

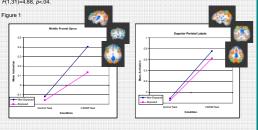
Examining Associations Between Functional Brain Activation and Behavior in Adolescents With a History of Prenatal Drug Exposure

Meghan Graham¹, Tracy Riggins², John Ackerman², Maureen Black², Julie Schweitzer³, & Betty Jo Salmeron¹ Affiliations: 1 National Institute on Drug Abuse (NIDA), Intramural Program, Neuroimaging Research Branch 2 University of Maryland, School of Medicine, Department of Pediatrics

3 University of California, Davis, Psychiatry and Behavioral Sciences, M.I.N.D. Institute

BACKGROUND

Prenatal Drug Exposure (PDE) and Development in Childhoo


Prenatal Drug Exposure (PDE) and Development in Childhood Previous research examining outcomes in children with a history of PDE has yielded mixed results. In most global domains, such as physical growth or IQ, the effects of prenatal drug exposure on development do not appear to be greater than those observed with other teratogens or more powerful than other known environmental risk factors (e.g., poverty, Frank et al 2001). However, reports examining specific cognitive domains, such as executive functioning or visual-spatial skills, have reported deleterious effects of PDE. For example, one study of 4-year-old children documented impairments in visual-spatial abilities, as measured by the Weschildren Preschool and Primary Scales of Intelligence-Revised, in exposed children despite the fact that IQ scores were similar to the nonexposed comparison group (Singer et al., 2004). Other studies of school-aged children have reported impaired performance on tests of visuospatial working memory (Schroder et al., 2004, Mayes et al. 2006). However, it remains unclear whether these effects persist into adolescence.

Adolescence

As the brain develops improvements are observed in performance on tasks involving visuospatial As the brain develops improvements are observed in performance on tasks involving visuospatial working memory (Kwon et al., 2002). Studies using IMRI in typically developing children suggest that changes in the underlying neural circuitry (especially in the frontal and parietal regions) account for these behavioral improvements (Schweinsburg et al., 2005; Schert et al., 2006).

these behavioral improvertients (schweinsburg et al., 2005, Scheft et al., 2006). Recent neuroinaging studies have also reported differences in both brain structure and function associated with PDE. Structural differences include reductions in caudate volume (Avants et al., 2007) and decreases in overall brain volume (Rivkin et al., 2008). Functional maging studies have revealed an overall decrease in cerebral blood flow during rest associated with PDE (Rao et al., 2007).

Previous Findings from our Laboratory Recently, our laboratory reported differences in functional brain activation during a visual spatial working memory (VSWM) lask in adolescents with a history PDE compared to non-exposed adolescents (DeBore et al., 2008). Across exposure groups, both the middle frontal gyrus (MFC) and superior parietal lobule (PSL) showed significant hilteral activiations during performance of the VSWM task (see Figure 1), Posthoc analyses of these regions of interest (ROIs) revealed that the non-exposed group ruited the MFG to a greater extent bilaterally, even after controlling for gender and age effects recruited the IMP G a F(1,31)=4.88, p<.04

CURRENT STUDY

The aim of the current study was to examine the relationship between the pattern of neural activation and behavioral performance on standardized neuropsychological assessments. This exploratory analysis examined these associations collapsed across the exposed and nonexposed groups. Recruitment for the study is ongoing and future analyses are expected to examine whether these associations differ between adolescents with and without a history of PDF

METHODS

Participants

Participants included 20 adolescents with a history of PDE and 15 non-exposed adolescents from a Participants include 22 adolescents with a history of PUE and to non-exposed adolescents from comparison group drawn from the same community. All participants were between 12 and 15 years of age (Table 1). The current study used previously collected imaging data (i.e., DeBoer et al., 2008) and data collected on the same subjects as part of a larger longitudinal study investigating effects of PDE in adolescence.

	Prenatal Drug- Exposed Group	Comparison Group	
	(N=20)	(N=15)	
Age			
Mean (SD)	14.3 years (1.0 year)	13.5 years (1.1 years)	
Gender	10 male, 10 female	4 male, 11 female	
Q: WASI			
Mean (SD)	91.25 (11.58)	94.2 (12.27)	

chological Assessm

Judgment of Line Orientation (JLO): a visuospatial processing task that assesses the ability to determine the correct orientation of short line segments.

Conners Continuous Performance Test (CPT): a test of attention that requires one to maintain vigilance and react to the presence of a specific stimulus within a set of continuously presented distracters

Stroop Test: a test of inhibitory control that requires one to say the names of colors printed in a different

Analyse

Analyses Analyses of covariance (with age and gender as covariates) were used to assess differences in performance between the two exposure groups on the neuropsychological assessments. Partial correlations (with age entered as a covariate) were used to assess the relationship between neuropsychological performance and brain activation in frontal and parietal regions

Group Differences

ne 01

p<.05

* Collapsed across hemispheres as correlations were similar for bot

There was a main effect of exposure on CPT response style. Responses in the exposed group were relatively more "risky" than in the nonexposed group, F(1,31)=6.66, p<.01. There were no significant exposure group differences on the JLO or Stroop task (Table 2).

	Variable	Exposed Mean (SD)	Non-Exposed Mean (SD)	Group
Assessment				Difference
		N=20	N=15	
STROOP "Switching" Condition	Color Naming Scaled	9.80 (3.04)	9.67 (2.74)	ns
	Word Reading Scaled	9.20 (3.04)	9.27 (3.45)	ns
	Color Word Naming Scaled	9.30 (2.72)	9.87 (3.68)	ns
	Interference Scaled	10.65 (3.25)	10.67 (2.72)	ns
	Commission T-Score	50.24 (7.55)	51.35 (13.26)	ns
	Omission T-Score	49.42 (9.02)	54.74 (19.73)	ns
	Average Reaction Time	363.82 (36.13)	384.35 (58.93)	ns
	Response Style	47,49 (4,50)	55.71 (12.70)	p <.05

Associations between ROI Activation and Neuropsychological Assessments

SUMMARY

Although no significant differences were found between exposure groups in behavioral performance on the fMRI VSWM task, there were significant differences in neural activation. This finding suggests that there may be differences between the groups in the underlying neural circuitry used in during the task.

In order to investigate the possible behavioral consequences of these differences, we compared performance between the two groups on neuropsychological assessments and conducted correlational analyses between performance on these measures and functional brain activity in regions previously established to play a role in those tasks (Schweinsburg et al., 2005, Scherf et al., 2006).

Results showed that adolescents with a history of PDE had a more "risky" response style compared to non-exposed adolescents on the CPT. Moreover, these differences in performance were significantly related to MFG activation during the VSWM task

Additionally, although there were no group differences in inhibitory control (as measured by Stroop) or visual spatial abilities (as measured by JLO), performance on these tasks were correlated with MFG activity and SPL activity respectively.

Adolescents with and without PDE show frontoparietal activation associated with VSWM task performance. However, non-exposed adolescents show greater activity in the MFG.

Although there were few overall between-group differences in performance on neuropsychological measures of visuospatial abilities and executive functioning, these differences in brain activation during the VSWM task were correlated with task performance. This finding suggests that the observed differences in neural activation may impact behavioral outcomes.

A limitation of neuropsychological tests is that performance cannot be directly attributed to a specific brain region or pathway, but rather this must be inferred. Neuroimaging helps to address this limitation by demonstrating that performance is linked to activity in specific brain regions. Using both methodologies in combination may prove to be a powerful way to link PDE to neurocognitive task performance and to identify the neural substrates associated with specific outcomes.

Data collection is ongoing and future research in our laboratory will examine whether there are differences in the associations between brain activation and behavior between individuals with and without PDE. In addition, we will also begin to examine the impact of environmental variables known to moderate the effects of PDE such as maternal education, socioeconomic status and prenatal exposure to other substances such as alcohol and cigarettes, which commonly co-occur with prenatal drug exposure

Avants, B.B., Hurt, H., Giannetta, J.M., et al. (2007). Effects of heavy in utero cocaine exposure on adolescent caudate morphology. Pediatric Neurology 37(4):275-279.

DeBoer, T., Schweitzer, J., Kurup, P. K., Ross, T., J., Ernst, M., Nair, P., Black, M., & Salmeron, B. J. (May, 2008). IMRI reveals long-term effects of prenatal drug exposure on visuospatial working memory networks during addisecence. Poster presented at the annual meeting of the Association for Psychological Science.

Frank D. A., Augustyn, M., Knight, W.G., et al, (2001). Growth, development, and behavior in early childhood following prenatal cocaine exposure: A systematic review. Journal of the American Medical Association, 285(12):1613-1625.

Kwon, H., Reiss, A.L. & Menon, V. (2002). Neural basis of protracted developmental changes in visuo-spatial working memory. Proceedings of the National Academy of Sciences, 99: 13336-13341.

Mayes, L., Snyder, P., Langlois, E. & Hunter, N. (2006). Visuospatial working memory in school-aged children exposed in utero to cocaine. Child Neuropsychology, 13(3):205-218.

Rao, H., Wang, J., Giannetta, J., et al., (2007). Altered resting cerebral blood flow in add with in utero cocaine exposure revealed by perfusion functional MRI. Pediatrics, 120(5): e1245o1254

Rivkin, M. J., Davis, P.E., Lemaster, J.L., et al., (2008), Volumetric MRI study of brain in children acco, and marijuana. Pediatrics, 121(4): 741-750. uro to coccino al

Scherf, K.S., Sweeney, J.A. & Luna, B. (2006). Brain basis of developmental change in visuospatial working memory. Journal of Cognitive Neuroscience. 18(7):1045-1058.

Schroder, M. D., Snyder, P.J., Sielski, I. & Mayes, L. (2004). Impaired performance of children exposed in utero to cocaine on a novel test of visuospatial working memory. Brain and Cognition exposed in utero to c 55:409-412.

nsburg, A.D. Nagel, B.J. & Tapert, S.F. (2005). fMRI reveals alteration of spatial working r networks across adolescence. Journal of the International Neuropsychological Society, 11: memory net 631-644.

Singer, L., Minnes, S., Short, E., et al. (2004). Cognitive outcomes of preschool children with