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The transportation sector is a significant contributor to current global climatic problems, 

one of the most prominent problems that today’s society faces. In this dissertation, three 

complementary problems are addressed to support emissions reduction efforts by 

providing tools to help reduce demand for fossil fuels. The first problem addresses 

alternative fuel vehicle (AFV) fleet operations considering limited infrastructure 

availability and vehicle characteristics that contribute to emission reduction efforts by: 

supporting alternative fuel use and reducing carbon-intensive freight activity. A Green 

Vehicle Routing Problem (G-VRP) is formulated and techniques are proposed for its 

solution. These techniques will aid organizations with AFV fleets in overcoming 

difficulties that exist as a result of limited refueling infrastructure and will allow 

companies considering conversion to a fleet of AFVs to understand the potential impact 

of their decision on daily operations and costs. The second problem is aimed at 

supporting SOV commute trip reduction efforts through alternative transportation 



 

 

options. This problem contributes to emission reduction efforts by supporting reduction 

of carbon-intensive travel activity. Following a descriptive analysis of commuter survey 

data obtained from the University of Maryland, College Park campus, ordered-response 

models were developed to investigate the market for vanpooling. The model results show 

that demand for vanpooling in the role of passenger and driver have differences and the 

factors affecting these demands are not necessarily the same. Factors considered include: 

status, willingness-to-pay, distance, residential location, commuting habits, demographics 

and service characteristics. The third problem focuses on providing essential input data, 

origin-destination (OD) demand, for analysis of various strategies, to address emission 

reduction by helping to improve system efficiency and reducing carbon-intensive travel 

activity. A two-stage subarea OD demand estimation procedure is proposed to construct 

and update important time-dependent OD demand input for subarea analysis in an effort 

to overcome the computational limits of Dynamic Traffic Assignment (DTA) 

methodologies. The proposed method in conjunction with path-based simulation-

assignment systems can provide an evolving platform for integrating operational 

considerations in planning models for effective decision support for agencies that are 

considering strategies for transportation emissions reduction. 
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Chapter 1: Introduction 

 

1.1 Objective and Motivation 

There is ample evidence that climate change is the most prominent problem that today’s 

society faces, and the transportation sector is a significant contributor to this problem. In 

1992, the United Nations Framework Convention on Climate Change (UNFCCC) was 

founded in an effort to create a global response to the problem, bringing together 194 

member countries. Since 1997, the Kyoto Protocol has gathered 190 countries under 

more legally binding measures with the aim of aiding in reducing national emissions and 

limiting the rise of global temperatures (UNFCCC, 2010a).  

Efforts to mitigate transportation Greenhouse Gas (GHG) emissions and adapt to 

changing climate have gained increased attention over the last three decades. The 

transportation sector is the second largest contributor to world GHG emissions. Much of 

these emissions are produced through the burning of fossil fuels. Among GHGs, carbon 

dioxide (CO2) constitutes the largest share of global GHG emissions (76.7% in 2004) and 

fossil fuel use is responsible for over 56% of the total CO2 production in the world 

(UNFCCC, 2010b). The U.S. transportation sector accounts for 5% of global and 29% of 

national GHG emissions, nearly all of which is from the burning of fossil fuels (97.8% in 

2008, (U.S. DOE, 2010)). Fossil fuel consumption not only impacts the environment, but 

also impacts the economy, security, and quality of life. The U.S. and governments of 

other industrialized nations recognize that breaking the dependence on foreign oil is 

necessary for increasing security and economic stability.  
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Efforts taken in the last two decades have shown that this climate challenge calls 

for an integrated and multi-faceted approach. Several international (e.g. UNFCCC, 

Intergovernmental Panel on Climate Change (IPCC), United Nations Environment 

Programme (UNEP)) and national (e.g. the U.S. Department of Transportation (DOT), 

the U.S. Environmental Protection Agency (EPA), the U.S. Global Change Research 

Program (USGCRP), the Federal Highway Administration/American Association of State 

Highway and Transportation Officials, (FHWA/AASHTO)) organizations have published 

reports espousing strategies to reduce GHG emissions resulting from the transportation 

sector’s activities. Despite the differences in their classifications or evaluation methods, 

they all agree that the problem needs to be tackled from several fronts.  

A recent report to the U.S. Congress, prepared by the Department of 

Transportation (DOT) Center for Climate Change and Environmental Forecasting, on the 

transportation sector’s role in climate change identifies four categories of strategies 

across all modes: (1) introducing low-carbon fuels; (2) increasing vehicle fuel efficiency; 

(3) improving transportation system efficiency; and (4) reducing carbon-intensive travel 

activity. The report also suggests strategies, such as aligning transportation planning and 

infrastructure investments with GHG mitigation objectives, as well as charging for 

carbon emissions (U.S. DOT, 2010a). Similar strategies are suggested by AASHTO in an 

effort to help achieve the goal of reducing U.S. GHG emissions by 80% by 2050 from 

2005 levels. They suggest a combination of strategies be employed. These strategies 

target the problem from both supply and demand sides as is required given the complex 

and interrelated structure of the physical transportation system and the broader 

socioeconomic system in which it is embedded. 
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A multi-faceted approach is followed in this dissertation with the aim of 

supporting GHG emissions reduction efforts both from supply and demand sides.  The 

complex structure of the transportation system and its relations with socio-economics 

makes developing policies, strategies and analysis methods for transportation problems, 

including GHG emission reduction efforts, quite challenging. This challenge was 

described in general terms by Manheim: 

“The challenge of transportation system analysis is to intervene, delicately and 

deliberately, in the complex fabric of a society to use transport effectively, in 

coordination with other public and private actions, to achieve the goals of that society.” 

(Manheim, 1979).  

Some would argue that the societal goals have not changed over the past four 

decades since Manheim’s statement, but with increasing world-wide population and 

vehicular ownership, the need to achieve these goals, particularly those related to 

environmental concerns, is now even more urgent. Manheim described what many know 

term as a systems-based approach to analyzing transportation systems and such a 

systems-based approach has been suggested by numerous others, including for example 

works by Lieb (1978) and Sussman (2000). Such approaches advocate for the 

simultaneous consideration of the many societal goals; that is, for a more holistic 

approach. Despite agreement in the academic literature that such a holistic approach is 

necessary, in practice it is often the case that decision-makers focus their actions on 

myopic objectives, such as building capacity or system maintenance, while neglecting 

environmental or economic impacts. The increased awareness of the transportation 

system’s impact on the environment, economic activity and land-use calls for a broader 
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perspective that takes into account sustainability of the system. To achieve environmental 

and economic sustainability goals, there is a need for a change in perspective in 

transportation analysis, planning and policy-making. 

To address this need for a holistic approach to modeling transportation systems 

both from technological and societal perspectives, new approaches have emerged 

(Dodder, 2004; Sussman et al., 2005). An example of such approach is CLIOS (Complex 

Large Integrated Open Systems). CLIOS builds on Manheim’s total transportation system 

definition where the transportation system is described by interrelations among three 

basic variables: the transportation system (T), the activity system (A), and traffic flows 

(F) (Figure 1-1.a).  

 

 

 

 

 

 

 

 

 

Figure 1-1  (a) Manheim’s basic transportation system relations (1979), (b) Transportation system 

and GHG emissions reduction efforts 

 

One can consider the role of GHG emissions reduction efforts in the context of 

Manheim’s systems framework (Figure 1-1.b). Current traffic flows and resulting GHG 

emissions are determined by both T and A (relation 1). Changes in flow cause changes in 

A and T over time (relations 2 and 3, respectively). However, the need to reduce GHG 

emissions requires changes in A and T be deliberately guided so as to achieve GHG 

mitigation goals. A combination of policy, technology and behavioral changes are needed 
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to achieve this. GHG emissions mitigation strategies, such as those stated in the U.S. 

DOT Report (2010a), aim to have this impact. In addition, there is need to trace existing 

flow patterns, their GHG emissions productions (GHG emission inventories), and 

changes in traffic flow with corresponding emissions as a result of planned (or 

implemented) strategies so as to measure the impact of improvements.  

The characteristics of T and A are the main factors in GHG emission problems 

encountered at any scale, from institutional to global levels. For instance, as a result of 

increased economic activity and existing transportation infrastructure, 75% of the freight 

tonnage in 2007 was carried by trucks, while rail carried 12 and marine 4%, respectively 

(ICF, 2008). Trucks were responsible for 19.2% of U.S. GHG emissions, while rail and 

marine transportation were for 2.8 and 2.3%, respectively, in 2006 (U.S. DOT, 2010a). 

Despite the fact that rail is typically the least energy-intensive freight mode, due to the 

limited rail infrastructure and service characteristics, trucking has been the main mode of 

freight transportation. Similarly, at a local level, for example in a metropolitan area, GHG 

emissions are a function of interactions between existing transportation systems and 

person and goods movements. The choice as to how these movements are made is key for 

the amount of GHG emissions produced. These choices vary from individual decisions 

taken with respect to departure time, route, mode, residential and work related choices to 

governmental decisions associated with policies, strategies and services. These decisions 

ultimately determine the flows on the roads carried by different modes. For example, 

single occupancy vehicles (SOV) have been the dominant mode of passenger 

transportation, and are the largest contributor of U.S. GHG emissions, producing nearly 

59% of U.S. transportation GHG emissions in 2008 (U.S. DOT, 2010a). Therefore, GHG 
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reduction efforts targeting either freight or passenger transportation need to focus not 

only on increasing vehicle fuel efficiency and fuel standards to reduce carbon intensity, 

but also on infrastructure and behavioral changes that can encourage shifts to more 

energy efficient modes.  

GHG emission reduction efforts need to include supply- (T) and demand-side (A) 

changes. From the supply-side, services and infrastructure for energy efficient modes, 

both for freight and passenger movements, are needed, as is development of vehicles that 

are powered by low carbon (e.g. biodiesel, ethanol, natural gas) or zero carbon (e.g. 

electric and hydrogen) fuels. From the demand-side, reducing demand for transportation 

itself with mixed-use development, careful land-use planning and pricing carbon can be 

long-term strategies. At the same time, reducing or shifting demand for carbon-intensive 

transportation modes to energy efficient, environmentally-responsible modes, such as 

transit, vanpools, carpools and non-motorized transportation for passenger travel and rail 

or marine for freight transportation are short- to medium-term strategies.  

As indicated in (U.S. DOT, 2010a), no single transportation technology, strategy or 

policy will be adequate to provide the level of reduction needed. The consensus is that a 

combination of technologies, strategies and policy actions will need to be employed to 

engender the level of reduction in GHG emissions that is required.  

This dissertation has three main objectives that if attained will contribute to 

efforts to mitigate GHG emissions resulting from various transportation activities: 

 

(1) Support AFV fleet operations under current refueling infrastructure and 

vehicle/fuel availability. Develop techniques to support companies or agencies that 
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employ a fleet of vehicles to serve customers or other entities located over a wide 

geographical region in their decision to transition to alternative fuel use. These 

techniques will plan for refueling and incorporate stops at AFSs so as to eliminate the 

risk of running out of fuel while maintaining low cost routes. 

(2) Support large employers in their efforts to reduce SOV commute trips by 

providing vanpooling services. Develop econometric models to analyze potential for 

vanpooling to help cities and large employers, such as universities and government 

agencies, in their efforts to reduce their GHG emissions through providing alternative 

transportation options. These models will represent commuter’s attitudes towards 

vanpooling based on commuter survey data. Using data from a commuter survey 

conducted at the University of Maryland (UMD), an econometric analysis will be 

performed to better understand interest in vanpooling in the passenger and driver roles. 

The analysis will be conducted using ordered-response models. 

(3) Support development and analysis of GHG emissions reduction strategies for 

a selected subarea by providing essential OD trip demand data. Develop a subarea 

OD demand estimation procedure to be used in conjunction with network analysis tools 

to allow consideration and rapid evaluation of a large number of scenarios and to support 

transportation network planning and operational decisions for GHG emission reduction 

efforts. The subarea OD demand estimation procedure will support Metropolitan 

Planning Organizations (MPOs) and other agencies in developing and evaluating 

strategies that may not require analysis on a complete network representation, but require 

capturing the vehicular response to traffic conditions resulting from network and 

operational changes in a subarea.  
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To achieve these objectives, the dissertation addresses three complementary 

problems. These problems share the common goal of supporting GHG emissions 

reduction efforts by providing tools to help reduce demand for fossil fuel through 

seemingly different, but synergistically related ways. The first problem addresses 

alternative fuel vehicle (AFV) fleet operations considering limited infrastructure 

availability and vehicle characteristics, such as vehicle driving range. This problem 

contributes to GHG emission reduction efforts in two ways: supporting alternative fuel 

use and reducing carbon-intensive freight activity. The second problem supports single 

occupancy vehicle trip reduction efforts, targeting commute trips through alternative 

transportation options. This problem contributes to GHG reduction efforts by supporting 

reduction of carbon-intensive travel activity. The third problem helps to provide essential 

input data, origin-destination (OD) demand data, for analysis of various GHG emission 

reduction strategies. This problem contributes to GHG emission reduction efforts by 

helping to improve system efficiency and reducing carbon-intensive travel activity. 

This dissertation has the following objectives: 

1.2 Specific Problems Addressed and Contributions 

The three problem classes addressed tackle GHG emission problem from multiple 

perspectives. They all aim to answer the question “what can be done today/near term to 

reduce emissions from passenger and goods movements?” and share the common goal of 

reducing fossil fuel use through existing transportation infrastructure and technology. 
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1.2.1 Emission Reduction Through Commercial Fleet Operations: The Green 

Vehicle Routing Problem (G-VRP) 

Municipalities, government agencies, nonprofit organizations and private companies are 

converting their fleets of trucks to include Alternative Fuel Vehicles (AFVs). Some 

organizations invest in such conversions, because they wish to reduce their environmental 

impact, while others seek to meet new environmental regulations. However, the lack of a 

national infrastructure for refueling AFVs in conjunction with limited driving ranges 

associated with the vehicles present significant challenges to alternative fuel technology 

adoption by companies and agencies seeking to transition from traditional gasoline-

powered vehicle fleets to AFV fleets. The G-VRP is proposed to aid organizations with 

alternative fuel-powered vehicle fleets in tackling these challenges.  

In this dissertation, techniques are developed to aid an organization with an AFV 

fleet in overcoming difficulties that exist as a result of limited refueling infrastructure. 

These techniques plan for refueling and incorporate stops at AFSs so as to eliminate the 

risk of running out of fuel while maintaining low cost routes. The G-VRP is formulated 

as a mixed-integer linear program (MILP). Given a complete graph consisting of vertices 

representing customer locations, AFSs, and a depot, the G-VRP seeks a set of vehicle 

tours with minimum distance each of which starts at the depot, visits a set of customers 

within a pre-specified time limit, and returns to the depot without exceeding the vehicle's 

driving range that depends on fuel tank capacity. Each tour may include a stop at one or 

more AFSs to allow the vehicle to refuel en route. As the G-VRP is computationally 

intractable, two specialized heuristics are proposed. Numerical experiments were 

conducted to assess heuristic performance as a function of customer location 
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configuration, and station density and distribution. These techniques were also applied on 

a large, realistic problem instance to illustrate their utility in real-world operations and to 

explore the impact of alternative fuel vehicle adoption on vehicle tours and needed fleet 

size. 

1.2.2 Emission Reduction Through Reducing SOV Commute-Trips: Modeling 

Propensity to Vanpool 

Decades of highway and automobile oriented development, along with subsidized oil and 

automobile industries, in the U.S. have created today’s automobile-dependent lifestyle. 

The transportation sector faces particular challenges in GHG mitigation efforts as a 

consequence of the limitations that rigid transportation infrastructure, a spread out built 

environment and the resulting travel behavior induced by such a structure. Therefore, 

transportation demand management (TDM) has become one of the primary policy 

objectives for GHG reduction efforts since the early 1990s, with the recognition of global 

warming as a real danger. The focus of this problem is light-duty vehicles, because 

automobiles and light-duty trucks (e.g. sport utility vehicles, 2-axle trucks, and minivans) 

are the largest contributors of GHG emissions, responsible for 58.7% of total U.S. 

transportation GHG emissions in 2006 (U.S. DOT, 2010a). Moreover, the highest share 

of vehicle miles traveled (VMT) by purpose was for to/from work trips with a 27.5% 

share and an average occupancy of 1.2 person per VMT in 2009 (U.S. DOE, 2010a). 

Despite all the trip reduction efforts through alternative transportation options, such as 

transit and ridesharing, transit’s share of VMT has reduced from 0.4% to 0.2%  since 

1970 (U.S. DOE, 2010a).   
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This dissertation contributes to efforts to reduce single occupancy vehicle trips by 

providing insight related to demand for vanpooling. Companies, agencies and institutions 

that wish to reduce their GHG emissions will need to consider a portfolio of alternative 

transportation options, vanpooling among them. In this dissertation, two ordered-response 

models, a passenger and a driver model, are estimated to understand factors affecting 

decision to carpool/vanpool and their impact on this decision. These models are estimated 

with ordered logit and probit models. The models applied on data obtained from the 

commuter survey conducted at UMD, followed a descriptive analysis of the data. The 

results showed that the common determinants thought to be affecting 

carpooling/vanpooling behavior were not necessarily valid in a University setting. The 

analysis revealed that calibrating two models to study the interest in being a passenger or 

a driver is a valid approach, as the results indicated that the factors affecting them and 

their impacts are different. The method can be adopted by other higher education 

institutions as well as by large-scale employers, cities or metropolitan areas when 

developing alternative transportation programs. The results provide insight about the 

potential user characteristics of the service; thus, provide information on the type of 

service that would yield higher participation. In addition, the econometric method 

presented in this dissertation helps identify the target groups for marketing purposes.  

1.2.3 Emission Reduction Through Transportation System Operations: A 

Dynamic Subarea OD Trip Demand Estimation Method 

The U.S. State Department of Transportation’s (DOTs) and metropolitan planning 

agencies (MPOs) have been developing policies and regulations for GHG emissions 

reduction. Typically driven by legislation, these agencies are required to demonstrate 



 

 

12 

 

progress in stabilizing and reducing GHG emissions in their transportation plans. As 

such, many DOTs and MPOs are in the process of, or are considering, incorporating 

climate change into their planning processes and are developing strategies for GHG 

emissions reduction. These requirements introduce many challenges. One such challenge 

is estimating the potential impact of emissions reduction strategies such as pricing, 

HOV/HOT lanes, carpooling and vanpooling, from a particular region or sub-region.  

In this dissertation, a subarea analysis capability is developed in conjunction with 

dynamic network analysis models to allow consideration and rapid evaluation of a large 

number of scenarios and to support transportation network planning and operational 

decisions for GHG emission reduction efforts. The developed technique has wide 

applicability, but is described in the context of a meso-scopic simulation tool to be used 

in conjunction with dynamic network analysis models. Specifically, a two-stage subarea 

demand estimation procedure is developed. The first stage uses path-based traffic 

assignment results from the original network to generate an induced OD demand matrix 

for the subarea network. The second stage incorporates an iterative bi-level subarea OD 

updating procedure to find a consistent network flow pattern by utilizing the induced OD 

demand information and archived traffic measurements in the subarea network. An 

excess-demand traffic assignment formulation is adopted to model the external trips that 

traverse or bypass the subarea network. This formulation allows vehicular flow to 

respond to traffic conditions resulting from network and operational changes in the 

subarea and it can be interpreted in an entropy maximization framework. The resulting 

OD demand provides essential data for agencies and organizations to design, evaluate 

and analyze various GHG mitigation strategies for their region.  
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1.3 Dissertation Organization 

The remainder of this dissertation is organized in five chapters. Chapter 2 presents 

background on transportation emissions, alternative fuels and reduction efforts through 

alternative fuel use, demand management strategies and improving system efficiency. In 

Chapter 3, a vehicle routing problem is defined and solution techniques are proposed to 

aid existing AFV fleet owners or organizations that are planning to switch to AFV fleets 

in overcoming difficulties that exist as a result of limited refueling infrastructure. Chapter 

4, using econometric models, analyzes interest in vanpooling and factors that influence 

decisions to undertake vanpooling. Chapter 5 focuses on a network modeling tool that 

facilitates consideration and rapid evaluation of a large number of scenarios in a subarea, 

a capability that is needed for evaluation and implementation of transportation network 

planning and operations decisions for GHG emission reduction efforts. Finally, 

conclusions and extensions are presented in Chapter 6. 
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Chapter 2: Literature Review 

 

As discussed in Chapter 1, the transportation sector plays a significant role in emissions 

production, particularly GHG production. Much of these emissions are the result of 

increased socio-economic activity at both national and global levels. This activity in the 

socio-economic system puts a high demand on energy required for both passenger and 

freight transportation. Fossil fuels account for 97% of U.S. transportation use (U.S. DOE, 

2010a). To explain the relation between fossil fuel use in transportation and its impacts 

on air quality and global warming, Section 2.1 provides an overview of transportation 

emissions and their sources. A comparison of alternative fuels and fossil fuels are also 

made in regard to emission production. In Section 2.2, an overview of current emission 

reduction approaches is presented. These approaches are presented from technology and 

policy perspectives. In Section 2.3, three categories of strategies, namely alternative fuel 

and vehicle technologies, carbon-intensive travel activity reduction and transportation 

system efficiency improvements, are considered. Selected strategies are reviewed. 

2.1. Overview of Transportation Emissions  

This section provides an overview about the various types of emissions resulting from the 

transportation sector’s activities and their impact on health and environment. These 

impacts are discussed both for light-duty and heavy-duty vehicles. Emissions are 

typically grouped into three categories: criteria pollutants, greenhouse gases (GHG) and 

mobile source air toxics (MSAT). It should be noted that while the impact of PM and 

MSAT are at local level, GHG’s impacts are at a global level, making them the primary 

target of air quality improvement and climate change efforts.  
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2.1.1 Criteria Pollutants 

Criteria pollutants include ground-level ozone (O3), carbon monoxide (CO), sulfur oxides 

(SOx), particulate matter (PM-x, where x represents the size of the particles and typically 

grouped into two; PM-2.5 for particles smaller than 2.5 microns in diameter and PM-10 

for larger particles up to 10 microns in diameter), nitrogen oxides (NOx), and lead (Pb). 

They are harmful to health, the environment and even property. The U.S. EPA is required 

to set National Ambient Air Quality Standards to these six commonly known criteria 

pollutions to comply with the Clean Air Act (U.S. EPA, 2011a). These pollutants and 

their major sources are listed in Table 2-1. As seen in Table 2-1, the primary source of 

these pollutants is fossil fuel use. They are either produced as a result of incomplete 

combustion of fuel (e.g. CO and PM-x), are included in the fuel itself (e.g. Pb and SO2), 

or occur as a result of reaction with oxygen in the air (e.g. O3 results from a reaction of 

NOx, volatile organic compounds (VOC) and sunlight). Among these, lead from 

transportation is no longer a problem in developed countries where unleaded gasoline is 

used. However, transportation sector’s share in major criteria pollutants, especially 

through highway modes, has been significant. For example, 50% of CO comes from 

highway vehicles where the transportation sector’s share is 73.2%. Similarly, more than 

half of VOC and NOx from transportation are produced by highway vehicles (i.e. 37.7% 

of O3 and 57.9% of NOx). The distribution of these pollutants between light-duty and 

heavy-duty vehicles is also given in Table 2-1. Gasoline powered light-duty vehicles are 

responsible for the majority of CO (94.1%) and VOC (91.7%), as well as half of NOx 

emissions. Diesel powered heavy-duty vehicles on the other hand are responsible for 

most of the PM (61.7% of PM-2.5 and 50.3% of PM-10) and NOx (44%) emissions.  
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Table 2-1  Criteria pollutants, their sources and distribution between light and heavy duty vehicles  

Criteria 

Pollutants 

Source
(a) Transportation 

share
(b)

  

(2008) 

(%) 

 

Highway 

vehicles’ 

share
 (c)

  

(2008) 

(%) 

Light-duty 

vehicle
(d) 

(gasoline 

/diesel 

powered)
 (e)

 

(2005) 

(%) 

Heavy-duty 

vehicle 

(gasoline 

/diesel 

powered)
 (f)

 

(2005) 

(%) 

Carbon monoxide 

(CO) 

Incomplete 

combustion of fuel 

73.2 50 

 

 

94.1/0.0 4.1/1.8 

Nitrogen dioxides 

(NOx) 

Combustion of 

fuel at high 

temperatures 

57.9 31.9 49.9/0.2 5.9/44.0 

      

Ground-level 

Ozone (O3) 

 

Formed from a 

reaction between 

NOx and VOC 

under sunlight 

37.7 21.5 91.7/0.1 4.2/3.9 

      

Particulate 

matter(PM-x) 

Incomplete 

combustion of fuel 

0.2 (PM-2.5) 

3.2 (PM-10) 

0.1 

1.2 

32.1/1.6 

44.2/1.0 

4.7/61.7 

4.4/50.3 

      

Sulfur 

Dioxide(SO2) 

Fuel 4.5 0.6 NA NA 

      

Lead (Pb) Fuel NA NA NA NA 
(a) Data is adapted from U.S. EPA (U.S. EPA, 2011a) and Freight and Air Quality Handbook, (U.S. 

DOT, 2010b) 
(b) (c) (e) (f)Data is drawn from Tables 12.1 through 12.11 of U.S. DOE, Transportation Energy Data Book, 

Edition 29 (U.S. DOE, 2010a). 

 (d)    Light-duty vehicles include light vehicles, motorcycles and light trucks (less than 8,500 pounds) 

(U.S. DOE, 2010a). 

 

These pollutants, especially O3, PM-x and CO have a wide range of negative 

impacts on health ranging from respiratory diseases to cardiovascular diseases. Thus, 

they are controlled under the Clean Air Act (U.S.DOT, 2006). In addition, for example, 

O3 harms vegetation and impacts forests and ecosystems while PM-x causes damage to 

materials and reduces visibility. 

2.1.2 Greenhouse Gases (GHGs) 

Greenhouse gases are atmospheric gases that trap the solar energy within the earth’s 

atmosphere. These gases collectively create greenhouse effect, which is a natural and 
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essential phenomenon to keep earth’s average temperature at levels making life on earth 

possible. Without this effect, the average temperature on earth would be reduced by 60ºF 

(U.S. EPA, 2011b). The primary GHGs are water vapor, carbon dioxide (CO2), methane 

(CH4), nitrous oxide (N2O), and fluorinated gases (e.g. chlorofluorocarbons (CFCs), 

hydrochlorofluorocarbons (HCFCs)). Some of these gases, such as CO2, N2O, CH4 and 

fluorinated gases, occur naturally and are emitted to the atmosphere through natural 

processes and human activities. While certain gases such as chlorofluorocarbons (CFCs), 

hydrochlorofluorocarbons (HCFCs), and sulfur hexafluoride (SF6) are exclusively 

produced by human activities.  

The primary GHGs that are produced through transportation sector activities are 

carbon-dioxide (CO2), methane (CH4), nitrous oxides (NOx), sulfur oxides (SO2) and 

hydroflourocarbons (HFCs). CO2 is responsible for the largest share (Table 2.2). Even 

though CO2 is constantly sequestered by plants as part of the biological carbon cycle, due 

to increased economic and social activity, its production rate exceeds what the natural 

cycle can absorb. Despite the natural sequestration, U.S. CO2 concentrations in the 

atmosphere increased approximately 37.5% since pre-industrial era (U.S. EPA, 2011c) 

and projected to increase 28% from 2010 to 2050 (Greene and Plotkin, 2011).  

Since the Industrial Revolution, deforestation has increased to support urban 

development and agricultural needs, and fossil fuel use has increased to support 

transportation needs. This led to accumulation of GHGs, especially CO2, to threatening 

levels (e.g. annual CO2 emissions increased by 80% between 1970 and 2004 globally), 

causing global warming and associated climate change problems (IPCC, 2007). The 

global nature of GHGs has also made them the primary concern of emission reduction 
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efforts, because unlike criteria pollutants and MSATs, GHGs can remain in the 

atmosphere for extended periods (e.g. 50 to 200 years for CO2) (U.S. DOT, 2010a). 

 
Table 2-2  Transportation sector’s share in primary GHGs in the U.S. in 2008 

GHGs Source 
(a)

 
 
  Transportation 

share 
(b)

 
 
  

(%)* 
 

Highway 

vehicles
(c) 

    

(%)* 

Light-

duty 

Vehicles 
(d)

 
(e)

 
 
  

(%)* 

Heavy-

duty 

Vehicles 
(f)

 
 
  

(%)* 

Carbon dioxide 

(CO2) 

Combustion of fossil 

fuel, diesel, biofuel 

33.2 84.55 62.2 22.36 

      

Methane (CH4) Burning of fossil 

fuels, livestock, 

agricultural practices, 

and decay of organic 

material 

0.62 80 75 5 

      

Nitrous Oxides  

( NOx) 

Oxides of nitrogen 

(forms when nitrogen 

in the air or fuel 

combines with 

oxygen at high 

temperatures 

16.2 85.44 82.0 3.45 

  51.6 NA NA NA 

Hydroflourocarbons 

(HFC) 

Human activities such 

as burning of fossil 

fuel, and natural 

processes 

    

      
(a) Data is adapted from U.S. EPA (U.S. EPA, 2011a) and Freight and Air Quality Handbook, 

(U.S. DOT, 2010b) 
(b) (c) (d) (e) (f)  Data is drawn from Tables 11.4, 11.5 and 11.7 of U.S. DOE, Transportation Energy Data 

Book, Edition 29 (U.S. DOE, 2010a). 
(d) Light-duty vehicles include light vehicles, motorcycles and light trucks (less than 8,500 

pounds) (U.S. DOE, 2010a). 

* Percentages are calculated based on values measures in million metric tonnes of CO2 

equivalent (CO2-e). 

 

As seen in Table 2-2, the transportation sector produced more than half of 

hydroflourocarbons (51.6%) and approximately one-third of U.S. CO2 in 2008. Moreover, 

the majority of these GHGs come from highway vehicles (84.5% of CO2, 80% of CH4, 

85.4% of NOx).While light-duty vehicles produce most of CO2, CH4 and NOx (62.2% , 

75% and 85.44% respectively), heavy-duty vehicles also had a high share of CO2 with 
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22.36% in 2008. The contribution of heavy-duty vehicles to CH4 and NOx emissions are 

less than 5%.  

2.1.3. Mobile Source Air Toxics (MSATs) 

MSATs include benzene and other hydrocarbons such as 1,3-butadiene, formaldehyde, 

acetaldehyde, acrolein, and naphthalene (U.S. EPA, 2007). They are emitted by highway 

vehicles as well as non-road equipment.  Both light- and heavy-duty vehicles emit these 

toxics through the use of fossil fuel. They are not considered as toxic pollutants and are 

not regulated by NAAQS (National Ambient Air Quality Standard), but they may cause 

serious health and environmental problems, including cancer, respiratory diseases and 

birth defects (U.S.DOT, 2006). Therefore, the EPA issued a rule in order to reduce 

hazardous air pollutants from mobile sources, limiting the benzene content of gasoline 

and reducing toxic emissions from passenger vehicles and gasoline containers (U.S. EPA, 

2007). The EPA has identified 21 MSAT, including diesel particulate matter, benzene 

and other organic material and metals among 188 air toxics identified by the CAA (Clean 

Air Act) (U.S. DOT, 2006). 

2.1.4. Emissions From Alternative Fuels 

Non-petroleum fuels yield substantial energy security and environmental benefits. These 

fuels are defined as alternative fuels as given in the Energy Policy Act of 1992. 

Currently, the U.S. Department of Energy (DOE) recognizes the following as alternative 

fuels: methanol  (M), ethanol (E) , and other alcohols; blends of 85% or more of alcohol 

with gasoline (e.g. M85, M100, E85, E95); natural gas and liquid fuels domestically 

produced from natural gas (LNG or CNG); liquefied petroleum gas (propane, LPG); coal-
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derived liquid fuels; hydrogen (H2) and electricity; biodiesel (e.g. B20); and P-series 

(U.S. DOE, 2009). P-series fuels are blends of ethanol, methyltetrahydrofuran (MTHF), 

and pentanes plus, with butane added for blends that would be used in severe cold 

weather conditions to meet cold start requirements.  

 Some of these fuels contain petroleum in their blends (e.g. biodiesel and ethanol 

blends with gasoline) while some others emit harmful gases themselves either during the 

burning process or the production process (e.g. CNG and LNG). Therefore, they also 

produce emissions. However, the emissions they produce is significantly less than their 

gasoline counterparts. Table 2-3 summarizes several characteristics of alternative fuels as 

compared to gasoline and diesel (No.2), including their sources, energy content, impacts 

on environment and energy security. According to Table 2-3, only electricity and 

hydrogen can be zero tail-pipe emission alternatives. However, this statement is true only 

if their lifecycle effects (emissions that are produced during the production and 

transportation of the fuel, i.e “well to wheel” emissions) are not considered. Even if 

lifecycle impacts are considered, alternative fuel use is still beneficial in reducing 

emissions. For example, lifecycle GHG emissions from various biofuels vary between -

10% and 79% of their petroleum counterpart (Figure 2-1). 
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Table 2-3  Comparison of alternative fuels 

 Main Fuel 

Source 

Energy Contained 

in Various 

Alternative Fuels 

as Compared to 

One Gallon of 

Gasoline  

Environmental 

impacts  

Energy 

Security 

impacts 

Gasoline Crude Oil 100% Produces harmful 

emissions; 

however, gasoline 

and gasoline 

vehicles are rapidly 

improving and 

emissions are being 

reduced 

Manufactured 

using oil, of 

which nearly 

2/3 is 

imported. 

No. 2 Diesel Crude Oil 1 gallon of diesel 

has 113% of the 

energy of one 

gallon of gasoline. 

Produces harmful 

emissions; 

however, diesel and 

diesel vehicles are 

rapidly improving 

and emissions are 

being reduced 

especially with 

after treatment 

devices. 

Manufactured 

using oil, of 

which nearly 

2/3 is 

imported. 

Biodiesel Fats and oils 

from sources 

such as soy 

beans, waste 

cooking oil, 

animal fats, 

and rapeseed 

B100 has 103% of 

the energy in one 

gallon of gasoline 

or 93% of the 

energy of one 

gallon of diesel. 

B20 has 109% of 

the energy of one 

gallon of gasoline 

or 99% of the 

energy of one 

gallon of diesel. 

Reduces particulate 

matter and global 

warming gas 

emissions 

compared to 

conventional diesel; 

however, NOx 

emissions maybe 

increased. 

Biodiesel is 

domestically 

produced, 

renewable. 

Compressed 

Natural Gas(CNG) 

Underground 

reserves 

5.66 pounds or 

126.67 cu. ft. of 

CNG has 100% of 

the energy of one 

gallon of gasoline.  

CNG vehicles can 

demonstrate a 

reduction in ozone-

forming emissions 

compared to some 

conventional fuels; 

however, HC 

emissions maybe 

increased. 

CNG is 

domestically 

produced. The 

United States 

has vast 

natural gas 

reserves. 
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Electricity Coal, 

nuclear, 

natural gas, 

hydroelectric, 

and small 

percentages 

of wind and 

solar. 

33.70 kWh has 

100% of the energy 

of one gallon of 

gasoline. 

EV s have zero 

tailpipe emissions; 

however, some 

amount of 

emissions can be 

contributed to 

power generation. 

Electricity is 

generated 

mainly 

through coal 

fired power 

plants. Coal is 

the United 

States' most 

plentiful and 

price-stable 

fossil energy 

resource. 

Ethanol Corn, grains, 

or 

agricultural 

waste 

(cellulose) 

1 gallon of E85 has 

77% of the energy 

of one gallon of 

gasoline.  

E-85 vehicles can 

demonstrate a 25% 

reduction in ozone-

forming emissions 

compared to 

reformulated 

gasoline. 

Ethanol is 

produced 

domestically. 

Hydrogen Natural gas, 

methanol, 

and 

electrolysis 

of water. 

1 kg or 2.198 lbs. 

of H2 has 100% of 

the energy of one 

gallon of gasoline.  

Zero regulated 

emissions for fuel 

cell-powered 

vehicles, and only 

NOx emissions 

possible for internal 

combustion engines 

operating on 

hydrogen. 

Hydrogen is 

produced 

domestically 

and can be 

produced from 

renewable 

sources. 

Liquefied Natural 

Gas (LNG) 

Underground 

reserves 

1 gallon of LNG 

has 64% of the 

energy of one 

gallon of gasoline. 

LNG vehicles can 

demonstrate a 

reduction in ozone-

forming emissions 

compared to some 

conventional fuels; 

however, HC 

emissions maybe 

increased. 

LNG is 

domestically 

produced. 
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Liquefied 

Petroleum Gas 

(LPG) 

A by-product 

of petroleum 

refining or 

natural gas 

processing 

1 gallon of propane 

has 73% of the 

energy of one 

gallon of gasoline. 

LPG vehicles can 

demonstrate a 60% 

reduction in ozone-

forming emissions 

compared to 

reformulated 

gasoline. 

Approximately 

half of the 

LPG in the 

U.S. is derived 

from oil, but 

no oil is 

imported 

specifically for 

LPG 

production. 

Methanol Natural gas, 

coal, or, 

woody 

biomass 

1 gallon of 

methanol has 49% 

of the energy of 

one gallon of 

gasoline 

M-85 can 

demonstrate a 40% 

reduction in ozone-

forming emissions 

compared to 

reformulated 

gasoline. 

Methanol is 

domestically 

produced, 

sometimes 

from 

renewable 

resources. 

Source:  Available online at U.S. DOE (2011d), AFDC web site, 

http://www.afdc.energy.gov/afdc/pdfs/afv_info.pdf . Table details are available at 

http://www.afdc.energy.gov/afdc/fuels/properties_notes.html. 

 

 

 
Figure 2-1 Lifecycle GHG Emissions from Biofuels, compared to their petroleum substitutes 

Source: Available online at U.S. DOE (2011e), AFDC web site, 

http://www.afdc.energy.gov/afdc/data/fuels.html . 
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2.2. Current Trends in Targeting Emissions From Transportation 

CO2 makes up the largest share of global GHG emissions with 76.7% of emissions in 

2004. 56.6% of these emissions resulted from fossil fuel use (UNFCCC, 2010b). Overall, 

the transportation sector’s share in GHG emissions is 5% globally and 29% nationally (in 

the U.S.). Thus, efforts to reduce GHG emissions primarily targeted reducing fossil fuel 

use. The U.S. is one of the largest petroleum consumers in the world with 24% 

consumption share globally (Figure 2-2). As seen in Figure 2-2, the U.S. oil production 

share is much lower than its consumption and its reserves are quite low (2% of world 

reserves).  

 

Figure 2- 2 World oil production-consumption 2008, (Transportation Energy Databook, Edition 29, 

(U.S. DOE, 2010a)) 

 

Fossil fuel is a scarce resource. It is inevitable that the world’s fossil fuel 

consumers will need to seek for alternative energy. Dependency on fossil fuel use is 

problematic for several reasons. There are limited oil reserves and the majority of them 

are in the Middle East where political instability causes volatility in the oil market. 

Dependency on oil from this region of the world, thus, affects homeland security. Fossil 
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fuel production and use also negatively impacts the environment, socio-economic 

systems and health. British Petrol’s (BP) oil spill in the summer of 2010 is perhaps the 

most salient example for the scale of impact that oil production can have on the 

environment. Similarly, war in Iraq (a member of Organization of Oil Exporting 

Countries (OPEC)) and recent “unrest”, in North African countries, like Libya -an OPEC 

member as well- have had national economic impact as a consequence of U.S. 

dependency on foreign oil. Greene and Sanjana (2005) estimated that oil dependence has 

cost the U.S. economy $3.6 trillion (constant 2000 dollars). In an earlier work by Greene 

and Tishchishyna (2000), the cost of oil market upheavals caused by OPEC members 

between 1970s and 2000 cost the U.S. about $7 trillion (present value 1998 dollars) in 

total economic costs. They also stated that major oil price shocks have disrupted world 

energy markets five times: between 1973-74, 1979-80, 1990-91, 1999-2000, 2008.  These 

concerns for the environment, domestic security and economic stability accelerated 

recent efforts in developing alternative fuel and vehicle technologies to reduce fossil fuel 

use. The approaches taken are summarized in section 2.2.1. 

Strategies that aim to reduce energy-intensive travel activity have been another 

approach to reduce fossil fuel use. These strategies aim to reduce highway VMT by 

reducing the need for travel, increasing vehicle occupancy, shifting travel to more energy 

efficient modes and improving multi-modal travel opportunities.  

2.2.1 Technological Approaches  

Alternative fuels and vehicles that are powered by these fuels can play an important role 

in addressing the challenges of climate change, energy security and air quality. The 

Energy Policy Act (EPAct) of 2005 includes several requirements for federal and state 
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fleets regarding alternative fuel vehicle (AFV) fleets, alternative fuel use, and GHG 

emissions reduction. While EPAct requirements do not apply to private fleets, incentives, 

such as tax credits for purchase of AFVs, alternative fuel infrastructure tax credits, and 

renewable diesel tax credits, exist to support comparable actions by private companies. 

Thus, alternative energy and vehicle technology research and development have received 

significant attention in the U.S. and throughout the world.  

Currently, several types of AFVs powered by fuels, such as ethanol, hydrogen, 

natural gas (liquid or compressed), biodiesel, propane, and electricity, are available. 

However, their success in the market depends on a number of factors, including vehicle 

cost and performance and fuel infrastructure availability (see Table 2-3). Adequate 

refueling availability is one of the most important barriers to successful 

commercialization
1
. Federal agencies, such as U.S. DOE, EPA and DOT lead and support 

research and development in both vehicle and fuel technologies to tackle barriers.  

2.2.2. Policy Approaches  

In 1994, the United Nations Framework Convention on Climate Change (UNFCCC) was 

founded to curb climate change by addressing the need to reduce GHG emissions 

(ECMT, 2007). Shortly after the UNFCCC, the Kyoto Protocol brought together over 90 

countries under a binding agreement signed by 37 industrialized countries and ratified by 

55 nations. The countries signed the protocol, committing to reduce GHG emissions by 

5% by 1012 from their 1990 levels. The Framework encourages its participants to 

                                                 
1 Melaina and Bremson (2008) states that despite 164,300 refueling stations in operation nationwide, from 

the perspective of refueling availability for AFSs, this nationwide count tends to overstate the number of 

stations required to support the widespread deployment of AFVs. They characterize a sufficient level of 

urban coverage and estimate that about 51,000 urban stations would be required to provide this sufficient 

level of coverage to all major urban areas. 
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develop market-based mechanisms (like carbon credits), land-use change policies and 

increase forestry activities (UNFCCC, 2010c). Although the U.S. government has not 

signed the Kyoto Protocol, it has committed to the UNFCCC. As part of this commitment 

the U.S. government develops a national emissions inventory annually, recording sources 

and sinks of emissions from various sectors of the economy in accordance with the 

guidelines established by the Intergovernmental Panel on Climate Change (IPCC).  The 

U.S. also developed the Copenhagen Change Accord, collaborating with other countries 

that contribute significantly to global emissions (e.g. China, Brazil, India and South 

Africa), to initiate global action against climate change. According to the Accord (signed 

by 138 countries), the U.S. pledges to reduce its emissions levels 17% by 2020 from its 

2005 levels (UNFCCC, 2009). 

Since the 1970s, the U.S. experienced increased negative impacts on the 

environment largely resulting from increased travel activity, particularly due to the 

dominance of SOVs for personal transportation (Meyer, 1999). Federal policies such as 

congestion mitigation, air quality improvement and transportation system management 

(TSM) were developed. Recently, GHG emission reduction efforts have also been added 

to the U.S. federal government agenda. Several governmental organizations, such as the 

U.S. Department of Transportation (U.S. DOT), the U.S. Environmental Protection 

Agency (U.S. EPA), the U.S. Global Change Research Program (USGCRP), the Federal 

Highway Administration/American Association of State Highway and Transportation 

Officials, (FHWA/AASHTO)), published reports espousing strategies to reduce GHG 

emissions resulting from the transportation sector’s activities. 
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The U.S. government policy on climate action has several levels. Federal Climate 

Legislation requires states and Transportation Management Areas/Metropolitan Planning 

Organizations (TMA/MPO) to develop GHG reduction targets and strategies as part of 

their transportation plans, to demonstrate progress in stabilizing and reducing GHG 

emissions. The U.S. EPA has an important role in issuing regulations on transportation 

GHG goals and standardizing models, methodologies, and data collection. The plans that 

are developed by states or MPOs are required to develop, submit or publish emission 

reduction targets and strategies (Mallet, 2010). In addition, the Energy Policy Act of 1992 

(EPAct) was passed by the U.S. Congress to reduce dependence on imported petroleum 

and to increase air quality by requiring certain fleets to acquire alternative fuel vehicles. 

The U.S. Department of Energy administers the regulations for federal, state and private 

fleets (U.S. DOE, 2011f). 

2.3. Overview of Strategies to Reduce Transportation GHG Emissions  

Recognizing the significant role of transportation in climate change, the U.S. government 

and other developed nations alike has been developing policies, regulations and strategies 

that target GHG emissions reductions. This section provides a summary of widely used 

strategies that are also relevant to the problems addressed in this dissertation.  

2.3.1. Vehicle and Fuel Technology Improvements  

2.2.1.1. Alternative (low carbon) fuels  

Several alternative fuel technologies are available that provide cleaner fueling options for 

both light-and heavy-duty vehicles. Alternative fuel use in freight transportation has been 

rather challenging. Applying efficiency standards, like those aimed at light-duty vehicles, 
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is not possible because heavy-duty vehicles vary significantly by engine and 

manufacturer. Therefore, there are no efficiency standards for heavy-duty vehicles as of 

yet. The fuels that are available for freight transportation are LPG, natural gas, biodiesel, 

fuel-borne catalyst and low-sulfur and emulsified diesel. All of these fuels have pros and 

cons in terms of emissions benefits, availability and ease of conversion. LPG reduces 

NOx, PM and GHG. Moreover, the fuel distribution network for LPG is ready. 

Unfortunately, it has lower energy content than gasoline. Natural gas reduces PM and has 

similar performance to diesel, but requires special fueling facilities. Biodiesel blends 

reduce PM and CO while slightly increasing NOx emissions. However, they require 

engine modifications for blends that are higher than 20%. Fuel-borne catalysts reduce 

PM, but may increase some particle emissions. Low-sulfur diesel (reduces PM) and 

emulsified diesel (reduces PM and NOx) are also readily available and they do not require 

engine modification; however, they are more expensive than conventional diesel. Also, 

emulsified diesel contains less energy per gallon than conventional diesel (U.S. DOT, 

2010b). There is the hydrogen option also, but it is not currently available for commercial 

use. 

2.2.1.2. Alternative fuel vehicles (AFV) 

The energy efficiency standards for fuels and vehicles, if successfully enforced, can 

achieve significant reductions in emissions from transportation. For this purpose, the 

National Highway Transportation Safety Administration (NHTSA) and the U.S. EPA 

work collaboratively to develop a consistent national program that will yield substantial 

improvements in fuel economy and emissions reductions from light-duty vehicles. 
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The availability of light-duty alternative fuel vehicles have increased 

tremendously in recent years. Currently available light-duty alternative fuel vehicles 

include: hybrid electric vehicles, flexible fuel vehicles, compressed natural gas and 

propane vehicles, and the recently introduced all-electric vehicles. The fuel availability is 

still a significant factor affecting wide use of these vehicles, but progress has been made 

(e.g. stations selling E85 ethanol are increasing, natural gas fueling station numbers are 

growing and electric charging is becoming a viable option at home and at some other 

limited locations) (U.S. DOE, 2011a).  

Classification of alternative heavy-duty vehicles is difficult because the use of 

alternative fuels in such vehicles is typically made possible by making modifications in 

vehicle engines. Possible modifications depend on the vehicle manufacturer. Therefore, 

most effort is put in engine and equipment improvements. The available options include 

hybrid-electric vehicles, improved aerodynamics, more efficient tires and reduced vehicle 

weight. Other vehicle options, such as vehicles powered by natural gas or biodiesel are 

available through custom production and typically only for testing for research and 

development purposes. The available engine, chassis and vehicle combinations (U.S. 

DOE, 2011b) and examples of heavy-duty AFV fleets (U.S. DOE, 2011c) can be seen at 

U.S. DOE’s Alternative Fuels and Advanced Vehicles Data Center. 

2.3.2. Efficient Transportation System Operations  

2.3.2.1. Pricing  

Using pricing to encourage emissions reduction in transportation is perhaps the most 

efficient strategy. There are several pricing mechanisms to choose from based on 
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consumer and supplier characteristics. The basic idea is to price the marginal damages on 

the environment caused by emissions. This forms the basis of cap-and trade or carbon tax 

policies. Similar market-based strategies include carbon pricing (increasing the cost of 

fossil fuel use), VMT pricing (applied as tax or pay-as-you drive insurance, or a better 

way from emissions perspective is pay-at-the-pump insurance), fuel taxes and highway 

user fees (Greene and Plotkin, 2011). 

There are also operational pricing strategies, such as road, congestion and cordon 

pricing. These strategies are receiving increased attention due to their capability of 

targeting carbon-related activity, as well as increasing system efficiency. Among other 

strategies, congestion pricing seems to be more popular in emission reduction efforts, 

particularly in Europe. This is partially because it addressed multiple objectives 

facilitating emissions reduction and congestion mitigation, and supporting transit 

improvements through increased toll revenue and shifted demand to transit modes. The 

first successful application led to implementations in other cities, including Stockholm 

and London, was in Singapore that started in 1975 (U.S. FHWA, 2010). Milan and Tokyo 

(not implemented yet) are the only cities that specifically targeted emission reduction by 

cordon pricing.  

Other pricing examples, although their primary objective was not directly GHG 

mitigation, also targeted the environmental benefits while the support of transit was 

secondary objective. The objective of Stockholm and London applications is congestion 

management. Germany and Czech Republic applications aimed at revenue generation.  

The Netherlands applied pricing as a nationwide planned strategy to reduce congestion 
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and replace vehicle tax revenue. Only Milan and Tokyo examples specifically targeted 

emission reduction by cordon pricing (U.S. FHWA, 2010).  

2.3.2.2. Incentives through HOV/HOT lane use 

Various TDM and congestion management strategies, such as those involving HOV/HOT 

lanes, bus rapid transit (BRT), corridor management, and information provision, have 

been implemented or considered by many states and MPOs. Addition of high occupancy 

vehicle (HOV) or high occupancy toll (HOT) facilities also can support 

carpooling/vanpooling. In order to increase environmental benefits, HOV/HOT use can 

be tied to AFV and alternative fuel use through state or local regulations. For example, 

California enacted AB 171, which grants single occupant vehicles use of HOV lanes for 

electric and alternative fuel powered vehicles, including zero-emission vehicles, ultra-low 

emission vehicles, and super-ultra-low emission vehicles in 2000 (Shaheen, 2004). 

2.3.2.3. Transportation System Management (TSM) through Intelligent 

Transportation Systems (ITS)  

System efficiency strategies include but are not limited to work zone management, 

incident management, information provision, corridor management, traffic calming, 

bottleneck relief, ramp metering and the like. These strategies help reduce energy use and 

associated emissions by optimizing or improving the design, construction, operation and 

use of transportation networks (U.S. DOT, 2010a). According to the U.S. DOT (2010a), 

lowering speed limits on national highways could provide up to 2% reduction in GHG 

emissions, while traffic management and bottleneck relief could provide up to 3% 
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reduction. However, these strategies need to be designed carefully as they may cause 

increases in travel due to induced demand. 

2.3.3. Strategies to Reduce Carbon-Intensive Travel Activity   

The objective of these strategies is to reduce highway VMT by reducing the need for 

travel, increasing vehicle occupancy and shifting travel demand to more energy efficient 

modes (ideally to non-motorized modes). According to the U.S. DOT (2010a), these 

strategies can collectively yield a 5 to17% reduction in GHGs by 2030. 

2.3.3.1 Public transportation improvement 

There are many ways to improve public transit and rideshare services, including 

increased service, HOV priority, improved comfort, lower fares, more convenient 

payment options, improved user information, marketing programs, transit oriented 

development, improved security, and special service offerings, such as express commuter 

buses. High quality transit can attract 5-15% of urban trips and leverages additional travel 

reductions by stimulating more compact development. People who live in transit-oriented 

communities typically drive 10-30% less than residents of automobile-oriented areas. 

AASHTO suggests the reduction in VMT growth to 1% per year and doubling of transit 

ridership (AASHTO, 2011). 

2.3.3.2 Commuter trip reduction programs 

Commuter trip reduction programs aim to reduce VMT and SOV mode share of commute 

trips. Some of the commonly used strategies are telecommuting, carpooling/vanpooling, 

flexible work start times, transit subsidies, parking management (or pricing) and 

ridesharing programs. The application of these strategies can be required by employers or 
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can be encouraged by incentives and subsidies. Currently, two states (Oregon and 

Washington) and two metropolitan areas (Phoenix and Tuscon in Arizona) have 

employer trip reduction requirements (U.S. DOT, 2010a). Other applications include 

state, regional or local level TDM programs that employers voluntarily apply (e.g. 

Atlanta, Washington D.C, and Southern California).  

2.2.3.4 Non-motorized transportation improvements 

Non-motorized transportation options naturally are the cleanest way of traveling. 

Encouraging these modes through compact development and improved walking and 

cycling facilities will help reduce the use of energy-intensive modes for relatively short-

distance trips. Walking and cycling have the potential of reducing automobile (and SOV) 

trips and support transit modes. These strategies include infrastructure improvements for 

these modes and programs that would promote and foster them. For example, cycling 

could substitute vehicle trips for short-distance travels, e.g. up to 5 miles, provided that 

the infrastructure is available both on-road and at the destination. 

2.4 Summary 

This dissertation addresses three problems that aid in transportation emissions reduction 

efforts both from freight and passenger travel. In Chapter 3, the G-VRP is proposed to aid 

organizations with alternative fuel-powered vehicle fleets in tackling challenges 

introduced by the existing alternative fuel and vehicle availability. The techniques 

developed plans for refueling and incorporate stops at AFSs so as to eliminate the risk of 

running out of fuel while maintaining profitable routes. A hypothetical case study is used 

to demonstrate their utility in real-world operations and to explore the impact of 
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alternative fuel vehicle adoption on vehicle tours and needed fleet size In Chapter 4, an 

econometric analysis of propensity to carpool/vanpool is made that seeks to contribute to 

efforts to reduce SOV trips by providing insight related to demand for vanpooling. 

Commuter survey data from University of Maryland, College Park campus is utilized for 

the analysis. Chapter 5 presents a network modeling tool that can be used for evaluating 

impacts of various pricing strategies, HOV/HOT lane impacts, work zones and incident 

management at a network level. This tool facilitates rapid evaluation of a large number of 

scenarios in a subarea, a capability that is needed for evaluation and implementation of 

transportation network planning and operations decisions for emission reduction efforts. 

Finally, Chapter 6 summarizes and concludes the dissertation. 
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Chapter 3: The Green Vehicle Routing Problem 

 

3.1 Introduction 

In the United States (U.S.), the transportation sector contributes 28% (U.S. EPA, 2009) of 

national greenhouse gas (GHG) emissions. This is in large part because 97% of U.S. 

transportation energy comes from petroleum-based fuels (U.S. DOT, 2010a). Efforts have 

been made over many decades to attract drivers away from personal automobiles and on 

to public transit and freight from trucks to rail. Such efforts are aimed at reducing vehicle 

miles traveled by road and, thus, fossil fuel usage. Other efforts have focused on 

introducing cleaner fuels, e.g. ultra low sulfur diesel, and efficient engine technologies, 

leading to reduced emissions for the same miles traveled and greater mileage per gallon 

of fuel used. While each such effort has its benefits, only a multi-faceted approach can 

engender the needed reduction in fossil fuel usage.  

 As part of such a multi-faceted approach, renewed attention is being given to 

efforts to exploit alternative, cleaner fuel sources, namely, biodiesel, electricity, ethanol, 

hydrogen, methanol, natural gas, (liquid-LNG-or compressed-CNG), and propane (U.S. 

DOE, 2010). Municipalities, government agencies, nonprofit organizations and private 

companies are converting their fleets of trucks to include Alternative Fuel Vehicles 

(AFVs). This focus on truck conversion is desirable. While medium- and heavy-duty 

trucks comprise only 4% of the vehicles on the roadways (U.S. FHWA, 2008), they 

contribute nearly 19.2% of U.S. transportation-based GHG emissions (U.S. DOT, 2010a). 

Moreover, truck traffic has had the greatest growth rate of all vehicles, increasing 77% 

for heavy-duty trucks and 65.6% for light-duty trucks compared with only 3.3% for 



 

 

37 

 

passenger cars between 1990 and 2006 (U.S. DOT, 2010a). 

 Numerous factors are considered in the selection of a particular vehicle type, 

including fuel availability and geographic distribution of fueling stations in the service 

area, vehicle driving range, vehicle and fuel cost, fuel efficiency, and fleet maintenance 

costs. The lack of a national infrastructure for refueling AFVs presents a significant 

obstacle to alternative fuel technology adoption by companies and agencies seeking to 

transition from traditional gasoline-powered vehicle fleets to AFV fleets (Melaina and 

Bremson, 2008). In fact, approximately 98% of the fuel used in the federal government's 

138,000 AFV fleet (of which, 92.8% in 2008 are flex-fuel vehicles that can run on 

gasoline or ethanol based E85 fuel) continues to be conventional gasoline as a result of a 

lack of opportunity for refueling using the alternative fuel for which the vehicles were 

designed (U.S. DOE, 2010a). Moreover, existing alternative fueling stations (AFSs) are 

distributed unevenly across the country and within specific regions. Additional 

operational challenges exist as a result of the reduced driving range of most AFVs. 

Similar challenges exist for privately owned AFV fleets. FedEx, in its overseas 

operations, employs AFVs that run on biodiesel, liquid natural gas (LNG) or compressed 

natural gas (CNG). In U.S. operations, hybrid vehicles have dominated, while LPG, 

biodiesel and CNG use is limited to regions with access to appropriate AFSs (Bohn, 

2008).  

This dissertation is concerned with those companies or agencies that employ a 

fleet of vehicles to serve customers or other entities located over a wide geographical 

region. Such companies rely on tools to aid in forming low cost tours, so as to save 

money and time resulting from travel to customer locations. These routes typically begin 
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at a depot, visit multiple customers and then return to the depot. The problem of 

assigning customers to vehicles and ordering the customer visits in forming these tours is 

known as the Vehicle Routing Problem (VRP). A variant of the VRP, the Green Vehicle 

Routing Problem (G-VRP), is introduced herein that accounts for the additional 

challenges associated with operating a fleet of AFVs.  

In this dissertation, techniques are developed to aid an organization with an AFV 

fleet in overcoming difficulties that exist as a result of limited refueling infrastructure. 

These techniques plan for refueling and incorporate stops at AFSs so as to eliminate the 

risk of running out of fuel while maintaining low cost routes. The G-VRP is formulated 

as a mixed-integer linear program (MILP). Given a complete graph consisting of vertices 

representing customer locations, AFSs, and a depot, the G-VRP seeks a set of vehicle 

tours with minimum distance each of which starts at the depot, visits a set of customers 

within a pre-specified time limit, and returns to the depot without exceeding the vehicle's 

driving range that depends on fuel tank capacity. Each tour may include a stop at one or 

more AFSs to allow the vehicle to refuel en route.  

 The G-VRP is illustrated on a simple example problem in Figure 3-1. This 

example involves only one truck with a fuel tank capacity of Q=50 gallons and fuel 

consumption rate of r=0.2 gallons per mile (or 5 miles per gallon fuel efficiency (Fraer et 

al. (2005)). Three AFSs are available in the region. The vehicle begins its tour at depot D 

and must visit customers C1 through C6 before returning to the depot. To visit these 

customers, a minimum distance of 339 miles must be traversed. Travel of such a distance 

would consume 67.8 gallons, 17.8 more gallons of fuel than the vehicle's tank can hold. 

Thus, the vehicle needs to visit at least one AFS in order to serve all customers and return 
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to depot D. The G-VRP takes into account the vehicle’s fuel tank capacity limitation and 

chooses the optimal placement of AFS visits within the tour. Accounting for fuel 

limitations, the optimal solution to the G-VRP involves a stop at one AFS and requires 

the traversal of 354 miles. Thus, the tour length is 15 miles longer than the minimum tour 

length, where fuel tank capacity is assumed to be unlimited. 

 

 
 

 

Figure 3-1  Illustrative example of a solution to the G-VRP 

 

 

As the VRP is known to be an NP-hard problem (indicating that the 

computational effort required for its solution grows exponentially with increasing 

problem size), and the VRP is a special case of the G-VRP, the G-VRP is NP-hard. Thus, 

exact solution of large, real-world problem instances will be difficult to obtain. Two 

heuristics, the Modified Clarke and Wright Savings (MCWS) heuristic and the Density-

Based Clustering Algorithm (DBCA), along with a customized improvement technique, 

are proposed for solution of such larger problem instances. These techniques are intended 

to provide decision support for a company or agency operating a fleet of AFVs for which 

limited fueling stations exist. Numerical experiments were designed and conducted to 

assess heuristic performance as a function of customer location configuration, and station 

density and distribution. The techniques are also applied on a hypothetical problem 
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instance meant to replicate a medical textile supplier company’s daily operations in the 

Washington, D.C. metropolitan area. 

3.2. Background 

A number of works in the literature present optimization-based approaches designed 

specifically for siting AFSs. The majority of these works were motivated by the 

Hydrogen Program that was created during the G. W. Bush administration and supported 

by a diverse group of governmental and private sponsors (Nicholas et al., 2004; Kuby and 

Lim, 2005, 2007; Upchurch et al., 2007; Lin et al.,2008a; 2008b; Bapna et al., 2002). 

Other works focus on military applications and consider issues pertaining to the limited 

capacity of fuel tanks (e.g. Mehrez et al., 1983; Mehrez and Stern, 1985; Melkman et al., 

1986; Yamani et al., 1990; Yuan and Mehrez, 1995). Numerous works address the more 

general VRP with capacity and distance constraints (e.g. Laporte et al., 1985); however, 

such works do not consider the opportunity to extend a vehicle's distance limitation as a 

consequence of actions taken while en route. Of greater relevance is the multi-depot VRP 

in which vehicles can stop at satellite facilities (also referred to as replenishment or inter-

depot facilities) to replenish or unload (e.g. Bard et al., 1998; Chan and Baker, 2005; 

Crevier et al., 2007; Kek et al., 2008, Tarantilis et al., 2008). Such opportunity for 

reloading aims to overcome capacity limitations of the vehicles, thus, permitting longer 

routes and reduced return travel to the central depot. In another related work, Ichimori et 

al. (1981) addressed a shortest path problem for a single vehicle en route to a single 

destination in which stops to refuel are explicitly considered. 

It appears that no work in the literature directly addresses the G-VRP or a direct 

variant thereof. While solution techniques developed to address related problems cannot 

http://hydrogen.its.ucdavis.edu/resolveuid/2016b2e0d0c9bfe6dbb24e76677e4cc0
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be applied directly in solution of the G-VRP in which fuel tank limits guide distances that 

can be traveled, the MILP formulation of the G-VRP developed in the next section builds 

on concepts conceived in (Bard et al., 1998). Bard et al. formulated a VRP with Satellite 

Facilities (VRPSF) problem as an MILP with capacity and tour duration limitation 

constraints. Vehicles with capacity limitations have the option to stop at satellite facilities 

to reload in order to serve customer demand at the nodes. Subtour elimination constraints 

that employ time relationships, as well as concepts used for tracking capacity utilization, 

employed by Bard et al., are exploited herein. 

3.3 Problem Definition and Formulation 

 

The G-VRP is defined on an undirected, complete graph G=(V,E), where vertex set V is a 

combination of the customer set I={v1,v2,….,vn}, the depot v0, and a set of s≥0 AFSs, F={ 

vn+1,v n+2,….,v n+s}. The vertex set is V={v0}IF={v0,v1,v2,….,vn+s}, |V|=n+s+1. It is 

assumed that in addition to the AFSs, the depot can be used as a refueling station and all 

refueling stations have unlimited capacities. The set E={(vi,vj): vi,vjV, i<j} corresponds 

to the edges connecting vertices of V. Each edge (vi,vj) is associated with a non-negative 

travel time tij, cost cij and distance dij. Travel speeds are assumed to be constant over a 

link. In addition, no limit is set on the number of stops that can be made for refueling. 

When refueling is undertaken, it is assumed that the tank is filled to capacity. 

The G-VRP seeks to find at most m tours, one for each vehicle, that starts and 

ends at the depot, visiting a subset of vertices including AFSs when needed such that the 

total distance traveled is minimized. Vehicle driving range constraints that are dictated by 

fuel tank capacity limitations and tour duration constraints meant to restrict tour durations 
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to a pre-specified limit Tmax, apply. It is assumed that all customers can be served by a 

vehicle that begins its tour at the depot and returns to the depot after visiting the customer 

directly within Tmax. Without loss of generality, to reflect real-world service area designs, 

it is assumed that all customers can be visited directly by a vehicle beginning and 

returning to the depot with at most one visit to an AFS. This does not preclude the 

possibility of choosing a tour that serves multiple customers and contains more than one 

visit to an AFS.  

The formulation distinguishes between visits to AFSs and the depot from 

customer visits. This is because each AFS may be visited more than once or not at all. In 

addition, the depot must be visited at the start and end of each tour and can serve, when 

desired, as an AFS. Customers, on the other hand, must be visited exactly once. To 

permit multiple (and possibly zero) visits to a subset of the nodes, while requiring exactly 

one visit to other nodes, graph G is augmented (to create G'=(V',E) with a set of s' 

dummy nodes, Φ={vn+s+1, vs+2,….,vs+s´}, one for each potential visit to an AFS or depot 

serving as an AFS. V'=VΦ. Associated with each refueling station vfF is nf dummy 

nodes for f=0,…,n+s. The number of dummy nodes associated with each AFS, nf, is set 

to the number of times the associated vf can be visited. nf should be set as small as 

possible so as to reduce the network size, but large enough to not restrict multiple 

beneficial visits. This technique involving dummy nodes was introduced by Bard et al. 

(1998) for their application involving stops at intermediate depots for reloading vehicles 

with goods for delivery.  

 

Additional notation used in formulating the G-VRP is defined next.  

I0 Set of customer nodes and depot, I0={v0}I 
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F0 Set of AFS nodes and depot, F0={v0 }F´, where F´=F Φ 

pi     Service time at node i (if iI, then pi  is the service time at the customer node, if 

iF, pi  is the refueling time at the AFS node, which is assumed to be constant)  

r Vehicle fuel consumption rate (gallons per mile)  

Q Vehicle fuel tank capacity 

 

Decision Variables  

xij Binary variable equal to 1 if a vehicle travels from vertex i to j and 0 otherwise 

yj Fuel level variable specifying the remaining tank fuel level upon arrival to vertex 

j . It is reset to Q at each refueling station node i and the depot 

τj Time variable specifying the time of arrival of a vehicle at node j, initialized to 

zero upon departure from the depot  

 

The mathematical formulation of the G-VRP is as follows: 
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The objective (3-1) seeks to minimize total distance travelled by the AFV fleet in a given 

day. Constraints (3-2) ensure that each customer vertex has exactly one successor: a 

customer, AFS or depot node. Constraints (3-3) ensure that each AFS (and associated 

dummy nodes) will have at most one successor node: a customer, AFS or depot node. 

Continuity of flow is ensured through constraints (3-4) by which the number of arrivals at 

a node must equal the number of departures for all nodes except the depot node. 

Constraints (3-5) ensure that at most m vehicles are routed out of the depot and 

constraints (3-6) ensure that at most m vehicles return to the depot in a given day. A copy 

of the depot is made to distinguish departure and arrival times at the depot, which is 

necessary for tracking the time at each node visited and preventing the formation of 

subtours. The time of arrival at each node by each vehicle is tracked through constraints 

(3-7). Constraints (3-7) along with constraints (3-8) and (3-9) make certain that each 

vehicle returns to the depot no later than Tmax. Constraints (3-8) specify a departure time 

from the depot of zero (τ0=0) and an upper bound on arrival times upon return to the 
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depot. Lower and upper bounds on arrival times at customer and AFS vertices given in 

constraints (3-9) ensure that each route is completed by Tmax. Constraints (3-10) track a 

vehicle's fuel level based on node sequence and type. If node j is visited right after node i 

(xij=1) and node i is a customer node, the first term in constraints (3-10) reduces the fuel 

level upon arrival at node j based on the distance traveled from node i and the vehicle’s 

fuel consumption rate. Time and fuel level tracking constraints, constraints (3-7) and (3-

10), respectively, serve to eliminate the possibility of subtour formation. Constraints (3-

11) reset the fuel level to Q upon arrival at the depot or an AFS node. Constraints (3-12) 

guarantee that there will be enough remaining fuel to return to the depot directly or by 

way of an AFS from any customer location en route. This constraint seeks to ensure that 

the vehicles will not be stranded. One could extend this constraint to permit return paths 

that visit more than one AFS. These constraints are implemented through the Java 

CPLEX interface using if - then logic. Finally, binary integrality is guaranteed through 

constraints (3-13).  

The main difficulty in solving any VRP is ensuring that subtours will not be 

created. In traditional VRP formulations, a set of constraints known as subtour 

elimination constraints are included. In the G-VRP formulation presented herein, 

subtours are prevented through the combination of constraints (3-2), (3-3), (3-8) and (3-

11) acting together. 

The formulation of the G-VRP presented in this section builds on the VRPSF 

formulation by Bard et al.(1998) designed for a delivery routing problem with satellites at 

which goods can be loaded en route to customers. Similar notation was employed where 

possible. The G-VRP differs from the VRPSF in several substantial ways. First, the 



 

 

46 

 

VRPSF does not consider distance restrictions based on fuel tank capacity. As such, the 

possibility of running out of fuel en route to a customer is not considered. Second, fuel is 

consumed along the network edges, while goods are consumed at the network vertices. 

Thus, capacity limitations associated with the VRPSF cannot serve in modeling fuel 

usage limitations. Third, determination of upper and lower bounds on arrival times at the 

vertices are complicated by refueling needs. This is because there are many more 

combinations of possible vertex sequences than in the VRPSF and the number of AFSs in 

an instance of the G-VRP will likely exceed the number of satellite facilities in a typical 

VRPSF. The additional combinations are due to the fact that in the G-VRP, it is possible 

that refueling will be required even before arriving at a single customer and travel to a 

refueling station must be considered from every customer en route. This differs from the 

VRPSF, where reloading at a satellite facility need only be considered when supplies (i.e. 

goods) must be replenished. Finally, satellite facilities are strategically located, while 

locations of the AFSs are typically beyond the company's control, possibly affecting the 

difficulty associated with determining good routes. 

3.4 Solution of the G-VRP 

The vehicle driving range (or fuel tank capacity) limitations and existence of a subset of 

vertices (the AFSs) that can, but need not be, visited, as well as the possibility of 

extending a vehicle's driving range as a result of a visit to a site along the tour, introduce 

complications that are not present in classical VRPs or most variants thereof. Thus, 

heuristics designed for the classical VRP or related variants cannot be applied directly in 

solving the G-VRP. Not only might such heuristics result in solutions that perform 

poorly, but these solutions may not even be feasible. Two heuristics customized for the 
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G-VRP are proposed herein for solution of large problem instances: the MCWS heuristic 

and DBCA. The Clarke and Wright Savings algorithm (Clarke and Wright, 1964) 

designed for the classical VRP, and customized for its variants, is modified to create the 

MCWS heuristic so as to tackle the challenges introduced by the G-VRP. The DBCA 

builds on concepts from the Density Based Spatial Clustering of Applications with Noise 

(DBSCAN) algorithm proposed in (Ester et al., 1996) for the purpose of discovering 

clusters of arbitrary shapes in large spatial databases, such as satellite images and x-rays. 

In addition, two tour improvement techniques involving within-tour edge interchanges 

and across-tour vertex exchanges designed for the G-VRP that can be applied in series 

once a tour is constructed are presented herein.  

3.4.1. The MCWS Heuristic 

MCWS heuristic 

Step 1: Create n back-and-forth vehicle tours (v0-vi-v0), each starting at the depot v0, 

visiting a customer vertex viI and ending at the depot. Add each created tour to 

the tours list. 

Step 2: Calculate the tour duration and distance for all tours in the tours list. Check for 

feasibility of all initial back-and-forth tours with regard to driving range and tour 

duration limitation constraints and categorize them as feasible or infeasible. Place 

all feasible tours in the feasible tours list and the remainder in the infeasible tour 

list. 

Step 3: For each tour in the infeasible tour list, calculate the cost of an AFS insertion 

between customer vertices vi and the depot v0, c(vi,v0) = d(vi,vf) +d(vf,v0) - d(vi,v0) 
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for every AFS (vfF ). For every such tour, insert an AFS with the least insertion 

cost. If both driving range and tour duration limitation constraints are met after 

the insertion of an AFS, add the resulting tour to the feasible tours list. If the 

driving range constraint is not met with the addition of any AFS, discard the tour. 

No starting tour containing more than one AFS is considered. 

Step 4: Compute the savings associated with merging each pair of tours in the feasible 

tours list. To do so, first identify all vertices that are adjacent to the depot in a 

tour. Create a savings pair list (SPL) that includes all possible pairs of these 

vertices (vi,vj) with the condition that each pair is formed by vertices that belong 

to different tours. Compute the savings associated with each pair of vertices in the 

SPL, s(vi,vj) = d(v0,vi) +d(v0,vj)- d(vi,vj), where ((vi,vj) I F´). Rank the pairs in 

the SPL in descending order of savings s(vi,vj). 

Step 5:  

While SPL is not empty 

Select and remove the topmost pair of vertices (vi,vj) in the SPL and merge 

their associated tours.  

For the selected (vi,vj), check driving range and tour duration limitation 

constraints.  

If both constraints are met, add the resulting tour to the feasible tours 

list. 

If the resulting tour duration is less than Tmax, but violates the driving 

range constraint, compute the insertion cost c(vi,vj) = d(vi,vf) +d(vf,vj)- 

d(vi,v0)- d(vj,v0) for savings pair ((vi,vj)  IF´) for every AFS (vfF 

). Insert the AFS between vi and vj with the least insertion cost for 

which the resulting tour is feasible. Check for redundancy: If the tour 

contains more than one AFS, consider whether it is possible to remove 

one or more of the AFSs from the tour. Remove any redundant AFSs. 
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Add the resulting tour to the feasible tours list. 

If any tour has been added to the feasible tours list, return to Step 4. Otherwise, 

stop.  

 

The MCWS heuristic terminates with a set of tours that together form a feasible 

solution to the G-VRP in which constraints (3-5) and (3-6) are relaxed. The heuristic 

continues until no tours in the feasible tour list can be further merged. The number of 

tours in the final feasible tours list is the smallest that can be attained through the merge 

process of Step 5. This procedure is consistent with including a secondary objective of 

minimizing fleet size. If the final number of tours is less than m, then the entire set of 

customers can be served with fewer than m vehicles. If it is greater than m, then the 

heuristic was unable to obtain a solution with m or fewer vehicles. The best solution 

obtained, i.e. with the smallest number of required vehicles, is provided. This relaxation 

of constraints (3-5) and (3-6) in this way, as opposed to declaring infeasibility, permits 

the decision-maker to consider the impact of conversion to alternative fuels with limited 

refueling stations on needed fleet size. 

An intrinsic quality of solutions of nearly all VRPs and their variants is acyclicity. 

Moreover, in most variants, every vertex must be visited once and only once. In the G-

VRP, cycle formation is allowed and AFS vertices can be visited more than once, by 

more than one vehicle, or not visited at all. This is illustrated through a series of small 

examples depicted in Figure 3-2. In Figure 3-2(a), a single vehicle visits F1 twice, 

forming a cycle. In Figure 3-2(b), there are two vehicles visiting F1 once each. These 

sequences allow an AFS vertex to be visited by more than one vehicle. In Figure 3-2(c), 

F1 is not visited at all.  
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Figure 3-2  Possible feasible G-VRP solutions 

 

Figure 3-3 illustrates additional characteristics of this problem class that affect the 

merging process. As depicted in Figure 3-3(a), two tours that visit the same AFS can be 

merged with only a deletion in the links incident on the depot. No additional links are 

required. Moreover, tours that cannot be merged directly may be merged if an AFS is 

included as depicted in Figure 3-3(b). When a tour containing an AFS is included in a 

merge that involves an additional AFS visit, as in 3-3(b), it may be that inclusion of an 

AFS from an original tour is redundant. This AFS can be dropped from the final post-

merge tour, resulting in, for example, the tour depicted in Figure 3-3(c). 

 

 

Figure 3-3  Characteristics of Merging in the G-VRP 
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3.4.2. Density-Based Clustering Algorithm   

A second heuristic, the DBCA, is introduced that exploits the spatial properties of the G-

VRP. The relative location of customers and AFSs, as well as their distributions over 

space, significantly affect feasibility and number of required AFS visits. Like many 

clustering approaches, the DBCA decomposes the VRP into two, clustering and routing 

subproblems.  

The key idea of the DBCA is that for each vertex of a cluster, the neighborhood of 

a given radius (ε) must contain at least a minimum number of vertices (minPts). That is, a 

density threshold is employed with minPts. Figure 3-4 illustrates the DBCA on a 20 

customer and three AFS example, where clusters are formed for minPts ≥ 4 and ε =30 

miles. 

The ε-neighborhood of a vertex vj, denoted by Nε(vj), is defined by the set of 

vertices that are within a radius of ε from vj, Nε(vj)={ vi V dij  ε} (Definition 1, Ester 

et al. (1996)). By using ε -neighborhood notation, a cluster can be formed by ensuring 

that each constituent vertex has at least minPts vertices in its ε–neighborhood (e.g. the ε- 

neighborhood of vertex 5, for ε = 30 miles, includes 4 vertices as depicted in Figure 3-4). 

A vertex vi is said to be directly density-reachable from a vertex vj with respect to ε and 

minPts if the following conditions are satisfied (Definition 2, Ester et al. (1996)): 

i.  vi Nε(vj) and 

ii. Nε(vj)≥ minPts 
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Figure 3-4  Forming Clusters by DBSCAN algorithm 

 

  

According to this definition vi is direct-density reachable from vj, but the opposite may 

not always be true if Nε(vi)<minPts (i.e. condition ii is not met). Condition ii is called 

the core vertex condition. Vertices that do not satisfy this condition are called noise 

vertices. For example, in Figure 3-4, vertices 17, F3, 12 and 1 are border vertices, and are 

directly density reachable from vertex 5. However, vertex 5 is not direct-density 

reachable from any of these vertices. Thus, vertex 5 is a core vertex and is used as a seed 

to form cluster 3.  
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A vertex vi is density-reachable from a vertex vm with respect to ε and minPts if 

there is a chain of vertices that satisfy direct density-reachability for each consecutive 

vertex pair (Definition 3, Ester et al. (1996)). In Figure 3-4, vertices y and x are density-

reachable from vertex 5 via vertex 17. Density-reachability is a transitive, but not 

symmetric relation. A vertex vi is density-connected to a vertex vp with respect to ε and 

minPts if there is a vertex vm such that both vi and vp are density reachable from vm 

(Definition 4, Ester et al. (1996)). For example, vertices y and s are density-connected 

through vertex 5 in Figure 3-4. Using these concepts, clusters are formed by identifying 

sets of density-connected vertices based on a core vertex. Elements of each set are 

assigned a common cluster ID. In Figure 3-4, three core vertices are identified (5, 3 and 

F1) and three clusters are formed.  

Notation used in the DBCA are given next, followed by details of the DBCA. 

 

m number of required routes corresponding to number of clusters 

ε radius parameter used in determining a vertex' ε-neighborhood 

minPts  minimum number of vertices in an ε-neighborhood of a vertex 

[εmin, εmax] search interval for ε 

[minPtsmin, 

minPtsmax] 

the interval for density threshold for which DBCA searches for 

different clustering schemes 
 

 

DBCA ([εmin,εmax] and [minPtsmin,minPtsmax]) 

 

Step 1: Clustering 

For each combination of ε and MinPts: 

For all vi in V 

Determine the ε-neighborhood of vertex vi with respect to ε and minPts 
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If vi satisfies core vertex condition (ii), vi is a core vertex. Assign a cluster ID to 

vertex vi and all vertices in its ε-neighborhood. 

For each vertex vi with a cluster ID 

For each vj with no cluster ID that is density connected to vertex vi 

Assign the cluster ID of vi to vj.  

For each vertex vi with no cluster ID  

Assign the cluster ID of the vertex vj with cluster ID closest to vi.  

This step ends with a set of clusters for each combination of ε and MinPts pair. The depot 

is added to any cluster in which it is not already included. 

 

Step 2: Routing 

For each set of clusters corresponding to each pairing of ε and MinPts 

Run MCWS to construct vehicle tours.  

 

Step 3: Identify Set of Routes 

Calculate the total distance traveled by all vehicles for the resulting set of tours 

corresponding to each (ε,MinPts) pair from Step 2 and identify the parameter 

combination (ε,MinPts) that results in the least distance traveled and output the 

corresponding set of tours. 

Like the MCWS heuristic, the DBCA terminates with a set of tours that form a feasible 

solution to the G-VRP for which constraints (3-5) and (3-6) have been relaxed.  

In typical cluster-first, route-second heuristics for the VRP, customers in a single 

cluster are served with a single vehicle and clusters are formed such that vehicle capacity 

limitations are not exceeded. However, in the DBCA, clusters are formed without regard 

for imposed limitations, because there is no simple check to ensure that customers in a 

cluster can be served by a single vehicle without violating tour duration and vehicle 

driving range constraints. Thus, more than one tour may be required to serve customers in 
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a given cluster. For example, two tours are formed in cluster 3 and three in cluster 2 as 

shown in Figure 3-4. 

3.4.3. Improvement Heuristics 

The MCWS heuristic and DBCA construct a set of feasible tours. An improvement 

technique can be applied on the resulting set of feasible tours in an effort to reduce the 

total distance that must be traveled. Concepts involving inter-tour vertex exchange and 

within-tour edge-interchange are customized for the G-VRP. Beginning with a set of 

tours, inter-tour vertex exchange is applied by considering an exchange of one vertex 

between every pair of tours. For each pair of tours, two vertices are selected for a position 

exchange. If the total distance of both tours together is reduced as a result of the 

exchange and steps can be taken to maintain feasibility, the exchange is executed. 

Within-tour two-vertex interchange and reordering is applied next in which every pair of 

vertices is considered for an exchange. The position within the tour of the two chosen 

vertices is exchanged, creating a new tour ordering. If the new tour ordering is infeasible, 

the exchange is not performed. Otherwise, if one or both of the chosen vertices for the 

exchange are AFSs, AFS redundancy is checked and AFS relocation or exchange with an 

alternate unscheduled AFS is considered so as to minimize the tour length. The 

improvement heuristic terminates with a set of tours for the G-VRP for which constraints 

(3-5) and (3-6) have been relaxed. The total distance required to carry out the tours will 

be no worse than that required of the initial tours to which the procedure is applied. 

3.5. Numerical Experiments  

Numerical experiments were conducted to assess the quality of solutions obtained 
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through the proposed heuristics on randomly generated small problem instances through 

comparison with exact solutions obtained through direct solution of the G-VRP 

formulation. The experiments were devised to allow consideration of the impact of 

customer and AFS location configuration and AFS density on the solution. A larger, 

more realistic G-VRP was devised using a medical textile supply company’s depot 

location in Virginia. A customer pool for this company was created based on hospital 

locations in Virginia (VA), Maryland (MD) and the District of Colombia (DC) using 

Google Earth. Conversion to biodiesel (B20 or higher) was considered, because of the 

modest density of biodiesel fueling stations in the region. Such conversion will lead to 

significant reductions in carbon monoxide, particulate matter, sulfates, and hydrocarbon 

as compared with diesel fuel, as well as lifecycle GHG emissions (U.S. EPA, 2002). 

Actual biodiesel stations located in the region in the summer of 2009 were obtained from 

a U.S. DOE website (U.S. DOE, 2009). Experiments were designed to analyze the impact 

of fleet conversion for this company to biodiesel using the developed heuristics.  

In both sets of experiments, unless otherwise stated, a fuel tank capacity of 60 

gallons and fuel consumption rate of 0.2 gallons per mile were set based on average 

values for biodiesel-powered AFVs (Fraer et al., 2005). The average vehicle speed is 

assumed to be 40 miles per hour (mph) and the total tour duration limitation was assumed 

to be 11 hours. Service times were assumed to be 30 minutes at customer locations and 

15 minutes at AFS locations. 

The construction and improvement heuristics were implemented in Java and 

compiled using Eclipse. Exact solutions were obtained by implementing the model using 

ILOG's CPLEX Concert Technology (version 11.2, 2009) in Java, which allowed Java 
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objects to be used in building the optimization model. The experiments were run on a 

desktop with Pentium (4) CPU,  32-bit platform with 3.20 GHz processor and 2.00 GB of 

RAM, while ILOG CPLEX runs were made on a Xeon (R) CPU 5160 3.00 GHz 

processor, 64-bit platform with 16.00 GB of RAM. 

3.5.1. Experiments on Small Instances 

Random problem instances were generated so as to maintain the properties of one of four 

general scenario categories as defined in Table 3-1. 

 

Table 3-1  Small instance test scenarios 

Scenario Description Details  

S1 Impact of spatial 

customer configuration 

(uniform) 

10 randomly generated instances of 20 uniformly 

distributed customer locations with 3 fixed AFS locations. 

S2 Impact of spatial 

customer configuration 

(clustered) 

10 instances of 20 clustered customer locations with 3 fixed 

AFS locations. 

S3 Impact of spatial AFS 

configuration  

10 instances, half selected from S1 and half from S2, each 

instance with 6 AFSs generated randomly. 

S4 Impact of station 

density  

10 instances, half created from 1 instance of S1 and half 

from 1 instance of S2, by increasing the number of AFSs 

gradually from 2 to 10 in increments of 2.  

 

Each instance was randomly generated assuming a grid of 330 by 300 miles based 

on an area similar in size to MD, VA and the DC. The depot location was fixed and 

assumed to be located near the center of the grid in all scenarios. Three AFSs were fixed 

and assumed to be located between the depot and the grid boundaries in westerly, 

northerly and southeasterly directions for S1 and S2. Specific instances for each scenario 
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are identified by an alternating pattern of numbers and letters indicating e.g in 20c3sU1, 

the number of customers (20), AFSs (3) how the AFSs are distributed over space (U or C 

indicating that they are uniformly distributed or clustered, respectively), and instance 

number (1-10 for each instance) for S1 and S2. For S3 and S4, the pattern indicates the 

S1 or S2 instance (Scenario 1, instance 2 in S1_2i6s) and number of AFSs (6 AFSs in 

S1_2i6s). 

Table 3-2  S1, impact of spatial customer configuration (uniform) results 

  CPLEX MCWS DBCA 

15150, 1minPts10 

Sample Exact 

Solution       

(miles) 

Number 

of tours 

Customers 

Served 

Total 

Cost 

(miles) 

Difference 

(%) 

Total Cost 

(miles) 

Difference 

(%) 

20c3sU1 1797.51 6 20 1843.52 2.56 1843.52 2.56 

        1818.35 1.16 1797.51 0.00 

20c3sU2 1574.82 6 20 1614.15 2.50 1614.14 2.50 

        1614.15 2.50 1613.53 2.46 

20c3sU3 1765.9 7 20 1969.64 11.54 1969.64 11.25 

        1969.64 11.54 1964.57 11.25 

20c3sU4 1482.00 5 20 1513.45 2.12 1508.41 1.78 

        1508.41 1.78 1487.15 0.35 

20c3sU5 1689.35 6 20 1802.93 6.72 1802.93 6.72 

        1752.73 3.75 1752.73 3.75a 

20c3sU6 1643.05 6 20 1713.39 4.28 1713.39 4.28 

        1668.16 1.53 1668.16 1.53a 

20c3sU7 1715.13 6 20 1730.45 0.89 1730.45 0.89 

        1730.45 0.89 1730.45 0.89 

20c3sU8 1709.43 6 20 1766.36 3.33 1766.36 3.33 

        1718.67 0.54 1718.67 0.54 

20c3sU9 1708.84 6 20 1718.43 0.56 1718.43 0.56 

        1714.43 0.33 1714.43 0.33 

20c3sU10 1261.15 5 20 1309.52 3.84 1309.52 3.84 

        1309.52 3.84 1309.52 3.84 

Average     2.79  2.49 

(a) Indicates when a single cluster is formed at the end of the clustering step of DBCA. 

 

The computation time limit in CPLEX was set to 100,000 seconds with an 

optimal solution tolerance of 10
-3

. The results are presented in Tables 3-2 through 3-5. In 
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these tables, the values of the objective function obtained for each instance is given in 

two lines, the first which provides the heuristic objective function value prior to 

implementation of the improvement techniques and the second which gives the objective 

function value (in italics) after the improvement techniques have been applied. The 

computational times required to run the heuristics were on the order of seconds and are 

not reported here. The DBCA was run multiple times, each for a different (, minPts)-

pair. The best achieved results are provided. 

 

Table 3-3  S2, impact of spatial customer configuration (clustered) results 

  CPLEX MCWS heuristic DBCA   

15150, 1minPts10 

Sample Exact 

Solution       

(miles) 

Number 

of tours 

Customers 

Served 

Total 

Cost 

(miles) 

Difference 

(%) 

Total 

Cost 

(miles) 

Difference 

(%) 

20c3sC1 1235.21 5 20 1340.36 8.51 1340.36 8.51 

        1300.62 5.30 1300.62 5.30 

20c3sC2 1539.94 5 19 1553.53 0.88 1553.53 0.88 

        1553.53 0.88 1553.53 0.88 a 

20c3sC3 985.41 4 12 1083.12 9.92 1083.12 9.92 

        1083.12 9.92 1083.12 9.92 a 

20c3sC4 1080.16 5 18 1135.90(5) 5.16 1135.90(5) 5.16 

        1135.90(5) 5.16 1091.78(4) 1.08 

20c3sC5 2190.68 7 19 2190.68 0.00 2190.68 0.00 

        2190.68 0.00 2190.68 0.00 a 

20c3sC6 2785.86 9 17 2887.55 3.65 2887.55 3.65 

        2883.71 3.51 2883.71 3.51 a 

20c3sC7 1393.98 5 6 1703.40 22.20 1703.40 22.20 

        1701.40 22.05 1701.40 22.05 a 

20c3sC8 3319.71 10 18 3319.74 0.00 3319.74 0.00 

        3319.74 0.00 3319.74 0.00 a 

20c3sC9 1799.95 6 19 1811.05 0.62 1811.05 0.62 

        1811.05 0.62 1811.05 0.62 a 

20c3sC10 2583.42 8 15 2667.23 3.24 2667.23 3.24 

        2648.84 2.53 2644.11 2.35 

Average     5.00  4.57 

(a) Indicates when a single cluster is formed at the end of the clustering step of DBCA. 

 

Table 3-4  S3, impact of spatial AFS configuration results 
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  CPLEX MCWS DBCA 

15150, 1minPts10 

Sample Exact 

Solution       

(miles) 

Number 

of tours 

Customers 

Served 

Total 

Cost 

(miles) 

Difference 

(%) 

Total 

Cost 

(miles) 

Difference 

(%) 

S1_2i6s 1578.15 6 20 1614.15 2.28 1614.15 2.28 

     1614.15 2.28 1614.15 2.28 

S1_4i6s 1438.89 5 20 1599.56(6) 11.17 1599.56(6) 11.17 

     1561.30(6) 8.51 1541.46(5) 7.13 

S1_6i6s 1571.28 6 20 1626.94 3.54 1626.94 3.54 

     1616.20 2.86 1616.20 2.86 

S1_8i6s 1692.34 6 20 1937.87(6) 14.51 1937.87(7) 14.51 

    1902.51(6) 12.42 1882.54(6) 11.24 

S1_10i6s 1253.32 5 20 1309.52 4.48 1309.52 4.48 

     1309.52 4.48 1309.52 4.48 a 

S2_2i6s 1645.8 6 20 1648.24 0.15 1648.24 0.15 

     1645.80 0.00 1645.80 0.00 

S2_4i6s 1505.06 6 19 1505.06 0.00 1505.06 0.00 

     1505.06 0.00 1505.06 0.00a 

S2_6i6s 2842.08 10 20 3127.43 10.04 3127.43 10.04 

     3115.10 9.61 3115.10 9.61 a 

S2_8i6s 2549.98 9 16 2724.12 6.83 2724.12 6.83 

     2722.55 6.77 2722.55 6.77 

S2_10i6s 1606.65 b 6 16 2068.93 28.77 2068.93 28.77 

    1995.62 24.21 1995.62 24.21 a 

Average     5.21  4.93 

(a) Indicates when a single cluster is formed at the end of the clustering step of DBCA. 

(b) Best feasible solution found with <11.30% guarantee difference from optimal. 

 

To ensure that the results are comparable, the heuristics were run and the number 

of tours required for the best found solution was used in constraints (3-5) and (3-6) of the 

formulation in obtaining the corresponding optimal solution. When the two heuristics 

obtained solutions with a different number of tours, as was the case in a few instances, 

the smaller number of tours was employed in the exact solution. In a number of instances 

(e.g. S2_4i2s), no feasible solution could be obtained. That is, it was not possible to 

directly visit all customers with one AFS visit, a requirement of the heuristics. Thus, 
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those customers that could not be served directly with a visit to one AFS were eliminated 

from the problem instance. The number of required tours as identified from heuristic 

solutions and final number of customers considered in each instance are provided in the 

tables.  

Table 3-5  S4, Impact of station density results  

  CPLEX MCWS DBCA 

15150, 1minPts10 

Sample Exact 

Solution       

(miles) 

Number 

of tours 

Customers 

Served 

Total Cost 

(miles) 

Difference 

(%) 

Total 

Cost 

(miles) 

Difference 

(%) 

S1_4i2s 1582.22 6 20 1589.6 0.47 1589.6 0.47 

        1582.2 0.00 1582.2 0.00a 

S1_4i4s  1504.1 6 20 1599.6 6.35 1599.6 6.35 

        1580.52 5.08 1580.52 5.08 a 

S1_4i6s 1397.28 5 20 1599.60(6) 14.48 1599.6(6) 14.48 

        1561.29(6) 11.74 1541.46(5) 10.32 

S1_4i8s 1376.98 6 20 1599.60 16.17 1599.6 16.17 

        1561.29 13.39 1561.29 13.39 a 

S1_4i10s 1397.28  5 20 1568.60 12.26 1568.00 12.22 

       1536.04 9.93 1529.73 9.48 

S2_4i2s 1080.16 5 18 1135.8 5.16 1135.89 5.16 

       1135.89 5.16 1117.32 3.44 

S2_4i4s  1466.9 6 19 1522.72 3.81 1522.72 3.81 

        1522.72 3.81 1522.72 3.81 a 

S2_4i6s 1454.96  6 20 1788.22 22.91 1788.22 22.91 

       1786.21 22.77 1730.47 18.94 

S2_4i8s 1454.96 6 20 1788.22 22.91 1788.22 22.91 

        1786.21 22.77 1786.21 22.77 

S2_4i10s 1454.93 b 6 20 1787.22 22.84 1787.22 22.84 

      20 1783.63 22.59 1729.51 18.87 

Average     10.51  9.69 

(a) Indicates when a single cluster is formed at the end of the clustering step of DBCA. 

(b) Best feasible solution found with <3.5 % guarantee difference from optimal 
 

 

It is often in the cases for which the original problem is infeasible that the 

heuristics perform the worst. The heuristics perform well, however, on average with a 
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gap of 2.7, 5, 5, and 10% from optimal for S1, S2, S3 and S4 instances, respectively, as 

indicated in Tables 3-2 through 3-5. The performance of the heuristics was better for S1 

and S2 instances of Tables 3-2 and 3-5 in which there are limited AFSs and their 

locations are strategically located than for S3 and S4 instances of Tables 3-4 and 3-5 in 

which there are double the numbers of AFSs, but their locations were randomly chosen. 

In many instances, the heuristics find the optimal solution, but in the worst-case, the 

solution is nearly 23% from optimal. The improvement heuristics contributed modestly to 

improving the solutions obtained (an average of 0.9% reduction in objective function 

value for MCWS and 1.5% for DBCA). 

In general, the results of the two heuristics were very similar; although, whenever 

there is a difference in solutions obtained, the DBCA finds the better solution. This 

similarity in the obtained solutions may be a consequence of the small size of the 

problem instances. That is, there are few feasible solutions and these techniques often 

narrow in on the same solutions. Moreover, the heuristics are expected to obtain identical 

solutions when the DBCA produces a single cluster from the first stage. Those instances 

in which this arises are noted in Tables 3-2 through 3-5. Out of the 13 instances in which 

the DBCA produces a better solution than the MCWS, the DBCA's solution uses fewer 

routes to serve the customers in three instances. While there were differences in the 

number of AFS visits included in the final tours of all three techniques, no consistent 

pattern was noted. In approximately half the instances, the heuristics employed one fewer 

or one additional AFS within the final set of tours as compared with the number 

employed in the optimal set of tours. 

The impact of AFS density is examined in S4 (Table 3-5). Results of these 
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instances indicate that more customers could be served as the number of AFSs increased. 

Thus, the number of infeasible instances was reduced. Note that it was not possible to 

visit all customers in three of the clustered customer instances (S2_4i6s, S2_8i6s, 

S2_10i6s) despite the increased number of AFS options and different location 

configurations (Table 3-4). As the number of AFSs increases, the total cost of the optimal 

solution decreases for the same number of served customers (Table 3-5). With a larger 

number of AFS options, the distance required to incorporate needed AFS visits can only 

decrease. Of course, whether or not an additional AFS will be beneficial depends on its 

location. 

3.5.2. Real-World Case Study 

There are 21 publicly available biodiesel stations in VA, MD and DC considered together 

(U.S. DOE, 2009). Four customer-based scenarios were considered as described in Table 

3-6 in which all 21 AFS locations are considered as options unless otherwise specified.  

Table 3-6  Real world case study scenarios 

Scenario Description Details  

1 Transitioning to AFV  111 customers 
2 Impact of increasing 

number of customers 
Number of customers increased in increments of 50 from 

200 to 500, adding customers at random locations within 

the study area to customer pool from Scenario 1, keeping 

AFS locations fixed 
3 Impact of increased 

AFS availability 
Identical to Scenario 1, but with additional AFSs located 

strategically, increased in increments of 2 from 22 to 28 
4 Impact of driving range 

limits 
Identical to Scenario 1, but driving range increased from 

200 miles to 500 miles in 50 mile increments 

 

 

The MCWS heuristic and DBCA were employed in solving the problem 

instances. Results from Scenarios 1 and 2 runs are provided in Table 3-7. Additional runs 

were made to show the heuristic solution when no driving range limitation (i.e. an infinite 
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fuel tank capacity) is assumed. These results are also provided in Table 3-7. Results from 

Scenario 3 and 4 are provided in Figures 3-5 and 3-6, respectively. 

Table 3-7  Heuristic solution results 
  Without Driving Range Limit Modified Clarke and Wright 

Algorithm  

Density Based Clustering Algorithm 

(MCWS) (MCWS) (DBCA) 

    15150, 1minPts30 

Instance Total 

Cost 

(miles) 

Number 

of tours 

Customers 

Served 

Total 

Cost 

(miles) 

Number 

of tours 

Customers 

Served 

Total 

Cost 

(miles) 

Number 

of tours 

Customers 

Served 

111c 4745.90 17 109 5750.62 20 109 5750.62 20 109 

  4731.22   5626.64   5626.64   

200c 9358.63 32 196 10617.02 35 190 10617.83 36 191a 

  9355.56   10428.59   10413.59   

250c 11691.43 40 244 11965.10 41 235 11965.10 41 236 a 

  11668.388   11886.61   11886.61   

300c 14782.08 50 293 14331.30 49 281 14331.30 49 282 a 

  14762.41   14242.56   14229.92   

350c 17677.70 59 343 16610.25 57 329 16610.25 57 329 

  17661.00   16471.79   16460.30   

400c 19968.97 67 393 19568.56 67 378 19196.71 66 373 

  19936.75   19472.10   19099.04   

450c 23168.02 77 443 21952.48 75 424 21952.48 75 424 

  21336.91   21854.17   21854.19   

500c 25032.38 83 492 24652.15 84 471 24652.15 84 471 

  25024.94     24527.46     24517.08     

(a) Indicates when a single cluster is formed at the end of the clustering step of DBCA. 

 

 The original instance (111c) results in Table 3-7 are compared with and without 

driving range limitations. Given the AFS infrastructure, the results indicate that 20 AFVs 

are required to serve the same number of customers served by 17 vehicles for which no 

driving range limitations would apply. Additionally, an increase by 19% in driving 

distance is required to serve the same set of customers when driving range limitations are 

imposed (i.e. through vehicle fleet conversion to biodiesel AFVs). As the number of 

customers increased from 200 to 500, the difference between those customers that could 

not be served when no driving range limitations were enforced as compared to when such 

limitations were required increased from 2 to 21.  
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Figure 3-5  Effect of Increasing AFSs for Instance 111c 
 

  

The graph in Figure 3-5 indicates that as the number of AFSs increases from 21 to 28 (a 

roughly 33% increase), the total distance traveled decreases by 295 miles (a roughly 5% 

decrease). Increased AFS availability can reduce AFV fleet operational costs; however, 

cost savings depends highly on the specific locations of the added stations. This is 

illustrated in the numerical experiments. An increase by three AFSs from 21 to 24 led to 

a reduction in travel distance by 213 miles as indicated in Figure 3-5, but an increase 

from 24 to 26 AFSs resulted in only a four mile reduction. Thus, it may be beneficial for 

the company to seek partnerships with agencies or companies that own private fueling 

stations in well-positioned locations or maintain one or more of its own refueling 

facilities located strategically within an operational area. 
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Figure 3-6  Effect of Vehicle Driving Range on Total Distance Traveled 
 

 

As indicated in Figure 3-6, as the driving range is increased from 200 to 400 

miles, the required travel distance decreased by 2,337 miles. Any increase in driving 

range beyond 400 miles did not result in an improved solution, indicating that all 

customers could be served given the 21 AFSs located in the region. For example, a fleet 

of 25 vehicles each with a 250 mile driving range can serve 107 customers traveling 

6,835 miles. A fleet of only 17 vehicles would be required to serve all 109 customers if 

the driving range of the vehicles is increased to 400 miles. Moreover, the total distance 

required to serve the customers would decrease to 4,731 miles based on the heuristic 

solutions. 

3.6. Concluding Remarks 

In this dissertation, the G-VRP is formulated and techniques were proposed for its 

solution. These techniques seek a set of vehicle tours that minimize total distance traveled 

to serve a set of customers while incorporating stops at AFSs in route plans so as to 

eliminate the risk of running out of fuel. Numerical experiments showed that these 

techniques perform well compared to exact solution methods and that they can be used to 

Driving 

range 

(miles) 

Total 

Cost 

(miles) 

Number 

of tours 

Customers 

Served 

200 7068.47 28 98 

250 6834.97 25 107 

300 5626.64 20 109 

350 4795.00 17 109 

400 4731.22 17 109 

500 4731.22 17 109 
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solve large problem instances. The ability to formulate the G-VRP, along with the 

solution techniques, will aid organizations with AFV fleets in overcoming difficulties that 

exist as a result of limited refueling infrastructure and will allow companies considering 

conversion to a fleet of AFVs to understand the potential impact of their decision on daily 

operations and costs. These techniques can help companies in evaluating possible 

reductions in the number of customers that can be served or increase in fleet size needed 

to serve an existing customer base, as well as any increase in required distance traveled as 

a result of driving range limitations and added fueling stops.  

The formulation and solution techniques are applicable for any fuel choice. The 

techniques account for service times at the stations and, thus, the proposed approach is 

directly relevant in modeling conversion to electric vehicles in which significant time 

may be spent at stations for the purpose of recharging the battery and for possible 

programs that would permit the trading of a depleted battery for a fully charged one while 

en route. Moreover, this approach can be used in seeking optimal tours for gasoline or 

diesel powered fleets that involve special refueling arrangements.  

The developed formulation and solution techniques presume that fuel usage is 

directly related to distance traveled. The model could be extended to consider more 

complex fuel-usage models, consideration of fuel prices and heterogeneous fleets in 

which vehicles may have different driving range limitations or be powered by different 

sources of fuel. The model could be extended to consider optimal station locations jointly 

with tour finding in future studies. 
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Chapter 4: Analysis of Demand for Vanpooling and 

Implications on GHG Mitigation 

 

4.1 Introduction 

The Executive Order on Federal Sustainability, signed by President Obama in 2009, 

commits the Federal Government to lead by example and reduce greenhouse gas 

emissions by 28% by 2020, increase energy efficiency, and reduce fleet petroleum 

consumption. Achieving this 28% reduction will reduce federal energy use by 646 trillion 

BTUs (British termal unit), which is equivalent to 205 million barrels of oil, or taking 17 

million cars off the road for one year.  This is also equivalent to a cumulative total of $8 

to $11 billion in avoided energy costs through 2020 based on current energy prices 

(Executive Order, 2009).   

Decades of highway and automobile oriented development, and subsidized oil and 

automobile industry, will make the attainment of this objective extremely difficult. The 

U.S. has 20.3% of the world's cars. The share of households that own more than three 

vehicles increased from 2.5% to 18.3% between 1960 and 2000 (U.S. DOE, 2010). In 

2008, automobiles and light-duty trucks traveled 53.2% and 36.5% of the total vehicle 

miles traveled (VMT), respectively, while buses represented only 0.2% (U.S. DOE, 

2010). In the 1970’s, these percentages were 82.6% (for cars), 11.1% (for light-duty 

trucks) and 0.4% (for buses). Light-duty vehicles were responsible for 59% of the U.S. 

transportation GHG emissions in 2006 (U.S. DOT, 2010a). Moreover, the highest VMT 

share by purpose was due to work trips, representing the 27.5% of the total share, with 

1.2 persons per VMT in 2009 (U.S. DOE, 2010).  
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Recognizing the significant role of light-duty vehicles in emissions production, 

policies and regulations that encourage the development and the application of 

Transportation Demand Management (TDM) strategies with the objective of reducing 

transportation GHG emissions has become a priority in the U.S. government agenda (see 

e.g. The Congestion Mitigation and Air Quality Improvement Program (CMAQ); Safe, 

Accountable, Flexible, and Efficient Transportation Equity Act: A Legacy for Users 

(SAFETEA-LU); the Presidential Climate Action Project, 2010; U.S. DOT, 2010).  

TDM strategies emerged in the U.S. during the 1970’s for different but related 

reasons: as a response to the occurring energy crisis and to the declining funding for new 

transportation infrastructure. Starting from the 1970’s, environmental effects of increased 

travel activity gained importance as single occupancy vehicles (SOVs) dominated as the 

preferred and in many instances only practical mode for personal transportation (Meyer, 

1999). Federal policies that take aim at congestion mitigation, air quality improvement 

and transportation system management (TSM) have been carried through today with the 

addition of a GHG emission reduction objective. The transportation sector confronts the 

dilemma of global warming from a particular disadvantaged position; the rigid 

transportation infrastructure, the spread out built-environment that defines much of 

America, the automobile industry’s creation and recreation of consumer demand, and the 

travel behavior resulting from such a social structure makes finding solutions to GHG 

emissions mitigation challenging but ever important.  

Changing travel behavior has been and will be difficult but given the emergency 

of the climate change problem, the status quo is not an option. The challenge is to 

overcome the barriers of the urban-suburban-exurban geography and to identify 
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opportunities within given transportation systems, finding the right combination of 

alternative options, policies and structures that will lead the transition to more 

environmentally sound strategies. Para-transit services with the help of advanced 

information and communication technologies can have a significant role in making that 

change happen. Para-transit (or ride-sharing) modes such as carpooling, vanpooling and 

subscription bus services (SBS) are traditionally seen as in-between modes that can 

bridge the gap between automobile use and transit services. Kirby et al. (1974) proposed 

an effective but quite deterministic way (based on distance) to identify the market for 

para-transit services. Recent advances in technology might have a significant role in the 

expansion of para-transit services and might contribute to their integration into a multi-

modal system that works effectively as a whole (Figure 4-1).  

 

 

 

 

 

Figure 4-1  Vanpooling and other alternative transportation options, adopted from SANDAG Short-

Distance Vanpool Transportation Feasibility Study (SANDAG, 2009) 

 

For example, Geographic Positioning Systems (GPS), cellular phones, availability of 

emerging vehicle sharing systems such as Zipcar, and internet and social networking 
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services have the potential to make dynamic ride-sharing type of services more flexible 

and convenient.  

This research focuses on vanpooling programs aiming at reducing carbon-

intensive work travel from the perspective of large employers. According to research 

conducted by the Federal Transit Administration (FTA), vanpooling is identified as the 

greenest motorized mode for urbanized areas with 0.22 CO2e per passenger mile while 

the corresponding value for SOVs is 0.96 (2009 FTA values in U.S. DOT, 2010a). 

Expanding vanpool programs across the country might be an effective way to tackle the 

GHG emission problem. In fact, a study conducted in Massachusetts found that there was 

an average of 66% fuel use reduction per vanpool participant (Evans and Pratt, 2005). 

Another study, based on the Connecticut’s vanpool program which included over 3,000 

participants in 2006, estimated a total of 1,250 tons reduction in GHG emissions (0.42 

tons per vanpooler) (U.S. DOT, 2010a). If these reduction values are applied to a 2% 

participation rate (as opposed to current vanpooling share of 0.3%) in the 50 largest 

metropolitan areas, a 1.22 million new vanpoolers would be created and a 1.33 mmt of 

CO2e (CO2 equivalent) would be mitigated (see U.S. DOT, 2010a for details of these 

estimations).  

Federal, regional and local level regulations combined with subsidies and 

incentives can be used to enlarge market base as well as to influence operations, fuel and 

vehicle types used for the existing and future programs. In 2005, vanpooling accounted 

for 0.3% of all work trips at the national level (Evans and Pratt, 2005). However, in the 

period from 1974 to 1980, the interest in vanpooling was higher due to government 

policies and incentives. Vanpooling doubled each year reaching 15,000 programs in the 
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U.S. (Evans and Pratt, 2005). However, with the end of the energy crisis, vanpooling 

shares and their growth rates have declined. In 1999, there were about 8,500 vanpool 

programs and 10,000 more in 2005. This trend needs to change in order to achieve U.S. 

GHG emission targets (i.e. keeping the VMT growth to 1% annually and reducing GHG 

emissions by 80% by 2050 from 2000 levels). 

Companies, agencies and institutions that are trying to reduce their GHG 

emissions either voluntarily (e.g universities) or in need of meeting regulatory 

requirements (of states, federal agencies) are required to evaluate options from a portfolio 

of possible alternatives. Vanpool can be a viable part of such a portfolio; targets 

commuters that do not have access to transit or need connectivity to transit stations as 

well as commuters who do not have a feasible alternative. From the perspective of an 

institution with the objective of reducing GHG emissions (to meet certain target levels), 

quantifying the benefits of each prospective alternative in terms of GHG emissions is a 

critical part of the decision making process.  Identifying the best option presents several 

challenges. A market-based study is needed to determine if an adequate demand exists 

and whether the program would yield to significant GHG reductions. In order to calculate 

market share, the factors that influence decision to vanpooling need to be identified. 

Improvement of an existing program also requires understanding behavioral response, 

preferences, and attitudes of the potential and existing users of the service. Due to 

specific characteristics of each city, region, etc., user preferences and attitudes are likely 

to be different from place to place. Therefore, models developed for one city or 

institution may not be transferable. Surveys, analysis and models need to be developed 
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for specific cases (e.g. Beaton et al., 1995). However, a general approach or procedure 

can be developed and serve as a guide. 

This dissertation considers behavioral aspects of carpool/vanpool market potential 

and user attitudes and preferences.  It seeks to contribute to efforts to reduce GHG 

emissions from commute trips by better understanding factors affecting decision to 

vanpool. This understanding will help companies, agencies and other institutions in 

developing policies, programs and strategies to reduce automobile commute trips, 

especially with SOVs, which is one of the main sources of institutional GHGs. Survey 

data collected by the University of Maryland (UMD) on the transportation patterns of 

commuters are analyzed, with a specific emphasis on carpooling/vanpooling.  

Following a background on previous studies on vanpool market potential and on 

user attitudes and preferences described in Section 4.2, an overview of the case study and 

of the survey conducted at the UMD College Park campus are given in Section 4.3. In 

Section 4.4, descriptive statistics and results from a detailed data analysis associated with 

the case study are reported. The methodology used in analyzing factors that influence 

behavior, preferences and attitudes toward vanpooling are presented in Section 4.5. The 

analysis of the estimation results are presented in Section 4.6. Finally, findings and 

discussion of the models on how these results can be used to design a better service 

policy is presented in Section 4.7. 

4.2 Background 

In this section, literature on vanpool programs with particular focus on the analysis of 

demand and, where available, on the estimated environmental impacts of the proposed 

programs is presented. Not surprisingly most of the early works in the literature date back 
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to the 1970s and 1980s, when issues related to high fuel price and shortage of oil reserves 

were relevant. However, these works were mainly limited to survey data analysis and did 

not utilize econometric methods, thus were not able to capture multivariate interactions 

among factors that affect the analysis (Hupp, 1981; Dowling et al., 1991; Christiansen et 

al., 1993; Burns, 1995; Davidson, 1995, for a review of the methods proposed for 

ridesharing demand analysis including vanpooling see, Kostyniuk 1982). The number of 

recent work on vanpooling is very limited. Most work in this area focuses on carpooling 

or ridesharing. The literature can be grouped into two categories: studies that focus on 

behavioral aspects (user preferences, attitudes, etc.) and studies that focus on physical 

aspects of the trip (e.g. delay caused by the pooling, trip distance between poolers, work 

start-end times). This review focuses on literature that studies behavioral aspects and the 

studies that consider environmental impacts (for physical aspects see for example Tsao 

and Lin (1999) and Amey (2011)). 

Few early studies looked into environmental benefits of vanpooling. Morris 

(1981) analyzed impacts of a third-party vanpool program in Massachusetts. This study 

concluded that the program was beneficial and the cost savings of the users were far 

higher than the cost of the program. It also considered fuel consumption and emission 

impact. It was found that the vanpool program analyzed was not only cost efficient but 

also effective in reducing emissions at local level relative to other modes; however, its 

contribution to area wide reductions was small due to the limited market size and the 

predicted growth. However, Rose (1981) criticizes earlier studies that state vanpooling is 

the most energy efficient commuting mode. He bases his criticism on the methods used to 

compare alternative modes. Although he accepts that vanpooling can play a significant 
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role in reducing GHGs, he concludes that efficient brokered-carpools could save up to 

60% of the energy used by vanpools and presents them as competing modes. This fits to 

deterministic approach of the period, ignoring the fact that there is potential for both 

modes and that they are complementary. 

On the behavioral side, most studies focused on factors affecting carpool and 

vanpool behavior. For example, Heaton et al. (1981) analyzed effectiveness of third-party 

vanpool programs on four existing projects from various angles such as organizational, 

operational and financial. Their results showed that vanpoolers in all projects were 

mostly people who do not need a car during the day, have fixed schedule, rarely work 

over time and commute relatively long distances. Bailey (1983) estimated vanpooling 

market share in the Baltimore region using simulated work trips. He found that 

vanpooling is preferred for trip distances that are equal-cost or longer (thus less costly) 

compared to drive alone alternative. He estimated about 200 vanpools can be formed with 

this cost based analysis. However, those distances shorten if there are factors that 

increase perceived driving cost such as higher gas price and parking and up to 2000 

vanpools could be formed.  

The studies that utilize econometric analysis to determine factors affecting 

decision to vanpool are limited. Koppelman et al. (1993) looked at the effectiveness of 

demand reduction strategies to encourage ridesharing modes including vanpooling. Their 

analysis suggested that a positive propensity towards ridesharing requires incentives in 

increased service quality and disincentives for automobile use (i.e. increase in parking 

cost in the Midwest suburban setting). They also found that gender and number of cars 

owned in the household plays a role in ridesharing propensity. Specifically, women and 
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individuals in households with fewer autos were more likely to share ride. Whereas, 

people with variable work schedules, trip chaining and higher income are not likely.  

Few recent researches focused on analyzing effect of service availability, price 

and subsidies on vanpooling behavior. Outwater (2003), stated that, unlike demand for 

transit and drive alone, demand for vanpooling depends on the service availability rather 

than on time and cost factors. Therefore, the author focused on vanpool prior-choices and 

estimated a multinomial logit model (MNL) to determine shifts from automobile and 

transit to currently available vanpool programs. The analysis is based on data from the 

Puget Sound Region, King County. The model results showed that significant 

determinants for switching to vanpool were: drive alone operating cost, employment 

accessibility by transit, number of workers and vehicles per household. Transit 

accessibility was found to be significant indicating that when the workplace is accessible 

by transit, the likelihood of commuter’s shifting from transit to vanpool was high. 

Number of workers per household had a significant and negative coefficient which was 

attributed to different work schedules, locations or limited vehicle number in the 

household. Finally, the model showed that as the number of vehicles increase in a 

household, the propensity to drive alone, carpool and vanpool was higher than ride 

transit. Concas et al., (2005) investigated the effect of price and subsidies on vanpool 

demand by using discrete choice modeling techniques. A conditional discrete choice 

model was estimated on the 1999 employer and employee survey data collected under the 

commute trip reduction program of the Puget Sound region (Washington). The results 

showed that vanpool demand was relatively inelastic with respect to fare changes and that 

distance is an important factor in vanpool demand. While individual elasticities were 
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equivalent to the aggregate estimate for shorter commutes (shorter than 30 miles), they 

become inelastic for longer distances (i.e. beyond 60 miles). An important result of their 

analysis was that subsidies have a great impact on demand; when offered, the vanpooling 

choice probability doubles. This work concludes that even though pricing and subsidies 

are important factors, other factors such as employee profile, industry sector, employer 

size, parking policies, and travel patterns must be considered when designing a 

vanpooling program. Winters and Cleland (2011) investigated impact of pricing on 

vanpool market potential. A stated preference method was used on data from four cities 

in Florida and a revealed preference approach was used on data from Puget Sound area of 

Washington to analyze user response to different pricing and service combinations. They 

employed logistic regression for analysis. The stated preference model results indicate 

that a 50% reduction in fares from $50 (2 mile pick-up distance and without any 

incentives) vanpool use would increase ~5%. The increase would be 22% if service was 

free. The revealed preference results indicated that a 15% increase in demand can be 

obtained for each 10% price reduction, within the range of prices modeled. 

On the model transferability, Beaton et al. (1995) tested stated preference 

approach on demand management strategies in two different sites and found that even 

though the strategies are same due to different external conditions, models are not 

transferable. This highlights the need for a general approach that can be applied to 

different places.  

This research contributes to the existing literature on commute trip reduction 

strategies in general and attitudes towards carpooling/vanpooling in particular. It 

introduces an econometric modeling approach that investigates potential for 
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carpooling/vanpooling and that can be adopted by large-scale employers to provide better 

transportation services to their employees. It helps to answer decision questions that are 

vital for developing new alternative services or improving existing ones, such as whether 

the commuting behavior can be changed. If so, what is the magnitude of that change and 

which factors affect these changes? Answering these questions will help develop 

commute trip reduction strategies, such as vanpooling, that would provide the highest 

amount of participation, thus leading to greater environmental benefits. Two ordered 

response models are estimated and analyzed on data obtained from a commuter survey 

conducted at UMD.  

4.3 Data and Survey Background 

The UMD is a major public research university located on 1,250 acres of land on the 

Baltimore-Washington, D.C. corridor in suburban College Park area. Based on Fall 2009 

figures, the university population is 46,753 of which 58% undergraduate students, 23% 

graduate students, 8% faculty and 11% staff (UMD, 2010). Although a good portion of 

(~41%) of undergraduate students is accommodated on-campus, majority of campus 

members live throughout the Washington-Baltimore metropolitan area and commute 

to/from campus. The data used for this research is obtained from the survey designed 

with the partnership of  the Department of Transportation Services (DOTS), the Office of 

Sustainability, the Center for Integrative Environmental Research (CIER) and the Student 

Affairs Assessment Committee of the UMD (for survey questions, see Appendix). 

The survey was conducted in Spring 2010 as part of the University’s GHG 

emission reduction efforts. In May 2007, the president of the University signed the 

American College and University Presidents' Climate Commitment (ACUPCC, 2009), 



 

 

79 

 

pledging to reduce GHGs and to achieve carbon neutrality. According to the University’s 

GHG inventory, transportation is the second largest contributor to the University’s GHG 

emissions with 31% after combined heat and power plant, which are responsible for 41% 

of the total emissions (Tilley et al., 2009). The inventory, which included GHG emissions 

from 2002 to 2008, indicated that 27% of the transportation GHG emissions are due to 

student commuters, 23% to faculty/staff commuters and 7% to the university fleet and 

Shuttle-UM while the rest (43%) was derived from air travel. Therefore, the DOTS 

developed a plan that commits to attain a 3,450 unit reduction in the number of commuter 

permit holders by 2015. As part of this plan, the Green Initiatives Program was 

developed, aiming to reduce the number of commuters by car and shifting demand to 

alternative transportation modes, including bicycling, carpooling, park and rides, and 

transit. In addition to these existing options, the university is considering the provision of 

a vanpooling service that potentially will shift 500 SOV commuters to vanpools. 

4.3.1 The Data and the Survey 

The Transportation Survey was conducted online in two phases. Participants to the first 

phase of the survey (ran for three weeks) were selected randomly and offered a cash 

incentive ($50). During this phase, 6,500 student emails were randomly selected by the 

Registrar’s Office, which was directed to send one initial email and three reminder emails 

over the course of the survey. Faculty and staff were selected for survey participation in a 

different manner; a list-serve with 4,000 randomly selected employee emails was created. 

The second phase (lasted four weeks), was made available to all campus community on 

the DOTS website (a flash screen appeared upon entry) and was announced by a posting 
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to the campus-wide list-serve. The format used was identical to the first phase with 

exceptions of the introductory text and incentives (i.e. no incentive).  

 The survey questions were designed to: (1) understand commuting behavior, (2) 

evaluate existing transportation programs, (3) analyze attitudes towards existing services 

and prospective alternative transportation programs. The survey had three parts aiming to 

collect the following information:  

Part 1. General commuter information including: status classification, 

arrival/departure time, travel time, residential distance from campus, commute mode 

and frequency, and on-campus modal preferences. This part also included specific 

questions about driving, as driving is currently the main mode of commuting to/from 

campus. 

Part 2. Attitudes towards alternative transportation options, such as bicycling, 

carpooling/vanpooling and transit (mainly Shuttle-UM). These questions are designed 

to evaluate existing programs (i.e. bicycling and carpooling) and analyze potential for 

new programs (such as vanpooling). 

Part 3. Demographics, such as age, gender, driver license, type of the appointment at 

the University etc. 

Questions in Part 2, regarding the potential program related questions, including 

carpooling and vanpooling, are the focus of the analysis in this research.  

4.3.2. Sample Formation and Analysis Context 

A total of 2,531 respondents participated in the survey (1,927 in Phase-I and 604 in 

Phase-II). Among these respondents, 2,015 (1,642 in Phase-I and 373 in Phase-II) 
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provided complete data. Data were carefully examined to ensure consistency between 

reported travel modes, times and distances. Additional testing on both Phases-I and -II 

data were necessary to assess if the two datasets could be used jointly. In fact, two 

different procedures were applied to recruit the respondents. Phase-II was conducted 

through the DOTS website via a flash screen appearing upon entry, thus, the data from 

Phase-II had potential for selectivity bias. Therefore, when modeling the pooled data, a 

scaling of residuals of Phase-II to those of Phase-I  was performed to test whether the two 

datasets were significantly different in relation to interest in carpooling/vanpooling. 

Based on the test results, the two data sets were not found to be significantly different and 

the two data sets (Phase-I and -II) were combined for the econometric analysis. However, 

it should be noted that the test results might have shown significant difference regarding 

other questions, such as mode choice.  

In the next section, a descriptive analysis of the commuters’ characteristics and 

their attitudes towards carpooling/vanpooling is given. The term carpooling and 

vanpooling were explicitly defined considering the possible unfamiliarity of the 

respondents to those services in the survey. Carpooling was defined as commuting by 

private car with one or more people (up to four), whereas, vanpooling was defined as 

commuting by van with five or more people. Furthermore, a hypothetical vanpooling 

service is described, where the van is provided by the university. One volunteer member 

is responsible for driving the van and keeping it at home in the evenings and the other 

participants to the service are requested to pay a monthly fee.  

Respondents were asked to state their interest in carpooling/vanpooling to campus 

as driver or as passenger; responses were given on a 5-point ordinal scale: not at all 
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interested (NAI), not very interested (NVI), moderately interested (MI), very interested 

(VI) and extremely interested (EI). Other questions regarding vanpooling include: current 

carpooling and vanpooling frequency (Q34 in Appendix), willingness to pay a monthly 

fee for a daily vanpool as passenger (Q37 in Appendix), effect of the removal of the 

vanpooling fee on willingness to be driver (Q38 in Appendix). In addition, questions 

regarding the reasons that make respondents inclined to carpool or vanpool (Q39-Q46 in 

Appendix) and barriers to carpooling and vanpooling (Q47-Q58 in Appendix) are 

included in the survey.  

4.4. Descriptive Statistics 

An overview of survey population characteristics is presented in Table 4-1. In both 

phases, undergraduate students are underrepresented while, graduate students, faculty and 

staff are overrepresented compared to their actual shares 58%, 23%, 8% and 11%, 

respectively. In both phases, nearly 93% of the respondents live off-campus, while the 

remaining 7% live on-campus. Of these 93% off-campus respondents, 41% live further 

than 10 miles from campus in Phase-1 while this percentage is about 20% in Phase-II. 

This difference is likely due to the larger share of faculty and staff in Phase-1 compared 

to the Phase-II sample. Similar differences can be observed, possibly due to the same 

reason, in the percentage of respondents with a U.S. driver’s license: 93.5% in Phase-I, 

while 84.8% in Phase-II. Similarly, 36% of the respondents are under age 25 and 66% are 

under age 35 in Phase-I, while these percentages are 55% and 86%, respectively, in 

Phase-II. In both phases, the gender distribution is slightly skewed towards female (about 

56% female versus 43% male) respondents. Finally, in both phases, the majority of the 

trips are shorter than 45 minutes (73% in Phase-I and 77% in Phase-II). Approximately 
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25% of commutes last longer than 45 minutes which demonstrates a viable market 

potential for a vanpool program. 

Table 4-1  Basic demographics and travel statistics 

 Phase- I Phase-II 

 N % N % 

Status     

Undergraduate Student 

Graduate Student 

Faculty 

Staff 

(Total ) 

363 

568 

255 

456 

(1642) 

22.11 

34.59 

15.53 

27.77 

 

165 

120 

25 

63 

(373) 

44.24 

32.17 

6.70 

16.89 

 

Work classification 

    

Part-time    

Full-time 

185 

1457 

11.27 

88.73 

21 

352 

5.63 

94.37 

Location     

On-campus 

Off-campus 

110 

1532 

6.70 

93.30 

23 

350 

6.17 

93.83 

Distance from campus(miles)      

On-campus 

<1 mile 

1-5 miles 

6-10 miles 

11-15 miles 

16-20 miles 

>20 miles 

110 

104 

434 

313 

202 

135 

344 

6.70 

6.33 

26.43 

19.06 

12.30 

8.22 

20.95 

23 

38 

163 

73 

23 

14 

39 

6.17 

10.19 

43.70 

19.57 

6.17 

3.75 

10.46 

 

Average commute time (minutes, door-to-door ) 

    

<15 min 

15-30min 

30-45 min 

45-60 min 

61-90 min 

>90 min 

270 

528 

397 

280 

131 

36 

16.44 

32.16 

24.18 

17.05 

7.98 

2.19 

56 

139 

93 

46 

28 

8 

15.01 

37.27 

24.93 

12.33 

7.51 

2.14 

 

Gender 

    

Male 

Female 

Transgender 

633 

832 

3 

43.12 

56.67 

0.20 

164 

207 

2 

43.97 

55.50 

0.54 

 

New in Maryland 

    

Yes 

No 

322 

1083 

22.92 

77.08 

96 

277 

25.74 

74.26 

License to drive in the U.S.     

Yes 

No 

921 

64 

93.50 

6.50 

235 

42 

84.84 

15.16 
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Age     

18-25 

26-35 

36-45 

46-65 

>65 

592 

496 

211 

316 

27 

36.05 

30.21 

12.85 

19.24 

1.64 

191 

107 

15 

29 

3 

55.36 

31.01 

4.35 

8.41 

0.87 

 

4.4.1. General Commuting Characteristics 

Mode choice of the campus community (living off-campus only) is analyzed to better 

understand commuting patterns. Modal split is calculated by taking into account trip 

frequency and distance information. For each respondent, first, the total number of trips 

made in a week is calculated (all modes considered). Then, the percentage by each mode 

and the mode with maximum share are obtained. While this process gave the most 

frequently used mode for each respondent, the consistency of the results were ensured by 

checking the distance, travel time and other characteristics when necessary. This 

consistency check was especially needed when more than one mode shared the same 

percentage for a respondent.  

The analysis is based on two factors: (1) the status of the respondent and (2) the 

one-way commute distance from campus. According to the analysis by status for Phase-I, 

majority of the trips are made alone by car for all groups (Table 4-2). Driving alone 

share, on average, is 72.8% for faculty-staff and 49.5% for students. This result is 

expected as students tend to live closer to campus; thus, they can use alternative or non-

motorized transportation options such as bicycling and Shuttle-UM. While ~40% of the 

students (graduate and undergraduate) use Shuttle-UM, the percentage of faculty and 

staff riders is low (~8%). The carpool share is higher for undergraduate students and staff 

(7.9% and 7.2% respectively). Car and Shuttle-UM (park and ride) and MetroRail/MARC 
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and Shuttle-UM also have a relatively high share among other combinations of modes. In 

Phase-II, Shuttle-UM has a significant share, higher than drive alone which is likely due 

to the high rate of undergraduate students in the sample.  

Table 4-2  Mode split to/from campus by status (for off-campus members)  

 

Phase 1 

Undergraduate 

Student 

% 

Graduate 

Student 

% 

Faculty 

 

% 

Staff 

 

% 

Bike 3.8 7.3 3.5 1.6 

On foot 4.9 7.8 2.0 4.7 

Alone by car 49.8 49.2 72.9 72.7 

With others by car (carpool/vanpool) 7.9 3.9 5.9 7.2 

Scooter/Motorcycle 1.1 0.5 0.0 0.4 

Shuttle-UM 19.6 20.2 5.9 2.2 

Other bus 1.5 1.2 0.8 2.5 

MetroRail/MARC and Shuttle-UM/bus 2.3 5.0 4.3 2.0 

By car and Shuttle-UM (Park & Ride) 6.8 2.3 3.1 3.6 

Shuttle-UM/bus and bike 0.4 0.7 0.4 0.0 

Car and bike 1.1 1.2 0.4 1.6 

Other 0.8 0.7 0.8 1.6 

Total N 265 565 255 447 

Phase II % % % % 

Bike 10.5 9.2 16.0 3.3 

On foot 11.2 8.3 4.0 3.3 

Alone by car 24.5 15.0 8.0 54.1 

With others by car (carpool/vanpool) 3.5 2.5 12.0 3.3 

Scooter/Motorcycle 1.4 0.8 0.0 0.0 

Shuttle-UM 40.6 54.2 32.0 14.8 

Other bus 2.1 4.2 8.0 6.6 

MetroRail/MARC and Shuttle-UM/bus 1.4 3.3 8.0 6.6 

By car and Shuttle-UM (Park & Ride) 3.5 1.7 12.0 3.3 

Shuttle-UM/bus and bike 1.4 0.0 0.0 1.6 

Car and bike 0.0 0.0 0.0 1.6 

Other 0.0 0.8 0.0 1.6 

Total N 143 120 25 61 

 

In Table 4-3, the modal share is analyzed based on distance from campus. It can 

be seen that non-motorized transportation modes’ share is relatively high for distances up 

to five miles; as distance increases, drive alone’s share reaches 76.3 % (in Phase 1). The 
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results show that drive alone has the highest share for all distance groups off-campus. 

Carpooling share also grows as the distance from campus increases (e.g. 11.1% for 16-20 

miles and 9.9% for >20 miles). Shuttle-UM is mostly used by respondents who live 

within 10 miles from campus; although shares remain over 5% distances up to 15 miles. 

The reason that shuttle and other public transportation mode shares are very low for 

longer distances are probably due to the limited public transportation service available to 

commuters. In line with this reasoning, the park and ride option has a higher share for 

distances over 15 miles. This shows that when service is available, people tend to use 

public transportation and possibly a vanpool service. 

 
Table 4-3  Mode split to/from campus by distance (in miles) (for off-campus members) 

Phase 1 <1 

% 

1-5 

% 

6-10 

% 

11-15 

% 

16-20 

% 

>20 

% 

By Bike 20.2 11.1 1.6 0.5 0.0 0.0 

On foot 23.1 11.5 0.0 0.0 0.0 0.0 

Alone by car 26.0 47.0 62.3 74.3 76.3 74.4 

With others by car 1.0 4.4 2.9 5.0 11.1 9.9 

Scooter/Motorcycle 0.0 0.9 13 0.0 0.0 0.0 

Shuttle-UM 25.0 21.0 19.5 5.4 0.7 2.9 

Other bus 1.0 2.5 1.6 2.5 0.7 0.3 

MetroRail/MARC and Shuttle-UM/bus 0.0 0.2 7.7 6.4 4.4 4.1 

By car and Shuttle-UM (Park & Ride) 1.0 0.2 2.9 4.5 5.2 5.2 

Shuttle-UM/bus and bike 1.0 0.2 0.3 0.0 0.0 0.0 

Car and bike 1.9 0.9 0.0 0.0 0.0 1.5 

Other 0.0 0.0 0.0 1.5 1.5 1.7 

Total N 104 434 313 202 135 344 

Phase II       

By Bike 15.8 14.7 2.7 4.3 0.0 0.0 

On foot 36.8 3.7 0.0 0.0 0.0 0.0 

Alone by car 2.6 16.0 30.1 47.8 57.1 57.9 

With others by car 2.6 3.1 5.5 0.0 0.0 7.9 

Scooter/Motorcycle 0.0 1.2 1.4 0.0 0.0 0.0 

Shuttle-UM 42.1 50.3 43.8 13.0 35.7 13.2 

Other bus 0.0 6.1 2.7 4.3 7.1 2.6 

MetroRail/MARC and Shuttle-UM/bus 0.0 0.6 6.8 13.0 0.0 5.3 
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By car and Shuttle-UM (Park & Ride) 0.0 1.2 5.5 8.7 0.0 7.9 

Shuttle-UM/bus and bike 0.0 1.8 0.0 0.0 0.0 0.0 

Car and bike 0.0 0.0 0.0 0.0 0.0 2.6 

Other 0.0 1.2 1.4 8.7 0.0 2.6 

Total N 38 163 73 23 14 38 

 

4.4.2. Driving Behavior and Attitudes Towards Carpooling and Vanpooling 

As discussed in Section 4.4.1, driving alone has the highest share among all modes for all 

status and distance groups over 5 miles (Tables 4-2 and 4-3, Phase 1). Faculty and staff 

share of driving alone (~73%) is higher than students (~50%). Drive alone’s share based 

on distance vary from 26% to 76.3% (Table 4-3, Phase 1). In order to evaluate current 

carpooling behavior, reported vehicle occupancies are presented in Table 4-4.  

Table 4-4  Number of passengers reported as the carpool and vanpool size  

  Phase-I 

(N=1437) 

Phase-II 

(N=325) 

All 

(N=1762) 

Phase-I 

% 

Phase-II 

% 

All 

% 

Drive Alone 1041 197 1238 72.44 60.62 70.26 

+1 person 303 100 403 21.09 30.77 22.87 

+2 person 58 15 73 4.04 4.62 4.14 

+3 person 22 7 29 1.53 2.15 1.65 

+4 person 5 2 7 0.35 0.62 0.40 

+5 or more 8 4 12 0.56 1.23 0.68 

 

According to the survey results, 27% of the respondents (in Phase-I) who answered the 

question reported that they usually ride with other people when they drive to campus. The 

majority of these carpools are made with one other person only (21.09%). However, there 

is a possibility that these carpools are formed with a family member, such as dropping 

children or riding with spouse.  
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Table 4-5  Existing carpooling and vanpooling pattern 

Frequency Phase-I 

N=1615 

Phase-II 

N=356 

Both 

N=1824 

Phase-I 

% 

Phase-II 

% 

Both 

% 

Most everyday 126 21 147 7.80 5.90 8.06 

At least Once per week 96 27 123 5.94 7.58 6.74 

At least Once per month 83 33 116 5.14 9.27 6.36 

Rarely or never 1310 275 1585 81.11 77.25 86.90 

 

According to Phase-I results, 7.8 % of the respondents carpool or vanpool most every 

day; 5.94% carpool at least once a week (Table 4-5). Carpooling share increases with 

distance from campus (Table 4-3). However, the majority of the respondents (81.11%) 

stated that they rarely or never carpool. Understanding the reasons for carpooling and 

barriers to carpooling will help making adjustments in the current University Carpooling 

Program as well as designing a new vanpooling program. 

In order to understand propensity of the respondents to vanpool in case such 

service is provided by the university, questions that are discussed in Section 4.3.2 are 

analyzed. The two main questions are used to understand whether being passenger or 

driver makes any difference in respondents’ interest in carpooling or vanpooling. As it 

can be seen in Table 4-6, where data from both Phases-I and -II are presented, interest in 

carpooling and vanpooling is not very high but there is a considerable potential (if 

moderate to extreme interest is considered). The interest as passenger is slightly higher 

than as driver. The interest increases as the distance from campus increases. People who 

reside approximately farther than 10 miles from campus can be regarded as potential 

vanpool participants.  
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Table 4-6  Interest in carpooling and vanpooling as passenger or as driver based on distance (miles) 

  As Driver (N=1097) As Passenger (N=1126) 

  6-10 

N=357 

11-15 

N=216 

16-20 

N=147 

>20 

N=377 

6-10 

N=379 

11-15 

N=220 

16-20 

N=147 

>20 

N=380 

 % % % % % % % % 

Not at all Interested  33.89 34.72 40.14 32.10 29.55 34.09 36.73 31.58 

Not Very Interested  29.13 34.26 27.21 25.20 25.86 27.73 23.81 21.84 

Moderately Interested 29.41 21.30 23.81 28.91 31.40 23.18 25.85 28.16 

Very Interested 4.76 7.41 6.80 9.28 8.44 8.64 11.56 10.26 

Extremely Interested 2.80 2.31 2.04 4.51 4.75 6.36 2.04 8.16 

 

The same data is analyzed from another perspective and classified by status (Table 4-7). 

Faculty and graduate students have higher interest for being a driver while both graduate 

and undergraduate student interest are higher for being a passenger. Staff members’ 

interest was lower compared to other groups for both passenger and driver roles.  

Table 4-7  Interest in carpooling and vanpooling as passenger or as driver based on status 

 As Driver (N=1142) As Passenger (N=1126) 

 UGS 

N=214 

GS 

N=315 

Faculty 

N=205 

Staff 

N=363 

UGS 

N=216 

GS 

N=326 

Faculty 

N=210 

Staff 

N=374 

 % % % % % % % % 

Not at all Interested 28.97 31.11 63.90 36.09 25.93 25.46 38.10 37.97 

Not Very Interested 30.84 25.71 52.68 29.75 24.54 20.86 27.14 26.47 

Moderately Interested 27.57 31.75 46.34 26.17 31.02 35.28 23.33 22.46 

Very Interested 7.94 8.25 8.78 4.96 9.72 11.35 7.14 9.09 

Extremely Interested 4.67 3.17 5.37 3.03 8.80 7.06 4.29 4.01 

-UGS and GS stand for undergraduate and graduate student respectively 

 

Currently, the university does not have an official vanpooling service. The 

prospected program assumes that one volunteer member is responsible for driving the van 

and keeping it at home in the evenings; other members pay a monthly fee to participate in 

the vanpool. Then, the willingness to pay for such a service was investigated. Table 4-8 

summarizes the survey results regarding willingness to pay for a vanpool service 

provided by the University. Consistently, all status groups and distance groups agreed to 
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pay $10-$20 per month. Another interesting observation is that, as the distance from 

campus increased, the respondents were willing to pay more for the service; this shows 

that, the long commute and corresponding high cost affect the perception of the 

respondents on vanpooling program. 

Table 4-8  Willingness to pay for a vanpool service provided by the university 

$ per month By Classification (N=1103) By Distance (N=1103) 

  UGS 

N=213 

GS 

N=324 

Faculty 

N=203 

Staff 

N=363 

6-10 

N=372 

11-15 

N=214 

16-20 

N=143 

>20 

N=374 

 % % % % % % % % 

Not at all 38.49 34.25 48.27 45.73 39.78 45.79 42.66 40.11 

< $10 16.43 20.06 10.83 10.46 20.70 15.42 8.39 10.16 

$10-$20 25.82  25.61  16.25  20.66  24.19  23.36  27.27  17.91  

$20-$30 14.08 11.72 14.28 13.49 11.83 9.81 15.38 15.78 

$30-$40  5.16 8.33 10.34 9.64 3.49 5.61 6.29 16.04 

-UGS and GS stand for undergraduate and graduate student respectively 

 

The survey also inquired if the removal of the monthly participation fee would impact the 

willingness to be the primary driver. As Table 4-9 suggests, in all status groups and all 

distance groups, the majority of the respondents were indifferent to the fee removal.  

Table 4-9  Interest in being primary driver in case monthly fee is removed  

 By Classification (N=1097) By Distance (N=1094) 

  UGS 

N=213 

GS 

N=320 

Faculty 

N=202 

Staff 

N=362 

6-10 

N=369 

11-15 

N=211 

16-20 

N=142 

>20 

N=372 

 % % % % % % % % 

Much more likely 8.92 6.25 2.97 5.25 5.15 5.21 4.93 7.26 

Slightly more likely 5.63 4.69 1.49 2.76 5.42 2.37 2.82 2.96 

No change 50.70 56.88 73.27 69.61 62.60 68.25 64.79 59.95 

Slightly less likely 22.54 22.19 13.37 11.05 20.05 15.17 15.49 14.78 

Much less likely 12.21 10.00 8.91 11.33 6.78 9.00 11.97 15.05 

-UGS and GS stand for undergraduate and graduate student respectively 

 

The survey also included questions aiming at understanding reasons that would 

make the respondents more inclined to carpool or vanpool. According to the analysis by 
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member status (Table 4-10), frequent pick-up and drop-off times are extremely 

important. Students are sensible to increase in the cost of gasoline and more convenient 

parking options. Faculty and staff ranked very high a more convenient Guaranteed Ride 

Home Program and an increase in the cost of gasoline. Based on these responses, we can 

conclude that frequent and flexible pickup and drop-off times would encourage many 

campus members to use the service. It should be noted that the university already has a 

Guaranteed Ride Home service through Commuter Connections, which is a regional 

network of transportation organizations coordinated by the Metropolitan Washington 

Council of Governments (MWCOG). Emphasizing and marketing this service intensively 

might help faculty and staff members to be more inclined to vanpool. 

Table 4-10  Reasons that would make campus members more inclined to carpool or vanpool  (by 

status) 

Reasons  UGS 

N=700 

GS 

N=430 

Faculty/Staff 

N=610 

Web application that matched me with potential carpool partners  7.29 6.05 5.25 

More convenient parking options 13.14 8.84 4.92 

Increase in the cost of parking 7.43 7.44 9.84 

Increase in the cost of gasoline 9.14 9.07 8.20 

Finding good company to ride with 10.71 8.14 6.72 

Less expensive parking than the days when I drive alone 5.43 3.95 5.25 

A more convenient Guaranteed Ride Home Program 6.57 7.44 10.00 

Frequent pick-up and drop-off times 31.14 38.14 29.67 

-UGS and GS stand for undergraduate and graduate student respectively 

 

Analyzing the same factors by distance, we obtain additional information about 

the preferences of the campus community (Table 4-11). For all distance groups, again 

frequent pick-up and drop-off times is the most important factor affecting the interest in 

vanpooling. Interestingly, the 11-15 mile group ranked this option with a greater share. 

Web application that matches commuters with a potential partner was not highly ranked 

but its ranking increased as distance from campus increased. This suggests that, as the 
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member’s distance from campus increase, their location may disperse to a larger area and 

finding a carpool or vanpool partner may become more challenging. In addition, because 

of the long commute time, members maybe more concerned about their pool partners. 

More convenient parking options were valued most by 6-10 mile group but other groups’ 

shares were also close. The increase in the cost of parking received the highest ranking 

from 16-20 mile group. As expected, >20 mile group ranked the increase in the cost of 

gasoline the highest. Finding good company option was third important reason for 6-10 

mile group, while it had the highest share among other distance groups. Counter 

intuitively, this reason was the fifth important for the >20 miles group.   

Table 4-1  Reasons that would make campus members more inclined to carpool or vanpool (by 

distance, in miles) 

Reasons  6-10 

N=224 

% 

11-15 

N=152 

% 

16-20 

N=93 

% 

>20 

N=236 

% 

Web application that matched me with potential 

carpool partners  

3.57 3.95 7.53 7.63 

More convenient parking options 7.14 6.58 5.38 5.51 

Increase in the cost of parking 8.04 4.61 15.05 6.36 

Increase in the cost of gasoline 8.48 8.55 6.45 13.98 

Finding good company to ride with 8.93 8.55 7.53 7.20 

Less expensive parking than the days when I drive 

alone 

4.46 3.29 3.23 4.66 

A more convenient Guaranteed Ride Home Program 10.27 4.61 7.53 8.05 

Frequent pick-up and drop-off times 34.82 37.50 32.26 31.78 

 

The survey also included questions about barriers to carpooling and vanpooling. 

Learning what prevent campus members from carpooling and vanpooling will help 

improving the current carpool program as well as developing a future vanpool program. 

According to the analysis by status (Table 4-12) the most important barrier is the need of 

a specially equipped vehicle. After a careful investigation, we concluded that the 

respondents might have meant child seat as special equipment (see shares of “I need to 
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pick-up/drop-off my children” and “I need a specially equipped vehicles”). For the 

faculty-staff group, the second highest reason stated is not having a car. This is useful 

information that this group does not already have a car and there is a high potential for 

them to become member of a carpool or vanpool service. Similarly, more than half of the 

student groups also do not have car and thus suggesting a promising market potential. 

These results also suggest that if the University would provide a larger day-care service 

or an elementary/middle school option on-campus, the majority of the campus members 

may not need to drive alone. 

Table 4-2  Barriers to carpooling and vanpooling (by status) 

Barriers to carpooling and vanpooling Student(Both) 

N=700 

% 

Faculty/Staff 

N=610 

% 

I do not have a car. 55.71 72.46 

I need my car for off-campus trips. 23.71 17.70 

I have a constrained or irregular schedule. 9.57 8.52 

I need a specially equipped vehicle. 77.57 80.16 

I need to pick-up/drop-off my children. 77.57 61.15 

I do not have a way to find a carpool or vanpool group. 36.29 45.25 

I do not have time to wait on others. 11.71 11.31 

I do not like to depend on others I do not know well. 10.00 10.33 

I am concerned about my safety. 26.57 33.28 

I prefer to ride alone. 25.71 27.38 

I am concerned about becoming stranded on campus. 17.71 18.03 

 

The barriers to carpooling and vanpooling by distance also show a similar pattern 

(Table 4-13). Specially equipped vehicle is the most important barrier to all distance 

groups. Picking up and dropping-off the children and not having a car are the next 

important barriers to all distance groups. 
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Table 4-3  Barriers to carpooling and vanpooling (by distance, in miles) 

Barriers  6-10 

N=224 

% 

11-15 

N=152 

% 

16-20 

N=93 

% 

>20 

N=236 

% 

I do not have a car. 64.29 45.54 76.34 74.58 

I need my car for off-campus trips. 24.55 12.95 18.28 19.92 

I have a constrained or irregular schedule. 6.25 4.91 4.30 7.63 

I need a specially equipped vehicle. 79.46 50.45 81.72 82.20 

I need to pick-up/drop-off my children. 66.52 38.84 66.67 67.37 

I do not have a way to find a carpool or vanpool group. 38.39 23.21 49.46 36.02 

I do not have time to wait on others. 8.48 7.59 12.90 8.47 

I do not like to depend on others I do not know well. 7.59 7.14 10.75 8.90 

I am concerned about my safety. 29.91 19.64 36.56 25.85 

I prefer to ride alone. 29.46 16.07 25.81 24.58 

I am concerned about becoming stranded on campus. 20.54 11.16 16.13 11.86 

 

4.5 Modeling Approach 

The type of questions where the answers are given in an ordinal scale, such as the 

questions explained in Section 4.3.2, are called ordered-responses. The modeling 

approach, where the dependent variable is in ordered form, is typically Ordered Choice 

Modeling within the Discrete Choice Modeling framework (e.g. Train, 2009; Greene and 

Hensher, 2009; Bhat and Pulugurta, 1998). Other approaches are also available and they 

differ based on the treatment of the dependent variable.  For example, it is possible to 

specify an unordered model such as nested logit, mixed logit, or probit model but they 

would not fit the structure of the data properly, because such models are derived from 

specification of a utility function for each alternative. In ordered models, this would mean 

each response alternative has a utility and the respondent chooses the one with highest 

utility (Train, 2009). 

In ordered models, the dependent variable is treated as an unobserved, continuous 

latent variable (y*) and the ordinal responses j=1,.,J represent measurements of this 
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unknown latent variable, and yi=j represents the ordered outcome for person i. This latent 

variable can be considered as the utility or opinion of the respondent about the subject in 

question. The respondent answers to the question based on that opinion. Because the 

given options are discrete in ordered response questions, there may not be a value that 

exactly represents the respondent’s utility or opinion. Therefore, the value yi* is 

determined by J-1 thresholds (µ1, µ2,…,µJ-1) (Train, 2009). The observed yi values 

represent the value of yi* depending on the threshold interval yi falls to. For example, in 

this study, j=1,..,5, where 1=NAI, 2= NVI, 3=MI, 4=VI and 5=EI. An observation of yi 

=1 means that for person i, the value of y* is less than or equal to µ1. Similarly, yi=2, if  

µ1 <y*≤µ2 , yi =3, if µ2 <y*≤µ3, yi =4, if µ3 <y*≤µ4, yi =5, if y*>µ4.  

The functional form of Ordered Choice Model takes the following form: 

n,....., 1,i y ii  , 
*

ixβ
      (5-1) 

where βxi represents the observable part and εi represents the unobservable error term of 

respondent i’s utility
 
yi*. The vector xi represents a set of K explanatory variables that are 

assumed to be independent from εi. Parameters vector  represent the impact of 

explanatory variables and thresholds on respondents’ ranking, in this case, interest in 

vanpooling as passenger/driver (=1,..,J). The unobserved factors εi are considered 

random and their distribution determines the probability for the possible responses of 

NAI, NVI, MI, VI, and EI. Ordered models have proportional odds (or parallel 

regression) assumption which means the relationship between all outcome groups is 

same. Models considered in this study do not consider heterogeneity across individuals. 

The probability of a respondent choosing one of these responses can be calculated 

based on the distribution of εi chosen. In this research, logistical distribution with 
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cumulative distribution of F(εi) = exp(εi)/(1+exp(εi)) is assumed for εi. Accordingly, the 

probability of an answer yi=j is computed as follows (Train, 2009):  
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These probabilities take the following form for Ordered Probit Model where εi is assumed 

to have standard normal distribution (Train, 2009).  
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where Φ represents the standard cumulative normal function.  

Parameter estimation is performed solving a maximum likelihood estimation 

problem. The log likelihood function for ordered logistic regression model is (Greene and 

Hensher, 2009): 
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subject to µ0=-∞, µ1=0, µj=+∞, where mij is an indicator that takes value 1 if yi=j and 

zero otherwise.  

4.5.1 Model Specification 

Two different models, a passenger and a driver model, have been estimated to explain 

interest in carpooling/vanpooling from the perspectives of the passenger and driver.  A 
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sequential factor elimination procedure is applied to select the independent factors that 

affect the ordered discrete perception categories. The following factors are included in 

the final model specifications: 

The continuous dependent variables 

1. Interest in carpooling/vanpooling as driver (from 1 to 5 in increasing order). 

2. Interest in carpooling/vanpooling as passenger (from 1 to 5 in increasing order). 

Commuter characteristics 

3. Status and willingness to pay interaction variables (undergraduate student, 

graduate student, faculty and staff interactions with willingness to pay (dollars per 

month) variable). 

Commute characteristics 

4. One way commute distance from campus, obtained from zip code (two dummy 

variables that take value one: for Distance 5-to-15 miles and Distance > 15 miles). 

5. Location of the commuter (two dummy variables, Washington Area  and 

Baltimore Area). 

6. Commuting alone by car frequency (a dummy variable for driving alone four or 

more times a week). 

7. Carpooling behavior (a dummy variable that takes value one if respondent rarely 

or never carpool/vanpool to campus). 

Variables related to attitudes and preferences 

8. Effect of removal of the participation fee (dummy variable takes value one if 

extremely increase the interest, zero otherwise). 
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9. Reasons that would make them more inclined to vanpooling (dummy variables 

that take value one if following reasons are selected as one of top three reasons, 

zero otherwise: Web application, Convenient parking, Cost of parking, Cost of 

gas, Good company, Cheap parking, Convenient ride home service, Frequent 

pickup/drop off service). 

10. Barriers to vanpooling (dummy variables that take value one if following are 

selected as one of top three barriers, zero otherwise: Do not have a car, Need to 

pick up children, Like independency). 

Demographic variables 

11. Age (two dummy variables are used for age groups of 35-to-45 and greater than 

45). 

12. Gender (dummy variable that takes value one male, zero if female) 

13. Whether licensed to drive or not (dummy variable that takes value one if licensed, 

zero if not). 

4.6. Model Estimation  

Table 4.14 presents the empirical results obtained by modeling interest in 

vanpooling/carpooling from the perspective of the passenger and driver.  Estimations are 

based on ordered logit and ordered probit formulations and are performed using software 

package STATA 9.2 (StataCorp, 2005). These models are estimated with ordered logit 

and probit models to investigate if assumptions on the error terms have a significant 

impact on the estimation results. 
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4.6.1 Ordered Logit Model Estimation Results of Interest as Passenger and as 

Driver 

The interaction variables that combine respondents’ status and willingness-to-pay for a 

university provided vanpooling service are significant factors determining the interest in 

vanpooling as passenger. Status can be considered a proxy for income, which is 

unfortunately not available. Graduate students are those with the highest propensity to 

pay for the service under analysis (with coefficient estimate 0.823 in passenger model in 

Table 4-14); other groups show similar behavior. A similar pattern is observed in the 

driver model; however, a decrease in the coefficient values is observed for all status 

groups. These coefficients represent the rate of change in the dependent variable for a one 

unit change in the independent variable of interest, in the ordered log-odds scale while all 

other independent variables kept constant in the model. For example, a unit increase in 

faculty & willingness-to-pay variable will increase the log-odds of being in a higher level 

of interest to be a passenger by 0.771 (while all other variables are held constant at their 

mean values) (Table 4-14). Higher coefficients of the status and willingness-to-pay 

interaction variables in the passenger model indicate that interest in being a passenger is 

higher. Graduate students’ coefficient is higher, indicating higher log-odds for being in a 

higher level of interest to be a passenger (by 0.823). Although this may seem 

contradictory to their low income levels, it may be a function of factors, such as 

perception of driving cost and high education level. Faculty and graduate students have 

higher coefficients in driver model, which maybe a function of their flexible or irregular 

schedule, and the need for independence. In passenger and driver models, staff members 

have lower coefficients than other groups. On the other hand, one would expect that staff 

would have high interest in being a passenger (or even driver) as they have a regular 
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schedule. In this case, some other demographic factors, such as age, having young 

children, and residential distance etc. may be playing an important role in their choices.   

Interest in vanpooling/carpooling is higher for commuters who live 15 miles or 

more from campus; whereas, distances shorter than 15 miles are not a determinant of 

interest. People who live farther from campus expect to save time and money especially 

during rush hours. The interest in driving is higher than the interest in being a passenger 

for distances over 15 miles. This can be explained by the fact that users might still want 

to maintain a certain independency. This factor (see “like independence” factor in Table 

4.13) has negative sign and supports the previous interpretation.  

In order to analyze the impact of residence areas, dummy variables derived from 

the aggregation of residential information in two metropolitan areas (Washington and 

Baltimore) are introduced. According to the results, residing in Washington is a 

significant determinant for being a passenger while, it is not a significant factor in the 

driver model. However, the effect of this variable has a negative sign, indicating that 

Washington area residents are not likely to participate in such a program as the 

passenger. The respondents who live in the Baltimore area, however, are interested in 

being the driver while this factor is not significant for the passenger model. The 

Washington area is served by a good public transportation system and that the access to 

campus is possible through the green metro line might explain this finding. On the other 

hand, results obtained for the Baltimore area confirm that when the distance increases, 

interest in using carpooling/vanpooling in the role of driver also increases.  

Commuting frequency by car, factor “SOV > 4 times per week” is found to be not 

significant in the passenger model while it is significant for the driver model. Therefore, 
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respondents who commute to campus most days of the week are more likely to 

participate in a carpooling/vanpooling program. The factor “rarely or never 

carpool/vanpool” is a significant determinant for both passenger and driver models; 

however, its impact is higher in the passenger model. 

As expected, removal of the participation fee is not significant for the passenger 

model as it was targeting driver interest, while it is a significant factor in the driver 

model; interest in carpooling/vanpooling increases when the participation fee is removed. 

It appears that respondents who are already interested in being a passenger are more 

likely to drive when the service is free. 

A number of factors have been derived from the reasons that would make people 

more inclined to vanpooling, these include: web application, convenient parking, cost of 

parking, cost of gas, good company, cheap parking, convenient ride home service and 

frequent pickup/drop off service. With the exception of the coefficient related to the 

convenient ride home service which is not significant for the driver model, those factors 

were found to be significant in both models. Among these factors, web application, 

parking convenience and cost, cost of gas and convenient ride-home service are most 

important. Providing these services will significantly increase the propensity to vanpool 

both as passenger and driver. 

The factors that are potential barriers to carpooling/vanpooling have greater 

impact on the passenger model than on the driver model. All three factors, not having a 

car, need to pick up/drop children and independence, are significant in the passenger 

model, while only independence is significant for the driver model. As expected, not 

having a car increases the interest of being a passenger, while the necessity to pick 
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up/drop of children and independence negatively affects interest in 

carpooling/vanpooling. The need to stop by other locations and the preference for 

independence make it inconvenient to participate in a vanpooling program.  

The impact of demographic characteristics of the respondents is also analyzed. 

Gender is not a significant factor while age, estimated on two categories (35-45 and >45), 

negatively affects service preferences. Being licensed to drive is not a significant 

determinant in either model.  

Finally, thresholds for the latent variables, interest as passenger and driver, are 

given in Table 4.14, as well as model statistics. According to the Likelihood Ratio (LR) 

Chi-square test (with 26 degree of freedom and 0.000 p-value) and Log-likelihood at 

convergence values, all model forms are successful functional forms for explaining the 

relationship between the independent and dependent variables.  
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Table 4-4  Ordered Logit and Probit Model estimation results 

 Passenger Model Driver Model 

 (Logit) (Probit) (Logit) (Probit) 

Variables Coeff. z-stat* Coeff. z-stat* Coeff. z-stat* Coeff. z-stat* 

Undergraduate&Willingness to pay 0.772 13.4 0.439 13.7 0.556 10.0 0.315 10.0 

Graduate&Willingness to pay 0.823 16.1 0.465 16.3 0.607 12.2 0.342 12.2 

Faculty&Willingness to pay 0.771 12.1 0.452 12.3 0.619 9.5 0.358 9.7 

Staff&Willingness to pay 0.763 14.1 0.437 14.1 0.584 10.9 0.339 11.0 

Distance 5-to-15 miles -0.176 -1.3 -0.101 -1.3 -0.087 -0.6 -0.056 -0.7 

Distance>15 miles -0.342 -2.2 -0.169 -1.9 -0.558 -3.6 -0.291 -3.2 

Washington Area -0.267 -2.1 -0.148 -1.9 -0.152 -1.2 -0.066 -0.9 

Baltimore Area 0.022 0.1 -0.011 -0.1 0.427 2.5 0.241 2.4 

SOV>4 times per week -0.173 -1.6 -0.100 -1.6 0.267 2.4 0.158 2.5 

Rarely or never carpool/vanpool -0.812 -6.4 -0.480 -6.6 -0.551 -4.3 -0.352 -4.8 

Removal of vanpool fee 0.254 2.0 0.165 2.3 0.606 4.7 0.371 5.1 

Web application 0.645 5.5 0.377 5.5 0.577 4.9 0.334 4.9 

Convenient parking 0.477 4.3 0.279 4.3 0.397 3.5 0.257 4.0 

Cost of parking 0.278 2.4 0.172 2.6 0.359 3.1 0.209 3.1 

Cost of gas 0.547 4.8 0.322 4.9 0.677 5.9 0.390 5.9 

Good company 0.271 2.4 0.138 2.1 0.426 3.8 0.239 3.7 

Cheap parking  0.469 4.0 0.243 3.6 0.513 4.4 0.303 4.5 

Convenient ride home service 0.496 4.2 0.298 4.4 0.154 1.3 0.103 1.5 

Frequent pickup/drop off service 0.314 2.9 0.165 2.7 0.218 2.0 0.119 1.9 

Do not have a car 0.588 4.2 0.353 4.4 0.088 0.6 0.045 0.6 

Need to pick up children -0.508 -3.3 -0.254 -2.8 0.013 0.1 0.028 0.3 

Like independency -0.268 -2.7 -0.149 -2.6 -0.234 -2.4 -0.133 -2.3 

Gender (Male) -0.183 -1.9 -0.095 -1.7 0.076 0.8 0.048 0.9 

Age 36-to-45  -0.303 -1.7 -0.183 -1.8 -0.443 -2.5 -0.274 -2.7 
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Age>45  -0.406 -2.7 -0.260 -2.9 -0.520 -3.4 -0.332 -3.7 

Licensed to drive  -0.203 -0.9 -0.116 -0.9 -0.003 0.0 -0.023 -0.2 

Thresholds Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. 

1 0.266 0.318 0.143 0.868 0.868 0.329 0.472 0.189 

2 1.756 0.323 1.014 2.329 2.329 0.333 1.342 0.191 

3 3.694 0.330 2.131 4.360 4.360 0.345 2.505 0.195 

4 5.066 0.342 2.856 5.601 5.601 0.364 3.117 0.200 

Number of observations 1644  1644  1629  1629  

Log likelihood at intercept -2404.28  -2404.28  -2231.33  -2231.33  

Log likelihood at convergence -2021.69  -2029.37  -1993.81  -1990.46  

LR Chi Squared 765.19  749.82  475.03  481.73  

Mc-Faddens R2 0.1591  0.1559  0.1064  0.1079  

* Significance level=0.05, two-sided 
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4.6.2 Ordered Probit Model Estimation Results of Interest as Passenger and as 

Driver 

  

The results obtained with the probit model specification are not significantly different 

from those obtained by using the logit specification both in terms of the values of the 

coefficients and of the overall model statistics (i.e. log likelihood and Chi-squared values) 

(Table 4-14). Therefore, analysis of the estimates is not repeated for the probit model. 

The probit model presents a slightly better value of the final log-likelihood for the driver 

model, while logit does substantially better in terms of goodness of fit for the passenger 

model. The difference observed in the model coefficient estimates are due to an inherent 

difference in the scaling of the associated variable. The probit model coefficient estimates 

are approximately 1.8 times smaller than the logit counterparts as expected (Greene and 

Hensher, (2009)). The shape of the distributions (i.e. logistic in logit and standard normal 

in probit model), is also a factor (Greene and Hensher, 2009) that might explain 

differences across the results of the probit and logit models. It should be noted that in 

ordered models the analysis of coefficient estimates is not very informative because the 

model describes the probabilities of the outcomes (i.e NAI, NVI, MI, VI, and EI). Thus, 

ordered models do not describe a direct relationship between explanatory variables (xi) 

and the dependent variable (yi
*
). In order to better assess the model results, marginal 

effects (elasticities) of each explanatory variables and predicted probability outcomes are 

utilized, as described next.  

4.6.3. Probability Predictions  

Table 4-15 presents the predicted probabilities of the outcomes (NAI, NVI, MI, VI and 

EI) for both passenger and driver models. The predicted probabilities from logit and 
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probit models are obtained by keeping the explanatory variable values at their means. 

Logit and probit model predictions are given side by side for comparison. No significant 

difference is reported across the two sets (logit and probit models) of results.  

Table 4-5  Predicted probabilities  

Passenger Model  

                              Logit Probit 

Variable Obs Mean Std.Dev Min Max Mean Std.Dev Min Max 

P(NAI) 1644 0.296 0.22 0.003 0.865 0.306 0.24 0.001 0.894 

P(NVI) 1644 0.248 0.08 0.011 0.342 0.255 0.08 0.015 0.337 

P(MI) 1644 0.282 0.12 0.030 0.434 0.282 0.12 0.016 0.424 

P(VI) 1644 0.107 0.09 0.004 0.317 0.099 0.09 0.001 0.283 

P(EI) 1644 0.065 0.08 0.001 0.738 0.058 0.09 0.000 0.609 

Driver Model  

                              Logit Probit 

Variable Obs Mean Std.Dev Min Max Mean Std.Dev Min Max 

P(NAI) 1629 0.336 0.21 0.025 0.885 0.339 0.21 0.015 0.884 

P(NVI) 1629 0.283 0.07 0.074 0.350 0.284 0.06 0.083 0.336 

P(MI) 1629 0.282 0.13 0.025 0.468 0.280 0.12 0.019 0.439 

P(VI) 1629 0.065 0.06 0.003 0.288 0.063 0.05 0.001 0.236 

P(EI) 1629 0.033 0.04 0.001 0.257 0.034 0.05 0.000 0.315 

 

 

The probability of interest in being a passenger is higher than the interest of being 

a driver for the outcomes VI and EI. If probabilities of having moderate to extreme 

interest are summed, interest as passenger probability is 0.45 while interest as driver 

probability is 0.38. Although they are somewhat low, they are still promising especially if 

we consider that respondents stated their preferences on a hypothetical vanpooling 

program.  

Figures 4-2 through 4-4 give probability profiles for status variables and distance 

variable (distance>15 miles) to better assess the impact of these variables on the 

probabilities of outcomes. These factors are selected because they are thought to be major 

factors when designing a vanpool service. Intpas and Intdrv stand for interest in 
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carpooling/vanpooling as a passenger and as the driver respectively. Probability 

outcomes 3, 4 and 5 represent moderately interested (MI), very interested (VI) and 

extremely interested (EI) ordered outcome groups. For example legend Pr(Intpas=3) 

reads as “probability of interest as passenger for outcome group three (MI)”.  

 Undergraduate student interest in carpooling/vanpooling as passenger shows a 

higher profile than as driver (see outcome 4 and 5 profiles in Figure 4-2). It is also 

observed that the probability of interest in the role of passenger is higher for the higher 

willingness to pay levels. Also, a higher probability of interest to serve as driver is 

observed for moderate interest outcome (outcome 3). Graduate student profiles also 

shown to behave similar. It is interesting to see that in lower willingness to pay levels the 

interest to be driver is (moderately) higher for both student groups. 
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Figure 4-1  Probability profiles for interaction variables: undergraduate student& willingness to pay 

and graduate students and graduate students & willingness to pay. 
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Figure 4-2  Probability profiles for interaction variables: faculty& willingness to pay and staff & 

willingness to pay 
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Faculty and staff member profiles are slightly different from student profiles; 

however, the probability of interest in being a passenger is higher in general (Figure 4-3). 

Staff members show higher interest in the service in almost all outcome levels except for 

five. At the moderate interest level, the interest to serve as passenger and driver is very 

close.  

 Figure 4-4 presents probability profiles with respect to the distance variable 

(distance>15 miles). For the moderately interested outcome, (outcome 3), probability of 

interest as passenger and as driver decreases as the distance increases. However, interest 

to serve as driver has a steeper slope. For the very interested outcome (outcome 4), both 

interest as passenger and driver probabilities increase as distance increases. Also, the 

probability profile of interest in the role of passenger is significantly higher than serving 

as driver. The profile for extremely interested does not show a significant level of 

interest.  
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Figure 4-3  Probability profiles for (distance>15) variable 
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4.6.4. Marginal Effects (Elasticities)  

 

Table 4-16 presents marginal effects according to logit model estimations for both 

passenger and driver models. The marginal effects measure the effect of a unit change 

(change from zero to one in the case of dummy variables) in the predicted probabilities 

while holding all other dependent variables constant at their mean values. Therefore, the 

effect of this change depends on all parameters in the model, the data as well as the 

probability outcome categories (i.e. 1 to 5, or interest from not at all to extreme). The 

probabilities given for each outcome category (P(1) through P(5)) are computed based on 

variable means. 

Looking into marginal effects is important in analyzing ordered-response model 

results, because these models do not have a conditional mean function (E[y|x]) to analyze. 

Therefore, to evaluate impacts of parameters, the effects of parameters on the 

probabilities are computed. The partial effects in ordered response models are: 

 

   (  )  
   (    |  )

   
 [ (       )   (         )]                                           (5-7) 

 

In equation 5-7, β represents the coefficient of the parameter for which the marginal 

effect is calculated. The marginal effects for dummy variables measure the effect of a 

change in the variable’s value (xi) from zero to one while holding all other variables at 

their mean values (Equation 5-8). In equation 5-8, γ represents the coefficient of the 

dummy variable. 

  (  )  [ (         )   (           )]  [ (       )   (         )]  (5-8) 
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 The marginal effect of a change in status and willingness to pay interaction 

variables for all status groups are significant for the probability of being in moderately 

interested both in the role of passenger and driver. The effects are also significant but 

lower for the driver model. For example, if we look at the effects of the interaction 

variable faculty & willingness-to-pay in the passenger model, faculty are 14% less likely 

to be not interested at all in being a passenger, 4.7% less likely to be not very interested, 

12.2% more likely to be moderately interested, 4.6% more likely to be very interested 

and 1.9% more likely to be extremely interested. These effects are 13%, 1.1%, 10.3%, 

2.6% and 1.2%, respectively, in the driver model. Similar patterns are observed for other 

status groups, as well. For instance, undergraduate and graduate students are 12.2% and 

13% likely to be moderately interested in being passenger and 9.2% and 10.1% in being a 

driver, respectively. 

 When looking at the distance factor (distance>15 miles), an average person is 

6.4% more likely not to be interested at all in being a passenger and 12.1% not interested 

at all in being a driver. 

Most of the factors related to reasons that would make campus members more 

inclined to carpool/vanpool have significant and positive effect. For example, web 

application (9.6%), convenient parking (7.3%), cost of gas (8.4%), cheaper parking 

options (7.2%), and convenient ride home service (7.6%) make average campus members 

more likely to be moderately interested to be a passenger. Similar are the effects on the 

likelihood to be interested in being a driver (web application (9.5%), convenient parking 

(6.6%), cost of gas (11.1%), good company (7.1%), and cheaper parking options (8.5%)). 

The probability of being very or extremely interested for these factors are positive but 
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low, less than 5% in most cases. A web application that would provide carpool/vanpool 

matching service would increase the likelihood of being very interested to be a passenger 

at 4.4% and of being extremely interested at just 1.9%.   

Members who do not have a car are 8.7% more likely to be moderately interested, 

4% more likely to be very interested and 1.8% more likely to be extremely interested in 

carpooling/vanpooling as a passenger. 
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Table 4-6  Marginal effects  (Logit) 

 
Passenger Driver Passenger Driver Passenger Driver Passenger Driver Passenger Driver 

 
P(1)=0.239 P(1)=0.301 P(2)=0.343 P(2)=0.348 P(3)=0.323 P(3)=0.285 P(4)=0.068 P(4)=0.046 P(5)=0.025 P(5)=0.020 

 dy/dx z dy/dx z dy/dx z dy/dx z dy/dx z dy/dx z dy/dx z dy/dx z dy/dx z dy/dx z 

Undergraduate& 

Willingness-to- pay 
-0.141 -13.2 -0.117 -10 -0.047 -6.6 -0.009 -2.2 0.122 11.3 0.092 9.3 0.046 10.2 0.023 7.7 0.019 8 0.011 6.2 

Graduate& 

Willingness-to-pay 
-0.15 -15.6 -0.128 -12.2 -0.05 -6.9 -0.01 -2.2 0.13 12.8 0.101 11 0.049 11.2 0.025 8.6 0.02 8.6 0.012 6.6 

Faculty& 

Willingness-to-pay 
-0.141 -11.8 -0.13 -9.5 -0.047 -6.5 -0.011 -2.2 0.122 10.6 0.103 8.9 0.046 9.6 0.026 7.4 0.019 7.7 0.012 6 

Staff& 

Willingness- to-pay 
-0.139 -13.7 -0.123 -10.9 -0.046 -6.8 -0.01 -2.2 0.121 11.8 0.097 10.1 0.046 10.5 0.025 8.1 0.019 8.2 0.011 6.4 

Distance 5-to-15 

miles* 
0.033 1.3 0.018 0.6 0.01 1.4 0.001 0.7 -0.028 -1.3 -0.014 -0.6 -0.01 -1.4 -0.004 -0.7 -0.004 -1.4 -0.002 -0.7 

Distance>15 miles* 0.064 2.1 0.121 3.5 0.018 2.5 0.002 0.4 -0.054 -2.2 -0.091 -3.6 -0.02 -2.3 -0.022 -3.6 -0.008 -2.3 -0.01 -3.4 

Washington Area* 0.048 2.1 0.032 1.2 0.017 2 0.003 1 -0.042 -2.1 -0.025 -1.2 -0.016 -2 -0.006 -1.2 -0.007 -2 -0.003 -1.1 

Baltimore Area* -0.004 -0.1 -0.085 -2.7 -0.001 -0.1 -0.015 -1.6 0.004 0.1 0.071 2.5 0.001 0.1 0.02 2.2 0.001 0.1 0.01 2.1 

SOV>4 times per 

week* 
0.032 1.6 -0.056 -2.5 0.01 1.6 -0.005 -1.7 -0.027 -1.6 0.044 2.4 -0.01 -1.6 0.011 2.4 -0.004 -1.6 0.005 2.3 

Rarely or never 

carpool/vanpool* 
0.133 7.1 0.109 4.6 0.067 4.8 0.02 2.5 -0.118 -6.9 -0.091 -4.3 -0.056 -5.2 -0.026 -3.6 -0.025 -4.7 -0.012 -3.4 

Removal of 

vanpool fee* 
-0.044 -2.1 -0.117 -5.2 -0.018 -1.7 -0.027 -2.7 0.039 2 0.099 4.8 0.016 1.8 0.03 3.8 0.007 1.8 0.015 3.5 

Web application* -0.108 -5.9 -0.114 -5.2 -0.051 -4.3 -0.021 -2.8 0.096 5.7 0.095 4.9 0.044 4.7 0.027 4.1 0.019 4.2 0.013 3.7 

Convenient 

parking* 
-0.083 -4.4 -0.081 -3.6 -0.034 -3.6 -0.011 -2.2 0.073 4.4 0.066 3.5 0.031 3.9 0.018 3.2 0.013 3.6 0.008 3 

Cost of parking* -0.049 -2.5 -0.073 -3.2 -0.019 -2.1 -0.01 -2 0.043 2.4 0.06 3.1 0.017 2.3 0.016 2.8 0.007 2.2 0.008 2.7 

Cost of gas* -0.094 -5 -0.135 -6.2 -0.04 -3.9 -0.023 -3.2 0.084 4.9 0.111 5.9 0.035 4.3 0.032 4.9 0.015 3.9 0.015 4.3 

Good company* -0.048 -2.5 -0.086 -4 -0.018 -2.2 -0.013 -2.3 0.042 2.4 0.071 3.8 0.017 2.3 0.019 3.4 0.007 2.2 0.009 3.2 

Cheap parking* -0.08 -4.3 -0.102 -4.7 -0.035 -3.3 -0.018 -2.6 0.072 4.2 0.085 4.5 0.031 3.6 0.024 3.8 0.013 3.4 0.011 3.5 

Convenient ride 

home service* 
-0.086 -4.4 -0.032 -1.3 -0.036 -3.5 -0.003 -1 0.076 4.4 0.026 1.3 0.032 3.8 0.007 1.3 0.014 3.6 0.003 1.3 

Frequent -0.058 -2.9 -0.046 -2 -0.018 -3 -0.003 -1.6 0.05 2.9 0.036 2 0.018 2.9 0.009 2 0.008 2.9 0.004 2 
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pickup/drop off 

service* 

Do not have a car* -0.097 -4.7 -0.018 -0.6 -0.048 -3.3 -0.002 -0.5 0.087 4.5 0.015 0.6 0.04 3.6 0.004 0.6 0.018 3.4 0.002 0.6 

Need to pick up 

children* 
0.101 3.1 -0.003 -0.1 0.017 4.2 0 -0.1 -0.081 -3.3 0.002 0.1 -0.026 -3.7 0.001 0.1 -0.011 -3.7 0 0.1 

Like 

independency* 
0.048 2.8 0.049 2.4 0.017 2.5 0.005 1.6 -0.042 -2.7 -0.039 -2.4 -0.016 -2.6 -0.01 -2.3 -0.007 -2.6 -0.005 -2.2 

Gender (Male)* 0.034 1.9 -0.016 -0.8 0.011 1.9 -0.001 -0.7 -0.029 -1.9 0.013 0.8 -0.011 -1.9 0.003 0.8 -0.004 -1.9 0.001 0.8 

Age 36-to-45 * 0.059 1.6 0.099 2.4 0.013 2.6 -0.004 -0.6 -0.049 -1.7 -0.071 -2.6 -0.017 -1.8 -0.016 -2.8 -0.007 -1.8 -0.007 -2.7 

Age > 45 * 0.079 2.5 0.116 3.3 0.017 3.7 -0.004 -0.7 -0.065 -2.7 -0.084 -3.6 -0.022 -2.9 -0.019 -3.7 -0.009 -2.9 -0.009 -3.5 

Licensed to drive*  0.035 1 0.001 0 0.015 0.8 0 0 -0.031 -1 -0.001 0 -0.013 -0.9 0 0 -0.005 -0.9 0 0 

(*) dy/dx is for discrete change of dummy variable from 0 to 1 
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4.7. Model Validation 

The models (passenger and driver) are validated by using approximately 80% of the data 

for estimation and the remaining 20% for prediction. The coefficient estimates obtained 

from the driver and passenger models are then applied to the out of sample data. 

Predicted values for each interest outcome group are presented in Table 5-17. These 

predicted values are compared with the probabilities that are obtained from the observed 

data. 

 
Table 4-7  Model Validation, predicted vs. observed probabilities of the outcomes 

Probability                  Passenger Model Driver Model 

 Predicted Observed Predicted Observed  

P(NAI) 0.275 0.308 0.358 0.327 

P(NVI) 0.343 0.255 0.325 0.306 

P(MI) 0.300 0.278 0.261 0.262 

P(VI) 0.062 0.100 0.037 0.082 

P(EI) 0.021 0.059 0.019 0.024 

 

The differences between the predicted and observed probabilities for each of the 

outcomes (NVI to EI) are evaluated. It is noted that probabilities for outcome groups 

NAI, NVI and MI are very close to the observed values in both driver and passenger 

models. The probability predictions for outcome groups VI and EI are, however, slightly 

underestimated in both driver and passenger models. These results indicate that there may 

be some factors that may not be captured by these models. As it is discussed in the next 

section, a more focused survey may reveal that additional factors.  
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Despite these differences, one can conclude that these differences are acceptable 

and that the models are able to predict the probabilities of each of the ordered response 

categories. 

 

4.8. Summary and Conclusions 

Companies, agencies and institutions need to consider a portfolio of alternative 

transportation options to meet their GHG emissions reduction goals, which are set either 

by voluntarily or regulatory requirements. Vanpooling can be a significant part of such an 

alternative transportation program as it is capable of targeting commuters without access 

to transit and commuters who are willing to share rides. This research adds to existing 

literature on commute trip reduction strategies in general and attitudes towards 

carpooling/vanpooling in particular. It introduces an econometric modeling approach that 

investigates potential for carpooling/vanpooling, distinguishing roles of passenger and 

driver. This approach can be adopted by large-scale employers to provide better focused 

transportation services to their employees.  

Two ordered-response models, a passenger and a driver model, were estimated to 

understand factors affecting decision to carpool/vanpool. These models were estimated 

with ordered logit and probit model specifications to investigate if assumptions on error 

terms have a significant impact on the estimation. The models were applied on data 

obtained from the commuter survey conducted at UMD. The results showed that logit and 

probit model specifications did not show a significant difference and that logit 

formulation performs slightly better for the passenger model based on log-likelihood 

value at convergence (within 95% confidence interval). Moreover, results showed that 
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the common determinants thought to be affecting carpooling/vanpooling behavior are not 

necessarily valid in a University setting, which may be explained by the high level of 

education, environmental consciousness and other factors. 

The analysis revealed various important findings about anticipated 

carpooling/vanpooling behavior of the UMD College Park campus members. First, the 

assumption that two models should be calibrated to study the interest in being a passenger 

or a driver is found to be a valid approach, as the results indicated that the factors 

affecting them and their impacts are different. On the contrary, research in the literature, 

does not make this distinction. Also, while many of the findings regarding factors 

affecting vanpooling were parallel to the findings in the literature, some factors were 

found to have different impacts.  For example, results from earlier studies indicate that 

long distance residents are more likely to vanpool. In contrast, this study found that 

longer residential distance negatively impacts the propensity to vanpool, from both 

passenger and driver perspectives. However, with the additional information provided by 

the probability profiles, it is found that as the residential distance increases, the 

probability of being very interested in the passenger and driver roles increases while 

probability of being moderately interested decreases.   Proximity to transit also appears to 

have a significant impact. Although there was no direct factor available to measure the 

effect of the proximity to transit, by looking into residential area factors, e.g. residing in 

Baltimore and Washington areas enabled us to reach the conclusion that transit 

availability is a significant factor. 

  An interesting finding is that the people who drive most days of the week to 

campus (factor, SOV>4 times per week) have a higher propensity to fill the role of driver, 
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which can be explained by the perception of high commuting cost by SOV.  People who 

never or rarely carpool as expected, are not likely to be interested in a vanpool program, 

neither in the passenger nor driver role; the negative impact being higher for the 

passenger model. This shows that the university should disincentivize SOV commuter 

trips in addition to incentivizing shared ride trips. It is seen that removal of a vanpool 

participation fee increased the interest in being a driver. Thus, a highly subsidized service 

or a flat-rate low fee service may help people get accustomed to the service, especially in 

the early stages of the carpooling/vanpooling program.  

Web application is found to be one of the most important factors that increase the 

demand for vanpooling in both the passenger and driver roles. Cost of parking is 

significant, but not as effective, which may be due to the low parking rates of the 

University (compared to campuses in city settings). Cost of gas, however, has a high 

impact. Good company factor is found to have high impact in the driver model. This 

factor has a lower impact in the passenger model, which may be explained by other 

activities, such as sleeping and reading, which can be done during the trip as a passenger.  

Not having a car is a significant determinant for interest in vanpooling in the passenger 

role, but not in the driver role. This result also points the importance of modeling driver 

and passenger interest separately, as most studies in the literature state that not having a 

car or having fewer cars in a household increases propensity to vanpool. Other factors 

that are found to affect passenger and driver models include: convenient ride home 

service, and need of picking up/dropping of children. Respondents aged between 35 and 

45 are less likely to wish to serve as driver. From the analysis of marginal effects, it was 
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found that the marginal effects of most of the factors are higher in the passenger model 

than in the driver model.  

Several policy implications can be made based on these results. Considering that 

there is significant difference in the behavior of passengers and drivers, the University 

should carefully consider vanpool service characteristics and investigate feasibility of a 

third-party vanpooling program or a program that allows multiple drivers. A more 

flexible service that would allow the use of the service part of the month/year may also be 

attractive. Also, the findings indicate that the provision of a web application that gives 

matching service significantly increases the propensity to use the service. The university 

already provides a web page for carpooling purposes. This service could be extended for 

vanpool services. Other important actions that could be taken into consideration involve 

parking policies. Literature indicates that parking shortage encourages 

carpooling/vanpooling. Providing parking incentives, such as priority parking and 

cheaper parking options to carpool/vanpool members, while using disincentives for SOV 

users, will help increase interest in vanpooling and discourage SOVs. These policies 

should be developed in conjunction with the regional transportation services and 

opportunities. For example, the Washington D.C. area has a high rate of HOV lanes, 

regional commuter services and transit availability, which are known to encourage 

carpool/vanpool behavior. 

To conclude, the econometric analysis presented in this study can be used by 

employers when developing alternative transportation options for commute trips. The 

reductions of SOV resulting from the application of these programs can significantly 

contribute to GHG reduction efforts at institutional, local and regional levels. The 
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analysis method can be adopted by other higher education institutions, as well as by 

large-scale employers, cities or metropolitan areas. The results provide insight about the 

potential user characteristics of the service; thus, providing information on the type of 

service that would yield higher participation. In addition, to help in service design, the 

method presented in this research helps identify the target groups for marketing purposes.  
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Chapter 5: Network Extraction and OD Demand Estimation 

for Subarea Analysis 
 

5.1. Introduction 

Recognizing the significant role of transportation in climate change, U.S. agencies, 

including those at the federal (e.g. U.S. DOT, U.S. EPA, U.S. DOE) and local levels, 

have been developing policies and regulations targeting GHG emissions reduction using 

their existing legal authorities (WRI, 2010; ICF, 2010). Many state DOTs (e.g. 

Washington, California and Oregon) and MPOs (e.g. Southern California, Chicago, and 

Baltimore) are required to demonstrate progress in stabilizing and reducing GHG 

emissions in their transportation plans. As such, these DOTs and MPOs are working on 

incorporating climate change into their Long-Range Transportation Planning (LRTP) 

processes. They are developing strategies to mitigate GHG emissions and adapt to 

climate change. These requirements introduce many challenges, one of which is 

estimating the potential impact of emissions reduction strategies from a particular region 

or sub-region. 

Agencies need to evaluate alternative GHG emissions reduction scenarios in order 

to decide which strategies best meet their environmental goals. State DOTs and MPOs 

often need to analyze the impacts of proposed traffic management strategies for reducing 

congestion and emissions in only a subarea of a larger region. However, OD matrices are 

typically developed for large regions, and may be forecasted at a state-, national- or even 

international-level. To study a subarea, demand data must be aggregated in areas external 

to the area of study so as to be consistent with a network representation of the subarea 

that will have been extracted from the large region.   
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A two-stage demand estimation procedure is developed with a focus on providing 

up-to-date time-dependent origin-destination (OD) demand matrix for a subarea traffic 

network. The first stage generates an induced OD demand matrix for the subarea network 

using path-based traffic assignment results from the larger regional network. The second 

stage seeks a consistent network flow pattern using the induced OD demand information 

from the first stage and archived traffic measurements in the subarea network. 

Currently two primary measures are considered in practice: GHG emissions (in 

tons of CO2 emitted or tons of CO2 equivalent, incorporating other GHGs), and vehicle-

mile traveled (VMT, as a proxy for tailpipe emissions) (NCHRP, 2010). The major 

models available for GHG emissions measurement are EPA’s latest MOBILE/MOBILE6, 

MOVES2010 and California Air Resource Board’s (CARB) emission models motor 

vehicle emission factor (EMFAC) (NCHRP, 2010). These models, although improved to 

include e.g. vehicle speed and operating conditions, are not appropriate for detailed 

analysis of project- or subarea-level GHG emissions reduction strategies as they cannot 

capture the emission impacts of vehicle interactions and congestion effects. These models 

typically use VMT data that come from either traffic counts or static four-step travel 

demand models, which do not account for congestion effects. The proposed methodology 

permits micro-, macro- and meso-scopic simulation-based analyses that can capture such 

effects. 

In this chapter, a subarea analysis capability is developed. The proposed 

technique has wide applicability, but is described herein in the context of a meso-scopic 

simulation tool to be used in conjunction with dynamic network analysis models.  
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Tools to estimate impacts of TDM strategies typically use spreadsheet-based 

applications (e.g. EPA’s COMMUTER Model; California Air Resources Board’s Cost-

Effective Model; Trip Reduction Impacts for Mobility Management Strategies 

(TRIMMS), developed by CUTR under the National Center for Transit Research), or 

special software that use VMT and/or trip-based emission factors (e.g. Federal Highway 

Administration’s Travel Demand Management Evaluation Model) (ICF, 2008). Models 

for evaluating operational strategies, such as incident management, information systems, 

and work zone management, include sketch planning tools (e.g. ITS Deployment 

Analysis System (IDAS), Screening for ITS (SCRITS), and STEAM), deterministic tools 

(e.g. Traffix and Highway Capacity Software (HCS)) and traffic simulation tools (e.g. 

macroscopic simulation models such as FREQ, PASSER, and TRANSYT-7F, 

mesoscopic models such as DYNASMART-P and TRANSIMS, and microscopic models 

such as CORSIM/TSIS, Paramics, and VISSIM). This research applies the developed 

sub-area analysis tools within a meso-scopic simulation approach. In contrast with micro- 

and macro-level tools, such meso-scopic models can balance computational efficiency 

and accuracy.  

Such an approach will allow consideration and rapid evaluation of a large number 

of scenarios and will support transportation network planning, operations decisions, and 

GHG emission reduction efforts. The capability is suitable for applications that may not 

require analysis on a complete network representation, but captures the network impacts. 

The essential input for such a capability is time dependent origin-destination (OD) 

demand and this research specially focuses on providing this essential input.  
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5.2 Examples of Applications Where Subarea Analysis is Needed 

There are numerous applications in which subarea analyses associated with traffic 

management with a goal of reducing emissions must be undertaken and subarea demand 

forecasts are required.  Cordon pricing, pricing by VMT, and other applications in which 

travel by car is taxed or offered at a price have received significant attention in recent 

years. Such strategies are promising because they not only aid in reducing emissions, but 

they aim to tackle congestion woes. Additionally, revenue obtained through such strategy 

implementations can be used for transit improvements and other alternative transportation 

modes. Cordon pricing has had success in such locations as Singapore, Stockholm, 

London and Milan (AASHTO-TRB, 2010; Rotaris et al., 2009). Tokyo is currently 

considering cordon pricing for emissions reduction (Sato and Hino, 2005), as well. 

Comprehensive network analysis is essential for predicting performance of these 

strategies before adoption. Current cordon pricing applications use ad-hoc approaches for 

strategy design. Observations after implementation or simulation models combined with 

surveys before the implementation are employed for evaluating performance and impacts 

of pricing strategies. In these studies, evaluation is limited to the subarea where pricing is 

applied. Subarea analysis with the OD demand that preserves the OD information from 

the complete network related to the subarea is needed to evaluate network effects of the 

pricing strategies.  

Another application where subarea OD demand is essential as input to design of 

transit-oriented impact analysis. For example, Dock and Swenson (2003) presented a 

methodology for aggregating individual transit-oriented development sites into a 

subregional growth scenario. They used a subarea model to compare impacts of a transit-
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oriented growth scenario with a conventional growth scenario for a subregion of 

suburban communities. Likewise, freight and passenger modal shifts, and resulting 

impact on emissions, can also be analyzed in response to various strategies for given 

locations (e.g. Park et al., 2004; Lee et al., 2009). 

Various TDM and congestion management strategies, such as those involving 

HOV/HOT lanes, bus rapid transit (BRT), corridor management, and information 

provision, have been implemented or considered by many states and MPOs. 

Environmental impact analyses of these projects are required prior to implementation.  

Another area of application is network resilience and vulnerability analyses for 

climate adaptation studies. For instance, Chang and Nojima (2001) developed a measure 

of subarea transport accessibility to analyze long-term impacts of earthquakes on system 

performance. They argue that measuring system performance aids in understanding 

effects of past disasters and preparation and adaptation to future ones.  

The proposed subarea analysis technique can be useful in such applications by 

creating a subarea network with associated demand for the particular study location.  

5.3. Background of Dynamic Traffic Assignment and Subarea Analysis 

There is a need to evaluate effectiveness of GHG emissions reduction strategies in a 

dynamic network platform, to track emissions, and to identify areas for improvement.  

Dynamic traffic assignment (DTA) methods address many of the limitations of static 

planning tools, and provide planning agencies with modern approaches to tackle 

emerging challenges. Simulation-based DTA models (Mahmassani, 2001; Ben-Akiva et 

al., 2001; Mahmasani et al., 2004) systematically combine (1) dynamic network 

assignment models, used primarily in conjunction with demand forecasting procedures 



 

 128 

 

for planning applications, and (2) traffic simulation models, used primarily for traffic 

operational studies to capture the evolution of traffic flows in a traffic network, which 

result from the decisions of individual travelers making path choice decisions. By 

considering the time-varying nature of traffic flows, DTA can produce practically useful 

estimates of state variables such as speeds, queue lengths, delays, and congestion effects 

to better assess the functional and environmental impacts of a variety of traditional and 

emerging transportation planning measures. However, DTA models require high-level 

representation of the transportation system components, leading to a more challenging 

planning process. The preparation of networks with the required level of detail is one of 

the most cumbersome steps for DTA planning applications. Because original traffic 

networks utilized by metropolitan planning organizations are generally developed for 

conventional static planning applications, they lack several essential features such as 

time-dependent OD demand input, highway interchange modeling, and signal control 

information for an operational planning tool. Therefore, development of a transportation 

network for any DTA modeling tool calls for careful integration, and in some cases 

reconciliation of different data sources. 

Subarea analysis is an essential capability for integrating DTA-based operational 

planning tools into regional planning applications for several reasons. First, analyses of 

operational decisions and Intelligent Transportation System (ITS) deployment 

alternatives generally require a high level of detail in only a portion of the regional or 

metropolitan area network rather than in the entire network. In many cases, greater level 

of detail in network and operational strategy representation is necessary only for directly 

affected areas, not for outer reaches of the network. In other cases, large-scale regional 
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networks entail minimal secondary and tertiary impacts outside a given subarea due to 

weak structural interactions, in which case a subarea analysis would be satisfactory. 

Another case where subarea analysis is of great use is that when the analysis is of special 

concern of a local organization, jurisdiction or an authority and the analysis boundaries 

are determined by their specific needs. The computational advantages of using a subarea 

network instead of a large regional network are also evident for cases where 

consideration and rapid evaluation of large number of policy scenarios are needed.  

Several modeling challenges must be addressed in the subarea analysis problem in 

the DTA modeling framework. These challenges are due to complex interaction between 

demand and supply sides of the original network and the subarea network. For example, 

it is desirable for the network model at the subarea level to retain the capability to capture 

changes in overall demand in the original network (specifically, for demand with at least 

one trip end outside the subarea) in response to changes in supply in the subarea. Of 

particular importance is the need to estimate up-to-date time-dependent OD trip desires 

for the subarea analysis. Essentially, the subarea OD demand information could be 

obtained by two different approaches: (1) calculating subarea OD demand using the 

traffic assignment result in the original network; and (2) estimating OD demand based on 

real-world traffic measurements in the subarea. The first approach is referred as the 

induced OD matrix construction problem in Larson et al. (2001) and the term is adopted 

in this study to define the reduced or aggregated OD matrix which is obtained by 

considering only subarea related demand in the overall network. 

Several aggregation techniques have been proposed to construct the induced OD 

demand matrix. For example, the Drive Project (1989) described a two-step procedure. 
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The first step performs an equilibrium assignment in the complete network to obtain path 

flow information, which is used in the second step to calculate an induced OD matrix for 

the subarea. Given the static equilibrium link flow solution in a subarea network, Larson 

et al. (2001) proposed an entropy maximization model to construct the most likely route 

flow pattern (among route flow patterns that are consistent with the given link flow 

solution pattern in the extracted network). Xie et al (2009) proposed a link based method 

for practical reasons such as availability of input data and complexity. 

Growing interest in the application of simulation-based DTA models has been 

accompanied by several studies on the estimation of dynamic OD trip desires. Substantial 

research has been devoted to the dynamic demand estimation problem using time-varying 

link counts. Early models (Cremer and Keller, 1981;1987) were proposed to estimate 

time-dependent OD flows on individual components, such as a single intersection or a 

freeway facility; these models aim to estimate unknown dynamic OD split fractions based 

on the entry and exit flow measurements, under the simplifying assumption of constant 

link travel time. Extending the concepts and solution methodologies of the static OD 

estimation problem, Cascetta et al. (1993) proposed a generalized least-squares (GLS) 

estimator for dynamic OD demand based on a simplified assignment model for a general 

network. A bi-level generalized least-squares optimization model and an iterative 

solution framework have been proposed by Tavana and Mahmassani (2001) to estimate 

dynamic OD demand and to maintain internal consistency between the upper-level 

demand estimation problem and the lower-level DTA problem. Tavana (2001) also 

provided an extensive literature review of the dynamic OD demand estimation problem 

and its inherent connection to the dynamic traffic assignment problem. Zhou et al. (2003) 
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and Mahmassani and Zhou (2005) presented several dynamic demand estimation and 

updating methods for planning and operational applications using multi-day traffic 

measurements. 

Providing time-dependent OD demand for subarea analysis represents a new class 

of demand estimation problems that are of growing importance in deploying DTA for 

planning applications including GHG emission reduction efforts. It differs considerably 

from the conventional OD demand estimation problem with a target demand table, 

because the traffic assignment solution obtained for the complete network does not 

directly provide a compatible reference for the time-dependent OD matrix in the subarea. 

As the historical OD demand data, which are typically the basis of induced OD demand 

construction, cannot provide up-to-date demand inputs, it is necessary to utilize other 

archived traffic measurements to capture network system dynamics. A sound demand 

updating procedure for subarea analysis, moreover, needs to maintain elaborate linkages 

between the subarea and surrounding area and to maintain essential structural information 

on OD, path and link flow patterns in the reduced subarea network.  

This dissertation describes a two-stage subarea demand estimation procedure to 

provide time-dependent OD trip information for subarea analysis. Following the problem 

definition and process overview in the next section, a detailed description of the induced 

demand calculation procedure is given in section 5.4. An excess-demand traffic 

assignment formulation is then applied to accommodate possible changes in external 

trips, which is consistent with an entropy maximization derivation. Finally, a case study 

based on a large-scale regional planning network is presented in Section 5.5 to illustrate 

the proposed procedure. 
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5.4. Problem Statement and Process Overview 

Consider a large-scale regional traffic network with a set of nodes connected by a set of 

directed links. The zonal structure of the entire network is defined by multiple origin 

zones uU and destination zones vV, and the static OD trip desires in the complete 

network are expressed as the number of vehicle trips du,v traveling from origin zone u to 

destination zone v during the analysis period of interest. As a subset of the regional traffic 

network, the subarea network is defined by a set of nodes N and a set of links L, with L'  

L denoting the subset of links with observations in the subarea. The subarea boundary is 

assumed to be prespecified by traffic planners, the subarea zonal structure is specified as 

a set of origin zones I and a set of destination zones J, and the analysis period of interest 

is discretized into departure time intervals τ=1, 2, …, Td. Accordingly, the time-

dependent OD trip desires in the subarea are expressed as the number of vehicle trips di,j,τ, 

traveling from origin zone i to destination zone j in departure time interval τ ,  i I, j J 

and τ=1, 2, …Td. Given a historical OD demand matrix in the complete network, the 

predefined subarea boundary, time-dependent traffic measurements for a subset of links 

in the subarea, that is, measured link flow cl,t on link l L' during observation interval 

t=1, 2, …., Tc, the objective of the subarea demand estimation problem is to find a 

consistent subarea time-dependent OD demand matrix. 

The proposed procedure includes two stages where the output from one stage is 

input to the next. In the first stage, path flow patterns in the complete network are 

generated to calculate the induced OD demand in the subarea network. To consider all 

trip desires that might use the transportation facilities in the subarea, the induced OD 

demand table should not only include the demand originating and/or terminating in the 
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subarea network, but also include vehicular flows passing through the subarea network. 

The induced OD demand information is then combined with available real-world traffic 

observations in the second stage to update the subarea OD demand matrix. Figure 5-1 

depicts a detailed flow chart of the procedure. 
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Figure 5-1  Flow chart for subarea demand estimation procedure 

 

Stage I: Induced Demand Calculation 

 

In order to obtain the best estimate of time-dependent travel time on virtual links 

(explained later in Excess-Demand Traffic Assignment Formulation section), this study 

first converts the given historical static OD matrix to a time-dependent OD table with a 

time-of-day profile, and then a path-based dynamic traffic assignment program, namely 

DYNASMART-P (Mahmassani at al., 2004), is used to load the OD demand onto the 



 

 134 

 

complete network to generate the path flow pattern in the entire network. The network 

path flow pattern can be expressed in terms of the number of vehicles fu,v,h,' from origin u 

to destination v using path h departing at time' . Conceptually, the traffic assignment 

process can be written as  

 

          (5-1) 

where      

 =  simulated/induced path flow vector, with elements [ ] 

D =  OD demand vector with elements [ ] 

TAP =  traffic assignment process function 

 

The traffic assignment process maintains the flow conservation equations between OD 

flows and path flows on the complete network, that is,  

 

,   u,v,'       (5-2) 

where the sum in Eq. (5-2) is taken over all paths h between u and v at each departure 

time interval '. 

The induced OD demand can be obtained by identifying all path flows that use the 

subarea network. To clearly visualize the mapping between path flows in the complete 

network and aggregate OD flows related to the subarea network, one can partition all the 

OD zones in the complete network as either internal or external zones with respect to the 

subarea, and accordingly categorize all the OD pairs in the complete network into the 

following four groups: (a) Internal–Internal (I-I), (b) External-Internal (E-I), (c) Internal-

External (I-E), (d) External-External (E-E), as shown in Figure 5-2. 
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Figure 5-2  Four types of paths with respect to subarea network 

 

 

In the E-E path group, we can further consider three subgroups: (d1) only using 

the complement network, (d2) traversing the subarea network and (d3) bypassing the 

subarea network. Clearly, all the nodes along a path in group (d1) are located in the 

complement network. It should be noted that, an E-E path that passes through the subarea 

network can enter and exit the subarea network multiple times. In this study, we can 

define a subpath as the portion of the original path that starts from the first entering zone 

to the last exit zone in the subarea. If more than half of the path trajectory along a subpath 

is located inside the subarea network, we classify the path in group (d2). Similarly, a 

subpath in group (d3) has more than half of its trajectory located in the compliment 

network. Another simple rule is that a subpath with more than 50% of its travel time 

spent in the subarea network is considered as a traversing path, otherwise it is specified as 

a bypassing path. As both types of flows in subgroups (d2) and (d3) can respond to 

possible transportation policy changes in the subarea, the trip rates in the induced OD 

demand matrix should include path flows in both (d2) and (d3). The flow equation for 

induced OD can be written as 

 

                                                    complete network[d1]

[c]
[a]

[d2]

[d3]

subarea

[b]
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        (5-3) 

 

where  is the time-dependent path flow indicator, =1 if zones i and j are the 

first entering zone and last exit zone for path flow (u,v,h,') traveling into the subarea at 

entering time τ, =0 otherwise.  

The following describes the algorithmic implementation of equation (5-3). 

 

Initialize  = 0 for iI and jJ,  Td  

For the h
th

 path from zone u to zone v at time ' on the original network,  

Scan the path node sequence,  

Identify the first entering zone and the last exit zone in the subarea 

network as origin zone i and destination zone j.  

If zones i and j can be found, and the h
th

 path trajectory enters the subarea 

at time τ, then . 

EndFor 

 

Excess-Demand Traffic Assignment Formulation 

 

After calculating trip desires using the subarea network, the next question is how to 

model the response of traversing and bypassing E-E trips to traffic condition and 

operational policy changes in the subarea. Because the demand structure of the subarea 

network is not independent from the rest of the network, a realistic subarea analysis 

model needs to maintain a connection between the extracted subarea network and the 

original network. For example, if the level of service in the subarea degrades, the vehicle 

flows originally traversing the subarea could shift to the surrounding area and become 

bypassing flows. Note that, for I-I, E-I, and I-E OD pairs some subpath flows might also 
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use the complement network. For simplicity, we only focus on E-E OD pairs in this 

research.  

 
 

Figure 5-3  Virtual link for OD pair (i,j,τ) 

 

As shown in Figure 5-3, the virtual links between each boundary OD pair (i,j,τ) in the 

subarea network are introduced to accommodate bypassing E-E flows that originally use 

the surrounding area. The mathematical model for determining the flow split between 

traversing and bypassing E-E trips is given as follows. Total OD demand for subarea OD 

pair (i,j,) is expressed as: 

 

       (5-4) 

where  

m = 0-1 indicator for bypassing or traversing flows (complementary/subarea 

network indicator) 

   =  E-E OD flows from zone i to zone j departing at  that are carried by the virtual 

link in the complementary network (bypassing trips) 
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 =  E-E OD flows from zone i to zone j departing at  that are accommodated in 

the subarea network (traversing trips). 

In the following, an excess-demand formulation is adopted to capture the existing 

split of E-E OD flows between the subarea network and the complement network. For 

each boundary OD pair, we consider a simple flow split function: 

 

       (5-5) 

 

where  and  are average path travel times for (i,j,) bypassing and traversing the 

subarea network respectively, and i,j is a dispersion parameter to be estimated. 

The above formula can be interpreted as estimating the most likely route flow 

pattern based on the maximum entropy principle. Because the complement network is not 

physically modeled, we need to re-construct the E-E path flow pattern in the subarea 

network. There exist many possible combinations (or states) of traversing and bypassing 

flows in the subarea network. The entropy maximization principle provides a criterion for 

choosing the distribution that maximizes path flow entropy subject to two constraints, 

namely the total flow constraint and the total travel time constraint. The number of 

combinations for  is  

.      (5-6) 
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Let TTi,j,  denote the total travel time incurred by all traversing and bypassing 

trips related to OD pair (i,j,) for departure time interval . That is, TTi,j,  is the sum of 

travel time for all the subpath flows along OD pair (i,j,) at time  obtained from the 

traffic assignment result on the complete network. The total travel time constraint (5-7) 

aims to ensure that the new set of traversing and bypassing flows in the subarea network 

should produce the same total travel time as TTi,j, , and  and  are unchanged.  

.        (5-7) 

 

The set of path flow patterns, that is most likely to occur, can be obtained by 

solving an optimization model that maximizes subject to constraints (5-4) and 

(5-7). Rather than maximizing directly, we can take its logarithm and 

approximate it by Stirling’s formula, leading to an equivalent entropy maximization 

model for each individual OD pair: 

  

    (5-8) 

 

subject to constrains (5-4) and (5-7). 

The corresponding Lagrangian function is (subscripts (i,j,) are omitted for 

simplicity). 

 

, 

 

where λ and θ are Lagrangian multipliers for constraints (5-4) and (5-7), respectively. Its 

first order necessary optimality condition is  
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 with solution . 

 

Substituting  back into constraint (4), we obtain , leading 

to and  . 

 

Essentially, the optimization problem produces an analytical optimal solution in the same 

Logit-type form as (5-5). Similar derivations that map equilibrium link flows to the most 

likely route flow pattern can be found in Larson et al. (2001) and Rossi et al. (1989). 

Detailed mathematical treatment of the entropy optimization theory can be found in 

(Fang et al., 1997). After calculating the bypassing and traversing flow proportions and 

the corresponding travel times based on the traffic assignment result on the complete 

network, we can further calibrate the coefficient i,j for each OD pair. 

The traffic assignment model with elastic demand can be solved by the standard 

fixed demand traffic assignment program through network representation. In our 

implementation, virtual links are not physically modeled in the subarea network for the 

dynamic traffic assignment program, and the elastic demand is assigned to the subarea 

network according to the following three steps.  

(1) Calculate  based on the traffic flow pattern in the subarea network, and determine 

 from the traffic assignment result in the complete network, 

(2) Estimate the flow split for each OD pair and determine OD demand , 

(3) Perform dynamic traffic assignment using OD demand D
1
 in the subarea network. 
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 Note that  are time-varying as the result of dynamic traffic assignment. If a 

static traffic assignment model is used to generate the path flow pattern, then would 

be time-invariant. In this case, the flow split function (5-5) might lead to large modeling 

errors as the travel time measurements of the subarea network and related virtual link 

would be inconsistent. 

Stage II: Dynamic OD Demand Updating Procedure Using Archived Traffic 

Measurements 

Given induced OD demand information from the first stage and time-dependent link 

measurements, the dynamic OD demand estimation procedure aims to find a consistent 

time-dependent OD demand table that minimizes (1) the deviation between estimated 

link flows and observed link counts (2) the deviation between the estimated network flow 

pattern and the induced network flow pattern in the subarea. The induced network flow 

pattern can be expressed in terms of OD flows, path flows and link flows in the subarea. 

 In the context of dynamic traffic assignment, especially in congested networks, 

the mapping matrix between OD demand and link flows are not constant and are, 

themselves, a function of the unknown OD demand values. A bi-level dynamic OD 

estimation formulation (Zhou et al., 2003) is adapted here. Specifically, the upper-level 

problem aims to estimate the dynamic OD trip desires based on given link counts and 

flow proportions, subject to non-negativity constraints for demand variables. The flow 

proportions are in turn generated from the dynamic traffic network loading problem at the 

lower level, which is solved by a DTA simulation program, with a dynamic OD trip table 

calculated from the upper level. The weights w1, w2, and w3 associated with the combined 
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deviations could be interpreted as the decision maker’s relative preference or importance 

belief for the different objectives or different information sources. They could also be 

considered as the dispersion scales for the error terms in the ordinary least-squares 

estimation procedure. Several interactive multi-objective programming methods can be 

applied in this context to determine appropriate weights that lead to best compromise 

solutions for inconsistent information sources, for example, sensed traffic counts vs. 

simulated traffic counts on the same link. Essentially, a representative subset of non-

dominated solutions is first generated by varying the weights, and then the decision 

maker (i.e. planner) can determine the weights based on the following three criteria: 

minimum combined deviation, best trade-off and minimum distance from the ideal point. 

Because the temporal patterns in the induced OD demand and simulated time-dependent 

link counts are generated from an external time-of-day profile (rather than being observed 

directly), the following estimator only considers total induced demand and total simulated 

link counts over the planning horizon in order to avoid possible estimation biases. In 

other words, the actual measured time-dependent link counts cl,t will play a major role in 

inferring the temporal characteristics of the subarea OD demand matrix. Detailed 

assessment along this line can be found in Zhou et al.(2003). 

Upper level: Constrained ordinary least-squares problem 

 

 

(5-9) 
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di,j, =  estimated traffic demand from zone i to zone j at departure interval τ 

cl,t =  measured traffic flows on link l at observation interval t 

 =  induced traffic demand from zone i to zone j  

  =  simulated traffic counts on link l, obtained from the traffic assignment result in 

the complete network 

pl,t,i,j, =  time-dependent link-flow proportions, i.e. fraction of vehicular flows from 

origin i to destination j, starting their trips during departure interval τ, contributing 

to the flow on link l during observation interval t 

pl,i,j, =  link-flow proportions, i.e. fraction of vehicular flows from origin i to 

destination j, starting their trips during departure interval τ, contributing to the 

flow on link l 

w1,w2, w3 =  weighting factors for different objective functions. 

 

Lower level: Elastic demand dynamic traffic assignment problem  

 

P=EDTA(D)         (5-10) 

where  

P  =  link-flow proportion matrix 

D   = time-dependent OD demand matrix containing elements [di,j,] for the subarea 

network. 

EDTA  =  function of elastic demand traffic assignment process. 
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The following details the iterative bi-level dynamic OD demand updating 

procedure. The final output is a time-dependent OD demand matrix ready for the subarea 

analysis. Let k be the iteration number.  

 

Step 1: (Initialization) k = 0. Using [ ], the induced OD demand matrix, as an initial 

demand matrix D0 , generate link-flow proportions P0 from the DTA simulator. 

Step 2: (Optimization) Substituting link-flow proportions Pk, solve the upper level OD 

estimation problem to obtain demand Dk. 

Step 3: (Simulation) Using demand Dk, run the DTA simulator to generate new link-flow 

proportions Pk+1. 

Step 4: (Evaluation) Calculate the combined deviation according to objective function 

(9).  

Step 5: (Convergence test) If the convergence criterion is satisfied (estimated demand is 

stable or no significant improvement in the overall objective), stop; otherwise k = 

k + 1 and go to Step 2.  

 

To obtain a unique solution to the above ordinary least-squares formulation, one 

needs to ensure that the number of unknown variables (time-dependent OD demand 

flows) is not greater than the sum of the number of independent link observations cl,t , the 

number of OD pairs in the demand matrix  and the number of induced link flow 

counts . In fact, in the above OD demand updating problem, the system identification 

condition is relatively easer to satisfy than in the standard OD demand estimation 

problem, since a large number of simulated link counts obtained from assignment in the 
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complete network are available in the subarea network. If the system is still 

underdetermined when including all the links in the subarea, the simulated path counts 

can be introduced to increase the number of constraints. Accordingly, path-flow 

proportion matrices should be generated from the lower-level DTA program to map 

subarea OD flows to path flows. On the other hand, to reduce the computational effort 

associated with the nonlinear optimization program, one can select a set of critical links 

and critical paths to construct the “target” network flow pattern, as opposed to including 

all links and paths in the subarea. 

5.5. Case Study: Illustration of the Procedure on Los Angeles Subarea 

Network 

The test network used for illustrating the procedure is the regional transportation planning 

network of the Southern California Association of Governments (SCAG). The network 

includes four California Department of Transportation (CALTRANS) districts covering 

Los Angeles and Ventura counties, San Bernardino and Riverside Counties, Imperial 

County (not included in the Year 2000 planning process) and Orange County. The 

network and the historical OD demand data are obtained from the Year 2000 Regional 

Transportation Plan (SCAG, 2000). In year 2000, the region population was 16.12 

million served by a 14,504 route-mile (or an equivalent 51,827 lane-mile) highway 

network. The total vehicle traffic in the region was 17.2 million in peak periods and 

approximately 34 million in all time periods. Los Angeles County, where the study area 

is located, has the highest share in the regional vehicular traffic with 9.6 million vehicle 

trips in the peak periods and 19 million trips in all time periods. In Figure 5-4(a), the 

rectangle shown in the complete network plot marks an approximate boundary of the 
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subarea. The subarea network for which the OD estimation procedure is applied is shown 

in Figure 5-4(b).  
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Figure 5-4 (a) SCAG regional planning network and (b) Los Angeles subarea network representation 
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The network characteristics for both complete and subarea networks are given in Table 5-

1. 

Table 5-1  SCAG Original and Subarea Network Size Comparison 

 Complete network Subarea network % 

Number of links (excluding connectors) 68,535 8,530 12.45 

Number of nodes (excluding zone 

centroids) 

27,187 3,197 11.76 

Number of TAZ’s 3,191 60 1.88 

 

The input data was obtained from the SCAG regional planning model. In this 

static transportation planning model, the OD demand matrix for the complete network 

covers the AM peak period (6:00 am to 9:00 am), corresponding to a 3191 by 3191 

matrix. The matrix was converted to a time-dependent OD table with a time-of-day 

profile, and the signal control data were generated using an approximation approach 

because the detailed signal timing data was not available at the time of this study. 

After compiling the necessary input data for the complete network, 

DYNASMART-P was run with an initial OD demand to obtain the simulated path flows. 

As shown in the procedure in Figure 5-1, the first stage outputs an induced OD matrix for 

the subarea. At the second stage, the induced dynamic OD demand is updated by utilizing 

both archived traffic measurements and the induced OD matrix. The archived traffic 

measurements are obtained from the California Freeway Performance Measurement 

System (PeMS) (2005). In the PeMS database, traffic measurements such as occupancy, 

volume, and speed are available either as raw data (30 second intervals) or as aggregated 

data (5 minute intervals). 244 detectors from the PeMS database related to the subarea are 

selected and mapped to the subnetwork links in DYNASMART-P. In this study, 5-min 

aggregated measurements were collected from these 244 links on August 2, 2004 

(Monday) and input to the bi-level dynamic OD estimation procedure. 
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In order to evaluate the performance of the procedure, the Root Mean Squared 

Error (RMSE) between observed link volumes cl,t and simulated link volumes c'l,t are 

used as the measure of effectiveness.  

      (5-11) 

 

Table 5-2  RMSE Values of Estimation Results with and without Traffic Measurements 

 Induced OD 

demand only 

Induced OD demand + 

archived traffic measurements 

% 

Improvement 

Density (veh/lane/mile) 15.7 13.1 16.5 

Volume (veh/hour/lane) 340.5 257.9 24.2 

Speed (mile/hour) 18.6 14.7 20.0 

 

Table 5-2 lists average estimation errors under two scenarios: (1) induced OD demand 

only, and (2) induced OD demand with archived traffic measurements. Clearly, additional 

up-to-date traffic measurements can capture the time-varying traffic patterns in the 

subarea network and significantly reduce the estimation errors for three major traffic 

measures. Figure 5-5 details the time-varying measured and simulated volume on two 

links from 5:00 am to 6:00 am. It should be noted that, the simulated link volume profile 

under a 5-min aggregation interval shows a more slowly changing pattern than the 

counterpart under a 1-min aggregation interval, while simulated 1-min link volume data 

are able to reveal the underlying dynamic nature of traffic flow patterns. It should be 

noted that, this preliminary case study is performed to illustrate the procedure on a real 

world network with limited information. Further work is needed in both network 

specification and model calibration to improve the overall system estimation 

performance. Especially, because no real-world path flow data are currently available to 
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calibrate the proposed excess-demand assignment model, in this dissertation, the 

important split fractions between bypassing and traversing E-E trips are estimated only 

from the simulation results, and they remain unchanged in the subarea OD demand 

estimation process. A more systematical and sound estimation procedure should integrate 

the unknown split fractions into the current OD demand estimation framework. In other 

words, link observations in the subarea network should be used to estimate and adjust the 

split fractions, in addition to average travel times for using the subarea and complement 

networks.  
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Figure 5-5  Illustration of performance of OD estimation procedure on selected links 

 

5.6. Conclusions 

The dynamic traffic assignment methodology overcomes many of the known limitations 

of static tools used in practice. The computational intensiveness of simulation-based DTA 
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methodologies places limitations on the application of such tools to large-scale networks 

limiting the opportunities for assessing the impacts of GHG emissions reduction 

strategies. To allow the consideration and rapid evaluation of a large number of 

scenarios, this dissertation has described a two-stage subarea OD demand estimation 

procedure to construct and update important time-dependent OD demand input for 

subarea analysis. The first stage effectively utilizes path-based traffic assignment 

information to calculate the path flow pattern in the complete network and then to 

construct a comparable target demand matrix for the OD demand estimation problem in 

the subarea. The proposed elastic demand traffic assignment formulation allows external-

external trips to respond to traffic conditions resulting from network and operational 

changes in the subarea, and it can be interpreted by an entropy maximization framework. 

In the second stage, archived time-dependent traffic measurements are utilized to update 

the induced demand matrix, and this OD updating method enables the OD trip matrix 

used in the subarea analysis to capture current demand and network flow patterns. The 

case study illustrates a practical and sound procedure for DTA-based subarea analysis 

applications, and demonstrates effectiveness of combining traffic measurements with 

conventional planning data in DTA deployment. Essentially, the use of traffic 

measurements increases the performance of OD estimation procedure, and path-based 

simulation-assignment systems can provide an evolving platform for integrating 

operational considerations in planning models for effective decision support for agencies 

that are considering strategies for GHG emissions reduction. 
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Chapter 6: Conclusions and Extensions 

 

6.1 Contributions and Benefits 

 

The transportation sector is a significant contributor to our global climate change 

problem, which is considered to be one of the most prominent problems that today’s 

society faces. The increased awareness of the transportation system’s impact on the 

environment, economic activity and land-use calls for a broader perspective in 

transportation analysis, planning and policy-making that takes into account sustainability 

of the system. A multi-faceted approach is followed in this dissertation with the aim of 

supporting transportation emissions reduction efforts. This dissertation addressed three 

complementary problems that share the common goal of supporting transportation 

emissions reduction efforts by providing tools to help reduce demand for fossil fuels 

through seemingly different, but synergistically related, ways.  

The first problem addressed alternative fuel vehicle (AFV) fleet operations 

considering limited infrastructure availability and vehicle characteristics that contributes 

to emission reduction efforts by: supporting alternative fuel use and reducing carbon-

intensive freight activity. The G-VRP is formulated and techniques were proposed for its 

solution. Numerical experiments showed that these techniques perform well compared to 

exact solution methods and that they can be used to solve large problem instances. The 

G-VRP will aid organizations with AFV fleets in overcoming difficulties that exist as a 

result of limited refueling infrastructure and will allow companies considering conversion 

to a fleet of AFVs to understand the potential impact of their decision on daily operations 

and costs. These techniques can help companies in evaluating possible reductions in the 
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number of customers that can be served or increase in fleet size needed to serve an 

existing customer base, as well as any increase in required distance traveled as a result of 

driving range limitations and added fueling stops. The GVRP formulation and solution 

techniques are applicable for any fuel choice. They can also be used in seeking optimal 

tours for gasoline or diesel powered fleets that involve special refueling arrangements.  

The second problem is aimed at supporting SOV commute trip reduction efforts 

through alternative transportation options. This problem contributes to emission reduction 

efforts by supporting reduction of carbon-intensive travel activity. Following a detailed 

descriptive analysis of the commuter survey data obtained from the University of 

Maryland, College Park campus, ordered-response models were developed to investigate 

the market for vanpooling. The models looked into vanpooling demand, distinguishing 

the passenger and driver roles which has not been done in the literature.  The model 

specifications included a wide variety of factors to explain the interest in vanpooling for 

the roles of passenger and driver. In addition to ordered logit and probit estimates of the 

proposed model specifications, marginal effects of factors are also analyzed. The model 

results showed that demand for vanpooling in the role of passenger and driver show 

differences and the factors affecting these demands are not necessarily the same. 

Therefore, it was found that passenger and driver roles should be separated (in the case of 

employer-provided services that require one of the participants to be driver). Some of the 

factors that are found to affect passenger and driver models include: status and 

willingness-to-pay, distance, residential location, commuting to campus most days of the 

week by SOV, driving alone when commuting to campus, convenient ride home service, 
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not having a car, need of picking up/dropping of children, age, convenient parking 

options, and cost of gas and parking. 

The third problem is aimed at providing essential input data, origin-destination 

(OD) demand data, for analysis of various emission reduction strategies, contributing to 

emission reduction efforts by helping to improve system efficiency and reducing carbon-

intensive travel activity. The DTA methodology helps overcome limitations of static 

planning tools used in practice. However, simulation-based DTA methodologies 

themselves place limitations on the application of such tools to large-scale networks due 

to the computational intensity. Thus, they are also limited for assessing the impacts of 

emissions reduction strategies on large-scale networks. This dissertation has described a 

two-stage subarea OD demand estimation procedure to construct and update important 

time-dependent OD demand input for subarea analysis in an effort to overcome the 

computational limits of DTA methodologies. This procedure utilizes path-based traffic 

assignment information and time-dependent link measurements to calculate path flow 

patterns in the complete network to construct a comparable target demand matrix for the 

OD demand estimation problem in the subarea. The proposed elastic demand traffic 

assignment formulation allows evaluation of network performance in response to traffic 

conditions resulting from network and operational changes in the subarea without losing 

the essential flow information. The case study demonstrates effectiveness of combining 

traffic measurements with conventional planning data in DTA deployment. Essentially, 

the use of traffic measurements increases the performance of the OD estimation 

procedure. The proposed method in conjunction with path-based simulation-assignment 

systems can provide an evolving platform for integrating operational considerations in 
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planning models for effective decision support for agencies that are considering strategies 

for transportation emissions reduction. 

6.2 Extensions 

The extensions that can be considered for this dissertation are as follows. The GVRP 

model could be extended to consider more complex fuel-usage models, consideration of 

fuel prices and heterogeneous fleets in which vehicles may have different driving range 

limitations or be powered by different sources of fuel. Determining optimal AFS 

locations jointly with tour finding is another extension that can be considered for future 

research. In modeling the propensity to carpooling/vanpooling, a latent class model for 

the analysis of individual heterogeneity could be more informative in explaining latent 

heterogeneity that varies with factors that are unobserved by the analyst. Also, a more 

focused survey, specifically designed for investigating vanpooling behavior, would 

provide more information. Finally, a case study within the subarea analysis framework 

can be designed to illustrate the benefits of emission reduction strategies, such as 

vanpooling and cordon pricing as suggested in this dissertation.  
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Appendix 
 

UNIVERSITY OF MARYLAND COMMUTER SURVEY 

SPRING 2010 

Page - 1 

Q1 You are being invited to voluntarily participate in a campus-wide transportation 

survey. The purpose of this study is to understand the behavior of campus community 

members in commuting to and from campus. You are eligible to participate because you 

are a student, faculty, or staff member at the University of Maryland, College Park.If you 

agree to participate, participation will involve completing a survey, which should take no 

more than 15 minutes. You may choose not to answer some or all of the questions. Your 

name will not appear on the completed survey. One survey question asks for your local 

address by street, cross street and city, which is considered identifiable information. 

Address information will not be used to contact you, will not be made public, and will be 

used to design more effective transportation services. Also, upon completing the survey 

you will be asked if you would like your email to be entered into a prize drawing. E-mail 

addresses are considered identifiable information; e-mail addresses will not be used for 

any purpose other than distributing the survey and notifying select individuals they've 

won the prize drawing. If selected for a prize drawing you will be contacted by email 

only once and notified of where to pick-up your prize.Any questions you have related to 

the survey will be answered. You may leave the survey at any time before completing it. 

There are no known risks from your participation and no direct benefit from your 

participation. There is no cost to you except for your time and you are not compensated 

monetarily or otherwise for participation in this survey.Your survey responses will 

remain confidential with the researchers and University of Maryland entities with which 

the researchers have partnered including the Department of Transportation Services, the 

Office of Sustainability, and the Student Affairs Assessment Committee. To protect your 

confidentiality, the researchers will not share identifiable information, which includes 

local street address and email address information. If we write a report or article about 

this research project, your identity will be protected to the maximum extent possible.You 

can obtain further information about this survey by contacting: Sean Williamson Faculty 
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Research Assistant Center for Integrative Environmental Research T. 301.405.9436E. 

srw46@umd.edu By participating in the survey, you are giving permission for the 

investigator to use your information for research purposes. If you agree to participate in 

this survey, please check the box below, and click ''Next.'' Thank you. 

 

I have read the Consent Form and agree to participate in the survey. (Go To Page 2) 

[Code = 1] 

I have read the Consent Form and do not agree to participate in the survey. (Go To End) 

[Code = 2] 

 

Required answers: 1 Allowed answers: 1 

 

Part 1 - Commuter Information  

A. General Information 

 

Q2 What is your classification? 

Undergraduate Student [Code = 1] 

Graduate Student [Code = 2] 

Faculty [Code = 3] 

Staff [Code = 4] 

Required answers: 0 Allowed answers: 1 

 

Q3 Which best describes you? 

Part Time [Code = 1] 

Full Time [Code = 2] 

Required answers: 0 Allowed answers: 1 

 

Q4 What time do you usually arrive at campus? 

Before 6:00 a.m. [Code = 1] 

6:00 - 6:30 a.m. [Code = 2] 

6:30 - 7:00 a.m. [Code = 3] 
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7:00 - 7:30 a.m. [Code = 4] 

7:30 - 8:00 a.m. [Code = 5] 

8:00 - 8:30 a.m. [Code = 6] 

8:30 - 9:00 a.m. [Code = 7] 

9:00 - 9:30 a.m. [Code = 8] 

9:30 - 10:00 a.m. [Code = 9] 

After 10:00 a.m. [Code = 10] 

Required answers: 0 Allowed answers: 1 

 

Q5 What time do you usually leave campus? 

Before 4:00 p.m. [Code = 1] 

4:00 - 4:30 p.m. [Code = 2] 

4:30 - 5:00 p.m. [Code = 3] 

5:00 - 5:30 p.m. [Code = 4] 

5:30 - 6:00 p.m. [Code = 5] 

6:00 - 6:30 p.m. [Code = 6] 

6:30 - 7:00 p.m. [Code = 7] 

7:00 - 7:30 p.m. [Code = 8] 

7:30 - 8:00 p.m. [Code = 9] 

After 8:00 p.m. [Code = 10] 

Required answers: 0 Allowed answers: 1 

 

Q6 How far do you live from campus (in miles)? 

I live on campus. [Code = 1] 

Less than 1 mile [Code = 2] 

1 - 5 miles [Code = 3] 

6 - 10 miles [Code = 4] 

11 - 15 miles [Code = 5] 

16 - 20 miles [Code = 6] 

More than 20 miles [Code = 7] 

Required answers: 0 Allowed answers: 1 
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Q7 How many minutes does your commute usually take from door to door? 

Less than 15 minutes [Code = 1] 

15 - 30 minutes [Code = 2] 

30 - 45 minutes [Code = 3] 

45 - 60 minutes [Code = 4] 

Between 1 and 1.5 hours [Code = 5] 

More than 1.5 hours [Code = 6] 

Required answers: 0 Allowed answers: 1 

 

Q8 What is your local home ZIP code? 

[Code = 1] [TextBox] 

Required answers: 0 Allowed answers: 1 

 

Q9 Please list your city, local street, and nearest cross street: 

City: [Code = 1] [TextBox] 

Street 1: [Code = 2] [TextBox] 

Street 2 (INTERSECTS WITH STREET 1): [Code = 3] [TextBox] 

Required answers: 0 Allowed answers: 3 

 

Page - 3 

The next question will ask about which modes of transportation you take to campus and 

how often you take each mode. 

Required answers: 0 Allowed answers: 0 

 

On average, how many times per week do you commute to campus? Please select how 

often you use each mode or combinations of modes to commute. 

 

Q10 By bike 

Never or rarely [Code = 1] 

Once per week [Code = 2] 
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2 times per week [Code = 3] 

3 times per week [Code = 4] 

4 times per week [Code = 5] 

5 times per week [Code = 6] 

More than 5 times per week [Code = 7] 

Required answers: 0 Allowed answers: 1 

 

Q11 On foot 

Never or rarely [Code = 1] 

Once per week [Code = 2] 

2 times per week [Code = 3] 

3 times per week [Code = 4] 

4 times per week [Code = 5] 

5 times per week [Code = 6] 

More than 5 times per week [Code = 7] 

Required answers: 0 Allowed answers: 1 

 

Q12 Alone, by car 

Never or rarely [Code = 1] 

Once per week [Code = 2] 

2 times per week [Code = 3] 

3 times per week [Code = 4] 

4 times per week [Code = 5] 

5 times per week [Code = 6] 

More than 5 times per week [Code = 7] 

Required answers: 0 Allowed answers: 1 

 

Q13 With others, by car 

Never or rarely [Code = 1] 

Once per week [Code = 2] 

2 times per week [Code = 3] 
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3 times per week [Code = 4] 

4 times per week [Code = 5] 

5 times per week [Code = 6] 

More than 5 times per week [Code = 7] 

Required answers: 0 Allowed answers: 1 

 

Q14 Scooter/motorcycle 

Never or rarely [Code = 1] 

Once per week [Code = 2] 

2 times per week [Code = 3] 

3 times per week [Code = 4] 

4 times per week [Code = 5] 

5 times per week [Code = 6] 

More than 5 times per week [Code = 7] 

Required answers: 0 Allowed answers: 1 

 

Q15 By Shuttle-UM 

Never or rarely [Code = 1] 

Once per week [Code = 2] 

2 times per week [Code = 3] 

3 times per week [Code = 4] 

4 times per week [Code = 5] 

5 times per week [Code = 6] 

More than 5 times per week [Code = 7] 

Required answers: 0 Allowed answers: 1 

 

Q16 By MetroBus/other bus 

Never or rarely [Code = 1] 

Once per week [Code = 2] 

2 times per week [Code = 3] 

3 times per week [Code = 4] 
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4 times per week [Code = 5] 

5 times per week [Code = 6] 

More than 5 times per week [Code = 7] 

Required answers: 0 Allowed answers: 1 

 

Q17 MetroRail/MARC and Shuttle-UM/bus 

Never or rarely [Code = 1] 

Once per week [Code = 2] 

2 times per week [Code = 3] 

3 times per week [Code = 4] 

4 times per week [Code = 5] 

5 times per week [Code = 6] 

More than 5 times per week [Code = 7] 

Required answers: 0 Allowed answers: 1 

 

Q18 By car and Shuttle-UM (Park & Ride) 

Never or rarely [Code = 1] 

Once per week [Code = 2] 

2 times per week [Code = 3] 

3 times per week [Code = 4] 

4 times per week [Code = 5] 

5 times per week [Code = 6] 

More than 5 times per week [Code = 7] 

Required answers: 0 Allowed answers: 1 

 

Q19 Shuttle-UM/bus and bike 

Never or rarely [Code = 1] 

Once per week [Code = 2] 

2 times per week [Code = 3] 

3 times per week [Code = 4] 

4 times per week [Code = 5] 



 

 163 

 

5 times per week [Code = 6] 

More than 5 times per week [Code = 7] 

Required answers: 0 Allowed answers: 1 

 

Q20 Car and bike 

Never or rarely [Code = 1] 

Once per week [Code = 2] 

2 times per week [Code = 3] 

3 times per week [Code = 4] 

4 times per week [Code = 5] 

5 times per week [Code = 6] 

More than 5 times per week [Code = 7] 

Required answers: 0 Allowed answers: 1 

 

Q21 Other 

Never or rarely [Code = 1] 

Once per week [Code = 2] 

2 times per week [Code = 3] 

3 times per week [Code = 4] 

4 times per week [Code = 5] 

5 times per week [Code = 6] 

More than 5 times per week [Code = 7] 

Required answers: 0 Allowed answers: 1 

 

Q22 Please specify ''other'' if selected above: 

[Code = 1] [TextBox] 

Required answers: 0 Allowed answers: 1 

When you are on campus, how do you get from one place to another? Please select how 

often you use each mode on-campus: 

 

Q23 Walk 
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Never [Code = 1] 

Once per month [Code = 2] 

1 - 2 days a week [Code = 3] 

3 - 4 days a week [Code = 4] 

5 or more days a week [Code = 5] 

Required answers: 0 Allowed answers: 1 

 

Q24 Bike 

Never [Code = 1] 

Once per month [Code = 2] 

1 - 2 days a week [Code = 3] 

3 - 4 days a week [Code = 4] 

5 or more days a week [Code = 5] 

Required answers: 0 Allowed answers: 1 

 

Q25 Car 

Never [Code = 1] 

Once per month [Code = 2] 

1 - 2 days a week [Code = 3] 

3 - 4 days a week [Code = 4] 

5 or more days a week [Code = 5] 

Required answers: 0 Allowed answers: 1 

 

Q26 Scooter/motorcycle 

Never [Code = 1] 

Once per month [Code = 2] 

1 - 2 days a week [Code = 3] 

3 - 4 days a week [Code = 4] 

5 or more days a week [Code = 5] 

Required answers: 0 Allowed answers: 1 
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Q27 Shuttle-UM 

Never [Code = 1] 

Once per month [Code = 2] 

1 - 2 days a week [Code = 3] 

3 - 4 days a week [Code = 4] 

5 or more days a week [Code = 5] 

Required answers: 0 Allowed answers: 1 

 

Q28 Other 

Never [Code = 1] 

Once per month [Code = 2] 

1 - 2 days a week [Code = 3] 

3 - 4 days a week [Code = 4] 

5 or more days a week [Code = 5] 

Required answers: 0 Allowed answers: 1 

 

Q29 Please specify ''other'' if selected above: 

[Code = 1] [TextBox] 

Required answers: 0 Allowed answers: 1 

 

Q30 Do you have a physical disability that would prevent you from using one or 

more of the transportation modes listed above? 

Yes [Code = 1] 

No [Code = 2] 

Required answers: 0 Allowed answers: 1 

  

B. Driving Information 

 

Q31 When you come by car to campus, how many people do you usually ride with? 

Just myself [Code = 1] 

1 other person [Code = 2] 
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2 other persons [Code = 3] 

3 other persons [Code = 4] 

4 other persons [Code = 5] 

5 or more other people in the vehicle [Code = 6] 

Required answers: 0 Allowed answers: 1 

 

Q32 When you come by car to campus, what type of parking pass do you use? 

Residential permit [Code = 1] 

Commuter permit [Code = 2] 

Green permit [Code = 3] 

Carpool permit [Code = 4] 

Paid hourly parking [Code = 5] 

Pre-paid single-day parking (Bundle pack permit) [Code = 6] 

Other [Code = 7] 

Required answers: 0 Allowed answers: 1 

Q12='Once per week' OR Q12='2 times per week' OR Q12='3 times per week' OR 

Q12='4 times per week' OR Q12='5 times per week' OR 

Q12='More than 5 times per week' 

 

Q33 Please list the year, make, and model of the car you usually commute in: 

Year: [Code = 1] [TextBox] 

Make: [Code = 2] [TextBox] 

Model: [Code = 3] [TextBox] 

Required answers: 0 Allowed answers: 3 

Q12='Once per week' OR Q12='2 times per week' OR Q12='3 times per week' OR 

Q12='4 times per week' OR Q12='5 times per week' OR 

Q12='More than 5 times per week' 
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Part 2 - Attitudes Toward Alternative Transport OptionsA. Attitude Toward 

Carpooling and Vanpooling 

 

Carpooling is defined as commuting by car with 1 - 4 other people.Vanpooling is defined 

as commuting by van with 5 or more people.We want to know your opinion of carpooling 

and vanpooling regardless of how you currently commute to campus. The next set of 

questions will ask about carpooling and vanpooling as modes of transportation to 

campus. 

Required answers: 0 Allowed answers: 0 

 

Q34 Please select the statement that best describes you: 

I carpool or vanpool most every day I come to campus. [Code = 1] 

I carpool or vanpool to campus at least once per week. [Code = 2] 

I carpool or vanpool to campus at least once per month. [Code = 3] 

I rarely or never carpool or vanpool. [Code = 4] 

Required answers: 0 Allowed answers: 1 

 

Q35 Assuming you own a car, how interested would you be in carpooling to campus 

as the driver? 

Extremely interested [Code = 5] 

Very interested [Code = 4] 

Moderately interested [Code = 3] 

Not very interested [Code = 2] 

Not at all interested [Code = 1] 

Required answers: 0 Allowed answers: 1 

 

Q36 How interested would you be in carpooling to campus as the passenger? 

Extremely interested [Code = 5] 

Very interested [Code = 4] 

Moderately interested [Code = 3] 

Not very interested [Code = 2] 
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Not at all interested [Code = 1] 

Required answers: 0 Allowed answers: 1 

 

Q37 Considering the cost of vehicle maintenance and fuel, how much would you be 

willing to pay per month to participate in a daily UMD vanpool (as a passenger, not 

a driver)? 

Less than $10 per month [Code = 1] 

Between $10 and $20 per month [Code = 2] 

Between $20 and $30 per month [Code = 3] 

Between $30 and $40 per month [Code = 4] 

I would not be willing to pay to participate in a vanpool program. [Code = 5] 

Required answers: 0 Allowed answers: 1 

 

Q38 Some universities provide a vanpooling service where one volunteer member is 

responsible for driving the van and keeping the van at home in the evenings; other 

members pay a monthly fee to participate in the vanpool. How would the removal of 

the monthly fee impact your willingness to be the primary driver? 

 

Much more likely to be driver [Code = 5] 

Slightly more likely to be driver [Code = 4] 

No change [Code = 3] 

Slightly less likely to be driver [Code = 2] 

Much less likely to be driver [Code = 1] 

Required answers: 0 Allowed answers: 1 

 

Page - 6 

What three reasons would make you most inclined to carpool or vanpool? Please rank 

with one (1) being the most important reason and three (3) the third most important 

reason: 

 

Q39 Web application that matched me with potential carpool partners 
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1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q40 More convenient parking options 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q41 Increase in the cost of parking 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q42 Increase in the cost of gasoline 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q43 Finding good company to ride with 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q44 Less expensive parking than the days when I drive alone 

1 [Code = 1] 
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2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q45 A more convenient Guaranteed Ride Home Program 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q46 Frequent pick-up and drop-off times 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

The next question will ask about barriers to carpooling or vanpooling to campus. Please 

rate how important the following factors are in preventing you 

from carpooling or vanpooling to campus: 

 

Q47 I do not have a car. 

Extremely important [Code = 5] 

Very important [Code = 4] 

Moderately important [Code = 3] 

Not very important [Code = 2] 

Not at all important [Code = 1] 

Required answers: 0 Allowed answers: 1 

 

Q48 I need my car for off-campus trips. 

Extremely important [Code = 5] 

Very important [Code = 4] 
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Moderately important [Code = 3] 

Not very important [Code = 2] 

Not at all important [Code = 1] 

Required answers: 0 Allowed answers: 1 

 

Q49 I have a constrained or irregular schedule. 

Extremely important [Code = 5] 

Very important [Code = 4] 

Moderately important [Code = 3] 

Not very important [Code = 2] 

Not at all important [Code = 1] 

Required answers: 0 Allowed answers: 1 

 

Q50 I need a specially equipped vehicle. 

Extremely important [Code = 5] 

Very important [Code = 4] 

Moderately important [Code = 3] 

Not very important [Code = 2] 

Not at all important [Code = 1] 

Required answers: 0 Allowed answers: 1 

Q51 I need to pick-up/drop-off my children. 

Extremely important [Code = 5] 

Very important [Code = 4] 

Moderately important [Code = 3] 

Not very important [Code = 2] 

Not at all important [Code = 1] 

Required answers: 0 Allowed answers: 1 

 

Q52 I do not have a way to find a carpool or vanpool group. 

Extremely important [Code = 5] 

Very important [Code = 4] 
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Moderately important [Code = 3] 

Not very important [Code = 2] 

Not at all important [Code = 1] 

Required answers: 0 Allowed answers: 1 

 

Q53 I do not have time to wait on others. 

Extremely important [Code = 5] 

Very important [Code = 4] 

Moderately important [Code = 3] 

Not very important [Code = 2] 

Not at all important [Code = 1] 

Required answers: 0 Allowed answers: 1 

 

Q54 I do not like to depend on others I do not know well. 

Extremely important [Code = 5] 

Very important [Code = 4] 

Moderately important [Code = 3] 

Not very important [Code = 2] 

Not at all important [Code = 1] 

Required answers: 0 Allowed answers: 1 

 

Q55 I am concerned about my safety. 

Extremely important [Code = 5] 

Very important [Code = 4] 

Moderately important [Code = 3] 

Not very important [Code = 2] 

Not at all important [Code = 1] 

Required answers: 0 Allowed answers: 1 

 

Q56 I prefer to ride alone. 

Extremely important [Code = 5] 
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Very important [Code = 4] 

Moderately important [Code = 3] 

Not very important [Code = 2] 

Not at all important [Code = 1] 

Required answers: 0 Allowed answers: 1 

 

Q57 I am concerned about becoming stranded on campus. 

Extremely important [Code = 5] 

Very important [Code = 4] 

Moderately important [Code = 3] 

Not very important [Code = 2] 

Not at all important [Code = 1] 

Required answers: 0 Allowed answers: 1 

 

Q58 If you have any additional comments or suggestions about carpooling or 

vanpooling, please enter it into the following box: 

[Code = 1] [TextBox] 

Required answers: 0 Allowed answers: 1 

  

B. Attitude Towards Bicycling 

 

BikeUMD is a University-wide initiative to support bicycling as a mode of transportation 

to and on campus. Based on the recommendations of a 

recent campus bike study, the University has begun to make improvements to support 

bicyclists on and around campus. 

Required answers: 0 Allowed answers: 0 

 

Q59 Overall, how would you rate the improvements on campus biking? 

I have not noticed. [Code = 0] 

Poor [Code = 1] 

Fair [Code = 2] 
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Average [Code = 3] 

Good [Code = 4] 

Excellent [Code = 5] 

Required answers: 0 Allowed answers: 1 

 

Q60 Have you begun biking to or on campus since March 2009? 

Yes [Code = 1] 

No, I do not bike to or on campus [Code = 2] 

No, I started biking to or on campus earlier than (date): [Code = 3] [TextBox] 

Required answers: 0 Allowed answers: 1 

 

Page - 8 

 

Q61 What made you start biking to or on campus? 

More bicycle parking [Code = 1] 

Access to bicycle lockers or cages (secure covered cages) [Code = 2] 

Access to using a shared car while I am at work [Code = 3] 

The ability to occasionally drive to campus when I need to [Code = 4] 

Better/safer routes available [Code = 5] 

Advice about selecting routes or other bicycle commuting issues [Code = 6] 

Better transit connections [Code = 7] 

Ability to shower after I arrive [Code = 8] 

Bike Shop location change [Code = 9] 

Other (please describe) [Code = 10] [TextBox] 

Required answers: 0 Allowed answers: 10 

 

Q60='Yes' 

Check the three most important bike improvements you think the campus should pursue. 

Please rank with one (1) being the most important improvement and three (3) the third 

most important improvement. If you have no opinion, leave this question blank. 
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Q62 Bicycle lanes on off-campus roads 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q63 Bicycle lanes on campus roads 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q64 Better signs or pavement markings to warn drivers 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q65 Trails or pathways separated from traffic 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q66 Covered and secure bicycle parking at central locations 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q67 More bike racks 
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1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q68 A bicycle station on campus 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q69 Convenient shower and locker facilities 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q70 A bike shop that sells bicycles and gear 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q71 Better lighting around campus for traveling safely in dark 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Please check the three most important reasons that would make you more inclined to give 

up your parking permit for a bike? Please rank with one (1) 
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being the most important reason and three (3) the third most important reason. If you 

have no opinion, leave this question blank. 

 

Q72 Free bike 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q73 Free bike rental 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q74 More convenient bike parking (secured and covered) 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q75 A campus map showing bicycle routes 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q76 Dedicated bike lanes to/from campus 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 
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Required answers: 0 Allowed answers: 1 

 

Q77 Share the road pavement markings and signs on campus roads 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q78 Shower and locker facilities 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q79 Educational classes on safe biking in traffic 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q80 More police patrol to ensure safety 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q81 Greater enforcement on traffic laws to protect bicyclists on the road 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 
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Q82 Prohibiting car traffic on some or all of the campus roads 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q83 Privileged parking for the days you drive 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q84 Guaranteed Ride Home service in case of emergency 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

Q85 Zipcar on campus 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q86 Carpool or rideshare options 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q87 I would not give up my parking permit. 
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1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

  

 

C. Attitude Towards Shuttle-UM 

Check the three most important factors that would make you more inclined to take 

Shuttle-UM. Please rank with one (1) being the most important factor and three (3) the 

third most important factor. 

 

Q88 Service closer to my home 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q89 More frequent daily service 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q90 More late night and weekend service 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q91 More frequent service during holidays and recess 

1 [Code = 1] 
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2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q92 Higher prices for parking permits 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q93 Less crowded buses 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q94 Faster service (shorter travel time) 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q95 Wireless service on the bus 

1 [Code = 1] 

2 [Code = 2] 

3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q96 Other 

1 [Code = 1] 

2 [Code = 2] 
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3 [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q97 Please specify ''other'' if selected above: 

[Code = 1] [TextBox] 

Required answers: 0 Allowed answers: 1 

  

Page - Part 3 - Personal Characteristics 

 

Q98 How many hours do you normally work/study/socialize on campus each week? 

Less than 10 [Code = 1] 

10 - 20 [Code = 2] 

20 - 30 [Code = 3] 

30 - 40 [Code = 4] 

More than 40 [Code = 5] 

Required answers: 0 Allowed answers: 1 

 

Q99 What is your gender? 

Male [Code = 1] 

Female [Code = 2] 

Transgender [Code = 3] 

Required answers: 0 Allowed answers: 1 

 

Q100 What is your age? 

[Code = 1] [TextBox] 

Required answers: 0 Allowed answers: 1 

 

Q101 Is this your first year at the University of Maryland? 

Yes [Code = 1] 

No [Code = 2] 

Required answers: 0 Allowed answers: 1 
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Q102 Are you licensed to drive in the U.S.? 

Yes [Code = 1] 

No [Code = 2] 

Required answers: 0 Allowed answers: 1 

 

Q103 Please provide your e-mail address: 

[Code = 1] [TextBox] 

Required answers: 0 Allowed answers: 1 

Q2='Faculty' OR Q2='Staff' 
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