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The oxygen-deficient areas (dissolved oxygen < 2 mg L-1) in oceans and 

estuaries have been increasing worldwide in recent decades and are especially 

common in populated and developed areas due to eutrophication and warming. The 

objectives of this dissertation were to understand the effects of hypoxia on 

zooplankton and the plankton foodweb in the Chesapeake Bay. The study focused on 

copepod (Acartia tonsa) and its major predators bay anchovy (Anchoa mitchilli), 

comb jellyfish (Mnemiopsis leidyi), and bay nettle (Chrysaora chesapeakii) with data 

collected during six cruises in 2010 and 2011 and an individual-based model. Oxygen 

deficiency was evaluated with both dissolved oxygen concentration (DO < 2 mg L-1) 

and the oxygen supply and demand of the copepod (pO2 < Pcrit). The effects of 

hypoxia on zooplankton concentrations were estimated with net tows, and the impact 



of hypoxia on the plankton foodweb were quantified by comparing copepods’ 

nonpredatory mortality (estimated with neutral red experiments) and predatory 

mortality (estimated with gut contents of comb jellyfish and bay anchovy). A 

copepod behavior model was also built to examine how stress-induced behavior 

affected copepod vertical distributions and the tradeoffs between avoiding both 

hypoxia and predation. The results indicated the impact of oxygen deficiency could 

be underestimated using solely the metric of dissolved oxygen, especially under warm 

and saline conditions. Both copepod and planktivorous fish concentrations were 

lower under hypoxic conditions, but gelatinous zooplankton concentrations were 

higher. Both nonpredatory and predatory mortality of copepods were higher under 

hypoxic conditions, suggesting a direct linkage between hypoxia and decreasing 

copepod abundance. Most importantly, the source of copepod mortality changed with 

both hypoxic severity and season: the relative importance shifted from nonpredatory 

in spring to a combination of predatory and nonpredatory in summer and autumn, and 

the dominant predators shifted from juvenile bay anchovies under moderate hypoxia 

to comb jellyfish under warm and severely hypoxic conditions. The model 

demonstrated how enhancing stress avoidance would result in aggregating at a 

shallower depth and thus increasing predation risk, supporting the hypothesis that 

behavior change under hypoxia may increase predatory mortality. Overall my 

research has shown that hypoxia directly decreases zooplankton abundance and 

increases predation impact, and avoiding hypoxia could contribute to higher predation 

impact.  
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Chapter One. Introduction and Overview 

The oxygen-deficient area in the ocean known as the “dead zone” (dissolved 

oxygen < 2 mg L-1) has been increasing worldwide in recent decades; so far, more 

than 400 systems and 245,000 km2 of aquatic ecosystems are affected by oxygen 

deficiency (Diaz & Rosenberg 2008, Breitburg et al. 2018). In coastal areas, including 

the Chesapeake Bay, oxygen deficiency is especially common in populated and 

developed areas due to eutrophication and warming (Rabalais et al. 2010, Rhein et al. 

2013). Expansion of hypoxic water causes habitat degradation and sometimes leads to 

mass mortality of benthos and fish (reviewed in (Breitburg et al. 2018), the 

consequences of which could be expensive. For example, Lipton & Hicks (2003) 

estimated US$200,000 net losses of value to the recreational striped bass (Morone 

saxatilis) fishery in the Patuxent River due to hypoxia; these losses would be 

>US$145 million if projected to the whole Chesapeake Bay.  

The environmental changes under eutrophication and oxygen deficiency may 

be systematic. With excessive anthropogenic nutrient, the primary producer 

community shifts from perennial macroalgae and seagrasses to fast-growing 

phytoplankton (Borum 1996), and mixotrophic phytoflagellates and dinoflagellates 

are often favored in the plankton community (Baird et al., 2004; Capriulo et al., 2002; 

Stoecker et al., 2017). This fuels future summer hypoxia and put oxygen-demanding 

species such as fast-swimming fish in a disadvantage compared with hypoxia-tolerant 

species like slow-drifting jellyfish (Breitburg et al. 1994). Such a shift alters the 
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foodweb structure towards a zooplankton-dominated system that favors planktivorous 

and filter feeders, with more production directed toward microbial loops and 

gelatinous zooplankton than finfish (Justić et al. 1995, Glibert & Burkholder 2006, 

Glibert 2010, Roman et al. 2019). 

Copepod plays an important role in the foodweb by transferring primary 

production to higher trophic levels, and thus the abundance of copepods and the 

directions of copepod’s energy flow influence the resilience of ecosystem. However 

among many eutrophic coastal ecosystems, a decrease in the copepod population is 

often concurrent with peak hypoxia and jellyfish blooms (Shoji et al. 2010, Dong et 

al. 2010, Purcell 2012, Pierson 2017), but the proposed explanations vary. Many 

studies have suggested hypoxia directly increases copepod mortality and results in a 

smaller population (Roman et al. 1993, 2005a 200, Elliott et al. 2013a), while some 

have indicated hypoxia favors jellyfish, and thus their predation upon copepods 

increases under hypoxic conditions (Decker et al. 2004, Kolesar et al. 2010). Some 

studies also have proposed behavior changes under hypoxic conditions, like 

decreasing diel vertical migration or avoidance of the hypoxic bottom, which may 

increase the spatial overlap between organisms and result in increased predator-prey 

encounter rates, and consequently, increased mortality (Keister et al. 2000, Breitburg 

et al. 2003). Further research is still needed to determine how hypoxia affects the 

interactions of the zooplankton community and to elucidate the related mechanisms. 

Does hypoxia cause a decrease in copepod populations? If so, of what magnitude, and 

through what mechanisms (direct mortality, predation)? Does behavior change play a 

role, and if so, how?   
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The overarching goal of this dissertation is to understand how hypoxia affects 

zooplankton communities and their interactions by quantifying the impact of hypoxia 

on zooplankton community and elucidating the mechanisms with field observations, 

onboard experiments, gut content analyses, and individual-based simulations. Six 

week-long research cruises were conducted in the main stem of the Chesapeake Bay 

in May, August/July, and September of 2010 and 2011. Hourly CTD casts and 

Scanfish surveys were conducted to collect data on water temperature, salinity, 

dissolved oxygen, and chlorophyll-a content to evaluate the onset, development, and 

dissipation of hypoxia. Cruise details, net deployments, and hydrological 

measurements were uploaded to the Biological and Chemical Oceanography Data 

Management Office (DOI: 10.1575/1912/bco-dmo.687991, Pierson et al. 2017). 

Oxygen deficiency was evaluated by both dissolved oxygen and the supply and 

demand of copepod Acartia tonsa. Neutral red treatment was applied to copepods 

collected with Niskin bottles to estimate copepods’ nonpredatory mortality. The 

research vessel anchored at two stations, termed North (38° 31.32’ N, 076° 24.48’ W) 

and South (37° 43.68’ N, 076° 12.0’ W).  

To estimate the effects of hypoxia on concentrations of copepod Acartia 

tonsa, larval and juvenile bay anchovy Anchoa mitchilli, bay nettle Chrysaora 

chesapeakei (formerly known as C. quinquecirrha), and comb jelly Mnemiopsis leidyi 

(as discussed in Chapter Two), at least five series of trawling operations were 

conducted at each station, including hauls with a MOCNESS (Multiple 

Opening/Closing Net and Environmental Sensing System), a Tucker Trawl, and a 

Mid-Water Trawl. Gut samples were also collected with Reeve nets (for M. leidyi), 
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MOCNESS (for larval A. mitchilli), and mid-water trawl (for juvenile A. mitchilli) to 

understand predation’s impact upon copepods under hypoxic conditions (as discussed 

in Chapter Three). An individual-based model was built to under how different stress 

avoidance behavior may future affect copepod’s vertical distribution and their 

encounter with predators (as discussed in Chapter Four). The conclusions and 

synthesis of these studies are presented in Chapter Five.  

The null hypotheses that I tested were 1) there is no difference in zooplankton 

concentrations under different levels of oxygen deficiency; 2) there is no difference in 

copepods’ nonpredatory mortality under different conditions of oxygen deficiency; 3) 

there is no difference in ctenophore predation or anchovy predation on copepods 

under different levels of oxygen deficiency; 4) there is no difference in copepods’ 

vertical distribution and mortality risk (estimated with time spending in stress 

patches) under different stress avoidance behaviors. The main chapters of the 

dissertation are organized as follows: 

II. Fewer copepods, fewer anchovies, and more jellyfish: how does 

hypoxia impact the Chesapeake Bay zooplankton community?  

(Diversity 2020, 12(1):35) 

III. Hypoxia increases ctenophore and fish predation on copepods: a case 

study in the Chesapeake Bay  

IV. Avoiding hypoxia and escaping predators: Examining behavior trade-

offs with an individual-based model 
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Chapter Two. Fewer copepods, fewer anchovies, and more 

jellyfish: how does hypoxia impact the Chesapeake Bay 

zooplankton community? 

Abstract 

To understand dissolved oxygen deficiency in Chesapeake Bay and its direct 

impact on zooplankton and planktivorous fish communities, six research cruises were 

conducted at two sites in the Chesapeake Bay from spring to autumn in 2010 and 

2011. Temperature, salinity, and dissolved oxygen were measured from hourly CTD 

casts, and crustacean zooplankton, planktivorous fish and gelatinous zooplankton 

were collected with nets and trawls. CTD data were grouped into three temperature 

groups and two dissolved oxygen-level subgroups using principal component analysis 

(PCA).  Species concentrations and copepod nonpredatory mortalities were compared 

between oxygenated conditions within each temperature group. Under hypoxic 

conditions there usually were significantly fewer copepods Acartia tonsa and bay 

anchovies Anchoa mitchilli, but more bay nettles Chyrsaora chesapeakei and lobate 

ctenophores Mnemiopsis leidyi. Neutral red staining of copepod samples confirmed 

that copepod nonpredatory mortalities were higher under hypoxic conditions than 

under normoxia, indicating that the sudden decline in copepod concentration in 

summer was directly associated with hypoxia. Because comparisons were made 

within each temperature group, the effects of temperature were isolated, and hypoxia 
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was clearly shown to have contributed to copepod decreases, planktivorous fish 

decreases, and gelatinous zooplankton increases. This research quantified the direct 

effects of hypoxia and explained the interactions between seasonality and hypoxia on 

the zooplankton population. 

Introduction 

Hypoxia in the Chesapeake Bay 

The amount of oxygen-deficient water (i.e., dissolved oxygen < 2 mg L-1) in 

coastal areas has been increasing worldwide in recent decades largely due to 

eutrophication and warming (Rabalais et al. 2010, Rhein et al. 2013). In more than 

400 coastal systems covering a 245,000 km2 area, hypoxia has been recognized as a 

key stressor in many aquatic ecosystems, especially along populated and developed 

coasts (Diaz & Rosenberg 2008).  Chesapeake Bay, the largest estuary in the United 

States, is prone to hypoxia due to its linear shape and its low rates of seasonal 

flushing, which strengthens stratification and impedes full circulation (Libes 2011). In 

addition to these natural causes of hypoxia, anthropogenic drivers, such as 

eutrophication and warming, have also contributed to hypoxia in the Bay (Cowan & 

Boynton 1996). Chesapeake Bay has a surface area of 3500 km2 and a three-month 

duration of deoxygenated bottom water annually (Diaz & Rosenberg 2008). The 

volume of hypoxic water has been increasing, and the seasonal onset has been earlier 

since the 1950s (Hagy et al. 2004, Kemp et al. 2005, Murphy et al. 2011). With both 

temperature and human population (the major source of eutrophication) projected to 



 
 

 
 

9 

increase, the hypoxic volume of the Bay could increase in the future (Rabalais et al. 

2010, Najjar et al. 2010, Deutsch et al. 2011, Breitburg et al. 2018).  

The consequences of hypoxia are both environmental and economic, and the 

environmental changes under hypoxic conditions may be systematic (Roman et al. 

2019). For example, eutrophic-induced hypoxia could alter ecosystem structure by 

decreasing suitable habitats for hypoxia-sensitive species such as striped 

bass (Morone saxatilis) and favoring hypoxia-tolerant and filter-feeding species like 

jellyfish (Breitburg et al. 1997, Kimmel et al. 2012). It was proposed that under 

hypoxic conditions, K-selected species could be replaced by r-selected species and a 

complex foodweb replaced by a simpler foodweb (Wu 2002). Hypoxia can negatively 

impact fisheries in some ecosystems, for example Alabama’s oyster (Crassostrea 

virginica), North Carolina’s brown shrimp (Farfantepenaeus aztecus), and the Black 

Sea’s Norway lobster (Nephrops norvegicus) fisheries (Noone et al. 2013). A 10-year 

study also indicated that chronic hypoxia in the Chesapeake Bay was concurrent with 

substantial reductions in landings and catch rates of demersal fish species 

(Buchheister et al. 2013). Lipton and Hicks projected a net present value loss of 

US$145 million from the recreational striped bass (M. saxatilis) fishery in the 

Chesapeake Bay if DO were consistently lower than 3 mg L-1 (Lipton & Hicks 2003). 

Although it is difficult to quantify all economic losses due to hypoxia and the diverse 

reasons for these losses, most studies agree that expansion of hypoxic water causes 

habitat degradation and therefore compresses the distributions of fisheries species and 

their prey, and sometimes leads to mass mortality of benthos and pelagic fish (Diaz & 

Rosenberg 1995, Breitburg et al. 2018).  
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Zooplankton and planktivores diversity in the Bay 

Chesapeake Bay is very productive and diverse in crustacean zooplankton ( > 

50 species), fish ( > 350 species), and gelatinous zooplankton ( > 30 species). 

Crustacean zooplankton are the most abundant mesozooplankton in the Chesapeake 

Bay, and copepods are the dominant taxa. There have been more than 50 copepod 

species identified in Chesapeake Bay, and the most commonly found genera are 

Acartia and Eurytemora, while other dominant taxa include Centropages spp., 

Oithona spp., and Paracalanus spp. (Wilson & Museum 1932, Heinle 1966, Olson 

1987, Lippson & Lippson 2006, Steinberg & Condon 2009). While the calanoid 

copepod E. carolleeae (previously  E. affinis, (Alekseev & Souissi 2011) is dominant 

in winter and spring, the calanoid copepod A. tonsa is the most abundant copepod in 

summer and autumn, reaching peak densities of approximately 100,000 ind. m-3 

(Heinle 1966, Olson 1987, Kimmel & Roman 2004). The life cycle of A. tonsa is 

short in warm summers, taking approximately 7 days for an egg to develop into an 

adult when the water temperature is above 25°C. The estimated A. tonsa production 

in summer is 180.7 – 199.4 mg m-2 day-1, assuming an average depth of 3m (Heinle 

1966). In summer, copepod nauplii and A. tonsa adults together could graze 

approximately half (205.6 mg C m-2 d-1) of the in situ primary production (White & 

Roman 1992).  

Chesapeake Bay gelatinous zooplankton are in the phyla Cnidaria 

(hydromedusae and scyphomedusae) and Ctenophora. The most commonly surveyed 

gelatinous species in the Bay include the large medusoid species, such as bay nettle 

(Chrysaora chesapeakei , formerly sea nettle C. quinquecirrha (Bayha et al. 2017), 
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lion’s mane jelly (Cyanea capillata), and moon jelly (Aurelia aurita), and the 

ctenophores Mnemiopsis leidyi and Beroe ovate. In addition, 27 hydromedusa species 

have been identified in the Chesapeake Bay (Mayer 1910, Mayor 1912, Calder 1971, 

Morales-Alamo & Haven 1974, Burrell & Van Engel 1976, Purcell & Nemazie 1992, 

Purcell et al. 2001b).  

Among approximately 350 fish species living in the Chesapeake Bay, bay 

anchovy (Anchoa mitchilli)  is the most abundant pelagic fish (Stone 1994, Wang & 

Houde 1994, Newberger & Houde 1995, Murdy et al. 1997, Jung & Houde 2003). 

During A. mitchilli’s spawning season (May to September), A. mitchilli eggs and 

larvae can make up to 80% and 75%, respectively, of the fish eggs and larvae 

collected in ichthyoplankton surveys (Olney 1983). In addition to A. mitchilli, 

Atlantic croaker (Micropogonias undulatus), white perch (Morone americana), spot 

(Leiostomus xanthurus), weakfish (Cynoscion regalis), and Atlantic menhaden 

(Brevoortia tyrannus) are also commonly found pelagic fish in the Chesapeake Bay 

(Jung & Houde 2003). 

Direct effects of seasonal hypoxia 

Seasonal hypoxia in the Chesapeake Bay usually establishes in spring, peaks 

in summer, and dissipates in autumn (Kemp et al. 2005). Dissolved oxygen 

concentrations vary spatially, with the upper Bay containing a higher percentage 

volume of hypoxic water than the lower Bay (Kemp et al. 2005). Seasonal low 

dissolved oxygen negatively affects many organisms in the Bay. For example, A. 

tonsa produced fewer eggs and the egg hatching is delayed when DO is ≤ 2 mg L-1 in 
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Chesapeake Bay, and egg hatching ceased when DO is < 0.1 mg L-1 (Roman et al. 

1993). Additionally, copepod ingestion rates were lower under hypoxic conditions, 

which led to smaller adult sizes (Elliott et al. 2013a). As a result, copepod populations 

decline under hypoxic conditions due to lower egg production, reduced hatching 

success, slower growth and development, and increased mortality (Vargo & Sastry 

1977, Lutz et al. 1992, Roman et al. 1993, Marcus et al. 2004, Richmond et al. 2006, 

Ekau et al. 2010).  

Similarly, hypoxia also negatively affects A. mitchilli growth, survival, 

behavior, population distributions, and recruitment (Chesney & Houde 1989, Houde 

& Zastrow 1991, MacGregor & Houde 1996, Jung & Houde 2004, Taylor et al. 2007, 

Ludsin et al. 2009, Adamack et al. 2012). Trawl surveys indicate that A. mitchilli 

occurs most abundantly at DO > 3 mg L-1, and A. mitchilli densities decrease along 

with decreasing DO concentrations (Jung & Houde 2004). In addition, A. mitchilli 

larvae avoided DO < 1 mg L-1 under laboratory and field conditions (Breitburg 1994, 

North & Houde 2004). Lab results also indicate that DO concentrations less than 2.4 

and 1.6  mg L-1
, respectively, were lethal to A. mitchilli eggs and larvae, respectively 

(Chesney & Houde 1989).  

By contrast, laboratory experiments and field surveys indicate that gelatinous 

zooplankton are more tolerant of hypoxic conditions than their copepod prey and fish 

competitors (Purcell et al. 2001a). For example, M. leidyi occurs in hypoxic bottom 

water as low as DO 1 mg L-1 while copepods and both larval A. mitchilli and larval 

Gobiosoma bosc avoid DO concentrations < 2 mg L-1 (Breitburg 1994, Keister et al. 

2000, Breitburg et al. 2003). Experimental studies also found that moderate hypoxia 
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did not affect predation ability of gelatinous zooplankton (Breitburg et al. 1994, 

Decker et al. 2004, Purcell et al. 2001a, Shoji et al. 2005b a).  

In this paper, we evaluate the effects of bottom hypoxia on Chesapeake Bay 

zooplankton and planktivorous fish. Our objectives were to determine if the 

concentrations and distributions of A. tonsa and its predators A. mitchilli, M. leidyi, 

and C. chesapeakei vary with respect to levels of dissolved oxygen, and to estimate 

the direct impact of hypoxia on A. tonsa populations by quantifying the non-predation 

mortality rates of A. tonsa under different DO conditions.  

Methods 

Cruises and environmental data 

Six week-long cruises were conducted on the R/V Hugh R. Sharp in the 

mainstem of the Chesapeake Bay from late spring to autumn (May, July/August, and 

September) in 2010 and 2011. The vessel anchored at two stations which are 

approximately 90 km apart, designated North (38° 31.32’ N, 076° 24.48’ W, depth 

28m) and South (37° 43.68’ N, 076° 12.0’ W, depth 35m) (Figure 2.1). These two 

stations were selected because both stations were at the mainstem of Chesapeake Bay 

with comparatively deeper water columns that allow persistent stratification to form, 

and the North was expected to experience more severe oxygen deficiency over a 

longer duration compared with the South.  

Both biological and hydrographic data were collected. Approximately 2.5 

days were spent at each station, with ~27 hours at anchor and ~33 hours underway 

near the station conducting net collections for zooplankton and fish. While at anchor, 
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a total of 229 and 223 hourly CTD casts were conducted during the six cruises 

(Appendix 2.1) to obtain temperature, salinity, and dissolved oxygen at 0.5-m depth 

intervals. Cruise details, gear and instrument deployments, and measurements were 

submitted to the Biological and Chemical Oceanography Data Management Office 

(BCO-DMO) (Pierson et al. 2017).  

Evaluation of environmental oxygen supplies and copepod’s physiological oxygen 

needs 

The temperature-specific oxygen demands for the A. tonsa copepod were 

estimated at each half-meter CTD measurement. First, Q10 of A. tonsa was calculated 

with respect to salinity (Equation 2.1, Elliott et al. 2013c), and oxygen solubility 

(O2Sat, Weiss 1970) was calculated using the “sw_satO2.m” in the SeaWater 

MATLAB toolbox (McDougall & Barker 2011). From oxygen solubility, the 

percentage of oxygen saturation (O2Pct, Equation 2.2) and saturation partial pressure 

of environmental oxygen (pO2, Equation 2.3) were calculated. From Q10 and 

temperature, the temperature-specific critical oxygen partial pressure (Pcrit, Equation 

2.4) and the lethal oxygen partial pressure (Pleth, Equation 2.5) could be estimated 

(Elliott et al. 2013b, Pierson et al. 2017, Roman et al. 2019). By comparing pO2 with 

Pcrit and Pleth, the differences between A. tonsa oxygen supply and oxygen demand 

based on ambient temperature and salinity could be estimated. If pO2 > Pcrit, the 

metabolism of the copepod A. tonsa is independent of the surrounding pO2. If pO2 < 

Pcrit (biological hypoxia), A. tonsa’s metabolism decreases, which may cause 

copepods to suffer from sublethal effects. If pO2 < Pleth, the concentration of dissolved 
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oxygen is insufficient to support copepod respiration, causing hypoxia-induced 

mortality to increase.   

Q10 = 0.053 ×  Salinity + 0.705 (Equation 2.1) 

O2Pct (%) =  
DO

O2Sat
 

(Equation 2.2) 

𝑝𝑝O2 =  (159.27 × O2Pct − 0.0141)  ×  133.322 / 1000 (Equation 2.3) 

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  = 7.49Q10
0.1(T−18) + 0.59 (Equation 2.4) 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙ℎ  = 2.61Q10
0.1(T−18) + 0.59 (Equation 2.5) 

 

Estimation of zooplankton and planktivorous fish concentrations 

To document seasonal changes in populations of crustacean zooplankton, 

gelatinous zooplankton and ichthyoplankton in the mainstem Chesapeake Bay, net 

collections were conducted at the two stations (North and South) during each cruise; 

the resulting copepod, gelatinous zooplankton and anchovy datasets were uploaded to 

the Biological and Chemical Oceanography Data Management Office (BCO-DMO) 

(Pierson & Houde 2015, Pierson 2017, Pierson & Decker 2017). CTD casts were 

conducted before each series of net tows to determine pycnocline depth and DO 

levels that guided the selection of net-sampling depths (described in Pierson et al. 

2017)). Each net-collection series included tows with a MOCNESS (Multiple 

Opening/Closing Net and Environmental Sensing System), a Tucker Trawl, and a 

mid-water trawl (Appendix 2.2). Copepod concentration data were obtained primarily 

from the MOCNESS tows. However, copepod concentrations in May-2010 (South) 

were estimated from the Tucker Trawl tows and Sep-2010 (North) from Z-trap 
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deployments (described in Barba 2015) because of MOCNESS mechanical problems. 

Larval bay anchovies were collected by both the MOCNESS and Tucker Trawl, 

whereas juvenile and adult bay anchovies were sampled by the mid-water Trawl. 

Gelatinous zooplankton, primarily bay nettles and ctenophores, were collected by 

Tucker Trawl. Our study focused on the whole water column; thus, abundances of 

copepods, jellyfish, ctenophores, and fish were expressed in concentrations (ind. m-3) 

estimated for the entire water depth sampled by each tow.  

The MOCNESS (Wiebe 1976) had a 0.25 m2-mouth and was fitted with six 

150-µm mesh nets, and with sensors to measure pressure, temperature, salinity, 

dissolved oxygen, chlorophyll a fluorescence, flow, turbidity, and photosynthetically 

active radiation (PAR) in real-time. The MOCNESS was deployed to collect 

copepods from three layers (above, within, and below pycnocline) and to collect 

larval bay anchovy from two layers (above and below pycnocline). After each tow, 

the nets were rinsed, and most adult gelatinous zooplankton were removed by pouring 

the sample through a 5-mm mesh sieve. The remainder of each sample was 

concentrated with a 200-µm mesh sieve, preserved in a 4% formaldehyde and 

seawater solution, and later enumerated in the laboratory. The MOCNESS was 

inoperative at the South Station during the 2010-May cruise and the 2011-May cruise, 

and the Tucker Trawl was deployed instead. 

The 1-m2 Tucker Trawl was fitted with two opening and closing 280 µm-

mesh nets and a flowmeter for each net to collect gelatinous zooplankton. During 

each deployment, each net was opened for two minutes to determine gelatinous 

zooplankton concentrations from three to four water depth intervals, depending on 
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hydrographic conditions. The nets were rinsed after each trawl and gelatinous 

zooplankton were separated. If there were more than 30 gelatinous zooplankton of 

each species, the total numbers of each species were estimated by measuring the wet 

biovolume of the first 30 randomly selected gelatinous zooplankton and then the total 

biovolume of all gelatinous zooplankton.  

The mid-water trawl, with 18-m2 mouth opening and 4-mm cod-end mesh, 

was deployed twice during each sampling-station occupation. An above- and below-

pycnocline trawl deployments collected juvenile and adult bay anchovy at each of the 

sampling stations during summer and fall cruises. Each deployment was of 20-min 

duration; the trawl was fished obliquely in two-minute steps within each sampling 

depth.  The effective volume sampled in a 20-min tow was 989 m3 (Jung & Houde 

2004). The number of fish in each trawl sample and relative concentrations 

(individuals per 20 min) were recorded. Total lengths were measured from a sample 

of 30 bay anchovies, or all individuals were measured if fewer than 30 were collected 

from each trawl tow. A representative sample of juvenile and adult bay anchovy was 

preserved in ethanol for subsequent stomach analysis in the laboratory.  

Nonpredatory mortality rates 

Neutral red uptake experiments were conducted to estimate the proportion of 

living and dead copepods in each layer and to calculate the non-predatory mortality 

rates of copepods (Elliott & Tang 2009, Elliott et al. 2013a). Copepods were collected 

with a CTD rosette by combining water from three 10-L Niskin bottles in each of 

three discrete layers: surface layer, base of the oxycline, and near the bottom. 90-L 
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were collected in total, 30 L from each layer. Sampling was repeated three times at 

each station during all cruises except the spring cruise in 2010. Copepod non-

predatory mortality rates (Mnp, Equation 2.6) were estimated from the percentage of 

copepod carcasses present in the sample divided by the estimated in situ carcass 

decomposition time (𝜏𝜏), a function of copepod dry weight and water temperature 

(Equation 2.7, Elliott & Tang 2009, Elliott 2010) 

Mnp (% d−1) =
% dead from neutral red dye

carcass turn over time (τ)
 

(Equation 2.6) 

 

τ =
Dry Weightt − Dry Weighti
−4.116 ×. (1 − e−0.008 Temp) − 1.39 

(Equation 2.7) 

 

Statistical analysis 

Principal Component Analysis (PCA) was applied to assign data from cruises 

and stations into groups representing comparatively similar environmental conditions. 

Temperature, salinity, and dissolved oxygen from above, at, and below the 

pycnocline, selected as the depth of the maximum density gradient for each hourly 

CTD cast were analyzed in R (Team 2013). Based on the PCA results, cruises and 

stations were first grouped into three temperature groups, designed Cool (C), 

Temperate (T), and Warm (W), according to their PC1 scores for which the major 

loading was temperature. Then, each temperature group was divided into two 

subgroups, termed less-oxygenated (LO) and more-oxygenated (MO), according to 

their PC2 scores for which the biggest loading was bottom dissolved oxygen. These 
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groups were then used to compare the zooplankton, fish, and gelatinous zooplankton 

concentrations, as well as the nonpredatory mortality rates.  

Differences in the concentrations of copepods, larval and juvenile anchovies, 

ctenophores, and bay nettles were compared between the LO and MO subgroups 

within each temperature group (C, T, W) with Kruskal-Wallis test (Kruskal & Wallis 

1952) performed in R to test the null hypothesis of no differences among zooplankton 

concentrations in different oxygenated conditions. Likewise, copepod nonpredatory 

mortality rates were also compared between hypoxia subgroups within each 

temperature group to test the null hypothesis of no differences in copepod 

nonpredatory mortalities under different hypoxic conditions. Note that within the 

biological hypoxia matrix (pO2 < Pcrit, Elliott et al. 2013c), the comparisons between 

the hypoxia subgroups in the C and T groups were made between normoxic (pO2 > 

Pcrit) and hypoxic conditions (pO2 < Pcrit), but the comparisons in the W group were 

made between moderately (pO2 < Pcrit) and severely hypoxic (pO2 < Pcrit) conditions.  

To assess the effect of different nets on capture of larval anchovies, we 

conducted a permutation t-test, using a 10,000-time rearrangement simulation, using 

larval anchovy length data from 10 MOCNESS samples and 20 Tucker trawl samples 

collected at the North station in May 2010.  

Results 

General environmental conditions 
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Water temperature varied with seasons and years: summer was warmer than 

spring and fall, and 2011 was warmer than 2010 (Figure 2.2). The recorded water 

temperature ranged from 15.5°C to 34.5°C, with the highest water temperature 

observed at the surface of North Station during the 2011-Summer cruise, and the 

lowest was observed near the bottom of North Station during the 2011-Spring cruise. 

Salinity primarily varied by depth, station and year: the North Station was less saline 

than the South Station, especially at the surface, and 2011 was less saline than 2010 

(Figure 2.2). Salinity ranged from 4 to 25, with the highest salinity found near the 

bottom of the South Station during the 2010-Autumn cruise, and the lowest salinity 

found at the surface of the North Station during the 2011-Spring cruise.  

Dissolved oxygen also varied with depths, stations, seasons, and years. In 

general,  dissolved oxygen was 1) lower at the North Station than at the South 

Station, 2) was lower during summer than the other seasons, and 3) was lower in 

2011 than in 2010 (Figure 2.3). Dissolved oxygen ranged from below detectable 

limits to 15.5 mg L-1; the highest dissolved oxygen was recorded at the surface of the 

North Station during the 2011-Autumn cruise and the lowest during the 2010-

Summer and 2011-Spring and 2011-Summer cruises (Figure 2.3).  

Our two hypoxia indicators (DO and pO2) mapped different “dead zones” in 

the Bay, and the volume and duration of the dead zone were more extensive with the 

biological (pO2) standard. If only DO concentration was considered as an indicator, 

oxygen-deficient water in the Chesapeake Bay was mostly confined to the bottom 

water (Figure 2.3). However, if the temperature-dependent oxygen demands of the 

copepod A. tonsa are considered, oxygen-deficient water in the Chesapeake Bay 
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occurred above the pycnocline, and sometimes even near the surface (Figure 2.3). For 

example, during the 2011 summer cruise at the South Station, two-thirds of the water 

column was categorized as biologically hypoxic, and thus, A. tonsa that occurred 

below 5-m would be stressed by oxygen deficiency. Using the DO indicator, hypoxia 

was only prevalent in summer; however, if oxygen demand and supply are considered 

(i.e., pO2),  hypoxic conditions extended into autumn in both years (Figure 2.3).  

Zooplankton and fish concentrations 

In general, there were more copepods and larval bay anchovies observed in 

spring, more gelatinous zooplankton in summer, and more juvenile bay anchovy in 

autumn.  Overall, there were more crustacean zooplankton and fish in 2010 and more 

gelatinous zooplankton in 2011 (Figure 2.4 - 2.6; Appendix 2.3).  

The MOCNESS survey documented the temporal succession of adult A. tonsa, 

which varied with the development of hypoxia (Figure 2.4a). In 2010, when hypoxia 

was more pronounced in summer, the concentrations of adult copepods declined by 

more than 75% at the North Station and by 20% at the South Station and then began 

to recover in autumn at both stations (Figure 2.4a). The oxygen deficiency was worse 

in 2011 when hypoxic water was observed at the North Station beginning in spring. 

In addition, Hurricane Irene and Tropical Storm Lee passed Chesapeake Bay 

approximately one month and two weeks, respectively, before the 2011 autumn 

cruise. As a result, A. tonsa’s concentrations were low in spring, slightly increased in 

summer, and declined again in autumn (Figure 2.4a).  The temporal changes of A. 

tonsa copepodites resembled the pattern of adults (Figure 2.4b). In 2010, the 
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concentrations of copepodites were high at the North Station in spring, lower in 

summer, and increased in September, while in 2011 the copepodite concentrations 

remained low in spring and summer and then increased at the South Station in autumn 

(Figure 2.4b). 

A. mitchilli larvae were most abundant in spring 2010. Juveniles were most 

abundant in summer 2010 and autumn 2011 (Figure 2.5). In 2010, the highest 

concentrations of larval A. mitchilli were observed in May, and abundance declined in 

summer and remained low in autumn. A similar seasonal pattern was observed in 

2011, but concentrations were much lower (Figure 2.5). In 2010, the highest 

concentrations of juvenile A. mitchilli occurred in summer; in 2011, the highest 

concentrations occurred in autumn (Figure 2.5). The permutation t-test to determine 

whether the Tucker Trawl or MOCNESS net caught larval anchovies of different 

sizes resulted in a p-value of 0.676, indicating that the larval anchovy’s length 

distribution (as collected by these two nets) are not significantly different.  

Unlike the temporal changes of crustacean zooplankton and planktivorous 

fish, gelatinous zooplankton peaked during summer, and they were more abundant at 

the South Station than at the North Station in both years (Figure 2.6). The highest 

concentrations of both M. leidyi and C. chesapeakei were observed at the South 

Station in the summer of 2011. No gelatinous zooplankton were collected in spring, 

and only a few were found in autumn. In any single Tucker-trawl tow during the six 

cruises, M. leidyi was at least 50 times more abundant than C. chesapeakei (Appendix 

2.3). 
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Grouping with PCA results 

Among the nine principal components in our analysis, PC1 explained 56% of 

the variance, and PC2 explained 26% of the variance; together, these two principal 

components explained 82% of the variability in environmental conditions. Because 

only PC1 and PC2 had eigenvalues larger than 1, and the cumulative sum increased 

slowly after PC2, only PC1 and PC2 were retained for further analysis. The top three 

loadings of PC1 were water temperatures in the bottom layer, pycnocline, surface 

layer, indicating water temperature was the major driving factor of PC1 (Table 2.1). 

The top three loadings of PC2 included dissolved oxygen of the bottom layer as well 

as the salinity of the bottom and surface layers (Table 2.1), indicating that bottom 

dissolved oxygen and salinity in both the bottom and surface layers were the major 

drivers of PC2. 

 The scatter plot of PC1 and PC2 scores for 335 CTD casts is provided (Figure 

2.7). Because the major loading in PC1 was water temperature, which was negatively 

related to PC1 (Table 2.1b), all data were grouped into three temperature categories 

approximately corresponding to PC1 scores  −4 to −2, −2 to 0, and 0 to 2, named 

“Warm (W)”, “Temperate (T)”, and “Cool (C)”, respectively. Because bottom 

dissolved oxygen was the highest loading on PC2 and dissolved oxygen was 

positively related to PC2 (Table 2.1b), each temperature group was further divided 

into two oxygen subgroups approximately at PC2 = 0, labeled “Less-Oxygenated 

(LO, )” and “More-Oxygenated (MO)”, respectively, from bottom to top on PC2. The 

cruises and stations and their corresponding groups are listed in Table 2.2 
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Re-examining the environmental conditions with PCA grouping, the 

temperature variations among C, T, W group were bigger than the changes among 

vertical water layers and between LO and MO (Figure 2.8a). The mean water 

temperatures were approximately 20°C, 23°C, and 26°C in the C, T, and W groups, 

respectively. In general, the W group also had higher salinity than the other groups, 

and the MO subgroups also had higher salinity than the LO subgroup especially in the 

surface layer (Figure 2.8b). In each temperature group, the mean dissolved oxygen 

concentration was higher in the MO subgroup than in the LO subgroup 

(approximately 7  mg L-1 vs 5 mg L-1, respectively, Figure 2.8c). Mean dissolved 

oxygen concentrations were lower in the W group than in the C group, approximately 

4.6 mg L-1 in W vs 7.0 mg L-1 in C (Appendix 2.4). By calculating the gap between 

oxygen demand at the given temperature and salinity (Pcrit) and oxygen supply (pO2) 

in the bottom of the water column, the largest oxygen deficiency was observed in C – 

LO, W – LO, T – LO, in order of severity (Appendix 2.4).  

All spring cruises were characterized as cool (“C”), and most of the data from 

spring cruises belong to C-MO except 2011-Spring-North, where the bottom of the 

water column was severely hypoxic (DO close to 0 mg L-1 and pO2 < Pleth, Table 2.2 

& Figure 2.3). All summer cruises and the 2010-Autumn cruise fell in the W group. 

All data from 2010-Autumn and 2010-Summer-South were grouped into W-MO, 

while data from 2011-Summer and 2010-Summer-North were grouped into W-LO. 

Only the data from the 2011-Autumn cruise belonged to the T group, and the North 

Station was characterized as “T-LO,” whereas data collected at the South Station fell 

into the T-MO group (Table 2.2). According to the biological hypoxia matrix (pO2 < 
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Pcrit, Elliott et al. 2013c) and the PCA results, the comparisons between the oxygen 

deficiency subgroups in the C and T groups were made between normoxic (pO2 > 

Pcrit) and moderate hypoxic (pO2 < Pcrit), while the comparisons between the oxygen 

subgroups in the W group were made between moderate and severe hypoxia (pO2 < 

Pleth) conditions (Appendix 2.4). 

Effects of hypoxia 

Overall, the less-oxygenated subgroups (LO) had fewer crustacean 

zooplankton, fewer planktivorous fish, but more gelatinous zooplankton than the 

more-oxygenated (MO) subgroups  (Figure 2.9 - 2.11). In all temperature groups, A. 

tonsa concentrations were lower in the LO than in the MO subgroups; the lowest 

concentration was found in the T - LO group and highest occurred in the C - MO 

group (Figure 2.9a). In both the C and the T groups, adult A. tonsa concentrations in 

the LO groups were only one-third of the copepod concentrations of the MO groups 

(both p < 0.05, Table 2.3). In the warm group, the bottom water column was hypoxic 

in both oxygen subgroups but differed in severity (pO2 < Pcrit in W - MO and pO2  < 

Pleth in W – LO, Appendix 2.4), and mean A. tonsa concentrations did not differ 

significantly in the W–LO and W– MO subgroups (Table 2.3). Similarly, A. tonsa 

copepodite concentrations were always at least 50% lower in the LO subgroups than 

in the MO subgroups in all temperature groups (Figure 2.3b), and the differences 

between the two oxygenated subgroups were significant in all temperature groups 

(Table 2.3). 
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The concentrations of larval A. mitchilli were also lower in LO subgroups in 

each temperature group (Figure 2.10a). Mean larval A. mitchilli concentrations were 

highest in the C - MO group and lowest in the C - LO and T – LO group. The 

differences in larval concentrations among the oxygenated subgroups were significant 

in the C and T groups (p = 0.0102 and p = 0.0034), but not in the W group (p = 

0.4522)(Table 2.3). The mean densities of juvenile A. mitchilli were highest in the T - 

MO group and lowest in the W - LO group (Figure 2.10b). Although there were more 

juvenile A. mitchilli in the MO subgroup, only the concentrations in the warm group 

showed a significant difference (p=0.0376, Table 2.3).  

 
Unlike the concentrations of copepods and anchovies, there were more 

gelatinous zooplankton in the LO subgroups (Figure 2.11). The highest M. leidyi and 

C. chesapeakei concentrations were found in the W - LO group, while the lowest 

concentrations were observed in the C - LO group (only M. leidyi and no C. 

chesapeakei). The LO groups had significantly more M. leidyi associated with the W 

and T groups (both p < 0.0001, Table 2.3). The patterns were similar for C. 

chesapeakei, although the differences between oxygenated subgroups were not 

significant (Figure 2.11b & Table 2.3).  The difference in concentration between M. 

leidyi and C. chesapeakei for the oxygenated subgroups increased with temperature, 

with the biggest difference found in the W - MO group, in which the concentration of 

M. leidyi was 968 times that of C. chesapeakei (Figure 2.11).  

Copepod non-predatory mortalities were higher under less-oxygenated 

conditions than under more-oxygenated conditions (Figure 2.12). The highest daily 
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non-predatory mortality was found in T - LO and lowest in W - MO (50 % and 2 %, 

respectively). When compared within the same temperature group, nonpredatory 

mortality in each LO group was at least twice that of the nonpredatory mortality in 

the MO group, but only the difference in the warm group was significantly different 

(p=0.008, Table 2.4).  

Discussion 

Hydrographical and biological hypoxia 

In our analysis, the low-dissolved oxygen “dead zone” in the mid-Chesapeake 

Bay was considerably larger, and the hypoxia event duration lasted longer, if a 

biological standard (pO2 < Pcrit) was used instead of the commonly adopted 

hydrographical hypoxia standard (DO < 2 mg L-1). If we solely applied the 

hydrographical threshold in our study, the low oxygen regions would be primarily be 

confined to summertime conditions below the pycnocline. By contrast, using the 

biological hypoxia threshold, the zone of low oxygen that we surveyed was larger, 

especially in summer and, at times was also expressed above the pycnocline (Figure 

2.3).  For example, during the 2011 summer cruise at the South Station, two-thirds of 

the water column was categorized as biologically hypoxic, and more than half of the 

vertical water column had DO below lethal levels for A. tonsa (pO2 < Pleth), indicating 

a highly stressful and even harmful environment to copepods throughout most the 

water column (Figure 2.3). Therefore, in 2011 summer at the South Station, A. tonsa 

lived below 5m would be affected by oxygen deficiency even when the DO was 

above 2 mg L-1. In 2011, the hypoxia threshold (Pcrit) at the South Station was 
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approximately 4 mg L-1 and not 2 mg L-1 if considering A.tonsa’s metabolic needs and 

the ambient temperature and salinity. 

Although DO < 2 mg L-1 is a commonly-adopted standard for studies of 

hypoxia effects in estuaries (Gray et al. 2002), this hydrographical standard does not 

consider that oxygen solubility varies with temperature and salinity (Lange et al. 

1972) and that diverse species have different oxygen deficiency tolerances (Diaz 

2001). Since oxygen solubility decreases as temperature and salinity increase, using 

DO < 2 mg L-1 as a definition of hypoxia likely underestimates the severity of oxygen 

deficiency in warm and saline ecosystems (Roman et al. 2019). Compared with other 

seasonally hypoxic ecosystems, such as the Gulf of Mexico, temperature and salinity 

in the Chesapeake Bay are moderate. However, Chesapeake Bay can be warm and 

saline during summer in its down-estuary region, where hypoxia is often considered 

less severe compared to more the up-estuary portions of the Bay. For example, during 

the 2011 summer cruise, DO concentrations at the South station were similar to those 

measured at the same depth at the North station. But by contrast, a much higher 

percentage of the water column was biologically hypoxic at the South station due to 

high salinity in the deeper water column of the South station (Pierson et al. 2017). 

Under these conditions, the water column of the South station provided a less suitable 

habitat for A. tonsa than that of the North station, even though the DO concentration 

at the North station was similar or higher.  Consequently, habitat degradation due to 

hypoxia in the lower Chesapeake Bay may be underestimated if the fixed 

hydrographical standard (i.e., 2 mg L-1) for defining hypoxia is used. 
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In addition to oxygen supply varying with temperature and salinity, oxygen 

demands also vary among species and life stages. Typically, fast-swimming species 

and younger individuals require more oxygen at the same temperature and salinity 

than do drifting species and older individuals (Ekau et al. 2010). In this study, we 

compared the oxygen supply and demand of adult A. tonsa and concluded that the 

area and duration of biological hypoxia (pO2 < Pcrit) was larger and longer than 

hydrographical hypoxia (DO < 2 mg L-1). In contrast, gelatinous zooplankton are 

known to be more tolerant of hypoxia (Purcell et al. 2001a) than copepods. For 

example Decker et al. (2004) observed A. tonsa’s jumping frequency decreased with 

decreasing dissolved oxygen, while the clearance rate of the gelatinous planktivore 

M. leidiy was little affected by low dissolved oxygen concentrations. The Pcrit of M. 

leidyi, an important gelatinous predator in the mainstem Chesapeake Bay during 

summer, is 7 kPa At 25°C (Purcell et al. 2001a, Thuesen et al. 2005), which is about 

half the Pcrit of A.tonsa at the same temperature (13 kPa, Elliott et al. 2013c). 

Accordingly, the biologically-defined hypoxic regions for M. leidyi would be smaller 

than the hydrographically-defined zone of hypoxia in the Bay. Applying this same 

reasoning, areas where biologically hypoxic conditions occur for large and fast 

swimming species, like striped bass, would be larger than the hydrographically-

determined zone of hypoxia in the Bay. Considering that responses of organisms to 

low-dissolved oxygen are not universal, we recommend that future studies of hypoxia 

impacts on ecosystems should not only focus on dissolved oxygen concentrations but 

should also consider the species-specific effects of temperature and salinity and 

biologically-relevant hypoxic conditions. 
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Seasonal and episodic hypoxia 

Species respond differently to hypoxia at various temporal scales. In a 

permanently hypoxic ecosystem, e.g., in the ocean’s oxygen minimum zone, many 

organisms evolve physiological adaptations and genetic modifications to cope with a 

low-dissolved oxygen environment through enhancing oxygen absorption (i.e., 

increasing hemoglobin O2 affinity and gill surface area) and decreasing oxygen 

demands (i.e., reducing red blood cell ATP concentration) (Wood & Johansen 1972, 

Powers 1980, Gracey et al. 2001, Mandic et al. 2009). Many species in the oxygen 

minimum zone, particularly krill and myctophid fishes, use hypoxic conditions to 

their advantage and take refuge from visually predators during daytime (Gilly et al. 

2013). On the other hand, organisms living in non-permanent hypoxic conditions tend 

to rely on behavioral adaptations or metabolic suppression to cope with temporary 

adverse conditions (Childress & Seibel 1998). Thus, oxygen deficiency acts as a 

stressor rather than a refuge for organisms living in episodic or seasonally hypoxic 

ecosystems, often characterized as coastal dead zones.  

Hypoxia in the Chesapeake Bay is seasonal and especially pronounced in 

summer. The PCA analysis indicated that in 2010 and 2011, water during summer 

was distinguished from water in spring as being warmer, more saline, and having less 

dissolved oxygen in the bottom layers. Although the oxygen deficiency is temporary 

and localized, many studies have found adverse effects of summer bottom hypoxia on 

vertical distributions of organisms (Breitburg 1992, Keister et al. 2000, Purcell et al. 

2014), abundance (Roman et al. 1993), and diversity (Cooper & Brush 1993). 

Previous studies found that copepods show different diel migration patterns under 
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seasonal hypoxia (Pierson et al. 2017) and increased non-predatory mortality in 

summer (Elliott et al. 2013a).  

The PCA results also indicated that water during the 2011 autumn cruise, 

which occurred after Hurricane Irene (August 27, 2011) and Tropical Storm Lee 

(September 7–10, 2011) affected the region, could be distinguished from water 

conditions during our other cruises (Figure 2.7). The water column was cooler, less 

saline, and less oxygenated in September 2011 relative to water samples collected in 

2010 at the same location and season. Significant weather events like hurricanes and 

tropical storms could cause a hypoxia event by introducing large amounts of 

freshwater runoff and organic matter. Palinkas et al. described Hurricane Irene as a 

wind and sediment-resuspension event, while Tropical Storm Lee was a 

hydrographical and sediment-deposition event (Palinkas et al. 2014). Tropical Storm 

Lee brought high streamflow (22,002 m3 s-1) to the Susquehanna River and resulted in 

the second-highest recorded discharge behind Tropical Storm Agnes in 1972 (Hirsch 

2012). As a result, salinities measured during the 2011 autumn cruise were much 

lower than those measured in the previous year. Other studies in estuaries also have 

observed short-term hypoxia after hurricanes (Peierls et al. 2003, Stevens et al. 2006), 

and sometimes the recovery to baseline conditions took months (Mallin et al. 1999). 

Similarly, early-fall hypoxia was soon reestablished after Hurricane Isabel impacted 

the Chesapeake Bay, and the resuspension of nutrients into the upper water column 

led to a large diatom bloom, followed by a dinoflagellate bloom (Roman et al. 

2005b). The effects of episodic hypoxia resulting from storms are less studied. While 

unplanned, we may have observed the effects of Hurricane Irene and Tropical Storm 
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Lee on the Chesapeake Bay ecosystem during the 2011autumn cruise. In this study 

both seasonal and episodic hypoxia were observed, but differences found were 

dictated by snapshots of the two stations during the 3 seasons in 2 years. More 

research, such as higher frequency sampling before and after weather events and 

long-term observation at more stations across different geographic conditions, are 

needed to assess the variability and to understand the differences and similarities of 

seasonal hypoxia and episodic hypoxia on zooplankton composition and foodweb 

interactions. 

Strengths and limitations of the PCA grouping method and our sampling regime 

Because temperature, salinity, and dissolved oxygen varied differently with 

depths, stations, season, and years, a PCA method was adopted to help group data, 

enabling comparison of different hypoxic conditions while temperature and salinity 

were comparatively similar. By only comparing the oxygenated subgroups within the 

same temperature group, we could understand the effects of hypoxia on organisms, 

while isolating effects of temperature. Although we were not able to isolate the 

effects of salinity, all species examined in this study were euryhaline species and are 

native to this partially mixed estuary. For example, Chesapeake Bay organisms occur 

at a wide range of salinities:  A. tonsa < 5 – 38, M. leidyi 3.4 – 33, C. chesapeakei 10 

– 26, and A. mitchilli 0 – 45, in the Chesapeake Bay (Bishop 1972, Miller 1974, 

Robinette 1983, Houde & Zastrow 1991, Purcell et al. 1999, Cervetto et al. 1999). 

The salinity of the sampling region ranged from 8 to 25 (Figure 2.2), which is within 

the range of salinity habitat of the species studied. Although A. tonsa’s oxygen 

demands increase when salinity diverges from its natural habitat and their mortality 
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increases when exposed to salinity changes >10 - 15 (Lance 1965, Farmer & Reeve 

1978, Cervetto et al. 1999), the salinity differences between LOs and MOs in our 

study were small (i.e., 3-5, Figure 2.8). By comparison, the differences in bottom 

dissolved oxygen between LOs and MOs in this study provided either insufficient or 

sufficient oxygen concentrations to support the basic metabolism of A. tonsa 

(Appendix 2.4). The loading of salinity in the PCA analysis was smaller than the 

temperature in PC1 and less than bottom dissolved oxygen in PC2, and thus, 

differences in bottom dissolved oxygen were larger than the differences in salinities 

between the LO and the MO subgroups. Therefore, we reasoned that the moderate 

salinity fluctuations observed in the six cruises would have a smaller influence than 

temperature and bottom dissolved oxygen on zooplankton and planktivorous fish 

concentrations and copepod non-predatory mortality. More research is needed to 

clarify the effects of interactions of salinity and dissolved oxygen on organism 

occurrence and concentration.  

The time sensitive nature of research cruise sampling meant that if we missed 

a sampling opportunity, we may not have been able to do it again. So, when presented 

with mechanical failures we decided to collect the samples in the best possible way, 

even if it was not optimal. Thus, different nets were used at certain times in order to 

not miss a sampling opportunity. Skjodal et al. (2013) suggest that net mesh should 

effectively retain organisms whose smallest dimension is approximately 2/3 of the 

mesh size. In the case of the Tucker Trawl used here, with 280 µm mesh, we expect it 

to retain organisms > 187 µm in size. The MOCNESS mesh size was 200 µm. 

Estimated widths for adult A. tonsa from Chesapeake Bay during May 2010, when 
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the Tucker Trawl was used a substitute for the MOCNESS, was 297 and 279 µm for 

female and male A. tonsa, respectively (Pierson, unpubl.), and Elliott et al. (2013) 

estimated a width of 262 µm for adult A. tonsa from the same region (Elliott et al. 

2013a). These widths are well above the minimum size for capturing A. tonsa adults 

and thus suggest no difference in catchability between the MOCNESS and Tucker 

Trawl, which were both towed in an oblique manner. The Z-trip was used to collect 

zooplankton samples in a vertical manner, and sampled a lower volume of water, but 

as it had the same mesh size as the MOCNESS, and we anticipate similar catchability 

between these nets. Our test of the catchability of larval between the Tucker Trawl 

and the MOCNESS indicated no differences in the sizes of individuals caught, based 

on a permutation t-test of 10,000 simulations of the data, which further gives us 

confidence in our sampling despite the fact that we were compelled to use different 

nets at certain times.  

Copepod’s predators in hypoxia 

A. tonsa’s predators responded differently toward hypoxia in our study: more 

M. leidyi and C. chesapeakei but fewer A. mitchilli under hypoxic conditions. The 

reasons of fewer larval and juvenile A. mitchilli were observed under hypoxic 

conditions could be decreasing habitat, reducing growth rates, and increasing 

mortality at young stages, which could also result in declining species diversity 

(Breitburg et al. 2001, Eby et al. 2005, Pollock et al. 2007). An individual-based 

model developed for Chesapeake Bay indicated that the mortality rate of A. mitchilli 

larvae would increase, as would spatial overlaps among A. mitchilli and its predators 

when bottom waters were hypoxic (Breitburg et al. 2001, Adamack et al. 2012). On 
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the contrary, more gelatinous zooplankton were found under hypoxic conditions, and 

overall larger ctenophore populations than those of C. chesapeakei. Long-term 

decreases in C. chesapeakei have been observed in the Chesapeake Bay mainstem 

region, leading to reduced predation impact upon M. leidyi and a corresponding 

increase in the M. leidyi population in the mainstem region (Purcell & Decker 2005, 

Kimmel et al. 2012). Hypoxia could contribute to the population decline in C. 

chesapeakei observed in the Chesapeake Bay, because ctenophores are known to be 

better oxyregulators than medusae (Thuesen et al. 2005), and M. leidyi’s life cycle 

does not have a benthic stage like C. chesapeakei, whose polyp stage has been shown 

to be vulnerable to hypoxia when held at 0.5 mg L-1 for more than 5 days (Condon et 

al. 2001). Other potential contributing factors to the population shift include 

decreased availability of benthic habitat (i.e., oyster shell) for C. chesapeaki’s polyps 

due to declining oyster populations (Grove & Breitburg 2005, Breitburg & Fulford 

2006).  Additionally, the declining oyster population is hypothesized to exacerbate 

the effects of anthropogenic nutrient enrichment on phytoplankton production 

(Newell 1988). Resulting eutrophication, in addition to favoring increased hypoxia, 

may favor microzooplankton and filter feeders like M. leidyi (McNamara et al. 2014). 

Furthermore, warmer and shorter winters, in the long-term, could strengthen 

stratification and increase the severity and duration of summer hypoxia, while also 

increasing M. leidyi’s over-winter survival rate and contributing to its reproductive 

capacity in earlier and warmer springs (Sullivan et al. 2001, Oviatt 2004). Although 

M. leidyi has received less attention from the general public relative to the more 

noticeable, stinging C. chesapeakei, the shift in population sizes of these two 
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gelatinous species is important because M. leidyi is able to prey more heavily on 

copepods than is C. chesapeakei of the same size. Thus, M. leidyi’s impact on the 

plankton foodweb is expected to increase with its growing population (Purcell et al. 

2001b, Purcell & Decker 2005). The impact of eutrophication-induced hypoxia on an 

ecosystem can be systemic, ranging from species to habitat to food web structure. 

Such an ecosystem is less resilient and is usually dominated by pelagic algae, 

microbial loops, smaller zooplankton, filter feeders, and smaller fish (McClelland & 

Valiela 1998, Wu 2002, Breitburg 2002, Kemp et al. 2005, Uye 2011, Kimmel et al. 

2012). More research is still needed to understand the interaction of hypoxia and 

predator-prey interaction in the field. 

Conclusion 

Crustacean zooplankton (A.tonsa) and planktivorous fish (larval and juvenile 

A. mitchilli) concentrations tended to be lower under hypoxia, while gelatinous 

zooplankton populations (both M. leidyi and C. chesapeakei) increased under the 

same conditions. These population trends relative to hypoxia were consistent among 

different temperature conditions and were pronounced relative to the influence of 

seasonality. Neutral red staining indicated high non-predatory copepod mortality 

under hypoxic conditions and implied a direct linkage between low dissolved oxygen 

and reduced copepod abundances. These findings confirm the role of hypoxia as a 

source of direct mortality for copepods in the Chesapeake Bay, and hypoxia directly 

associates with more gelatinous zooplankton population and less planktivorous fish in 
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addition to seasonality, implying potential predator-prey dynamic changes in this 

system. 
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Tables and figures 

Table 2.1. Eigenvalue (a) and eigenvectors (b) of the principal component analysis of 
temperature, salinity, and dissolved oxygen (DO) of water sampled by CTD from 
above, at, and below pycnocline at both the North and South Stations. 

 
(a) 

 Eigenvalue Difference Proportion Cumulative 
1 5.01 2.68 0.56 0.56 
2 2.33 1.68 0.26 0.82 
3 0.66 0.16 0.07 0.89 
4 0.50 0.21 0.06 0.95 
5 0.30 0.21 0.03 0.98 
6 0.08 0.04 0.01 0.99 
7 0.05 0.01 0.01 0.99 
8 0.04 0.02 0.00 1.00 
9 - 0.02 0.00 1.00 

            
(b) 

 Principal Component 1 Principal Component 2 
DO above pycnocline 0.35 0.20 
DO at pycnocline 0.27 0.33 
DO below pycnocline 0.14 0.51 
Temp. above pycnocline - 0.38 - 0.26 
Temp.  at pycnocline - 0.39 - 0.12 
Temp.  below pycnocline - 0.42 - 0.06 
Salinity above pycnocline - 0.33 0.41 
Salinity at pycnocline - 0.33 0.39 
Salinity below pycnocline - 0.30 0.45 
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Table 2.2. Grouping cruises,Year-Season (Station), according to the PCA grouping 
results. All cruises were designated for three temperature groups according to their 
PC1 scores (C = Cool, T = Temperate, W = Warm), and each group was divided into 
two subgroups according to their PC2 scores (LO = Less-oxygenated, MO = More-
oxygenated). Underlined text indicates the averaged bottom DO < 2 mg L-1, bold text 
indicates bottom pO2 < Pcrit, and italic text indicates pO2 < Pleth. 

 
 

 LO MO 

C 2011-Spring (N) 2010-Spring (N, S), 2011-Spring (S) 

T 2011- Autumn (N) 2011-Autumn (S) 

W 2011-Summer (N, S),  

2010-Summer (N) 

2010- Autumn (N, S),  

2010-Summer (S) 
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Table 2.3. The Kruskal-Wallis test on differences in concentrations of zooplankton 
and fish between the more-oxygenated (MO) and less-oxygenated (LO) subgroups 
within the cool (C), temp (T), and warm (W) groups. 

 
Zooplankton and fish concentration 
Species Stage Group Sample 

size 
d.f. chi-

square 
p-value 

Acartia tonsa adult C 103 1 15.1180 0.0001 
  T 36 1 9.8108 0.0017 
  W 127 1 1.6625 0.1973 
       
Acartia tonsa copepodite C 107 1 8.5712 0.0034 
  T 36 1 8.8460 0.0029 
  W 127 1 25.785 <0.0001 
       
Anchoa mitchilli larval C 60 1 6.5997 0.0102 
  T 24 1 8.5792 0.0034 
  W 58 1 0.5652 0.4522 
       
 juvenile C* - - - - 
  T 24 1 0.1883 0.6643 
  W 58 1 4.3211 0.0376 
       
Mnemiopsis leidyi adult C 119 1 2.6121 0.1061 
  T 48 1 35.225 < 0.0001 
  W 116 1 17.545 < 0.0001 
       
Chrysaora 
chesapeakei 

medusa C 0 - - - 

  T 48 1 1 0.3171 
  W 116 1 2.0241 0.1548 

 

*Mid-water trawls were not conducted during the spring cruises, and thus, juvenile A. 
mitchilli were not sampled in the Cool group.  
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Table 2.4. The Kruskal-Wallis test on differences in Acartia tonsa’s non-predatory 
mortality between the more-oxygenated and less-oxygenated subgroups within the 
cool, temperate, and warm groups. 

 

A. tonsa’s non-predatory mortalities 

Group Sample size d.f. chi-square p-value 

Cool 5 1 0.3333 0.5637 

Temperate 6 1 2.3333 0.1266 

Warm 18 1 6.9286 0.008 
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Figure 2.1. The study area of the Dead Zone Zooplankton research project. The 
square indicates the North Station (38.528° N, 76.418° W) and the circle indicates the 
South Station (37.738° N, 76.208° W), and the grey contouring indicates the water 
depth of Chesapeake Bay. 
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Figure 2.2. Average temperature (°C, red) and salinity (blue) from the CTD casts taken at North (closed) and South (open) 
stations during 2010 and 2011 cruises. Symbols represent mean values in 0.5-m bins from all CTD measurements at each 
depth, and horizontal lines indicated standard deviations. Modified from (Pierson et al. 2017). 
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Figure 2.3. Average dissolved oxygen (diamonds, mg L-1) from the CTD casts taken at North (closed) and South (open) 
stations during 2010 and 2011 cruises. Symbols represent mean values in 0.5 m bins from all CTD measurements at each 
depth, and horizontal lines indicated standard deviations. Color fillings represent partial pressure: above Pcrit (green), 
between Pcrit and Pleth (orange), and below Pleth (red). Dashed black lines indicated dissolved oxygen = 2 mg L-1. Modified 
from (Pierson et al. 2017). 
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Figure 2.4. Concentrations of the copepod Acartia tonsa adults (a) and copepodites 
(b) collected at North (red) and South (green) station during the six research cruises 
from May, August/ July, September in 2010 and 2011. Bubble sizes indicate 
population sizes (ind. m-3). 

(a) 

 

(b) 
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Figure 2.5. Concentrations of planktivorous fish, bay anchovy (Anchoa mitchilli) 
larvae (a) and juveniles (b) collected at North (red) and South (green) station during 
the six research cruises from May, August/July, September in 2010 and 2011. Bubble 
sizes indicate population sizes (ind. m-3). 

 
(a) 

 
(b) 
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Figure 2.6.  Concentrations of gelatinous zooplankton; comb jelly (Mnemiopsis leidyi, 
a) and bay nettle (Chrysaora chesapeakei, b) collected at North (red) and South 
(green) station during the six research cruises from May, August/July, September in 
2010 and 2011. Bubble sizes indicate population sizes (ind. m-3). 

 
(a) 

 
(b) 
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Figure 2.7.  Principal component analysis of average temperature, salinity, and dissolved oxygen of the water above, at, and below 
pycnocline from each CTD cast at the North and South stations.  
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Figure 2.8. Temperature (a), salinity (b), and dissolved oxygen (c) from above, at, and below the pycnocline in the Cool, Temperate, 
and Warm groups. Circles with dots indicate medians, bars indicate 25 to 75 percentiles, lines indicate 5 to 95 percentile, and open 
circles indicate outliners. 

 
(a)           (b)         (c) 

 



 

 59 

Figure 2.9. Comparison of copepod (Acartia tonsa) (a) adults and (b) copepodite 
concentrations between More-oxygenated (open bar) and Less-oxygenated (closed 
bar) subgroups within temperature groups (Cool, Temperate, Warm). Error bars 
indicate standard deviations and * indicates a significant difference in a Kruskal-
Wallis test at α = 0.05 

 
(a) 
 

 
 
(b) 
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Figure 2.10. Comparison of (a) larval and (b) juvenile bay anchovy (Anchoa mitchilli) 
concentrations between More-oxygenated (open bar) and Less-oxygenated (closed 
bar) subgroups within temperature groups (Cool, Temp, Warm). Numbers indicate 
average concentrations, error bars indicate standard deviations, and * indicates 
significant difference in a Kruskal-Wallis test at α = 0.05. 
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Figure 2.11. Comparison of (a) ctenophore (Mnemiopsis leidyi) and (b) bay nettle 
(Chrysaora chesapeakei) concentrations between More-oxygenated (open bar) and 
Less-oxygenated (closed bar) subgroups within temperature groups (Cool, Temperate, 
Warm). Numbers indicate average concentrations, error bars indicate standard 
deviations, and * indicates significant differences in a Kruskal-Wallis test at α = 0.05 
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Figure 2.12. The average daily non-predatory mortality (% d-1) of the copepod 
Acartia tonsa between More-oxygenated (M) and Less-oxygenated (L) subgroups 
within temperature groups (Cool, Temp, Warm). Error bars indicate standard 
deviations, and * indicates a significant difference in a Kruskal–Wallis test at α = 
0.05 
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Appendices 

Appendix 2.1. The numbers of CTD casts deployed during each cruise. 

 
Cruise 2010 2011 

Season   
Spring 77 88 
Summer 88 69 
Autumn 64 66 

Total Casts 229 223 
  452 
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Appendix 2.2. The numbers of MOCNESS net tows, Tucker Trawls, and mid-water 
trawls conducted during each cruise. 

 
 
Cruise MOCNESS Tucker Trawls Mid-water trawls 
2010    

Spring 11 18 0 
Summer 11 11 11 
Autumn 6 6 6 

2011    
Spring 8 12 0 
Summer 12 12 12 
Autumn 12 12 12 

Total 60 71 41 
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Appendix 2.3. Mean concentrations (± S.D.) (ind. m-3) of copepods (Acartia tonsa), bay anchovies (Anchoa mitchilli), 
ctenophore (Mnemiopsis leidyi), and bay nettles (Chrysaora chesapeakei) collected from the North and South Stations 
during the 2010 (a) and 2011(b) cruises 

(a) 
Species 
/Stage 

A. tonsa 
(Adult female and male) 

A. tonsa  
(Copepodite) 

A. mitchilli 
(Larval) 

A. mitchilli 
(Juvenile) 

M. leidyi 
(Adult) 

C. chesapeakei 
(Medusa) 

Nets MOCNESS MOCNESS MOCNESS Mid-water Trawl Tucker Trawl Tucker Trawl 
Station       
North May 16232.39 ± 10908.58 12656.34 ± 8514.45 11.46 ± 12.64 - c - 0.0027 ± 0.0046 0 0 

Aug 4077.83 ± 4882.37 981.92 ± 1011.33 0.59 ± 0.94 1.124 ± 2.874 1.0951 ± 1.3414 0.0019 ± 0.0035 
Sep 5592.79a ± 5802.39 6244.62 a ± 6126.24 - a - - a - - a - - a - 

South May 7887.59b ± 4587.74 839.89 b ± 1004.78 5.48b 7.6 - c - 0.0007 ± 0.0035 0 0 
Aug 6225.92 ± 7010.20 3231.59 ± 2624.41 2.95 ± 4.60 0.269 0.505 1.8699 ± 1.9468 0.0014 ± 0.0039 
Sep 7028.05 ± 7896.31 2595.67 ± 3111.16 0.12 ± 0.17 0.501 0.624 0.0671 ± 0.0670 0 0 

 
(b) 

Species 
/Stage 

A. tonsa 
(Adult female and male) 

A. tonsa  
(Copepodite) 

A. mitchilli 
(Larval) 

A. mitchilli 
(Juvenile) 

M. leidyi 
(Adult) 

C. chesapeakei 
(Medusa) 

Nets MOCNESS MOCNESS MOCNESS Mid-water Trawl Tucker Trawl Tucker Trawl 
Station       
North May 4426.36 ± 4682.72 1605.72 ± 2056.29 0.03 ± 0.04 - c -  0.0002 ± 0.0012 0 0 

Jul 9818.09 ± 8922.12 2000.93 ± 1977.54 1.42 ± 2.39 0.016 ± 0.023 5.3006 ± 6.4913 0.0041 ± 0.0203 
Sep 1978.11 ± 2090.38 1139.02 ± 1356.40 0.03 ± 0.04 0.973 ± 1.521 0.6708 ± 0.9117 0.0101 ± 0.0493 

South May 2521.99 ± 2068.83 670.82 ± 556.18 4.45 ± 0.86 - c -  0.0008 ± 0.0021 0 0 
Jul 4949.34 ± 7132.56 1572.82 ± 2481.06 0.19 ± 0.28 0.001 ± 0.002 34.6636 ± 33.5756 0.0988 ± 0.2581 
Sep 6258.11 ± 6235.51 4734.49 ± 5222.70 0.30 ± 0.31 1.138 ± 1.569 0 0 0 0 

Note:   
a. Due to issues with the ship’s hydraulic winch in September 2010, A.tonsa concentrations at North Station were collected by Z-trap (Barba 2015), and anchovies 
and jellyfish were not collected. 
b. A. tonsa and larval A. mitchilli concentrations were collected by Tucker Trawl at South Station in May 2010 due to mechanical issues with the MOCNESS 
c. no Mid-water trawls were conducted during the May cruises.
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Appendix 2.4. Mean (± S.D.) temperature, salinity, partial pressure of dissolved oxygen (pO2) in three water layers (Surf. = 
above the pycnocline, Pyc. = within the pycnocline, Bot. = below the pycnocline), and the corresponding critical partial 
oxygen pressure (Pcrit) and lethal oxygen partial pressure (Pleth) in each temperature (C = Cool, T = Temperate, and W = 
Warm) and dissolved oxygen subgroups (LO = less oxygenated, MO = more oxygenated). Sample sizes indicate the total 
numbers of CTD casts in each group. Bold pO2 values indicate pO2 < Pcrit (Biological hypoxia), and bold and italic values 
indicate pO2 < Pleth. 

 
 
Group 

 
Sample Size Layer Temperature Salinity pO2 Pcrit Pleth 

  LO MO  LO MO LO MO LO MO LO MO LO MO 
C  28 

 
87 
 

Surf. 22.69 ± 0.53 21.19 ± 1.10 5.86 ± 0.40 11.56 ± 2.30 23.48 ± 2.32 26.79 ± 2.95 8.13 8.77 3.22 3.44 

  Pyc. 19.95 ± 1.81 20.39 ± 1.55 8.06 ± 2.22 13.57 ± 2.92 13.80 ± 5.39 21.87 ± 5.06 8.26 8.74 3.26 3.43 

  Bot. 17.18 ± 0.50 18.51 ± 0.75 12.76 ± 1.14 17.44 ± 1.75 1.48 ± 1.36 11.79 ± 4.33 7.88 8.27 3.13 3.27 

                     
T  23 26 Surf. 22.64 ± 0.23 22.94 ± 0.07 8.22 ± 1.12 11.22 ± 1.36 17.39 ± 3.93 17.14 ± 3.60 8.55 9.12 3.36 3.56 

  Pyc. 23.14 ± 0.49 22.91 ± 0.07 11.06 ± 1.92 14.30 ± 1.52 16.92 ± 5.65 17.33 ± 4.17 9.13 9.62 3.57 3.74 

  Bot. 23.61 ± 0.22 22.90 ± 0.06 13.61 ± 0.93 16.42 ± 0.79 7.36 ± 1.68 16.37 ± 1.36 9.73 9.95 3.78 3.85 

                     
W  87 86 Surf. 26.12 ± 1.44 26.27 ± 1.80 14.35 ± 2.27 17.50 ± 2.16 15.34 ± 2.82 19.18 ± 2.41 10.81 11.82 4.15 4.50 

  Pyc. 24.87 ± 0.89 25.95 ± 1.62 15.99 ± 1.51 19.05 ± 1.94 11.82 ± 4.59 15.68 ± 3.74 10.72 12.09 4.12 4.60 

  Bot. 24.39 ± 0.60 25.69 ± 1.34 17.85 ± 0.93 20.85 ± 1.53 4.06 ± 4.34 8.34 ± 5.61 10.91 12.41 4.19 4.71 
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Chapter Three. Hypoxia increases ctenophore and fish predation 

on copepods: a case study in the Chesapeake Bay 

Abstract 

The indirect impact of hypoxia on trophic interactions, particularly predator-

prey relationships among crustacean zooplankton, gelatinous zooplankton, and 

planktivorous fish, was investigated in the Chesapeake Bay. Population data and gut 

content samples were collected with net tows at two stations in the mainstem of 

Chesapeake Bay during six research cruises from May to September in 2010 and 

2011. Gut contents of the ctenophore (Mnemiopsis leidyi) and the larval and juvenile 

stages of bay anchovy (Anchoa mitchilli) were analyzed to estimate and compare their 

predation on the copepod Acartia tonsa under various dissolved oxygen conditions. 

The predatory impact was greater under hypoxia than under normoxic conditions. The 

importance of predatory mortality increased, and the primary predator shifted, with 

increasing severity of bottom-water hypoxia. Juvenile A. mitchilli contributed most to 

predatory mortality on A.tonsa  under normoxic and mildly hypoxic conditions, but 

M. leidyi became the predominant predator under the warmest and most severely 

hypoxic conditions, suggesting that consumption by specific predators is also was 

regulated by the hypoxia tolerance of the interacting species and not only predator 

seasonality. Two methods were applied to estimate predatory impact by M. leidyi on 

A. tonsa: 1) using gut contents and 2) applying an empirical relationship with tentacle 

bulb size. Results were generally similar except that estimated predation from tentacle 
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bulb size was larger than estimates from gut contents under the warmest and most 

hypoxic conditions. It was concluded that the total mortality of A. tonsa was higher 

under hypoxic conditions and the relative importance of predation increased with 

temperature (season) and hypoxia severity. 

Introduction 

A changing food web under eutrophication and hypoxia 

While global warming is one of the major reasons for expanding oxygen 

minimum zones in the open ocean (Deutsch et al. 2015), nutrient enrichment from 

sewage discharges and agriculture runoff followed by algae blooms are directly 

associated with coastal hypoxia (reviewed in Breitburg et al., 2018). The excessive 

anthropogenic nutrients favor fast-growing phytoplankton species, shifting the 

primary producer community from perennial macroalgae and seagrasses to ephemeral 

macroalgae and pelagic microalgae (Borum 1996). This phenomenon was observed in 

the Chesapeake Bay, where seagrass decreased and the surface chlorophyll-a 

concentration has at least doubled from 1950s to 1980s (Kemp et al. 2005, Harding et 

al. 2019).  However the enhanced spring bloom was shown to be decoupled from one 

of its principal grazers, the copepod Acartia tonsa, because the copepod’s growth rate 

was limited by temperature (Heinle 1966), and so the unconsumed phytoplankton 

sank to the bottom. This depleted the bottom oxygen during its decomposition and 

fueled summer hypoxia.  

During the seasonal hypoxia, mixotrophic phytoflagellates and dinoflagellates 

are often favored in the plankton community and microbial loops are enhanced (Baird 
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et al., 2004; Capriulo et al., 2002; Stoecker et al., 2017), altering the food web 

structure and favoring a smaller, zooplankton-dominated community that favors 

smaller planktivorous and filter-feeding consumers and, moreover, one in which 

production is directed toward microbial loops and gelatinous zooplankton more than 

finfish (Glibert & Burkholder, 2006; Glibert, 2010; Justić et al., 1995; Roman et al., 

2019). For example, lab experiments found larval naked gobies (Gobiosoma bosc) are 

preyed upon more by bay nettles (Chrysaora chesapeakei) and less by juvenile 

striped bass (Morone saxatilis) in environments with low DO, leading to less energy 

flow to the economically valuable striped bass (Breitburg et al., 1997). When 

populations of the filter-feeding ctenophore Mnemiopsis leidyi increase in an 

eutrophic and microzooplankton-dominant ecosystem, there is a positive feedback of 

the M. leidyi bloom to the microzooplankton population through rich nitrogen 

excretion by the ctenophores (Purcell et al. 2001b, McNamara et al. 2013a b, 2014). 

Gelatinous zooplankton, as filter feeders and drifters with comparatively higher 

hypoxia-tolerance (reviewed in Ekau et al., 2010), have been hypothesized to exhibit 

increased population abundance in eutrophic and hypoxic areas (Parsons & Lalli 

2002). Gelatinous zooplankton outbreaks also have been associated with fish stock 

declines resulting from hypothesized enhanced predation or competition (Lynam et 

al. 2005, 2006, Uye 2008, Dong et al. 2010, Robinson et al. 2014). Fishery scientists 

are increasingly urged to include gelatinous zooplankton in routine fishery surveys to 

enable a comprehensive understanding of food web dynamics and the effects of 

predation and competition (Brodeur et al., 2016). 
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Besides potentially increasing predation and competition, coastal hypoxia also 

affects fish population by decreasing habitat, reducing growth rates, and increasing 

mortality at young stages, resulting in declines of both the abundance and species 

diversity (Breitburg et al. 2001, Eby et al. 2005, Pollock et al. 2007).  For example, 

the optimal habitat of striped bass Morone saxatilis in the Chesapeake Bay has 

shrunken during summer as the bottom waters have become hypoxic and the surface 

has become warmer (Coutant 1985, Coutant & Benson 1990). An individual-based 

model developed for Chesapeake Bay indicated that the mortality rate of A. mitchilli 

larvae would increase, as would spatial overlaps among A. mitchilli and its predators 

when bottom waters were hypoxic (Breitburg et al. 2001, Adamack et al. 2012). The 

impact of eutrophication-induced hypoxia on an ecosystem can be systemic, ranging 

from species to habitat to food web structure. Such an ecosystem is less resilient and 

is usually dominated by pelagic algae, microbial loops, smaller zooplankton, filter 

feeders, and smaller fish (McClelland & Valiela 1998, Wu 2002, Breitburg 2002, 

Kemp et al. 2005, Uye 2011, Kimmel et al. 2012). 

The zooplankton food web in Chesapeake Bay  

As the most abundant crustacean zooplankton in Chesapeake Bay, the 

copepod Acartia tonsa is the primary prey for many other planktivorous species, 

including fish and gelatinous zooplankton (Klebasko, 1991; Purcell & Decker, 2005).  

A major planktivorous fish in the Chesapeake Bay is Chesapeake Bay anchovy 

(Anchoa mitchilli). As an obligate planktivore in all of its life stages, A. mitchilli is a 

major consumer of mesozooplankton during summer and fall. The populations of 

larval and juvenile A. mitchilli are capable of consuming a substantial amount of 
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zooplankton.  In turn, A. mitchilli is preyed upon by many piscivorous fishes, for 

example bluefish (Pomatomus saltatrix), weakfish (Cynoscion regalis), and striped 

bass (Morone saxatilis). Consumption by piscivorous fishes has been shown to be 

very high and at least 50% of the A. mitchilli annual production went to predation 

(Baird & Ulanowicz 1989, Jung & Houde 2004). Because of its significant roles as 

both a predator and prey, A. mitchilli is a key species for transferring production to 

higher trophic levels in the Chesapeake Bay and other estuaries (Baird & Ulanowicz 

1989). 

Another class of major predators on A. tonsa in Chesapeake Bay is gelatinous 

zooplankton (Breitburg & Burrell, 2014; Purcell, 1992). During summer the most 

commonly seen gelatinous zooplankton in the Chesapeake Bay are C. chesapeakei 

and M. leidyi, and C. chesapeakei also preys on M. leidyi. While both gelatinous 

zooplankton have high clearance rate on copepods ( > 70.3 L m-3 d-1, estimated by 

multiplying individual clearance rate and predator concentration), M. leidyi has an 

especially large effect by consuming more copepods than C. chesapeakei does at 

equivalent sizes or weights (Purcell & Decker, 2005). As result, a field study in 

Chesapeake Bay indicated the average total clearance of copepods was three times 

higher in the years when C. chesapeakei were fewer and M. leidyi was more 

pronounced than in the years that M. leidyi were checked by C. chesapeakei predation 

(Purcell & Decker, 2005). Field observations in Chesapeake Bay indicated when M. 

leidyi biovolumes were greater than 10-20 mL m-3, they can hold the summer 

copepod population in check (Sellner & Sellner 2016). Considering C. chesapeakei 

abundance has been low in recent decades (Breitburg & Fulford, 2006; Kimmel et al. 
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2012), the importance of M. leidyi as a copepod predator has been increasing. By 

consuming more A. tonsa than C. chesapeakei, M. leidyi could be an important 

competitor of A. mitchilli for copepods (Purcell et al., 2001). 

In addition to the direct predator-prey food chain among copepods, fish, and 

gelatinous zooplankton, there is also a predation relationship between jellyfish and 

fish in Chesapeake Bay. M. leidyi has the potential to consume 10 to 65% of fish eggs 

d-1 and 20 to 40% d-1 fish larvae d-1 (Monteleone & Duguay 1988, Cowan & Houde 

1992, 1993). There is also intraguild predation between C. chesapeakei and M. lediyi; 

C. chesapeakei is the major predator of M. leidyi in the Chesapeake Bay and can 

reduce M. leidyi abundance when the concentration of C. chesapeakei is higher than 

0.05 m-3 (Breitburg & Burrell, 2014). The predation pressure is strong enough to 

eradicate M. leidyi in small tributaries (clearance rates up to 6180 L d-1 in 

mesocosms), but not in the mainstem of Chesapeake Bay (McNamara, 1955; Purcell 

& Cowan Jr, 1995). Due to the differences in life cycles, habitat preference, and their 

predation relationships, C. chesapeakei is often abundant in shallow tributaries with 

available hard substrate for the polyp stage and where salinity is 7-20, while the 

euryhaline holoplanktonic M. leidyi is more abundant in the mainstem of Chesapeake 

Bay, where salinity ranges from 0.1-25.6 (Cargo & Schultz 1967). An in situ polyp 

settlement study, which distributed settlement plates in the upper and middle of 

Chesapeake Bay where salinity was 5-35, have observed C. chesapeakei polyps 

mostly in the estuaries of the northern Bay with (Shahrestani & Bi 2018), and another 

field reach also found C. chesapeakei’s medusa concentrations were seven times 

higher in creeks than in the mainstem Bay (18.6 and 2.4 medusae m-3, respectively, 
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Breitburg & Burrell, 2014). In contrast, M. leidyi is much more abundant in the 

mainstream region (i.e., ~300 indv. m-3 in June 1990, Breitburg & Burrell, 2014). My 

research focused on M. leidyi because the study region was in the mainstem Bay 

where the abundance of M. leidyi exceeded C. chesapeakei during research cruises 

(Slater et al. 2020) 

Predation under hypoxia 

Living in an oxygen-insufficient environment may induce stress responses and 

lead to behavior changes, which may in turn cause changes in predator-prey 

interactions. For example, many copepods exhibit diel vertical migration (DVM) to 

save energy and avoid visual predators during daytime (Lampert 1989, Cohen & 

Forward 2009), but low dissolved oxygen in the bottom water column can disrupt this 

behavior by shortening the DVM depth (Pierson et al., 2009; Pierson et al., 2017; 

Roman et al., 1993; Keister & Tuttle 2013). Decreasing excursion distance potentially 

may increase the vertical spatial overlap between copepods and their predators and 

increase predator-prey encounter rates and predatory mortality (Keister et al. 2000, 

Breitburg et al. 2003). As a result, some predators may benefit from the hypoxic 

environment, as it becomes easier for them to exploit prey species. Also, A. tonsa’s 

swimming speed and jumping frequency were shown to decrease under low DO, 

suggesting that the copepods may become more vulnerable to hypoxia-tolerant 

predators such as M. leidyi and C. chesapeakei, whose clearance rates on copepods 

were maintained under hypoxic conditions (Decker et al. 2004, Kolesar et al. 2010). 

Since both the vertical distributions and the trophic interactions vary with oxygen 
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levels, hypoxia-sensitive species may be more vulnerable to hypoxia-tolerant 

predators.  

To better understand the indirect effects of hypoxia on zooplankton, this 

chapter focuses on the trophic interactions among gelatinous zooplankton M. leidyi, 

crustacean zooplankton A. tonsa, and planktivorous fish A. mitchilli. The objectives 

of this study are to: 1) analyze the distributions and concentrations of M. leidyi and A. 

mitchilli under hypoxic and normoxic conditions, 2) estimate mortality of the A. tonsa 

from predation by M. leidyi and A. mitchilli and the potential increase in mortality 

under hypoxic conditions, 3) compare A. tonsa’s predatory mortalities with 

nonpredatory mortality, and 4) understand how the A. tonsa’s mortality (non-

predatory and predatory) is influenced by temperature and dissolved oxygen 

concentrations. 

Methods 

Six research cruises were conducted in May, July/ August, and September in 

2010 and 2011 (Cruise details in Pierson et al. 2017), and during each cruise 

zooplankton, jellyfish, and fish were collected at the two stations (North and South) 

in the main stem of Chesapeake Bay. Hourly CTD casts were conducted at each 

station to collect temperature, salinity, and dissolved oxygen, and these data were 

later used in a PCA analysis. Briefly, samples were grouped by cruise and stations 

first according to their PC1 scores, for which the major loading was water 

temperature, and then each temperature group was divided into two subgroups 

according to their PC2 scores, for which the major loading was bottom dissolved 
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oxygen. Accordingly, all samples were grouped into three temperature groups (Cool, 

Temperate, and Warm) and two oxygenated subgroups (More or Less oxygenated) 

(Slater et al. 2020). Zooplankton concentrations, copepod nonpredatory (Slater et al. 

2020), and predatory impact on copepods were compared within the same 

temperature group to isolate the effects of temperature. 

Gut content analysis 

A total of 240, 1138, and 145 gut content samples were collected from 

ctenophores M. leidyi, and larval and juvenile anchovy, A. mitchilli, respectively, 

during the six research cruises (Appendix 3.1). Gut samples were collected in a Reeve 

net, a MOCNESS, a Tucker Trawl, and a midwater trawl to evaluate ctenophore 

predation and planktivorous predation on copepods. To estimate ctenophore 

predation, M. leidyi were collected for gut content analysis with vertical tows (above, 

within, below pycnoclines) at dawn, noon, sunset, and midnight with a modified 

Reeve net (Reeve 1981). The net had a 1m–diameter mouth fitted with a 3m–long 

tapered, 5 mm mesh net, a belly band to close the net at depth and a 50 L non–

filtering rigid cod–end (Sea Gear model 9000-BB). This design allowed us to collect 

fragile gelatinous zooplankton without damaging them as traditional zooplankton 

sampling methods would. During each sampling interval, up to ten individual 

ctenophore samples were collected (when possible) from the cod end of the Reeve 

net. Collected ctenophores were preserved individually in 220 ml jars with a 4% 

buffered formaldehyde and seawater solution, and ctenophore’s gut contents were 

examined later in the lab with dissecting microscopes. The tentacle bulbs (B, mm) of 

each ctenophore were measured to estimate its wet weight (WW, g) using a 
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regression relationship (Equation 3.4, Purcell, 1988). Prey items were categorized as 

the copepod A. tonsa adults and copepodites, other copepods and copepodites, 

copepod nauplii, ciliates, barnacle nauplii, fish eggs, and others.  

To estimate predation from planktivorous fish, A. mitchilli larvae and 

juveniles were collected from MOCNESS (200 µm) and midwater trawls, 

respectively, and preserved with 95% ethanol during the cruises. Gut contents of A. 

mitchilli larvae and juveniles were removed from the plankton samples in the lab and 

subsamples were analyzed with methods described in Auth (2003). Gut contents from 

up to five anchovies from each water layer were analyzed if sufficient numbers were 

present in the sample. All A. mitchilli larvae and juveniles used for gut content 

analyses were measured to the nearest 0.1 mm total length prior to dissection. The 

entire gut was removed from the body of a larva or juvenile with a fine-tipped wire 

probe, and the gut contents examined under 20X magnification. All prey items were 

enumerated, identified, and then preserved in 95% ethanol.  Tucker Trawl (280 µm) 

was use on 2010 spring to collect larval A. mitchilli ‘s gut content due to mechanical 

issues. 

Estimating predatory mortality 

The gut contents were examined in the lab to estimate the in situ predatory 

mortality rates of A. tonsa adults and copepodites with methods described in Granhag, 

Moller, & Hansson (2011). Ingestion rates (I, prey predator-1 time-1, Equation 3.1) 

were estimated using the number of adult copepods and copepodites (G) in 

ctenophore or anchovy guts divided by the gut evacuation time (t). The gut 

evacuation time was estimated using empirical relationships and mean temperature 
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for specific groups of samples. Lab and field studies estimated it took 1h at 20°C or < 

0.5h under 27°C for an adult M. leidyi to digest fewer than 10 adult A. tonsa (Granhag 

et al., 2011; Larson, 1987), accordingly a linear relationship between temperature and 

digestion time was approximated to estimate the M. leidyi digestion time (Equation 

3.2). The temperature-dependent digestion time for A. mitchilli was estimated by 

applying (Equation 3.3, Vazquez 1989). Because ctenophores have fast digestion 

times, especially in a warm environment, the percentage of empty guts collected was 

high in the summer cruises and the resulting predatory mortality may be 

underestimated. Therefore, clearance rate (CR, liters cleared ctenophore-1 day-1 ) was 

also estimated from the estimated wet weight (WW) determined from measurements 

of ctenophore tentacle bulbs (B) (Equation 3.4 & 3.5; Purcell, 1988; Purcell, 2009). 

The product of clearance rates and prey concentration is ingestion rate, and the 

potential predatory impact could be estimated and compared with the estimates based 

on gut contents.  Predatory mortality of copepods (Mp, % copepod standing stock 

consumed day-1) was estimated by multiplying the ingestion rate of a given predator 

with abundance (P) of that predator and dividing by copepod abundance (C) 

(Equation 3.6). Copepod’s predatory mortality was then compared with their non-

predatory mortality (Elliott et al., 2013; Elliott, 2010) under various oxygen 

conditions to determine the mortality factor that caused a larger portion of copepod 

population decreased under more hypoxic conditions. 

I =
t
 

(Equation 3.1) 
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Dj = -0.0714temp + 2.4286 (Equation 3.2) 

Da= 472.53temp−1.836 (Equation 3.3) 

WW = 0.81B1.913 (Equation 3.4) 

Log CR = 0.766LogWW +0.423 (Equation 3.5) 

Mp =
I × P

C
× 100% (Equation 3.6) 

  

Note: 

Dj: digestion time for M. leidyi 

Da: digestion time for A. mitchilli 

WW: M. leidyi wet weight (g) 

B: Tentacle bulb length (mm) 

I: ingestion rate (prey predator-1 h-1) 

G: gut content (number) 

t: digestion time (h) 

Mp: predatory mortality (copepod standing stock consumed day-1) 

P: predator concentration (numbers L-1) 
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C: prey (copepod) concentration (numbers L-1) 

CR: clearance rate (liters cleared predator-1 day-1) 

Results 

Ctenophore predation 

The M. leidyi collected with the Reeve net for diet analysis were all adults and 

their mean wet weight was 13.2 ± 10.8 g (sample size = 240). The majority of the 

samples were collected from the surface layers during summer cruises, except for 

some were collected from the depth of the pycnocline, and only a few were taken 

from the bottom water layer (Table 3.1). No ctenophores occurred in the Reeve net 

during the spring cruises and only a few occurred in the Reeve net at the south station 

during the autumn cruises. Regardless of collection location or time, the gut contents 

of M. leidyi were primarily A. tonsa (adults and copepodites) and copepod nauplii, 

with some microzooplankton (ciliates and tintinnids) and invertebrate eggs (Table 

3.1).  

More ctenophore samples were collected during the Warm - Less Oxygenated 

(W - LO) cruises (i.e., N, S - 2011 summer and N - 2010 summer) than during the W 

- More Oxygenated (W - MO) cruises (i.e., S - 2010 summer and N, S - autumn). 

Empty guts were common among ctenophore samples.  However, there were fewer 

ctenophores had empty guts during the W - LO cruises (approximately 25% empty) 

compared to the samples collected from the W - MO cruises (approximately 65% 

empty). No ctenophore gut samples were collected from the T - MO cruise (S - 2011 
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autumn), however, similar to the Warm group, a low proportion of empty guts (15%) 

was observed in the T - LO group. Among those ctenophore gut samples with prey 

items in the Warm group, copepods (adults, copepodites, and nauplii) were the 

dominant prey type ( > 80%), and the percentage of nauplii among the prey increased 

from 6% under more oxygenated conditions to 24% under less oxygenated conditions 

(Figure 3.1). Ctenophore diets in the Temperate group, collected during the 2011-

autumn cruise after Hurricane Irene and Tropical Storm Lee, were very different 

compared with the Warm group. Instead of being dominated by copepods, the gut 

contents in the Temperate group were dominated instead by invertebrate eggs (51%, 

Figure 3.1).  

In addition to gut-content estimates of ctenophore predation on A. tonsa 

(Adults and copepodites), clearance rates (liters cleared ctenophore–1 day–1) of A. 

tonsa were also estimated from the ctenophore wet weights. Ctenophore predation 

was found to be highest during the July 2011 cruise (55% and 49% from guts and wet 

weights, respectively) and lowest during autumn cruises (approximately 1% using 

both methods) (Table 3.2). Predation pressure upon A. tonsa was much higher under 

W - LO than W - MO —14% d-1 vs. <1% d-1 from gut contents (Figure 3.2a) and 31% 

d-1 vs. 2% d-1 as calculated from wet weights (Figure 3.2b). Although estimates 

determined by ctenophore wet weight were higher than those from gut contents, the 

relatively higher consumption impact under less oxygenated conditions was 

consistent between the two methods. 
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Larval anchovy predation 

A total of 432 small (TL < 10 mm) and 467 large (10 < TL < 32 mm) larval A. 

mitchilli were collected during the six cruises and their gut contents were examined 

(Table 3.3 & 3.4). More anchovy larvae were sampled from the surface layers during 

summer cruises than from other depths and seasons. Many specimens had empty guts, 

especially among the small larval A. mitchilli. The empty-gut rate dropped with 

increased body lengths, from 93% among the small larval A. mitchilli to 56% among 

large larval A. mitchilli (Table 3.5). In general, gut contents of small larval A. 

mitchilli consisted of primary copepods and invertebrate eggs (Table 3.3), while 

many other crustaceans, including cladocerans, barnacle nauplii, and 

microzooplankton, were also observed in large larval A. mitchilli (Table 3.4). The 

proportion of copepods (both adults and copepodites) in the guts increased with larval 

size as well, from 52% in small larval A. mitchilli to 87% in large larval A. mitchilli. 

Diets of larval A. mitchilli varied under the different oxygenated conditions. 

Copepods dominated in the larval gut contents under MO conditions, but invertebrate 

larvae and eggs predominated under LO conditions (Figure 3.3 & 3.4). However, this 

was not the case for large larval A. mitchilli in the Warm group, whose guts contained 

mostly copepods under both MO and LO conditions (> 90 %, Figure 3.4). The 

estimated predatory impact of larval A. mitchilli on A. tonsa, small and large larvae 

combined, was minimal during all cruises (< 1% of A. tonsa’s mortality, Table 3.9). 

Larval A. mitchilli predation upon A. tonsa was observed higher under LO conditions: 

0.22% d-1 vs 0.1% d-1 under LO and MO conditions in the Temperate group and 

0.08% d-1 vs 0.07% d-1 in the Warm group (Figure 3.2). Although the predatory 
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impact of A. mitchilli larvae was likely underestimated due to the high percentage of 

empty gut samples, the predatory impact was observed higher in LO conditions 

relative to MO conditions  

Juvenile anchovy predation 

A total 39 small (32 < TL < 40 mm) and 60 large (40 < TL < 60 mm) juvenile 

A. mitchilli were examined during the six cruises (Table 3.6 & 3.7). In contrast to the 

high ratio of empty guts in larval A. mitchilli, all juvenile A. mitchilli examined guts 

contained food (Table 3.8). These gut samples contained a higher diversity of prey 

items, including items such as tunicate larvae, crab larvae, and oyster veligers, which 

was not observed in the larval A. mitchilli diets (Table 3.6 & 3.7). Copepods (adults 

and copepodites) remained a common prey of juvenile A. mitchilli, comprising 23% 

and 30% of the prey items to small and large juvenile A. mitchilli diets, respectively. 

In addition, invertebrate eggs (26% in small and 19% in large juveniles) and 

phytoplankton (mostly diatoms, 10% in small and 15% in large juveniles) occupied 

substantial proportion of juvenile A. mitchilli diets.  

The proportion of invertebrate eggs in small juvenile A. mitchilli guts was 

often larger under LO conditions relative to those under MO conditions. Invertebrate 

eggs on average accounted for 44% and 55% of the items in small juvenile A. 

mitchilli guts collected during T - LO (N - 2011 autumn) and W-LO cruises (N - 2010 

summer and N, S- 2011 summer), respectively, but only 36% and 20% of the prey 

items in guts collected during the T-MO (S - 2011 autumn) and W-MO (S - 2010 

Summer, N, S - 2010 autumn) cruises, respectively (Figure 3.5).  On the contrary, 

copepod adults and copepodites were present in similar proportions in small juvenile 
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A. mitchilli diets under both LO and MO conditions; approximately 35% in the 

Temperate group and 20% in the Warm group (Figure 3.5).  Copepod adults and 

copepodites contributed larger percentages to large juvenile A. mitchilli gut contents, 

and there were higher percentages of copepods under LO than MO conditions in both 

the Temperate and Warm groups (37% vs 15% and 59% vs 36%, respectively) 

(Figure 3.6).  

Predation by juvenile A. mitchilli on A. tonsa was highest during the 

September 2011 cruise at the North station (12% d-1). Less than 5% d-1 predation was 

observed on all other cruises (Table 3.10). In the Temperate group, juvenile A. 

mitchilli predation of A. tonsa was elevated under LO conditions. In the Warm group, 

in which both LO and MO subgroups were hypoxic, but differed in severity, the 

predation pressure decreased from 17% d-1 under MO conditions (moderate hypoxia) 

to 1.3% d-1 under LO conditions (severe hypoxia) (Figure 3.2). Compared with larval 

A. mitchilli and the ctenophore M. leidyi, predation by juvenile A. mitchilli was higher 

and responsible for more predatory mortality of A. tonsa under most temperatures and 

oxygenated combinations, with the exception of warm and extremely hypoxic 

conditions, when M. leidyi’s predation was higher than that of juvenile A. mitchilli 

(Figure 3.2). 

Discussion  

The goal of this study was to understand the influence of oxygen deficiency 

on the trophic interactions among copepods, fish, and gelatinous zooplankton in 

Chesapeake Bay. Copepods, ctenophores, and larval and juvenile bay anchovies were 
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collected from two stations during six cruises from spring to autumn in 2010 and 

2011. Their gut contents were examined and their predatory impact on copepods was 

estimated based on in situ predator concentrations. Using a PCA analysis to 

statistically group samples, comparisons were made under different oxygenated 

conditions but otherwise similar temperature and salinity environments. The results 

indicated both juvenile bay anchovy and ctenophore predation upon A. tonsa were 

often higher under hypoxic conditions. While the seasonality and phenology of 

predators had an effect on the patterns of mortality, non-predatory factors also 

contributed largely to A. tonsa mortality under hypoxic conditions. However, the 

importance of predatory factors increased under warmer and more hypoxic 

conditions. 

Predation under hypoxia 

Among larval and juvenile A. mitchilli, and M. leidyi, the greatest predatory 

pressure on A. tonsa was caused by juvenile A. mitchilli in autumn, followed by M. 

leidyi’s in summer. For both of these predators, A. tonsa consumption increased as 

dissolved oxygen concentrations decreased (Figure 3.2). This Hypoxia-enhanced 

predation has also been observed in other planktivores. For example, the Atlantic 

Bumper, Chloroscombrus chrysurus, consumed more shrimp larvae in the hypoxic 

area than in normoxic areas of the northern Gulf of Mexico (Glaspie et al. 2018). 

Because we observed increased predation under hypoxic conditions in two very 

different planktivores (a fish and ctenophore) and in different seasons (summer and 

autumn), and also because consumption comparisons were made within the same 

temperature group, we interpret these findings to not be simply due to species 



 

85 
 

differences or seasonality. That is, our results indicate that hypoxia contributed to the 

elevated predation impact. 

The phenology and seasonality of M. leidyi and A. mitchilli did play a role in 

the observed predation patterns. M. leidyi abundance peaks in summer when hypoxia 

is also the most pronounced, and juvenile A. mitchilli reach high abundance levels in 

late summer and autumn. Peak ctenophore predation occurred primarily in the Warm 

group (i.e., summer), and juvenile anchovy predation was highest in the Temperate 

group (i.e., autumn cruises). On the contrary, predator abundance is low in spring, 

and minimum predatory mortality observed in the Cool temperature group. However, 

seasonality alone could not explain the observation of higher predatory impact under 

hypoxia. For example, juvenile A. mitchilli concentration was similar between MO 

and LO in the Temperature group (Slater et al. 2020), but their predatory impact was 

three times larger under hypoxia (LO group) than in normoxia (MO group) (Figure 

3.2). Similarly, M. leidyi concentrations were similar during the 2010 summer cruise 

(i.e., 1.1 m-3 at the North and 1.9 m-3 at the South stations, Slater et al. 2020), but their 

predation impact was three times larger at the North station where oxygen was lower 

than at the South station (Table 3.2).  

The decoupling of predator concentration and their predatory impact indicates 

that something more than the presence of predator plays a role in Chesapeake Bay 

planktonic trophic dynamics. Because samples were statistically grouped according to 

the PCA analysis, and comparisons were made between oxygenated levels within 

otherwise statistically similar conditions, showing enhanced predatory impact with 

increasing hypoxia. This observation was seen repeatedly in multiple temperature 
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groups and with different predators, indicating that hypoxia led to higher predatory 

impacts on A. tonsa. 

There are two hypothesized explanations for this hypoxia-enhanced predation 

phenomenon that we observed: 1) changes in trophic interactions due to differences in 

hypoxia tolerance between predator and prey, and 2) behavioral and distributional 

changes due to hypoxia-avoidance behaviors (Brodeur et al, 2008; Diaz & Rosenberg, 

2008; Purcell et al., 2001).  Differences in hypoxia tolerance may play a role in higher 

ctenophore predation on copepods under hypoxic conditions because they in general 

are better oxyregulators and have lower oxygen demand than crustaceans and fish at 

the same temperature (Purcell et al. 2001a, Thuesen et al. 2005). Furthermore, 

Richardson et al. (2009) hypothesized that eutrophication-induced hypoxia can 

promote non-visual predators and hypoxia-tolerant species like gelatinous 

zooplankton blooms in some estuaries and coastal areas. Because our results indicate 

that both M. leidyi abundances (Slater et al. 2020) and their predation was enhanced 

under hypoxic conditions during the six cruises, our observations support the 

hypothesis that gelatinous zooplankton populations could be favored under hypoxic 

conditions.  

However, for juvenile A. mitchilli, it seems more likely that behavioral 

changes resulted in increased predation on A. tonsa under hypoxia, rather than 

predator-prey differences in hypoxia tolerance. Crustacean zooplankton are typically 

more tolerant of hypoxia than fish (summarized in Ekau et al., 2010). Both lab 

experiments and field studies found the behavior of A. tonsa changes under hypoxic 

conditions. A. tonsa exhibited decreased jumping frequency with decreasing 
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dissolved oxygen concentrations (Decker et al. 2004), which may make them more 

vulnerable to capture in hypoxic conditions. Decreased diel vertical migration (DVM) 

depths and reduced access to bottom water have also been observed for A. tonsa when 

a significant proportion of the bottom water column was hypoxic (Ludsin et al., 2009; 

Pierson et al., 2009; Roman et al., 2012), which resulted in increased predator-prey 

spatial overlap under hypoxic conditions. Habitat compression could be especially 

significant in a shallow estuary like the Chesapeake Bay, where the vertical volume 

of hypoxic water can exceed 70% in the summer (Pierson et al., 2017). Increased A. 

mitchilli predation on A. tonsa under hypoxic conditions implies that behavioral 

changes could also lead to higher mortality of A. tonsa under hypoxic conditions. The 

relative low-oxygen tolerance of predator and prey, together with behavioral changes, 

may determine whether predation rates increase under hypoxia (Breitburg 1994, 

Breitburg et al. 1997)  

In addition to enhanced predation impact under hypoxia, we also observed 

changes in the predators that cause the most predatory mortality on A. tonsa. The 

predator that consumed the most A. tonsa standing stock shifted from juvenile A. 

mitchilli under normoxic (T - MO) and mildly hypoxic conditions (T - LO & W - 

MO) to M. leidyi under warm and severely hypoxic conditions (W - LO). This in part 

is a consequence of the natural succession of M. leidyi blooming in summer and 

juvenile A. mitchilli increasing in autumn, along with hypoxia development reaching 

its peak in summer. The peak seasonalities of juvenile A. mitchilli and M. leidyi, are 

different, so there was not sufficient direct evidence to distinguish between the effects 

of seasonality and hypoxia. However, M. leidyi tolerates severe hypoxia better than A. 
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mitchilli, and other studies have also observed food web structural changes under 

hypoxia, in addition to eutrophication, overfishing, and climate change, which 

together resulted in more primary production going to filter feeders, like gelatinous 

zooplankton, and have directly more net energy flows into microbes instead of finfish 

(Diaz & Rosenberg 2008, Ekau et al. 2010, Uye 2011, Condon et al. 2011). A time-

series analysis of the Chesapeake Bay also indicated that the abundances of anchovies 

and copepods decreased and ctenophores increased as hypoxia in Chesapeake Bay 

increased over many decades (Kimmel et al. 2012). Although this studies did not 

fully examine the microzooplankton communities under hypoxia, similar cascading 

effects have been observed in mesocosm studies in the Great South Bay of New York 

(McNamara et al. 2013b, 2014). Both predator species and predation pressure in this 

study changed with temperature (due to seasonal changes in predator abundance) and 

dissolved oxygen concentrations. Our results support the hypothesis that predation of 

crustacean zooplankton is enhanced under hypoxic conditions, but more research is 

required to examine how hypoxia further affects other components of the food web. 

Estimates of predatory impact 

The predatory impact estimated from gut contents with predator and prey 

densities in the whole water column could be overestimated by carcasses 

consumption. Meanwhile, the predation impact could also be underestimated by 

ctenophore’s short digestion time in summer, larval anchovies’ gut voiding behavior, 

and by aggregating the whole water column especially under severely hypoxic 

conditions. However, the general conclusion remained the same with considerations 

with potential adjustments. 
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Some of the copepods enumerated in the gut contents could have been 

captured as carcasses, therefore the predatory impact estimated with gut contents 

could be overestimated with carcasses consumption. Although live or dead copepods 

were indistinguishable in the gut samples, carcass consumption may not be a large 

portion of ctenophore diets because the vertical distribution of ctenophores did not 

overlap as much with carcasses as with live copepods. Dead copepods sink, resulting 

in more carcasses present in the bottom water layer (Elliott et al., 2013). However, M. 

leidyi gut samples were primarily collected from the surface water layers especially 

when the bottom was hypoxic (Table 3.1), and thus, the likelihood of the ctenophore 

guts containing a large portion of dead copepods is low. In addition, ctenophore 

consumption estimated by wet weight also showed similar results, and this estimate 

was not influenced by the possibility of carcass consumption.  On the other hand, 

there were juvenile A. mitchilli collected from below the whole water column (Table 

3.6 Table 3.7), and studies have not examined whether A. mitchilli is selective with 

respect to living or dead prey. However, since larval A. mitchilli eat relatively fewer 

copepods compared with juvenile A. mitchilli and M. leidyi, the consumption of 

carcasses vs live copepods might not be important for larval anchovy. Approximately 

one-third of the copepods collected from the bottom layer were carcasses (Elliott et 

al., 2013), If carcasses and live copepods were evenly mixed in the water column and 

juvenile A. mitchilli consume carcasses and live copepods unselectively, then the 

estimated predatory impact from juvenile A. mitchilli on live copepods could be 

overestimated by maximum 1/3, and then the comparative importance of ctenophore 

predation would increase under warm and severely hypoxic conditions.  
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On the other hand, the impacts of ctenophore predation may have been 

underestimated in this study. Gelatinous zooplankton, such as M. leidyi, are known 

for their fast clearance rates and short digestion times. Granhag et al. (2011) found the 

digestion time of M. leidyi that had consumed 1-10 A. tonsa was approximately 1 h at 

20 °C. M. leidyi digest prey quickly at warmer temperatures (i.e, < 30 min to digest 2-

10 A. tonsa at 27 °C, Rowshantabari et al., 2012). Surface water temperature during 

our summer cruises was 24 - 26 °C (Slater et al. 2020), and thus, the in-situ digestion 

time of M. leidyi was likely close to 30 min during its peak season. Since prey 

distributions are patchy and M. leidyi’s capture rate is approximately 50% of the 

copepods they encountered (Waggett & Buskey 2006a), it is possible that our gut-

content sampling may have collected some M. leidyi that were in between prey 

encounters and after they had cleared their guts. This would have resulted in empty 

gut samples, and thus, the predation stress estimated by gut contents would be an 

underestimate. On the other hand, clearance estimates determined from ctenophore 

wet weights, which were based on lab experiments (Purcell 1988), were an 

independent measure of “potential” predation capacity. These weight-based values 

were higher than the predation impact estimated from gut contents (Figure 3.2). In 

fact, M. leidyi predation estimated from wet weights indicated that M. leidyi is 

capable of consuming 30% of the A. tonsa standing stock per day under W - LO 

conditions. W - LO was the only group in which A. tonsa predatory mortality was 

higher than non-predatory mortality, and M. leidyi was the primary predator (Figure 

3.2). Although the actual ctenophore predation pressure likely falls somewhere in 
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between these two measures, both methods indicate a similar trend of high 

ctenophore predation under the most hypoxic conditions. 

Larval A. mitchilli predatory impact could be underestimated in this study 

because of gut avoiding behavior and also experimental design. Large proportions of 

empty guts especially in small larval A. mitchilli (Total length < 10 mm, Table 3.5a), 

and the low percentage of feeding anchovy larvae may be an artifact of gut voiding 

by the larvae upon capture in nets which was also observed in the lab (Detwyler & 

Houde 1970). In addition, our cruise schedule (May - Aug/Jul -Sep) was designed to 

study the development of hypoxia, and thus it may miss A. mitchilli’s typical peak 

spawning time in July, which usually requires more frequent sampling to capture 

(Zastrow et al. 1991). Considering the A. tonsa and A. mitchilli concentrations during 

our cruises (Slater et al. 2020), even if each larval A. mitchilli had at least one A. 

tonsa in their guts, their predatory impact would not be substantial (ranged 0 - 1.44% 

d-1). It took at least 10 A. tonsa in each larval A. mitchilli’s gut to make their 

predatory impact larger than 10% d-1 if the densities of larval A. mitchilli and A. tonsa 

remained the same. Nevertheless, the lab observations did find that larval A. mitchilli 

feed actively at high, for example, >100% of body weight daily (Detwyler & Houde 

1970, Houde & Schekter 1981, Chesney 2008), and thus the actual predatory impact 

on A. tonsa by larval A. mitchilli might be higher when the abundance of larval A. 

mitchilli was higher during its peak spawning season.  

The in situ predatory impact could be underestimated above pycnoclines and 

overestimated below pycnoclines with whole water column predator and prey 

concentrations especially during summertime when more zooplankton and 
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planktivores were above pycnoclines (Slater et al. 2020). The depth-specific 

predatory impact was not used in this study because the goal to compare predatory 

impact across M. leidyi, larval A. mitchilli, and juvenile A. mitchilli, which were 

collected with various nets at different depth intervals. In addition, our desire to 

compare A. tonsa’s predatory mortality with nonpredatory mortality, which was 

aggregated into whole water column because carcasses sink and no means to 

distinguish which depth when the mortality happened with current methods. 

Similarly, for very active swimming predators like juvenile A. mitchilli, it was hard to 

tell if the depths of predation and the depth of sample collection were the same. It 

would take higher sampling frequency, ideally shorter than digestion time, and finer 

vertical sampling scale, to more precisely estimate the depth-specific in situ predatory 

impact. 

The day-night effect on predation efficiency and net efficiency could be a 

source of underestimation for A. mitchilli’s predation on A. tonsa with current 

estimations. As a visual predator, larval A. mitchilli feeds more during daytime, but 

their night feeding ability grow with age, and a  juvenile A. mitchilli could utilize dim 

light during sunrise, sunset, and moonlight, eventually, an adult A. mitchilli could 

feed thought night (Din & Gunter 1986, Vazquez 1989, Johnson et al. 1990). In 

addition, A. mitchilli’s abilities to avoid net capture are better during daytime and thus 

more A. mitchilli would be captured during night time (North & Houde 2004). 

Therefore we might collect more gut samples during nighttime, the non-feeding time 

for most larval A. mitchilli and some juvenile A. mitchilli, than daytime. The reason to 

still include night samples and estimate the predatory impact as standing stock per 
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day is the study goal to compare with M. leidyi’s predation, which was less influenced 

by ambient light intensity, and also the study objective to compare predatory impact 

with nonpredatory mortality, which happened both day and night. 

To understand the overall pattern, we made some generalization to enable 

comparisons across different mortality sources, including nonpredatory sources and 

three predatory sources, which were often not all covered in one study. Although the 

exact values of predatory impact may be different from our comparatively 

conservative estimations, with consideration of potential adjustments, the conclusion 

remained as the nonpredatory and predatory mortality increased under hypoxic 

conditions, the relative importance of predatory mortality increased with hypoxia 

severity, and the leading predator shifted from juvenile A. mitchilli under moderately 

hypoxic conditions to M. leidyi under warm and severely hypoxic conditions. 

The relative importance of non-predatory and predatory mortality 

High total A. tonsa mortality was observed in the less-oxygenated subgroups 

in all temperature conditions, and both non-predatory mortalities and predator 

mortality were higher in the less oxygenated subgroup compared to the more-

oxygenated subgroup. Non-predatory mortalities were at least two times higher in the 

less oxygenated subgroups relative to more oxygenated subgroup, suggesting that 

hypoxia directly contributed to high A. tonsa mortality and resulted in lower A. tonsa 

abundances (Figure 3.2). Non-predatory mortality played a comparatively important 

role in lower-temperature environments; non-predatory mortality contributed to > 

99% of the total A. tonsa mortality in the cool groups, a contribution that decreased to 

>70% in the temperate group, and dropped even further, to > 5%, in the warm groups. 
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This may be in part due to that neither juvenile A. mitchilli nor M. leidyi were 

abundant in the spring cruises (the Cool group), and larval A. mitchilli predation 

might have been relatively small even though gut evacuation could be a source of 

underestimation. On the contrary, all major predators were abundant in the warmer 

groups (i.e., summer and the autumn without weather events). As a result, the 

importance of predation on copepod populations increased with temperature, when 

the predators became abundant. In the Cool group, less than 1% of A. tonsa mortality 

was due to predation. By contrast, M. leidyi and A. mitchilli together consumed > 

15% of the copepod standing stocks in warm conditions (Figure 3.2a) and potentially 

could have consumed > 30% (Figure 3.2b). High predatory impact under low oxygen 

conditions compared was observed at all temperatures. Juvenile A. mitchilli predation 

on A. tonsa was three times higher in the T - LO subgroup than in the T - MO 

subgroup, and M. leidyi predation on A. tonsa occurred primarily in the W - LO 

subgroup. Since our comparisons were made within the same temperature group, the 

effects of seasonality were isolated. Our results indicate that the relative importance 

of these mortality sources and the dominant predators differed with the season and 

environmental conditions. 

Prey competition and temporal and spatial overlaps 

A. tonsa was the dominant prey for both M. leidyi and A. mitchilli, and the 

predation pressure of both these planktivores on A. tonsa increased in hypoxic 

conditions, and thus, competition for prey could potentially be enhanced under lower 

dissolved oxygen conditions. However, in our study these planktivores were 

dominant at different times: larval A. mitchilli was the only predator present in the 
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spring, M. leidyi was abundant in summer, and juvenile A. mitchilli dominated in 

autumn. As a result, although these predators all consume A. tonsa and they all 

consumed more A. tonsa under more hypoxic conditions, the timing of their 

respective periods of maximum consumption did not overlap, and therefore 

competition might not have been substantial.  

Our field study design, which was designed to examine various degrees of 

hypoxia at two stations in two or three water layers, did not aim to study habitat 

overlaps. The gut samples were collected with a Reeve net, a Tucker trawl, and a 

midwater trawl, which are not precise samplers of specific depth strata. Although M. 

leidyi did not avoid lightly hypoxic bottom environments (Keister et al. 2000, Kolesar 

et al. 2010), they appear slightly preferred locations above pycnoclines in summer 

when the bottom was hypoxic during our research. In our study larger portion of A. 

tonsa was collected from the upper water column during summer cruises (Slater et al. 

2020), suggesting potential more vertical overlaps between M. leidyi and A. tonsa 

under hypoxic conditions. In a shallower tributary like the Patuxent River, scientists 

observed that the vertical overlap between ctenophores and copepods and between 

larval bay anchovies and copepods decreased with decreasing bottom DO (Kolesar et 

al. 2010). However, in the deeper mid-Chesapeake Bay, several studies with stratified 

tows or fine-scale vertical tows observed M. leidyi, A. mitchilli, and copepod 

aggregation near pycnoclines when the bottom water column was hypoxic, resulting 

in increasing habitat overlapped and higher predatory impact around pycnoclines 

(North & Houde 2004, Purcell et al. 2014). The vertical overapplied under hypoxic 

condition might be depending on location. 
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Information on whether or not A. tonsa perform diel vertical migration in 

Chesapeake Bay is inconclusive. Minimal DVM of zooplankton may occur in this 

estuary for a variety of reasons:  Chesapeake Bay is shallow (Cuker & Watson 2002), 

and food is widely distributed vertically, and so are predators, thus DVM may be 

disadvantageous to A. tonsa in this setting. However, other study conducted in the 

Bay’s main channel of Chesapeake documented the sex-specific DVM, in which male 

A. tonsa utilized deeper water than female A. tonsa and both temperature and bottom 

hypoxia influenced their vertical distributions and migration patterns (Pierson et al., 

2017). Thus, changes in zooplankton vertical distribution due to hypoxia in 

Chesapeake Bay is still uncertain, both location and diel cycle seem to matter, and 

more research is required to evaluate how vertical distributions changes among 

predators and A. tonsa influence trophic interactions.  

Conclusion 

Copepod mortality, both non-predatory and predatory mortalities, increased 

with hypoxia in the mid-Chesapeake Bay. Factors like the severity of hypoxia, 

predation intensity, and significant weather events all influenced copepod’s mortality, 

yet the relative importance of these impacts varied with environmental conditions. 

The direct effect of low dissolved oxygen concentrations (i.e., non–predatory 

mortality), was generally a significant determinant of total mortality. However, 

predatory mortality became more influential with warmer temperature and hypoxia 

severity, indicating that there are interactions among dissolved oxygen concertation, 

temperature (season), and predation. An important predator in the Chesapeake Bay is 
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juvenile anchovy, and their predation impact on copepods is strengthened under 

moderately hypoxic conditions. When the environment is warm and severely hypoxic, 

ctenophore predation becomes prominent, suggesting that predation by specific 

predators is regulated by the hypoxia tolerance of both predator and prey species. 

Combined with the findings of Slater et al. (2020), these results support the 

hypothesis that combined hypoxia and predation contributed to the copepod 

population decline during summer, and the relative importance of factors contributing 

to copepod mortality shift from primarily the direct effects of hypoxia in cooler 

conditions to a combination of non-predatory and predatory impacts in warmer 

conditions. 
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Tables and figures 

 

Table 3.1. Mnemiopsis leidyi gut content sample sizes, mean wet weight and number of prey items. Ctenophores were collected from 
the surface (Surf), pycnocline (Pyc) and bottom (Bot) water layers with a Reeve net at the North (N) and South (S) stations during the 
six cruises in 2010 and 2011. 

 
Year 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2011 2011 2011 2011 2011 
Month Aug Aug Aug Aug Aug Aug Sep Sep Sep Sep Jul Jul Jul Sep Sep 
Station N N N S S S N N N S S S S N N 
Depth Bot Pyc Surf Bot Pyc Surf Bot Pyc Surf Surf Bot Pyc Surf Bot Surf 
Sample size 2 22 24 3 11 46 2 11 19 4 17 34 30 1 14 
Wet weight (g) 31.51 31.73 17.45 8.95 11.36 15.13 12.96 11.07 8.09 5.73 5.97 9.89 8.75 5.96 7.93 
Copepod adults & Copepodites 1.50 0.18 0.63 0.33 0.09 0.13 0.50 0.55 1.58 2.00 1.18 1.97 3.70 0.00 2.14 
Copepod nauplii 0.00 0.00 0.00 0.33 0.00 0.02 0.00 0.00 0.11 0.00 1.76 0.82 0.77 6.00 0.14 
Tintinnids & ciliates 0.00 0.09 0.04 0.33 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.09 0.33 0.00 0.07 
Invertebrate eggs 0.00 0.32 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.12 0.15 0.00 0.00 3.07 
Other crustaceans 0.00 0.09 0.04 0.00 0.00 0.02 0.00 0.09 0.00 0.00 0.00 0.00 0.03 0.00 0.14 
Invertebrate larvae 0.50 0.14 0.00 0.00 0.00 0.07 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 3.2. Daily predation of M. leidyi on A. tonsa (adults & copepodites) estimated by gut 
contents (Mj, d–1) and by ctenophore wet weights (WW) (Mj, d–1) at the North (N) and South (S) 
stations in 2010 and 2011. 

 
  2010 2011  

 

 
Aug Sep Jul      Sep 

 
 

N S N S S N 
Environmental 
Conditions 

Mean ctenophore 
concentration (L-1) 0.0011 0.0019 -ii 0.0001 0.0347 0.0007 

Mean copepod and 
copepodite 
concentration (L-1) 

5.1 9.5 11.8 9.6 6.5 3.1 

Mean water column 
temperature (C) 27.1 27.1 24.1 23.7 26 23.1 

Predation 
effects 
estimated with 
gut contents 

Copepod & 
copepodites in 
ctenophore guts 

0.46 0.13 1.16 2 2.44 2 

Estimated gut 
evacuation time (h) 0.5 0.5 0.71 0.73 0.57 0.78 

Clearance Rate  
(L ind-1 h-1) 0.18 0.03 0.14 0.28 0.66 0.83 

Ingestion by gut 
content (# ind-1 h-1) 0.93 0.26 1.63 2.73 4.27 2.57 

Mj (% d-1) 0.48%  0.13% - 0.07% 54.66% 1.39% 
Clearance 
rates 
estimated 
from wet 
weight 

Mean ctenophore WW 
(g) 24.58 14.13 9.42 5.73 8.65 7.8 

Estimated CR by WW 
(L ind-1 d-1) 31.78 20.67 15.1 10.26 14.13 13.04 

Ingestion by WW  
(# ind-1 h-1) 6.75 8.18 7.42 4.1 3.83 1.68 

Mj’(% d-1) 3.5% 3.93% - 0.1% 49.03% 0.91% 
 

Note:  
i. No M. leidyi gut contents were collected by the Reeve net at the North station in July 2011 and 
at the South Station in September 2011 
ii. Tucker Trawl sampling was not conducted at the North station during the September 2010 
cruise due to shipboard mechanical issues
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Table 3.3. Small larval A. mitchilli (total length < 10 mm) gut content sample sizes, mean total length and number of prey items. 
Larvae were collected from the surface to pycnocline layer (Surf) and from the pycnocline to bottom layer (Bot) with a Tucker Trawl 
at the North (N) and South (S) stations during the six cruises in 2010 and 2011. 

 
Year 2010 2010 2010 2010 2010 2010 2010 2011 2011 2011 2011 2011 2011 2011 
Month 5 5 8 8 8 9 9 5 7 7 7 7 9 9 
Station North North North South South South South North North North South South South South 
Depth Bot Surf Surf Bot Surf Bot Surf Surf Bot Surf Bot Surf Bot Surf 

Sample Sizes 38 78 28 61 104 5 9 10 18 22 2 23 10 24 
Total length (mm) 4.36 5.72 5.78 6.44 6.59 8.52 9.18 4.20 6.00 6.80 7.65 6.97 8.25 8.43 

Copepod adults 0 0.03 0 0.03 0.04 0.40 0.11 0 0 0 0 0 0 0 
Copepod nauplii 0 0.01 0.04 0 0 0 0 0 0 0 0 0 0 0 
Copepodites 0.03 0.03 0.04 0 0.01 0 0 0 0 0 0 0 0 0 
Cladocera daphnia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Mollusca 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Tintinnids 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Barnacle nauplii 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Crustacea larvae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Crustacean nauplii 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Polychaeta larvae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Diatoms 0 0 0 0.02 0.02 0 0 0 0 0 0 0 0 0 
Amphipods 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Rotifers 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Decapods 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Invertebrate eggs 0 0.03 0.11 0.02 0 0 0 0.10 0 0 0 0.04 0 0 
Others 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 3.4. Medium larval A. mitchilli (total length 10 - 32mm) gut content sample sizes, mean total length and number of prey items. 
Larvae were collected from the surface to pycnocline layer (Surf) and from the pycnocline to bottom layer (Bot) with a Tucker Trawl 
at the North (N) and South (S) stations during the six cruises in 2010 and 2011. 

 
Year 2010 2010 2010 2010 2010 2010 2010 2011 2011 2011 2011 2011 2011 2011 2011 
Month 5 8 8 8 8 9 9 7 7 7 7 9 9 9 9 
Station North North North South South South South North North South South North North South South 
Depth Surf Bot Surf Bot Surf Bot Surf Bot Surf Bot Surf Bot Surf Bot Surf 
Sample Sizes 2 8 78 28 46 18 24 5 78 7 62 1 6 52 52 
Total length (mm) 13.10 21.36 18.22 15.21 14.81 11.68 11.64 15.53 17.48 14.05 13.82 28.98 19.51 16.06 14.07 
Copepod adults 0 2.25 0.32 1.14 0.61 0.89 0.50 0.80 0.69 0.00 0.35 25.00 7.33 3.58 1.42 
Copepod nauplii 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 0.04 
Copepodites 0 0 0.01 0.04 0.11 0 0 0 0 0 0 0 0 0.17 0 
Cladocera daphnia 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0 
Mollusca 0 0 0 0.11 0 0 0 0 0 0 0 0 0 0 0 
Tintinnids 0 0 0 0 0 0 0.04 0 0 0 0 0 0 0 0 
Barnacle nauplii 0 0 0 0.04 0 0 0 0 0.03 0 0 0 0 0.02 0 
Crustacea larvae 0 0 0 0 0 0 0 0 0.00 0 0 0 0 0.02 0 
Crustacean nauplii 0 0 0 0 0 0 0 0 0.00 0 0 0 0 0 0 
Polychaeta larvae 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 
Diatoms 0 0 0 0 0 0 0 0 0 0 0 0 1.17 0 0 
Amphipods 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Rotifers 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Decapods 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Invertebrate eggs 0 0 0 0 0 0 0.08 0 0.01 0.29 0.03 0 1.17 0.15 0.04 
Others 0.5 0 0 0 0.04 0 0 0 0 0 0 0 0 0.10 0.02 
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Table 3.5. Larval A. mitchilli (total length (a) < 10mm < (b) < 32mm) gut content sample sizes, 
mean number of prey items, and percentage of guts containing prey.  Samples were collected 
with the Tucker Trawl under different temperature (warm, temperate, and cool) and oxygen 
conditions (less oxygenated (LO), more oxygenated (MO). 

(a) 

PCA group Sample size Mean prey items Guts with prey 
(%) 

Cool LO 10 0.10 10% 
 MO 116 0.08 8% 
Temperate LO - - - 
 MO 34 0 0% 
Warm LO 93 0.08 10% 
 MO 179 0.08 8% 

 

(b) 

PCA group Sample size Mean prey items Guts with prey 
(%) 

Cool LO 2 0.5 50% 
 MO 7 11.9 43% 
Temperate LO - - - 
 MO 104 3.1 63% 
Warm LO 238 0.6 34% 
 MO 116 0.9 53% 
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Table 3.6. Small juvenile A. mitchilli (Total length 32 - 40 mm) gut content sample sizes, mean 
total length and number of prey items. Juveniles were collected from the surface to pycnocline 
layer (Surf) and from the pycnocline to bottom layer (Bot) with mid-water trawls at the North 
(N) and South (S) stations during the six cruises in 2010 and 2011. 

 
Year 2010 2010 2010 2010 2010 2011 2011 
Month Aug Aug Aug Aug Sep Sep Sep 
Station North North South South South North South 
Layer Bot Surf Bot Surf Bot Bot Bot 
Sample size 5 1 1 2 10 10 10 
Mean total length (mm) 31.8 38.7 39.7 38.5 35.1 34.1 31.8 
Mean count 9.6 11 129 140.5 55.9 59.1 18.6 
Copepod adults 0.4 2 25 15 6.7 11.1 3.2 
Copepodites 1 1 27 0 2.4 3.3 0.5 
Copepod nauplii 1.2 0 0 50 0.2 7.2 0 
Other copepods 0.6 0 0 0 1.3 0.5 2.2 
Invertebrate eggs 4.8 6 0 23 12.4 21.3 5.6 
Oyster veligers 0 0 0 9 7.6 1.1 0.2 
Barnacle cyprid larvae 0.2 0 2 0.5 1.1 0.2 0 
Tunicate larvae 0 0 0 0 0 0 0.5 
Tintinnids 0 0 0 0 10.3 0 0 
Oligochaeta larvae 0.4 0 0 1.5 1.3 0.8 2.2 
Gastropods 0 0 0 0 0.2 0 0 
Diatoms 0.6 0 50 26.5 4.5 2.4 0.9 
Mysid adults 0 0 0 0 0 0.1 0 
Cladocera 0 0 0 0 0.4 0 0 
Amphipods 0 0 0 0 0.1 0 0 
Polychaete 0 0 0 0 0 0 0.1 
Ctenophores 0 0 0 0 0.4 0 0 
Fish eggs 0 0 0 0 0.1 0 0 
Others 0 0 0 0 0.1 0 0 
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Table 3.7. Large juvenile/adult A. mitchilli (total length 40 - 60 mm) gut content sample sizes, 
mean total length and number of prey items. Larvae were collected from the surface to 
pycnocline layer (Surf) and from the pycnocline to bottom layer (Bot) with mid-water trawls at 
the North (N) and South (S) stations during the six cruises in 2010 and 2011. 

Year 2010 2010 2010 2010 2011 2011 2011 2011 2011 
Month Aug Aug Aug Sep Jul Jul Jul Sep Sep 
Occupation North South South South North North South North South 
Layer Surf Bot Surf Bot Bot Surf Bot Bot Bot 
Sample size 5 5 10 10 5 5 1 10 10 
Mean length (mm) 48.2 46.9 47.9 52.7 49.9 52.1 52.6 53.5 53.2 
Mean count 32.8 334.8 133.8 85.7 44 45.4 46 109.2 27.9 

Copepod adults 5 136.6 12.8 9 12 14.4 15 21.2 2.2 
Copepodites 1.2 15 0.6 2.7 2.8 3.2 10 7.5 0.3 
Copepod nauplii 3.2 0 0.2 0.1 0.8 0.4 0 3 0 
Other copepods 0.6 2.2 5.3 1 6 7 0 3.7 1.3 
Invertebrate eggs 6.2 0 54.2 13.7 5.6 2.6 2 30.7 8.2 
Oyster veligers 0 3.4 4.9 10.8 0.2 0.2 0 2.4 0.5 
Barnacle cyprid larvae 0.4 3.8 2.2 2.7 0 0 0 0.8 0.5 
Barnacle nauplii 0 0 0 0 0 0 0 0 0 
Tunicate larvae 2.4 0 0.4 0.2 2.6 1 0 1.6 0.9 
Tintinnids 1.2 0 0 20.8 0 0 0 0 0.1 
Oligochaeta larvae 2 1 1.3 0.7 1.6 0.6 2 2 7.8 
Gastropods 0 0.6 0.3 0.1 0 0 0 0 0.1 
Diatoms 3.8 32.2 38.4 14.4 0.4 0.6 2 14.6 2.9 
Mysid adults 0 0 0 0.1 0 0 0 0 0.3 
Mysid statocysts 0 0 0 0 0 0 0 0.2 0 
Oyster spat 0 0 0 0 0 0 0 0 0 
Crab zoea 0 0.2 0.1 0 0 0 0 0 0 
Crab megalopae 0 0 0 0 0 0 0 0 0 
Foraminifera 0 0 0 0 0 0 0 0 0 
Ostracods 0 2 0 0 0 0.4 0 0 0 
Cladocera 0 0.4 0 0.2 0 0 0 0 0 
Planulae 0 0 0 0 0 0.2 0 0 0.1 
Polychaete 1.8 0.2 0 0.1 0 0.2 0 0.1 0 
Polychaete larvae 0 0 0.1 0 0 0 0 0 0 
Hydroids 0 0 0 0 0 0 0 0 0 
Ctenophores 0 0 0 0.1 0 0 0 0 0 
Fish eggs 0 0 0 0 0 0 0 0 0.1 
Trochophore larvae 0 0 0 0 0 0 0 0 0.1 
Other 0 0.6 0.2 0 0 0 0 0 0.1 



 

112 
 

Table 3.8. Juvenile A. mitchilli (Total length 32mm < (a) < 40mm < (b) < 60mm) gut content 
sample sizes, mean number of prey items, and percentage of guts containing prey.  Samples were 
collect with the Tucker Trawl under different temperature (warm, temperate, and cool) and oxygen 
conditions (less oxygenated (LO), more oxygenated (MO).  
 
(a) 
 
PCA group Sample size Mean prey items Guts with prey 

(%) 
Cool LO -   
 MO -   
Temperate LO 10 60 100% 
 MO 10 19 100% 
Warm LO 6 10 100% 
 MO 13 95 100% 

 

(b) 
 
PCA group Sample size Mean prey items Guts with prey 

(%) 
Cool LO -   
 MO -   
Temperate LO 10 109 100% 
 MO 10 28 100% 
Warm LO 16 42 100% 
 MO 25 155 100% 
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Table 3.9. Daily predation of larval A. mitchilli (MLA) upon A. tonsa (adults & copepodites) estimated by gut contents collected at the 
North (N) and South (S) stations in 2010 and 2011. 

 
 2010     2011      

 May  Aug  Sep May  Jul  Sep  

 N S N S S N S N S N S 

Mean A. tonsa in guts 0.04 0.07 0.39 0.31 0.55 0.00 0.05 0.47 0.23 9.86 1.95 

Mean larval A. mitchilli 
concentration (L-1) 0.00985 0.01046 0.00059 0.00295 0.00012 0.00003 0.00350 0.00142 0.00019 0.00003 0.00030 

Mean A. tonsa adults and 
copepods concentration (L-1) 29.2 8.7 5.1 9.5 9.6 5.8 3.4 11.8 6.5 3.1 11.0 

Mean water temperature (ºC) 19.8 19.3 27.1 27.3 23.8 20.4 19.9 26.6 26.0 23.2 22.9 

Estimated gut evacuation time (h) 2.0 2.1 1.1 1.1 1.4 1.9 1.9 1.1 1.2 1.5 1.5 

Clearance rate (L ind-1 h-1) 0.0007 0.0037 0.0705 0.0296 0.0409 0.0000 0.0072 0.0349 0.0300 2.1451 0.1180 

Ingestion (# ind-1 h-1) 0.0196 0.0319 0.3567 0.2802 0.3932 0.0000 0.0243 0.4123 0.1959 6.6866 1.2968 

MLA (d-1) 0.02% 0.09% 0.10% 0.21% 0.01% 0.00% 0.06% 0.12% 0.01% 0.16% 0.09% 
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Table 3.10. Daily predation of juvenile A. mitchilli (MJA) upon A. tonsa (adults & copepodites) 
estimated by gut contents collected at the North (N) and South (S) stations in 2010 and 2011. 

 
 2010   2011    

 Aug  Sep Jul  Sep  

 N S S N S N S 

Copepod & copepodites  
in anchovy guts 

4.3 57.7 11.6 22.7 25 23.65 4.85 

Mean juvenile Anchovy 
Concentration (L -1) 

0.0011 0.0003 0.0005 0.000016 0.000001 0.001 0.0011 

Mean A. tonsa adult and  
copepodites concentration 
(L -1) 

5.1 9.5 9.6 11.8 6.5 3.1 11 

Average water column 
temperature (ºC) 

27.1 27.3 23.8 16.6 26.0 23.2 22.9 

Estimated gut evacuation 
time (h) 

1.1 1.1 1.4 1.1 1.2 1.5 1.5 

Clearance rate 
(L ind-1 h-1) 

0.8 5.6 0.9 1.7 3.2 5.1 0.3 

Ingestion  
(# ind.-1 h-1) 

3.9 52.9 8.2 19.8 20.9 16.0 3.2 

MJA (d-1) 2.1% 3.6% 1.0% 0.1% 0.0% 12.0% 0.8% 
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Figure 3.1. The composition of M. leidyi prey under different temperature (Warm, Temperate 
(T)) and oxygen conditions (less oxygenated (LO), more oxygenated (MO). 
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Figure 3.2. Predatory and non-predatory mortality (% d-1) of A. tonsa by larval A. mitchilli, 
juvenile A. mitchilli, and M. leidyi. M. leidyi predation was made from (a) gut contents and (b) 
wet weights under different temperature (Cool, Temperate, Warm) and oxygen conditions (less 
oxygenated (LO), more oxygenated (MO). 

(a) 
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Figure 3.3. Prey composition of larval A. mitchilli (< 10mm) under different temperature (Cool, 
Warm) and oxygen conditions (less oxygenated (LO), more oxygenated (MO)). 

 

Note: There were no larval bay anchovy < 10mm caught during 2011–September cruise at the 
North station (the T–LO group), and all the larval bay anchovy in this size category collected 
during 2011–September cruise at the South station (the T–MO group) had empty guts
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Figure 3.4. Prey composition of larval A. mitchilli (10 – 32 mm) gut contents under different 
temperature (Cool, Temperate, Warm) and oxygen conditions (less oxygenated (LO), more 
oxygenated (MO)). 

 

 

 

 

Note: There were no larval bay anchovy in this size category caught during 2011–September 
cruise at North station (the T–LO group).
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Figure 3.5. Prey composition of juvenile A. mitchilli (32 – 40mm) gut contents collected with the 
mid–water trawl under different temperature (Temperate (T)/ Warm (W)) and oxygen conditions 
(less oxygenated (LO), more oxygenated (MO)). 

 

Note: Mid–water trawls were not conducted during the spring cruises (the cool group). 
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Figure 3.6. Prey composition of juvenile A. mitchilli (40 – 60mm) gut contents collected with the 
mid–water trawl under different temperature (Temperate (T)/ Warm (W)) and oxygen conditions 
(less oxygenated (LO), more oxygenated (MO)). 

 

 

Note: Mid–water trawls were not conducted during the spring cruises (the cool group). 
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Appendix 3.1. Numbers of Mnemiopsis leidyi, larval and juvenile Anchoa mitchilli 
gut content samples collected with Reeve net, Tucker Trawl, and mid-water trawl 
during the six research cruises 

 
Cruise Stations M. leidyi Larval  

A. mitchilli 
Juvenile  
A. mitchilli 

Net  Reeve net Tucker Trawl Mid-water trawl 

2010 - May North 0 118 - 

 South 0 0 - 

2010 - Aug North 48 114 12 

 South 60 239 19 

2010 - Sep North 32 - - 

 South 4 56 30 

2011 - May North 0 10 - 

 South 0 0 - 

2012 - Aug North 0 123 20 

 South 81 94 11 

2013 - Sep North 15 7 23 

 South 0 138 30 
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Chapter Four:  Avoiding hypoxia and escaping predators: 

Examining behavior trade-offs with an individual-based model 

Abstract 

Zooplankton face multiple stressors including low dissolved oxygen (hypoxia) 

and predation in many coastal systems. The objective of this study was to evaluate 

whether the avoidance of hypoxia affects the risk of predation, and how different 

behavioral responses the copepods may alter that impact using an individual-based 

behavior model.  The weighted mean depths of the copepods and their time spent in 

both hypoxia and predation patches under three different scenarios (no hypoxia, 

moderate, and severe hypoxia) were used as metrics to test the effects of hypoxia on 

the vertical distribution of simulated copepods and to assess the tradeoff between 

avoiding hypoxia and predation. With similar amounts of predation stress, the 

predation risk was highest under the severe hypoxia scenario, followed by the 

moderate hypoxia scenario, and finally by the no hypoxia scenario. Sensitivity 

analysis indicated that increasing swimming speed when individuals encountered 

stressors was the most influential variable which allowed copepods to quickly leave 

an undesirable area, but also increased the risk of predation from ambush predators. 

Increasing sinking rate was important for aggregating copepods in deeper depths, and 

increased turning angle was critical for keeping vertical position at a specific layer. In 

a region with the most severe hypoxia at bottom and the most predators at the surface, 
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avoiding hypoxic bottom water by swimming faster, jumping more, sinking less, and 

turning smaller angles resulted in shallower weighted mean depth and more 

aggregation between the layers of stressors, which also resulted in spending more 

time in predation patches and potentially increasing predation risk. These findings 

suggest a tradeoff between avoiding hypoxia stress and predation stress. The 

simulation results reflected the field observation that copepod predation mortality was 

higher under hypoxic conditions and supported the hypothesis that copepod behavior 

changes under hypoxic conditions could contribute to enhanced predatory mortality. 

Introduction 

Summer hypoxia, jellyfish blooms, and a decrease in the copepod population 

are often concurrent phenomena in coastal ecosystems. For example, the moon 

jellyfish, Aurelia aurita, often blooms in Hiroshima Bay during summer, the season 

of peak hypoxia (Shoji et al., 2010). Similarly, A. aurita, ghost jellyfish Cyanea 

nozakii, and the giant jellyfish Nemopilema nomurai frequently form large blooms in 

Chinese seas in the same period as hypoxia, resulting in fishery collapses (Dong et al. 

2010). In the Chesapeake Bay, the population of the copepod Acartia tonsa has been 

observed to decrease in summer, when the bottom hypoxia is most pronounced 

(Pierson et al., 2017; Roman et al., 2005) and jellyfish (the bay nettle Chrysaora 

chesapeakei and the comb jellyfish, Mnemiopsis leidyi), are often abundant at the 

same time (Purcell, White, & Roman, 1994). Because the peaks in hypoxia which 

coincide with decreases in copepods and increases in jellyfish has been observed in 

multiple ecosystems, it is likely these are not independent phenomena.  
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Many studies have suggested that hypoxia and jellyfish blooms directly lead 

to a decrease in the copepod population by increasing mortality and/or predation, 

respectively (Elliott, Pierson, & Roman, 2013; Olesen, 1995; Purcell & Decker, 2005; 

Roman et al., 2005). However, more research is still needed to explain the indirect 

effects and interactions between hypoxia and predation. For example, does hypoxia 

intensify predation on copepods, and if so, how? Using field sampling and gut 

analysis, Slater et al. (Ch. 3) confirmed both non-predatory and predatory mortality of 

the copepod A. tonsa (from juvenile anchovy Anchoa mitchilli and ctenophore M. 

leidyi) increased under hypoxic conditions in the Chesapeake Bay, and the dominant 

predator transitioned from fish to jellyfish as moderate hypoxia developed into severe 

hypoxia. By comparing predatory and non-predatory mortalities under a variety of 

environmental conditions, Slater et al. (2020 & Ch. 3) showed that the impact of 

predation was enhanced under hypoxia and that this effect was not solely due to the 

seasonal change in predator populations that is coincident with changing hypoxia 

conditions. 

Two hypotheses have been put forward to explain why predation may be 

increased under hypoxic conditions. The first invokes differences in hypoxia 

tolerance.  The tolerance gap hypothesis states jellyfish are often more tolerant to 

hypoxia than their prey, and therefore may have advantages in hypoxic environments 

(Decker, Breitburg, & Purcell, 2004; Ekau et al., 2010; Purcell et al., 2001). For 

example, the critical partial pressures of oxygen (PcO2), which is the partial pressure 

necessary to maintain base metabolism at 25 °C, for M. leidyi and C. chesapeakei 

(PcO2 = 7.2 and 12.3 kPa, respectively) are lower than that of A. tonsa (PcO2 = 13.0 



 

 125 

kPa) (Elliott et al., 2013; Thuesen, Rutherford, & Brommer, 2005; Thuesen et al., 

2005). While it is true that gelatinous zooplankton are in general more tolerant to 

hypoxia than other taxa, this hypothesis does not explain why fish predation on 

copepods also is exacerbated under hypoxia (Ch. 3). Highly mobile species like fish 

have a higher metabolism and require more oxygen than drifting species, and 

therefore are usually more sensitive to low dissolved oxygen than plankton species 

like copepods (reviewed in Ekau et al., 2010).  

Another common explanation is the theory of behavioral change. The amount 

of suitable habitat decreases when the bottom water column is hypoxic; hence, 

aerobic animals may avoid the hypoxic bottom water and congregate in the water 

column above. This may increase the encounter rates between predators and prey, 

potentially resulting in higher predatory mortality (Breitburg, 1994; Breitburg et al., 

1994; Kolesar et al., 2010; Roman et al., 2019). In support of this hypothesis, a 

mesocosm experiment suggested that hypoxia influenced food web interactions more 

through altered habitat use and encounter rates than by directly affecting predation 

(Kolesar et al. 2010). Field observations also have shown that M. leidyi aggregated 

above pycnoclines in the Chesapeake Bay when the bottom of the water column was 

moderately hypoxic, and below pycnoclines when the bottom of the water column 

was severely hypoxic, resulting in the strongest predation on copepods near 

pycnoclines, where both species were concentrated (Purcell et al., 2014). 

While mesocosm studies and field sampling have provided important 

snapshots of the interactions between copepods and their predators under hypoxia, the 

spatial and temporal scales of these studies (meters and hours) are large compared to 
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the size and response time of individual copepods reacting to a stressor (millimeters 

and microseconds) as has been observed in the laboratory. Lab studies using high-

speed cameras have revealed copepods exhibit sophisticated behaviors when 

encountering predators, including sequences of turns, jumps and fast swimming with 

variation among sexes, stages, and species. For example, the average total body 

length of A. tonsa is 1 mm, its average swimming speed is 1.4 mm s-1, but its escape 

speed can reach > 370 mm s-1 within microseconds and for short bursts (acceleration 

> 100 mm s-2) when encountering predators. When escaping, male A. tonsa swim 

faster and female A. tonsa jump longer (Buskey, Lenz, & Hartline, 2002; Waggett & 

Buskey, 2006). Lab studies have also found that the jumping frequency and 

swimming speed of copepods decreases with decreasing dissolved oxygen (Decker et 

al., 2004; Svetlichny et al., 2000). There are geographical differences in behavioral 

responses to hypoxia, as A. tonsa from the Chesapeake Bay avoid hypoxic water, 

while A. tonsa from Florida do not (Decker et al. 2003). This may be partly because 

of the genetic differences within A. tonsa. For example, phylogenetic analyses 

revealed A. tonsa adapting to fine-scale salinity features, with two reproductive 

isolated cryptic species in the Chesapeake Bay (Chen & Hare, 2008; Plough et al., 

2018). These multiple clades within a species may be the reasons for varied responses 

toward similar stressor in different regions, and thus the result from one region may 

not be applicable for other regions even if the “species” is the same. 

However, with these fine spatial and temporal scales, the lab environment is 

comparatively simple compared with that observed in mesocosm or field studies. To 

better understand the effects of behavioral changes under multiple stressors, and the 
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potential consequences for non-predatory and predatory mortality, we built an 

idealized individual-based model to simulate copepod avoidance behavior toward two 

stressors, hypoxia and predation. The scenarios that were tested included two controls 

– no hypoxia (environmental control) and no hypoxia avoidance (behavioral control) 

– and two treatments: moderate hypoxia with hypoxia avoidance and severe hypoxia 

with hypoxia avoidance. We evaluated how changing avoidance behaviors, including 

swimming speed, turning angle, jumping, and sinking, may affect copepod vertical 

distributions, risks of suffocation from bottom hypoxia, or being eaten by nonmobile 

surface predators.  

Methods 

Overall environment 

An idealized 3D individual-based model, modified from a copepod foraging 

model (Leising 2001), was built in MATLAB ver. R2019a to simulate copepod 

stress avoidance behaviors in the Chesapeake Bay. Model parameters were 

summarized in Table 4.1a. The model dimensions were 1 × 1 × 20 m, representing a 

20 m3 vertical water column in the main channel of the Chesapeake Bay. The grid 

size was 1 cm3, and the time step was 1 s. One thousand copepods were randomly 

placed in the model at the beginning of each simulation. The body length of a 

copepod was modeled as 1 mm, approximately the average total body length of adult 

female (1.03 ± 0.02 mm) and male (and 0.96 ± 0.05) A. tonsa (Buskey et al., 2002) 

(Table 4.1). A. tonsa display a “hop and sink” behavior, swimming rapidly upwards 

and then sinking slowly (Buskey, 1994). The “hop” behavior was simulated as 
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individual copepods moving twice their body length each time step, an approximation 

from the free-swimming behavior of A. clausi (moving 1.5 ± 0.1 mm during 100 ms, 

Saiz & Alcaraz, 1992). The “sink” behavior was simulated as moving half their body 

length each second, approximated from the published mean sinking velocity of A. 

tonsa (0.58 ± 0.1 mm s-1, Jonsson & Tiselius, 1990).  

Stimulants were placed in the model to simulate stressors in the Chesapeake 

Bay during summer that cause responses in the copepods (Table 4.1). Stimulants 

above mid-depth (10 m) represented ctenophore predators and stimulants below the 

mid-depth represented hypoxia. The stimulation strength was measured in relative 

intensity from 0 to 1, with 0 representing an absence of stressors (“safe zone”), and 1 

representing an anoxic area or where ctenophore predation occurred. Hypoxic stress 

increased with depth from the mid-depth to the bottom, reflecting the observations 

made during research cruises in summer 2010 and 2011, that dissolved oxygen levels 

were lower below pycnoclines (Pierson et al. 2017). In keeping with the data from 

summer 2010 in the Chesapeake Bay, the intensity of hypoxia stress was gradually 

increased from 0 to 1 from the mid-depth to the bottom (20 m) in the moderate 

hypoxia scenario (Figure 4.1a). For the severe hypoxia scenario, the intensity of 

hypoxia was simulated with a marked increase in relative intensity from 0 to 0.8 over 

5 m, from the mid-depth to 15 m, and then slowly increased from 0.8 to 1 from 15 m 

to the bottom, representing the hypoxic conditions during 2011 summer cruise 

(Figure 4.1b).  

In contrast with how hypoxia was parameterized, predation stress was 

maximal at the surface with a relative intensity of 1 and decreased to 0 at the mid-
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depth, reflecting field observations that ctenophores were mostly concentrated above 

the pycnocline during summer (North & Houde 2004, Slater et al. 2020). Predation 

was modeled as increasing from the mid-depth to the surface and included a random 

component to simulate patchiness in predators. To create the trend and patchiness, 

stress in each horizontal cell was linearly interpolated from intensity = 0 to 1 from 

mid-depth to the surface, and then this intensity was multiplied by a random number 

between 0 and 1, so the maximum predation stress increased in both mean and 

variance from mid-depth to the surface (Figure 4.2). As a result, when a simulated 

copepod swam up from mid-depth (10 m) toward the surface, its risk of being preyed 

upon increased, yet there are places without predation stress at each depth. The 

combined stress field (hypoxia + predation) was then summed as the total stress field 

(Figure 4.3). Although the final stress field was simpler than reality, because the two 

stressors did not overlap, the general real-world pattern of more predators above 

pycnoclines and less dissolved oxygen below pycnoclines was reflected in the model. 

Model equations and parameters 

The model can be broken down into two major behavioral components: (1) 

stress avoidance and (2) impairment under hypoxia. 

Stress avoidance 

This stress avoidance component was modified from a copepod spatial 

foraging model (Leising & Franks, 2000; Leising et al, 2005), in which copepods 

respond to stimuli (food) with an “area-restricted search” behavior. In this behavior, 

copepods swim more slowly and with a more tortuous path in order to stay in a food 

patch (Tinbergen et al. 1967), with the opposite true when searching for food. The 



 

 130 

model showed this spatial foraging strategy provided better “fitness” (defined as the 

ratio of total ingestion over mortality) than a random walk (Leising et al, 2005). Our 

stress-avoidance model adopted this spatial foraging so that simulated copepods 

would move more quickly away from an undesirable area and stay longer in a 

favorable zone. In our model, the stimuli represented stressors, either hypoxia stress 

or predation stress, depending on the depth of individual copepods in the model. 

When encountering a stressor, copepods in the model swam faster and straighter to 

escape and to search for safe zones (defined as I = 0); upon arriving in a safe zone, 

copepods swam more slowly and made bigger turns to remain near that location. 

Similarly, copepods jumped more and sunk less in a stress patch (I > 0.5), 

approximating responses toward a predator or hydrodynamic disturbance (Burdick et 

al., 2007; Waggett & Buskey, 2006, 2007; Waggett & Buskey, 2006). The opposite 

was true for copepods trying to stay in a safe zone longer, as approximated from 

Tiselius's (1992) description of aggregation behavior in food patches. 

Copepod behavioral responses in the model were a linear function of the 

stimulant intensity (Table 4.2). These linear relationships were based on studies with 

high-speed cameras in which copepod responses increased with proximity to the 

source of a hydrodynamic disturbance, and thus the probability of an escape response 

can be described as a function of distance from the stimulus (Burdick, Hartline, & 

Lenz, 2007; Buskey et al., 2002; Gilbert & Buskey, 2005). In our model, when there 

was no stressor (stress intensity = 0) copepods swam at a resting swimming speed 

(sw) of 1.5 mm s-1 as approximated from the mean observed adult A. tonsa swimming 

speed (1.4 ± 0.18 mm s-1, Waggett & Buskey, 2006). The standard deviation of 
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copepods’ turning angle (τ) was 90, assigned to generate the most torturous path. The 

jumping percentage (jp) was parameterized so that 5% of the population at any given 

time was jumping, based on lab observations that Acartia sp. only hop intermittently 

and spend most of their time sinking (Buskey et al., 2002; Tiselius & Jonsson, 1990). 

The sink percentage (sp) was arbitrarily assigned to be 50% of copepods in the top 

half layer and 10% in the bottom half layer at any given time step, to simulate in 

general more sinking than jumping and less sinking in the bottom under hypoxic 

conditions.  

The overall escape strategy was swimming faster and straighter, jumping 

more, and sinking less. Accordingly, when the comparative stress intensity changed 

from 0 to 1 (i.e., the maximum, such as under anoxia or at the mouth of a 

ctenophore), the following changes occurred: the swimming speed incased to 4.5 mm 

s-1 (Equation 4.1), the standard deviation of turning angle range decreased to 5 

degrees (Equation 4.2), the jumping percentage increased to 60% (Equation 4.3), and 

the sinking percentage decreased to 1% in the bottom-half layer and 5% in the top-

half layer (Equation 4.1 & 4.2). These values were scaled linearly with the stress 

intensity.  The largest swimming speed when a copepod encountered maximum stress 

(4.5 mm s-1, Equation 4. 1) was based on the observed average jump distance (4.2/4.6 

mm in male/female A. tonsa, Buskey et al., 2002). The minimum standard deviation 

of copepods’ turning angle was arbitrarily assigned as 5 for a straighter path when 

encountering stressors (Equation 4.2). The maximum jump percentage (60%) was 

based on lab observations of the percentage of escape responses of Acartia sp. next to 

a disturbance source (Burdick et al., 2007; Buskey et al., 2002) (Equation 4.3). 
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Minimum sinking (5% for the top layer copepods and 1% for the bottom layer 

copepods) was arbitrarily assigned for improving escape efficiency. The equations 

were: 

Δsw
Δ𝑡𝑡

 = 0.15 + 0.3 I (Equation 4.1) 

 
Δτ
Δt

= 90 − 85I 
(Equation 4.2) 
 
 

Δjp
Δt

= 0.05 + 0.55I 
(Equation 4.3) 
 
 

Δsp
Δt

= 0.5 − 0.45I, if depth ≤ 10 m 
(Equation 4.4) 
 
 

Δsp
Δt

= 0.1 − 0.09I, if depth > 10 m 
(Equation 4.5) 

 

Impairment under hypoxia 

When a simulated copepod was in hypoxic conditions (below 10 m), the 

swimming and jumping responses were impaired based on the hypoxia stress 

intensity by multiplying the behavior function by an impairment factor (IF, Equation 

4.6). This factor was intended to simulate the effects of decreasing dissolved oxygen 

on copepods’ ability to escape (Decker et al. 2004). Under the maximum stress 

scenario (intensity = 1, simulating anoxia), the slope of swimming and jumping was 

reduced by half, making the simulated copepods less responsive to the stimuli and 

less capable of escaping hypoxia. 

𝐼𝐼𝐼𝐼 = 1 − 0.5𝐼𝐼 if depth > 10, else IF = 1 (Equation 4.6) 

Scenarios and assumptions 
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Three scenarios were tested with the model: 1) no hypoxia (a control scenario 

with only predation); 2) moderate hypoxia; and 3) severe hypoxia. Each scenario 

simulated 6-hrours in the copepods’ life. Each scenario was repeated three times, with 

the locations of the 1000 copepods randomly selected and the predation field 

generated at the beginning of each run. After each set of three simulations was 

complete, the average and standard deviation of weighted mean depth (WMD), and 

the total time spent in stressor patches (I > 0.5) were calculated for each individual in 

the simulation to evaluate the tradeoff between avoiding hypoxia and avoiding 

predation.  

To focus on the stress avoidance behaviors, copepod growth, feeding, and 

mortality were neglected, and copepod prey chasing behavior was suppressed as well. 

The distributions of predation stress were fixed within each simulation. Because the 

study sought to simulate predation stress from ctenophores, which are a drifting 

species, and because our simulation time was comparatively short, a fixed predation 

stress field was used for the duration of each model run to decrease the model’s 

complexity. These parameterizations allowed the modeling effort to focus directly on 

the consequences of behavioral changes under multiple stressors. 

Sensitivity analysis 

To determine the sensitivity of the model results to the parameterization of the 

escape responses, a series of model sensitivity runs were completed by varying the 

magnitude of individual escape behaviors. In general, for these runs, the slope of 

copepod response toward stimulants was varied by ± 50%, except for the standard 

deviations, which were varied by ± 5%, and the sinking percentages which were 
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varied by ± 10%, to avoid values below 0 (Table 4.2). For example, for Equation 4.1 

in the sensitive analysis, the slope of the stress response was elevated or lowered by 

50%, resulting in 0.15 + 0.45 I in the more responsive scenario and 0.15 + 0.15 I in 

the less responsive scenario. A series of model runs using the severe hypoxia scenario 

were then completed, with the behavioral parameters varied in each run to examine 

how the results changed. The mean weighted depth, copepod concentrations in the top 

half, middle, and bottom layer (0-10, 10-15, 15-20m), and the time spent in the 

hypoxia or predation stress zone (I > 0.5) were calculated as percentage changes for 

each parameter from the default response.   

Results 

Vertical distribution and time spent in stress patch 

The vertical distribution of copepods was strongly influenced by stress related 

to dissolved oxygen. In the case of no hypoxia (control scenario), copepods gradually 

sank to the bottom (Figure 4.3a, Figure 4.4a) because there was no motivation to 

swim upward (e.g., for feeding) built into the model. However, when bottom hypoxia 

was present, copepods in the bottom layer quickly moved upward in both moderate 

and severe hypoxia scenarios. It took approximately 1 hour for copepods to 

completely escape the hypoxic zone (depth = 18 – 20 m) in the moderate hypoxia 

scenario (Figure 4.3b), and it took twice as long under the severe hypoxia scenario 

when the hypoxia zone (I > 0.8, depth = 15 – 20 m) was bigger and they were more 

impaired (Figure 4.3c). It took longer for copepods to move away from the predation 

stress in the surface layer when hypoxia stress also was present. During the 6-hr 
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simulation, the copepod relative concentration (% of total abundance)  in the top-half 

of the water column constantly decreased by 5% every 30 min under the no hypoxia 

scenario (Figure 4.3a), but the changes in abundance were < 3% after 3 hrs of 

simulation in both hypoxia scenarios (Figure 4.3b, c).  

The mean weighted depth (MWD) of copepods also was strongly influenced 

by hypoxia. After 6-hrrs of simulation, MWD was shallowest under severe hypoxia 

(Figure 4.6a). The MWD was 12.83 ± 0.04 m and 11.97 ± 0.07 m in the moderate and 

severe hypoxia scenario, respectively, and both were shallower than the MWD in the 

control scenario (19.15 m). Copepods aggregated below the stress-free mid-depth 

region (found at 10 –12 m) and above the stress zone where I > 0.5 when hypoxia was 

present, which was markedly different from the aggregations near bottom in the 

control scenario (Figure 4.7).  

Aggregation was more pronounced under severely hypoxic conditions than 

under moderately hypoxic conditions. More than three times more copepods 

aggregated at depths of 10 – 12 m (z = 1000 - 800 cm) in the severe hypoxia scenario 

(number of copepods = 708) than in the moderate hypoxia scenario (number of 

copepods = 209), compared with only 100 copepods in the no hypoxia scenario 

(Figure 4.7). Hence, avoiding bottom hypoxia resulted in shallower vertical 

distributions and aggregation in a comparatively stress-free zone. Increasing the 

severity of hypoxia further increased the shoaling of the copepods’ vertical 

distributions and increased aggregation.  
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Copepods on average spent 37% more time in the hypoxia patch (I > 0.5) in 

the severe hypoxia scenario (38 ± 0.6 min) than in the moderate hypoxia scenario (27 

± 0.4 min) (Figure 4.6b). By avoiding bottom hypoxia and moving upward, copepods 

also spent 19% more time in predation stress patch (I > 0.5) in the severe hypoxia 

scenario (19.2 ± 0.7 min) than in the moderate hypoxia scenario (16.9 ± 1.7 min) 

(Figure 4.6c). The altered vertical distribution resulted in more time spent in 

predation stress patches, supporting the idea that predation risk increased under more 

hypoxic conditions. 

Sensitivity analysis 

Results of the sensitivity analysis indicated that simulated stress avoidance 

strategies enhanced copepod escape from bottom hypoxia, including swimming 

faster, turning less, jumping more, and sinking less. Swimming faster was the most 

effective way to escape bottom hypoxia. By increasing the slope of swimming speed 

by 50% and increasing the maximum speed to 60 mm s-1, the time spent in hypoxia 

patch (TIH) decreased by 16%, and the WMD was 6% shallower than the default 

parameter settings with 7% more copepods concentrated in the upper half of the water 

column. Smaller turning angles were also very effective at enhancing escape from 

hypoxia. By increasing the slope of turning responses by 5% and decreasing the 

minimum turning angle to 0.75 degrees, the TIH decreased by 8%, and the WMD was 

2% shallower than default with 6% more copepods concentrated in the upper half of 

the water column. Jumping more was less effective than swimming faster and 

straighter. By increasing the slope of jump percentage by 50% and increasing the 

maximum jumping to 87.5%, the TIH decreased by 6%, and the WMD was 4% 
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shallower than default with 6% more copepods concentrated in the upper half of the 

water column. Comparatively, sinking less was the least effective way to escape 

bottom hypoxia. By increasing the sinking responses by 10% and minimizing the 

sinking to 0.1% when copepods encountered stress, the TIH decreased by 2%, and the 

WMD was similar to the default scenario with only 1% more copepods concentrated 

in the upper half of the water column.  

In contrast, decreasing the magnitude of escape responses resulted in 

copepods remaining in the hypoxic zone for a longer amount of time, and their escape 

responses were impaired more severely. Although the final WMD was similar to the 

default scenario, it took longer for copepods to get to the safe zone and they spent 

more time in hypoxia patches during the 6-hr simulation. For example, decreasing 

swimming speed by 50%, which reduced maximum swimming speed to 30 mm s-1, 

increased TIH by 44%. Overall, increasing the magnitude of the response to stressors 

decreased the amount of time copepods spent in all stress patches by 3 – 9%, and 

decreased the stressor responses which created negative feedbacks that resulted in 

increased time spent in stress patches by 13 – 28% (Table 4.3).  

Although swimming faster and straighter, jumping more, and sinking less 

enhanced copepod escape from bottom hypoxia, not all of the behaviors helped to 

decrease time spent in predation stress. For example, swimming faster made the 

MWD shallower and increased concentrations in the upper half of the water column, 

thus also increasing the time spent in predation patches by 8% (Table 4.3), suggesting 

a tradeoff between avoiding hypoxia stress and avoiding predation stress. When 

comparing the time spent in hypoxia and predation patches with I > 0.5, the behaviors 
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of swimming faster, straighter and jumping more slightly increased time spent in 

predation patches (Figure 4.8). The effects of changing sinking rates were not as 

pronounced, and the tradeoff between avoiding hypoxia and avoiding predation were 

bigger for some behaviors (i.e., swimming faster) than the others (i.e., sinking less). 

Discussion 

This study focused on the dilemma of avoiding two different stressors by 

employing an individual-based model to test if avoiding hypoxia could increase 

predation risk for copepods. By swimming faster, turning with smaller angles, 

jumping more and sinking less when encountering stressors, simulated copepods were 

able to escape stressors (either predator or hypoxia) and eventually aggregate around 

the mid-depth (the “safe zone”) in scenarios with both hypoxia and predators. 

However, avoiding bottom hypoxia also resulted in shallower vertical depth 

distributions, which increased predation risks by forcing copepods to spend more time 

in predation stress patches.  

Cue hierarchy 

The tradeoff between avoiding hypoxia and predation was observed in this 

model. Aggregating at shallower depths, swimming faster, and jumping more, 

decreased the time spent in hypoxia zone, but these behaviors also increased time 

spent in predation patches and thus increased predation risk (Figure 4.8). In this 

model, both hypoxia and predation stress were equally weighted, and copepods 

responded toward them in the same manner which was scaled to the intensity of the 

stressor. However, hypoxia and predation are fundamentally distinct stressors. 
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Predators present acute stresses; once met, escape responses are an immediate 

necessity otherwise the consequence is irreversible. Hypoxia, on the other hand, is a 

more chronic stress; it will not kill copepods immediately when encountered, but it 

eventually will reduce growth and reproduction (Sedlacek 2003, Marcus et al. 2004) 

before mortality happens which would take a longer time compared with a predator 

encounter.  

In addition to having different time scales of influence on individual 

copepods, hypoxia and predation stress also have dissimilarities in the field. Hypoxia 

usually takes some time to establish near the bottom and there is often a declining 

oxygen gradient with stratification above it (Kemp et al. 2005). Because zooplankton 

could react to slight changes (≤1%) in oxygen (Wishner et al. 2013) and some 

copepods change their vertical distribution accordingly (Tinson & Laybourn-Parry 

1985), copepods may be able to use oxyclines or stratification as a warning sign. In 

contrast, the distribution of predators is comparatively less predictable. Because the 

force of predation selection is very strong and often alter animal’s behavior when 

present (Lima & Dill 1990), it is likely copepods weigh predation and hypoxia 

differently and have different strategies for coping with these two stressors.  

For the hypoxia, swimming up was an effective choice to escape because the 

stressor was evenly distributed in the bottom layer. However, the distribution of 

predation stress was random, so there were small safe zones in the upper half of the 

water column, and thus copepods did not have to move toward a specific direction to 

be safe. In the laboratory,  copepods have escaped predators by rapid reorientation 

(30º s-1, Buskey et al. 2002), opposite of the stress responses in my model. A test was 
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conducted to see what happens if copepods were turning bigger angles (30 º - 90º) 

when encountering stress (Figure 4.11). The results indicated that copepods overall 

stayed in hypoxia zones twice as long (84 min vs 40 min), but the time spent in 

predation patches was also decreased to approximately 14 min (compared with ~35 

min in default), indicating that larger turning angles could effectively help copepods 

avoid ambush predators with low risk of jumping into another predator (which is 

what increased swimming speed would do). Considering the optimal escape direction 

for avoiding bottom hypoxia (moving up) and avoiding predators (moving away) are 

not the same, a good strategy for escaping uniform stress (like hypoxia) may not be as 

good for escaping a randomly distributed stress (like predation).  

Swimming faster also increased the encounter rate with ambush predators 

(Buskey 1994), and jumping more increased the chance of being detected by 

predators (Wong et al. 1986); both of these tradeoffs were observed in this model 

(Figure 4.8). Copepod behavior studies have focused on the cue hierarchy between 

feeding and predation (Woodson et al. 2007), but not on the tradeoffs between 

hypoxia and predation. A study on fish did find predation seems outweigh hypoxia: 

the dwarf gourami (Colisa lalia) spent more time in extreme hypoxia (DO < 1 mg L-

1) rather than leave vegetation cover when their predator snakeheads (Channa 

micropeltes) were present compared to the treatment when no snakeheads were 

present (Wolf & Kramer 1987). In the same study, snakeheads’ predation success was 

higher when the water was hypoxic because dwarf gourami left cover more often 

compared with normoxic (Wolf & Kramer 1987). This may explain why copepods 

have been found in hypoxic bottom waters (Taylor 2003, Pierson et al. 2017).  
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Because the model captures trade-offs related to stressors and copepod 

behaviors, this model provides a novel tool to understand the mechanisms of copepod 

responses toward stressors and how that will affect their vertical distributions. It can 

also help evaluate the effectiveness of different stress avoidance strategies and the 

tradeoff between avoiding different types of stressors (hypoxia and predation in this 

study) by analyzing the time spent in different stress patches. Although the model 

does not yet replicate a copepod’s response to a full range of stressors, the 

comparison among the different stressor types and distributions could provide insight 

on copepod behaviors which maximize survival and minimize mortality in many 

different ecosystems.  

Predator responses 

Aggregation within the stress-free zone was observed, and severe bottom 

hypoxia increased the concentration of copepods in the safe zone (Figure 4.7). This 

model focused on copepod stress avoidance strategies, and thus the predation stress 

was simplified. In the model, simulated predation stress was non-mobile, and the 

distribution of predation stress was fixed throughout the entire simulation (but 

differed in space among simulations), with the goal of simulating ctenophore 

predation risk. The largest predation stress was at the surface, reflecting field 

observations that ctenophores were more abundant above pycnoclines when the 

bottom was hypoxic (North & Houde 2004, Slater et al. 2020) . However, this created 

a mismatch with the depth of copepod aggregation, potentially underestimating 

predation risks if ctenophores are distributed more evenly above the pycnocline.  
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Evidence exists related to the distribution and abundance of jellyfish which 

can inform individual-based modeling efforts. A fine-scale (1 m resolution) vertical 

sampling study indicated that M. leidyi aggregated around the pycnoclines where the 

maximum predation impact occurred (Purcell et al. 2014). In addition, gelatinous 

zooplankton can respond to prey patchiness. For example, an analysis of tagged-

jellyfish (Rhizostoma octopus) in Carmarthen Bay indicated that jellyfish searched the 

water column (Hays et al. 2011). Lab observations on bay nettle also found that they 

swam faster and pulsed less frequently when prey was available (Matanoski et al. 

2001). Field observations showed that different ctenophores have different foraging 

behavior (Matsumoto & Harbison 1993), and M. leidyi altered the positions of their 

oral lobe to increase capture efficiency (Costello et al. 1999, Waggett & Costello 

1999). If the largest predation stress occurred near mid-depth and predators responded 

by moving toward prey aggregations, then even slight increases in the time spent in 

predation patches under hypoxia due to the shallower vertical distributions of the 

copepod could lead to a significant increase in predation risk.  

The magnitude of the tradeoffs between avoiding hypoxia and avoiding 

predation were different among the different escape behaviors tested in this modeling 

study. For example, swimming faster was very effective for escaping the hypoxic 

bottom water, but it also increased the time spent in the predation patches. The time 

spent in these two different stressors should not be weighed equally, as one minute 

longer in hypoxia is potentially lethal, but one minute longer in the mouth of a 

predator is mortal. The tradeoff for sinking less was comparatively lower. Part of the 

reason for the different tradeoffs among the behaviors was because the predation 
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stress in the model was patchy and at fixed locations (more like an ambush predator), 

and increasing copepod swimming speed can increase the predator-prey encounter 

rates (Buskey 1994, Kiørboe 2011). This creates a tradeoff between effectively 

escaping from bottom hypoxia and avoiding patchy ctenophores near the surface. If 

the predation stress were moving fast or actively chasing after copepods, then 

swimming faster would be critical for successfully escaping from predators as the 

relative speed between predator and prey plays an influential role on encounter rates 

(Gerritsen & Strickler 1977, Evans 1989, Huse & Fiksen 2010). In the model, the 

predation stress was not mobile, and the simulated predators did not take advantage of 

prey aggregations as a real predator would, and thus the predator impact was likely 

underestimated in the model. However, by comparing among the different scenarios 

we can see how the general encounter rates of copepods and patches of predation are 

impacted by different hypoxia conditions and behavioral responses.  

Sinking and survival  

The hop and sink behavior, instead of constantly swimming, is a behavior that 

can allow copepods to save energy (Haury & Weihs 1976). Laboratory studies 

indicate that A. tonsa can spend around 80% of the time sinking (Buskey et al., 2002; 

Tiselius & Jonsson, 1990), but a lower sinking ratio (5 – 50% in the surface layer, 1 – 

10% in the bottom layer, Table 4.2) was adopted in the model to compensate for the 

absence of upward swimming behavior (feeding) and to expedite copepods movement 

away from hypoxic bottom waters. Changing the sinking rate to 10 – 80% caused all 

copepods to aggregate below the “stress clines” and sit right above the hypoxic layer 

(I > 0.8, Figure 4.9), resulting in a deeper MWD. On the contrary, very small sinking 
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rates (1 – 5 %) increased the amount of time it took copepods to leave the surface 

layer, and resulted in copepods being more spread out over the water column instead 

of concentrated in the “safe zone” (Figure 4.10). Thus, the simulation results 

indicated that the sinking rate plays an important role in plankton aggregation and 

vertical distribution, and potential tradeoffs between avoiding hypoxia and saving 

energy.  

To better understand how foraging prey, escaping predators, and avoiding 

hypoxia will affect copepod vertical distribution and mortality, foraging behavior 

should be incorporated in future model development and sinking rates should be 

closer to 80% when there is no stressor. Nevertheless, in the current study, the model 

results highlight the influence of sinking rates, in which sinking less helped copepods 

escape stressors and decreased aggregation.  

Future research 

Understanding zooplankton behavior is an important aspect of understanding 

how they adapt to different environments, cope with various adversities, and interact 

with other species (Schmitt & Seuront 2001, Schmitt et al. 2006). Copepods have 

developed sophisticated strategies to optimize their foraging opportunities while 

minimizing energy spent or encounters with predators, including the classic “hop and 

sink” behavior  (Haury & Weihs 1976), instantaneously fast swimming ( > 100 mm s-

2 acceleration within few microseconds) with sequences of big turns when predators 

are encountered (Buskey et al. 2002), or conducting several vertical migrations at 

night to maximize feeding and minimize encounters with predators and save energy 

(Leising & Franks 2000, Leising et al. 2005). Some research has focused on how 
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copepods handle the dilemma of simultaneously foraging for prey and avoiding visual 

predators (Kiorboe & Jiang 2012, Kiorboe 2013), but few focus on the dilemma 

between avoiding bottom hypoxia and predators. Considering that actual copepod 

escape responses are comparatively more complex than other crustacean zooplankton 

such as cladocerans or crab zoea (Singarajah 1969, Ohman 1988), more research is 

still needed to understand how these taxa react within microseconds toward multiple 

cues that often contradict to each other.  

Recent developments in computing technology can provide a powerful tool to 

fill the gap between field research and lab experiments (as predicted by Lima & Dill 

1990). As with the model simulations presented here, it is useful to test various 

hypothesized behaviors and responses that are hard to manipulate in field or 

laboratory settings. Although the current model is much simplified from reality, for 

example the simulated copepods do not eat and the simulated predators do not pursue 

prey, this model does represent a step toward understanding how different behaviors 

may not only affect the efficiency of escaping from stressors  but also may affect 

copepod vertical distributions and interactions with predators. This study represents a 

beginning to understand how copepods handle the dilemma of avoiding hypoxia and 

predators with an individual-based model, and the model results suggest tradeoffs in 

mortality risk when avoiding multiple stressors. Coupling prey feeding behaviors and 

adding predator chasing behavior could be the next steps toward increased 

understanding of how different individual responses toward surrounding micro-

environments and specific stressors may further affect the population’s distribution 

and interactions. 
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Tables and Figures 

Table 4.1. Summary model environment setting (a) and stressor distribution (b) of the 
copepod’s stress avoidance model 

 
Parameter Abbreviation Value Unit 
Domain Width x 1 m 
Domain Length y 1 m 
Domain Depth z 20 m 
Grid size   1  cm3 

Timestep   t 1 second 
Copepod numbers n 1000  
Start location  random  
Body length bl 1 mm 
Jump speed  2  bl/ timestep 
Sink distance  0.5  bl/ timestep 
Stress intensity I 0 – 1  

 

(b) 
 
Stressor Abbreviation Distribution 
Ctenophore predation p 

hypoxia (moderate)  hm hm  =  0, if d ≤  10, 
hm  =  0.1d − 1, if d >  10 

hypoxia (severe) hs hs  =  0 , if d ≤  10, 
hs  =  0.16d −  1.6 , if 10 < d ≤  15 
hs  =  0.04d + 0.2 , if d >  15  
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Table 4.2. Copepod’s stress avoidance response and impairment under hypoxia toward stress intensity ( 0 ≤ 𝐼𝐼 ≤  1) and the sensitive 
analysis (More/ Less responsive) 

Escape responses Unit Default behavior More responsive Less responsive 

Swim speed  cm s-1 0.15 + 0.3 I 0.15 + (0.3 × 1.5) I 0.15 + (0.3 × 0.5) I 

Std of Turning angle  º 90 − 85I 90 − (85 × 1.05) I 90 − (85 × 0.95) I 

Jump  % of the population 0.05 + 0.55I 0.05 + (0.55 × 1.5)I 0.05 + (0.55 × 0.5) I 

Sink (top layer) % of the population 0.5 − 0.45I 0.5 − (0.45 × 1.1)I 0.5 − (0.45 × 0.9) I 

Sink (bottom layer) % of the population 0.1 − 0.09I 0.1 − (0.09 × 1.1)I 0.1 − (0.09 × 0.9) I 
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Table 4.3. The averaged percentage stress response changes (in % slope) and the 
resulting vertical distribution weighted mean depth (WMD), and total time spent in 
hypoxia (TIH), predation (TIP), or overall stress (TIS) patch (I > 0.5) were calculated 
after a 6-hr simulation compared with the default setting. 

 
Behavior 
changes 

Speed Jump Sink Turn 

 +50% –50% +50% –50% +10% –10% +5% –5% 

WMD -6.3% 0.9% -4.0% 0.0% -0.1% -0.9% -2.2% -0.2% 

0 - 10m 7.3% 2.8% 6.4% 7.7% 0.5% 14.2% 5.8% 8.6% 

10 - 15m -2.6% -1.0% -2.3% -2.8% -0.2% -5.2% -2.1% -3.1% 

TIP -16.4% 44.2% -6.3% 19.9% -1.6% -7.0% -8.3% 20.1% 

TIH 8.2% -8.3% 3.9% 2.0% -5.0% -1.0% 5.4% -2.1% 

TIS -8.9% 28.3% -3.2% 14.5% -2.6% -5.2% -4.2% 13.4% 
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Figure 4.1. The vertical profile of simulated hypoxia in moderate (blue) and severe 
hypoxia (red) themes (x = 50 cm, y = 50 cm, z = 0 : 200 cm). The comparative 
intensity of hypoxia gradually increased from 0 at mid-depth (10 m) to 1 at the 
bottom in the moderate hypoxia scenario (a), or quickly increased to 0.8 at 15 m and 
then slowly increased to 1 at the bottom in the severe hypoxia scenario (b). 
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Figure 4.2. An example vertical profile of ctenophore predation stress (e.g., x = 5 cm, 
y = 50 cm, z = 0 – 200 cm). The comparative maximum intensity of predation stress 
increased linearly from 0 at mid-depth (100 cm) to 1 at the surface, and the maximum 
intensity at each vertical grid point was multiplied by a random number to generate 
stochasticity.  

 

Note: the exact distribution was different in each simulation run due to the random 
number generator.  
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Figure 4.3. The combined stress field of the no hypoxia (a), moderate hypoxia (b) and 
severe hypoxia (c) scenarios. In all cases, predation stress maxima linearly increased 
from 10 m to surface with stochastic variability within each grid cell, and hypoxia 
varied according to the scenario. Colors indicate comparative stress intensity (0 – 1). 

(a) 

 

(c) 

 
(b)  
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Figure 4.4. Changes in vertical distribution during 6-hr simulations without hypoxia 
(control). Green indicated well-mixed water above 100 cm, light and dark blue 
indicated water below 100 cm and below 180 cm. 
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Figure 4.5. The vertical distribution changes during 6-hr simulations under (a) 
moderate hypoxia and (b) severe hypoxia. Red indicates hypoxia stressor (I > 0.8), 
yellow indicates the oxycline zone (0 < I < 0.8), and green (I = random) indicates the 
well-mixed region with predators with stress intensity linearly increases with random 
perturbations from mid-depth (10 m) toward the surface.   

(a) 

 
(b) 
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Figure 4.6. The average weighted mean depth (a) and total time spent in hypoxia (b) 
or predation (c) stress zone (I > 0.5) after 6-hr simulation of the no hypoxia, moderate 
hypoxia, and severe hypoxia scenario. 

(a) 

 

(c) 

 
(b)  
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Figure 4.7. The final distributions after 6-hr simulations under three scenarios: (a) no 
hypoxia, (b) moderate hypoxia, and (c) severe hypoxia  
(a) 

 

(b)  

 

(c) 
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Figure 4.8. The average time spent in hypoxia or predation stress zone (I > 0.5) under 
severe hypoxia scenario with more (blue) or less (green) responsiveness toward 
stressors compared with the default (red) behavior. Numbers on the labels indicates 
percent change in slopes compared with the default behavior, and the text indicates 
which parameter was adjusted. 
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Figure 4.9. (a) Changes in the vertical distribution of simulated copepods and (b) the 
final distribution in a 6-hr simulation if the sinking rate was 10 – 80%. The swimming 
speed, turning angle, and jumping rate were the same as the default (shown in Figure 
4.5b). 

(a) 

 
(b) 
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Figure 4.10. (a) Changes of copepod vertical distribution and (b) the final distribution 
during a 6-hr simulation under the severe hypoxia theme when the sinking rate angle 
was 1 – 5% (instead of 1 – 50%) and the rest responses were the same as the default. 

(a) 

 
 
(b) 
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Figure 4.11. (a) The changes of copepod vertical distribution and (b) the final 
distribution during a 6-hr simulation under the severe hypoxia theme when the 
minimum turning angle was 30 º (instead of 5º) and the rest responses were the same 
as the default. 

(a) 

 
(b) 
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Chapter Five:  Conclusion and Future Research 

This dissertation filled a gap in our current knowledge of zooplankton ecology 

by 1) quantifying the direct and indirect impact of hypoxia on the zooplankton 

foodweb; 2) untangling the interactions between seasonality and hypoxia on the 

zooplankton community; 3) elucidating the dynamics of bottom-up and top-down 

effects of hypoxia on zooplankton and specifying the timing, magnitude, and 

succession different components of the foodweb; and 4) improving our understanding 

of the role of zooplankton behavior on vertical distributions and overall survival by 

illustrating that behavior changes under hypoxia can increase predation risk. Overall 

this study improved the understanding of how ecosystems change under hypoxia and 

employed novel methods to investigate the connection between individual responses 

on population ecology.  

Conclusion 

My study addressed why zooplankton are less abundant when the bottom 

waters of the Chesapeake Bay are hypoxic. This question was addressed from 

different perspectives, including bottom-up effects (direct increases in mortality due 

to hypoxia), top-down effects (enhanced predation under hypoxia), and behavior 

changes (different responses to predatory and hypoxic stressors). Environmental and 

animal abundance data from six week-long research cruises in the main stem of 



 

 165 

Chesapeake Bay were conducted from summer to autumn in 2010 and 2011, and 

results from those cruises indicated that species- and temperature-specific oxygen 

requirements should be considered when evaluating oxygen deficiency because the 

impact of oxygen varies with both temperature and salinity, as these factors affect 

both organism metabolism and dissolved oxygen solubility. 

Both hypoxia and jellyfish blooms are most prevalent in summer when 

copepod populations are often at an annual minimum decline. Because warmer 

temperature has important effects on the abundance and natural mortality of prey and 

predators, it was necessary to isolate the effects of hypoxia from seasonal effects to 

understand the impact of hypoxia on zooplankton populations and interactions. To do 

this, data were grouped according to the results of a PCA analysis on hydrographic 

data, and comparisons were made between high and low dissolved oxygen conditions 

within specific temperature groups. The statistical analyses indicated that both 

copepod and bay anchovy concentrations were lower under more hypoxic conditions, 

but comb jellyfish and bay nettle concentrations were higher. This evidence indicated 

that the jellyfish blooms which are often concurrent with summer hypoxia are not 

purely coincident, and that gelatinous zooplankton may have an advantage under a 

hypoxic environment. My analysis also showed that both copepod nonpredatory 

mortality were higher under hypoxic conditions, suggesting direct hypoxic effects on 

copepod populations.  Both jellyfish predation and fish predation were higher in 

hypoxic conditions, even when predator concentrations were similar, supporting the 

assertion that the increased predation under hypoxia was not solely due to predator 
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phenology or abundance.  Thus, both seasonality and hypoxia play role in 

zooplankton populations and interactions. 

This study indicated that both bottom-up and top-down effects contributed to 

observed decreases in copepod abundance in the presence of hypoxia, and that the 

bottom-up and top-down effects of hypoxia were not always equally weighted. In 

spring, when the major predators of copepods were not yet abundant, nonpredatory 

factors were the major factor affecting population decreases. In summer and autumn, 

predatory factors became more important and increased with the severity of hypoxia. 

Predator succession was observed as well: juvenile anchovy predation caused 

copepod decreases under moderate hypoxia, and ctenophore predation caused 

copepod decreases under warm and severe hypoxia.  

An individual-based model was then built to test whether behavior changes 

under hypoxia could lead to increased predation. My simulations indicated that by 

avoiding bottom hypoxia, copepods increased their predation risk by aggregating at a 

shallower depth, supporting my field observations that predation can increase under 

hypoxic conditions. The model also elucidated the mechanisms for this finding, by 

demonstrating that increased swimming speed is critical for quickly escaping bottom 

hypoxia, and that sinking rate was important for aggregation. Tradeoffs between 

avoiding hypoxia and predation were revealed by analyzing the time spent by 

individuals in hypoxia and predation stress patches. Because there is not a universal 

escape strategy, model results also suggest that different avoidance strategies work 

best for different stressors. For example, swimming faster and straighter was best for 

escaping bottom hypoxia, but larger turning angles worked better for escaping 



 

 167 

ambush predators. Although copepod behavior, predator behavior, and environmental 

conditions were simplified in this model, the model provided a novel way to explore 

ideas that that are difficult to address with field research or lab experiments.  

Future research 

This study concluded that the copepod population was decreasing under 

hypoxia due to both increasing direct mortality and increasing predation, and that 

avoiding hypoxia played an important role in increasing predation risks. However, 

advection loss under hypoxia was not examined. Because the Chesapeake Bay is an 

estuary with two-layer circulation, , copepods that avoid bottom hypoxia by 

remaining near the surface would be subject to seaward currents and could be 

relocated to southern regions of the Bay. Considering the effects of advection will 

help us understand the biophysical interaction of hypoxia for these animals. In 

addition, the potential differences between sexes and cryptic species were not 

examined in this study and would be a fruitful area of research. Previous research has 

shown that female A. tonsa avoid hypoxia more than male A. tonsa (Pierson et al. 

2017). Hence, the importance of nonpredatory and predatory factors are likely 

different between the sexes. In addition, two reproductively-isolated cryptic A. tonsa 

species have been found in the Bay, and one prefers fresher water and another prefers 

more saline water (Plough et al. 2018). In addition, A. tonsa from different locations, 

Tampa Bay and the Chesapeake Bay, were shown to react to hypoxia differently 

(Stalder & Marcus 1997, Decker et al. 2003), so the two cryptic A. tonsa species in 

Chesapeake Bay may also respond to hypoxia differently. There is still more to 
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understand about this key copepod in the Bay and everywhere it is found, and its 

interactions with the environment and other species. 

The individual-based model simulation in this study indicated different levels 

of tradeoffs among various stressor avoidance strategies, for example swimming 

faster was riskier than sinking less from the perspective of increasing ambush 

predation. Although the model developed here is much simplified compared with the 

actual ecosystem, this approach could help fill the gap between field research and lab 

experiments, because zooplankton responses are difficult to manipulate and repeat. In 

future modeling efforts, improvement could come from incorporating zooplankton 

behaviors like feeding, diel vertical migration, and reproduction, as well as 

parameterizing factors such as life stage, natural mortality, and more realistic predator 

behaviors (like chasing after prey aggregation). These enhancements also can be 

applied to different zooplankton species to help understand the mechanisms of 

animals reacting to multiple cues such as food, predators, mates, light, tides, and 

habitat, and how their behaviors affect their population dynamics, distribution, and 

interaction with other species and environment. 
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Appendices 

 

Environmental data collected by Scanfish and the SMS system of the R/V Hugh R. 
Sharp and fluorescence collected by CTD are presented here.
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Appendix A. The sampling maps of the Dead Zone Zooplankton research project. 
Red squares indicated the North Station (38.528° N,76.418° W), green circles 
indicated the South Station (37.738° N, 76.208° W), and the blue lines indicated the 
path of the Scanfish survey. 

 

(a) 2010 May  (b) 2010 Aug 

 

(c) 2010 Sep 

 
(d) 2011 May 

 

(e) 2011 Jul 

 

(f) 2011 Sep 
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 Appendix B. The relationship between relative fluorescence and Chlorophyll-a 
collected from the 2010 May (a), August (b), September (c) and the 2011 May (d), 
July (e), September (f) cruise, and all cruises (g). Regression lines are shown with 
95% confidence intervals (grey shading around lines), and linear equations with R2 
values are shown on each panel. The bottom panel includes regression lines for each 
cruise in addition to the pooled data, with the regression equation and R2 on bottom 
panel corresponding to the pooled data. 
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Appendix C. The temperature (color bar, C°) along the main channel of the 
Chesapeake Bay, collected by the Scanfish during the 2010 May (a), August (b), 
September (c) and the 2011 May (d), July (e), September (f) cruise.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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Appendix D. The salinity (color bar, PSU) along the main channel of the Chesapeake 
Bay, collected by the Scanfish during the 2010 May (a), August (b), September (c) 
and the 2011 May (d), July (e), September (f) cruise. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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Appendix E. The dissolved oxygen (color bar, mg L-1) along the main channel of the 
Chesapeake Bay, collected by the Scanfish during the 2010 May (a), August (b), 
September (c) and the 2011 May (d), July (e), September (f) cruise. Black lines 
indicate DO = 2 mg L-1. 

(a) 

 

  

(b) 

  

(c) 

  

(d) 

   

(e) 

 

(f) 
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Appendix F. The relative fluorescence (color bar, RFU) along the main channel of the 
Chesapeake Bay, collected by the Scanfish during the 2010 May (a), August (b), 
September (c) and the 2011 May (d), July (e), September (f) cruise.  

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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Appendix G. The water surface temperature (red), salinity (blue), and fluorescence (green) along the main channel of the Chesapeake 
Bay collected SMS system of the R/V Hugh R. Sharp when conducting Scanfish, southern anchor, south trawl, north anchor, and north 
trawl during the 2010 May (a), August (b), September (c) and the 2011 May (d), July (e), September (f) cruise.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

(a) 

(c) 

(d) 

(e) 

(f) 
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Appendix H. The air temperature (red, ºC) and pressure (blue, bar) along the main channel of the Chesapeake Bay 
collected from the SMS system of the R/V Hugh R. Sharp when conducting Scanfish, southern anchor, south trawl, north 
anchor, and north trawl during the 2010 May (a), August (b), September (c) and the 2011 May (d), July (e), September (f) 
cruise. 

 

 

(b) 

(a) 

(c) 

(d) 

(e) 

(f) 
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Appendix I. True wind directions and speed (knots) along the main channel of the Chesapeake Bay collected from the SMS 
system when conducting Scanfish, southern anchor, south trawl, north anchor, and north trawl during the 2010 May (a), 
August (b), September (c) and the 2011 May (d), July (e), September (f) cruise.  

 

 

(b) 

(a) 

(c) 

(d) 

(e) 

(f) 
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