bonuses (example derived from [6]). In this example,

coworkers of John Smith were asked to estimate what they thought the size of John’s

bonus should be as well as what they thought his contribution to sales had been that

year.

16

Employee Bonus Estimate Sales Estimate

0.3 [Great] 0.4 [$30-$34K]

John Smith 0.4 [Ok] 0.5 [$35-$39K]

0.3 [*] 0.1 [*]

This representation is more compact than previous probabilistic database approaches

requiring one probability per tuple. The above table would require 9 tuples to repre-

sent in Cavallo and Pittarelli’s framework. However, it is also more difficult to repre-

sent conditioned probabilities: the distributions across tuples are generally assumed

to be independent.

The authors produce a probabilistic relational algebra based on this framework.

They include the standards of union, intersection, projection, selection, join, etc, as

well as some new operators like ε-select and ε-join. The ε operators differ from their

non-ε counterparts in that they do not require an exact match to their condition, but

instead require only that the distance according to some metric is below the threshold

ε. For instance, one might want to select from the above table all employees with a

bonus estimate of “0.33 [Great], 0.42 [Ok], 0.25 [*]”. This distribution is close to the

example one, but because it is not exactly the same, the tuple in the above database

would not match. In an ε-select operation, the distance between the two distributions

determines if the tuple is returned.

The work Barbara et al. is a canonical example of an attribute probabilities ap-

proach to probabilistic databases, where the probability distribution is stored at the

attribute level. This is to be compared with storing the probabilities at the tuple level,

as in the previously described works and the SPOT database framework.

17

2.2.4 ProbView

In [31], Lakshmanan et al. detail their probabilistic database system “ProbView”.

ProbView is unique in that it uses both attribute and tuple probabilities, one for repre-

sentation and one for presentation.

The basic probabilistic tuple for relation scheme R = {A1, · · · , An} is defined to

be (〈V1, h1〉, · · · , 〈Vn, hn〉) where Vi ⊆ Ai and hi is a function from Vi to probability

intervals (all a ∈ Ai, a /∈ Vi are assigned probability 0). These probabilistic tuples are

expressed in the framework as annotated probabilistic tuples, which are tuples from

the base relation with an associated probability interval and some extra data justifying

the annotation. They define many operations such as selection, join, etc, and also

introduce the new operation of “compaction”. Compaction is a probabilistic version

of duplicate elimination, where the probability bounds of data-identical tuples are

combined as is appropriate.

Central to the techniques in this paper is the concept of a “path”. Paths are stored

for each annotated tuple as part of the data justifying the annotation. A path is a

boolean formula expressing what must be true for a given tuple to be possible. For

instance, suppose we have tuples a1 and a2 with probability intervals [`1, u1], [`2, u2].

Now consider the concatenated tuple ac = a1 · a2. Since a1 and a2 only occur with

some probability, ac is only possible when both a1 and a2 occur. Let w1 be true when

a1 occurs and w2 be true when a2 occurs (w1 and w2 are the paths for a1 and a2), then

ac can only occur if a1 ∧ a2. Thus a1 ∧ a2 will be the path for ac.

In their implementation, data is communicated to users via probabilistic tuples

while stored internally as annotated tuples. They present a host of experiments show-

ing adequate performance by their implementation.

18

2.2.5 Efficient Probabilistic Query Evaluation

In [17], Dalvi and Suciu present an interesting and effective way of determining when

it is possible to do extensional queries. An extensional system tags each bit of data

with a probability and proceeds to do queries that are algebraic combinations of those

probabilities, while an intensional system defines a probability distribution on a set

of worlds and computes queries in that realm. Extensional semantics have difficulties

dealing with correlated facts – queries depending on such correlation are generally

incorrect when computed extensionally. However, when extensional semantics can be

used, they are substantially more efficient than intensional systems, which generally

must consider each of the many of possible worlds individually.

Dalvi and Suciu show how to create “safe” extensional query plans when such

plans exist. That is, they give an algorithm that takes a query plan and rewrites it so

that all operations can be performed extensionally. Their technique relies on finding

dependent variables in the database and ensuring that the extensional operations are

correctly distributed over the dependencies. However in some cases, an extensional

query plan does not exit. They provide an optimizer that finds extensional query plans

in all cases where such plans exist, and they prove their optimizer to run in polynomial

time. Finally, they give some hints as to how one might answer queries that cannot be

computed extensionally.

2.2.6 Probabilistic Temporal Databases

Dekhtyar, Ross, and Subrahmanian introduce a formalism for handling probabilistic

temporal databases in [19]. A TP-case statement is one basic construct in this formal-

ism, consisting of: {(C1, D1, L1, U1, δ1), · · · , (Cn, Dn, Ln, Un, δn)}, where each C1

and Di are time intervals, Li, Ui are probabilities, and δi is a pdf over Di. δi is only

19

considered over the time points specified in Ci: every point x ∈ Di, x /∈ Ci is given a

probability of zero (after normalization). A tuple associated with a TP-case statement

is true at a given time with a probability derivable from the data in a TP-case state-

ment. A TP-tuple provides this association, containing a standard database tuple and

a TP-case statement specifying when and with what probability the tuple holds.

For theoretical analysis, TP-tuples are divided into annotated relations, assign-

ing each time point its own probability interval. Formally, if tp is a TP-tuple, then

ANN(tp) = {(d, t, Lt, Ut)|t ∈ Ci, d = di} where di is the database tuple in the TP-

tuple, t is a time point, and Lt and Ut are the appropriate probability bounds for that

time point. The semantics of the system are defined in terms of annotated relations.

An interpretation specifies a probability for each tuple at each time point, and is con-

sistent with an annotated relation only if the interpretation’s specified probability is

within the annotated relation’s probability interval.

Definitions for union, difference, intersection, Cartesian product, selection, pro-

jection and join are given in terms of these annotated relations. Together with a map-

ping from TP-tuples to annotated relations, these definitions define corresponding

operations for TP-tuples. Correctness of algorithms for those operations on TP-tuples

is then proven in terms of the semantics for annotated relations. The paper provides

correct algorithms for the TP-tuple operations that do not require the instantiation of

annotated relations while at the same time being proven correct through appeal to

annotated relations..

In a followup paper, these authors examine the query processing via a temporal

probabilistic calculus (TP-calculus) [18]. Operators such as join, selection and pro-

jection are defined and rules for query rewriting based on the algebraic properties of

those operators are examined. The authors experiment with their queries and query

20

rewriting system with a prototype implementation.

2.3 Probabilistic Logics

The AI Logic community has also seen substantial work on probabilistic reasoning. I

will discuss a few of such works here.

In A Logic for Reasoning about Probabilities [23], Fagin, Halpern and Megiddo

develop a logic that works over arbitrary (not necessarily discrete) probability dis-

tributions. The basic formulation allows primitive weight terms w(φi) where φi is a

propositional formula. An inequality term is an inequality:

a1x1 + · · ·+ akxk ≥ c

An inequality formula is a boolean combination of inequality terms. The authors

prove soundness and completeness of an axiomatization for logics based on such in-

equality formula, and show satisfiability to be NP-complete.

In another paper, Ng and Subrahmanian provide one of the first treatments of

probabilities in logic programming [35]. Let BL be the Herbrand base associated

with a first order logic and let basic formula be any conjunction and disjunction over

BL. The basis of their probabilistic logic is a Horn clause equivalent, the p-clause,

with the form:

A : [`, u]← F1 : [`1, u1] ∧ · · · ∧ Fn : [`n, un]

where F1, . . . , Fn are basic formula. A p-program is a set of p-clauses. This structure

is an instance of an annotated approach, due to the fact that the probability intervals

annotate the associated formula.

To define the semantics of such programs, Ng and Subrahmanian use an atomic

function f that assigns a probability interval to each member of BL. Then, to extract

21

probability intervals for the basic formula, conjunction or disjunction strategies are

used (as appropriate). In this way, we can tell if f satisfies each basic formula and

its associated probability interval Fi : [`i, ui] in the p-caluse. As is standard, to

satisfy a p-clause f must satisfy the head or not satisfy at least one element of the

body. The authors define algorithms for computing satisfaction, consistency, and other

operations relating to this probabilistic logic.

In a latter, and somewhat more general paper, Lakshmanan and Shiri propose a

probabilistic logic that works on certainty lattices satisfying certain properties (i.e.

probabilities, probability intervals, some fuzzy logics, binary logics, etc). Using a

first order logic, they allow rules of the form

r : A
α←B1, · · · , Bn; 〈fd, fp, fc〉.

Where A, B1, · · · , Bn are (ground or non-ground) atoms, and fd, fq, fc are functions

describing disjunction, propagation, and conjunction strategies respectively in the

given certainty lattice. An example rule, using probability intervals as the certainty

lattice, might say that an area is “affected” (by a disease) if there is an outbreak (of

the disease) with a probability in the interval [0.8, 0.9]:

ra : affected(D)
[0.8,0.9]←− outbreak(D); 〈×,×,×〉

Where × is the function: [a, b] × [c, d] = [a × c, b × d] (this assumes all variables

involved are conditionally independent). The authors fully develop several equivalent

semantics (declarative, fixed point, proof theoretic) and study conjunctive queries for

such statements, finding several classes of conjunctive queries with differing proper-

ties. These results will be useful for further work optimizing such queries.

22

2.4 Repair, Revision, and Update

2.4.1 AGM Contraction and Revision

In a canonical paper, Alchourrón, Gärdenfors and Makinson flush out what have been

come to be known as the AGM axioms. These axioms pertain to theory change [1].

A theory is a set of propositions closed under the consequence operation, which is

to say that should proposition p in theory A imply a proposition q, then q must also

be in A. Cn(A) denotes the closure of an arbitrary set of propositions A under the

consequence operation.

A contraction operator (A .− p) removes some proposition p from theory A. The

authors introduce the following postulates for contraction.

• A .− x is a theory whenever A is a theory (closure).

• A .− x ⊆ A (inclusion).

• If x /∈ Cn(A), then A u x = A (vacuity).

• If x /∈ Cn(∅), then x /∈ Cn(A .− x) (success).

• A ⊆ Cn((A .− x) ∪ {x}) (recovery).

As an example of contraction, the authors introduce full meet contraction, First they

define A ⊥ x as the set of subsets of A such that for A′ ∈ A ⊥ x, (i) A′ ⊆ A, (ii)

No A′′ (A′ is in A ⊥ x, and (iii) x /∈ Cn(A′). Full meet contraction is then the

intersection of all members of∩A ⊥ x. Partial meet contraction is defined as∩γ(A ⊥

x) where the operator γ satisfies γ(A ⊥ x) ⊆ A ⊥ x. Partial meet contraction uses

only the “most important” members of A ⊥ x (according to γ) to accomplish the

contraction. The authors show full meet contraction to satisfy the revision axioms

23

above, then go further to show that any operator .− satisfying the above axioms is a

partial meet contraction.

Further axioms are introduced for revision of a theory, whereby a proposition p is

added to a theory, and if there is a contradiction, the theory is modified to preserve

consistency. These are:

• A u x is always a theory.

• x ∈ A u x.

• If ¬x /∈ Cn(A) then A u x = Cn(A ∪ {x}).

• If ¬x /∈ Cn(∅) then A u x is consistent under Cn.

• If Cn(x) = Cn(y) then A u x = A u y.

• (A u x) ∩ A = A .− ¬x.

It turns out that for any valid contraction operation .− (such as partial meet contraction,

above), the Levi identity implies a revision operation: Aux = Cn((A .− ¬x)∪{x}).

Because all contraction operations have a partial meet instantiation, this means that

all revision operations can be traced back to a partial meet contraction operation.

The authors further discuss many supplementary postulates for contraction and

revision, and show large classes of such operations to be equivalent.

2.4.2 Inconsistent Database Repair and Querying

There is substantial work on repair in inconsistent databases. Much of it differs in phi-

losophy from the work presented in this thesis by focusing on answering queries with

inconsistent databases rather than by repairing or revising an inconsistent database on

update.

24

In [3], Arenas Bertossi and Chomicki produce a method for rewriting queries such

that the resulting rewritten query returns answers even when the queried database does

not satisfy integrity constraints. The integrity constraints that may be violated are part

of the rewritten query. The paper offers proof of the technique’s correctness.

The work in [4] introduces a logic programming technique for computing consis-

tent query answers (i.e. answers that are true for every repair of the database). The

technique is only given for binary integrity constraints, but may be extended.

In [25] Fazzinga et al examine how to use mixed integer linear programming to

repair inconsistent databases. They allow constraint specifications that include SQL

statements and produce mixed integer linear programs from those specifications. By

allowing individual entries in the database to be variables in the linear program, the au-

thors allow for solutions to the linear program to be repairs to inconsistent databases.

Using clever optimization techniques, the authors are able to solve the system of con-

straints with a minimal number of changed variables. Thus they are able to repair the

database by changing a minimal number database entries. Since they deal with mixed

integer linear programming, their algorithms are NP-hard. In particular, the technique

used to minimize the number of changed variables is only available in mixed integer

linear programming and is thus also NP-hard.

2.4.3 Combining Multiple Knowledgebases

In [5], Baral et al detail a method for combining knowledge bases even when the

combination violates certain integrity constraints. Their procedure uses a heuristic

whereby if A ← B is an integrity constraint, then repairs that include A are prefer-

able to repairs that include ¬B. They define certain axioms to be followed when

combining multiple knowledgebases. These are similar to the AGM axioms, but in-

25

clude such things as commutativity (K1 combined with K2 should result in the same

knowledgebase as K2 combined with K1). The authors study several algorithms for

various special cases of knowledge base combination, including combining theories

consisting only of facts, combining theories with rules without negation in the bod-

ies, syntactic approaches, and incremental theory combination. All algorithms use a

maximal subset approach to address inconsistencies arising from the combination.

2.5 Spatial Databases

While there are very few works dealing with space, time, and probability, there are

many works dealing with space individually. In this section I summarize a few such

works.

2.5.1 Spatial Reasoning

Cohn and Hazarika survey many forms of qualitative spatial representation and rea-

soning in [15]. These include pointless geometries such as the RCC system [14],

in which the basic object is a region and there are predicates specifying the sort of

connectivity (“part of”, “disconnected from”, “connected to”, etc).

In [33], Malek describes a way of using RCC in a GIS environment. He uses a

four dimensional space to represent space time, and then, for a given event, he draws a

cone shape containing the locations (and times) that a given object can possibly affect.

He describes these regions with an RCC-style logical calculus.

In [12], Cao et al. study the application of a computer graphics line simplification

algorithm to spatial temporal databases. The line simplification algorithm is shown

to introduce bounded error in the representation of objects’ locations over time. The

26

algorithm can be used to create more compact temporal databases which store simpli-

fied lines rather than per-time-point data.

2.5.2 Indexing Spatial Databases

In spatial databases there are two major indexing structures, R-trees and Quad-trees.

R-trees have many variants [7, 8, 44], though the basic concept is a tree structure

with spatial data in the leaf nodes. Internal nodes contain minimal bounding rectan-

gles (MBRs) and generally satisfy the constraint that all data beneath an internal node

must be contained in the internal node’s MBR. The many variants to the R-tree each

have their own heuristic method for deciding how to insert new data in order to min-

imize some objective (number of I/Os or runtime). When one wants to discover the

data existing in a particular spatial region, one need only search from the root visiting

only those children whose MBR intersects the query region. The issue with this is that

while it accomplishes some pruning, there is no guarantee that the spatial data will be

found down any given path, and thus the performance bounds for R-trees are no better

than when R-trees are not used. Despite these theoretical difficulties, R-trees perform

quite well in practice.

Quad-trees, however, do have theoretical bounds on their running time [43]. At the

most general level, a quad-tree node divides the space it represents into regions, and

stores a pointer to another node responsible for each region. In some quadtrees, such

as point quadtrees, the internal nodes store a data item and use that item to divide the

space they represent. Other quadtrees simply divide space in half and store the data at

the leaves. Still other structures, known as adaptive k-d trees, adaptively decide where

best to divide space based on the input they represent.

27

Chapter 3

SPOT Databases: Syntax and Semantics

3.1 SPOT Semantics

In this chapter, I introduce two different semantics for the SPOT framework. The

different semantics have differing advantages, allowing for us to make a tradeoff be-

tween the database’s efficiency and the information implied by the database. The first

semantics achieves faster execution time because it does not consider the possibility

of there being movement constraints, instead assuming that interactions between time

points are handled by the data source. The second semantics will be less efficient (but

will still admit polynomial-time algorithms) and will ensure reachability constraints

are maintained in consistent databases.

Both semantics rely on the use of probability intervals. The inclusion of probabil-

ity intervals in the SPOT framework allows for the data producer to more delicately

handle potential correlations between objects. As an example, consider two facts re-

ported by the same sensor. Independently, each fact is true with a 80% probability,

however, if one fact is false, the sensor is likely faulty and the second fact is only

true with a 60% probability. Thus the appropriate probability to assign to both facts is

28

the interval of 60% to 80%. I introduce probability intervals to handle exactly these

sorts of representational issues, following in the tradition established by Boole [11]

and continued in modern computer science [27, 23, 35, 48, 21].

The first semantics is used in several papers of mine [41, 38]. It allows a dis-

tinct probability distribution for each object and time point, and as such is called

time point semantics. Because this semantics allows no particular correlation be-

tween these probability distributions, it cannot account for an object’s potential move-

ment. Databases using these semantics will instead be expected to encode any possi-

ble movement constraints in the data. In most cases the algorithms for these semantics

outperform any semantics taking potential movement into account.

The second semantics was developed to explicitly enforce object movement con-

straints and is used in two other papers of mine [41, 39]. It only allows objects to move

between “reachable” locations by assigning probabilities only to “worlds” that satisfy

specified reachability constraints. I therefore call this the world-based semantics. The

world-based semantics generally requires more computation than the time-point se-

mantics, but will still admit polynomially bounded running times.

While the two semantics are technically quite different, conceptually they can be

thought of similarly. Many of the techniques in this thesis will be introduced only

in one of the two semantics, and have its details flushed out with those particular

assumptions. I would like to caution the reader against concluding that the technique

is thus only applicable to the considered semantics: in many cases the fundamental

idea of a given technique is also applicable to the other semantics, due at least partially

to the fact that both semantics use the same syntax and similar probabilistic model

theories.

I now introduce the syntax for the SPOT framework.

29

3.2 Syntax

3.2.1 Preliminary Definitions

SPOT databases are composed of SPOT atoms. In this section we will detail the

basic definitions used in this paper.

Suppose ID is a set of object identifiers. Unless otherwise specified, we assume

the set ID to be finite. Further suppose a distance function did : ID × ID → R on

the set ID. The distance function specifies how similar two ids are, and is provided

by the user.

Example 1. Suppose the set ID contains car license plate numbers. Then did(id1, id2)

can be the edit distance between the license plate numbers id1 and id2.

Time points are represented via a finite subset of the integers T , as is standard.

There are integers T− and T+ such that T = {i ∈ Z |T− ≤ i ≤ T+}. This assump-

tion of discrete finite time is one commonly made in database and logical systems

[19, 36, 20]. It is important for the database designer to ensure the granularity of time

is fine enough to account for the phenomenon of interest (i.e. for studying plate tec-

tonics, one might allow each time point to represent 1000 years, while for studying

vehicle movement, a time point representing 10 minutes might have better utility).

Space will be represented by a finite set of locations L. Each location L ∈ L is a

point in R2: L = (x, y) ∈ R2. The distance between points L1, L2 ∈ L will be the

Euclidean distance:

ed(L1 = (x1, y1), L2 = (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2.

As I proceed, you will notice that the locations can just as easily be points in a higher

30

dimensional space Rk – they are specified as members of R2 simply for ease of pre-

sentation.

Subsets of Lwill be called regions. A rectangular region r is defined by lower and

upper corners (x−, y−) and (x+, y+) and contains all (x, y) ∈ L such that x− ≤ x ≤

x+ and y− ≤ y ≤ y+. To denote the complement of a region r, I will use r̄ = L \ r.

At times we will assume a reachability predicate. This predicate specifies if a

given object can move between two location in one unit of time.

Definition 1 (Reachability Predicate). A reachability predicate is a function

reachable : ID × L× L → {true, false}

where reachable(id, L1, L2) tells if one can reach location L2 from location L1 in one

unit of time.

The reachability predicate is given a priori. We will say reachable(id, k, L, L′)

iff L′ is reachable from L in k time points, or more formally: there exists L =

L0, · · · , Lk = L′ such that reachable(id, Li, Li+1) for all i ≥ 1, i < k.

Example 2. If we have maximal velocity vid for each id ∈ ID, then we can use

reachable(id, L1, L2) = (vid ≤ ed(L1, L2)) as a reachability predicate. In this case,

if the object id is at location L1 at time 1, then at time 2 it can only be at locations L′

such that L′ has distance less than vid from L1.

Probability intervals will be specified as a closed set: [`, u] ⊂ [0, 1].

3.2.2 SPOT atoms

SPOT atoms represent statements of the form: “object id was in region r at time

t with a probability between ` and u”. For instance, I could be between 80% and

31

90% certain that I saw my friend Larry in the park at noon, leading to the statement:

“Larry was in the park at noon with a probability between 0.8 and 0.9”. To represent

such a statement, I use a SPOT atom [38, 40].

Definition 2 (SPOT Atom). For an object id ∈ ID, a time point t ∈ T , a region r

and probability bounds [`, u] ∈ [0, 1], (id, r, t[`, u]) is a SPOT atom. A set of SPOT

atoms S is a SPOT database.

In this definition we do not require the region r to be closed or rectangular, but for

storage efficiency reasons, rectangular regions may be preferred in practice.

Example 3. The table shown in Fig. 3.1 is an example of SPOT database. The

first row in this table specifies that Phone1 is in region R1 at time 0 with probability

between 0.7 and 0.75.

Probabilistic intervals are critical to this representation and serve the dual purpose

of allowing for less exact data and providing a mechanism to avoid assumptions about

conditional dependence. There are many cases where an exact prediction of a prob-

abilistic occurrence is not possible. Even poll results on TV are given as intervals

(47% ± 2 of voters in such-and-such district voted for so-and-so, giving the interval

45%-49%). Further, it is well known that even if we know point probabilities p1, p2 re-

spectively for the occurrence of events e1, e2 respectively, the probability of (e1 ∧ e2)

and (e1 ∨ e2) cannot be determined exactly unless additional assumptions (e.g. in-

dependence) are made. In fact, this result has been known for over a century (Boole

[11], Hailperin [27], Fagin et. al. [23], Ng and Subrahmanian[35]). Thus, unless one

plans to make additional assumptions, it is best to use probability intervals.

For a given SPOT database S, we say S id,t for the subset of the database contain-

32

SPOT Database Sexm

(Phone1, R1, 0, [0.7, 0.75])

(Phone1, R2, 1, [0.6, 0.9])

(Phone2, R3, 0, [0.9, 1])

(Phone2, R3, 1, [0.95, 1])

(Phone3, R4, 0, [0.8, 0.9])

(Phone3, R5, 0, [0.7, 0.9])

Figure 3.1: An example SPOT database with three cell phone carriers and two time

points.

33

ing only atoms having to do with id ID and time point t. That is:

S id,t = {(id, r, t, [`, u]) ∈ S}.

3.3 Time-Point Semantics

Time point semantics assign a probability distribution to each object id at each time

t. All such distributions will be interpretations.

Definition 3 (Time-Point Interpretation). A function I : ID × T × L → [0, 1] is a

time point interpretation iff for all id ∈ ID and t ∈ T :∑
L∈L

I(id, t, L) = 1.

We let I be the set of all time-point interpretations.

Example 4. For our running example in Figure 3.1, one possible interpretation which

we call I1 is the one which assigns probability 1 to each of {Phone1, Phone2, Phone3}

being at location (0, 0) at both times 0 and 1. This interpretation does not reflect the

information in the database. One that does might be I2, defined as:

I2(Phone1, 0, (20, 15)) = 0.75, I2(Phone1, 0, (25, 10)) = 0.25,

I2(Phone1, 1, (5, 25)) = 0.7, I2(Phone1, 1, (15, 20)) = 0.3,

I2(Phone2, 0, (10, 15)) = 1, I2(Phone2, 1, (10, 15)) = 1,

I2(Phone3, 0, (9, 5)) = 0.9, I2(Phone3, 0, (20, 5)) = 0.1,

I2(Phone3, 1, (15, 15)) = 0.5, I2(Phone3, 1, (15, 16)) = 0.5.

For all unmentioned parameters I2(·, ·, ·) = 0.

Such interpretations have the ability to satisfy the constraints imposed by SPOT

atoms.

34

Definition 4 (Time-Point Satisfaction). For a SPOT atom sa = (id, r, t, [`, u]) and a

time-point interpretation I , I satisfies sa iff

` ≤
∑
L∈r

I(id, t, L) ≤ u.

I satisfies a SPOT database S iff I satisfies every sa ∈ S.

Example 5. For I1 and I2 in Example 4, I2 satisfies the database Sexm in Fig. 3.1,

while I1 does not satisfy the database in Fig. 3.1.

We let I(S) be the set of interpretations satisfying S and I(sa) be the set of

interpretations satisfying sa. A database is consistent only if it has a satisfying inter-

pretation.

Definition 5. SPOT database S is consistent iff I(S) 6= ∅.

Example 6. The database Sexm in Figure 3.1 is consistent under time-point seman-

tics. If we were to add the atom (Phone1, R4, 0, [0.45, 0.45]) to Sexm, it would no

longer be consistent as there is no interpretation which can assign probabilities of

0.45 and 0.7 to disjoint regions R4 and R1.

We say an atom is compatible with a SPOT database iff adding the atom to the

database results in a consistent database.

Definition 6. SPOT atom sa is compatible with SPOT database S (denoted sa b S)

iff S ∪ {sa} is consistent.

Example 7. For database Sexm in Figure 3.1, atom (Phone1, R4, 0, [0.45, 0.45])

(from Example 6) is not compatible with Sexm. However, (Phone1, R4, [0.3, 0.3])

is compatible with Sexm.

Entailment is defined in the usual logical manner.

35

Definition 7 (Entailment). For SPOT databases S1,S2, and SPOT atoms sa1, sa2

we say

• S1 entails S2 (denoted S1 |= S2) iff I(S1) ⊆ I(S2)

• S1 entails sa1 (denoted S1 |= sa1) iff I(S1) ⊆ I(sa1)

• sa1 entails S1 (denoted sa1 |= S1) iff I(sa1) ⊆ I(S1)

• sa1 entails sa2 (denoted sa1 |= sa2) iff I(sa1) ⊆ I(sa2).

Example 8. Again considering Sexm from Figure 3.1 along with SPOT atom sa =

(Phone1, R4, 0, [0, 0.3]), we have that Sexm |= sa but not that sa |= Sexm. We do

however have that sa |= (Phone1, R1, 0, [0, 0.7]).

In the below example, we present two equivalent databases: they mean the same

thing but say it in different ways.

Example 9. Consider if L = {L1, L2}, S1 = {(0, {L1}, 0, [0.5, 0.5])}, and S2 =

{(0, {L2}, 0, [0.5, 0.5])}. Both databases satisfy only the interpretation I where:

I(0, 0, L1) = 0.5 I(0, 0, L2) = 0.5

Thus I(S1) = I(S2).

This is formalized in the definition of equivalence:

Definition 8. SPOT databases S1 and S2 are equivalent iff I(S1) = I(S2).

Equivalence between S1 and S2 is denoted S1 ≡ S2. I occasionally abuse this

notation slightly and say that SPOT atoms sa1 and sa2 are equivalent (sa1 ≡ sa2)

when what is meant is that the associated singleton SPOT databases are equivalent

({sa1} ≡ {sa2}).

36

3.4 World-based Semantics

One major issue with time-point based semantics is that, for any object id, even if the

object cannot move from point L1 to point Lk in one time point, the database:

(id, {L1}, 0, [1, 1]), (id, {Lk}, 1, [1, 1])

will still be considered consistent despite the fact that it requires the object to move

from L1 to Lk in one time point. In some applications, this is not an issue – movement

constraints of this form can sometimes be assumed to have been coded into the SPOT

database. However, there are cases when more detailed reasoning techniques will be

needed to incorporate information about where an object can travel. In these cases,

one should use world based semantics.

In world based semantics, we define the set of worlds, W , to be the set of all

possible paths all objects may take.

Definition 9. A world is a function w : ID× T → L that specifies where object id is

at time t. The setW is the set of worlds that satisfy the reachability condition:

W = {w | ∀id ∈ ID,∀t, t + 1 ∈ T, reachable(id, w(id, t), w(id, t + 1))}.

Example 10. World w1 in Figure 3.2(a) places Phone1 at (20, 15) at time 0 and at

(5, 25) at time 1. It places Phone2 at (8, 15) at time 0 and at (11, 14) at time 1. Phone3

is placed at (9, 6) at time 0 and at (12, 10) at time 1. Other worlds are displayed in

Figures 3.2(b)-3.2(d).

Interpretations in world based semantics are probability distributions overW .

Definition 10 (World-based Interpretation). A world-based interpretation I is a func-

tion I :W → [0, 1] such that
∑

w∈W I(w) = 1.

37

(a) World w1 (b) World w2

(c) World w3 (d) World w4

Figure 3.2: Several example worlds.

38

We let IW be the set of all world-based interpretations.

Example 11. Using the worlds in Figures 3.2(a)-3.2(d), an example interpretation

will be I1, which assigns a probability of 0.70 to world w1, 0.05 to world w2, 0.05 to

world w3, 0.20 to world w4, and 0 to every other possible world.

One major issue in world-based semantics is the size of the representation of an

interpretation I . |W| is bounded by |L||T |·|ID|, and for most reasonable reachability

definitions will be exponential in |T | and |ID|. Since a world-based interpretation I

may need to store a separate value of each world, this makes the naı̈ve storage of I

intractable in the general case. However, in the section on consistency checking in

world based semantics (Section 4.2 on page 60) I will detail an alternative efficient

representation.

In these new semantics, we have new definitions for satisfaction, entailment, and

so forth.

Definition 11 (World-based Satisfaction). A world-based interpretation I satisfies a

SPOT atom sa = (id, r, t, [`, u]) iff

` ≤
∑

w(id,t)∈r

I(w) ≤ u.

A I satisfies SPOT database S iff I satisfies all sa ∈ S.

Example 12. The interpretation I1 from Example 11 satisfies the database Sexm from

Figure 3.1.

To distinguish from time-point semantics, we say IW(sa) is the set of world-

based interpretations which satisfy sa. Similarly IW(S) is the set of world-based

interpretations which satisfy S. When it is clear from context that only the world-

based semantics are possible, I(S) will be used instead of IW(S).

39

Definition 12 (World-based Consistency). A SPOT database S is consistent iff

IW(S) 6= ∅.

Definition 13 (World-based Entailment). For SPOT databases S1,S2, and SPOT

atoms sa1, sa2 we say

• S1 entails S2 (denoted S1 |= S2) iff IW(S1) ⊆ IW(S2)

• S1 entails sa1 (denoted S1 |= sa1) iff IW(S1) ⊆ IW(sa1)

• sa1 entails S1 (denoted sa1 |= S1) iff IW(sa1) ⊆ IW(S1)

• sa1 entails sa2 (denoted sa1 |= sa2) iff IW(sa1) ⊆ IW(sa2).

This concludes the formalization of the world based semantics.

3.5 SPOT Queries

3.5.1 Selection Query Semantics

In this work I place major emphasis on the running time of selection queries. There

are two kinds of selection queries, optimistic and cautious. The optimistic queries

return sets of facts which can be true, while the cautious ones return sets of facts

which must be true.

You will notice that these queries are applicable to both the point-based and world-

based semantics. However, for ease of presentation, and because most of the query

algorithms focus on point-based semantics, I will assume point-based semantics for

the introduction of these queries.

40

Definition 14 (Optimistic selection). Let S be a SPOT database and (?id, r, ?t, [`, u])

be a selection query. The optimistic answer to (?id, r, ?t, [`, u]) is the set

{(id, r, t, [`, u]) | id ∈ ID ∧ t ∈ T ∧ (id, r, t, [`, u]) b S}.

Example 13. Again referring to database Sexm from Figure 3.1. The cell phone com-

pany is interested in knowing who will be using the cell tower and when they will be

expected to use it. Since the tower services only those in region Q, this question can

be answered by the SPOT database with the selection query (?id,Q, ?t, [0.75, 1]),

which asks who will be in the region Q served by the cell tower with a probability of

at least 75%. The optimistic answer tells who could be in Q with at least probability

75%. The optimistic answer is: Phone1 at times 0 and 1, Phone2 at times 0 and 1,

and Phone3 at time 1. Phone3 cannot be in the query region at time 0 as it will be

in the regions R4 and R5 with high enough probability to eliminate the possibility of

being in the query region.

Definition 15 (Cautious selection). Let S be a SPOT database and (?id, r, ?t, [`, u])

be a selection query. The cautious answer to (?id, r, ?t, [`, u]) is the set

{(id, r, t, [`, u]) | id ∈ ID ∧ t ∈ T ∧ S |= (id, r, t, [`, u])}.

Example 14. If the cell phone company wants to know who is definitely in the query

region with a probability of at least 75%, the query can be posed as a cautious query.

The cautious answer is: Phone2 at times 0 and 1.

It is clear that the optimistic answer to any selection query is a superset of (or

equal to) the cautious answer. Optimistic and cautious answers to queries build upon

the notion of optimistic and cautious semantics for non-monotonic logics (also known

as the brave and credulous semantics, respectively) [22].

41

Pruning techniques and algorithms for solving optimistic and cautious selection

queries are given in Chapter 7.

42

Chapter 4

Consistency Checking in SPOT Databases

Consistency checking algorithms check that there is a satisfying interpretation for a

given SPOT database. Because there are two different kinds of interpretations for the

two semantics, two approaches to consistency checking are explored.

All of the algorithms in this section will use linear programming, an attractive

technique due to both its polynomial running time and the depth of existing research

on linear program solving. Most of the below algorithms create a linear program and

solve it using standard techniques, making their running times polynomial in the size

of the created linear program. Much is gained by shrinking the sizes of the created

linear programs, and many of these results focus on slimming the representation or on

applying divide-and-conquer techniques to ensure faster computation.

4.1 Point-based semantics

The point based semantics allow several consistency checking algorithms, some more

efficient than others.

43

4.1.1 Naı̈ve Consistency Algorithm

We now provide an algorithm to check the consistency of a SPOT database under the

point based semantics. The algorithm uses linear programming. By finding a solution

to one linear program per 〈id, t〉, we can guarantee the existence of of a point-based

interpretation satisfying the database.

In the linear program, each point (x, y) = L ∈ L has an associated variable vx,y

that specifies the probability that the object with id id is at (x, y) at time t. The linear

program contains two constraints per SPOT atom as well as constraints ensuring

vx,y ≥ 0 and the sum of all variables is 1.

Definition 16 (LP (·)). The set of linear constraints, LP (S, id, t) associated with

S, id, t contains exactly the following constraints:

• For all atoms (id, r, t, [`, u]) ∈ S id,t, the constraint ` ≤
∑

(x,y)∈r vx,y is in

LP (S, id, t).

• For all atoms (id, r, t, [`, u]) ∈ S id,t, the constraint u ≥
∑

(x,y)∈r vx,y is in

LP (S, id, t).

• The constraint
∑

(x,y)∈L vx,y = 1 is in LP (S, id, t).

• The constraints vx,y ≥ 0 for all (x, y) ∈ L are in LP (S, id, t).

The constraint listed in the first bullet forces any solution to satisfy the lower

bound requirements for any SPOT atom referencing 〈id, t〉. Likewise, the second

bullet’s constraint forces satisfaction of those atoms’ upper bound. The constraint

listed in the third bullet simply says the object must exist somewhere in the overall

space with probability 1, and the constraints in the fourth bullet ensure no vx,y can

have a negative value (necessary because each vx,y represents a probability).

44

The algorithm for checking consistency feeds the above inequalities, combined for

all id and t, into any linear constraint solver [30] and returns true if there is a solution.

That is, S is consistent if, for every id ∈ ID and t ∈ T , LP (S, id, t) has a solution.

We call this algorithm the naı̈ve consistency checking algorithm.

Proposition 1. The naı̈ve consistency checking algorithm checks the consistency of a

SPOT database S in time polynomial in |ID|, |T |, |L|, and |S|.

Proof. The time taken for naı̈ve consistency checking to run is bounded by |ID| ×

|T |×p where p bounds the time to solve the linear program LP (S, id, t). LP (S, id, t)

is always polynomial in the size of L (there are |L| variables) and S (there are at most

2× |S|+ 1 constraints) and since linear programs are solvable in time polynomial in

the size of the linear program [32], p must is a polynomial, making |ID| × |T | × p a

polynomial in |ID|, |T |, |L|, and |S|.

Though the above theorem establishes a polynomial result for consistency check-

ing, it should be noted that the size of L can be quite large (one million for a 1000×

1000 point space) and hence, the algorithm for consistency checking can be ineffi-

cient.

4.1.2 BSP Consistency Checking

To account for the excessive but polynomial number of variables needed to compute

solutions to LP (·), we introduce a partitioning scheme which combines points con-

tained in all the same inequalities into one variable, thereby reducing the number of

variables.

45

Figure 4.1: Example regions for SPOT atoms.

Intuition

This technique creates regions where all variables will be homogeneous. Consider if

we have two rectangles e and d pictured in Figure 4.1. If we have the SPOT database

S = {(id, e, t, [0.8, 0.9]), (id, d, t, [0.9, 1])}

then this vehicle could be in one of four disjoint regions:

r1 = d ∩ e, r2 = d− e,

r3 = e− d, r4 = L − (d ∪ e).

Suppose vi denotes the probability that the vehicle is in region ri at time t. Rather than

have a set of constraints including one variable for each point in the space, we only

need these four variables, We can therefore rewrite our linear constraints as follows.

0.8 ≤ v1 + v2 ≤ 0.9 (4.1)

0.9 ≤ v1 + v3 ≤ 1 (4.2)

v1 + v2 + v3 + v4 = 1. (4.3)

46

Constraint 4.1 is derived from the SPOT atom (id, d, t, 0.8, 0.9). id is in region d in

the cases corresponding to rectangles r1 and r2 — hence, the variables v1 and v2 must

add up to a value in the range 0.8 to 0.9 which is what the first constraint above says.

The reader will readily believe that this linear program can be solved more efficiently

than LP (S, id, t). This will also greatly speed up the naı̈ve consistency checking

algorithm.

Variable elimination: formalization

We start with the notion of location equivalence.

Definition 17 (Location Equivalence). Suppose S is a SPOT database, id ∈ ID and

t is a time point. Locations L1 and L2 are equivalent w.r.t. S, id, t denoted p1 ∼ p2

(S, id, t are understood) iff for all (id, r, t, [`, u]) ∈ S id,t

L1 ∈ r iff L2 ∈ r.

Equivalent points are any two points whose probabilities are governed by exactly

the same sets of SPOT atoms. For instance, if two points are both in r for some atom

(id, r, t, [`, u]), and neither point is in any other region for any other SPOT atom in

S id,t, then they are equivalent. However, if one of the two points were to be contained

in r′ for some (id, r′, t, [`′, u′]) not containing the other point, then the points are not

equivalent.

The following result states that two equivalent points will have the same range of

probabilities assigned to them. The minimum and maximum probabilities of an object

being at two equivalent points at the same time are the same.

Lemma 1. Suppose S is a SPOT database, id ∈ ID and t is a time point. If

(x1, y1) ∼ (x2, y2) then

47

• min
I|=S

(I(id, (x1, y1), t)) = min
I|=S

(I(id, (x2, y2), t))

• max
I|=S

(I(id, (x1, y1), t)) = max
I|=S

(I(id, (x2, y2), t))

Proof. By Definition 17 vx1,y1 and vx2,y2 occur in exactly the same way in LP (S, id, t)

(Definition 16). Thus their minimization and maximization are the same.

Suppose we are given a SPOT database S, a vehicle id ∈ ID, and a time-point

t. Since location equivalence w.r.t. S, id, t is an equivalence relation (i.e. it is reflex-

ive, transitive and symmetric), we can use it to partition L into equivalence classes

P1, · · · ,Pm. Let us call this partition P . Notice that there is exactly one such parti-

tion P for any S, id, t. Suppose now that r is an arbitrary region in L. Let P(r) be

the set {Pi | Pi ∩ r 6= ∅}.

Proposition 2. Suppose S is a SPOT database, id ∈ ID and t is a time-point. Let

P be the partitioning of L described above and let r be a rectangle mentioned in an

atom of S. Then
⋃
Pi∈P(r)Pi = r.

We can now associate a single variable, vi with each member Pi of the partition

induced by ∼ on S id,t, and create a new set of linear constraints based on the parti-

tioning.

Definition 18 (Partitioned Linear Program (PLP)). Suppose S is a SPOT database,

id ∈ ID, and t is a time-point. Let P = (P1, . . . ,Pm) be the partitioning induced

by the location equivalence relation ∼ w.r.t. S, id, t. Then the partitioned linear con-

straints, PLP (S, id, t), associated with S, id, t is defined as follows:

• For all (id, r, t, [`, u]) ∈ S id,t, the constraint ` ≤
∑

Pi∈P(r) vi ≤ u

• The constraint
∑

Pi∈P vi = 1

48

• The constraint vi ≥ 0 for all Pi ∈ P .

This formulation of the linear program is useful mainly due to its relationship with

LP . In particular, PLP is solvable if and only if LP is solvable.

Theorem 1. Suppose S is a SPOT database, id ∈ ID and t is a time-point. PLP (S, id, t)

is solvable iff LP (S, id, t) is solvable.

Proof. (⇐): Let W be a solution to LP (S, id, t) with vx,y(W) the value of vx,y in W .

To construct a solution W̄ to PLP (S, id, t) assign to vi(W̄) the value
∑

(x,y)∈Pi
vx,y(W)

(the sum of the probabilities of the points in region Pi). By Proposition 2, each r men-

tioned in some SPOT atom of S is exactly the union of the points in P(r), which is

the union of the points in the Pi comprising r. Because W solves LP (S, id, t), all the

inequalities in PLP (S, id, t) must hold using the vi(W̄) as assigned.

(⇒): Let W̄ be a solution to PLP (S, id, t). This means that each vi(W̄) represents

the probability of a region Pi ∈ P . For each Pi ∈ P pick an arbitrary point (xi, yi),

and let vxi,yi
(W) = vi(W̄) and let all other points (x, y) not equal to any (xi, yi) have

vx,y(W) = 0. Thus we concentrate the probability of region Pi in exactly one point in

Pi. Hence, because W̄ satisfies the inequalities in PLP (S, id, t) all the inequalities

in LP (S, id, t) must hold for W .

As illustrated in Section 4.1.2, the above theorem gives us the ability to check

consistency with a new set of linear constraints.

Corollary 1. A SPOT database S is consistent iff for all id, t, PLP (S, id, t) is solv-

able.

The number of variables in PLP (S, id, t) is m - the number of partitions. Each

Pi in the partitions can capture a large number of points and represents them by using

49

a single variable, and will never capture less than one unique point. Thus, m ≤ |L|.

As a consequence, the number of variables in PLP (S, id, t) is guaranteed to be less

than or equal to the number of variables in LP (S, id, t). The number of constraints is

the same for both PLP (S, id, t) and LP (S, id, t). Thus PLP (S, id, t) is guaranteed

to be no larger than LP (S, id, t), and will in many cases be substantially smaller.

Corollary 2. Suppose S is a SPOT database, id ∈ ID, t is a time-point, and r is a

region of L and [`, u] is any probability interval. Then:

1. (Compatibility)

(id, r, t[`, u]) b S iff there is a solution to PLP (S ∪ {(id, r, t, [`, u])}, id, t).

2. (Entailment)

S |= (id, r, t, [`, u]) iff

• ` ≤ minimize ΣPi∈P(r)vi subject to PLP (S ∪ {(id, r, t, [0, 1])}, id, t) and

• u ≥ maximize ΣPi∈P(r)vi subject to PLP (S ∪ {(id, r, t, [0, 1])}, id, t).

The above result provides an immediate algorithm for checking entailment and

satisfaction. The running time is polynomial in the size of PLP (S, id, t), which con-

sists of at most m variables and |S| + 1 constraints (without counting the constraints

requiring that all variables are non-negative). In contrast, the results in [40] use the lin-

ear program LP (S, id, t), which contains |L| variables and exactly the same number

of constraints. As m ≤ |L|, the results hold promise that the algorithm derived from

the preceding theorem and the above corollary will be more efficient - for consistency

checking, as well as both cautious and optimistic entailment - than the algorithms

proposed in [40]. This intuition is verified experimentally in Section 4.1.4.

50

Constructing the Partition

For rectangles r1, . . . , rk, we compute a partition consisting of up to min(|L|, 2k)

possible regions. This is done by a straightforward binary space partitioning (BSP)

approach.

Our BSP is a tree data structure where each node contains three fields:

1. node.rectangle: the rectangle labeling the node.

2. node.in: the child node for rectangles that intersect the node’s region.

3. node.out: the child node for rectangles that intersect the node’s region’s com-

plement.

When inserting a rectangle r into this BSP, recursively visit nodes through a visit

operation. When visiting node N , check if N.reg ∩ r is non-empty. If so, visit N.in.

Also check if r ∩ N.reg is non-empty, i.e. does r intersect N.reg’s complement? If

so, visit N.out. It may therefore be the case that r gets inserted into both subtrees of

N . If the visited node is NIL, create a new node to fill that spot. The complexity of

the insertion procedure is linear in the number of nodes in the tree, as every node in

the tree may be visited if r covers every region in the tree plus some space not in any

region in the tree.

Example 15. In Figure 4.2 we see a BSP that may be constructed for Phone3 from

Figre 3.1 (page 32). Each of the leaves of the BSP will correspond to a variable in

PLP (Sexm, Phone3, 0).

Note that the BSP is used to find a partition P which, in turn, is used to build the

set PLP (S, id, t) of partitioned linear constraints described in the preceding section.

51

Figure 4.2: An example BSP for Phone3 at time 0.

4.1.3 Atom Clustering

In this section, I develop a set of theoretical results that can be used to divide a SPOT

database into independently solvable components in order to divide-and-conquer the

consistency checking problem. I do this by first defining r-equivalence between

SPOT DBs (intuitively this means that the restrictions one SPOT DB imposes on

a region r coincide exactly with the restrictions of the second SPOT DB for the same

region). I then present a theorem that r-equivalence can be used to prune SPOT atoms

in S that are irrelevant to the region r. An e-atom is a special atom that entails all re-

gions mentioned in S id,t minimally. I then define the notion of clusters and provide

an algorithm to check consistency using clusters - the algorithm is proven correct.

Suppose we consider a region r. r is not necessarily convex or closed, but is a

subset of L. For an interpretation I , we let Ir be I with a range bounded to r. That is,

Ir : ID × T × r → [0, 1] and Ir(id, t, L) = I(id, t, L).

Definition 19 (r-Equivalence). For SPOT databases S, T and region r, we have

S r≡T iff {Ir | I |= S} = {Jr | J |= T }.

In other words, two SPOT databases S and T are r-equivalent iff for every in-

52

terpretation I that satisfies S, there is an interpretation J that satisfies T where J is

identical to I for region r and vice versa.

Example 16. Imagine two disjoint rectangles r1 and r2 that cover space (r1∪r2 = L).

S1 = {(id, r1, 1, [0.5, 0.5])} is r′1-equivalent to S2 = {(id, r2, 1, [0.5, 0.7])} for any

strict subset r′1 of r1 (r′1 (r1). The probability bounds for any strict subset of r1 are

[0, 0.5] in S1, which are the same bounds as are allowed for any such region by S2.

r-equivalence can informally be used as follows. Suppose r is a region specified

in a query to a SPOT database S. We would like to prune away all SPOT atoms in S

that are not relevant to the region r, and focus on the portion T of S that is relevant.

By focusing on a much smaller T , we hope to generate a smaller linear program. The

following theorem tells us that we can use this intuition.

Theorem 2. Suppose S and T are SPOT databases such that S
q
≡T w.r.t. a region q.

Let f be any linear objective function over the variables vp for p ∈ q. Let id ∈ ID

and t be a time-point. Then the minimization/maximization of f w.r.t. LC(S, id, t)

equals the minimization/maximization of f w.r.t. LC(T , id, t).

Proof. By Theorem 1, every SPOT interpretation I that satisfies S corresponds to

a solution of LP (S, id, t) of the form vp = I(id, t, p) for all p ∈ L. Since S and

T are q-equivalent, there always exist (possibly distinct) interpretations assigning the

same values to p ∈ q satisfying S and T . Thus there always exist solutions to each

set of linear constraints that assign the same values to vp for p ∈ q as a solution to

the other set of linear constraints. Thus for any value of f given by a solution to one

set of linear constraints, there is a solution to the other set of linear constraints which

produces the same values for vp, p ∈ q.

53

The following result states that when S
q
≡T , entailment and consistency of atoms

involving region q are the same.

Corollary 3. Suppose S and T are SPOT databases such that S
q
≡T . Then, for any

SPOT -atom sa of the form (id, q, t, [`, u]):

1. S |= sa iff T |= sa.

2. sa b S iff sa b T .1

We are interested in taking a SPOT database S and dividing it up into several

smaller databases T1, . . . , Tk. By solving the smaller linear program for each of the

smaller Ti and combining the answers, we should be saving time over simply comput-

ing for S, as linear programming takes time polynomial in the product of the number

of constraints and number of variables in the linear program. To communicate infor-

mation from solving Ti, we will use a special kind of SPOT atom defined below.

Definition 20 (e-atom). Suppose S is a SPOT database, id ∈ ID and t is a timepoint.

The entailing SPOT atom for the union of the regions mentioned in S id,t with tightest

probability bounds (e-atom for short) is an expression of the form (id, R, t, [`, u])

where:

• R = ∪(id,r,t,[`,u])∈S r

• ` = minI|=S

(∑
p∈R I(id, p, t)

)
• u = maxI|=S

(∑
p∈R I(id, p, t)

)
Example 17. For instance, if we have SPOT database

S = {(id, r1, 1, [0.5, 0.6]), (id, r2, 1, [0.2, 0.4])}

1Recall that sa b S denotes that sa is compatible with S as specified in Definition 6 on page 34.

54

(where r1 and r2 are disjoint rectangular regions) there is e-atom (id, r1∪r2, 1, [0.7, 1])

that entails that same probability bounds for the region r1 ∪ r2 as were entailed by S.

Notice however that the SPOT atom (id, r1 ∪ r2, 1, [0.6, 1]) is not an e-atom despite

the fact that it is compatible with S: 0.6 is not a maximal lower bound.

Our goal is to find e-atoms for appropriate “clusters” of SPOT atoms in a SPOT

database.

Definition 21 (SPOT overlaps). We say that SPOT atom (id, r, t, [`, u]) overlaps

SPOT atom (id, r′, t, [`′, u′]) iff r ∩ r′ 6= ∅. We use the symbol 4 to denote the

“overlaps” relation and4? to denote the transitive closure of this relation.

It is easy to see that4? is an equivalence relation.

Definition 22 (Cluster). Suppose S is a SPOT database. A cluster w.r.t. S is any

4?-equivalence class of S.

Example 18. Considering the database in Figure 3.1, (Phone3, R4, 0, [0.8, 0.9]) and

(Phone3, R5, 0, [0.7, 0.9]) are in the same 4? equivalence class. However if there

were an atom (Phone3, R1, 0, [0.1, 0.1]), it would be in a different 4? equivalence

class.

The following theorem considers SPOT databases that refer to a single id and t.

It says that when we consider the set of all points in L not covered by any rectangle

mentioned in S, then we can find a SPOT database that is equivalent to S w.r.t. this

set of points. The method is simple: find the clusters of the SPOT database and then

find the e-atom for each cluster.

Theorem 3. Suppose S is a consistent SPOT database, id ∈ ID and t is a time

point. Let C1, ..., Ck be the clusters of S id,t. Let U =
⋃

(id,r,t,[`,u])∈S r. Suppose Ū is

55

Algorithm 1 Algorithm for computing the cluster associated with SPOT atom sa in

the database S id,t

Cluster Compute(sa,S id,t)
A = ∅
An = {sa}
while A 6= An do

A = An

An =

{
(id, r, t, [`, u]) ∈ S id,t

∣∣∣∣ (id, r′, t, [`′, u′]) ∈ A
∧ r ∩ r′ 6= ∅

}
end while
return A.

Algorithm 2 Algorithm for computing all clusters of S id,t.
Clusters(S id,t)

Clusters = ∅
while ∪C∈ClustersC 6= S id,t do

Take sa ∈ S id,t \ (∪C∈ClustersC)
Let Clusters = Clusters ∪ {Cluster Compute(sa,S id,t)}.

end while
return Clusters

non-empty and suppose ei is the e-atom for cluster Ci. Let T = {e1, . . . , ek}. Then S

is Ū -equivalent to T .

Proof. Clearly, if I |= S then I |= T , hence {IŪ} ⊆ {JŪ} in Definition 19. We

must also show that if J |= T then {JŪ} ⊆ {IŪ} for I |= S. Note that J |= T

does not necessarily mean that J |= S because S may be more precise in allocating

probabilities to regions. However, this does not matter as far as JŪ is concerned

because no explicit probability restriction is given for any part of Ū . So any such J ,

where J |= T may be modified on U to an I, where I |= S, without changing the

probability distribution on Ū . Hence {JŪ} ⊆ {IŪ}.

The above theorem can be applied to a SPOT database that references multiple

ids and ts by applying it to each (id, t) pair.

56

Moreover, clusters may allow us to further improve the efficiency of checking

if a SPOT database is consistent. Algorithm 3 checks the consistency of clusters

individually and then checks the sum of the lower and upper bounds of the e-atoms

for the clusters.

Algorithm 3 Checks the consistency of S using clusters.
Consistency Checking with Clusters(S)

for every id, t do
Compute clustering C1, ..., Cm of S id,t via Algorithm 2
for each Ci do

return false if Ci is not internally consistent.
Let ri be the union of the regions of all SPOT atoms in the associated Ci.
Compute `i as the maxI|=S

∑
p∈ri

I(id, t, p)
Compute ui as the minI|=S

∑
p∈ri

I(id, t, p)
Let ei = (id, ri, t, [`i, ui]) be the e-atom for Ci.

end for
return false if

∑m
i=1 `i > 1.

if L =
⋃

1≤i≤m ri then
return false if

∑m
i=1 ui < 1.

end if
end for
return true.

4.1.4 Experimental Results

We implemented all the point-based consistency checking algorithms and tested them.

This section describes the results of these tests. Our system runs on a PC machine

with a Xeon 3.4 GHz processor and RedHat/Linux operating system and consists of

approximately 3000 lines of Java-1.5 code (plus the QSOPT library for linear pro-

gramming [2] and the spatialindex2 library for R*-tree like structures).

2http://research.att.com/∼marioh/spatialindex/index.html

57

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300 350

m
s

size of one side of space (i.e. sqrt(area))

Time for consistency checking

BSP
naive

cluster[naive]
cluster[BSP]

Figure 4.3: 1st experiment: varying size of space with synthetic datasets and point-

based semantics.

 0

 5

 10

 15

 20

 25

 30

 35

 0 1000 2000 3000 4000 5000 6000

m
s

size of one side of space (i.e. sqrt(area))

Time for consistency checking

BSP
cluster[naive]

cluster[BSP]

Figure 4.4: Large size for space with synthetic datasets and point-based semantics.

58

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30 35 40

m
s

Covered area (%)

Time for consistency checking

BSP
cluster[naive]
cluster[BSP]

Figure 4.5: Time taken for consistency checking related to covered area with synthetic

datasets and point-based semantics.

We use randomly generated datasets in this experiment. Randomly generated

atoms have an average size of 10 × 10, a minimum size of 1 × 1 and a maximum

size of 20 × 20 (width and length are not related). The position of an atom is also

chosen randomly over L. Upper bounds are generated randomly between 0.5 and 1.0,

while lower bounds are chosen randomly between 0 and the previously chosen upper

bound. In the first consistency experiment (Figures 4.3, 4.4), we use 20 atoms and

vary the size of the space. In the other experiments (Figure 4.5), the number of atoms

increase with a space of 500× 500.

We use the name naive to refer to uses of the naive linear program based on

LP (Definition 16). We use the name BSP to refer to uses of the BSP-based linear

program PLC (Definition 18). We use cluster[naive] and cluster[BSP] to

refer to uses of the clustering technique in Algorithm 3 respectively using naive linear

constraints and constraints based on PLC to compute `i and ui

59

Fig. 4.3 shows that the naive algorithm for consistency checking takes an amount

of time that is super-linear with respect to the size of one side on the figure. All

methods developed in this paper take a very small amount of time compared to it (all

other curves hug the X-axis at this scale), except on a very small space.

In the case of very small spaces, Figure 4.3 shows that methods based on the BSP

clustering produces poor behavior. The reason is that in these cases, the BSP tree is

very deep, reducing dramatically the performance of this algorithm.

Fig. 4.4 shows that the behavior of all algorithms except for the naive one are

independent of the size of the space, even for very large spaces.

In order to explore this behavior, we conducted another set of experiments to de-

termine the behavior of these algorithms when varying the number of atoms from 0

to 1000 per (id, t) pair for a space size of 500 by 500, and measured the time used

depending on the percentage of area covered by the atoms. Fig. 4.5 shows clearly

that BSP without clustering rapidly worsens when the covered area increases because

this implies an increased overlap between the areas covered by the atoms in the BSP.

This graph also shows that the clustering technique limits the bad behavior for these

difficult cases.

4.1.5 Comments on Time-Point Consistency Checking

In this section I have described three methods for checking consistency of SPOT

databases under the time point semantics. The first method uses a naı̈ve linear pro-

gram lifted almost directly from the semantics itself. While the method runs in time

polynomial in the number of atoms, we will expect it to perform poorly due to its

dependence on the size of space L – a value that is sometimes quite large in practice.

The second method I detailed partitions L according to S id,t such that only those

60

points governed by exactly the same SPOT atoms are in the same partitions. By us-

ing variables representing partitions rather than variables representing points in space

for the linear programs, I was able to achieve substantially smaller linear programs.

Further, since there can be at most one partition per member of L, in the worst case

this partitioning scheme produces linear programs as large as the naı̈ve method.

The third method I describe partitions the database itself into semi-independent

subsets. By computing bounds for the subsets via linear programming and then com-

puting if those bounds are compatible globally, I hope to reduce the overall running

time by reducing the size of the linear programs. Linear programming is known to

run in time O(n3). Therefore, if we chop the linear program into k pieces, solve each

one of them and check that the solutions are compatible, we’ll have a running time of

O(k · (n
k
)3 + k3). This is the intuition behind the potential for clustering to provide

faster algorithms: it is a divide-and-conquer technique. Of note is the fact that clus-

tering can be used along with either naı̈ve consistency checking or BSP consistency

checking. It does not depend on a particular type of underlying linear program.

The techniques in this section were developed in [40, 38].

4.2 World-based Semantics

4.2.1 World-based Naı̈ve Linear Program

In this section, we start by observing that we can also check consistency of SPOT

database under the world-based semantics by solving a set of linear constraints. Recall

thatW is the set of worlds and IW is the set of probability distributions over worlds.

For each world w, let vw be a variable representing I(w).

61

Definition 23 (WLP constraints for a SPOT atom). For atom a = (id, r, t, [`, u]), let

WLP(a) be the set of inequalities:

1.
∑

w∈W vw = 1,

2. For all w ∈ W , 0 ≤ vw ≤ 1.

3.
∑

w∈W,w(id,t)=L

vw ≥ `,

4.
∑

w∈W,w(id,t)=L

vw ≤ u,

If S is a SPOT database, we set WLP(S) =
⋃

a∈S WLP(a).

To see how these constraints work, let I be a world-based interpretation defined

such that I(w) = vw for any solution to the constraints. The first and second con-

straints force any solution to be a proper probability distribution. The third forces

the sum of the probabilities of the worlds in which a given vehicle id is at location L

at time t to be at least ` and the fourth forces them to be at most u. The following

result give us connections between consistency of a SPOT theory, and the above set

of constraints.

Proposition 3. A SPOT theory S is consistent under the world-based semantics iff

WLP(S) is solvable.

Proof. Consider any solution to WLP(S) and create an interpretation I where I(w) =

vw. I satisfies S. Now consider any interpretation satisfying S. We can create a solu-

tion satisfying WLP(S) by assigning vw = I(w).

An obvious problem with the above result is that the size of the input to the linear

program for WLP(S) is on the order of |L||T |·|ID| × |S|. This is too large for the

62

above algorithms to tractably solve any reasonably sized problem. One may wonder

whether consistency checking for SPOT databases is NP-hard. It is not, as we will

shortly see.

4.2.2 Partial Path Probabilities

WLP(S) associates a variable in the linear program with each world. Instead, one

might associate a variable p[id, t, L, L′] denoting the probability that a vehicle with

ID id travels from L to L′ leaving at time t. We call this a path probability variable.

It is clear that as long as we only look at a bounded time horizon, the number of path

probability variables is polynomial with respect to the number of time points, the size

of L and the number of vehicles. We now reformulate WLP(S) in terms of these

variables so that the resulting set of constraints is polynomial in the size of the SPOT

database.

Definition 24 (Interpretation Compatibility). Given p[id, t, L, L′] defined for every

id, t, L, L′ and interpretation I , we say I is compatible with p iff

p[id, t, L, L′] =
∑

w(id,t)=L,w(id,t+1)=L′

I(w)

Theorem 4. Suppose θ is an assignment to all path probability variables. There is an

interpretation I compatible with θ iff p satisfies

1. For each t ∈ T, id ∈ ID,
∑

L∈L
∑

L′∈L pθ[id, t, L, L′] = 1.

2. For each t ∈ T, id ∈ ID,L, L′ ∈ L pθ[id, t, L, L′] ≥ 0.

3. For id ∈ ID and L, L′ ∈ L, ¬reachable(id, L, L′)→ ∀t, pθ[id, t, L, L′] = 0.

4. For each t, t + 1 ∈ T, id ∈ ID,L ∈ L,∑
L′∈L pθ[id, t, L′, L] =

∑
L′∈L pθ[id, t + 1, L, L′].

63

Proof. (⇐): Let θ be a solution satisfying the given constraints. To construct a satisfy-

ing interpretation I , let α[id, L] be the probability that id is at L at the first time point,

time 0. This can be computed from θ as follows: α[id, L] =
∑

L′∈L pθ[id, 0, L, L′].

Now define δ[id, t, L, L′] to be the probability of moving from L to L′ at time t, or:

δ[id, t, L, L′] =
pθ[id, t, L, L′]∑

L′′∈L pθ[id, t, L, L′′]

(when
∑

L′′∈L pθ[id, t, L, L′′] = 0, δ is defined to be 0 as well). We can now define I

for all w ∈ W as:

I(w) =
∏

id∈ID

α[id, w(id, 0)]
∏

t,t+1∈T

δ[id, t, w(id, t), w(id, t + 1)]

To show that I is a valid interpretation, it suffices to show that
∑

w∈W I(w) = 1.

We first define a bit of notation. Let L0, · · · , Lnt be a sequence of locations, and

let L(w, id) be the sequence of locations defined by w: w(id, t) = Lt, and letW(id)

be the set of all sequences of locations: W(id) = {L(w, id) |w ∈ S}. Now we have

the following algebra (explained below):

∑
w∈W

I(w) (4.4)

=
∑
w∈W

∏
id∈ID

α[id, w(id, 0)]
∏

t,t+1∈T

δ[id, t, w(id, t), w(id, t + 1)] (4.5)

=
∏

id∈ID

 ∑
L0,··· ,Lnt∈W(id)

α[id, L0]
∏

t,t+1∈T

δ[id, t, Lt, Lt+1]

 (4.6)

=
∏

id∈ID

 ∑
L0,··· ,Lnt∈L|T |

α[id, L0]
∏

t,t+1∈T

δ[id, t, Lt, Lt+1]

 (4.7)

64

=
∏

id∈ID

∑
L0∈L

∑
L1∈L

· · ·
∑

Lnt∈L

α[id, L0]
∏

t,t+1∈T

δ[id, t, Lt, Lt+1]

 (4.8)

=
∏

id∈ID

∑
L0∈L

α[id, L0]
∑
L1∈L

δ[id, 0, L0, L1] · · ·
∑

Lnt∈L

δ[id, nt, Lnt−1, Lnt]

 (4.9)

=
∏

id∈ID

1 = 1 (4.10)

Starting with equation 4.4, we first substitute in the defined meaning of I(w) to get

equation 4.5. From here, we rearrange the sum and product to accommodate summing

overW(id) rather thanW , leaving out the intermediate steps which convert w ∈ W

into a collection of sequences, one for each id, then recombines them in such a way

that the product is on the outside rather than the inside. This gives equation 4.6, which,

due to the constraint vid,t,L,L′ = 0 if ¬reachable(id, L, L′), can be transformed to

equation 4.7. By distributing the sum in equation 4.8, we can factor the terms in the

product, leaving us with 4.9. Since,
∑

L′∈L δ[id, t, L, L′] = 1 for any id, t and L, we

can substitute the rightmost sum with 1 continuously until all sums have been reduced

to 1, giving equation 4.10.

(⇒): Let I be an interpretation compatible with pθ. We first show that pθ satisfies the

third constraint. Consider L, L′, id such that ¬reachable(id, L, L′). pθ[id, t, L, L′] =∑
w(id,t)=L,w(id,t+1)=L′ I(w), but since there are no worlds w ∈ W for which w(id, t) =

L and w(id, t + 1) = L′ (because ¬rechable(id, L, L′)) this sum is 0.

To show that pθ satisfies the first constraint, pick id ∈ ID and t ∈ T . Consider∑
L∈L

∑
L′∈L pθ[id, t, L, L′]. Since we already know pθ satisfies the third constraint,

this is equal to
∑

L∈L
∑

L′∈L
∑

w(id,t)=L,w(id,t+1)=L′ I(w) which is 1.

That pθ satisfies the second constraint is trivial.

That pθ satisfies the fourth constraint can be seen from the following for any given

65

id, t, L:

∑
L′∈L

pθ[id, t, L′, L] =
∑
L′inL

 ∑
w(id,t)=L,w(id,t+1)=L′

I(w)


=

 ∑
w(id,t)=L

I(w)


=
∑
L′∈L

 ∑
w(id,t−1)=L′,w(id,t)=L′

I(w)


=
∑
L′∈L

pθ[id, t− 1, L′, L]

The above theorem provides us the ammunition needed to associate a new set of

linear constraints with a SPOT database S. Our variables for this linear program will

correspond to each path probability: vid,t,L,L′ .

Definition 25 (PWLP). For SPOT database S, PWLP(S) is the associated set

of partial path based linear equations. Without loss of generality we assume the

maximum time point T to be larger than any time point mentioned in S.

1. Let PWLP(·) be the constraints obtained by replacing pθ[id, t, L, L′] with

vid,t,L,L′ in all constraints of Theorem 4.

2. For SPOT atom a = (id, r, t, [`, u]), let PWLP(a) contain

•
∑

L∈r

∑
L′∈L vid,t,L,L′ ≥ `

•
∑

L∈r

∑
L′∈L vid,t,L,L′ ≤ u

For SPOT database S, PWLP(S) = PWLP(·) ∪
⋃

a∈S PWLP(a).

66

The following proposition shows that solveability of PWLP(S) determines con-

sistency of S. The importance of this theorem will lie in the fact that PWLP(S),

apart from determining consistency under world-based semantics, has size polyno-

mial in S.

Proposition 4. For SPOT database S PWLP(S) has a solution iff S is consistent.

Further, consistency is determined in time polynomial in the size of S.

Proof. By theorem 4, we know there is an interpretation I compatible with any so-

lution to PWLP(S), so all we need to do is show that there is an interpretation

satisfying S iff there is a solution to PWLP(S).

(⇐): Suppose we have interpretation I satisfying S. Construct solution to PWLP(S)

pθ as follows:

pθ[id, t, L, L′] =
∑

w(id,t)=L,w(id,t+1)=L′

I(w).

Since I satisfies S, we know that for all sa = (id, r, t, [`, u]) ∈ S,

∑
w(id,t)∈r

I(w) =
∑
L∈L

 ∑
w(id,t)∈r,w(id,t−1)=L

I(w)

 (4.11)

=
∑
L∈L

 ∑
w(id,t)∈r,w(id,t−1)=L

∏
id′∈ID

α[id′, w(id, 0)] (4.12)

×
∏

t,t+1∈T

δ[id, t, w(id′, t), w(id′, t + 1)]

)
(4.13)

67

By applying the same simplification techniques as above, we have:

=
∑
L∈L

(∑
L0∈L

α[id, L0]
∑
L1∈L

δ[id, 0, L0, L1] · · · (4.14)(
δ[id, t− 2, Lt−2, L]

∑
Lt∈r

δ[id, t− 1, L, Lt]

)
(4.15)

· · ·
∑

Lnt∈L

δ[id, nt − 1, Lnt−1, Lnt]

× ∏
id′∈ID\{id}

γ (4.16)

Where
∏

id′∈ID\{id} γ is like equation 4.6, and we can therefore apply the same rea-

soning as leads to equation 4.10 to get that
∏

id′∈ID\{id} γ = 1. Thus we have:

=
∑
L∈L

∑
L0∈L

α[id, L0]
∑
L1∈L

δ[id, 0, L0, L1] · · ·
∑

Lt−2∈L

δ[id, t− 3, Lt−3, Lt−2] (4.17)

(
δ[id, t− 2, Lt−2, L]

∑
Lt∈r

δ[id, t− 1, L, Lt]

))
(4.18)

We can then re-combine and reverse the simplification.

=
∑
L∈L

 ∑
L0,··· ,Lt−2∈Lt−1

α[id, L0]
∏

0≤t′<t−2

δ[id, t′, Lt′ , Lt′+1] (4.19)

(
δ[id, t− 2, Lt−2, L]

∑
Lt∈r

δ[id, t− 1, L, Lt]

))
(4.20)

=
∑
L∈L

 ∑
Lt−2∈L

∑
Lt−3∈L

· · ·
∑
L0∈L

α[id, L0]
∏

0≤t′<t−2

δ[id, t′, Lt′ , Lt′+1] (4.21)

(
δ[id, t− 2, Lt−2, L]

∑
Lt∈r

δ[id, t− 1, L, Lt]

))
(4.22)

=
∑
L∈L

(∑
Lt∈r

δ[id, t− 1, L, Lt]

)
(4.23) ∑

Lt−2∈L

δ[id, t− 2, Lt−2, L]
∑

Lt−3∈L

δ[id, t− 3, Lt−3, Lt−2] (4.24)

· · ·
∑
L1∈L

δ[id, 1, L1, L2]
∑
L0∈L

δ[id, 0, L0, L1]α[id, L0]

)
(4.25)

68

Now we substitute back for δ and α and are able to simplify out each summation

(starting with the last).

=
∑
L∈L

(∑
Lt∈r

δ[id, t− 1, L, Lt]

)
(4.26) ∑

Lt−2∈L

δ[id, t− 2, Lt−2, L]
∑

Lt−3∈L

δ[id, t− 3, Lt−3, Lt−2] (4.27)

· · ·
∑
L1∈L

δ[id, 1, L1, L2]
∑
L0∈L

pθ[id, 0, L0, L1]∑
L′′∈L pθ[id, 0, L0, L′′]

∑
L′∈L

pθ[id, 0, L0, L]

)
(4.28)

=
∑
L∈L

(∑
Lt∈r

δ[id, t− 1, L, Lt]

)
(4.29) ∑

Lt−2∈L

δ[id, t− 2, Lt−2, L]
∑

Lt−3∈L

δ[id, t− 3, Lt−3, Lt−2] (4.30)

· · ·
∑
L1∈L

δ[id, 1, L1, L2]
∑
L0∈L

vid,0,L0,L1

)
(4.31)

=
∑
L∈L

(∑
Lt∈r

δ[id, t− 1, L, Lt]

)
(4.32) ∑

Lt−2∈L

δ[id, t− 2, Lt−2, L]
∑

Lt−3∈L

δ[id, t− 3, Lt−3, Lt−2] (4.33)

· · ·
∑
L1∈L

vid,1,L1,L2∑
L′′∈L vid,1,L1,L′′

∑
L0∈L

vid,1,L1,L0

)
(4.34)

=
∑
L∈L

(∑
Lt∈r

δ[id, t− 1, L, Lt]

) ∑
Lt−2∈L

δ[id, t− 2, Lt−2, L] (4.35)

∑
Lt−3∈L

δ[id, t− 3, Lt−3, Lt−2] · · ·
∑
L1∈L

pθ[id, 1, L1, L2]

 (4.36)

69

=
∑
L∈L

(∑
Lt∈r

δ[id, t− 1, L, Lt]

) ∑
Lt−2∈L

δ[id, t− 2, Lt−2, L] (4.37)

∑
Lt−3∈L

δ[id, t− 3, Lt−3, Lt−2] · · ·
∑
L1∈L

pθ[id, 2, L2, L1]

 (4.38)

Continuing in this fashion, we can keep eliminating summations until we get:∑
w∈W

I(w) =
∑
L∈L

∑
Lt∈r

pθ[id, t− 1, L, Lt] (4.39)

Thus pθ satisfies all constraints pertaining to SPOT atoms. That pθ satisfies the

other constraints follows from Theorem 4.

(⇐): Suppose we have a solution θ to PWLP(S) defining pθ. We know, by theo-

rem 4, that there exists an interpretation I compatible with pθ. To show that I satsifies

S, we need only show that for any (id, r, t, [`, u]) ∈ S, that I satisfies (id, r, t, [`, u]).

This follows by following the reasoning for equations 4.13 through 4.39 in reverse

order.

PWLP’s Size

PWLP(S) is significantly smaller than that of WLP(S) because it only contains

|ID| · |T | · |L|2 variables and

|T | · |ID|+ |T | · |L|2 + |T | · |ID| · |L|+ |S|

equations. The size of this linear program is therefore bounded by O(|ID|2 · |T |2 ·

|L|4 × |S|). In contrast, WLP(S) had a size of |L||T |·|ID| × |G|. Because linear

programs are solvable in polynomial time, this makes the determination of consistency

under the world-based semantics achievable in polynomial time.

Furthermore, it turns out that there are alternate ways of expressing PWLP(S)

which result in more easily solvable linear programs.

70

Variable Pruning

The first simplification we can make to PWLP(G) or any set of linear equations

comes when we know vid,t,L,L′ to be zero due to the reachability definition. In such

cases, we can safely eliminate vid,t,L,L′ from PWLP(G).

4.2.3 An Alternative Linear Program: AWLP

Many SPOT databases only mention some time points from the set of all time points

T . This can be leveraged to create a smaller linear program that does not reference the

unmentioned time points. In this linear program we only use the time points t1, · · · , tn

mentioned in the databases. The meaning of the variable v̄ti,L,L′ then changes to the

probability that object id is at L at time point ti and at L′ at time point ti+1. In this

way, we no longer need to include any v̄t,L,L′ unless ti = t. This results in a smaller

linear program.

Definition 26 (Alternate Linear Program). Let S be a set of SPOT atoms and id be

a vehicle. Let t1 < t2 · · · < tn be all the time points such that for every SPOT atom

(id, r, t, [`, u]) ∈ S there is ti = t. Without loss of generality, we can assume tn is not

the maximum time point (i.e. there is t′ ∈ T such that t′ > tn which we call tn+1).

AWLP(S, id) is the following alternate set of linear equations:

1. For each a = (id, r, ti, [`, u]) ∈ S:

(a)
∑

L∈r

∑
L′∈L v̄t,L,L′ ≥ ` ∈ AWLP(S, id)

(b)
∑

L∈r

∑
L′∈L v̄t,L,L′ ≤ u ∈ AWLP(S, id)

2. For each t1 ≤ ti ≤ tn,
∑

L∈L
∑

L′∈L v̄ti,L,L′ = 1 ∈ AWLP(S, id)

71

3. For each t1 ≤ ti ≤ tn, and for each L,L’ if ¬reachable(ti+1 − ti, L, L′) then

vti,L,L′ = 0 ∈ AWLP(S, id).

4. For each L,L’ if ¬reachable(id, L, L′) then v̄tn,L,L′ = 0 ∈ AWLP(S, id).

5. For each t1 < ti ≤ tn, for each L we have
∑

L′∈L v̄ti−1,L′,L −
∑

L′∈L v̄ti,L,L′ =

0 ∈ AWLP(S, id)

Theorem 5. PWLP(S) is solvable iff AWLP(S, id) is solvable for every id.

Proof. Because of its similarity to earlier proofs, this proof is presented as a sketch.

(⇒): Let θ be a solution to PWLP(S) and let Ī be a world-based interpretation

compatible with the solution θ. Consider AWLP(S, id) for some id ∈ ID. Construct

a solution θ̄ to AWLP(S, id) as: vti,L,L′ θ̄ =
∑

w(id,ti)=L∧w(id,ti+1)=L′ Ī(w). The rest

follows from algebra similar to that in the proofs of Theorem 4 and Proposition 4.

(⇐): Let θid be a solution to AWLP(S, id). Construct a solution θ to PWLP(S)

in the following manner: let interpretation I be compatible with all θid satisfying

the following constraints for all id, ti, L, L′:
∑

w(id,ti)=L,w(id,ti+1=L′ I(w) = vti,L,L′θid.

The constraints in the linear program guarantee the existence of such an I (this again

can be established via algebra similar to that in the proof of Theorem 4). Further,

the existence of this interpretation implies a compatible assignment θ to the variables

vid,t,L,L′ (due to Theorem 4).

This theorem provides us with added efficiency in two ways. First, it has sig-

nificantly fewer variables. Second, it divides the linear program into |ID| linear

programs, one for each vehicle. When the entire linear program is considered, the

running time is O(r3), where r is the number of variables. But, if we consider each

vehicle individually, the running time is proportional to |ID| ·O((r/|ID|)3), giving a

72

speedup of O(|ID|2). We can further exploit this trick of dividing the linear program

into smaller sub-problems by considering complete points in a SPOT database.

A complete time point for a vehicle is where there is only one potential probability

distribution over the locations in L for a given object id at a given time t.

Definition 27 (Complete Time Point). SPOT database S id,t is complete if there is a

subset S ′ ⊂ S id,t, such that

• For all (id, r1, t, [`1, u1]), (id, r2, t, [`2, u2]) ∈ S ′, r1 is disjoint from r2.

• For all (id, r, t, [`, u]) ∈ S ′, r = {L} for some L ∈ L.

•
∑

(id,r,t,[`,u])∈S′ ` = 1.

Proposition 5 (Complete Time Point). Given a SPOT database S, if a time point

t ∈ T is complete for a vehicle id ∈ ID then there are values α[L] for each L ∈ L

such that:

∀I ∈ I(S),
∑

w(id,t)=L

I1(w) = α[L]

Example 19. Let space contain the points L1 and L2, and let the reachability predi-

cate always be true. Consider K = {(id, {L1}, 0, [1, 1]), (id, {L2}, 1, [0.4, 0.5])}. For

id, time point 0 is complete because all interpretations must assign a probability of 1

to id being at L1 at time 0. However, time point 1 is not complete, as the probability

of being at L2 could be anything between 0.4 and 0.5.

Completeness ends up being very useful for dividing the database in half and deal-

ing with each half independently. Consider the following theorem. In this theorem

we use the notation S id,t1,t2 to represent ∪t1≤t≤t2S id,t.

Theorem 6. For SPOT database S and vehicle id complete for id at time t, let tn be

the max time point referenced by the database,

73

1. AWLP(S, id) is solvable iff AWLP(S id,0,t, id) and AWLP(S id,t,tn , id) are

solvable.

2. The solution to AWLP(S id,0,t, id) and AWLP(S id,t,tn , id) gives a solution for

AWLP(S, id).

Proof. First we show (2), which will also suffice for showing (⇒) of (1).

(2): Let vt,L,L′ be the variables for both AWLP(S id,0,t∗ , id) and AWLP(S id,t∗,tn).

The only constraints in AWLP(S, id) not in AWLP(S id,0,t∗ , id)∪AWLP(S id,0,t∗ , id)

are the constraints for movement through t∗, for all L∑
L′∈L

vt∗,L′,L =
∑
L′∈L

vt′,L,L′ (4.40)

(where t′ is the next time point after t∗ containing a SPOT atom). However, since S id

is complete at time t∗, there are values α[L] such that for all L ∈ L, the probability of

being at L at time t∗ is α[L]. Thus both the right hand side and the left hand side of

equation 4.40 are α[L] and therefore equal.

(1)⇐: A solution vt,L,L′ to AWLP(S, id) is also a solution to both AWLP(S id,0,t∗ , id)

and AWLP(S id,t∗,tn), since AWLP(S id,0,t∗ , id)∪AWLP(S id,t∗,tn) ⊂ AWLP(S, id).

AWLP Size

Now, instead of solving WLP, a massive linear program, we are solving many

smaller AWLP(S id
t1−t2

, id).

For vehicle id in theory S with n mentioned time points of which every cth

one is complete, and each two consecutive time points, t1 and t2, we must solve

AWLP(S id
t1−t2

, id). This will happen in O(n3) where n is the number of variables.

The number of variables is bounded by (c + 1) · |L|2. Thus computing consistency

74

of S using AWLP will happen in time |ID| × n/c × O(((c + 1) · |L|2)3). There is

an interesting phenomenon happening here: the running time of our algorithms can

decrease as the size of the theory grows – so long as more complete time points are

added.

4.2.4 Experimental Results

Experiments were performed on a prototype implementation testing the feasibility of

these linear programs. The implementation was in MatLab and run on a Pentium

4 (3.80GHz) processor running under Windows XP and with 2GB of memory. Our

system implements all algorithms described in this paper for both complete and in-

complete theories.

We ran several experiments to test the performance of these algorithms and iden-

tify the important factors that affect the performance other than the obvious ones such

as number of atoms and time points referenced. We performed our experiments on

theories that refer to a single vehicle using AWLP type linear programs.

The maximum number of SPOT atoms per time point in a complete theory plays

an important role in checking consistency. This number gives a maximum number

of path probabilities for each time point. Another important factor we considered

was the maximum speed of the vehicle because this affects the maximum number of

reachable locations and hence the total number of path probability variables in our

final linear program. To test the effect of speed and atom density, we created random

theories in a 50 × 50 grid. We varied the maximum number of atoms per time point

from 2 to 5, with maximum speeds of 1 and 8. The number of distinct time points in

the theory varied from 10 to 100. We derived the speed values as follows: suppose we

use the 50 × 50 grid to represent the USA and one time point equals one hour. Then

75

Figure 4.6: Time to check consistency of complete theories with 2 to 5 SPOT atoms

per time point when maximum speed is 1 and 8.

a speed of 1 will coincide with that of a car (70 mph) while a speed of 8 will coincide

with that of a plane (500 mph).

Consistency check time for complete theories: Figure 4.6 shows the time taken

for consistency checking for 8 kinds of complete theories. The data points represent

the average over 50 randomly generated theories. As seen in the figure the effect

of increasing number of SPOT atoms per time point has a greater on impact on

performance than increasing maximum speed. The reader can see that it only takes a

few seconds to reason about 100 time points.

Consistency check time for incomplete theories: For incomplete theories, the size

of the grid has a great impact on the time required to check consistency. We say a

time point t is incomplete iff it is not complete. We investigated how the structure of

the theory affects the consistency checking algorithm. Let Incmax be the maximal

number of incomplete time points followed by a complete time point in a theory. For

this experiment we created random theories in a 10 by 10 grid with maximum speed

1, maximum number of SPOT atoms per complete time point ranging from 2 to 4,

Incmax = 1 or Incmax = 2 and the number of referenced time points ranging from

76

Figure 4.7: Time to check consistency of incomplete theories with 2, 3, and 4 SPOT

atoms per time point, a maximum speed of 1 or 8, and Incmax varying from 1 to 2

(displayed as k in the graph’s key).

10 to 100. Furthermore every complete time point is followed by Incmax incomplete

time points in the theory. So when Incmax = 1 and the total number of time points

in the theory is 50, there are 25 incomplete time points interleaved with 25 complete

points. Figure 4.7 shows the time taken to check consistency for 6 kinds of randomly

generated theories. The data points represent the average of 20 runs — note that

the y-axis uses a logarithmic scale. As seen in the figure, the effect of increasing the

number of SPOT atoms per time point has a similar effect on the on the performance.

However, increasing Incmax affects the running time dramatically.

Complete-queries. Figure 4.8 shows the time required to check consistency of a ran-

dom atom against complete databases. Temporal density of a theory is the ratio of

time points referenced in the theory and the total number of time points. For these

experiments we set the grid size to 25 by 25 and maximum time points to 500 and

number of SPOT atoms per time point to 3. For example when the theory has a tem-

poral density of 1, it has a total of 1500 time points. The data points in the graph are an

average of 100 runs. The reader can easily see that the time taken drops exponentially

77

Figure 4.8: Time to answer in-queries w.r.t. complete theories of varying temporal

density.

with an increase in the density. Since a rise in density corresponds to an increase in

theory size, these results are particularly interesting yet consistent with Theorem 6. It

shows our algorithms’ running time decreases as the number of atoms in the database

increases. This is sensible: when one is working with probabilistic data, one should

sometimes find it easier to answer queries as the amount of data increases, because

fewer possible satisfying interpretations for the data need be considered.

4.2.5 Comments on World-Based Consistency Checking

World-based consistency checking is understandably less efficient than point-based

consistency checking – world-based consistency checking accounts for reachability

constraints while point-based consistency checking does not. Given this, it is surpris-

ing that we were able to find a polynomial time consistency checking algorithm. The

existence of such a linear programing based algorithm, and the progressively more

efficient variations on the linear program: from LP to PWLP to AWLP bring the

use of these sorts of consistency checking algorithms into the realm of the potentially

78

practical. One can easily imagine a large database being checked periodically (nightly

or weekly) for consistency. Later, in Chapter 5, I will introduce some methods which

can even automatically repair these databases when they are found inconsistent.

A unique quality of these algorithms is the relationship between running time and

input size. With the right kind of input, AWLP actually decreases in running time as

the size of the database increases (see Figure 4.8). While for traditional database the-

ory this is counter-intuitive, it makes sense under probabilistic considerations. More

probabilistic data (of the right kind) should rule out possibilities, making it unneces-

sary for the algorithms to check as many different things, and resulting in a runtime

speedup.

The key to the efficiency of these algorithms is the re-formulation of the problem

from a naı̈ve one which assigns a variable to each world to one which assigns a prob-

ability to an object’s moving from one location to another. For the purposes of SPOT

databases, this section shows the two approaches to be equivalent.

79

Chapter 5

SPOT Database Revision

5.1 Introduction and Motivation

In deployment, we expect SPOT databases to seamlessly handle often changing and

sometimes inconsistent data. They will need to properly integrate newly created prob-

abilistic spatio-temporal data with existing information, even when the new informa-

tion creates an inconsistency. Consider the following example:

Example 20. Imagine a spatio-temporal database specifying the locations of tagged

wildlife. With some regularity, a tagged animal will be spotted in a given region at

a given time. These sightings are generally not guaranteed – people sometimes see

things that are not there – so this information is properly characterized as probabilis-

tic spatio-temporal.

The GPS signal from the tag goes in and out and is subject to error. The research

team receives one signal at noon saying the animal is in a region R1 covered in forest,

producing the SPOT atom (animal, R1, noon, [0.7, 1.0]). However, several members

of another team spot the same animal at noon in the region R2, which is over 10 miles

away, producing the atom (animal, R2, noon, [1.0, 1.0]). When the other team adds

80

their data to the database, it will be inconsistent with the GPS-derived data. With an

automatic database revision procedure, this inconsistency can be repaired seamlessly

as the database is updated, either by throwing the data (animal, R1, noon, [0.7, 1.0])

out or by some other means.

The algorithms in this chapter will show how to integrate the new information

with past information even when the new information is inconsistent with the previous

knowledge.

We justify our algorithms’ correctness as proper revisions by appealing to the

AGM axioms[1]. These axioms are recognized to be a minimal standard which must

be met for any type of revision of a knowledge base.

5.2 AGM Axioms

We now present AGM-style postulates [1] for revising SPOT databases. A revision

operator u is a binary function that takes a SPOT database and a SPOT atom as

input, and produces a SPOT database as output. u is required to satisfy the AGM

axioms 1 expressed in our framework. In the following, S is a SPOT database and a

is a SPOT atom.

(A1) S u a is SPOT database.

(A2) S u a |= a.

(A3) (S ∪ {a}) |= (S u a).

(A4) If a is consistent with S then (S u a) |= (S ∪ {a}).

1As SPOT databases are atomic, we do not discuss AGM axioms involving negation and disjunc-

tion.

81

(A5) if S u a is inconsistent then {a} is inconsistent.

(A6) If a ≡ a′ then S u a ≡ S u a′.

Axiom (A2) says that the revised knowledge (a) must be part of the updated

knowledge base. (A3) and (A4) together tell us that if S ∪ {a} is consistent then

S u sa is logically equivalent to S ∪ {sa}. (A5) says that no unwarranted incon-

sistency will be introduced by the revision. (A6) says that the syntax of the new

information is irrelevant to the update.

5.3 Consistency Checking

Since much of the inconsistency in real-world data is a direct result of objects’ avail-

able movement, we consider only world-based semantics (Section 3.4 on page 36) for

belief revision.

We will assume consistency checking is done via the linear program PWLP(·)

(definition 25 on page 65). While potentially faster linear programming methods exist

with these semantics, (for instance, AWLP(·) of definition 26), we will eventually

be modifying the linear program and the modifications are most clear when made to

PWLP(·). Once understood, these modifications can be transfered to AWLP(·).

We note that all the mentioned methods run in polynomial time so long as time

and space are bounded a priori.

Throughout the rest of this chapter, we assume that S is consistent. Inconsistencies

may arise when we insert a PST-atom into S.

82

5.4 Some belief revision strategies

The reader can easily see that the revision of a SPOT database S with a SPOT atom

a may be handled in many different ways when S ∪ {a} is inconsistent. We could

change the t part of a SPOT atom, or the r part of a SPOT atom, or the [`, u] part of a

PST-atom, or the id part of the SPOT atom. We could also study maximal consistent

subsets as in [5, 24].

5.5 Maximal Consistent Subsets

We can define a revision operator um based on maximal consistent subsets as follows.

Definition 28. Suppose S is a SPOT database and a is a SPOT atom. Then S ′ ∪ {a}

accomplishes the revision of S by adding a via the subset strategy iff S ′ is a subset of

S and S ′ ∪ {a} is consistent.

S ′ ∪ {atm} optimally accomplishes the revision of S by adding atm via the max-

subset strategy iff it accomplishes the revision of S by adding a via the subset strategy

and there is no other S ′′ ∪ {a} that accomplishes the same revision such that S ′ (S ′′.

We use the notation S um a to denote a S ′ ∪ {a} that optimally accomplishes the

revision of S by adding a via the max-subset strategy. 2

We verify that um satisfies the AGM axioms.

Proposition 6. Any function um that optimally accomplishes the revision via the max-

subset strategy satisfies the AGM axioms.

2 There is some non-determinism in this definition. A strict total ordering can be induced on all

S ′ satisfying the above definition and the minimal element of the strict total ordering can be picked

in order to induce determinism. Throughout the rest of this chapter, we assume such a strict total

ordering called OT is available.

83

Proof. Axioms (A1) to (A4) are straightforward. Axiom (A5) is straightforward be-

cause S u a = S ′ ∪ a, where S ′ is the largest subset of S consistent with a. The only

way for S u a to be inconsistent is that S ′ is empty and a is inconsistent by itself, and

if a is inconsistent by itself, then no number of removals from S will make S um a

consistent. Axiom (A6) is verified because of the strict total ordering will always

chose the same database when multiple are available.

Unfortunately, computing um is intractable.

Theorem 7. Determining if S ′ ∪ {a} optimally accomplishes the revision of S with

a via the max-subset strategy is coNP-complete.

Proof. Membership: Suppose S ′ is not an optimal max-subset revision of S w.r.t.

a. We know an optimal max-subset revision exists (in the extreme case, ∅ can be a

max-subset revision), so we can assume S ′′ is that revision. That S ′′ is a max-subset

revision can be verified in polynomial time: to establish that it is in fact maximal,

check the consistency of S ′′ with each atom from S \ S ′′. If all are inconsistent, the

S ′′ is a maximal subset. This is a polynomial time operation due to the polynomial

time consistency checking algorithm and the fact that we only check consistency at

most |S| times. Since we suppose that computing the relationship between S ′′ and

S ′ via OT can be done in polynomial time, that S ′′ is better than S ′ according to

OT is also done in polynomial times. Thus we can verify the counter-example S ′′ in

polynomial time.

For hardness part of this proof, we use the coNP-complete problem minimum

subset sum:

84

Definition 29 (Minimum Subset Sum). For multiset S = {s1, . . . , sn} constant c, and

S ′ ⊆ S, (S, c, S ′) is in minimum subset sum iff
∑

s∈S′ s = c and there is no S ′′ ⊂ S

s.t. |S ′′| < |S ′| and
∑

s∈S′′ s = c.

We now prove the above problem is coNP-complete. Proof that Minimum Sub-

set Sum is coNP-complete

Membership: If (S, c, S ′) is not in minimum subset sum then there is a witness S ′′ ⊆

S such that
∑

s∈S′′ s = c and |S ′′| < |S ′|.

Hardness: Consider subset sum problem (V = {v1, . . . , vn}, c) (where V can be a

multiset). Deciding if there is V ′ ⊂ V such that
∑

v∈V ′ v = c is NP-complete. We

construct a minimum subset sum instance: Let m be such that gcd(c, n+m) = 1. Let

si = (n + m) · vi for 1 ≤ i ≤ n, and si = c for n < i ≤ n + (n + m) and S be the

multiset {si|1 ≤ i ≤ n + (n + m)}. Let S ′ be the multiset {si|n < i ≤ n + (n + m)}

(S ′ contains n + m copies of c). Notice that S ′ ⊂ S and
∑

s∈S′ s = c · (n + m).

(S, c · (n + m), S ′) is a member of minimum subset sum iff (V, c) is not a member of

subset sum.

(⇒) Consider (S, c · (n + m), S ′) a member of minimum subset sum, and suppose

(V, c) is a member of subset sum to derive a contradiction. Since (V, c) is a member

of subset sum, there is V ′ ⊆ V s.t. |V | ≤ n and
∑

v∈V ′ v = c. Construct S ′′ =

{v · (n + m)|v ∈ V ′}. S ′′ is a counter-example for (S, c · (n + m), S ′) being in subset

sum:
∑

s∈S′′ s =
∑

v∈V ′ v · (n + m) = c · (n + m) and |S ′′| = |V ′| ≤ n < |S ′|.

Contradiction.

(⇐) Consider if (V, c) is not a member of subset sum. Suppose without loss of gener-

ality that c > 1. Suppose (S, c · (n+m), S ′) is not a member of minimum subset sum

to derive a contradiction. Thus there is S ′′ ⊂ S such that
∑

s∈S′′ s = c · (n + m) and

|S ′′| < |S ′|. S ′′ can be divided into two multi-sets: S ′′
1 = {vi · (n + m)|i ≤ n} and

85

S ′′
2 = {si|i > n} such that S ′′ = S ′′

1 ∪ S ′′
2 . Notice that S ′′

2 is non-empty, otherwise we

have, V ′ = {vi|vi · (n + m) ∈ S ′′
1} such that V ′ ⊂ V and

∑
v∈V ′ v = c, contradicting

that (V, c) is not a member of subset sum. With the following algebra, we derive the

contradiction to the original supposition that (S, c · (n + m), S ′) is not a member of

minimum subset sum:

c · (n + m) =
∑

si∈S′′

si =
∑

si∈S′′
1

si +
∑

si∈S′′
2

si =
∑

si∈S′′
1

vi · (n + m) +
∑

si∈S′′
2

c

⇒ c · (n + m)− (
∑

si∈S′′
1

vi) · (n + m) = c · |S ′′
2 |

Since the left hand side is divisible by n + m, c · (|S ′′
2 |) is divisible by n + m. Since

m was chosen such that gcd(n + m, c) = 1, this further implies that |S ′′
2 | is divisible

by n + m. However, since S ′′
1 is non-empty, |S ′′

2 | < n + m, and we therefore have

that there is a number smaller than n + m which is non-zero and divisible by n + m.

Contradiction.

Hardness of optimal subset revision: Take an instance of minimum subset sum

problem (S = {s1, · · · , sn}, c, S ′). Let tot =
∑

si∈S si. Let L = {p1, · · · , pn, pn+1}

(n + 1 point space) and

K = {(id, {pi}, 0, [si/tot, si/tot]|si ∈ S}.

Let sa = (id, {pn+1}, 0, [c/tot, c/tot]), and let

K′ = {(id, {pi}, 0, [si/tot, si/tot]|si /∈ S ′}.

Consider ordering OT that prefers revision K̄ to K̄′ (K̄ < K̄′) whenever∑
(id,r,t,[`,u])∈K̄

` = 1− c/tot and
∑

(id,r,t,[`,u])∈K̄′

` 6= 1− c/tot.

If
∑

(id,r,t,[`,u])∈K̄ ` =
∑

(id,r,t,[`,u])∈K̄′ ` then K̄ < K̄′ if |K̄| > |K̄′|. That is, OT prefers

any maximally sized database whose atom’s lower bounds sum to 1 − c/tot. K′ is

86

a minimal subset revision of K wrt sa iff (S, c, S ′) is an instance of minimal subset

sum.

(⇒): Suppose K′ is a minimal subset revision of K wrt sa and (S, c, S ′) is not an

instance of minimal subset sum to derive a contradiction. Then there is S ′′ ⊂ S such

that
∑

s∈S′′ s = c and |S ′′| < |S|. Construct K′′:

K′ = {(id, {pi}, 0, [si/tot, si/tot]|si /∈ S ′′}.

K′′∪{a} is consistent,
∑

(id,r,t,[`,u])∈K′′ ` = 1−c/tot and |K′′| > |K′|. ThereforeK′′ is

preferred by OT over K′ and K′ cannot be the optimal subset revision. Contradiction.

(⇐): Suppose K′ is not a minimal subset revision of K wrt sa and (S, c, S ′) is an in-

stance of minimal subset sum to derive a contradiction. LetK′′ be the counter-example

showingK′ is not a minimal subset sum. Thus there isK′′ such that
∑

(id,r,t,[`,u])∈K′′ ` =

1 − c/tot and |K′′| > |K′|. Construct S ′′ = {si|(id, {pi}, 0, [si/tot, si/tot]) /∈ K′′}.

Note that
∑

si∈S′′ si = c and that |S ′′| < |S ′|, making S ′′ a counter example to

(S, c, S ′) being an instance of minimal subset sum. Contradiction.

5.6 Minimizing Spatial Change

One may think that we can revise S by changing the spatial component r of atoms

in S. A spatial revision of PST-atom a = (id, r, t, [`, u]) is an atom of the form

a′ = (id, r′, t, [`, u]), where r′ is a revised region. The distance dS(a, a′) is given

by abs(|r ∪ r′| − |r ∩ r′|). A spatial revision of SPOT database S is a database

S ′ containing at most one spatial revision of each atom in S. The distance between a

SPOT database and its spatial revision (dS(S,S ′)) is the sum of the distances between

the individual atoms and their associated spatial revision.

87

Definition 30. A spatial revision S ′ of S w.r.t. an inserted SPOT atom a is optimal

iff S ′ ∪ {a} is consistent and there is no other spatial revision S ′′ of S w.r.t. a such

that S ′′ ∪ {a} is consistent and dS(S,S ′′) < dS(S,S ′). We use S us a to denote

an optimal spatial revision S ′. As in the case of the max-subset strategy, there may

be multiple optimal spatial revision strategies and we use the total order OT from

footnote 2 to deterministically pick one when several are possible.

Unfortunately, in general, as the following example shows, there may be cases

where no spatial revision satisfies AGM axioms (A1) and (A5).

Example 21. Suppose ID = {id} and L = {p1, p2}. Let S = {a1} where a1 =

(id, {p1}, 0, [0.5, 0.5]). Let a = (id, {p1}, 0, [0, 0]). By (A1), S us a must be a SPOT

database. However, S ∪ {a} is inconsistent and S must be revised. There are 3 pos-

sible revised KBs depending on which subset of {p1, p2} is used as the spatial com-

ponent of a1. These three choices are: (id, {p1}, 0, [0.5, 0.5]), (id, {p2}, 0, [0.5, 0.5]),

and (id, {p1, p2}, 0, [0.5, 0.5]). None of these atoms is consistent with a. Hence in all

possible spatial revisions, Axiom (A5) is violated.3

Thus we cannot achieve spatial update in the general case.

5.7 Minimizing Temporal Change

In this section, we study what happens when we revise a SPOT database S =

{a1, . . . , an} by changing ai = (idi, ri, ti, [`i, ui]) to a′i = (idi, ri, t
′
i, [`i, ui]). In other

words, the only change allowed in a atom is the modification of the time stamp. Given

a SPOT database S of the above form, we call such a revised SPOT database a tem-

poral variant of S.

3Note that this example does not depend upon how the distance function dS is defined.

88

The distance between a temporal variant {a′1, . . . , a′n} of a SPOT database S =

{a1, . . . , an}, denoted dT (S,S ′) is given by
∑n

i=1 |ti − t′i|.

S ′ is called a temporally optimal variant of S w.r.t. an inserted SPOT atom a iff

(i) S ′ ∪ {a} is consistent, (ii) S ′ is a temporal variant of S and (iii) there is no other

temporal variant S ′′ of S such that S ′′ ∪ {a} is consistent and dT (S,S ′′) < dT (S,S ′).

As in the case of the previous two revision strategies, there can be multiple temporally

optimal variants - we assume the existence of a strict total ordering OT (from footnote

2) to determine which is best returned. We denote this temporally optimal variant of S

w.r.t. atom a by ut. The following result shows that checking for temporally optimal

variants is NP-hard.

Theorem 8. Suppose S is a SPOT database and a is an insertion. Checking if S ′ is

a temporally optimal variant of S is NP-hard.

Proof. For this proof, we use the coNP-complete problem minimum subset sum (def-

inition 29):

Let (K, ra,K′) be an instance of the optimal temporal revision problem where

K,K′ are knowledgebases and ra is a revision atom. (K, ra,K′) is a positive instance

iffK′ is an optimal temporal revision ofK with respect to ra (here we do not consider

the total order OT).

We do a reduction from minimum subset sum. Consider an instance of minimum

subset sum (Definition 29) (S = {s1, . . . , sn}, c, S ′). Let L = {p1, . . . , p2n+1}. Let

time T = [0,∞]. Create a reachability predicate where reachable(id, pi, pj) is false

unless: j = n + 1 and i < n + 1, or j > n and j = i + 1, or j < n + 1 and

i = 2n + 1. Let t =
∑

si∈S si. Let K = {(id, {pi}, 0, [si/t, si/t])|si ∈ S}, ra =

(id, {pn+1}, 1, [1− c/t, 1− c/t]), and

K′ = {(id, {pi}, 1, [si/t, si/t])|si ∈ S ′} ∪ {(id, {pi}, 0, [si/t, si/t])|si /∈ S ′}

89

(S, c, S ′) is minimal subset sum iff (K, ra,K′) is an optimal temporal revision.

(⇒): Notice dt(K,K′) = |S ′|. To derive a contradiction, suppose that (S, c, S ′) is

minimal subset sum and (K, ra,K′) is not an optimal temporal revision. Then there

is a temporal revision K′′ s.t. dt(K,K′′) < dt(K,K′). Let

K′′6=0 = {(id, {pi}, ti, [si/t, si/t]) ∈ K′′|ti 6= 0}

and let K′′0 = K′′ \ K′′6=0. Observe several things about K′′6=0:

• For all (id, {pi}, ti, [si/t, si/t]), ti ≤ n. If not, then dt(K,K′′) > n and since

|S ′| ≤ n, dt(K,K′) would be smaller andK′′ would not be the counter example.

• Because of the reachability predicate, all ti > 0 are equal to 1. If ra is consistent

with K′′, then ra is consistent with

K′′0 ∪ {(id, {pi}, 1, [si/t, si/t])|(id, {pi}, ti, [si/t, si/t]) ∈ K′′6=0}.

Since K′′ is supposed to have minimal dt(K,K′′) this implies that for every

(id, {pi}, ti, [si/t, si/t]) ∈ K′′6=0, ti = 1.

• Because dT (K,K′′) < dT (K,K′), |K′′6=0| < |S ′|.

• Because all atoms in K′′6=0 are at time point 1, to be consistent with ra, it must

be the case that:
∑

(id,{pi},ti,[si/t,si/t])∈K′′ si/t ≤ c/t.

• Because of the reachability predicate, the probability left in locations p1, . . . , pn

at time 0 all goes to the location pn+1. Thus to be consistent with ra, it must be

the case that:
∑

(id,{pi},0,[si/t,si/t])∈K′′
0
si/t ≤ 1− c/t.

• Since it is further the case that
∑

si
si/t = 1, and since K′′0 and K′′6=0 are dis-

joint and cover K′′, we have that
∑

(id,{pi},ti,[si/t,si/t])∈K′′
6=0

si/t ≥ c/t. Since

90

we already have established that
∑

(id,{pi},ti,[si/t,si/t])∈K′′ si/t ≤ c/t we have:∑
(id,{pi},ti,[si/t,si/t])∈K′′

6=0
si/t = c.

Construct S ′′ = {si|(id, {pi}, ti, [si/t, si/t]) ∈ K′′6=0. Since∑
(id,{pi},ti,[si/t,si/t])∈K′′

6=0

si/t = c,

we know that
∑

si∈S′′ si = c. Further, since dT (K,K′′) < dT (K,K′) we know that

|S ′′| < |S ′|. Thus S ′′ is a counter example to (S, c, S ′) contradicting our assumption

that (S, c, S ′) is in minimum subset sum.

(⇐): Suppose (K, ra,K′) is an optimal temporal revision and (S, c, S ′) is not minimal

subset sum to derive a contradiction. Let S ′′ be the counter-example to (S, c, S ′).

Construct K′′ as:

K′′ = {(id, {pi}, 1, [si/t, si/t])|si ∈ S ′′} ∪ {(id, {pi}, 0, [si/t, si/t])|si /∈ S ′′}.

Note that since |S ′′| < |S ′|, dT (K,K′′) < dT (K,K′). Further notice that since∑
s∈S′′ s = c, the total assigned probability at time 1 for id is 1 in K′′ ∪ {ra} and

it is consistent. Thus K′′ is a conterexample to (K, ra,K′). However, this contradicts

the assumption that (K, ra,K′) is an optimal temporal revision.

It is not always possible to do temporal revision while satisfying the AGM axioms.

Consider:

Example 22. Consider T = {t0, · · · , tn} and L = {L0, · · · , Ln}. Let

S = {(id, {Li}, ti, [1, 1]) | 0 ≤ i ≤ n}

S assigns probability 1 to object id being at Li at time ti. Now, we consider a revision

atom ra = (id, {L1}, t0, [1, 1]). Any temporal variant of S which is consistent with

91

ra will be inconsistent: there will always be some time point ti which contains both

(id, {L0}, ti, [1, 1]) and (id, {Li}, ti, [1, 1]).

The above example proves that not all temporal revision can satisfy Axiom (A5).

The example relies upon the range of the temporal update being finite, so we introduce

a new assumption: that T is unbounded. Unfortunately, in this case there are some

reachability predicates which eliminate the possibility of AGM-compliant temporal

revision.

Example 23. Consider L = {L0, L1}, T = {0, · · · ,∞}, and ID = {id} and let

reachable(id, Li, Lj) be true iff i = j. Further consider the SPOT database

S = {(id, {L0}, 0, [1, 1])}

and the revision atom ra = (id, {L1}, 0, [1, 1]). Note that there is no t such that

(id, {L1}, 0, [1, 1]), (id, {L0}, t, [1, 1])

is consistent, as there is no way to reach L0 from L1 and vice versa. Thus there is no

possible temporal revision in this case.

This example relies on a restricted reachability predicate to ensure that temporal

revision is not possible. However, if we assume that there are no “islands” of mutually

unreachable locations, then the above counter-example does not apply.

We therefore introduce the assumption that for any pair of locations L, L′ ∈ L

there is a path L = L1, · · · , Lk = L′ such that reachable(id, Li, Li+1) for all 1 ≤

i < k. We call this the full-reachability assumption. Under this assumption, temporal

revision may be accomplished.

The TemporalRevision(S, a) algorithm works by using unary temporal variants.

(id, r, t′, [`, u]) is a unary temporal variant of (id, r, t, [`, u]) iff abs(t − t′) = 1. The

92

algorithm creates a search tree - each node N in the search tree has an N.DB field.

The root of the search tree is initialized to Root.KB = S. Every child C of a node

N is just like N except that exactly one PST atom in N.DB is replaced by a unary

temporal variant. Further, each child knowledge base is required to be further (ac-

cording to dT) from S than its parent. When visiting a node N , the algorithm checks

if N.DB ∪ {a} is consistent. By creating and visiting this tree in breadth first order,

we are guaranteed that the first node that satisfies this consistency check is an optimal

temporal variant of S that accomplishes the insertion of a.

Algorithm 4 TemporalRevision(S, a) Search over potential temporal changes to S.
If {a} is inconsistent, return “error”.
Get new node Root. Set Root.DB = S;
TODO = [Root]. {TODO is an ordered list.}
while True do

Let nextTODO be an empty list.
{iterate over TODO in order.}
for N in TODO do

if N.DB ∪ {a} is consistent return N.DB ∪ {a}.
Insert each child of N into nextTODO.

end for
Let TODO=nextTODO.
sort TODO according to strict total ordering OT .

end while

Theorem 9. Under the full-reachability assumption, if T is unbounded then Algo-

rithm TemporalRevision is correct, i.e. TemporalRevision(S, a) returns a temporally

optimal variant of S that accomplishes the insertion of a as long as a is consistent.

Moreover, assuming T has non-finite size and under the full-reachability assumption,

TemporalRevision(S, a) satisfies the AGM-axioms.

Proof. (A1) holds if TemporalRevision(S, a) returns (that is, there is no input that

causes the algorithm to run forever). Clearly the algorithm will eventually try ev-

93

ery possible temporal revision of S. Thus if a temporal revision consistent with a

exists, it will be returned. To show that any S has a temporal revision that is con-

sistent with a let tm be the maximum amount of time it takes for any object to go

from one point to another. Since we assume every point to be reachable from ev-

ery other point (this is the full-reachability assumption), tm exists and is finite. Let

S = {(id1, r1, t1, [`1, u1]), · · · , (idn, rn, tn, [`n, un]). Furher, without loss of gener-

ality, let a = (id, r, 0, [`, u]). Now let S ′ = {(id1, r1, tm, [`1, u1]), · · · , (idi, ri, i ·

tm, [`i, ui]), (idn, rn, n · tm, [`n, un]). Clearly S ′ ∪ {a} is consistent, and clearly S ′ is

a temporal variant of S. Thus, in the worse case S ′ ∪ {a} can be an optimal temporal

variant of S (however unlikely), and (A1) holds.

(A2) holds trivially, due to the condition before the return statement. (A3) also

holds trivially, as if a is inconsistent with S then the set of interpretations satisfying

S ∪ {a} is empty, and if a is consistent with S then S ∪ {a} = S ut a. (A4) holds

– S ∪ {a} is returned on the first pass through the while loop in this case. (A5) holds

due to the check before the return statement. (A6) is guaranteed by the strict total

ordering OT .

The TemporalRevision algorithm takes exponential time (as expected due to The-

orem 8.)

5.8 Minimizing Probability Change

In this section, we propose a belief revision operator that replaces SPOT atoms of the

form (id, r, t, [`, u]) in S by SPOT atoms (id, r, t, [`′, u′]) where [`, u] ⊆ [`′, u′]. In

other words, this belief revision operator expands the probability bounds of atoms in

94

S in order to retain consistency when a is added. Obviously, we want to minimize the

expansion of the probability interval [`, u] to [`′, u′].

Definition 31. Suppose a = (id, r, t, [`, u]) is a SPOT atom and [`, u] ⊆ [`′, u′].

Then the SPOT atom a′ = (id, r, t, [`′, u′]) is called a weakening of a. The distance,

dP (a, a′) between a and a′ is defined as (`− `′) + (u′ − u).

A PST-KB S ′ is called a weakening of a PST-KB S iff there is a bijection β from

S to S ′ such that for all a ∈ S, β(a) is a weakening of a. The distance dP (S,S ′)

between S and S ′ is defined as Σa∈SdP (a, β(a)).

In most cases, β can be derived directly by manipulating the probability bounds

associated with a SPOT atom a ∈ S. In the sequel we assume β is known.

Definition 32. Suppose S is a SPOT database and a is a PST-atom. A weakening S ′

of S is called an optimal weakening of S w.r.t. the insertion of a iff: (i) S ′ ∪ {a} is

consistent and (ii) for every other weakening S ′′ of S such that S ′′ ∪ {a} is consistent,

dP (S,S ′) ≤ dP (S,S ′′).

We can find an optimal weakening of SPOT databases by setting up a linear pro-

gram with variables vid,t,p,q each representing the probability of an object id being at

location p at time t and at location q at time t + 1. Notice that these are the same

variables as were used in the world-based semantics linear program PWLP (defini-

tion 25 on page 65). We limit the range of id to the set ID provided a priori and the

range of t to the bounded set T also provided a priori (we assume a bounded set of

timepoints T for probabilistic revision). For each SPOT atom ai = (idi, ri, ti, [`i, ui])

in S, we also include variables lowi and upi for the atoms’ modified lower and upper

bounds.

95

Definition 33 (Probability Revision Linear Program (PRLP)). Let PRLP (S, a) con-

tain only the following:

1. For each ai = (idi, ri, ti, [`i, ui]) ∈ S:

(a) 0 ≤
(∑

p∈ri

∑
q∈S vidi,ti,p,q

)
− lowi

(b) 0 ≥
(∑

p∈ri

∑
q∈S vidi,ti,p,q

)
− upi.

(c) `i ≥ lowi, lowi ≥ 0, ui ≤ upi, and upi ≤ 1

2. For a = (id′, r′, t′, [`, u]):

(a) ` ≤
∑
p∈r′

∑
q∈S

vid′,t′,p,q and u ≥
∑
p∈r′

∑
q∈S

vid′,t′,p,q

3. For each id in ID and each t in T

(a) For all p, q ∈ S, vid,t,p,q ≥ 0.

(b)
∑
p∈S

∑
q∈S

vid,t,p,q = 1

(c) For all p, q ∈ S, if ¬reachable(id, p, q): vid,t,p,q = 0

(d) For all p ∈ S:
∑
q∈S

vid,t,q,p =
∑
q∈S

vid,t+1,p,q

We now compute an optimal weakening of S by minimizing the distance function∑
ai∈S dP (ai, β(ai)) subject to PRLP (S, a). As in the case of all our revision strate-

gies, when there are multiple solutions to this linear program, we assume there is a

mechanism to deterministically pick one. We are now able to define a probabilistic

revision strategy.

Definition 34 (Probabilistic Revision). Suppose S is a SPOT database and a is a

SPOT atom. Let θ be a (deterministically) selected solution of the linear program

96

minimize
∑

ai∈S((`i− lowi)+(upi−ui)) subject to PRLP (S, a). Return the SPOT

database, denoted S up a defined as

{(idi, ri, ti, [lowiθ, upiθ])| (idi, ri, ti, [`i, ui]) ∈ S} ∪ {sa} .

Since the number of points in space objects and time points is constant, only the

number of atoms in S affect the number of variables in PRLP (), which is O(|S|).

The number of constraints is similarly limited by O(|S|). Thus the size of the entire

linear program created by PRLP is polynomial in |S|. Since solving linear programs

is also polynomial [32], and we can assume our mechanism for picking a solution

deterministically runs in polynomial time4 the above procedure computes S u a in

polynomial time.

This polynomial time probabilistic revision strategy also satisfies the requisite

AGM axioms.

Proposition 7. S up a satisfies (A1)-(A6).

Proof. Axiom (A1) is straightforward. (A2) follows from the inequalities specified in

2a of PRLP. Axiom (A3) follows from the fact that upper bounds are increased and

lower bounds are decreased (according to the inequalities in 1c of PRLP), loosening

the knowledge base such that any interpretation satisfying S ∪ {a} must also satisfy

Suta. Axiom (A4) follows from the fact that the minimum value possible for the dis-

tance function occurs when there is not change to the knowledge base. Thus if at all

possible, the algorithm returns the original values for the lower and upper bounds of

the knowledge base making the updated knowledgebase equal to the original knowl-

edgebase. Thus the set of satisfying interpretations are equal. Axiom (A5) follows

4Such mechanisms clearly exist: consider a strict total ordering over the variables that specifies the

order with which the linear program solver should minimize variables.

97

Technique AGM complexity

Maximal Subset Yes NP-complete

Minimizing Spatial Change No N/A

Minimizing Temporal Change No N/A

with non-finite T No N/A

with full-reachability Yes coNP-hard

Minimizing Probability Change Yes polynomial

Figure 5.1: Complexity and AGM-compliance of revision techniques.

from the fact that any solution to FTLP corresponds to a consistent knowledge base.

Consider if θ is a solution to FTLP (S, a). θ (minus any assignments to the variables

lowi and upi) is also a solution to LP (S uP a). Axiom (A6) follows from the use of

the strict total order. If a ≡ a′, then the solutions to FTLP (S, a) will be exactly the

solutions to FTLP (S, a′). Thus the minimal member of both sets of solutions will

be the same according to the strict total order and the same repaired knowledge base

will be returned.

5.9 Comments on Belief Revision

In this section I introduced belief revision in the SPOT database. This is a process

whereby new information, inconsistent with currently stored information in the SPOT

database, can be added without causing the database to be inconsistent. It is of clear

use, and possibly even necessary, for the sorts of situations where a solution based

on SPOT might be employed: such situations are characterized by a relatively high

degree of uncertainty about data’s accuracy.

98

To verify the effectiveness of potential revision strategies, I compared each strat-

egy to the AGM revision axioms, and discovered some cases where AGM-compliant

revision is impossible to guarantee (spatial revision, temporal revision with finite T ,

etc). There were also some coNP-hard strategies (i.e. max subset revision). The final

revision strategy analyzed was one that modified the atoms’ probabilities and noth-

ing else. I found I could compute revisions under this probability change strategy in

polynomial time. Unless other considerations take precedent, this result suggests that

probability change should be the default revision strategy.

I close with one final comment on the polynomial time probability change revision

strategy: since most most other non-probabilistic logics allow only NP-complete revi-

sion strategies commensurate with the AGM axioms, this is a rare example of where

computational rather than representational factors favor the inclusion of probabilities

in the representation.

99

Chapter 6

SPOT Algebra

In this chapter, the basics of the SPOT algebra are covered. First, tightness is dealt

with. In a tight SPOT database, all atoms have the smallest bounds possible. Then,

the algebraic operations of union, intersection, and difference are considered. A ap-

proach to “join” that shows how one might combine the SPOT databases also appears.

Finally, algorithms involving expected distance queries are discussed, with some ex-

perimental results.

6.1 SPOT Database Tightness

The probability bounds associated with a SPOT database can often be tightened.

To achieve this, we use the idea of database equivalence (Definition 8 on page 35)

databases are equivalent.

Definition 35. A SPOT database S is called tight if for every SPOT database T

such that S ≡ T , for every SPOT atom (idi, ri, ti, [`i, ui]) ∈ S there is no SPOT

atom (idi, ri, ti, [`j, uj]) ∈ T such that `i < `j or uj < ui.

100

Example 24. Consider two databases in a space where L = {L1, L2}:

S1 = {(id, {L1}, 0, [0.5, 0.5]), (id, {L2}, 0, [0.5, 0.5])}

S2 = {(id, {L1}, 0, [0.5, 0.5]), (id, {L2}, 0, [0.2, 0.6])}

S1 is tight, while S2 is not.

Figure 5 shows an algorithm tighten, which tightens a SPOT database.

Algorithm 5 Tightens a SPOT database S
tighten(S)

Let S ′ := ∅.

for (id, r, t, [`, u]) ∈ S do

L := minimize
∑

(x,y)∈r

vx,y w.r.t. LC(S, id, t);

U := maximize
∑

(x,y)∈r

vx,y w.r.t. LC(S, id, t);

S ′ := S ′
⋃
{(id, r, t, [L, U])}

end for

Return S ′.

Theorem 10. For all S, tighten(S) is tight and equivalent to S.

Proof Intuition: Since tighten minimizes u and maximizes `, for a specific id, r, and

t, there cannot be an equivalent database containing an atom with larger ` or smaller

u for the same id, r, and t.

Tightness is important because it can often lead to simpler and faster algorithms.

101

6.2 Union, Intersection, Difference, and Join

Some queries require the standard operations: union, intersection, difference, and

join. In this section we show how to define these operations for consistent SPOT

databases.

Union

We start with union. The union of SPOT databases will be normal set union.

Definition 36 (SPOT Union). S1 ∪SPOT S2 = {a|a ∈ S1 ∨ a ∈ S2}

This definition is natural both syntactically and semantically, as it satisfies the

equality I(S1 ∪SPOT S2) = I(S1) ∩ I(S2).

Intersection

Intersection and difference are more complicated for SPOT databases because of the

possibility that sa1 = (id, r1, t, [`1, u1]) ∈ S1, sa2 = (id, r2, t, [`2, u2]) ∈ S2, r1 6= r2,

and r1∩r2 6= ∅. The meaning of intersection and difference is not clear in such a case.

We therefore define intersection and difference only for compatible SPOT databases.

We say databases S1 and S2 are compatible if whenever sa1 = (id, r1, t, [`1, u1]) ∈ S1,

and sa2 = (id, r2, t, [`2, u2]) ∈ S2, then either r1 = r2 or r1 ∩ r2 = ∅.

Consider intersection first. In general, union adds restrictions while intersection

removes them. Ideally we would like I(S1 ∩SPOT S2) = I(S1)∪I(S2). But suppose

that S1 = {sa1 = (id, r, t, [.1, .3])} and S2 = {sa2 = (id, r, t, [.5, .7])}. Here I(S1)∪

I(S2) contains all interpretations where .1 ≤ I(id, r, t) ≤ .3 or .5 ≤ I(id, r, t) ≤ .7,

and that cannot be expressed using SPOT atoms. So we define S1 ∩S2 in such a way

that I(S1 ∩ S2) is a superset of I(S1) ∪ I(S2).

102

Definition 37 (Intersection).

S1 ∩SPOT S2 = (id, r, t, [`, u]) (id, r1, t, [`1, u1]) ∈ S1 ∧ (id, r2, t, [`2, u2]) ∈ S2) ∧

(r1 = r2 = r ∧ ` = min(`1, `2) ∧ u = max(u1, u2))

 .

Proposition 8. I(S1 ∩SPOT S2) is a superset of I(S1) ∪ I(S2).

Difference

Difference, like intersection, also removes restrictions, in general. Again, we would

like I(S1 \SPOT S2) = I(S1)∪ I(S2) where I(S2) = {I|I 6∈ I(S2)}. The following

example shows why this is not always possible. Let S1 = {sa1 = (id, r, t, [.1, .5])}

and S2 = {sa2 = (id, r, t, [.3, .7])}. I(S1) ∪ I(S2) contains all interpretations where

.1 ≤ I(id, r, t) ≤ .5, and I(id, r, t) < .3 or I(id, r, t) > .7, and that cannot be

expressed using SPOT atoms. So we define S1 \SPOT S2 in such a way that I(S1 \

SPOT S2) is a superset of I(S1) ∪ I(S2).

Definition 38 (Difference).

S1 \SPOT S2 =



(id, r, t, [`, u]) ((id, r, t, [`1, u1]) ∈ S1 ∧ S id,t
2 = ∅) ∨

((id, r, t, [`1, u1]) ∈ S1 ∧

(id, r, t, [`2, u2]) ∈ S2 ∧ (`2 = 0 ∨ u2 = 1) ∧

if `2 = 0 then ` = `1 else ` = 0 ∧

if u2 = 1 then u = u1 else u = 1)


Proposition 9. I(S1 \SPOT S2) is a superset of I(S1) ∪ I(S2).

103

Join

In non-probabilistic settings, join operations typically take tuples that match accord-

ing to some criteria, and concatenate or combine them in some way. This same idea

is also used in the definition of join for SPOT databases. Suppose j is a function that

combines two rectangles into a region (not necessarily a rectangle). For example, j

could return the intersection of the two rectangles or the minimal bounding rectangle

of the union of the two rectangles, or some other rectangle altogether. Our notion of

join combines rectangles together using a given j as follows.

Definition 39 (Join). We define S1 1j S2 in terms of each id and t. Let Γid,t be the

union of the sets of linear constraints defined by S id,t
1 and S id,t

2 .

(S1 1j S2)
id,t =



Sid,t
1 if Sid,t

2 = ∅

Sid,t
2 if Sid,t

1 = ∅

(id, r, t, [`, u]) (id, r1, t, [`1, u1]) ∈ S1∧

(id, r2, t, [`2, u2]) ∈ S2∧

r = j(r1, r2)∧

` = min
∑

p∈r vp subj.t. Γid,t∧

u = max
∑

p∈r vp subj.t. Γid,t


If Γid,t has no solutions, S1 1j S2 does not exist.

6.3 Expected Distance Queries

6.3.1 Expected Distance

In this section, we use the statistical notion of an expected value to define the expected

distance from an object to a given point or object. Examples of the use of expected

104

distance include calculating quantities such as expected fuel usage, expected time of

arrival, and best guess threat level in a military application. As we don’t know exactly

where objects are at any given time, nor do we know the exact probabilities involved,

we give a minimal expected distance and a maximal expected distance between an ob-

ject and a point, and later extend these concepts to minimum and maximum expected

distances between objects.

In order to define expected distance formally we first define distance between

points in the usual way.

Definition 40. The Euclidean distance, ed((x, y), (x′, y′)), between 2 points (x, y)

and (x′, y′), is given by
√

(x− x′)2 + (y − y′)2.

The standard notion of expected value in statistics looks at all possible values,

multiplies each of them by the probability of that value, and adds such products to-

gether. We now define the concept of expected distance between a fixed point p and an

object w.r.t. an interpretation I . Informally speaking, this is done as follows: for each

point q in L, compute the product of the distance between p and q and the probability

that the object is at q (according to I) and then add up the product values obtained for

the different q’s in L.

Definition 41. Expected Distance between a point and an object for SPOT interpre-

tation I:

distToPointI(id, (x, y), t) =
∑

(x′,y′)∈L I(id, t, (x′, y′))× ed((x, y), (x′, y′))

Now we can define the expected distance between two objects.

Definition 42 (Expected Distance between two objects for a SPOT interpretation I .).

105

distI(id, id′, t) =
∑

(x,y)∈L,

(x′,y′)∈L

(I(id, t, (x, y))⊗ I(id′, t, (x′, y′)))× ed((x, y), (x′, y′))

In the above definition, I(id, t, (x, y)) ⊗ I(id′, t, (x′, y′)) specifies the joint prob-

ability that the two objects are at the locations specified. For the remainder of the

paper, we assume independence of all object locations making ⊗ the multiplication

operation.

In general, many different SPOT interpretations satisfy a given SPOT database

and there can be a different expected distance between two objects for every inter-

pretation. Thus we define the minimal (resp. maximal) expected distances between

an object and a point (or another object) to be the minimal (resp. maximal) expected

distance over all SPOT interpretations that satisfy the SPOT database.

Definition 43. Minimal and Maximal expected distances between an object and a

point:

mindistToPoint(S, id, t, (x, y)) = min{distToPointI(id, t, (x, y))|I |= S},

maxdistToPoint(S, id, t, (x, y)) = max{distToPointI(id, t, (x, y))|I |= S}

Definition 44. Minimal and Maximal expected distance between objects

mindist(S, id, id′, t) = min{distI(id, id′, t)|I |= S},

maxdist(S, id, id′, t) = max{distI(id, id′, t)|I |= S}

The functions, mindistToPoint and maxdistToPoint can be computed by lin-

ear program solvers. However, we have a more efficient non-linear programming

approach when the database is disjoint.

106

Definition 45 (Disjoint SPOT Database). SPOT database S is disjoint if, for all id

and all t such that there is (id, r1, t, [`1, u1]), (id, r2, t, [`2, u2]) ∈ S the r1 is disjoint

from r2.

We now present algorithms that solve or bound mindist and maxdist queries on

disjoint SPOT databases. All the functions in this section use a “helper” function

χ (Algorithm 6). χ is parameterized by a function v : L → R. v is any function

that associates a value with a given point p in L. For example, v(p) might be distance

between the input p and some other point p′: v(p) = ed(p, p′). χv is a general function

for finding an interpretation that satisfies the SPOT database and assigns (for a given

id and time point t) the smallest possible value to the sum of all the products of the

interpretation at p times v(p) in the entire L. That is, χ returns the value

χv()(S, id, t) = min
I|=S

 ∑
(x,y)∈L

I(id, t, (x, y))× v(x, y)


To do this, first χ orders the points in L according to v(p). Then, starting with the

minimal v(p) value, χ iterates over the points in order assigning to each the largest

possible probability based on the SPOT atoms in S id,t and the probabilities already

assigned. This function runs in time O(n · N · log(N)) where n is the number of

SPOT atoms in the database and N is the number of points in L. This algorithm does

not use linear programming, and is a huge improvement over LP methods that run in

either exponential time (e.g. simplex) or superlinear polynomial time (e.g. interior

point methods such as Khachiyan [32]) with respect to the size of space and linear

time with respect to the size of the database.

First we present the correctness of Algorithm 6. The correctness of the later algo-

rithms are all essentially corollaries of this result.

107

Algorithm 6 Find minI|=S
∑

p∈L I(id, t, p)× v(p).

χv()(S, id, t)

Require: S is consistent, tight, and disjoint.
1: Let k := |S id,t|.
2: Let ri be s.t. (id, ri, t, [`i, ui]) ∈ S id,t, for 1 ≤ i ≤ k.
3: Let rk+1 := L− ∪k

i=1ri {all points not in any region specified by a SPOT atom}
4: Let pi,mi

, 1 ≤ i ≤ n, 1 ≤ mi ≤ k + 1 be a list of all the points in L s.t.
v(pi,mi

) ≤ v(pi+1,mi+1
) and pi,mi

∈ rmi
. {The first p subscript orders the points

according to the function v and the second p subscript gives the region number
where the point is located}

5: Let `b :=
∑k

j=1 `j {sum of lower bounds for regions not yet considered}
6: {the following if block computes the tightest bounds for rk+1}
7: if rk+1 6= ∅ then
8: Let ub :=

∑k
j=1 uj

9: Let `k+1 := max(0, 1− ub)
10: Let uk+1 := 1− `b

11: Let S id,t := S id,t ∪ {(id, rk+1, t, [`k+1, uk+1])}
12: end if
13: Let i := 1 {index through the points in L (space) using the ordering in line 4}
14: Let tot := 0 {the sum of the probabilities in the interpretation constructed so far}
15: Let covered := ∅ {the regions covered so far}
16: Let retV alue := 0
17: {Give each point the highest possible probability, excepting every point in a re-

gion already in covered gets 0 probability}
18: while i ≤ n ∧ tot < 1 do
19: if mi /∈ covered then
20: Let covered := covered ∪ {mi}.
21: Let tot′ := tot+ `b− `mi

{sum of the interpretation so far plus sum of lower
bounds that must still be considered}

22: Let u′i := min(umi
, 1− tot′). {the largest possible interpretation at pimi

}
23: Let tot := tot + u′i. {update sum of the interpretations so far}
24: Let `b := `b−`mi

{update sum of lower bounds that must still be considered}
25: Let retV alue := retV alue + u′i × v(pi,mi

) {update sum of the products so
far}

26: end if
27: Let i := i + 1.
28: end while
29: return retV alue

108

Theorem 11. If S is consistent and disjoint, then

χv()(S, id, t) = min
I|=S

 ∑
(x,y)∈L

I(id, t, (x, y))× v(x, y)


Proof Intuition: χ orders the points in space according to v, then proceeds to find

the minimal possible probability for the highest value point in turn. The variables

tot, tot′, `b, covered, etc all serve book-keeping functions ensuring that there will be

an interpretation with the assigned values.

We can now use χ to compute many of the distance functions. Algorithm 7 shows

how to apply χ to find the minimum distance to a point function. Then, Algorithm 8

uses the earlier algorithms to substitute a v function for χ.

Corollary 4. mindistToPoint ftn(S, id, t, (x, y)) (algorithm 7) returns

mindistToPoint(S, id, t, (x, y)).

maxdistToPoint can be computed in the same manner.

6.3.2 Experimental Results

We have implemented all the algorithms specified above in Java. The results verify

expectations: linear programming takes longer than the specialized methods we de-

veloped. We did all of our experiments on a 3.2 GHz P4 computer with 2 GB of RAM.

The amount of RAM available was an issue for certain linear programming problems:

the amount of memory needed passes 2 GB once we have about one million variables.

We used the GPLed linear problem solver lp solve1, which implements a version of

the simplex method.

1From http://www.cs.sunysb.edu/∼algorith/implement/lpsolve/

implement.shtml

109

Description of Experimental Environment

Experiments are based on data about the locations of all post offices in Washington

DC2. We modeled the motion (uncertain over space and time) of postal trucks between

the 287 post offices in DC.

Trucks travel a route between randomly chosen post offices. In each time period,

a truck is assumed to travel between its current post office and the next post office on

its route. When a truck is to travel from one PO to another PO, we draw a straight line

between the POs. We then make d disjoint rectangles near this path. Each rectangle

then is made into a SPOT atom with probability dependent on the rectangle’s distance

from the path. We call this number d the density of the database. This models the fact

that a truck is most likely to travel the route defined by the shortest path, yet is also

capable of traveling a different path.

In putting a grid over the entire area of Washington DC, we used differing levels

of granularity. DC maps onto a rectangle sized 21.50 km by 26.54 km. We used three

different grids over this space, the first of which resulted in a space of size 192 by

302. Each one by one square in this grid represents a 112 meter by 88 meter sized

region of Washington DC. The second granularity used has dimension 976 by 1510,

and in it, each one by one square represents a 22 meter by 18 meter region. The last,

and most fine grained partitioning of space partitions our map of Washington DC into

a 1952 x 3021 grid. Each square in that grid represents a 11 meter by 9 meter region.

Expected Distance to a Point

The expected pattern emerges when computing expected distance to a point. Those

functions dependent on linear programming were consistently beaten by our special-

2Obtained from http://www.zip-codes.com

110

 0

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

se
co

nd
s

SPOT atoms

minDist LP
minDistToPoint_ftn

modified minDistToPoint_ftn

Figure 6.1: LP vs minDistToPoint ftn in space sized 58890.

ized algorithms. In particular, we were able to get the greatest speedup with modi-

fied versions of minDistToPoint ftn and maxDistToPoint ftn. The modifica-

tions were simple amendments to the preprocessing, whereby only one point would

be considered per atom (rather than all points in space). These algorithms substan-

tially outperform the linear programming approaches, as exemplified in Figure 6.1.

In the experiments in those figures, we used DC’s postal system to create the SPOT

database, and increased the number of SPOT atoms by increasing the resolution of

our SPOT database while by keeping the number of trucks fixed. In these experi-

ments, we used a 195 by 302 grid over DC. We had exactly 1 truck travel a 10 post

office route, and we used the densities of 25, 100, 225, 400, 525, and 900. This

resulted in SPOT databases of sizes ranging from 251 to 8371.

111

6.3.3 Nearest Neighbor

With the above expected distance algorithms and definitions, we can now easily define

and implement nearest neighbor algorithms. There is a nearest neighbor function

corresponding to each type of expected distance, however, we only define the min

expected nearest neighbor. Only simple modifications to this function are needed for

other nearest neighbor algorithms.

Definition 46 (Min Expected Nearest Neighbor). The min expected nearest neighbor

to point p at time t is given by:

MENN(S, p, t) = argminid′∈ID(mindistToPoint(S, id, t, p)).

MENN admits an immediate exhaustive search algorithm. The other sorts of

nearest neighbor algorithms can be obtained by changing mindistToPoint to, for

instance, maxdistToPoint.

Algorithm 7 Calculates mindistToPoint(S, id, t, (x, y))

mindistToPoint ftn(S, id, t, (x, y))

Let v(x′, y′) be the function returning ed(x, y, x′, y′).

return χv()(S, id, t)

Algorithm 8 Calculates a lower bound for mindist(S, id1, id2, t)

mindist lb(S, id1, id2, t)

Let v(x, y) be the function returning mindistToPoint ftn(S, id1, x, y)

return χv()(S, id2, t)

112

Algorithm 9 Calculate an upper bound for mindist(S, id1, id2, t)

mindist ub(S, id1, id2, t)

Let v(x, y) compute and return maxdistToPoint ftn(S, id1, x, y)

return χv()(S, id2, t)

6.4 Comments on SPOT Algebra

Much of the work in this section represents some of the earliest work on SPOT and is

presented in [40]. The goal of avoiding linear programming is clearly present in this

chapter and that paper. It was, however, dropped when faster linear programming-

based methodologies were found (i.e. PLP (·) from Definition 18). Further, while

there exist reasonably straightforward algorithms like χ (Algorithm 6) for disjoint

databases, it is unclear if there are algorithms for arbitrary databases that can substan-

tially outperform linear programming techniques.

113

Chapter 7

Selection Algorithms

7.1 Introduction

The selection query has been a central focus of study for SPOT databases. Selection

queries have many potential uses: anytime anyone with a SPOT database wants to

know when objects are in a given location, a selection query will answer the question.

Example 25. A fleet of fishing ships is tracking several schools of fish. Each ship

is equipped with sonar, which identifies schools of fish and several basic measurable

characteristics (size, depth, speed, etc). Using ocean current and movement informa-

tion, potential locations for that school can be determined for the next several days,

and specified as SPOT atoms: (school, region, time, [`, u]) (` and u are determined

by the accuracy of the sonar and the predictive algorithms). A captain of one vessel

would like to go to region r1, which is close to shore, but only wants to do so if and

when he is likely to catch a full load there. The captain can determine how many

of what kind of school will be in the given region by running a selection query on

the fleet’s SPOT database. The query (?id, rq, ?t, [0.7, 1]), answered cautiously, will

tell which schools of fish will be in region r1 at which times with at least an 70%

114

probability, allowing the captain to more efficiently plan his voyage.

For the entirety of this chapter, we will be using point-based semantics.

7.2 Selection Via Consistency Checking

7.2.1 Exhaustive Query Check

The most obvious way for computing the answer to a selection is to check each pos-

sible answer. Such a technique is inefficient, but an important starting point. I give an

algorithm accomplishing this as Algorithm 10.

Algorithm 10 Exhaustively check all possible answers to an optimistic query.
exhaustiveOptimisticAnswer(S, (?id, q, ?t, [`, u]))

Let ret = ∅.
for id ∈ ID do

for t ∈ T do
if (id, q, t, [`, u]) is consistent with S then

ret = ret ∪ {(id, q, t, [`, u])}.
end if

end for
end for
return ret.

Clearly we can do better. In particular, we can avoid checking those (id, q, t, [`, u])

where S id,t is inconsistent. We can also do much deeper and much more clever prun-

ing.

A note needs to be made about the method by which we check consistency (Algo-

rithm 10 simply checks consistency without specifying the method). One can use any

of the methods for checking point-based consistency of a SPOT database detailed in

Chapter 4 (page 42), for our purposes, it will not matter which method is used. All of

the consistency checking methods are polynomial time or worse, and so any method

115

that can eliminate the need to check consistency in sub-polynomial time will be a win.

I call such methods pruning methods, and I will introduce two different types: SPOT

tree based pruning, and pruning methods based on potential solutions to the SPOT

database’s original linear program.

First we will detail the SPOT tree, an I/O-optimizable structure for perform-

ing pruning operations, and then we will explain methods for bounding the SPOT

database’s linear program.

7.3 SPOT Trees

SPOT trees build on top of a large volume of work on spatial indexes [43, 7, 8, 44].

In almost all trees that store spatial information, data is stored in the leaf nodes of the

tree. Each node of the tree represents a region. The region associated with a node is a

superset of the region associated with each of its children.

In SPOT trees we adapt spatial data structures to handle logical spaces and we

replace the concept of inclusion with the concept of entailment. Each node in our

SPOT tree is labeled by one composite SPOT atom (to be defined in this section).

Each child of a composite SPOT atom labeling a node entails the composite SPOT

atom that is its parent. This implies that each composite SPOT atom, in a sense,

implicitly represents the set of all SPOT atoms that are compatible with it. As one

goes down a branch of the tree, this set decreases. Thus, SPOT trees adapt spatial

data structures to logical problems by (i) labeling nodes with composite SPOT atoms

and not with geometric regions, (ii) having an entailment relationship in which parent

node labels are entailed by child node labels, and (iii) having an inclusion relationship

in which the set of SPOT atoms compatible with a node’s composite SPOT atom

116

label is a superset of the set of SPOT atoms compatible with the label of a child.

This section proceeds as follows: we first define the necessary constraints to ef-

fectively rule out potential answers to an optimistic selection query. We then define

composite atoms that combine (id, t)-pairs. Finally, we show how to build the SPOT

tree and use it for answering optimistic selection queries, using the necessary con-

straints mentioned above to prune the search space.

7.3.1 Necessary Constraints

When an atom sa is compatible with a SPOT database S, there are certain conditions

that any SPOT atom entailed by S SPOT database will satisfy. These conditions are

the following necessary constraints.

Definition 47 (Necessary constraints). Let ga1 = (id, r1, t, [`1, u1]) be a SPOT atom

and sa2 = (id, r2, t, [`2, u2]) be a SPOT atom. Define:

NC(ga1, sa2) =



`2 ≤ 1− `1 if r1 ∩ r2 = ∅

`2 ≤ u1 if r2 ⊂ r1

u2 ≥ l1 if r1 ⊂ r2

`2 ≤ u1 ∧ u2 ≥ `1 if r1 = r2

true otherwise

The following theorem shows how we can use NC to quickly determine if a given

atom is incompatible with a particular SPOT database.

Theorem 12. For consistent SPOT database S and SPOT atom ga1, let S |= ga1.

For any given SPOT atom sa2 if NC(ga1, sa2) is not true then sa2 6b S.

117

Proof. All the cases are similar; we do just the case where r1 ∩ r2 = ∅. So suppose

that `2 > 1−`1, that is, `1 +`2 > 1. Hence for every interpretation I such that I |= S,

I 6|= sa2.

This theorem allows a computationally efficient technique for determining many

SPOT atoms to be incompatible with S without appeal to a linear program using only

a SPOT atom entailed by the given SPOT database.

Merging SPOT atoms with the same (id, t) pair

We now show how to merge two SPOT atoms into a single SPOT atom.

Definition 48 (region-merge). Let ga1 = (id, r1, t, [`1, u1]), and ga2 = (id, r2, t, [`2, u2])

be SPOT atoms with the same id and t. Let combine(ga1, ga2) be defined as follows:

combine(ga1, ga2) =



[max(`1, `2), min(u1, u2)] if r1 = r2

[`1 + `2, min(1, u1 + u2)] if r1 ∩ r2 = ∅

[max(`1, `2), u2] if r1 (r2

[max(`1, `2), u1] if r2 (r1

[max(`1, `2), min(1, u1 + u2)] if r1 ∩ r2 6= ∅

∧(r1 \ r2 6= ∅)

∧(r2 \ r1 6= ∅)

We now show how to use combine to combine two SPOT atoms into one that is

entailed by any database also entailing the original two SPOT atoms.

Theorem 13 (region-merge). Suppose for some SPOT database S, id and t, S |=

{ga1, ga2} where ga1 = (id, r1, t, [`1, u1]) and ga2 = (id, r2, t, [`2, u2]). Then S |=

(id, r1 ∪ r2, t, combine(ga1, ga2)).

118

Proof. All the cases are similar: we do the case where r1 ∩ r2 = ∅. Suppose S |=

{ga1, ga2}. So for any I such that I |= S, `1 + `2 ≤ I(r1 ∪ r2) ≤ min(1, u1 + u2),

and the result follows.

Merging SPOT atoms with different (id, t) pairs

We can also merge atoms referring to different (id, t) pairs. The following result gives

probability bounds over many different (id, t) pairs.

Proposition 10 (region-merge). Let S |= {ga1, ga2}where ga1 = (id1, r1, t1, [`1, u1]),

ga2 = (id2, r2, t2, [`2, u2]) for SPOT database S and (id1, t1) 6= (id2, t2). Then

S |= (id1, r1 ∪ r2, t1, [min(`1, `2), 1]) and S |= (id2, r1 ∪ r2, t2, [min(`1, `2), 1])

7.3.2 Composite SPOT atoms

We are now ready to describe composite SPOT atoms. A composite SPOT atom is a

compact representation of a set of SPOT atoms, one for each (id, t) pair, entailed by

a given database.

Definition 49 (Composite SPOT atom). A composite SPOT atom is a triple (δ, r, [`, u])

where δ ⊂ ID× T , r is a region in Space and `, u ∈ [0, 1]. A composite SPOT atom

csa = (δ, r, [`, u]) represents the set of SPOT atoms

Rep(csa) = {(idi, r, ti, [`, u])|(idi, ti) ∈ δ}.

We write S |= csa to mean S |= Rep(csa).

A composite SPOT atom is shorthand for a set of SPOT atoms with the same

region (not necessarily rectangular) and probability bounds. Each non-leaf node in

119

a SPOT tree will be explicitly labeled by a composite SPOT atom. The region as-

sociated with a node will be the union of the regions of the composite SPOT atoms

labeling the children of that node.

We will sometimes refer to a SPOT atom in the context of a composite SPOT

atom. In this case, the atom sa = (id, r, t, [`, u]) should be considered to be the

obvious composite SPOT atom ({(id, t)}, r, [`, u]).

Intuitively, when trying to answer an optimistic selection query (?id, r, ?t, [`, u]),

we traverse nodes in a SPOT tree. Each node is labeled by a csa, and has an associated

set of child nodes. If Rep(csa) is incompatible with all instances of (?id, r, ?t, [`, u]),

then we can avoid searching the subtrees associated with csa.

Example 26. Consider the optimistic selection query (?id, q, ?t, [0, 0]) on SPOT

database S. Suppose S |= csa = ({(id1, t1), (id3, t3)}, q, t, [1, 1]). By Theorem 12,

since NC((id1, q, t1, [1, 1]), (id1, q, t1, [0, 0]) is not true (as 0 6≥ 1), (id1, t1) cannot

possibly be an answer. As a bonus, the computation implies that (id3, t3) is also not

in the answer set.

The following algorithm, UpdateCSA, shows how to add a SPOT atom to a

composite SPOT atom.

Theorem 14 (Correctness of Algorithm 11). UpdateCSA(csa,sa) returns a composite

SPOT atom csar such that every SPOT database that entails both sa and csa also

entails csar.

Proof. The correctness of the case where (id, t) 6∈ δ follows from Proposition 10.

The other case follows from Theorem 13.

120

Algorithm 11 This function returns a composite SPOT atom csar such that every

SPOT database that entails both sa and csa also entails csar.
UpdateCSA(csa,sa)

Let sa = (id, r, t, [`, u])
Let csa = (δ, rcsa, [`csa, ucsa]).
if (id, t) /∈ δ then

return (δ ∪ {(id, t)}, rcsa ∪ r, [min(`, `csa), 1]).
end if
Let sa2 = (id, rcsa, t, [`csa, ucsa]) ∈ Rep(csa).
Let [`′, u′] = combine(sa, sa2).
return (δ, rcsa ∪ r, [min(`′, `csa), max(u′, ucsa)]).

7.3.3 SPOT -Trees

We are now ready to define SPOT trees. Each node in a SPOT tree has a capacity

K that describes the number of children that can be stored within a node. All data

(i.e. SPOT atoms) are stored in leaf nodes and are considered to be the “children” of

those nodes. SPOT trees differ from standard multi-dimensional indexes in that each

internal node contains a composite SPOT atom instead of a minimal bounding rect-

angle. The composite atom is entailed by the composite atoms of the node’s children

(or the SPOT atoms of the node’s children, when the children are leaves). For a given

node nd in the SPOT tree, the associated composite SPOT atom will be referred to

as nd.csa, while the children of that node will be in the set nd.children. If a node nd

is a leaf, then it is stored as a SPOT atom in nd.children.

The SpotInsert algorithm (presented as Algorithm 12) inserts nodes into SPOT

trees. It is similar to an R-tree insertion algorithm except that (i) instead of changing

a node’s minimal bounding rectangle, it applies Algorithm 11, (ii) the analog of node

splitting in R-trees that is based on geometric considerations can be - but does not have

to be - replaced by logical considerations, and (iii) the consideration of which child

node to insert a SPOT atom into can be likewise based on logical considerations. The

121

algorithm ensures that the csa of any node is entailed by the csa’s associated with its

children.

Algorithm 12 Insert SPOT atom sa into the SPOT tree under node nd. Return ∅ if

update happened without splitting, otherwise return the set of new nodes.
SpotInsert(sa, nd)

if nd is not a leaf then
nd.csa = UpdateCSA(nd.csa,sa)
{Choose a child into which we’ll insert the node.}
sub← chooseBestSubTree(sa,nd.children)
newChildren← SpotInsert(sub,nd)
if newChildren 6= ∅ then
{sub was split below us}
Remove sub from nd.children
Add newChildren to nd.children.

end if
else

nd.csa = UpdateCSA(nd.csa,sa)
Add sa to nd.children. {nd is a leaf}

end if
{Check if we have too many items in this node}
if |nd.children| > K then

return splitNode(nd) {We need to split this node.}
end if
return ∅. {No split necessary.}

The insertion algorithm relies on two functions: chooseBestSubTree and splitN-

ode. The chooseBestSubTree function is meant to tell which of the subnodes in the

given set will be the “best” tree into which the SPOT atom sa should be inserted.

There are many methods for making this decision. Here are a couple for node set

children and SPOT atom sa = (id, r, t, [`, u]):

• One can find nd ∈ children such that an update with sa least affects the prob-

ability bounds of nd.csa.

• One can find nd ∈ children with the fewest SPOT atoms beneath it.

122

• As in the case of an R-tree, one can find nd ∈ children such that the size of the

MBR of sa’s region and the region in nd.csa is minimal.

• One can find nd ∈ children such that some weighted combination of the

change in the probability bounds and the change in the region of the node is

minimized.

In contrast, the splitNode function decides how to best divide a given node into two

nodes. This involves re-inserting all SPOT atoms below the given node. The basic

algorithm traverses the tree below the given node, collecting all the SPOT atoms to

create two new nodes, and then iteratively inserts each of the collected atoms into

the nodes, calling chooseBestSubTree each time to determine where to insert the next

atom.

A natural question that arises is what K should be. In our implementation, the list

of (id, t) pairs associated with a node is not stored in the node itself. Rather, the node

contains a pointer to this list. In this case, K can be as large as bpsize−ptrsize
nsize

c where

psize is the size of a disk page, nsize is the size of a pointer to another node, and

ptrsize is the size of the pointer to the list of (id, t) pairs.

Example 27. We show how to build a SPOT tree for the SPOT atoms shown in

Fig. 7.1(a). We assume they are inserted in the order in which they are listed. We

consider a SPOT tree where a node is considered full when it has 2 children, so splits

occur after the insertion of a third child.

After the first insertion, the tree has only one node, containing only one atom.

The corresponding composite SPOT -atom is straightforward (see Fig. 7.2(a)). The

second atom is added in the same node, the corresponding composite SPOT -atom is

computed accordingly. This is shown in Fig. 7.2(b). When the third atom is inserted,

123

Vehicle Area time min max

id1 m t1 10% 90%

id1 o t2 70% 100%

id2 d t1 80% 90%

id2 e t1 90% 100%

id3 j t1 70% 100%

id4 k t2 80% 100%

id5 a t1 10% 70%

id5 b t1 60% 80%
(a) Information provided

(b) Corresponding areas

Figure 7.1: Localization of vehicles over an area

124

(a) After insertion of first

atom

(b) After insertion of sec-

ond atom

(c) Insertion of third atom:

split needed

(d) After split (e) Split needed at leaf level

(f) Split needed above root level

Figure 7.2: Different steps of insertion

125

Figure 7.3: After root split.

Figure 7.4: SPOT tree after insertions

the node becomes full and needs to be split (Fig. 7.2(c)). In this example, let us

suppose that the splitting strategy used is as in an R-tree which tries to minimize the

126

area of the resulting MBRs. After the split, a new root is created, and composite atoms

are computed as shown in Fig. 7.2(d). After two more insertions (Fig. 7.2(e)), the full

node needs to be split, and we obtain the tree of Fig. 7.2(f), where the root node is full.

(Note that after every split the ancestors of the node that is split need to be updated.)

This root node in turn needs to be split, and the leaf nodes are distributed over the two

new intermediate nodes.1. We obtain the tree shown in Fig. 7.3. After all insertions,

the resulting SPOT tree is shown in Fig. 7.4.

The algorithm for answering queries utilizes the pruning steps described in Algo-

rithm 13.

Theorem 15 (Correctness of Algorithm 13). For region q, bounds [`, u], database S

and associated SPOT tree tree, if prune = pruneIdT (tree, q, [`, u]) then for all

(id, t) ∈ prune, (id, q, t, [`, u]) 6b S.

We now present algorithm SpotQuery (Algorithm 14) that may be used to answer

atomic SPOT -queries. We detail an example query showing how the SPOT tree in

Fig. 7.4 can be used to prune away potential answers. This algorithm is different from

the corresponding algorithm for an R-tree. In particular, we do not limit our traversal

of the tree to only those nodes whose MBR intersects the query region. The only time

when we do not continue to a node’s children is when the necessary conditions do

not hold between the query region and bounds and the composite SPOT atom in that

node.

1In this case, most R-tree algorithms remove and reinsert a large quantity of ground data in order to

ensure near-optimality of the whole tree, as this is often more efficient than doing many local changes.

127

Algorithm 13 Given a SPOT tree node nd, a region q, and probability bounds [`, u],

return a set of (id, t) pairs such that (id, q, t, [`, u]) does not satisfy the composite

SPOT atoms in nd or below nd in the SPOT tree.
pruneIdT(nd, q, [`, u])

1: pIdT ← ∅ {pIdT will be the set of prunable (id, t) pairs}
2: Let ga = (id, r, t, [`′, u′]) be any member of Rep(nd.csa).
3: if NC(ga, (id, q, t, [`, u])) is not true then
4: Add all (id, t) pairs from nd.csa to pIdT
5: else
6: if nd is a leaf then
7: {Check if any SPOT atoms rule out their (id, t).}
8: for Each atom sa = (id, r, t, [`′, u′]) in nd.children do
9: if NC(sa, (id, q, t, [`, u])) is not true then add (id, t) to pIdT .

10: end for
11: else
12: {Check the children of this node.}
13: for Each child node c of nd do
14: pIdT ← pIdT ∪ pruneIdT(c,q,[`, u])
15: end for
16: end if
17: end if
18: return pIdT

Theorem 16 (Correctness of Algorithm 14). For selection query (?id, q, ?t, [`, u])

and SPOT database S, SpotQuery(S, (?id, q, ?t, [`, u])) returns all (id, t) such that

(id, q, t, [`, u]) b S.

Proof. By Theorem 15 all SPOT atoms pruned by PruneIdT are not compatible with

S. The other SPOT atoms are checked explicitly.

Example 28. We consider the SPOT query (?id, q, ?t, [0.4, 0.7]), where q is the region

shown in Fig. 7.5. The tree after all insertions was shown in Fig. 7.4. For ease of

presentation, the composite regions of leaf nodes are shown in Fig. 7.5, and denoted

with the letters c, f , `, and n.

128

Algorithm 14 For SPOT database S and selection query (?id, q, ?t, [`, u]), answer

the query with pruning.
SpotQuery(S, (?id, q, ?t, [`, u]))

IdT← all (id, t) pairs in S
STree← empty node
for all sa ∈ S do

SpotInsert(sa,STree)
end for
{Eliminate prunable pairs via Algorithm 13}
candidateIdT← IdT − pruneIdT(STree,q, [`, u])
answerIdT← ∅
for all (idi, ti) ∈ candidateIdT do

if (idi, q, ti, [`, u]) b S idi,ti then
answerIdT← answerIdT ∪(idi, ti)

end if
end for
return answerIdT

• First, the pruning algorithm is called with node 1 (the root) as an argument. At

this level, the query region q intersects the composite region a∪ b∪ d∪ e∪ j ∪

k ∪m ∪ o, hence the condition on line 3 is true (because the NC condition is

not true). The pruning function is then called for every child on line 5.

• At this level, the same situation occurs for both nodes 2 and 5, (but the algorithm

does a depth-first recursion, so it does not reach 5 at this point). The pruning

function is then called for 3 and 4.

• At node 3, let ga = (id1, n, t1, [.1, 1]). Here, the first condition of the definition

of NC applies on line 3, but since 0.4 ≤ 1−0.1, pruning cannot be done. But we

will prune (id1, t2) when checking the children of this leaf node on lines 9-11.

• Node 4 (composite atom ({(id5, t1)}, c, [0.7, 1])), gives the same result as node 1.

But on lines 9-11 we consider (id5, a, t1, [0.1, 0.7]) and (id5, b, t1, [0.6, 0.8]).

129

Figure 7.5: Area for pruning mechanism

Pruning cannot be done for either atom.

• Now consider node 6 and composite SPOT atom ({(id3, t1), (id4, t2)}, l, [0.7, 1]).

The query region does not intersect the composite region l, thus the condition

of line 3 does not hold, because the NC condition is true. Thus we can directly

can prune (id3, t1) and (id4, t2).

• For node 7, the composite SPOT atom ({(id2, t1)}, f, [0.9, 1]) is contained in

the query region q. This triggers the third condition of NC, (0.7 ≥ 0.9 is false),

hence this node is pruned.

130

Figure 7.6: A visualization of the DoD Ship location dataset. Each rectangle rep-

resents a separate atom. Notice how many of the rectangles are clearly erroneous,

putting the ship on land or in the middle of the ocean with no path to or from that

location. For instance, the red rectangle in north-eastern China is clearly an error.

Cautious Selection

While the SPOT tree was introduced with optimistic selection as an example, it is

also useful for cautious selection. Since the optimistic answer set is a subset of the

cautious answer set for any query, any answer pruned from an optimistic query must

also be pruned from a cautious query. Therefore the entire SPOT tree methodology

can be directly applied to cautious query answering.

7.3.4 SPOT Tree: Experimental Results

Tests of the SPOT tree were conducted with real world ship location data provided by

the United States Department of Defense. The ships tracked in the dataset were non-

military, and the data sources were all public-sector. The data was not necessarily

131

reliable: there was error from the GPS systems used to derive the ship locations, a

lack of consequences for inaccurate reporting, a lack of compliance to specified data

schemas, and potential software bugs in parsers and data extraction algorithms. The

locational data provided gave a latitude and longitude for a ship’s location, the ship’s

ID, and a time stamp. These tuples were converted to SPOT atoms by using the

specified ship ID and time as id and t, and centering a 10× 10 rectangle r around the

specified latitude and longitude to create the atom (id, r, t, [0.3, 0.8]). The probability

interval [0.3, 0.8] was chosen to allow three disjoint locations to be reported for the

same ship at the same time point, and to ensure that no tuple is trusted more than 80%

of the time (due to the myriad of potential error sources in the system). Figure 7.6 is

a visualization of the dataset.

In the first batch of experiments, we examined the scalability of SPOT trees with

this dataset. Figure 7.7 shows performance of SPOT trees as the number of atoms

increases to 250,000. Three different versions of SPOT trees were tried, depending

on the algorithm used to check 〈id, t〉 pairs not pruned by the tree. The fact that the

three curves are nearly identical suggests that the tree is capable of pruning substantial

numbers of potential pairs. The SPOT trees created for these experiments attempt to

minimize the size of the regions in the MBRs.

In a second experiment, we test the SPOT tree with various implementations of

the chooseBestSubTree function. The flavors we test are:

• Random SPOT Tree: chooseBestSubTree(nd, atm) chooses a random child

of nd for insertion.

• Balanced SPOT Tree: chooseBestSubTree(nd, atm) chooses a child of nd

with minimal depth.

132

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50000 100000 150000 200000 250000

se
co

nd
s

Number of atoms

Time for optimistic select

BSP w pruning

cluster[naive] w pruning

cluster[BSP] w pruning

Figure 7.7: Scaling experiments with SPOT trees.

• ProbMin SPOT Tree: chooseBestSubTree(nd, atm) chooses a child of nd

that has minimal change to its probability bounds after update with atm.

• RegionMin SPOT Tree: chooseBestSubTree(nd, atm) chooses a child of nd

that has minimal change to its region after update with atm.

We test these against the control case where no tree is used in both optimistic and

cautious selection. In these experiments, a random 3×3 region rq is chosen, and both

a cautious and an optimistic query of the form (?id, rq, ?t, [0.9, 1]) is run on a random

subset of the database. The timing information is averaged over 300 trials. The results

are shown as Figures 7.9 and 7.8.

In these experiments, the SPOT tree techniques outperform non-SPOT tree tech-

niques. Of further interest is the fact that the ProbMin insertion heuristic performs

best when the number atoms is less than about 400, and RegionMin does best when

the number of atoms is greater than about 400. As expected, the random SPOT tree

133

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700 800 900 1000

(m
s)

Atoms

Optimistic Selection

No SPOT Tree
Random SPOT Tree

Balanced SPOT Tree
ProbMin SPOT Tree

RegionMin SPOT Tree

Figure 7.8: Experiments showing the effectiveness of the SPOT tree with optimistic

queries of the form (?id, r, ?t, [0.9, 1]).

performs worst among SPOT tree techniques.

7.4 Inscribing and Circumscribing Convex Regions

Another approach to improving query efficiency relies on the linear programming as-

pect of consistency checking algorithms. The space of solutions to the linear programs

involved in the SPOT framework is bounded and convex, and we will see this to al-

low us many pre-computation options. However, not all techniques produced here

will require pre-computation: simply by saving solutions to previous computations

of the linear program, one can increase the performance of later computations. This

section details these techniques.

134

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900 1000

(m
s)

Atoms

Cautious Selection

Random SPOT Tree
Balanced SPOT Tree
ProbMin SPOT Tree

RegionMin SPOT Tree

Figure 7.9: Experiments showing the effectiveness of the SPOT tree with cautious

queries of the form (?id, r, ?t, [0.9, 1]).

7.4.1 Formalism

In this section we will use n− tuples with n = |L| to represent the probability as-

signment of an interpretation for each location L ∈ L for a fixed 〈id, t〉 pair. We

write v for such an n− tuple where v̄L is the component of v for L ∈ L. Let

P(S, id, t) = { v ∈ [0, 1]n | v is a solution to LC(S, id, t) }, which is a polytope in

[0, 1]n. Clearly, every v ∈ P(S, id, t) corresponds to an interpretation I ∈ I(S) such

that for each L ∈ L, I(id, L, t) = vL, i.e., the L−component of v.

Next, for a query Q = (?id, r, ?t, [`, u]), we define

Q(r, `, u) = { v ∈ [0, 1]n |
∑
L∈r

vL ≥ ` and
∑
L∈r

vL ≤ u }.

Q(r, `, u) is also a convex polytope.

In our theorems we will typically deal with convex regions in an n-dimensional

135

space that are either included in or that include P(S, id, t). Our results hold for any

regions that satisfy the inclusion criteria; however, in the implementation, in order to

get the best results, we will be using included regions that are as large as possible and

including regions that are as small as possible. Hence we simply use the terminology

everywhere thatR1 is inscribed inR2, orR2 circumscribesR1, just in caseR1 ⊆ R2.

The following Corollary follows from Theorem 1.

Corollary 5. Given a SPOT database S and query q = (?id, r, ?t, [`, u]), for each

pair 〈id, t〉 in S,

i) (id, r, t, [`, u]) b S iff P(S, id, t) ∩Q(r, `, u) 6= ∅.

ii) S |= (id, r, t, [`, u]) iff P(S, id, t) ⊆ Q(r, `, u).

For a set of locations r and a point v in the n-dimensional space, we define the

probability mass in v w.r.t. r as p(v, r) =
∑

L∈r vL. For a convex region R and

a set of locations r, we define inf(R, r) = {v ∈ R such that p(v, r) is minimum

}, and sup(R, r) = {v ∈ R such that p(v, r) is maximum }. In the following,

we will write p(inf(R, r)) (resp., p(sup(R, r))), for denoting the minimum (resp.,

maximum) value of the probability mass inR w.r.t. r.

Next, given a set V = {v1, . . . , vk} of k points in the n-dimensional space, we

will denote the convex envelope of V as convEnv(V) = {
∑k

i=1 αivi | vi ∈ V, αi ∈

[0, 1], and
∑k

i=1 αi = 1}.

The following theorem provides a simple way of checking if a convex region in-

tersects with, or is contained in, a query region. It states that these two relationships

can be checked by considering only the convex envelope of two appropriate points in

the region, or just an appropriate numerical interval.

Theorem 17. For a convex regionR and query region Q(r, `, u),

136

i) R∩Q(r, `, u) 6= ∅ ⇔ convEnv({inf(R, r)∪ sup(R, r)})∩Q(r, `, u) 6= ∅ ⇔

[p(inf(R, r)), p(sup(R, r))] ∩ [l, u] 6= ∅.

ii) R ⊆ Q(r, `, u)⇔ convEnv({inf(R, r) ∪ sup(R, r)}) ⊆ Q(r, `, u)⇔

[p(inf(R, r)), p(sup(R, r))] ⊆ [l, u].

Inscribed and circumscribing regions for the polytope P(S, id, t) will be used to

answer selection queries under the cautious and optimistic semantics.

7.4.2 Cautious Semantics

The following theorem provides two sufficient conditions which will be exploited for

answering cautious queries. Specifically, for a given pair 〈id, t〉, when one of these

two conditions is satisfied no optimization programs like that in Theorem 1 have to

be solved. In that case, we say that the pair 〈id, t〉 is pruned via these sufficient

conditions. The first condition in the theorem ensures that the pair belongs to the

answer, whereas the second condition ensures that it does not.

Theorem 18. Let S be SPOT database and q = (?id, r, ?t, [`, u]) a query. For each

pair 〈id, t〉 in S, let Rins(S, id, t) and Rcir(S, id, t) be two convex regions such that

Rins(S, id, t) ⊆ P(S, id, t) ⊆ Rcir(S, id, t).

i) IfRcir(S, id, t) ⊆ Q(r, l, u) then (id, r, t, [`, u]) is in the cautious answer to q.

ii) If Rins(S, id, t) 6⊆ Q(r, l, u) then (id, r, t, [`, u]) is not in the cautious answer

to q.

By Theorem 17, the two conditions in the above theorem can be checked by using

the intervals IR = [p(inf(R, r)), p(sup(R, r))], where R ∈ {Rins,Rcir}. We now

consider some specific kinds of regions and show conditions equivalent to that of

137

Theorem 18 for these specific regions, which are obtained by rewriting the numeric

interval IR for the considered cases.

Hyper-rectangles, also called boxes, are probably the most common kind of ob-

jects used for bounding regions. For example, minimum bounding rectangles (MBRs)

are used in R-trees for spatial indexing [7, 8, 44]. When we consider box regions, the

interval IR can be easily related to the box sides. Given an n-dimensional space, a

box B is a (convex) region defined by the Cartesian product I1× I2× · · · × In, where

for each interval Ij with j ∈ [1..n], Ij ⊂ R. We will denote by `(B, L) and u(B, L)

the lower and upper bounds of B on the dimension corresponding to location L.

Corollary 6. Let S be SPOT database S and q = (?id, r, ?t, [`, u]) a query. Let Bins

and Bcir be two boxes such that Bins ⊆ P(S, id, t) ⊆ Bcir. Then,

i) if [lower(Bcir), upper(Bcir)] ⊆ [`, u], then (id, r, t, [`, u]) is in the cautious an-

swer to q, and

ii) if [lower(Bins), upper(Bins)] 6⊆ [`, u], then (id, r, t, [`, u]) is not in the cautious

answer to q, where

- lower(B) =
∑

L∈r `(B, L), and

- upper(B) =
∑

L∈r u(B, L).

Theorem 1 gives us an exact method for computing cautious answers to a selection

query. This method entails that, for each 〈id, t〉 pair in the database, two optimization

problems must be solved in order to decide if the pair belongs to the answer. On

the other hand, Theorem 18 gives us a strategy that can be exploited better when the

database is not updated frequently. Assume that, for each pair 〈id, t〉 in the database

and location L in L, the lower and upper bounds `(Bins, L), u(Bins, L), `(Bcir, L) and

138

u(Bcir, L) for the boxes Bins and Bcir are known. Then, applying Corollary 6, the

cautious answer to a query will be computed in constant time.

Box regions belongs to the class of regular polytopes. A non-regular polytope can

be easily described by specifying a set of points such that its convex envelope results

in the polytope. We use inscribed regions specified by the convex envelope of a set of

points in our experiments. The following corollary identifies the pruning conditions

for these kinds of regions.

Corollary 7. Let S be a SPOT database and q = (?id, r, ?t, [`, u]) a query. Given

two sets of points V1, V2 such that convEnv(V1) ⊆ P(S, id, t) ⊆ convEnv(V2),

i) if [lower(V2), upper(V2)] ⊆ [`, u] then (id, r, t, [`, u]) is in the cautious answer

to q, and

ii) if [lower(V1), upper(V1)] 6⊆ [`, u] then (id, r, t, [`, u]) is not in the cautious an-

swer to q where

- lower(V) = minv∈V p(v, r), and

- upper(V) = maxv∈V p(v, r).

7.4.3 Optimistic Semantics

Analogously to the case of cautious selection, the following theorem provides pruning

conditions for answering optimistic queries by exploiting inscribed and circumscrib-

ing regions.

Theorem 19. Let S be SPOT database S and q = (?id, r, ?t, [`, u]) a query. For

each pair 〈id, t〉 in S, let Rins(S, id, t) and Rcir(S, id, t) be two convex regions such

thatRins(S, id, t) ⊆ P(S, id, t) ⊆ Rcir(S, id, t). Then,

139

i) (id, r, t, [`, u]) is in the optimistic answer to q ifRins(S, id, t) ∩Q(r, `, u) 6= ∅

ii) (id, r, t, [`, u]) is not in the optimistic answer to q ifRcir(S, id, t)∩Q(r, `, u)=∅

Reasoning as in the previous section, we derive pruning conditions for optimistic

selection for inscribed and circumscribing regions consisting of boxes or convex en-

velopes of sets of points. For boxes, the pruning conditions of Theorem 19 can be

checked considering the intersection between the probability interval stated in the

query and the interval [lower(B), upper(B)], with B ∈ {Bins,Bcir}, introduced in

Corollary 6. In case the (inscribed or circumscribing) region is specified by a set V of

points, the pruning conditions can be checked by using interval [lower(V), upper(V)]

introduced in Corollary 7.

7.4.4 Computing Inscribed and Circumscribed Regions

In this section we introduce some strategies for incrementally computing inscribed

and circumscribed regions during the lifetime of the database. In fact, we assume that

initially there are no inscribed or circumscribing regions. These can be constructed

using answers to queries evaluated with the naive algorithms when no pruning is pos-

sible by means of the current available regions. Let q = (?id, r, ?t, [l, u]) be a query,

and let so be a solution of the linear program in Theorem 1.i) when q is evaluated

under the optimistic semantics. Let s` and su be the solutions of the optimization pro-

grams in Theorem 1.ii) when q is evaluated under the cautious semantics. Solutions

s` and su yield, respectively, values `′ and u′.

Consider an 〈id, t〉 pair. If the cautious answer to q is asked and the answer is ‘yes’,

then s` and su can be added to the set of points V that specifies the inscribed region

convEnv(V). On the other hand, if the answer to q is ‘no’, there are two cases. First,

140

if u′ > u (resp., l′ < l) we can add su (resp., sl) to the set of points V constructing an

inscribed region. Second, if u′ ≤ u (resp., l′ ≥ l), then the inequalities
∑

L∈r vL ≤ u

(resp.,
∑

L∈r vL ≥ l) describe a hyperplane bounding the polytope P(S, id, t). In the

case that r = {L}, this inequality represents the upper bound u(B, L) (resp., the lower

bound `(B, L)) on the dimension L for a bounding box B.

Similarly, if the optimistic answer to q is asked and the answer is ‘yes’, then so

can be added the set of points V that specifies the inscribed region. Whereas, if the

optimistic answer to q is ‘no’, then the equations
∑

L∈r vL ≥ l (or
∑

L∈r vL ≤ u)

describe a hyperplane bounding the polytope P(S, id, t).

Circumscribing regions can be also obtained exploiting the concept of composite

atom introduced in [38]. Indeed, a composite atom ca for a set S of SPOT atoms is

such that its interpretations subsume the interpretations of S. As interpretations cor-

responds to points of the polyhedron associated with S, a composite atom represents

a bounding region.

7.4.5 Multiple Inscribed Regions for Cautious Selection

Inscribed regions are used for cautious selection in order to prune those 〈id, t〉 pairs

which do not belong to the answer of a given query. Although the concept of minimal

bounding region has been extensively studied and applied in several contexts, such

as spatial indexing and data mining, we are not aware of any work where inscribed

region are used for similar issues. In working with bounded and bounding regions for

a given object, a natural question arises: what is the best region to use? To answer this

question we need to take into account both the geometry of inscribed (or circumscrib-

ing) regions and a parameter for measuring the effectiveness of this region. Boxes and

ellipsoids are commonly used; their effectiveness is measured by the volume of the

141

region. For instance, minimum volume bounding rectangles are used for spatial in-

dexing and as basic component of R-trees, whereas in the data mining area, minimum

volume ellipsoids are used for identifying data outliers.

A nice property of ellipsoids is that there is a unique maximum volume ellipsoid

inscribed in a convex polytope. This is not the case for other common objects. For

instance, there may be more than one maximum volume box inscribed in a convex

region (as an example, consider maximum area rectangles in a regular pentagon).

Although the intuition could say that increasing the volume of an inscribed region

results in a more effective pruning strategy, the following example shows that this is

not always true.

Example 29. Let S be the SPOT database

{(id, {L1}, t, [0.2, 0.5]), (id, {L2}, t, [0.1, 0.6]), (id, {L1, L2}, t, [0.2, 0.8])},

andL the set of locations {L1, L2, L3}. The query is q = (?id, {L1, L2}, ?t, [0.4, 0.8]).

Let E1 and E2 be two ellipsoids inscribed in P(S, id, t) such that E1 has maximum

volume. The projection into the subspace {L1, L2} of E1 and E2 is shown in Figure

7.10. The projection of the query region Q({L1, L2}, 0.4, 0.8) is represented by the

area between the two parallel oblique lines.

Figure 7.10 also shows the segments I1 and I2 representing, respectively, the prun-

ing intervals [p(inf(E1, {L1, L2})), p(sup(E1, {L1, L2}))] and [p(inf(E2, {L1, L2})),

p(sup(E2, {L1, L2}))] (see Theorems 17 and 18). It is easy to see that, although ellip-

soid E2 has a volume smaller than that of E1, it is associated with a pruning interval

I2 whose length is greater than that of I1, thus using E2 results in a more effec-

tive pruning strategy for the query q = (?id, {L1, L2}, ?t, [0.4, 0.8]). On the other

hand, ellipsoid E1 results better than E2 when the query (?id, {L1}, ?t, [0.4, 0.8]) (or

142

(?id, {L2}, ?t, [0.4, 0.8])) is considered, since the projection of E1 on axis L1 (or L2)

is greater than the projection of E2 on the same axes.

Figure 7.10: Inscribed ellipsoids for cautious selection.

The example above suggest that the optimality of an inscribed region for pruning

depends on the locations considered in the query: an optimal inscribed region may

become sub-optimal by changing the projection on different locations in the query.

Moreover, in order to obtain more effective pruning, the quantity to be maximized is

the length of the pruning intervals, not the volume of the inscribed regions.

Several inscribed regions can be used together to obtain more efficient pruning

strategies. The following theorem shows how to combine them in order to maximize

the pruning.

Theorem 20. Let S be SPOT database S and q = (?id, r, ?t, [`, u]) a query. For

each pair < id, t > in S, let {R1, . . .Rk} be a set of convex regions such that

Ri ⊆ P(S, id, t) with i ∈ [1..k]. Then, the greatest interval for pruning atoms

(id, r, t, [`, u]) which do not belong to the cautious answer to q is

[`′, u′] = [min{p(inf(Ri, r)) | i ∈ [1..k]}, max{p(sup(Ri, r)) | i ∈ [1..k]}].

143

7.4.6 Algorithms

The first algorithm we introduce is the pre-computation algorithm (Algorithm 15),

which creates (Vid,t, csaid,t) for each 〈id, t〉. Vid,t is a set of solutions to LP (S, id, t)

that serves as the inscribed region. csaid,t is a composite atom (Definition 49) that

serves as an enclosing region. Composite atoms define a circumscribing region for

the satisfying interpretations and therefore a region circumscribing the solutions of

LC(S, id, t).

Algorithm 15 For SPOT database S, compute the inscribed region Vid,t (represented

as k separate solutions to LP (S, id, t)) and the enclosing regions csaid,t (represented

as a composite SPOT atom (Definition 49)), and return both as (Vid,t, csaid,t).
Create empty composite atom csaid,t.
for sa ∈ S do

csaid,t = UpdateCSA(csa, sa) (Algorithm 11).
end for
for i from 1 to k do

Compute random solution v̄ to LP (S, id, t), add v̄ to Vid,t

end for
return (Vid,t, csaid,t).

Pruning according to the inscribed region is accomplished via Algorithm 16. This

algorithm applies the insights of Corollary 7: it returns OUT according to part (ii) of

that corollary.

We know how to update composite regions and when they are applicable for prun-

ing via Theorem 12 and Algorithm 11.

Algorithm 17 puts all these pieces together and performs cautious selection with

pruning. This is the algorithm tested in the following experiments. Notice that one

important variable will be the size of Vid,t, or the number of solutions provided to the

pruning algorithm. We will see this to have an impact on the algorithm’s performance.

144

Algorithm 16 For cautious query q = (?id, r, ?t, [`, u]), set of solutions V to

LP (S, id, t), for some pair 〈id, t〉, pruneCautious returns OUT if (id, r, t, [`, u])

is not in the query’s cautious answer set, and UNKNOWN otherwise.
pruneCautious(q, V = {v̄1, . . . , v̄n})

Let (?id, rq, ?t, [`q, uq]) = q be the query.
for v̄i ∈ V do

If p(v̄i, rq) /∈ [`q, uq] then return OUT
end for
return UNKNOWN .

Algorithm 17 Computes the set of 〈id, t〉 pairs that are in the cautious answer to the

query q on SPOT database S using precomputed information {Vid,t}.
pruneCautiousSelect(q, {(Vid,t, csaid,t},S)

Let (?id, rq, ?t, [`q, uq]) = q be the query.
ANS = ∅
for 〈id, t〉 do

if NC(csaid,t, (id, rq, t, [`q, uq])) then
if pruneCautious(qr, Vid,t) = IN then

ANS = ANS ∪ {(id, rq, t, [`q, uq])}
else

Check if (id, rq, t, [`, u]) b S via linear programming.
end if

end if
end for

7.4.7 Experiments

Algorithms Used

We produced a prototype implementation within a SPOT framework for experi-

mentally testing the effectiveness of our pruning techniques. In our implementa-

tion, we took a database S and ran Algorithm 15 to create our pre-computed data

{(Vid,t, csaid,t)}. Each Vid,t contains a set of k solutions to LC(S, id, t) for an 〈id, t〉

pair. The larger k is, the larger the inscribed region will be and the larger the pruning

capabilities of such a region. However, larger k also implies larger up-front costs for

145

computing the inscribed region.

Section 7.3 explains how SPOT trees can be used for optimistic selection. How-

ever, as those pruning techniques prune away potential answers to optimistic selection

queries, and all answers to a cautious query are, by definition, also answers to the

corresponding optimistic query, we can use these techniques to perform pruning for

cautious queries also. We include these results in our experiments and label such data

by “SPOT tree”.

Random Artificial Data

In this experiment, we generate random artificial data and test the running times for

optimistic and cautious selection. We use inscribed volumes represented by k solu-

tions for pruning, and we vary k. Since this sort of pruning is performed once per

〈id, t〉 pair, we use only one such pair. SPOT atoms are generated via a random pro-

cess. L is 100 × 100. The region r is a rectangle whose width and height are both

randomly chosen integers between 1 and 20, while its x and y coordinates are cho-

sen uniformly at random. For the probability bounds, a random draw was taken from

[0, 1] for u and another random draw was taken from [0, u] for l. In order to ensure

the database’s consistency after all atoms are created, the lower bound of every atom

is divided by the number of atoms.

The query’s bounds [`, u] are chosen in another random process: the smaller of two

random draws from [0, 1] is `, while the large draw is u. Small queries use a randomly

chosen 2× 2 region, while large query regions are a randomly chosen 30× 30 region.

We measured the running time of cautious and optimistic selection, varying the

number of generated atoms and the number of solutions stored by the database.

Cautious selection queries show substantial benefit from pre-computing an in-

146

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400

m
s

Atoms

Cautious Selection With Generated Data

naive
SPOT Tree
2 solutions
6 solutions

10 solutions
14 solutions
18 solutions

Figure 7.11: Cautious query times with

randomly generated data and small query

region. Data points are an average of 300

trials.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350 400

m
s

Atoms

Optimistic Selection With Generated Data

naive
SPOT Tree
2 solutions
6 solutions

10 solutions
14 solutions
18 solutions

Figure 7.12: Optimistic query times with

randomly generated data and small query

region. Data points are an average of 300

trials.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 50 100 150 200 250 300 350 400

m
s

Atoms

Cautious Selection With Generated Data

naive
SPOT Tree
2 solutions
6 solutions

10 solutions
14 solutions
18 solutions

Figure 7.13: Cautious query times with

randomly generated data and large query

region. Data points are an average of 300

trials.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

 0 50 100 150 200 250 300 350 400

m
s

Atoms

Optimistic Selection With Generated Data

naive
SPOT Tree
2 solutions
6 solutions

10 solutions
14 solutions
18 solutions

Figure 7.14: Optimistic query times with

randomly generated data and large query

region. Data points are an average of 300

trials.

147

scribed and a circumscribed region. The given 〈id, t〉 pair could be pruned immedi-

ately in almost every case, resulting in running times close to the x-axis whenever

inscribed regions were stored. See Figures 7.11 and 7.13. This is partially due to the

fact that for most of the randomly generated datasets, the cautious query returned an

empty answer set. We note that while the SPOT tree is also able to provide pruning

when the query region is small, the overhead of the tree actually makes it perform

worse than naı̈ve checking for large query regions. In these cases, the tree rarely

prunes any 〈id, t〉 pairs.

In contrast, the optimistic experiments show speedup as the number of solutions

defining convEnv increases when the query region is large (Figure 7.14) but not

when the query region is small (Figure 7.12). We posit this to be due to the fact

that large query regions are more likely to contain enough points assigned non-zero

probability to cause the probability mass of the query region according to convEnv

to be contained in the query interval. However, when the query region is small, it is

substantially less likely that the query region will be assigned non-zero probability by

a random solution.

7.5 Comments on Selection Algorithms

This chapter addressed the selection query for the SPOT framework. This probabilis-

tic query will be of clear use in many of the environments where the SPOT framework

may be deployed. Consider the example of the fleet of fishing ships, which want to

travel as little as possible to find as many fish as possible. The fleet would benefit

from knowing when and where fish will be with probabilistic guarantees. Or consider

a military scenario, where opponents deliberately make tracking difficult. A com-

148

mander on the field clearly wants to be able to extract which enemies will be in range

and when from the available probabilistic spatial temporal data. Supposing the data

is uncertain enough that a single probability distribution function cannot be provided,

the SPOT framework is the only one capable to answering these sorts of queries.

The algorithms presented in this chapter both involve pre-computation. The first

pre-computes a tree structure called a SPOT tree, which is akin to the R-tree. The

SPOT tree contains nodes with data bounding the set of interpretations satisfying

their children. This data is stored in composite atoms, a new form of a SPOT atom.

There are fast operations for updating these composite atoms to account for newly

added children. Experimental results on a prototype implementation show algorithms

based on SPOT trees to produce substantial speedup.

The second set of algorithms implements inscribing and circumscribing regions

bounding the solutions to the linear program. In most common spatial settings,

bounding boxes are put to substantial use. With these algorithms, there is both a

bounded (inscribed) as well as a bounding (circumscribing) data structure, which

may be used to speed up optimistic and cautious queries. In our experiments, these

inscribed and circumscribing regions produce good results, and in particular they do

well in some situations where little pruning can be accomplished by a SPOT tree.

These data structures are an important first step towards a fully function SPOT

framework. They are a proof-of-concept showing that query procedures leveraging

SPOT ’s spatial temporal probabilistic structure are possible and can provide sub-

stantial speedup.

149

Chapter 8

Conclusion

In this thesis we have seen many algorithms and techniques for dealing with spatial

probabilistic temporal (SPOT) databases. SPOT databases store probabilistic infor-

mation of the form “Object id was in region r at time point t with a probability in the

interval [`, u]”. Despite previous work done on representing probabilistic spatial data

[16, 45, 46, 36], this is the first work to handle the possiblity of not being provided

with full probability distributions. In many domains, full PDFs for object locations are

not available: one can only bound the probability of correctness. For instance, there

are military prediction algorithms where vehicles are reported in regions according

to probability intervals [34, 28]. Such domains require an abstract probabilistic logic

such as SPOT .

There are two different potential formal semantics interpreting SPOT atoms. The

time point semantics, intorduced in Section 3.3 (page 33) concerns the probabilities

of an object being at locations at each time point, yet does not account in the seman-

tics for an objects’ movement contratints. Instead, such constraints are expected to be

present in the data. For times when the movement constraints cannot be adequetely

represented in the data, and there is external information available on what points are

150

reachable from where, there is the world-based semantics (Section 3.4 on page 36).

These constraints use probability distributions over worlds to ensure that interpreta-

tions abide by the object’s potential movement.

All sets of semantics admit polynomial time consistency checking algorithms.

While it is relatively straightforward to construct a polynomial time consistency check-

ing algorithm for the time point semantics (Section 4.1.1 on page 43), I was also

able to introduce several alternative techniques to improve performance of consis-

tency checking under the time point semantics. These included introducing a binary

space partition to determine salient regions (Section 4.1.2 on page 44) and applying

divide-and-conquer type techniques to clusters of related SPOT atoms (Section 4.1.3

on page 51).

The consistency checking under the world-based semantics is also a polynomial

time proceedure. This is surprising, as the naı̈ve representation of the world-based

semantics is exponential. By using path probability variables, one can bypass the

exponential number of worlds with polynomially many path probability variables.

The proof of the equivalence of a path probability linear program to the world based

semantics is described in Section 4.2.2. In Section 4.2.3 further efficiencies are intro-

duced to the path probability formulation.

For times when the database is inconsistent, one may use the database revision

techniques in Chapter 5 (page 79). Revision, like database repair, corrects inconsis-

tent databases. To assure the adequecy of a revision strategies, all of the revision

strategies are compared against the AGM axioms, which specify conditions necessary

for a proper revision of a belief state [1]. Apart from standard subset based revision

strategies (Section 5.5 on page 82), one can make changes to individual elements of

a SPOT atom. For instance, Section 5.6 has an example proving there is no method

151

that modifies only the spatial component of SPOT atoms and also satisfies the AGM

axioms. There is, however, a polynomial time method that revises the probability

bounds of SPOT atoms to create a consistent database. In Section 5.8 (page 93)

describes the probability revision method and proves it to satisfy the AGM axioms.

There are also methods for doing selection queries in SPOT databases. Selection

queries tell which objects are in a given region at which times with a probability in a

given range. They might, for instance, tell a cell phone company which cell phones

will be in range of a given tower at which times with a probability greater than 90%.

Several methods for computing selection queries are detailed. First Section 7.3 in-

troduces the SPOT Tree, a new spatial probabilistic indexing structure. Modeled on

the R-tree, where each node contains a box that “bounds” the data in its children, a

SPOT tree node contains composite atoms, which bound the sets of interpretations

entailed by the node’s children. Just as the R-tree’s bounding boxes serve to prune

search, these bounds can be used to quickly eliminate many potential answers to vari-

ous selection queries. Another method for computing selection precomputes both cir-

cumscribing regions as “bounds” for the set of interpretations and inscribed regions

which are “bounded” by the set of interpretations. The inscribed and circumscribing

regions provide further pruning oppurtunities, which produced substantial speedup in

our experiments on cautious queries.

This thesis introduced SPOT databases. It investigated two separate seman-

tics, and found consistency checking in both to be polynomial time. For inconsis-

tenct SPOT database, such as might be encountered when using many disparate data

sources, the thesis introduced several revisions strategies to repair the databases. The

strategies were compared to the AGM axioms for belief revision. Also, some se-

lection operations were considered from several different perspectives. I provide an

152

R-tree based indexing structure that sped up selection operations, and a pruning al-

gorithm based on inscribed and circumscribing regions. Together, these contributions

represent a significant first step towards a workerable spatial probabilistic temporal

database framework of use in wide varieties of spatial probabilistic temporal settings.

153

Bibliography

[1] C.E. Alchourrón, P. Gärdenfors, and D. Makinson, On the logic of theory

change: partial meet contraction and revision functions, Journal of Symbolic

Logic 50 (1985), 510–530.

[2] David Applegate, William Cook, Sanjeeb Dash, and Monika Mevenkamp, Qsopt

library, http://www2.isye.gatech.edu/ wcook/qsopt/index.html.

[3] M. Arenas, L. Bertossi, and J. Chomicki, Consistent query answers in in-

consistent databases, Proceedings of the eighteenth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems (1999), 68–79.

[4] M. Arenas, L. Bertossi, and Jan Chomicki, Answer sets for consistent query an-

swering in inconsistent databases, Theory and Practice of Logic Programming

3 (2003), 393–424.

[5] C. Baral, S. Kraus, and J. Minker, Combining multiple knowledge bases, IEEE

TKDE 3 (1991), no. 2, 208–220.

[6] D. Barbara, H. Garcia-Molina, and D. Porter, The management of probabilistic

data, Knowledge and Data Engineering, IEEE Transactions on 4 (1992), 487–

502.

154

[7] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger,

The R*-tree: An Efficient and Robust Access Method for Points and Rectangles,

SIGMOD Conference, 1990.

[8] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel, The X-tree: An Index

Structure for High-Dimensional Data, VLBD Conference, 1996.

[9] A. Bolognesi and P. Ciancarini, Searching over metapositions in kriegspiel,

Computer Games 2004, 2004.

[10] Jean Bolot, How to own a cellular network in your spare time, and what data

mining has to do with it, Talk at The University of Maryland, October 2007.

[11] G. Boole, The laws of thought, Prometheus Books (2003), 1854.

[12] H. Cao, O. Wolfson, and G. Trajcevski, Spatio-temporal data reduction with

deterministic error bounds, The VLDB Journal The International Journal on

Very Large Data Bases 15 (2006), 211–228.

[13] Roger Cavallo and Michael Pittarelli, The theory of probabilistic databases,

Morgan Kaufmann Publishers Inc., 1987, pp. 71–81.

[14] B. L. Clarke and P. D. F. File, A calculus of individuals based on“connection”.,

Notre Dame J. Formal Logic 22 (1981), 204–218.

[15] A G Cohn and S M Hazarika, Qualitative spatial representation and reasoning:

An overview, Fundamenta Informaticae 46 (2001), no. 1-2, 1–29.

[16] Xiangyuan Dai, Man Lung Yiu, Nikos Mamoulis, Yufei Tao, and Michail Vaitis,

Probabilistic spatial queries on existentially uncertain data., SSTD (Clau-

155

dia Bauzer Medeiros, Max J. Egenhofer, and Elisa Bertino, eds.), Lecture Notes

in Computer Science, vol. 3633, Springer, 2005, pp. 400–417.

[17] N. Dalvi and D. Suciu, Efficient query evaluation on probabilistic databases,

The VLDB Journal The International Journal on Very Large Data Bases 16

(2007), 523–544.

[18] A. Dekhtyar, F. Ozcan, R. Ross, and V. S. Subrahmanian, Probabilistic temporal

databases, ii: Calculus and query processing, (2001).

[19] Alex Dekhtyar, Robert Ross, and V. S. Subrahmanian, Probabilistic temporal

databases, i: algebra, ACM Trans. Database Syst. 26 (2001), 41–95.

[20] Curtis E. Dyreson and Richard Thomas Snodgrass, Supporting valid-time inde-

terminacy, ACM Trans. Database Syst. 23 (1998), no. 1, 1–57.

[21] T. Eiter, T. Lukasiewicz, and M. Walter, A data model and algebra for prob-

abilistic complex values, Annals of Mathematics and Artificial Intelligence 33

(2001), 205–252.

[22] W. Faber, G. Greco, and N. Leone, Magic sets and their application to data

integration, Journal of Computer and System Sciences 73 (2007), 584–609.

[23] R. Fagin, J. Y. Halpern, N. Megiddo, IBMAR Center, and C. A. San Jose, A logic

for reasoning about probabilities, Logic in Computer Science, 1988. LICS’88.,

Proceedings of the Third Annual Symposium on (1988), 410–421.

[24] Ronald Fagin, Jeffrey D. Ullman, and Moshe Y. Vardi, On the semantics of up-

dates in databases, PODS, ACM, 1983, pp. 352–365.

156

[25] Bettina Fazzinga, Sergio Flesca, Filippo Furfaro, and Francesco Parisi, Dart: A

data acquisition and repairing tool, EDBT Workshops (Torsten Grust, Hagen

Höpfner, Arantza Illarramendi, Stefan Jablonski, Marco Mesiti, Sascha Müller,

Paula-Lavinia Patranjan, Kai-Uwe Sattler, Myra Spiliopoulou, and Jef Wijsen,

eds.), Lecture Notes in Computer Science, vol. 4254, Springer, 2006, pp. 297–

317.

[26] Kenneth E. Foote and Donald J. Huebner, Error, accuracy, and precision, The

Geographer’s Craft Project, Department of Geography, The University of Col-

orado at Boulder, 1995.

[27] T. Hailperin, Boole’s logic and probability: a critical exposititon from the stand-

point of contemporary algebra, logic, and probability theory, North-Holland

Publishing Co. Amsterdam, The Netherlands, The Netherlands, 1986.

[28] Tom Hammel, Timmothy J. Rogers, and Bernie Yetso, Fusing live sensor

data into situational multimedia views, Multimedia Information Systems, 2003,

pp. 145–156.

[29] G. B. M. Heuvelink, Error propagation in environmental modelling with gis,

Taylor & Francis, 1998.

[30] Frederick S. Hillier and Gerald J. Lieberman, Introduction to operations re-

search, 4th ed., Holden-Day, Inc., San Francisco, CA, USA, 1986.

[31] L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian, Probview: a

flexible probabilistic database system, ACM Transactions on Database Systems

(TODS) 22 (1997), 419–469.

157

[32] L.G.Khachiyan, A polynomial algorithm in linear programming, Soviet Mathe-

matics Doklady 20 (1979), 191–194.

[33] M. R. Malek, A. U. Frank, M. R. Delavar, T. Technology, T. Tehran, and A. Vi-

enna, A logic-based foundation for spatial relationships in mobile gis environ-

ment, Proceeding of 2nd Intenational symposium on LBS & Telecartography,

Austria, Vienna (2006).

[34] R. Mittu, F. Segaria, S. Guleyopuglu, K. S. Barber, T. Graser, R. Ross, and

J. Walters, Supporting the coalition agents experiment (coax) through the tech-

nology integration experiment (tie) process, (2003).

[35] Raymond T. Ng and V. S. Subrahmanian, Probabilistic logic programming, In-

formation and Computation 101 (1992), no. 2, 150–201.

[36] J. Ni, C. V. Ravishankar, and B. Bhanu, Probabilistic spatial database oper-

ations, Advances in Spatial and Temporal Databases: 8th International Sym-

posium, SSTD 2003, Santorini Island, Greece, July 24-27, 2003: Proceedings

(2003).

[37] N. J. Nilsson, Probabilistic logic, Readings in Uncertain Reasoning (G. Shafer

and J. Pearl, eds.), Kaufmann, San Mateo, CA, 1990, pp. 680–688.

[38] Austin Parker, Guillaume Infantes, John Grant, and V. S. Subrahmanian, Spot

databases: Efficient consistency checking and optimistic selection in probabilis-

tic spatial databases, Transactions on Knowledge and Data Engineering (2008).

[39] Austin Parker, Guillaume Infantes, John Grant, and VS Subrahmanian, An agm-

based belief revision mechanism for probabilistic spatio-temporal logics, AAAI,

2008.

158

[40] Austin Parker, V.S. Subrahmanian, and John Grant, A logical formulation of

probabilistic spatial databases, IEEE Transactions on Knowledge and Data En-

gineering 19 (2007), no. 11, 1541–1556.

[41] Austin Parker, Fusun Yaman, Dana Nau, and V.S. Subrahmanian, Probabilis-

tic go theories, Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), January 2007, pp. 501–506.

[42] Judea Pearl, Probabilistic reasoning in intelligent systems: Networks of plau-

sible inference, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

1988.

[43] H. Samet, The quadtree and related hierarchical data structures, ACM Comput-

ing Surveys (CSUR) 16 (1984), 187–260.

[44] Timos Sellis, Nick Roussopoulos, and Christos Faloutsos, The R+-tree: A Dy-

namic Index for Multi-Dimensional Objects, VLBD Conference, 1987.

[45] Yufei Tao, Reynold Cheng, Xiaokui Xiao, Wang Kay Ngai, Ben Kao, and Sunil

Prabhakar, Indexing multi-dimensional uncertain data with arbitrary probability

density functions, VLDB ’05: Proceedings of the 31st international conference

on Very large data bases, VLDB Endowment, 2005, pp. 922–933.

[46] Yufei Tao, Xiaokui Xiao, and Reynold Cheng, Range search on multidimen-

sional uncertain data, ACM Trans. Database Syst. 32 (2007), no. 3, 15.

[47] J. Zhang and M. F. Goodchild, Uncertainty in geographical information, CRC

Press, 2002.

159

[48] W. Zhao, A. Dekhtyar, and J. Goldsmith, Databases for interval probabilities,

International Journal of Intelligent Systems 19 (2004), 789–815.

160

