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With the increasing availability of high resolution imaging tools, even in our

pockets (i.e. smartphones), everyday users can do far more than simply digitally

capturing a family moment. The ease of new applications available in these portable

forms, linked with users who have expert knowledge about the images and tasks,

opens the door to new possibilities. With this in mind we propose two new ap-

proaches that utilize the user’s knowledge for improved results. We apply these

approaches to real life problems in medical and scientific image applications.

In the first approach, we introduce a class of linear and nonlinear methods

which we call Domain-Specific Grayscale (DSGS) methods. A DSGS method trans-

forms a color image into an image analogous to a grayscale image, where user-

specified information is used to optimize a specified image processing task and re-

duce the computational complexity. We introduce new methods based on projection

into the space of single-coordinate images, and we adapt support vector machines by

using their scores to create a DSGS image. We apply these methods to applications



in dermatology, analyzing images of skin tests and skin lesions, and demonstrate

their usefulness.

In the second approach, we introduce a tool for improved image deblurring that

safeguards against bias that can easily be introduced by a user favoring a particular

result. This is particularly important in scientific and medical applications used

for discovery or diagnosis. We provide real-time results of choices of regularization

methods and parameter selection, and we check the statistical plausibility of the

results, using three statistical diagnostics, allowing a user to see the results of the

choices.

Our work demonstrates the utility of domain-specific information, supplied by

the user, in improving the results of image processing algorithms.



Using Domain-Specific
Information in Image Processing

Applied Mathematics Scientific Computing (AMSC)

by

Brianna R. Cash

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2014

Advisory Committee:
Professor Dianne O’Leary, Chair/Advisor
Professor Radu Balan
Professor David W. Jacobs
Professor Wolfgang Losert
Professor Laurent Montesi



Dedicated to my husband, Jason

ii



Acknowledgments

There are many people who deserve acknowledgement for helping me get to

the completion of my thesis, which at times seemed like an impossible task.

First I would like to thank my advisor and mentor Dr. Dianne O’Leary for

providing such amazing guidance and support. She gave me opportunity to explore

the questions and ideas that I found most interesting while giving me invaluable

guidance on how to approach those ideas. She provided opportunities to attend

summer schools and conferences which both gave motivation and perspective.

To my committee, Dr. Radu Balan, Dr. David W. Jacobs, Dr. Wolfgang

Losert, and Dr. Laurent Montesi, they deserve thanks for agreeing to being on my

committee and for providing great feedback and thought provoking questions.

I would like to thank the AMSC program and staff, in particular Alverda

McCoy and Dr. Konstantina Trivisa, for support throughout my entire time at the

University of Maryland.

This opportunity to pursue and complete my Ph.D. would not have been

possible without my husband’s countless sacrifices and patience. I thank him for

both believing in me and supporting me in pursuing my dreams.

I would like to thank my parents for their unconditional love, support and

encouragement over the years and for being such amazing role models.

I would like to thank my officemate and friend Victoria Taroudaki for keeping

me up-to-date on deadlines so that graduation was a possibility and for putting up

iii



with me for the five years we shared an office, always being supportive as we moved

through the journey of grad school together.

I would like to acknowledge Dr. Herman Mitchell, Agustin Calatroni, and

Jeremy Wildfire of Rho Inc. and 2012 SAMSI Industrial Mathematical & Statistical

Modeling Workshop for Graduate Students for granting me access to the skin-prick

test images collected as well as encouragement to continue the work on the problem

they presented. I would also like to acknowledge Ian McColl, FACD for granting

permission to use the photos from the Atlas of Dermoscopy.

This work was made possible by the financial support of the NSF Grant DMS

1016266.

Lastly I would like to thank my son for being my motivation to finish; he did

not make it easy to finish but he made it worth it.

iv



Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Part I: Domain-Specific Grayscale For Improved Image Processing . . 2
1.2 Part II: A Tool for Graphical Image Deblurring Exploration (GIDE) . 5
1.3 Part III: Conclusion and Future Work . . . . . . . . . . . . . . . . . . 6

I Domain Specific Grayscale 7

2 Linear Domain-Specific Grayscale Transformations for Color Images 8
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Digital Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Standard Representations for Color Images . . . . . . . . . . . 11
2.1.3 Representation of Grayscale Images . . . . . . . . . . . . . . . 13
2.1.4 Other Representation of Color Images . . . . . . . . . . . . . 13

2.1.4.1 Cylindrical Coordinate Color Spaces . . . . . . . . . 14
2.1.4.2 Opponent Color Spaces . . . . . . . . . . . . . . . . 15

2.1.5 Modified Color Spaces for Specific Applications . . . . . . . . 16
2.1.5.1 Skin Color Models . . . . . . . . . . . . . . . . . . . 16
2.1.5.2 Pipe Image Interpretation Based on Support Vector

Machines . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Previous Work in Color Edge Detection . . . . . . . . . . . . . . . . . 17

2.2.1 Decomposed Edge Detection . . . . . . . . . . . . . . . . . . . 18
2.2.2 Vector Based Edge Detection . . . . . . . . . . . . . . . . . . 18

2.3 Projection to Find New Domain-Specific Grayscale Color Space . . . 19
2.3.1 Computing the Projection . . . . . . . . . . . . . . . . . . . . 22

2.3.1.1 Maximizing Distance between Pixels (MDP) . . . . . 24
2.3.1.2 Minimizing Area between Distributions (MAD) . . . 24

2.4 Use of Support Vector Machines to Determine a New Color Space . . 26

v



2.4.1 Hard Margin SVM . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Soft Margin SVM . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Thresholding Images for Segmentation . . . . . . . . . . . . . . . . . 29
2.6 Comparing the Linear Domain-Specific Grayscale Methods . . . . . . 31

2.6.1 Natural Images . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6.1.1 Berkeley Segmentation Dataset . . . . . . . . . . . . 31
2.6.1.2 Synthetic Data . . . . . . . . . . . . . . . . . . . . . 32
2.6.1.3 Implementation of Linear DSGS Methods . . . . . . 34

2.6.2 Results on Synthetic Data . . . . . . . . . . . . . . . . . . . . 35
2.6.3 Results on Natural Images . . . . . . . . . . . . . . . . . . . . 40

2.7 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Nonlinear Domain-Specific Grayscale Transformations for Color Images 44
3.1 Kernel SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Characteristics of Kernels . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Constructing Kernels . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.1.1 Polynomial kernels . . . . . . . . . . . . . . . . . . . 52
3.2.1.2 Gaussian Kernels . . . . . . . . . . . . . . . . . . . . 52

3.2.2 Conditionally Positive Definite Kernels . . . . . . . . . . . . . 53
3.2.2.1 Log Kernel . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.3 Other Notable Kernels . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Kernel and Kernel Parameter Selection . . . . . . . . . . . . . . . . . 55

3.3.1 Selecting a Kernel . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Kernel SVM as a Domain-Specific Grayscale Method . . . . . . . . . 57
3.5 Non-Kernel Nonlinear Domain-Specific Grayscale Method . . . . . . . 58
3.6 Results with the Non-Linear Domain-Specific Grayscale Methods . . 61

3.6.1 Synthetic Image Testing . . . . . . . . . . . . . . . . . . . . . 62
3.6.2 Results on Natural Images . . . . . . . . . . . . . . . . . . . . 67

3.7 Advantages and Disadvantages of Kernel SVM DSGS Methods . . . . 68
3.8 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Using Domain-Specific Grayscale Method for Dermatology Digital Image
Analysis 74
4.1 Imaging-Aided Diagnosis in Dermatology . . . . . . . . . . . . . . . . 75

4.1.1 Preprocessing Images . . . . . . . . . . . . . . . . . . . . . . . 76
4.1.2 Multilayered Skin Model of Absorbance . . . . . . . . . . . . . 77
4.1.3 Boundary Detection . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Measuring Skin Erythema and Wheal Size . . . . . . . . . . . . . . . 79
4.2.1 Previous Work in Detecting and Measuring Erythema and

Wheals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.2 Motivation for Domain-Specific Grayscale Method . . . . . . . 83
4.2.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.4 Summary of Results of Measuring Erythema . . . . . . . . . . 85
4.2.5 Summary of Results of Measuring Wheal . . . . . . . . . . . . 88

vi



4.3 Border Detection of Skin Lesions . . . . . . . . . . . . . . . . . . . . 102
4.3.1 Past Work in Skin Lesion Boundary Detection . . . . . . . . . 104
4.3.2 Motivation for Domain-Specific Grayscale Method . . . . . . . 105
4.3.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.4 Summary of Results on Border Detection of Skin lesions . . . 106

4.4 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 113

II User Aided Parameter Selection for Image Deblurring 121

5 GIDE: A Tool for Graphical Image Deblurring Exploration 122
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 Mathematical Model of Regularization Methods . . . . . . . . . . . . 125

5.2.1 Continuous Representation . . . . . . . . . . . . . . . . . . . . 128
5.2.2 Discrete Representation . . . . . . . . . . . . . . . . . . . . . 128
5.2.3 Constructing the Blurring Matrix from the Point Spread Func-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3 Regularization Methods . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.1 SVD-Based Regularization Methods . . . . . . . . . . . . . . . 130
5.3.2 TV Regularization for the Continuous Problem . . . . . . . . 131

5.3.2.1 Formulation of Newton’s Method . . . . . . . . . . . 132
5.3.2.2 Linearization Based on Introducing a New Variable . 132

5.3.3 Discretization of the TV Regularization Method . . . . . . . . 133
5.3.3.1 Discrete Formulation of Newton’s Method . . . . . . 134
5.3.3.2 Formulation of Primal-Dual Newton’s Method . . . . 134
5.3.3.3 Relationship to the Dual Problem . . . . . . . . . . . 135
5.3.3.4 Implementing TV Regularization Method . . . . . . 137

5.4 Initial Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . 139
5.4.1 Generalized Cross-Validation (GCV) . . . . . . . . . . . . . . 139
5.4.2 Discrepancy Principle . . . . . . . . . . . . . . . . . . . . . . . 140

5.5 Statistical Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5.1 Choice of Diagnostics . . . . . . . . . . . . . . . . . . . . . . . 141

5.5.1.1 Residual Diagnostic 1 . . . . . . . . . . . . . . . . . 141
5.5.1.2 Residual Diagnostic 2 . . . . . . . . . . . . . . . . . 142
5.5.1.3 Residual Diagnostic 3 . . . . . . . . . . . . . . . . . 142

5.5.2 Validation of Residual Diagnostics . . . . . . . . . . . . . . . . 143
5.6 The Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.7 Results and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.7.1 Test Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.7.2 Signal-to-Noise Ratio Effect on Diagnostics . . . . . . . . . . . 146
5.7.3 Effects of γ on Computation Time . . . . . . . . . . . . . . . 146
5.7.4 Results on Larger Images and Varied PSF . . . . . . . . . . . 148

5.8 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 150

vii



III Conclusions and Future Work 151

6 Conclusions and Future Work 152
6.1 Part I: Domain-Specific Grayscale For Improved Image Processing . . 153

6.1.1 Key Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.1.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2 Part II: A Tool for Graphical Image Deblurring Exploration (GIDE) . 157
6.2.1 Key Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.2.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A Duality 159
A.1 Nonlinear Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.2 Duality for SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.3 Duality for TV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

B Level Set Methods 164
B.1 Level Set Methods for Boundary Detection . . . . . . . . . . . . . . . 165

Bibliography 167

viii



List of Tables

2.1 Percent misclassified for the synthetic images. . . . . . . . . . . . . . 40
2.2 Percent misclassified for each image for a subset of Berkeley Segmen-

tation Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Percent misclassified for the MAD method and the nonlinear methods
on the synthetic images. . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Percent misclassified for the MAD method and the nonlinear methods
on the Berkeley Segmentation image dataset. . . . . . . . . . . . . . 68

3.3 Percent misclassified and training time for the MAD method and
nonlinear SVM methods for the image Lions. . . . . . . . . . . . . . 69

4.1 Fitzpatrick Phototype Scale: This scale was developed in 1975 as
a scale to measure the a patients skin phototype (sensitivity to UV
radiation) and is the primary scale used today. This scale is often
used by dermatologist as a scale of skin type/color [69]. . . . . . . . 82

4.2 Table of preprocessing methods for detecting and measuring erythema
and wheals. See Section 4.2.4 and Section 4.2.5 for more details. . . 84

4.3 Relative ∆EI for each method of the erythema images. . . . . . . . . 89
4.4 Time to compute DSGS for the erythema images in seconds. . . . . . 89
4.5 Time to compute DSGS methods for the wheal images in seconds. . . 96
4.6 Table of preprocessing methods for border detection of skin lesions.

See Section 4.3.1 for more details. . . . . . . . . . . . . . . . . . . . 105
4.7 Time to compute DSGS methods for the Dermatoscope images. . . . 109
4.8 Time to compute DSGS methods for the standard lesion images. . . . 109

5.1 For 1000 runs, number of times the Diagnostics fail to be satisfied.
I(i) = 1 if (i− 1)mod(100) = 0 or (i− 2)mod(100) = 0 and I(i) = 0
otherwise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

ix



List of Figures

1.1 Image of the skin after a skin prick test. The goal is to identify the
reddening area that develops after the skin is irritated. Source: Rho
Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Left: Color image. Center: Grayscale image of color image. Right:
Edge map of grayscale image after using the Canny edge detection
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 A color image broken into its red, green, and blue coordinates, along
with the grayscale version. . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 A color image of M&Ms (left) and the grayscale image (right) com-
puted using matlab’s rgb2gray.m. Source: http://blogs.mathworks.

com/images/steve/2010/mms.jpg. . . . . . . . . . . . . . . . . . . . . . 14
2.4 Schematic of the HSV color space. Source: Image created by (3ucky(3all

using Borland Delphi 2006, Adobe Photoshop 9.0. Source: http://upload.

wikimedia.org/wikipedia/commons/e/e0/HSV_cylinder.png. . . . . . . . . 14
2.5 Schematic of the 1976 CIELab color space. . . . . . . . . . . . . . . 15
2.6 Left: Synthetic image created in matlab with two contrasting colors

that appear to be the same color in the GS image. Right: GS image
found using rgb2gray.m. The blue and red boxes mark the user
selected background (P̄) and foreground (P). . . . . . . . . . . . . . 20

2.7 Scatter plot of the pixels in the background (P̄, blue) and the pixels
in the foreground (P, red). . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Scatter plot of the pixels in the background (P̄, blue) and the pixels
in the foreground (P, red) after rotation. . . . . . . . . . . . . . . . 21

2.9 Resulting image after rotating the image and projecting onto the
coordinate R̃ from Figure 2.6. . . . . . . . . . . . . . . . . . . . . . 22

2.10 Image of a patient’s skin after an allergy test is administered. Source:
Rho Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.11 The area in gray is the area over which we are minimizing. . . . . . 25

x

http://blogs.mathworks.com/images/steve/2010/mms.jpg
http://blogs.mathworks.com/images/steve/2010/mms.jpg
http://upload.wikimedia.org/wikipedia/commons/e/e0/HSV_cylinder.png
http://upload.wikimedia.org/wikipedia/commons/e/e0/HSV_cylinder.png


2.12 Schematic of hard margin SVM where the two classes of data are rep-
resented by the filled and empty dots respectively. Source: http://

upload.wikimedia.org/wikipedia/commons/2/2a/Svm_max_sep_hyperplane_

with_margin.png. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.13 Subset of images from the Berkeley Segmentation Database. . . . . . 32
2.14 Matlab’s grayscale images for the Berkeley Segmentation Database

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.15 Human-user-filled edges for Berkeley Segmentation Database images. 33
2.16 Synthetic data created from real images. . . . . . . . . . . . . . . . . 34
2.17 Matlab’s grayscale images for synthetic data created from real im-

ages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.18 Resulting images after applying the different linear DSGS methods on

the ‘Dot’ image along with the histogram of all the pixel values, with
the pixels of the user-selected Pw and P̄w in red and blue respectively. 36

2.19 Resulting images after applying the different linear DSGS methods
on the ‘Lions 2 Dot’ image along with the histogram of all the pixel
values, with the pixels of the user-selected Pw and P̄w in red and blue
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.20 Resulting images after applying the different linear DSGS methods
on the ‘Pepper Dot’ image along with the histogram of all the pixel
values, with the pixels of the user-selected Pw and P̄w in red and blue
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.21 Resulting images after applying the different linear DSGS methods
on the ‘Goat Dot’ image along with the histogram over all the pixel
values with the pixels of the user selected Pw and P̄w in red and blue
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.22 Comparing the GS image to the results of MAD and SVM for the
images of lions and image of horses. . . . . . . . . . . . . . . . . . . 41

2.23 Image comparing the GS image to the results of MAD and SVM for
the image of an owl, a tiger and a goat. . . . . . . . . . . . . . . . . 42

3.1 Image of a Tiger from the Berkeley Segmentation dataset with user
selected background and foreground for training. . . . . . . . . . . . 45

3.2 Selected background (blue box) and foreground (red box) pixels from
Figure 3.1 plotted in RGB space. . . . . . . . . . . . . . . . . . . . 46

3.3 Left: Two dimensional toy problem where the background (red box)
is a donut around the ball of foreground (blue box). Right: After
mapping to the three dimensional feature space where there exists a
hyperplane that separates the two data types. . . . . . . . . . . . . . 47

3.4 Level sets for two-dimensional pixels. Contour plot of Ψ(x, u) where
the red stars are the foreground pixel and blue dots are the back-
ground. The dark blue curve is the zero level set. . . . . . . . . . . . 61

3.5 Results of the nonlinear DSGS methods on the “Pepper Dot” image.
In the histograms on the right, pixels of Pw and P̄w are shown in red
and blue respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xi

http://upload.wikimedia.org/wikipedia/commons/2/2a/Svm_max_sep_hyperplane_with_margin.png
http://upload.wikimedia.org/wikipedia/commons/2/2a/Svm_max_sep_hyperplane_with_margin.png
http://upload.wikimedia.org/wikipedia/commons/2/2a/Svm_max_sep_hyperplane_with_margin.png


3.6 Results of the nonlinear DSGS methods on the “Owl Dot” image. In
the histograms on the right, pixels of Pw and P̄w are shown in red
and blue respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Resulting DSGS image for MAD, gSVM, pSVM and lSVM for the
image of an Owl with the human-determined boundary superimposed
in red. The images are displayed so that values less than zero are set
to black to highlight the classification of the foreground. . . . . . . . 69

3.8 Results for two different selected backgrounds of significantly different
sizes. The images are displayed so that values less than zero are set
to black to highlight the classification of the foreground. . . . . . . . 70

3.9 Color image of M&Ms and resulting DSGS images for the MAD,
gSVM, GS, pSVM and lSVM. . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Image of skin after prick test on four different participants of different
phototypes. Source: Rho Inc. . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Six images used for measuring erythema after prick test. Source: Rho
Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Six images used for measuring wheal after prick test. Source: Rho Inc. 86
4.4 W4(left) and W5 (right) with hand-drawn boundary of wheal. Source:

Rho Inc. where the boundaries were drawn by Anna Gleason. . . . . 86
4.5 E1: Comparing the choice of training background. Displayed such

that pixels less then zero are displayed as black to emphasis on the
classification of pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6 E1: GS, Log,a of Lab, MAD, and LSVM. . . . . . . . . . . . . . . . 90
4.7 E2: GS, Log,a of Lab, MAD, and LSVM. . . . . . . . . . . . . . . . 90
4.8 E3: GS, Log,a of Lab, MAD, and LSVM. . . . . . . . . . . . . . . . 91
4.9 E4: GS, Log,a of Lab, MAD, and LSVM. . . . . . . . . . . . . . . . 91
4.10 E5: GS, Log,a of Lab, MAD, and LSVM. . . . . . . . . . . . . . . . 92
4.11 E6: GS, Log,a of Lab, MAD, and LSVM. . . . . . . . . . . . . . . . 92
4.12 Scatter plot of pixels of P (red) and P̄ (blue) in RGB space for

images E1-E5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.13 E2, E4, and E5. Resulting boundary after Chan-Vese to Single-

Coordinate Image. Starting contour (white), LSVM (red), MAD
(green), “a” of Lab (black), and GS (blue). . . . . . . . . . . . . . . 94

4.14 W1: GS, Log,a of Lab, MAD, and LSVM. . . . . . . . . . . . . . . . 97
4.15 W2: GS, Log,a of Lab, MAD, and LSVM. . . . . . . . . . . . . . . . 97
4.16 W3: GS, Log,a of Lab, MAD, and LSVM. . . . . . . . . . . . . . . . 98
4.17 W4: GS, Log,a of Lab, MAD, and LSVM. . . . . . . . . . . . . . . . 98
4.18 W5: GS, Log,a of Lab, MAD, and LSVM. . . . . . . . . . . . . . . . 99
4.19 W6: GS, Log,a of Lab, MAD, and LSVM. . . . . . . . . . . . . . . . 99
4.20 Scatter plot of pixels of P (red) and P̄ (blue) in RGB space for

images W1-W6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.21 Resulting boundary after Chan-Vese on the Single-Coordinate Image.

Starting contour (white), LSVM (red), MAD (green), and GS (blue)
for W1- W6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xii



4.22 Image comparing the human drawn edge to the resulting boundary of
the DSGS image for W4 (left) and W5 (right). Hand-drawn (black),
LSVM (red), and MAD (green). . . . . . . . . . . . . . . . . . . . . 102

4.23 Skin Lesions, variety of colors. First two are moles, second two are
cancerous. Source: First two images are from the Dermoscopy Atlas.
Second two images are from DERMOFIT. . . . . . . . . . . . . . . . 103

4.24 Dermatoscope images of a variety of skin lesions. Source: Der-
moscopy Atlas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.25 Standard photo taken on a digital camera. Source: Top left from
Dermoscopy Atlas. Remaining from DERMOFIT. . . . . . . . . . . 108

4.26 D1- Top: Color, GS, -LogR. Bottom: “B” or RGB, “b” of Lab, MAD,
and LSVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.27 D2- Top: Color, GS, -LogR. Bottom: “B” of RGB RGB, “b” of Lab,
MAD, and LSVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.28 D3- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.29 D4- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.30 D5- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.31 D6- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.32 D7- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.33 Resulting boundary after Chan-Vese on the Single-Coordinate Image.
Starting contour (white), LSVM (red), MAD (green), and GS (blue)
for D1- D7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.34 S1- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.35 S2- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.36 S3- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.37 S4- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.38 S5- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.39 S6- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.40 S7- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.41 S8- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xiii



4.42 Resulting boundary after Chan-Vese on the Single-Coordinate Image.
Starting contour (white), LSVM (red), MAD (green), and GS (blue)
for S1- S8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1 Left: Blurred Image, Center: Deblurred Image, Right: True Image
which has “train tracks”. Without knowledge of the true image hav-
ing “train tracks” one might accept the deblurred to be a good image
without realizing that important information was lost in the process.
Source: Dianne O’Leary. . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Restorations of 256×256 blurred satellite image provided in RestoreTools

with zero boundary conditions, SNR=9 and parameters chosen by the
initial parameter methods detailed in Section 5.4. . . . . . . . . . . . 126

5.3 Final implementation of the GUI with the three diagnostics . . . . . 127
5.4 Results of Newton-CG for Total Variation regularization for two im-

ages. Top is a 16× 16 image generated in Matlab and the bottom
image is 64× 64 Modified Shepp-Logan generated in Matlab. . . . . 137

5.5 For the 16 × 16 segment of the image “cell.tif” the range (±0.0025)
was found for Diagnostic 1 using Tikhonov regularization. From the
plot we can see that as the Signal-to-Noise Ratio decreases the range
of parameters satisfying the diagnostic increases. . . . . . . . . . . . . 147

5.6 The difference in log10 of computational time (seconds) for the TV
regularization method for parameters between γ = 1 and γ = 10−9.
For all image sizes the maximum time was for γ = 1. . . . . . . . . . 148

5.7 129 × 129 image of “cell.tif” with Gaussian blur and zero boundary
conditions with SNR of 60. . . . . . . . . . . . . . . . . . . . . . . . . 149

xiv



Chapter 1: Introduction

Today most people have access to digital cameras or smart phones. These

imaging devices are are often high resolution and do not require time to develop.

With this availability users are finding new uses for this information. There are

numerous applications on the market that help users utilize the camera to do a

number of tasks beyond capturing an image.

We list a few applications that utilize the camera or images taken on the smart

phone for a number of interesting tasks. The smartphone application Leafsnap

identifies tree species from a user captured image of a leaf [44,46]. The application

EasyMeasure allows users to measure the distance of an object [24]. There are

numerous applications that attempt to deblur an image taken on the smart phone.

There are also a number of applications that aid in medical care delivery that utilize

the camera including an application called Colorimetrix (in development) which can

be used for monitoring conditions such as diabetes, kidney disease, and urinary tract

infections [18, 93] and the Handyscope (recently approved by the FDA) that, with

the addition of a lens, turns a smart phone into a Dermatoscope which is used for

monitoring and diagnosis of skin lesions such as malignant skin cancer [36].

One advantage of these applications is that the user, who has the most in-
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formation about the image or task, has full access to the data. This additional

knowledge can be essential to image processing. In our work we develop methods

that enhance processing by utilizing often essential user information.

In Part I we introduce methods that can transform a color image into a domain-

specific grayscale (DSGS) image, making tasks such as edge detection or segmen-

tation easier and more computationally feasible. In Part II we develop a prototype

tool to enable practitioners to deblur an image by enabling them to choose an effec-

tive regularization method for their particular problem. Even if these practitioners

have minimal knowledge of the challenges in solving ill-posed problems, our method

safeguards against bias that may be introduced by preconceived notions of what the

visual results should be.

1.1 Part I: Domain-Specific Grayscale For Improved Image Process-

ing

In Part I, we use user-specified color information to transform a color image

into a single coordinate image. This transformation aids in detecting features that

may not be initially evident while reducing the redundancy of information. For the

task of finding edges in an image, there are widely used edge detection methods in

the literature [53]. These methods are often based on measuring discontinuities in

the images and are fast and easy to implement when applied to grayscale images.

Unfortunately grayscale images only capture the light intensity of the continuous

scene, losing information about the color (chroma). In some applications, this loss
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Figure 1.1: Image of the skin after a skin prick test. The goal is to identify the
reddening area that develops after the skin is irritated. Source: Rho Inc.

of information is unacceptable. At the same time color images are expensive to store

and process, since they involve three color coordinates (often Red, Green, and Blue

(RGB)) instead of the single coordinate (i.e. grayscale images).

This work was inspired by the problem presented by Rho Inc. as part of the

SAMSI 2012 Industrial Math/Stat Modeling Workshop for Graduate Students [64].

Their problem involved finding the boundaries of a wheal (raised hive) and erythema

(reddening) that develops after positive skin-prick tests as seen in Figure 1.1. In

this application the boundaries can be irregular and faint and traditional methods

for finding the edges have limited success. We were granted access to the data used

for the workshop.

In Chapter 2 we overview past work in finding color transformation of tra-

ditional RGB color images, discuss past work of image processing tasks on color

images and introduce a new class of linear domain-specific grayscale (DSGS) trans-
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formations. We do this by utilizing user-specified information about the foreground

and background to find the orientation in the RGB color space that best differen-

tiates between the patches. We present three different DSGS methods. The first

method finds the orientation that maximizes the distance between the background

and foreground pixels. The second method finds the orientation that minimizes the

overlapping area between the distribution of the background and foreground pixels

if we assume they are normally distributed. The final method uses a support vector

machine (SVM) to find the orientation that separates the regions with maximum

margin.

In Chapter 3 we extend the idea of finding a domain-specific grayscale to in-

clude nonlinear transformations. A nonlinear transformation is needed, for example

in the cases where the background and foreground is made up of more than two

distinct colors and there exists no hyperplane that separates the background and

foreground in RGB color space. We introduce two nonlinear DSGS methods. The

first method learns the nonlinear relationships between data points by assuming that

the points are heat sources and heat sinks and finds the level set that best sepa-

rates them. The second method takes advantage of well established kernel methods,

which implicitly find a higher dimension space where the background and foreground

pixels are linearly related. We apply the kernel methods to the dual formulation of

the SVM.

In Chapter 4 we apply the DSGS methods to real life applications in der-

matology. In practice, visual inspection as well as visual imaging is essential to

diagnosing different skin conditions including skin cancer [51]. That being said,
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there is variation between experienced and inexperienced dermatologists regarding

to the success rate for diagnosing skin cancer [51]. Therefore, noninvasive digital

visualization techniques and computerized diagnoses are becoming essential tools in

care delivery [6]. In this chapter we apply our techniques for finding a DSGS im-

age to aid in finding the boundary in two common dermatological tasks. Detecting

erythema and wheals after skin-prick tests which are used by dermatologists and

allergists to diagnosis allergies, is the first task we tackle. The second task involves

finding the boundaries of skin lesions, which is a first step in computerized diagnos-

tic systems for the diagnosis of skin cancer and other serious skin conditions. These

two cases are challenging for traditional image processing tools as there is significant

variation inherent to skin, and the boundaries can be faint and irregular. We show

that use of DSGS methods can improve the results of standard image processing

tools such as edge detection methods, traditionally developed for grayscale images,

in dermatological applications.

1.2 Part II: A Tool for Graphical Image Deblurring Exploration

(GIDE)

In Part II of our work we develop a methodology and software with a graphical

user interface (GUI) that can be used by practitioners to choose an appropriate reg-

ularization. We call this software package Graphical Image Deblurring Exploration

(GIDE). This package gives practitioners the ability to compare regularization meth-

ods while limiting the bias they may introduce by finding a solution that matches
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what they expect, missing what is unexpected. This is done by guiding their choice

of method and parameter by showing solutions and the statistical diagnostics for

each choice in real time.

In Chapter 5 we review the components that make up the user-guided GIDE

package for improved image deblurring. We review how to find the numerical solu-

tion to the truncated singular value decomposition, Tikhonov and Total Variation

regularized problems, the automated parameter selection methods used for finding

the initial guess for the regularization parameter for a given regularization method,

and the statistical diagnostics [72]. We also give an overview of the development of

the GUI and demonstrate how the GUI can be used by practitioners with little or

no knowledge of the numerical methods.

1.3 Part III: Conclusion and Future Work

In Chapter 6 we discuss the impact of the work and discuss some future work

related to domain-specific information in image processing.
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Part I

Domain Specific Grayscale
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Chapter 2: Linear Domain-Specific Grayscale Transformations for

Color Images

There are many accepted and well-used edge detection and segmentation meth-

ods that are fast and easy to implement when applied to grayscale images. Unfor-

tunately grayscale images only capture the light intensity of the continuous scene,

losing information about the colors (chroma). The literature states that 90% of the

information in color images is captured in the grayscale image [61], but there are

foreseeable applications where that additional 10% is critical in finding the relevant

edges, as demonstrated by Figure 2.1. Grayscale images are measured in a single

coordinate, where color images are measured in a three-coordinates space making

any processing task much more costly.

In practice we are usually interested in a subset of edges in an image, such as

edges defining a person or object. We can use the knowledge of the object or area

of interest within the image as additional information to improve the results of edge

detection. This work develops a new color space through user-aided transformation

of the three-coordinate space into a single coordinate space where the color discon-

tinuities of interest are captured. We call this new class of methods Domain-Specific

Grayscale method or DSGS methods.
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Figure 2.1: Left: Color image. Center: Grayscale image of color image. Right: Edge
map of grayscale image after using the Canny edge detection method.

Applications of this work include enhancing images of skin for improved diag-

noses in dermatology. In this application background skin color/tone (an unaffected

patch of skin) is often known, as well as information about the affected area. Both

can be used to help detect deviation. In Chapter 4 we explore the application of

measuring reddening including the size of a wheal (raised patch) after allergy test-

ing and detecting skin lesions including melanoma and other deadly forms of skin

cancers.

In this chapter we present background on color images and discuss existing

methods for processing these color images. In Section 2.1 we review color images

and different representations of color images. In Section 2.2 we discuss work on color

edge detection, a popular image processing task that is often dependent on color.
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In Section 2.3 we introduce two new DSGS methods based on finding a projection

of the data in color space that best enhances the areas of interest. In Section 2.4 we

introduce the use of support vector machines as a way to define the DSGS space.

In Section 2.5 we discuss a basic method for segmenting the DSGS images based

on thresholding (used in evaluating the new methods). In Section 2.6 we compare

the presented DSGS methods on a set of test problems. Finally in Section 2.7 we

summarize our findings and present conclusions.

2.1 Background

Capturing digital color images has become as easy as pulling out your smart

phone and pressing a button. The result is a high resolution image ready for new

uses and applications. These digital images are generally captured in RGB color

space, a three primary color space (Red, Green and Blue). Given the digital nature

of these images, there are many color space transformations that may aid in uses

of these images. A thorough background on color spaces as they relate to digital

images can be found in the standard textbooks, e.g. [3]. In this section we give

an overview of how color images are represented digitally and discuss some of the

alternative representations used for artistic as well as for scientific purposes.

2.1.1 Digital Images

Today, most images are recorded digitally, capturing a continuous scene by

storing a discrete numerical representation of the scene. The numerical represen-
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tation is made up of a collection of pixel values, where resolution is determined

by the number of pixels. Depending on the format of the image, the pixel values

can be 1-bit (binary, for black and white image), 8-bit integers, 32-bit integers or

floating point numbers. Most commonly, grayscale pixels are represented by 8-bit

integers with values ranging from 0 (black) to 255 (white), with values in between

representing shades of gray. To represent typical color images, each pixel has three

coordinates which are stored in three separate color arrays. These are combined

for display. When printed, colors are displayed as an additive combination of the

coordinates. When projected, colors are displayed as a subtractive combination of

the coordinates. Color images are often 24-bit (three 8-bit values for each pixel)

resulting in 224 possible distinct colors.

2.1.2 Standard Representations for Color Images

There are a number of different formats for storing and displaying color images.

Most users are familiar with color spaces such as RGB (Red, Green, Blue), which

is generally used for displaying colors on computers, and CMYK (Cyan, Magenta,

Yellow, Black), which is generally used for printing. Each digital color seen on a

screen or in print is a mixture of three primary colors. K in CMKY stands for

black, which could be represented within C, M and Y, but is instead represented

with K to save ink.

These color schemes were developed experimentally. For example, a human

was presented with a fixed wavelength color to the left eye and was given R, G
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Figure 2.2: A color image broken into its red, green, and blue coordinates, along
with the grayscale version.

and B adjusting knobs to adjust to match that color for the right eye [3]. These

experiments were first done in the late 1920s by William David Wright to define

the 1931 CIEXYZ color space. CIEXYZ color space is a three primary color

space that is the standard for converting between other color spaces. Although the

three primary color space red, blue, green matches our understanding of the physics

of color, it does not match how we perceive color. Characteristic features such as

shade or even the lightness or darkness are correlated between each of the color

channels. In Figure 2.2, one can see an image where each color plane or coordinate

is displayed separately. From these separate images alone it would be challenging

to discern different colors, or even the lightness or darkness, as these features are

correlated among the color coordinates.

There are alternatives to the three primary color spaces. Alternative color

spaces often try to match our perceived or intuitive understanding of how colors

relate. The relationship between these different color spaces can be linear or non-

linear and often are not one-to-one. The different color spaces are compared by their

gamut. The gamut is defined as the subset of visible colors that can be displayed by

a particular color space. The gamut of RGB is much smaller than the gamut of all
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visible colors.

2.1.3 Representation of Grayscale Images

Most digital images are captured in color and then converted to a grayscale

(GS) image. Converting a color image to a GS image is based on a model of

shooting a photo in black and white in which the film measures the intensity of

light. Matlab’s rgb2gray.m converts a color image to GS using the formula

X = 0.2989R + 0.5870G + 0.1140B, (2.1)

where each GS pixel is determined by a linear combination of the values of R, G

and B. Unfortunately, the resulting grayscale images lose crucial information about

color and how one color relates to another. Consider the image of M&Ms in Figure

2.3. One can quickly distinguish and count the red M&Ms in the color image, but

in the GS image the red and blue M&Ms are visually indistinguishable. In short,

the GS model does not capture our perception of the difference between red and

blue.

2.1.4 Other Representation of Color Images

In addition to the above mentioned color spaces there have been a number of

other color spaces suggested both for artistic and scientific purposes. In this section

we review two classes of color spaces, one based on cylindrical coordinates and one

based on how humans perceive color (opponent color spaces).

13



Figure 2.3: A color image of M&Ms (left) and the grayscale image (right) computed
using matlab’s rgb2gray.m. Source: http://blogs.mathworks.com/images/steve/2010/

mms.jpg.

Figure 2.4: Schematic of the HSV color space. Source: Image created by (3ucky(3all

using Borland Delphi 2006, Adobe Photoshop 9.0. Source: http://upload.wikimedia.org/

wikipedia/commons/e/e0/HSV_cylinder.png.

2.1.4.1 Cylindrical Coordinate Color Spaces

There are a number of color spaces which use cylindrical coordinates. Many

people consider this approach more intuitive than the three primary color spaces [3].

Generally, the angle measures the Hue (color), the distance from the central axis

represents the Saturation of the color, and the distance along the axis measures

the Lightness, also known as Value or Brightness. Color spaces in this class include

HSV, HSI or HSL. A schematic of the HSV color space is given in Figure 2.4.
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Figure 2.5: Schematic of the 1976 CIELab color space.

2.1.4.2 Opponent Color Spaces

Opponent color spaces were developed to match the human perception of color.

The goal of these color spaces is to find a plane that is uniform in chroma (color)

and an axis that is uniform in luminance (light intensity). These spaces are based

on the theory that humans perceive red and green, as well as blue and yellow, as

opposites [3]. These color spaces are generally non-linearly related to the three

primary color spaces.

The 1976 CIELab color space is a standard opponent-color space, used in a

variety of photo editing software systems and in some image file types (including

‘.tiff’ and ‘.pdf’ image files). In CIELab the coordinates are:

• an L coordinate, measuring the luminance,

• a chroma plane, where the a axis scales between green (negative) and red

(positive) and the b axis scales between blue (negative) and yellow (positive)

as shown in Figure 2.5.
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The transformation to CIELab from the 1931 CIEXYZ space is given by
L
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(29

6
)2t+ 4

29
otherwise,

where Xn, Yn, Zn is the reference white point; there are many standards for the

reference white point based on the device displaying the image [3]. Converting

between RGB and CIELab is time consuming [19] and the gamut of CIELab is

much larger than that of RGB.

2.1.5 Modified Color Spaces for Specific Applications

We briefly discuss two examples of work on developing modified color spaces

to perform specific image processing tasks on color images.

2.1.5.1 Skin Color Models

There is substantial research in user-aided methods for detecting skin in both

color images and video. There have been several approaches to finding a model of the

skin, based on a user-provided information and followed by thresholding the image

based on the characteristics in the model. Yang et al. [92] first find a normalized

2D red-green space from the RGB color space using the transformation

r =
R

R +G+B
, g =

G

R +G+B
. (2.3)
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Then they compute the mean and the covariance matrix for pixels in a user-identified

skin patch. Modeling the patch using a normal distribution, they classify other pixels

as skin or non-skin.

2.1.5.2 Pipe Image Interpretation Based on Support Vector Machines

In this application the goal is to detect defects in pipes. Mashford et al. [50]

present a method of building a learning set based on RGB information that is

supplied. In this case, they are segmenting between unaffected pipes and features

such as joints, pipe connections and defects. They use support vector machines

(details follow in Section 2.4) that can learn from two classes of information. This

results in a binary color space that aids discriminating between the two classes.

2.2 Previous Work in Color Edge Detection

Many image processing tasks rely on well established image processing algo-

rithms such as edge detection algorithms. There have been several types of color

edge detection methods suggested. One class of algorithms, described in Section

2.2.1, decomposes images by processing each coordinate separately, similar to a

grayscale image. Another class of algorithms, described in Section 2.2.2, is vector

based, where the pixel is treated as a vector throughout the computation. In addi-

tion to the two main classes, research has been done comparing color histograms of

patches to determine whether an edge exists between two patches [49, 74]. Median

principal component analysis is used to find edges [22, 66].
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All of these methods are significantly more costly than using a standard edge

detection method on a grayscale image. Depending on what color space is used

and what is being detected, the benefits over using the grayscale image can be

minimal.

2.2.1 Decomposed Edge Detection

Decomposed edge detection was first suggested in 1977 [58] for RGB images

and more recently has been suggested for other color spaces including HSI [9] and

CIELab [29]. There are two suggested decomposed edge detection approaches. One

computes the gradient magnitude for each coordinate and combines the gradient in-

formation into a single gradient mask which is then used to find the edges. The other

finds edges in each coordinate and combines the edge information. Decomposed edge

detection methods are easily implemented.

2.2.2 Vector Based Edge Detection

Vector based edge detection methods use the pixel vector information in order

to find the edge map. Research in vector based methods include work by [53,82,83].

Vector based methods preserve the color by keeping the pixel vector information.

The basic idea of these methods is to look at a window and determine if there exists

an edge in that window. Below we describe vector based methods for an RGB

image but it is easily adapted to any of the color spaces described.

Each pixel (a vector of size three) is compared to all other pixels in the window
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by computing the Euclidean distance

dm = |RGBi,j −RGBk,l| =
√

(Ri,j −Rk,l)2 + (Gi,j −Gk,l)2 + (Bi,j −Bk,l)2, (2.4)

where

• (i, j) is the index of the selected pixel and (k, l) is the index of another pixel

in the window.

• for a 3× 3 window, m is an index from 1 to 9 for each of the 9 pixels.

Then we can compute a single value for each pixel as

di,j = d1 + d2 + d3 + d4 + d5 + d6 + d7 + d8 + d9. (2.5)

If the range of di,j values is larger than a user threshold, the pixel with the median

value is said to be an edge. The basic method for computing the range is to compute

the difference between the biggest d-value and the smallest d-value. There have

been many different suggestions to compute the range in order to protect against

noise including: Vector Range (VR) edge detection, Vector Dispersion (VD) edge

detection, Mean Vector Range (MVR) edge detection and Mean Vector Despersion

(MVD) edge detection [83].

2.3 Projection to Find New Domain-Specific Grayscale Color Space

The inadequacies discussed above that arise when converting between standard

color spaces, when considering the limitations of the grayscale images, and when

including the costliness of color edge detection methods suggest a need for a new

single coordinate space that is fast to compute and retains the color information of

interest for the specific image processing task at hand.
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Figure 2.6: Left: Synthetic image created in matlab with two contrasting colors
that appear to be the same color in the GS image. Right: GS image found using
rgb2gray.m. The blue and red boxes mark the user selected background (P̄) and
foreground (P).

Consider Figure 2.6, a noisy color image with a uniform background color and

a large dot of a contrasting color (left) with its corresponding GS image (right).

Consider the task of detecting the edges around the blue dot. In the GS image

this task would be impossible, because the colors map to the same gray level. Now,

consider the scatter in Figure 2.7. Each pixel contained in the blue box (background)

is represented by blue dots, and each pixel contained in the red box (foreground)

is represented by red dots. In the scatter plot, one can easily see that there is

an orientation that would best distinguish the difference between the colors. If we

rotate our data we can find a rotated coordinate that best distinguishes between the

background and foreground, as shown in Figure 2.8. Using the coordinates along

the R′ axis, we obtain the image in Figure 2.9.

This motivates the development of a new color space, analogous to the grayscale

(single coordinate), adapted to the image and the task. We do this by finding

a transformation of the RGB image into a single coordinate that highlights the

areas of interest and makes the task as easy as possible. Using the user-defined
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Figure 2.7: Scatter plot of the pixels in the background (P̄, blue) and the pixels in
the foreground (P, red).
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Figure 2.8: Scatter plot of the pixels in the background (P̄, blue) and the pixels in
the foreground (P, red) after rotation.
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Figure 2.9: Resulting image after rotating the image and projecting onto the coor-
dinate R̃ from Figure 2.6.

background and foreground (object of interest) we find the transformed space that

best highlights the differences between the background and foreground. We present

methods for finding linear (this chapter) and non-linear (next chapter) transforma-

tions of the color image to project onto a single coordinate. We call this new class

of transformation methods the Domain-Specific Grayscale (DSGS) methods.

For the linear DSGS we present a method very similar to that described in

the motivating example: we simply find the orientation that produces the greatest

differences between each of the pixels in foreground and background, or, alterna-

tively, the orientation that minimizes the overlap between the distributions of the

background and foreground patches.

2.3.1 Computing the Projection

We represent a standard color image as X where X ∈ Rm×n×3 for an m × n

pixel image. Alternatively, we represent the image by x ∈ Rmn×3 and pixel i is

represented by xi = [x1
i , x

2
i , x

3
i ].

We assume that the user has designated patches that define the foreground
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Figure 2.10: Image of a patient’s skin after an allergy test is administered. Source:
Rho Inc.

and background of interest . We call the foreground patch P and background patch

P̄, where P and P̄ are non-overlapping submatrices of X.

As an example, consider the image of skin after allergy test as seen in Figure

2.10. A physician could easily identify a patch of unaffected skin (P̄) and a patch

of affected skin (P). We discuss this example in more detail in Chapter 4.

Our goal is to find a w ∈ R3 such that the pixels in our new single coordinate

image can be represented by yi = 〈xi,w〉 . For ease of visually understanding this

transformation we consider rotating the space so that the rotated first coordinate

maximizes the distance. Rotation around the RG plane is given by

TRG(α) =


cos(θRG) 0 − sin(θRG)

0 1 0

sin(θRG) 0 cos(θRG)

 , (2.6)

and rotation around the RB plane is given by

TRB(β) =


cos(θRB) − sin(θRB) 0

sin(θRB) cos(θRB) 0

0 0 1

 , (2.7)
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where θRG is the angle that the R axis is rotated in the RG plane and θRB is the

angle that the R axis is rotated in the RB plane. We are then interested in the

orthogonal transformation

T = TRGTRB, (2.8)

and w = T(1, :).

2.3.1.1 Maximizing Distance between Pixels (MDP)

In this case we are interested in finding the direction that maximizes the

distance between the patches, so we solve the problem

max
‖w‖=1

(
∑
i∈P

∑
j∈P̄

yj − yi)2 (2.9)

where yi = 〈xi,w〉. We can write the new image y ∈ Rmn.

We call this DSGS method Maximize Distance between Pixels (MDP). MDP

is intuitive in nature but not always effective. In some applications the solution to

(2.9) may not cluster the foreground and background pixels together. Consider the

example where the foreground pixels are clustered around zero and the background

is split between [−1,−1,−1] and [1, 1, 1].

2.3.1.2 Minimizing Area between Distributions (MAD)

The MDP method maximizes the sum of squared distances between P and

P̄ but the variation within the samples might be much larger than the difference

between the samples. In MAD we try to balance the distance between the pixels
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Figure 2.11: The area in gray is the area over which we are minimizing.

and the standard deviation within each patch.

We use a simple model of each patch. We assume that the original pixel values

in P and P̄ remain normal distributions. Then after projection by w, since normal

distributions are rotationally invariant [5], the pixels are also normally distributed

with means µP
w and µP̄

w and standard deviations σP
w and σP̄

w . The density function

for a normal distribution with mean µ and standard deviation σ is given by

f(y, µ, σ) =
1

σ
√

2π
exp(−(y − µ)2

2σ2
). (2.10)

Figure 2.11 shows the typical case, after projection. We would like a projection w for

which the shaded region in Figure 2.11 is minimized. We solve for the intersection

point z of the densities, located between [µP̄
w, µ

P
w], by solving

f(z, µP̄
w, σ

P̄
w) = f(z, µP

w, σ
P
w) , for z ∈ [µP̄

w, µ
P
w]. (2.11)

In the case where there is no orientation where z ∈ [µP̄
w, µ

P
w], we set the inter-

section to be the midpoint between µP̄
w and µP

w. If this is the case, the intersecting

area will be large (> 0.5) and non-optimal and the resulting image will poorly

differentiate between the background and foreground.

The shaded region has area

1+(sign(µP̄
w−µP

w))

∫ z

−∞
f(y, µP̄

w, σ
P̄
w)dy+(sign(µP

w−µP̄
w))

∫ z

−∞
f(y, µP

w, σ
P
w)dy (2.12)
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where ∫ ∞
−∞

f(y, µ, σ)dy = 1. (2.13)

We minimize (2.12) over all choices w where ‖w‖ = 1. We can write the new image

as y ∈ Rmn.

We call this DSGS method Minimizing Area between Distributions (MAD).

2.4 Use of Support Vector Machines to Determine a New Color Space

A support vector machine (SVM) is a machine learning algorithm partition-

ing a set into two subsets. It was developed by Vladimir N. Vapnik as a “non-

probabilistic linear classifier” [77]. As a machine learning algorithm it takes in a

training set with known classifications and learns from that set in order to classify

the entire set. In image processing tasks, SVM has been used extensively for image

classification [77] as well as for color image segmentation [33,50].

SVM classifies the data by using a score based on the distance from the hy-

perplane. We suggest using the score as the new pixel value. The resulting single-

coordinate image results from an orientation that separates the training sample. In

this section we introduce a new view of SVM as a DSGS method.

2.4.1 Hard Margin SVM

SVM determines a hyperplane that separates the two classes (background/foreground)

and maximizes the distance from the separating hyperplane to the data. This is the

maximum-margin hyperplane.
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In our example the training set will be the user supplied P and P̄ and the

classification “foreground” or “background.” Define

D = {(pi, ui)|pi ∈ P̄ ∪P, ui = 1 if pi ∈ P and ui = −1 if pi ∈ P̄}ki=1, (2.14)

where k is the number of pixels in P̄ ∪P. We represent our hyperplane as

〈p,w〉 − b = 0. (2.15)

If the elements of P and P̄ are separable from each other then we can find an infinite

number of hyperplanes such that

〈pi,w〉 − b ≥ ui , if ui = +1 (2.16)

and

〈pi,w〉 − b ≤ ui , if ui = −1, (2.17)

which we can write as

ui(〈pi,w〉 − b) ≥ 1. (2.18)

Then our problem is to find the maximum-margin hyperplane by finding w and

b that maximizes the distance between the hyperplane and each of the two classes.

The distance between the pixels on the margins and the hyperplane that separates

the two classifications is 1
‖w‖ , and we want to maximize this. The schematic of the

geometry of the hyperplane is 2D is given in Figure 2.12. We can state the problem

as a optimization problem

min
w,b

1

2
‖w‖2

2
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Figure 2.12: Schematic of hard margin SVM where the two classes of
data are represented by the filled and empty dots respectively. Source:
http://upload.wikimedia.org/wikipedia/commons/2/2a/Svm_max_sep_

hyperplane_with_margin.png.

s.t. ui(〈pi,w〉 − b) ≥ 1 for i = 1, . . . , k. (2.19)

This problem can be solved using standard quadratic programing techniques [35].

Once we find w, the score or distance from the hyperplane is given by

yi = 〈xi,w〉 − b (2.20)

2.4.2 Soft Margin SVM

SVM provides a powerful tool for separating data. Unfortunately in a real

world example the data may not be separable. In this case, the hard margin SVM

problem (2.23) will fail to have a solution. This can easily happen if P and P̄ have

significant noise or misclassification errors. Noise is inherent in images. Errors can

be introduced because of artifacts or blurring in the image. A user could introduce
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errors when selecting P and P̄, for example, by accidentally including pixels that

are not part of the area of interest. Therefore the hard margin SVM may fail either

because the samples are not linearly separated or because errors or noise skew the

resulting hyperplane. In both of these cases it is evident that the hard margin

condition needs to be relaxed to allow some of the erroneous data points to be

“misclassified” leading to a soft-margin SVM.

Soft-margin SVM introduces a slack variable ξi ≥ 0 for each data point. The

problem then becomes balancing the margin and the slack variable. We use C > 0

as a penalty parameter, controlling the trade-off between these two objectives. A

soft-margin SVM is determined by

min
w,b,ξ

1

2
‖w‖2

2 + C|ξ|1 (2.21)

s.t. ui(〈pi,w〉 − b) ≥ 1− ξi (2.22)

ξi ≥ 0 for i = 1 . . . k. (2.23)

As C increases, (2.23) moves more towards a hard-margin SVM. A C closer to zero

allows for more misclassifications.

2.5 Thresholding Images for Segmentation

To evaluate MDP, MAD, and SVM Domain Specific Grayscale methods, we

will use the more primitive task of classifying the pixels of the image as background

(of value zero) or as foreground (of value one), resulting in a binary image. Basic

classification or segmentation methods are based on thresholding the image based

on some threshold level T .
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For SVM the threshold value is simply TSVM = 0, since the SVM score equals

zero on the separating hyperplane. Similar to SVM, the MAD threshold can be set

to the intersection point between distributions, where TMAD = (sign(µP
w − µP̄

w))z.

Values yi less than TMAD would be assigned to the background and values greater

than or equal to TMAD would be assigned to the foreground.

For the other methods, including for transformation to grayscale, there is no

natural threshold. A simple method would be to set the threshold as the midpoint

between the means of Pw and P̄w:

T =
1

2
sign(µP

w − µP̄
w)(µP

w + µP̄
w). (2.24)

Unfortunately, if the standard deviations of Pw and P̄w are significantly different in

size, (2.24) is likely to be a poor threshold. To account for this, we set the threshold

to the point of equal probability of belonging to Pw and P̄w, assuming they are

normally distributed.

The probability that a random variable Z is less than or equal to z for a normal

distribution of mean µ and standard deviation σ is given by

P (Z ≤ z) =

∫ z

−∞
f(y, µ, σ)dy, (2.25)

where f(y, µ, σ) is the probability density function (2.11). Without loss of generality

assume µP̄
w > µP

w. Then we can find z such that

P (ZP̄ ≥ z) = P (ZP ≤ z) (2.26)

where ZP̄ and ZP are the random variable the associated distributions for P̄w and
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Pw respectively. Or equivalently we can write

1−
∫ z

−∞
f(y, µP̄

w, σ
P̄
w)dy =

∫ z

−∞
f(y, µP

w, σ
P
w)dy. (2.27)

In general the threshold is given by T = (sign(µP
w − µP̄

w))z.

2.6 Comparing the Linear Domain-Specific Grayscale Methods

In this section we present results comparing the linear DSGS methods. Tests

are done on both synthetic images and natural images. For this work we only

consider the case of segmenting between background and foreground. Methods are

evaluated based on the percent of pixels misclassified compared to a ground truth

segmentation (binary mask).

2.6.1 Natural Images

Our natural images come from three sources:

• Matlab’s images ’peppers.png’, ’football.jpg’ and ’saturn.png’.

• A subset of images from the Berkeley Segmentation Dataset (Figure 2.13).

• Image of the skin after allergy testing courtesy of Rho Inc. (Figure 2.10).

2.6.1.1 Berkeley Segmentation Dataset

The Berkeley Segmentation Dataset and Benchmark Dataset [48] is a collec-

tion of color images (and gray scale images) along with hand-drawn segments or
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#105053 − Lions #105018 − Lions 2 #8143 − Owl

#108041 − Tiger
#41025 − Goat #113044 − Horses

Figure 2.13: Subset of images from the Berkeley Segmentation Database.

edges.1 We use a small subset of these images and simply classify background and

foreground. A segmentation mask was created from the hand-drawn segment and

assumed to be ground truth.

2.6.1.2 Synthetic Data

Synthetic images were created in two ways. The images titled ‘Dot’ and

‘Sphere’ were created by hand-selecting colors in the foreground and background.

The remaining test images were created by taking samples from the natural image.

A sample of the background and foreground was found by selecting patches from

a natural image. A dot of the foreground was superimposed onto the background

1The use of the database for non-commercial research and educational purposes is free and

encouraged “in the spirit of cooperative scientific progress” [48].
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#105053 − Lions #105018 − Lions 2 #8143 − Owl

#108041 − Tiger

#41025 − Goat #113044 − Horses

Figure 2.14: Matlab’s grayscale images for the Berkeley Segmentation Database
images.

#105053 − Lions #105018 − Lions 2 #8143 − Owl

#108041 − Tiger

#41025 − Goat #113044 − Horses

Figure 2.15: Human-user-filled edges for Berkeley Segmentation Database images.
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Pepper Dot

Football Dot Berk. Lions Dot Saturn Dot Berk. Lions 2 Dot

Berk. Owl Dot Berk. Tiger Dot Berk. Goat Dot Berk. Horses Dot

Linear Dot Rho Skin DotNon Linear Dot

Figure 2.16: Synthetic data created from real images.

with a known segmentation mask. As seen in Figure 2.16, a circular patch of fore-

ground is superimposed onto a patch of background. All these images are made to

be 64× 64× 3 for ease of testing.

2.6.1.3 Implementation of Linear DSGS Methods

SVM was implemented using Matlab’s svmtrain.m using default parameters.

The MAD and MDP optimization problems were solved using Matlab’s fmincon

using the interior-point algorithm. All computations were done on a Mac OS X

version 10.7.5 with 2.4 GHz Intel Core i7 processor.
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Pepper Dot

Football Dot Berk. Lions Dot Saturn Dot Berk. Lions 2 Dot

Berk. Owl Dot Berk. Tiger Dot Berk. Goat Dot Berk. Horses Dot

Linear Dot Rho Skin DotNon Linear Dot

Figure 2.17: Matlab’s grayscale images for synthetic data created from real images.

2.6.2 Results on Synthetic Data

Figures 2.18 - 2.19 show the results after applying each of the methods on

two different images, as well as the histogram of the results. As expected, all the

methods do very well and produce very similar results on the synthetic image ‘Dot’

as there is a clear orientation that best separates the two samples, as seen in the

histogram of the pixels (Figure 2.7). In the example in Figure 2.19 of the image

‘Lions 2 Dot’ the foreground and background pixels are not easily separated. In

all these methods there is a varying degree of overlap between the foreground and

background, as seen in the histogram of the results. In the example of ‘Pepper Dot’

in Figure 2.20 the background is bimodal (made up of two distinct colors). All
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Figure 2.18: Resulting images after applying the different linear DSGS methods on
the ‘Dot’ image along with the histogram of all the pixel values, with the pixels of
the user-selected Pw and P̄w in red and blue respectively.

three of the algorithms are able to separate the data but the resulting image has

varying distributions of the background pixels. Variation within class (background

or foreground) is important to consider as processing tasks such as edge detecting

are more sensitive to these variations.

Table 2.6.2 shows the precentage of pixels misclassified for the twelve differ-

ent synthetic images. The MAD and SVM methods clearly outperform the MDP

method and grayscale. In a few examples the MDP does worse than grayscale for

this task.
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Figure 2.19: Resulting images after applying the different linear DSGS methods on
the ‘Lions 2 Dot’ image along with the histogram of all the pixel values, with the
pixels of the user-selected Pw and P̄w in red and blue respectively.
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Figure 2.20: Resulting images after applying the different linear DSGS methods on
the ‘Pepper Dot’ image along with the histogram of all the pixel values, with the
pixels of the user-selected Pw and P̄w in red and blue respectively.

38



Grayscale

Misclassified =
58.0322%

40 60 80 100 120 140 160 180 200 220
0

50

100

150

200

Histogram of Image Pixels

Pixel Values

C
o
u
n
t

σ =31.4893
µ =160.9053

σ =15.7556
µ =161.2729

MDP

Misclassified =
54.541%

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

σ =0.31156
µ =−0.31558

σ =0.1576
µ =−0.32104

MAD

Misclassified =
17.8467%

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

σ =0.17324
µ =0.28137

σ =0.082008
µ =−0.21992

SVM, ker= linear

Misclassified =
25.6836%

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

σ =0.17193
µ =0.32583

σ =0.073112
µ =−0.12642

Figure 2.21: Resulting images after applying the different linear DSGS methods on
the ‘Goat Dot’ image along with the histogram over all the pixel values with the
pixels of the user selected Pw and P̄w in red and blue respectively.
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Table 2.1: Percent misclassified for the synthetic images.

Image GS MDP MAD SVM, C = 1

Linear Dot 51.10 0 0 0

Non linear Dot 45.09 45.48 44.65 64.14

Skin Dot 7.28 7.20 0 0

Pepper Dot 48.36 11.77 0 0

Football Dot 1.98 0.63 0 0

Lions Dot 0.61 0.24 0.05 0

Saturn Dot 10.33 7.30 0.02 0.02

Lions 2 Dot 7.40 7.74 2.88 1.20

Owl Dot 41.28 41.38 16.53 12.60

Tiger Dot 16.28 15.92 15.92 15.41

Goat Dot 58.03 42.21 17.85 29.37

Horse Dot 15.31 4.88 0 0

2.6.3 Results on Natural Images

The human-drawn edges that are included with every image in the Berkeley

data set were used to find a segmentation mask assumed to be ground truth. From

Table 2.2 we can see that both MAD and SVM methods produce very similar results.

For the images of the lions and the image of the horses, both methods produce

excellent results. A visualization of the results of each method is given in Figures

2.22-2.23. For the other images, both methods improved upon the GS image but

as seen in Figures 2.23 the results are not images that would be easily segmented

by any algorithm. The image of the owl and the tiger have significant variation

both in the background and foreground. In these cases nonlinear DSGS methods

are needed.
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Table 2.2: Percent misclassified for each image for a subset of Berkeley Segmentation
Database.

Image GS MAD SVM, C = 1

#105053 Lions 39.14 6.25 6.76

#105018 Lions 2 7.02 3.27 3.46

#8143 Owl 46.95 25.43 21.81

#108041 Tiger 41.29 24.55 18.50

#41025 Goat 33.74 31.73 27.55

#113044 Horse 18.75 2.20 2.50

#105053 − Lions, GS SVMMAD

#105018 − Lions 2, GS SVMMAD

#113044 − Horses, GS SVMMAD

Figure 2.22: Comparing the GS image to the results of MAD and SVM for the
images of lions and image of horses.
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#8143 − Owl, GS SVMMAD

#108041 − Tiger, GS SVMMAD

#41025 − Goat, GS SVMMAD

Figure 2.23: Image comparing the GS image to the results of MAD and SVM for
the image of an owl, a tiger and a goat.
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2.7 Summary and Conclusions

In this chapter we introduced a new class methods for finding a single-coordinate

image from a color image based on user-provided domain information. We call this

class of methods domain-specific grayscale (DSGS) methods. We developed the new

MDP and MAD methods. The MDP method is based on finding a transformation

that maximizes the distance between the pixels in the background and foreground,

and the MAD method finds a transformation that minimizes the overlap between

the distribution of the background and foreground pixels. In addition we introduced

a new use of SVM, traditionally used as a classifier, to find a single coordinate image.

We use the distance from the pixel to the SVM separating hyperplane as the pixel

value for the DSGS image. In testing on the synthetic images and images from the

Berkeley segmentation dataset, the MAD and SVM methods produced significantly

better segmentations on the test images over the grayscale image. We found that the

SVM and MAD methods produced very consistent and similar results. We choose

to use the MAD method as a linear benchmark method because it is not reliant on

a parameter such as C in the SVM method.

In Chapter 3 we will present nonlinear DSGS methods where pixels in back-

ground and foregrounds are not linearly related (for example the ‘nonlinear dot’).
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Chapter 3: Nonlinear Domain-Specific Grayscale Transformations for

Color Images

If an image is made up of two distinct colors, then there exists a linear hy-

perplane that separates the two colors in RGB space, and the methods in the

previous chapter work well. However, if the foreground and background are each

comprised of many different colors, it becomes less likely that they can be linearly

separated. Consider the image of a tiger in Figure 3.1. We compare the pixels of the

selected background (blue box) and foreground (red box) in RGB space in Figure

3.2 and we can see that there exists no hyperplane that separates these regions. In

this chapter we study methods for transforming a color image to a DSGS image

when the separation between the foreground and background is not assumed to be

linear.

In Section 3.1 we discuss the details of adapting SVM to address nonlinearly

related data by mapping the data into a higher order space (which is implicitly

done by applying a kernel), where the data is linearly related and then applying

linear SVM. In Section 3.2 we show details on how to construct kernels to model the

higher order space. In Section 3.3 we describe schemes for the selection of kernels

and parameters. In Section 3.4 we propose the use of Kernel SVM as a nonlinear
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Figure 3.1: Image of a Tiger from the Berkeley Segmentation dataset with user
selected background and foreground for training.

Domain-Specific Grayscale (DSGS) Method. A nonlinear DSGS method based on

a new approach to learning the nonlinear relationship between the background and

foreground is introduced in Section 3.5. In Section 3.6 we compare nonlinear DSGS

methods on the test images from Chapter 2. In Section 3.7 we demonstrate some of

the advantages of nonlinear methods even in cases where linear methods outperform

the nonlinear methods in segmenting the test images.

3.1 Kernel SVM

Kernel SVM methods consist of two parts: mapping the data to a higher

dimensional space where the data is more linearly related and applying a linear

method to the mapped data.

We call the map to the higher order space the feature map which we define
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Figure 3.2: Selected background (blue box) and foreground (red box) pixels from
Figure 3.1 plotted in RGB space.

as:

Φ : X → H (3.1)

x 7→ Φ(x)

where X is the pixel space and H is the feature space [76, 77].

The usefulness of kernel methods is demonstrated by the following toy problem.

Consider the two dimensional data pictured on the left in Figure 3.3. Clearly there

is no separating hyperplane between the red and blue dots. If we transform our data

into three dimensions using the map

Φ : R2 → R3

[x1, x2]T 7→ [x2
1, x

2
2,
√

2x1x2]T , (3.2)

46



−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

6

0
2

4
6

8
10

12
14

0

5

10

15

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 3.3: Left: Two dimensional toy problem where the background (red box) is a
donut around the ball of foreground (blue box). Right: After mapping to the three
dimensional feature space where there exists a hyperplane that separates the two
data types.

we see that in three-dimensions, Figure 3.3, there exists a hyperplane that separates

the foreground and background.

There is a computational cost to working with higher dimensional data. In

many real life applications the dimension of the new space that linearly relates the

data can be quite large, in some cases of infinite dimension. To mitigate computa-

tional complexity, some algorithms can be written to rely on only the inner product

between the data points. In this case we can replace 〈Φ(·),Φ(·)〉 with a kernel

function defined as

κ(·, ·) = 〈Φ(·),Φ(·)〉. (3.3)

In the toy example pictured we can explicitly find the kernel function

κ(x, z) = 〈[x2
1, x

2
2,
√

2x1x2], [z2
1 , z

2
2 ,
√

2 z1z2]〉 = (x1z1 + x2z2)2 = 〈x, z〉2 (3.4)
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where x and z ∈ X . We call this kernel the quadratic kernel or polynomial kernel

of degree two. Note that the correspondence between kernel and feature map is not

unique. For example the map Φ : [x1, x2]T 7→ [x2
1, x

2
2, x1x2, x2x1]T yields the same

kernel. Regardless of the dimension of the feature space, we now explain that we

only need to explicitly determine the kernel of the feature space, eliminating the

computational cost of evaluating the feature map and of applying the linear method

to higher order data.

A kernel method is a linear method where the explicit feature space is not

required; only the similarity between the data in the feature space is needed. Any

linear method that can be written in terms of only the inner product of the data

(similarity of data) can be transformed into higher dimensional space by replacing

the inner product with the kernel function which implicitly transforms the space into

the feature space without requiring the data to be mapped to the higher dimensional

space. Many popular data analysis methods can be expressed as kernel methods,

including linear regression, principal component analysis (PCA), Fisher discriminant

analysis (FDA), and support vector machines (SVM) [77].

We next discuss how to find the kernel soft-margin SVM, which we will simply

call Kernel SVM.

Recall from Chapter 2 that the soft-margin SVM is given by

min
w,b,ξ

1

2
‖w‖2

2 + C|ξ|1 s.t. ui(〈w,pi〉 − b) ≥ 1− ξi,

ξi ≥ 0 for all i = 1, . . . , k. (3.5)

where pi denotes the training pixels (background and foreground), ui is the classi-
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fication of the training pixels, 〈w,p〉 − b = 0 is the hyperplane, and ξi is the slack

variable controlled by the penalty parameter C. We find the Kernel SVM by apply-

ing the Karush-Kuhn-Tucker (KKT) condition [35] to find the dual formulation of

(A.7) where the dual is a function of the inner product.

The primal (A.7) problem has an equivalent dual form:

max
α

∑
i

αi −
1

2

∑
i

∑
j

αiαjuiuj〈pi,pj〉 (3.6)

s.t.
∑
i

uiαi = 0 and 0 ≤ αi ≤ C. (3.7)

See Appendix A for the derivation.

The relationship between primal and dual variables is given by

w =
∑
i

αiuipi. (3.8)

The hard margin SVM results in the same dual formulation except the dual variable,

αi ≥ 0, is not constrained by C.

In the dual form of SVM we see that our problem is only dependent on inner

products of data vectors. If we use a feature map, we can simply replace 〈pi,pj〉 by

〈Φ(pi),Φ(pj)〉 and then by κ(pi,pj) resulting in the kernel SVM dual problem

max
α

∑
i

αi −
1

2

∑
i

∑
j

αiαjuiujκ(pi,pj)

s.t.
∑
i

uiαi = 0 and 0 ≤ αi ≤ C. (3.9)

Note that (3.9) is a quadratic optimization problem where the objective func-

tion can be written as

eTα− 1

2
αTDKDα (3.10)
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where D = diag(ui) and Kij = κ(pi,pj). Problem (3.9) has a unique solution if

K is symmetric positive semi-definite (and if and only if K is conditionally positive

definite which we discuss in Section 3.2.2). Therefore we are interested in functions

κ(·, ·) that guarantee this condition.

3.2 Characteristics of Kernels

As we saw in the previous section, a linear method that can be expressed

in terms of the inner product of the data can be mapped implicitly to a higher

dimensional feature space where we can replace 〈Φ(pi),Φ(pj)〉 with κ(pi,pj). In

order to make this substitution, the map Φ needs to be defined on an inner product

space

〈·, ·〉H. (3.11)

For a map Φ, if we evaluate the corresponding kernel function over a set of real

vectors xi for i = 1 . . . n, the result will be an n×n matrix K which is often referred

to as the Gram Matrix [77]. Each element of the matrix is given by

Kij = 〈Φ(xi),Φ(xj)〉. (3.12)

Given that Φ is defined on an inner product space, we see that K is symmetric and

positive semi-definite as it is the matrix formed by finding the inner product of the

inputs in the feature space. This gives us some indication that a kernel that is a

finitely positive semi-definite function 1 can be defined as κ(x, z) = 〈Φ(x),Φ(z)〉 for

1This is a kernel function where the matrix formed by evaluating over a finite space is symmetric

and positive semi-definite [77].
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some map Φ.

The following theorem says that, in fact, any finitely positive semi-definite

function κ : X × X → R is a kernel function.

Theorem 1 (Characteristic of a Kernel [77]). A function κ : X × X → R can be

expressed as

κ(x, z) = 〈Φ(x),Φ(z)〉

with a space H and map Φ : X → H for all x, z ∈ X if and only if κ is finitely

positive semi-definite.

3.2.1 Constructing Kernels

In the previous section we saw that any finitely positive semi-definite function

can be a kernel function. Given any kernel, for example, κ(x, z) = 〈x, z〉, we can

build upon it to create more complex kernels [77].

The following functions are kernels:

• κ(x, z) = aκ1(x, z) where a > 0 and κ1(x, z) is a kernel.

• κ(x, z) = κ1(x, z) + c where c > 0 and κ1(x, z) is a kernel.

• κ(x, z) = κ1(x, z) + κ2(x, z) where κ1(x, z) and κ2(x, z) are kernels.

• κ(x, z) = κ1(x, z)κ2(x, z) where κ1(x, z) and κ2(x, z) are kernels.

Each one of these properties can be verified by constructing the kernel matrix and

confirming that it is positive semi-definite (v′Kv ≥ 0 for all vectors v).
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3.2.1.1 Polynomial kernels

The quadratic kernel from the toy problem is an example of a polynomial

kernel of degree two. The most general form is given by

κ(x, z) = (a〈x, z〉+ c)d for a, c and d > 0. (3.13)

This kernel has three parameters (a, c, and d). Often when used with Kernel

SVM over normalized data, a = 1 and c = 0, which is called the homogeneous

polynomial kernel.

3.2.1.2 Gaussian Kernels

The inner product measures the similarity of two data points but in many

applications the measure of dissimilarity between two data points may be more

useful. The dissimilarity is measured by distance. The Gaussian kernel is given

by

κ(x, z) = exp (−‖x− z‖2

2σ2
) for σ > 0, (3.14)

and is a measure of dissimilarity.

The Gaussian, often referred to as the Gaussian Radial Basis Function or

RBF [76], is a finitely positive semi-definite kernel. The feature space is of infinite

dimension which can be seen if we generalize the Gaussian kernel function to a

polynomial kernel function by Taylor expansion.

The Gaussian kernel is dependent on the parameter σ. For σ approaching zero

the kernel becomes the identity matrix, where each data point of the training data
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is fit exactly. For σ approaching infinity, the kernel matrix approaches a constant

matrix, losing all information of similarity among data points.

The Gaussian kernel is based on a measure of dissimilarity. A larger class

of kernels based on dissimilarity which are not guaranteed to be finitely positive

semi-definite, but are conditionally positive definite, follows in Section 3.2.2.

3.2.2 Conditionally Positive Definite Kernels

A conditionally positive definite matrix is defined as

Definition 1. [Conditionally Positive Definite Matrix] A symmetric K is condi-

tionally positive semi-definite (CPD) if

k∑
i,j=1

vivjKij ≥ 0 for all v such that
k∑
i=1

vi = 0. (3.15)

Details on conditionally positive definite matrices can be found in [2]. A kernel

is CPD if its Gram matrix for any choice of real vectors is CPD.

The kernel κ(x, z) = −‖x − z‖2 is an example of a CPD kernel [4]. We can

see this by using the identity

− ‖x− z‖2 = −‖x‖2 − ‖z‖2 + 2〈x, z〉. (3.16)

Then

∑
i

∑
j

vivjκ(xi,xj) = −
∑
i

∑
j

vivj‖xi‖2−
∑
i

∑
j

vivj‖xj‖2+2
∑
i

∑
j

vivj〈xi,xj〉,

(3.17)

and

2
∑
i

∑
j

vivj〈xi,xj〉 ≥ 0 (3.18)
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when
∑

i vi = 0.

As suggested by the example, there is a relationship between measures of dis-

similarity and conditionally positive definite kernels. This relationship is expressed

by the identity

− ‖Φ(x)− Φ(z)‖2 = −κ(x,x)− κ(z, z) + 2κ(x, z), (3.19)

where −‖Φ(x)− Φ(z)‖2 is a CPD kernel.

In the case of kernel SVM given by (3.9) we see that it has a unique solution for

all CPD kernels. By plugging (3.19) into (3.9) we find that the terms corresponding

to κ(x,x) and κ(z, z) go to zero because of the SVM constraint.

In practice, CPD kernels have been shown to be very effective for Kernel

SVM [4,80]. More details on CPD kernels are found in [4, 75, 76].

3.2.2.1 Log Kernel

The log kernel is an example of a CPD kernel which has been suggested for

image processing applications [80]. It is given by

κ(x, z) = log (‖x− z‖d + 1) for 0 < d ≤ 2. (3.20)

The log kernel has been suggested for color image recognition problems, partic-

ularly class-vs-all other classes [4] as well as spectral reflectance problems [25].

3.2.3 Other Notable Kernels

The Multilayer Perceptron (MLP) is given by

κ(x, z) = tanh(a〈x, z〉+ c). (3.21)
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This kernel is also known as the Hyperbolic Tangent Kernel or Sigmoid Kernel,

developed originally as a model for Neural Networks. The origin of SVM is often

attributed to the field of network theory [80].

A well-cited list of kernel functions used for machine learning, including con-

ditionally positive definite kernels, can be found in [80].

3.3 Kernel and Kernel Parameter Selection

Finding the appropriate kernel for a particular task and method is not trivial.

Poor kernel and parameter choice can lead to poorer classification of data. Both the

choice of the kernel and kernel parameter are dependent on the data as well as the

particular kernel method used. Practitioners use past experience, knowledge of the

particular application or an exhaustive search over a subset of kernels and parame-

ters to find an appropriate pair for a particular task. Because of the possible bias

that may be introduced and the cost of an exhaustive search, many have considered

automated processes for picking kernels and parameters.

3.3.1 Selecting a Kernel

Understanding the characteristics of the task can help us find a kernel that

captures the measure of dissimilarity/similarity for the particular task and data.

Unfortunately such intuition about data is rare.

Several authors have introduced automated kernel selection methods [7, 45,

67, 79]. Their general approach is to build a space of kernels and optimize the
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kernel method over the kernel space. These methods have been coined Multi-Kernel

Learning or MKL methods by [79].

Generally MKL methods assume that the subset of kernels can be represented

as a composite kernel

κ(x, z) =
M∑
K=1

dKκK(x, z), (3.22)

where M is the number of kernels and κK(x, z) is a given kernel. Once a kernel

space is built several approaches have been suggested for searching over that space

to find the optimal kernel.

The authors of [79] constructed a convex set of kernels and added a quadratic

constraint over the set of kernels into the Kernel SVM optimization problem. They

showed that the MKL SVM is a semi-infinite linear program which can then be

solved in a number of different ways. They suggested a two step method alternating

between the standard SVM problem and a generic cost function with the additional

constraints on the weights of the composite kernel. Similar to this method, [45]

suggested a method where the Kernel SVM is written as a semi-definite program,

again with constraints over the set of composite kernels which can also be solved

iteratively in a two step approach.

In [45], the authors found that their MKL algorithm, over a composite kernel

made up of three different kernels (polynomial kernel of degree 2, Gaussian kernel

with σ = .5 and linear kernel), had minimal improvement, if any, over Kernel SVM

with a single Gaussian kernel where the parameters were tuned. Because of the

limited benefit and additional computational cost of the MKL methods, they were
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not included in our study.

3.3.2 Parameter Selection

Finding the kernel parameters for Kernel SVM is often done in conjunction

with tuning the penalty parameter C by cross validation over a grid [17, 76]. This

approach is not ideal as it can take time and the range of optimal parameters can

be small. In [14] and [85], they suggest that the appropriate kernel and kernel

parameter can be found using application-domain knowledge by an expert user. For

example they suggest that the Gaussian parameter σ should reflect the distribution

of the training data.

Methods for automatically finding the kernel parameter have received some

attention. In [15], they suggest a gradient descent algorithm over several model

selection criteria. Using a gradient descent algorithm they found similar results,

compared to searching over a grid, in significantly less time [15].

In our case we are limiting ourselves to kernels that are dependent on a single

parameter, and we used default parameters for testing. For kernels with many

parameters these selection methods become more appealing.

3.4 Kernel SVM as a Domain-Specific Grayscale Method

Similar to the case of the linear SVM, we define the DSGS image as

yj = 〈Φ(xj),w〉 − b, (3.23)
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where the value of y represents the distance from the hyperplane in the feature

space.

If we plug in the relationship between the primal variable and dual variables,

given by w =
∑

i αiuiΦ(pi), then the distance from xj to the hyperplane in feature

space is given in terms of the kernel function by

yj =
∑
i

αiuiκ(xj,pi)− b. (3.24)

Given our understanding of the mechanics of SVM, we know that the data

that are near the hyperplane have a greater probability of being misclassified when

compared to points far from the hyperplane. There has been work to explicitly

convert the resulting SVM score to a conditional probability P (Y = ±1|xj) = σ(yj)

but this requires additional training data [65,71].

3.5 Non-Kernel Nonlinear Domain-Specific Grayscale Method

In this section we introduce a new nonlinear domain-specific grayscale method

where we learn the two distinct three-dimensional regions that enclose the back-

ground and foreground pixels in RGB space. We call these inclosed regions the

background gamut and foreground gamut. The motivation for explicitly learning the

gamuts comes from the fact that choosing the right kernel and paired parameters is

a difficult and time consuming task.

Color images are generally only three-coordinates, therefore it is feasible to try

to learn the background and foreground gamuts from the data. Once the gamuts are

learned then we can classify other parts in the image by determining which region
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they should be members. If the background and foreground are made up of several

different colors the resulting regions are not guaranteed to be convex (as shown in

Figure 3.2). Learning non-convex shapes is not a trivial problem.

Similar problems arise in three dimensional surface reconstruction which has

applications in computer graphics. In these applications there is additional informa-

tion known about the collection of points [8]. Generally these point-clouds have an

additional dimension or dimensions, such as an intensity or a normal vector giving

the reference in which the data was captured. In our case we only have the location

of the pixel in three dimensional RGB space and because our shapes may not be

convex we cannot use methods such as triangulation to learn these shapes.

Consider just the foreground. If we assume that each data point is a heat

source and then let the the heat diffuse over a fixed time, we can define a normalized

temperature as

Ψ(x) =
∑
i∈P

exp(−‖x− xi‖2

σ
), (3.25)

where σ is a diffusion parameter. Then, for some level L, the set of points with that

temperature is given by

ΓL = {x |Ψ(x) = L}. (3.26)

If we want to separate the background and foreground, we assume that the back-

ground data points are heat sinks and are given by the negative of the same process.

Then our temperature is

Ψ(x) =
∑
i∈P∪P̄

ui exp(−‖x− xi‖2

σ
), (3.27)
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and the level surface is

ΓL = {(x)|Ψ(x) = L}. (3.28)

We call this method the Gaussian Sum (GSUM) method.

One might assume that the zero level, Γ0, would be the best boundary be-

tween the shapes. Unfortunately the foreground and background pixels are likely

to have different densities and number of pixels. Consider the contour plot for a

two-dimensional toy problem, seen in Figure 3.4. In this case the boundary found

at L = 0 (blue line) is clearly not the best boundary. L = 2 (teal line) is a more

reasonable boundary.

To partially account for differences in the number of pixels and potential differ-

ences in density, σGSUM was rescaled by n/(2n1) for the foreground and n/(2n2) for

the background where n1 is the number of elements in the foreground and n2 is the

number of elements in the background and n = n1 + n2. In addition to determining

the level L, we used the thresholding methods presented in Chapter 2.

Although the motivations for the GSUM method and the Gaussian Kernel

SVM are different, they result in a similar expression of the DSGS image. The

DSGS image for the Gaussian Kernel SVM is given by

yj =
∑
i

αiui exp(−‖xj − pi‖2

2σ2
)− b. (3.29)

In Chapter 6 we discuss further work on improving upon the GSUM method

as well as other methods for learning the foreground and background gamuts that

are less reliant on user-determined parameters.
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Figure 3.4: Level sets for two-dimensional pixels. Contour plot of Ψ(x, u) where the
red stars are the foreground pixel and blue dots are the background. The dark blue
curve is the zero level set.

3.6 Results with the Non-Linear Domain-Specific Grayscale Meth-

ods

In this section, we present results comparing the nonlinear DSGS methods and

discuss some advantages of nonlinear methods over the linear DSGS methods.

For this work we focused our efforts on three different kernels. The Gaussian

and polynomial kernels were used because of their wide-spread use in the literature.

The log kernel was chosen because of its suggested use in related problems (color

image recognition problem [4] and spectral reflectance [25]). We name the Kernel

SVM implementation for each of the kernels as follows:

• Gaussian Kernel SVM (GSVM),

• Polynomial Kernel SVM (PSVM),
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• Log Kernel SVM (LSVM).

For each of these kernels we use the default SVM parameter C = 1 and kernel

parameters:

• GSVM: σ = 1,

• PSVM: p = 2,

• LSVM: d = 1,

unless otherwise stated.

3.6.1 Synthetic Image Testing

Table 3.1 shows the percent misclassified after thresholding for the synthetic

images for each of the nonlinear methods as well as for the MAD method. The

MAD method was chosen as the benchmark linear method because it is not reliant

on user-determined parameters.

GSUM produced the best segmentation for the “Nonlinear Dot” and reason-

able segmentation for the “Linear Dot,” although for the images based on data from

natural images, the GSUM method generally failed to produce reasonable segmen-

tations. For the synthetic images, the margins are well defined and the density

between samples are constructed to be similar. For the natural images, the margin

is not as well defined and there can be significant differences in densities between

the training background and foreground which creates a lot of issues for GSUM.

Some issues can be mitigated by tuning the parameter σGSUM as well as improving

the rescaling of σGSUM .
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As expected, all the kernel methods worked well for the “Nonlinear Dot” but

for most of the other synthetic images they produced little or no improvement over

the linear methods. Images that are made up of primarily two distinct colors, such

as the “Linear Dot,” “Football Dot,” and “Horse Dot,” suggest a linear solution.

Considering only the synthetic images, LSVM was the most consistent, producing

the best segmentation for five of the images and for the remaining seven produced

segmentations that are within range of the best segmentations. In contrast, GSVM

produced a significantly worse segmentation for the image “Football Dot.” PSVM

produced a significantly worse segmentation for the image “Saturn Dot.”

Measuring the effectiveness of a method purely on the percent misclassified

can be misleading. If we examine the histograms of the DSGS images as seen in

Figures 3.5 - 3.6, we see that even if the image is segmented correctly there is

variation between methods. In the example of “Owl Dot” each of the Kernel SVM

methods improves upon the linear method, although, as Figure 3.6 shows, there

remains significant overlap between the background and foreground. In Figure 3.5,

compared to the results in Figure 2.20, we see that although each of the methods

classified all the pixels correctly, the background is better clustered for the nonlinear

SVM methods, resulting in a DSGS image with a more uniform background. We

discuss this idea further in Section 3.7.

63



Table 3.1: Percent misclassified for the MAD method and the nonlinear methods
on the synthetic images.

Image MAD GSVM PSVM LSVM GSUM
σ = 1 p = 2 d = 1 σ = 100

Linear Dot 0 0 0 0 2.81

Non linear Dot 44.65 5.47 5.52 3.54 3.47

Skin Dot 0 0.71 0.12 0.83 13.45

Pepper Dot 0 0 0 0 45.02

Football Dot 0 12.55 0 0.15 6.84

Lions Dot 0.05 0.22 0.32 0.37 55.54

Saturn Dot 0.02 0.05 6.18 0.02 4.88

Lions 2 Dot 2.88 2.42 4.76 2.29 35.82

Owl Dot 16.53 12.40 15.63 11.33 28.86

Tiger Dot 15.92 15.87 13.31 14.48 63.13

Goat Dot 17.85 28.91 26.83 29.42 23.85

Horse Dot 0 0.71 0 0.71 10.91
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Figure 3.5: Results of the nonlinear DSGS methods on the “Pepper Dot” image.
In the histograms on the right, pixels of Pw and P̄w are shown in red and blue
respectively.
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gSVM, σ = 1
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Figure 3.6: Results of the nonlinear DSGS methods on the “Owl Dot” image. In the
histograms on the right, pixels of Pw and P̄w are shown in red and blue respectively.
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3.6.2 Results on Natural Images

The linear MAD DSGS method generally produced better segmentations over

the nonlinear methods as seen in Table 3.2. As previously observed, simply seg-

menting the image does not give us the whole picture.

In Figure 3.7, of the Owl, none of the methods clearly differentiate between

the foreground and background. Though the foreground and background are made

up of a number of distinct colors, one of the colors in the foreground is very similar

to a color in the background. In this case, as seen in the Table 3.2 and in Figure

3.7, LSVM finds the best DSGSs for segmentation, significantly capturing more of

the body of the owl.

In the example of the image of lions, as seen in Figure 3.8, we show how

dependent nonlinear methods are on the training information. The left column

shows the results for smaller background and on the right we show results for an

expanded selection of background pixels. In both cases we find that for the MAD

method more of the pixels within the body are misclassified, particularly around the

noses of the lions, but the background is correctly classified. The ability of the linear

method to correctly classify the background suggests that the variations in the color

of the background are somewhat linearly related to each other. For the nonlinear

methods, the bodies of the lions are better classified in both cases but there was a

significant difference in the accuracy of the classification of the background. We find

that when selecting a background sample that includes the shadow of the lions and

areas that are out of focus (top and bottom of the image) the percent misclassified
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Table 3.2: Percent misclassified for the MAD method and the nonlinear methods
on the Berkeley Segmentation image dataset.

Image MAD GSVM PSVM LSVM GSUM
σ = 1 p = 2 d = 1 σ = 4000

Lions 6.25 8.47 13.18 10.7 51.01

Lions 2 3.27 3.34 6.40 4.27 21.13

Owl 22.67 21.40 21.80 20.32 52.31

Tiger 31.00 60.17 58.67 60.55 40.84

Goat 25.63 20.63 35.62 22.58 32.56

Horses 2.17 2.42 2.89 2.52 12.64

improves but additional training pixels come at a significant computational cost. In

Table 3.3 we show the percent misclassified for each of the nonlinear DSGS methods

and the linear DSGS method along with the time to construct the image in seconds.

For example, although the GSVM method produced the best classification when

a larger background was selected, it took 40 times longer to compute. In general

we found that, for the cases with large training samples coupled with no clear

margins, the SVM based DSGS methods were time consuming both to train and in

constructing the image.

3.7 Advantages and Disadvantages of Kernel SVM DSGS Methods

The major advantage of the Kernel SVM DSGS is the ability to cluster areas

made up of many distinct colors. Even in cases where the linear methods out-

performed in segmenting (classifying) the image, the Kernel SVM DSGS method

resulting image may be better suited for the task. This is demonstrated in Figure

3.8 where GSVM and LSVM produce more accurate edges around the lions and
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MAD gSVM, σ=1

pSVM, d=2 lSVM, d=1

Figure 3.7: Resulting DSGS image for MAD, gSVM, pSVM and lSVM for the
image of an Owl with the human-determined boundary superimposed in red. The
images are displayed so that values less than zero are set to black to highlight the
classification of the foreground.

Table 3.3: Percent misclassified and training time for the MAD method and nonlin-
ear SVM methods for the image Lions.

Image MAD GSVM PSVM LSVM
σ = 1 p = 2 d = 1

Background 1

% Missclassified 6.25 8.47 13.18 10.70

Time (s) 1.15 5.23 1.73 7.67

Backgound 2

% Missclassified 6.30 5.23 11.78 5.94

Time (s) 1.27 119.74 1.77 14.46
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#105053 − Lions

MAD

gSVM, σ=1

lSVM, d=1

#105053 − Lions

MAD

gSVM, σ=1

lSVM, d=1

Figure 3.8: Results for two different selected backgrounds of significantly different
sizes. The images are displayed so that values less than zero are set to black to
highlight the classification of the foreground.
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the misclassified pixels in the background may be easily discarded because of the

locality. This suggests the importance of finding a feature space that not only sepa-

rates the foreground but also clusters the foreground pixels within their class. This

becomes particularly evident if we consider the color image of M&Ms, top left of

Figure 3.9. In this case the user wants to segment a single color M&M from the

rest of the image. The DSGS image for the MAD linear method and the three Ker-

nel SVM methods are seen in Figure 3.9. In that figure we see that the nonlinear

methods best cluster the six colors (yellow, orange, blue, brown and green M&Ms

and the color of the table) distinct from the red M&Ms. Clearly, the DSGS images

for the nonlinear methods much better differentiate the red M&Ms from the rest of

the image, making the task of segmenting the red M&Ms easier.

Depending on the task, the advantages of the Kernel SVM could be crucial to

finding a DSGS that makes the task as easy as possible. The advantages are de-

pendent on many components including the choice of kernel, the kernel parameter,

the background and foreground selection, and characteristics of the image. These

in turn, can be very sensitive to variations. In addition to being dependent on

many components, these methods can be time consuming depending on the number

of support vectors found by solving the optimization problem (nonzero dual vari-

ables). The number of support vectors is not necessarily dependent on the number

of training pixels but rather it is dependent on the complexity of the margins. For

example, for the image of the Owl, Tiger and Goat, the kernel SVM DSGS meth-

ods took significantly longer to compute than for example the image of the Horses

(several minutes versus seconds).

71



M&M

GS

MAD gSVM, σ=1

pSVM, d=2 lSVM, d=1

Figure 3.9: Color image of M&Ms and resulting DSGS images for the MAD, gSVM,
GS, pSVM and lSVM.

3.8 Summary and Conclusion

In this chapter we used Kernel SVM as a nonlinear DSGS method and in-

troduced a new nonlinear DSGS method that attempts to learn the relationships

between the background and foreground. We discussed several kernels as well as how

to choose possible kernels for a given task. For this work we limited our study to

three different kernels chosen either because of their popularity across many different

applications or because of their suggested use for similar problems.

In testing on the synthetic images and images from the Berkeley segmentation

dataset, the linear methods often produce the best segmentation as measured by

percent misclassified. Even when the linear method out-performed the nonlinear
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methods, as measured by percent misclassified, the DSGS image for the nonlinear

method may be a better choice depending on the task at hand. As we saw in Section

3.7 the nonlinear Kernel SVM can cluster backgrounds and/or foregrounds with a

lot of variation in color but the quality of this transformation is very sensitive to

the user selections.

For cases where the background and foreground are each primarily made of

a single color and distinct from one another, linear methods should be used. For

all other cases, and depending on the task at hand, further investigation should be

used to determine if a nonlinear method could improve the results. For example,

viewing the scatter plot of the training samples before transformation may give us

clues as to whether a linear or non-linear method should be used. After finding the

DSGS image, the histogram may give one insights into how useful the results are

for a particular task. If the task calls for a nonlinear DSGS method, we found that

the LSVM method produced the most consistent results and was least dependent

on the parameters for natural images.

In Chapter 4 we apply both the linear and nonlinear DSGS methods to analysis

of digital images in dermatology.
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Chapter 4: Using Domain-Specific Grayscale Method for Dermatol-

ogy Digital Image Analysis

Dermatology is a branch of medicine that diagnoses and treats diseases of the

skin, hair and nails. In the practice of dermatology, traditionally the clinicians rely

on visual inspection and palpation to help in diagnosing different skin conditions,

for example in diagnosing skin cancer [51] or monitoring the reddening after skin

irritation [60]. Noninvasive digital visualization techniques are becoming essential

tools in care delivery [6], but great variation exists between experienced and inexpe-

rienced dermatologists in regards to the success rate for diagnosing skin cancer [51]

using these techniques.

In this chapter we apply our techniques for finding a Domain-Specific Grayscale

(DSGS) image to improve the contrast between reference skin and lesions, erythema

(reddening), or wheals (raised hives) for improved visual inspection and computer-

aided tasks. Real-world applications include monitoring the spread of infection,

measuring the effectiveness of the treatment of a skin condition, determining positive

allergic reactions after skin-prick testing, and detecting or monitoring skin cancers.

In Section 4.1 we discuss the current use of digital imaging in the field of dermatology

and some existing computer-aided diagnostic systems. In Section 4.2 we discuss
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measuring area as well as changes in intensity of erythema and wheals after skin-

prick testing and present some results of using the DSGS methods and how the

resulting image can aid in the task of detecting and measuring the affected skin.

In Section 4.3 we discuss applications for detecting and determining skin lesion

boundaries, particularly as it relates to skin cancers such a melanoma. Lastly in

Section 4.4 we summarize the impact of our new DSGS methods in dermatology

and discuss future work for this application.

4.1 Imaging-Aided Diagnosis in Dermatology

Dermatologists have long used photography, but since the availability of digital

photography the costs are lower. Digital images require no time for developing and

can easily be passed between clinicians and pathologists [6]. Dermatologists use

digital images for a variety of purposes including during surgery to limit the amount

of healthy skin removed, monitoring subtle changes during laser treatment, and as

a diagnostic tool for skin cancers.

In addition to commercial digital cameras there are several imaging technolo-

gies used by dermatologists to aid diagnosis. Dermoscopy is a method that involves

looking at a lesion under illumination and magnification, traditionally with a layer

of oil or alcohol added to the skin to decrease uneven illumination. New instru-

ments often use polarized light in place of or in addition to a liquid interface. This

method has been developed into a single handheld instrument, often called a der-

matoscope, used for visual inspection or as a lens to a camera [68]. With an expert
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dermatologist the use of dermatoscopes has improved the diagnosis of melanoma, a

deadly skin cancer, to about 90% sensitivity (59% specificity), but in the hands of

an inexperienced practitioner a rate of only 62% sensitivity is obtained [51].

In the application of skin cancer diagnoses, there are many new technologies

being developed that are computer augmented including the technologies MoleMax

[54] and Melafind [52]. Imaging techniques such as multispectral imaging, optical

coherence tomography, ultrasound, and electrical bioimpeidance are often used in

these systems. In addition to different types of imaging techniques, many of these

new technologies have diagnostic abilities [51]. For example Melafind (currently

premarket) captures multispectral images over a range of wavelengths and sends

the images to a supercomputer where the images are compared against a 20,000

image database [52].

4.1.1 Preprocessing Images

The goal of preprocessing is to find an image that best differentiates between

affected skin and healthy skin for both visual inspection and to aid segmentation,

feature extraction, and classification. This can be a difficult task as the transition

between healthy and affected skin can be gradual and the healthy skin can have large

variations in color and textures. Artifacts such as hair and blood vessels can block

or interfere with boundary detection, and illumination can be uneven [51]. Processes

such as smoothing, artifact removal through inpainting, color space transformation

including to grayscale, and “contrast enhancements” are routinely referenced as
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preprocessing techniques used in the literature. However, details are often omitted.

In the work of [51], they stated that only 45% of the literature included details of

how image were processed in the application of computer aided diagnosis of skin

cancer.

4.1.2 Multilayered Skin Model of Absorbance

To help detect and quantify erythema as well as changes in pigmentation,

[91] derived a measure for erythema, Erythema Index (EI), and for pigmentation,

Melanin Index (MI).

The multilayered skin model for absorbance of the skin at a particular wave-

length λ is modeled as

Aλ = MλCm +HλCh +D (4.1)

where Aλ is the absorbance of the skin, Mλ is a coefficient that depends on the

absorbance of the melanin, Hλ is the coefficient for the absorbance of the hemoglobin,

Cm is the coefficient for the amount of melanin in the melanin layer, Ch is the amount

of hemoglobin in the blood layer, and D is a constant for the “apparent (pseudo)

absorbance” of the dermis.

Using Lambert-Beer’s law, which is the governing equation relating the ab-

sorption and the reflectance of light of a material, we have

Aλ = log(1/Rλ), (4.2)

where Rλ is the reflectance of the skin.

To find the Erythema Index we consider the difference between the model of
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absorption at two different wavelengths or

A1 − A2 = (M1 −M2)Cm + (H1 −H2)Ch. (4.3)

Then if we find the wavelengths where M1 −M2 is close to zero, the model can be

approximated as

A1 − A2 = (H1 −H2)Ch (4.4)

which is solely dependent on the absorbance of hemoglobin (which relates to the

cause of erythema). This is the case when the wavelength λ1 ranges from 540nm to

570nm (green) and λ2 is 660nm (red). This leads to the model for the EI index:

A1 − A2 = log(1/R1)− log(1/R2). (4.5)

The EI index can then be approximated using the RGB color space of the image,

where R1 can be approximated by the G coordinate and R2 can be approximated

by the R coordinate of RGB. Then the EI index is given by

EI = log(R)− log(G). (4.6)

For the Melanin Index we want to find wavelengths where H1 −H2 is close to zero.

This is the case when λ1 ranges from 620nm to 650nm and λ2 ranges from 670nm

to 700nm. Both λ1 and λ2 are in the spectrum that the R coordinate captures so it

is not feasible to find an approximate model using the RGB image, although if we

had access to multispectral images this would be possible. The authors [91] suggest

using

MI = −log(R) (4.7)
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as most of the light absorbed at the wavelengths that the R filter captures is said

to be attributed to the melanin.

4.1.3 Boundary Detection

Finding the boundary of the affected skin is often the first step in any computer

aided diagnostic system. A number of methods for segmenting have been suggested

in the literature including different thresholding techniques, gradient edge-detection

based techniques, and level-set based techniques.

For this work, since we are looking for closed boundaries of affected patches of

skin, we will use level set methods. Applications of level set methods are diverse [84]

and have been used successfully in image and video processing. Basics of level

set methods can be found in Appendix B. We will use the Chan-Vese level set

method [13] as it requires no smoothing and assumes that the image is made up of

two distinct regions. This is a desirable feature for these applications because many

of the boundaries may not be well-defined and smoothing will increase the difficulty

of finding faint edges. The numerical implementation used is based on the implicit

scheme by [13] implemented by [90].

4.2 Measuring Skin Erythema and Wheal Size

An injury, irritant or allergic reaction of the skin leads to reddening called

erythema. There are several examples where a clinician will want to monitor this

response, including recording a response to an irritating material or monitoring
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spread of infection. Evaluation is generally done by a human, visually grading and

tracing the response onto translucent paper [60] or measuring the largest diame-

ter with a ruler [86]. Because of the irregularity and difficulties in identifying the

boundaries of the wheal/erythema the reproducibility of a human observer judge-

ments is limited [86]. The work in Chapter 2 and 3 was motivated by the example of

detecting erythema and wheals after a skin-prick test. In this application additional

information about the healthy skin and affected skin will be obvious to the clinician

but the boundary may be ill-defined and difficult to outline. In this section we will

discuss the application of the DSGS methods for improved detection of erythema

and wheals as it relates to skin-prick and patch testing.

Skin-prick tests and patch tests are used by dermatologists and allergists to

determine the patient’s sensitivity (or allergic response) to an antigen or irritant.

In skin prick testing, the patient is pricked with a liquid containing a small amount

of an allergen and if a wheal with largest diameter greater then 3mm develops this

is considered a positive reaction [64]. Figure 4.1 shows the results after a skin prick

test on four participants reported in [64]. These participants have different skin

phototypes as defined in Table 4.1. Some have suggested that the erythema that

often develops around the wheal may be an important marker for improved prick test

accuracy. Generally erythema is not measured or included as a metric in evaluating

the test. [86] suggested that the absence of this data in testing is likely because

detecting erythema in persons with darker skin is difficult.

A skin patch test can be used to determine skin sensitivity to an irritant. In

this case the test material is taped onto the skin and when removed the clinician
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visually grades and measures the response [62].

4.2.1 Previous Work in Detecting and Measuring Erythema and Wheals

In practice both the skin prick tests and patch tests are evaluated by a human

observer. There has been some work in computer-aided techniques to both measure

the changes in erythema over time [60, 62, 91] as well as measure the wheal [64, 89]

and erythema response [86]. These works relied on preprocessing the image. In the

works of [64, 89], they both required that the wheals be outlined by a human and

their only contribution was a better measurement of the area of the wheal versus

the traditional measure of largest diameter.

Nischik and Forster [60] suggested that the best color space for measuring

changes in erythema is the a axis of CIELab, calling it the “Erythema Axis.”

Yamamoto et al. [91] used the EI index for improved measurement of erythema. A

sequence of Adobe Photoshop manipulations including the “plastic wrap filter” and

“poster edge filter” was suggested in [86] to enhance the wheal image in order to aid

finding the area. In [91], in addition to detecting the erythema, they were interested

in a quantitative measure of erythema and a metric for diagnostic purposes as well

as a metric to measure changes over time. They introduced the metric ∆EI which

they defined as the mean over the unaffected patch minus the mean over the affected

patch.
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Type IV, No Visible Wheal

Type III, Visible WhealType I/II, Three Visible Wheals

Type V, Three Visible Wheals

Figure 4.1: Image of skin after prick test on four different participants of different
phototypes. Source: Rho Inc.

Table 4.1: Fitzpatrick Phototype Scale: This scale was developed in 1975 as a
scale to measure the a patients skin phototype (sensitivity to UV radiation) and is
the primary scale used today. This scale is often used by dermatologist as a scale of
skin type/color [69].

Skin Phototypes Skin Color Reaction to Sun Expo-
sure

Type I white skin (very fair) always burns, never tans

Type II white skin (fair) always burns, minimal tan

Type III white skin (medium) burns minimally, tans mod-
erately and gradually

Type IV light brown skin burns minimally, tans well

Type V brown skin rarely burns, tans deeply

Type VI dark brown/black skin never burns, tans deeply
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4.2.2 Motivation for Domain-Specific Grayscale Method

There are several distinct disadvantages to the past work presented for de-

tecting erythema and wheals. The EI and a axis of CIELab were demonstrated

as useful for Type II and Type III skin but cannot be adapted to other skin color

types. Only the work of [86] was done on a variety of skin phototypes.

Lighting can have a significant effect on both the quality and the appearance of

colors. This was partially accounted for in [91] where a reference white was included

and used for white balancing of the images.

The processing in [86] was done in Adobe Photoshop where the filters used

are intended for “artistic effect,” may change over time, and are provided without

details.

The limitations mentioned above motivate the use of a new image-specific

transformation of the color space. Clinicians may not be able to precisely determine

boundaries but would be able to identify patches of affected and unaffected skin,

making this real world problem an ideal application of our DSGS methods.

For this application (and the following) we only used the linear DSGS MAD

method and the nonlinear LSVM DSGS method because we found after initial test-

ing it was the most consistent nonlinear method for this application. The GSVM

method was far too time consuming; for these applications it required many more

support vectors than the LSVM method.
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Table 4.2: Table of preprocessing methods for detecting and measuring erythema
and wheals. See Section 4.2.4 and Section 4.2.5 for more details.

Method Description Advantages Disadvantages

“Erythema
Index”
(EI) [91]

EI = log(R) − log(G) Based on model skin reddening.
Heightens contrast of erythema in
Type I-Type III skin.

Does not effectively detect wheal
(not designed for). On Type V skin
it failed to enhance erythema (Fig-
ure 4.11).

“Erythema
Axis” [60]

a axis of CIELab Heightens contrast of erythema in
Type I-Type III skin.

Does not effectively detect wheal
(not designed for). On Type V
skin it minimally enhance erythema
(Figure 4.11).

Adobe Pho-
toshop
Filters [86]

“plastic wrap filter” and
“poster edge filter” used to
enhance erythema and de-
tect wheal.

Method demonstrated as a diagnos-
tic tool for determining positive al-
lergic response over all skin types
(not tested).

Details of filters are not published
and may change over time. Filters
were “hand-adjusted to accent the
reaction” which can be time con-
suming and requires a knowledgable
eye.

DSGS MAD Chapter 2, Section 2.3.1.2 In general outperforms the EI,
“Erythema Axis” and grayscale im-
age in contrasting the erythema and
wheal.

Limited to linear relationships.

DSGS LSVM SVM with log kernel
(Chapter 3)

Significantly contrasted the area of
interest over all methods tested.

Can be time consuming to compute
and requires the choice of a kernel
parameter.

4.2.3 Dataset

All the images used for this application are courtesy of Rho Inc. and were

collected as part of the 2012 SAMSI Industrial Math/Stat Modeling Workshop for

Graduate Students [64]. The images were taken after a skin-prick test was admin-

istered by an allergist. Images were captured on three different cameras including

a CanonS95 (image number starting with a 2), CanonSX210(image number start-

ing with a 1) and a iPhone 4 (image number starting with P). From this dataset

we created two subsets, one for the detection of erythema (Figure 4.2) and one for

measuring the wheals (Figure 4.3). All images were cropped to highlight the areas

of interest. We had a human user hand-draw the boundary around the wheal of

W4 and W5 as seen in Figure 4.4. The boundaries were drawn by Anna Gleason in

Adobe Illustrator based on the color image.

For our training set we hand selected the background and foreground regions
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E1: Image 2451

E2: Image 1145 E3: Image 2888

E4: Image P1060975

E5: Image 2835 E6: Image P0900000

Figure 4.2: Six images used for measuring erythema after prick test. Source: Rho
Inc.

that capture the areas of interest and reflect a selection a practitioner could make,

for example, on a mobile device.

4.2.4 Summary of Results of Measuring Erythema

In Figures 4.6 - 4.11 we show the resulting DSGS images compared to the

previous suggested single-coordinate images for detecting erythema. In Table 4.2.4

we show the relative change in erythema (4.6) which we measure as

∆̃EI =
|µP − µP̄|

max(X)−min(X)
, (4.8)

where P and P̄ are the foreground and background patches respectively and X

is the entire image. The ∆̃EI helps indicate how well the area of interest is con-

trasted. From the results we see that all the presented methods improve upon the

traditional Grayscale. In the improved DSGS images the erythema is more visually
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W1: Image P09PM W2: Image 2888 Wheal a W3: Image 2888 Wheal b

W4: Image 2156 W5: Image 1459, Wheal a
W6: Image 1459, Wheal b

Figure 4.3: Six images used for measuring wheal after prick test. Source: Rho Inc.

Figure 4.4: W4(left) and W5 (right) with hand-drawn boundary of wheal. Source:
Rho Inc. where the boundaries were drawn by Anna Gleason.
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apparent.

Despite having additional information our linear MAD DSGS method did not

provide much improvement over the unaided methods when compared by relative

˜∆EI. This suggests the relationship between the background and foreground is not

represented well by a linear model. In Figure 4.12 we show the scatter plots of the

background and foreground pixels and we can clearly see from these that for the

images E2 - E4 we have a distinct nonlinear relationship. The nonlinear relationship

is further confirmed when we compare the linear MAD DSGS to the nonlinear LSVM

DSGS method. We see that the nonlinear DSGS method shows significantly more

contrast between erythema and the unaffected skin when compared to the other

methods presented.

If we compare the edges found after applying the Chan-Vese level set method

on the single-coordinate images found for E2, E4, and E5, as seen in Figure 4.13,

we see that both the linear and nonlinear DSGS methods found very similar edges

compared to the “a” of Lab, LogG-LogR (not shown), and the traditional grayscale

image.

These results suggest that the DSGS methods could be a powerful tool used to

aide human detection of erythema as well as for inclusion in an automated system

for detecting and measuring the area of erythema.

The nonlinear LSVM DSGS method produced visually more impressive images

but there are significant challenges when using nonlinear DSGS method in real-

world scenarios. First, for the images in this dataset, a successful nonlinear DSGS

method is dependent on the choice of background/foreground that captured all
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variations in the skin and illumination. In Figure 4.5 we show the effect of two

different choices of seemingly similar user supplied backgrounds. In this case the

smaller selected background does not capture all the changes in slight shading caused

by the lighting and contour of the forearm. The nonlinear DSGS method fails to

correctly identify the darker regions of the unaffected skin (note that this image is

displayed so that all the negative values are displayed as black in order to highlight

the pixels in the foreground). The effects of the different background selection

had much less impact on the linear DSGS method. This can be accounted for

because pixels that are closely related (as measured by Euclidean distance) will stay

closely related in all orientations. Second, for each of the images in this training

set, LSVM took significantly more time to transform the image compared to each

of the other methods. The time for the DSGS methods are given in Table 4.2.4 (all

other presented methods took no more then a second to compute). The time that it

takes to compute the LSVM was dependent on the number of support vectors which

is much more dependent on the characteristics of the training data than the size of

the training data or color image. Table 4.2 includes a list of each method tested or

discussed and a brief discussion of advantages and disadvantages.

4.2.5 Summary of Results of Measuring Wheal

In Figures 4.14 - 4.19 we show the resulting images of the six test images

for detecting the wheals. Both the linear and nonlinear DSGS produce results

with significantly better contrast between the raised area and the unaffected skin
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Table 4.3: Relative ∆EI for each method of the erythema images.

Image GS a of CIELAB log R - log B MAD LSVM d = 1

E1 0.0697 0.3290 0.2181 0.3904 0.6546

E2 0.1040 0.3010 0.2289 0.3055 0.5612

E3 0.1060 0.4010 0.3430 0.3991 0.7564

E4 0.1162 0.3254 0.3290 0.2875 0.6483

E5 0.0379 0.5189 0.3075 0.4815 0.6762

E6 0.0106 0.1194 0.0326 0.1512 0.4407

Table 4.4: Time to compute DSGS for the erythema images in seconds.

Method E1 E2 E3 E4 E5 E6

MAD 3.8 2.1 2.9 3.1 1.6 4.8

LSVM 2269.9 62.0 5.5 412.8 2.7 -

MAD LSVM, d=1

Figure 4.5: E1: Comparing the choice of training background. Displayed such
that pixels less then zero are displayed as black to emphasis on the classification of
pixels.
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Color Image Grayscale Image LogR− LogG

a of Lab MAD lSVM, d=1

Figure 4.6: E1: GS, Log,a of Lab, MAD, and LSVM.

Color Image Grayscale Image LogR− LogG

a of Lab MAD lSVM, d=1

Figure 4.7: E2: GS, Log,a of Lab, MAD, and LSVM.
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Color Image Grayscale Image LogR− LogG

a of Lab MAD lSVM, d=1

Figure 4.8: E3: GS, Log,a of Lab, MAD, and LSVM.

Color Image Grayscale Image LogR− LogG

a of Lab MAD lSVM, d=1

Figure 4.9: E4: GS, Log,a of Lab, MAD, and LSVM.
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Color Image Grayscale Image LogR− LogG

a of Lab MAD lSVM, d=1

Figure 4.10: E5: GS, Log,a of Lab, MAD, and LSVM.

Color Image Grayscale Image LogR− LogG

a of Lab MAD LSVM, d=1

Figure 4.11: E6: GS, Log,a of Lab, MAD, and LSVM.
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Figure 4.12: Scatter plot of pixels of P (red) and P̄ (blue) in RGB space for images
E1-E5.
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Figure 4.13: E2, E4, and E5. Resulting boundary after Chan-Vese to Single-
Coordinate Image. Starting contour (white), LSVM (red), MAD (green), “a” of
Lab (black), and GS (blue).
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compared to the other methods.1 Again the nonlinear DSGS method produces

an image with far more contrast suggesting a nonlinear relationship between the

wheal and the un-raised patch. In general we found the methods suggested for

detecting erythema are not suitable for detecting the wheals. In Figure 4.20 we see

the scatter plot of the selected background and foreground pixels and we see a range

of relationships.

Visually the grayscale images appear to best capture the boundaries of the

raised area. Recall that traditional grayscale is a model of light intensity. In this

case we are detecting a raised area of skin where there are shadows around the

boundary. The grayscale image captures those shadows but loses information about

the subtle changes in color. On the other hand the DSGS methods capture changes

in color but seem to lose information about shading. This is particularly apparent

in the results of ‘Wheal 5’ as seen in Figure 4.18.

The boundaries found after applying the Chan-Vese are seen superimposed on

the color images in Figure 4.21. The grayscale images failed to produce any rele-

vant edges (in general the edges found were influenced by changes in illumination).

Similar to the application for detecting the erythema, both the linear and nonlin-

ear DSGS produce very similar boundaries. That being said the boundaries do not

match what the human eye would determine as the boundary as demonstrated in

Figure 4.22. We see that the boundary based on the DSGS image captures the

1Although measuring the wheal is a different task than measuring erythema, we included the

two suggested erythema single-coordinate methods (a axis of Lab and logR − LogG) since the

wheals are generally surrounded by erythema.
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Table 4.5: Time to compute DSGS methods for the wheal images in seconds.

Method W1 W2 W3 W4 W5 W6

MAD 1.9 0.6 0.7 1.3 1.0 1.6

LSVM 1046.3 6.3 749.2 2503.1 9.1 64.1

general shape of the wheal but do not match the human-drawn boundaries and do

not capture the transition from the un-raised skin to the raised skin (wheal). This

may or may not be significant. If the area found were off by a constant factor this

discrepancy may not be a problem but would require trials to determine whether

the measured wheal size indicates a positive test. The ability of the DSGS images

to find better boundaries could be improved on if the images were captured in a

way that reduced shadows. In the resulting image, the difference between the wheal

and un-raised skin could then be determined by the subtle color changes.

In Table 4.2.5 we again see that the time to compute the nonlinear LSVM

DSGS method is significant suggesting that the linear DSGS may be computationally

robust when incorporated into an application or device.

Further work needs to be done to test the viability of using the DSGS methods

for measuring the area of wheals after skin-prick tests. These results show some

promise for the future of an automatic wheal measuring device which was the initial

goal of the work by [64]. Table 4.2 includes a list of each method tested or discussed

and a brief discussion of advantages and disadvantages.
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Color Image Grayscale Image LogR− LogG

a of Lab MAD LSVM, d=1

Figure 4.14: W1: GS, Log,a of Lab, MAD, and LSVM.

Color Image Grayscale Image LogR− LogG

a of Lab MAD lSVM, d=1

Figure 4.15: W2: GS, Log,a of Lab, MAD, and LSVM.
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Color Image Grayscale Image LogR− LogG

a of Lab MAD lSVM, d=1

Figure 4.16: W3: GS, Log,a of Lab, MAD, and LSVM.

Color Image Grayscale Image LogR− LogG

a of Lab MAD lSVM, d=1

Figure 4.17: W4: GS, Log,a of Lab, MAD, and LSVM.
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Color Image Grayscale Image LogR− LogG

a of Lab MAD lSVM, d=1

Figure 4.18: W5: GS, Log,a of Lab, MAD, and LSVM.

Color Image Grayscale Image LogR− LogG

a of Lab MAD lSVM, d=1

Figure 4.19: W6: GS, Log,a of Lab, MAD, and LSVM.
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Figure 4.20: Scatter plot of pixels of P (red) and P̄ (blue) in RGB space for images
W1-W6.
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Figure 4.21: Resulting boundary after Chan-Vese on the Single-Coordinate Image.
Starting contour (white), LSVM (red), MAD (green), and GS (blue) for W1- W6.
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W4−DSGS vs. Human Edge

W5 −DSGS vs. Human Edge

Figure 4.22: Image comparing the human drawn edge to the resulting boundary of
the DSGS image for W4 (left) and W5 (right). Hand-drawn (black), LSVM (red),
and MAD (green).

4.3 Border Detection of Skin Lesions

Skin cancer is the most common type of cancer in the United States with

over 3.5 million cases diagnosed in 2013. The most deadly form of skin cancer is

invasive melanoma. Invasive melanoma only accounts for 5% of all skin cancers, but

it accounts for the majority of skin cancer related deaths (12,650 deaths in 2013).

Early intervention is key to invasive melanoma survival, where the survival rate is

98% for cases diagnosed before spreading to the lymph nodes or other organs [1].

Unfortunately, detecting melanoma (as well as other skin cancers) in its early stages

is often difficult because differentiating melanoma from benign lesions is error prone,

even for an experienced dermatologist. Figure 4.23 shows some of the variety of

colors and shapes of skin lesions both benign and cancerous.

Dermatologists look for changes in a skin lesion, checking any new skin lesions

with the ABCD criteria [68], which stands for

• (A)symmetry growth,

• Irregularity in the (B)order (jagged or notched),

• Nonuniform (C)olor,
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Blue Nevus Brown Clark Nevus Malignant Melanoma Intraepithelial Carcinoma

Figure 4.23: Skin Lesions, variety of colors. First two are moles, second two are
cancerous. Source: First two images are from the Dermoscopy Atlas. Second two
images are from DERMOFIT.

• (D)iameter greater than 6 millimeters.

In addition to inspection by a trained dermatologist’s naked eye, common

practice in dermatology includes the use of dermatoscope and the taking of baseline

images to aid in early detection of skin cancer. Computer-aided diagnostic instru-

ments are becoming increasingly available to dermatologists. These new technologies

often compare a captured image to a large training dataset. In many of these algo-

rithms, the first step is finding the boundary of the lesion [78]. A good boundary

accurately locates the lesion and reduces the irrelevant information for improved

classification. Characteristics of the lesion such as area, symmetry, and irregularity

of the boundary of the lesion can also be gained from an accurate boundary and

can improve diagnosis of cancerous lesions. A number of the algorithms have quan-

tifications of the ABCD criteria or competing criteria. In this work we will show

how the DSGS methods can be applied, greatly improving the process of finding the

boundary and segmenting the lesion of interest.
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4.3.1 Past Work in Skin Lesion Boundary Detection

There is existing research in the area of boundary detections and segmentation

of images of lesions on the skin. The first step in finding the boundary is generally

preprocessing the image and finding a single-coordinate image that enhances the

lesions [51]. A number of different transformations of color images have been sug-

gested for the application of detecting and segmentation skin lesions. These include

using the B channel of RGB image, grayscale, the first coordinate after applying

principal component analysis (PCA) (coordinate with most variation), the b axis of

CIELab, and the approximated Melanin Index of multispectral images [51].

The work by [30] suggested using the B channel of RGB, the b axis of

CIELab and 3D clusters in XYZ space in combination for improved segmentation

of melanoma images. In [32] they suggested a technique with some similarities to

the new MAD method presented in this work; they assumed the data was bimodal

and found the orientation that maximized the concavity in the bimodal mixture

model. In the work by [21] they used the melanin index of multispectral images

where the melanin index is given by

A1 − A2 = log(1/R1)− log(1/R2) (4.9)

for wavelength λ1 = 650nm and λ2 = 700nm. In the absence of multispectral

images we will compare our improved methods to the approximate melanin channel

as suggested by [91] to be

MI = −log(R). (4.10)
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Table 4.6: Table of preprocessing methods for border detection of skin lesions. See
Section 4.3.1 for more details.

Method Description Advantages Disadvantages

“Melanin
Index”
(MI) [91]

MI = − log(R) Based on the skin layer model. In
[21] they used multispectral data
to find the MI and showed it per-
formed well on a limited number of
examples.

Often was outperformed by
grayscale suggesting that the
approximate MI index as suggested
by [91] is not a good approximation
of the Melanin.

PCA (also
called
Karhunen-
Loeve) [26]

Principal axis of PCA Very sensitive to skin and lighting
variations.

B chan-
nel [51]

B channel of RGB Seen to enhance lesions of brown
tints and light skin.

Failed to enhance lesions of pink
and blue tones. Can not adapt
to skin tones, speculate that this
method would have a hard time en-
hancing lesions on Type IV-VI.

b of CIELAB
[30]

b axis of CIELab Detects the brown and blue color le-
sions on light skin.

Failed to enhance lesions of pink
and red tones on light skin. Can not
adapt to skin tones, speculate that
this method would have a hard time
enhancing lesions on Type IV-VI.

DSGS MAD Chapter 2, Section 2.3.1.2 In general outperforms the methods
above.

Limited to linear relationships

DSGS LSVM SVM with log kernel
(Chapter 3)

Significantly contrasted the area of
interest over all other methods.

Can be time consuming to compute
and requires the choice of a kernel
parameter.

4.3.2 Motivation for Domain-Specific Grayscale Method

Similar to the application of detecting skin erythema and wheals the user can

easily supply information about the background and foreground suggesting that this

is a good application of the DSGS methods. In addition to challenges of variations

in skin color and lighting conditions in this application there can be a lot of variation

in the color of the lesions themselves suggesting a domain specific solution.

4.3.3 Dataset

For this work we used two types of images, images taken by a commercial

camera with a standard lens and images taken using a dermatoscope. All the der-

matoscope images, seen in Figure 4.24, were sourced from the Dermoscopy Atlas
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with permission from the editor [20]. The images taken with a standard lens, Fig-

ure 4.25, came from the Dermoscopy Atlas and DERMOFIT. The DERMOFIT

research project has collected a dataset of images of lesions that they provide for

public use [27].

4.3.4 Summary of Results on Border Detection of Skin lesions

In this application we were interested in finding the boundary of skin lesions

as this is generally the first step to identifying the type of lesion. In this case we

compared our DSGS methods to the previous cited single-coordinate images for

skin lesion identification. Unlike in the previous application for identifying wheals

and erythema, where each of the images are very similar and have boundaries with

similar characteristics, these lesions are significantly different from each other and

have boundaries with a range of characteristics.

In the case of the images captured with a dermatoscope, the nonlinear LSVM

DSGS method produced results with significant contrast between the lesions and

background skin compared to the linear DSGS method and the other presented

methods as seen in Figures 4.26 - 4.32. The linear MAD DSGS method produced

much more consistent results compared to most of the methods suggested in the

literature. In this dataset b of Lab also produced consistent results but given a

larger dataset with a variety of lesions and skin phototypes we suspect there will be

cases where it will not find contrast between the lesion and surrounding skin.

In Figure 4.33 we show the results of finding the boundary using the Chan-
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D1: Clark Nevus D2: Clark Nevus with Seborrhoeic Keratosis

D3: Acral Melanocytic D4: Blue Nevus

D5: Nevus Dysplastic D6: Melanoma Amelanotic

D7: Eruptive Xantrhoma

Figure 4.24: Dermatoscope images of a variety of skin lesions. Source: Dermoscopy
Atlas.
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S1: Acral Melanocytic S2: Basal Cell Carcinoma

S3: Dermatofibroma S4: Intraepithelial Carcinoma

S5: Actinic Keratosis S6: Melanocytic

S7: Malignant Melanoma S8: Seborrhoeic Keratosis

Figure 4.25: Standard photo taken on a digital camera. Source: Top left from
Dermoscopy Atlas. Remaining from DERMOFIT.
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Table 4.7: Time to compute DSGS methods for the Dermatoscope images.

Method D1 D2 D3 D4 D5 D6 D7

MAD 0.9 3.3 6.5 3.1 3.2 3.8 2.7

LSVM 0.6 5.0 244.8 3.8 4.2 5.8 2.7

Table 4.8: Time to compute DSGS methods for the standard lesion images.

Method S1 S2 S3 S4 S5 S6 S7 S8

MAD 1.0 0.6 1.4 2.3 0.8 0.8 0.9 0.6

LSVM 0.3 0.8 144.8 4.1 2.1 1.3 1.8 0.9

Vese method. For D1-D4 the nonlinear and linear DSGS methods produce very

similar boundaries. For D5-D7 only the nonlinear DSGS method found boundaries

that matched the perceived boundaries. In this case, because of the high contrast

in the nonlinear DSGS images, simply finding the segmentation of the image based

on the SVM values would be sufficient to find the boundary of the lesion.

For the images taken without a dermatoscope, the linear DSGS method pre-

formed close to the level of the nonlinear DSGS method, as measured by the visual

contrast (Figures 4.34 - 4.41) and the edges found after applying the Chan-Vese

method (Figure 4.42). This is somewhat surprising as these images are much more

likely to be affected by differences in lighting and setting. This could be because

these images do not contain the internal patterns/structures of the lesions that the

dermatoscope magnification provides and they appear more uniform benefiting the

linear method. Table 4.6 includes a list of each method tested and a brief discussion

of advantages and disadvantages.
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Color Image Grayscale Image −LogR PCA

B or RGB b or Lab MAD LSVM, d=1

Figure 4.26: D1- Top: Color, GS, -LogR. Bottom: “B” or RGB, “b” of Lab, MAD,
and LSVM.

Color Image Grayscale Image −LogR PCA

B or RGB b or Lab MAD LSVM, d=1

Figure 4.27: D2- Top: Color, GS, -LogR. Bottom: “B” of RGB RGB, “b” of Lab,
MAD, and LSVM.
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Color Image Grayscale Image −LogR PCA

B or RGB b or Lab MAD LSVM, d=1

Figure 4.28: D3- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM.

Color Image Grayscale Image −LogR PCA

B or RGB b or Lab MAD LSVM, d=1

Figure 4.29: D4- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM.
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Color Image Grayscale Image −LogR PCA

B or RGB b or Lab MAD LSVM, d=1

Figure 4.30: D5- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM.

Color Image Grayscale Image −LogR PCA

B or RGB b or Lab MAD LSVM, d=1

Figure 4.31: D6- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM.
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Color Image Grayscale Image −LogR PCA

B or RGB b or Lab MAD LSVM, d=1

Figure 4.32: D7- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM.

4.4 Summary and Conclusion

We saw in this chapter that the DSGS methods have the potential for signifi-

cantly improving results for some of the tasks that arise in dermatology related to

digital image use. In this application, when compared visually, the nonlinear meth-

ods produce images where the object of interest was much more enhanced suggesting

that the nonlinear DSGS method can improve the detection of erythema, measuring

wheals after skin-prick tests, as well as detecting and finding the boundary of skin

lesions. In the case of measuring the wheal, we found that the boundary found

using the linear and nonlinear DSGS images were consistent in the general shape as

compared to the hand-drawn images.

Despite visually impressive images found by using the nonlinear LSVM DSGS

method, the method is much more dependent on user supplied information than the
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Figure 4.33: Resulting boundary after Chan-Vese on the Single-Coordinate Image.
Starting contour (white), LSVM (red), MAD (green), and GS (blue) for D1- D7.
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Color Image Grayscale Image −LogR PCA

B or RGB b or Lab MAD LSVM, d=1

Figure 4.34: S1- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM.

Color Image Grayscale Image −LogR PCA

B or RGB b or Lab MAD LSVM, d=1

Figure 4.35: S2- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM.
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Color Image Grayscale Image −LogR PCA

B or RGB b or Lab MAD LSVM, d=1

Figure 4.36: S3- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM.

Color Image Grayscale Image −LogR PCA

B or RGB b or Lab MAD LSVM, d=1

Figure 4.37: S4- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM.
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Color Image Grayscale Image −LogR PCA

B or RGB b or Lab MAD LSVM, d=1

Figure 4.38: S5- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM.

Color Image Grayscale Image −LogR PCA

B or RGB b or Lab MAD LSVM, d=1

Figure 4.39: S6- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM.
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Color Image Grayscale Image −LogR PCA

B or RGB b or Lab MAD LSVM, d=1

Figure 4.40: S7- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM.

Color Image Grayscale Image −LogR PCA

B or RGB b or Lab MAD LSVM, d=1

Figure 4.41: S8- Top: Color, GS, -LogR. Bottom: “B” of RGB, “b” of Lab, MAD,
and LSVM.
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Figure 4.42: Resulting boundary after Chan-Vese on the Single-Coordinate Image.
Starting contour (white), LSVM (red), MAD (green), and GS (blue) for S1- S8.
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linear method and is significantly more time consuming to compute (Table 4.2.4,

4.2.5, 4.3.4 and 4.3.4). This suggests that it may not be robust enough to incorporate

into an application or device. For these examples the linear DSGS method, for the

most part, found boundaries that were consistent with the nonlinear DSGS method

and far less dependent on user supplied information that can be inconsistent. This

suggests that even when there is benefit from the nonlinear DSGS methods, the

linear method may be sufficient, generating much better images than the traditional

grayscale, for the given task.

Additional testing on larger datasets that include more variation in skin pro-

totypes is needed. Although our data set for measuring erythema and wheals was

small, we showed results over a variety of photo types (including darker skin tones).

We demonstrated that the our new class of DSGS methods was much more consis-

tent over a variety of skin tones then the previous suggested methods. With more

testing we suspect that our method will be robust at detecting affected skin in darker

skin tone (prototype IV–VI). Detecting erythema and lesions on darker skin tones

is a major challenge for automated systems.
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Part II

User Aided Parameter Selection for Image Deblurring
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Chapter 5: GIDE: A Tool for Graphical Image Deblurring Explo-

ration

We continue the theme of finding user-aided solutions in image processing. In

this part we introduce a tool that helps practitioners deblur a blurred image using

their knowledge or intuition in a way that is safeguarded from possible bias.

Restoring a blurred image requires choice of a regularization method and asso-

ciated parameter. Practitioners faced with these choices might favor results biased

by what they expect to see and thereby introduce image artifacts or miss true image

features. This is demonstrated in Figure 5.1. In this case the practitioner might

not expect the moon to have train tracks and may favor a reconstruction where that

information is lost such as the reconstructed image in the center of Figure 5.1. To

avoid this, we developed a methodology for method choice and parameter selection

that uses three statistical diagnostics to validate solutions, under the assumption of

Gaussian additive noise in the blurred image. We packaged the methodology into

the Matlab software, called GIDE, which includes a user friendly graphical user in-

terface (GUI). The software was built upon the existing RestoreTools package. It

allows practitioners (or students) to visually explore the range of statistically likely

solutions resulting from any of three regularization methods: Tikhonov, truncated
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Figure 5.1: Left: Blurred Image, Center: Deblurred Image, Right: True Image which
has “train tracks”. Without knowledge of the true image having “train tracks” one
might accept the deblurred to be a good image without realizing that important
information was lost in the process. Source: Dianne O’Leary.

SVD, and total variation.

5.1 Background

Medical and scientific imaging takes raw noisy data from a scientific instru-

ment (MRI, CT, astronomical camera, etc.) and processes (“deblurs”) this data to

produce images that are useful to practitioners. These rather expensive images are

often critical in making medical or scientific decisions, so it is important that the

deblurring is performed well. Unfortunately, image deblurring is an example of an

ill-posed inverse problem, in which small changes (e.g., noise) in the data can make

arbitrarily large changes in the deblurred image.

To overcome this limitation, we typically use our knowledge about the partic-

ular problem to formulate constraints [37]. For example, we might choose to limit

the norm of the solution image (Tikhonov regularization), approximate the blurring

operator by a low-rank matrix (Truncated Singular Value Decomposition (TSVD)
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regularization), or limit the Total Variation (TV) of the solution. Adding these

constraints replaces the ill-posed problem by one that is well-posed, and thus has

a well-determined solution that we hope is near the true solution. Each of these

methods requires the choice of a parameter we called γ .

In this work we take the viewpoint of a practitioner looking for a good recon-

struction of a single image, or of a student gaining experience with various methods.

Figure 5.2 shows that different regularization methods can yield very different re-

constructions. Finding an appropriate method and parameter for a given problem is

difficult, relying on properties of the particular problem and knowledge of the appli-

cation area. Practitioners often have invaluable experience that is crucial in finding

a good approximate solution, but too much reliance on intuition can lead them to

see what is expected rather than the true solution. Any candidate reconstruction

should be validated using statistical analysis.

We present a methodology and software with a Graphical User Interface (GUI)

that can be used by practitioners to choose an appropriate regularization method

and associated parameter while reducing the bias that can be introduced by search-

ing for a visually appealing reconstruction. This methodology gives practitioners

the ability to compare regularization methods by presenting a plausible range for γ

and by presenting results of statistical tests of plausibility of each candidate image

as a solution to the original ill-posed problem.

Our proof-of-concept software package GIDE (Graphical Image Deblurring Ex-

ploration) was built in Matlab using the RestoreTools package [56]. Figure 5.3

shows a screen shot of the interface. A user can either upload a blurred image
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or choose from samples provided. Similarly, a user provides a blurring matrix or

a separable Point Spread Function (PSF), or chooses the default boxcar or Gaus-

sian blurs. After selecting one of the regularization methods (TSVD regularization,

Tikhonov regularization, or TV regularization), clicking “Compute” produces an

initial solution based on automatic selection of the regularization parameter γ. The

resulting deblurred image appears, along with the results of the statistical diagnos-

tics. The user then uses the slide bar to adjust γ. This changes the resulting image

and diagnostics in real time, allowing the user to explore the range of statistically

plausible solutions.

In the remainder of this chapter we briefly review the deblurring problem in

Section 5.2, the regularization methods in Section 5.3, initial parameter choices in

Section 5.4, statistical diagnostics in Section 5.5, and software implementation in

Section 5.6. Finally we discuss testing and validation in Section 5.7 and present a

summary and conclusion in Section 5.8

5.2 Mathematical Model of Regularization Methods

An image can be thought of either as a real continuous function or as a col-

lection of discrete square pixels.
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Figure 5.2: Restorations of 256 × 256 blurred satellite image provided in
RestoreTools with zero boundary conditions, SNR=9 and parameters chosen by
the initial parameter methods detailed in Section 5.4.
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Figure 5.3: Final implementation of the GUI with the three diagnostics
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5.2.1 Continuous Representation

In the continuous case, the blurring model can be represented by

Ku+ ν = u0, (5.1)

where K is the known blurring operator, u is the true image, u0 is the observed

image, and ν arises from a noise process that we assume to be Gaussian white noise

process. Equation (5.1) is an example of an ill-posed problem since the operator K

is an infinite-dimensional operator. Stability is imposed by adding a regularization

or penalty term R(u) which incorporates a priori assumptions about the size and

smoothness of the desired solution. Our problem becomes

min
u

1

2
‖Ku− u0‖2

2 + γR(u), (5.2)

where γ is a nonnegative parameter.

5.2.2 Discrete Representation

We can model 2D deblurring problems either as determination of a real func-

tion of two variables or determination of a piecewise constant function, evaluated

at discrete nh×nv pixels, where h denotes horizontal and v denotes vertical. In the

discrete case, a linear model of blur takes the form

Ax + ε = b, (5.3)

where A is a (known) m× n blurring matrix with m ≥ n, x is an (unknown) n× 1

vector containing pixel values of the true image, with n = nhnv, ε is an (unknown)
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m×1 vector of noise that we assume to be drawn from a normal distribution, and b

is the (known) m×1 blurred and noisy image data, with m = mhmv. Equation (5.3)

is a discrete ill-posed problem because A is an ill-conditioned matrix approximating

the infinite-dimensional blurring operator.

To regularize, we replace (5.3) by

min
x

1

2
‖Ax− b‖2

2 + γQ(x). (5.4)

The first term ensures fidelity to the model (5.3), while the function Q is chosen

to assure that the minimization problem is well-posed. The scalar parameter γ is

chosen to balance these two objectives.

5.2.3 Constructing the Blurring Matrix from the Point Spread Func-

tion

Consider an image of a single white pixel surrounded by black pixels. The

image resulting from blurring this image is called the point spread function (PSF).

We construct the blurring matrix from this PSF, assuming a spatially invariant

PSF.

For more details regarding finding the PSF and constructing the blurring ma-

trix see the text [39].

5.3 Regularization Methods

GIDE gives the user a choice of three different regularization methods. Two of

the methods are based on the Singular Value Decomposition (SVD) of A (Tikhonov
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and TSVD) and were chosen because of their popularity and ease of implementation.

The third method, TV, was chosen because it favors solutions that include steep

gradients (edges), typical of real images [87].

5.3.1 SVD-Based Regularization Methods

Define the SVD of A to be

A = UΣVT =
n∑
i=1

σiuiv
T
i (5.5)

where U = [u1, . . . ,un] is an m × n matrix and V = [v1, . . . , vn] is an n × n

matrix, each with orthonormal columns, and the diagonal matrix Σ has entries

σ1 ≥ · · · ≥ σn ≥ 0 [38].

The Tikhonov regularization function is

Qtik(x) = ‖Lx‖2
2,

where L is the identity matrix, an approximation of the first derivative operator, a

diagonal weighting matrix [37, p. 12], or a problem-specific operator. We choose L

to be the identity matrix, and the Tikhonov solution is then given [38] by

xγ =
n∑
i=1

σi
σ2
i + γ

(uTi b)vi. (5.6)

In TSVD we regularize the problem by truncating A. Effectively, Qtsvd puts

an infinite penalty on using components i of the SVD for which σi is too small. The

TSVD solution is given in [38] by

xγ =
n∑
i=1

φi
σi

(uTi b)vi (5.7)
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where φi = 1 for i ≤ γ and φi = 0 otherwise. In this case the regularization

parameter γ is an integer chosen from the interval [1, n].

5.3.2 TV Regularization for the Continuous Problem

Before discussing the implementation of TV regularization, we explain the

concepts in terms of the continuous problem. In TV regularization, our regulariza-

tion function, is the l1 norm of the gradient (∇) of the solution and thereby retains

sharp edges in the image that may be obscured if, for example, the l2 norm is used,

as in Tikhonov regularization. The regularization function is

R(x) =

∫
Ω

|∇x| dΩ, (5.8)

where

|∇x| =
√
x2
s + x2

t (5.9)

and Ω is the domain of the image in the coordinate system (s, t).

The continuous problem becomes the minimization of

f(u) =
1

2
‖Ku− u0‖2

2 + γ

∫
Ω

|∇u|dΩ. (5.10)

The first-order condition of optimality (also known as the Euler-Lagrange equation)

for the problem with homogeneous Neumann boundary conditions is

0 = K∗(Ku− u0)− γ∇ · ( ∇u
|∇u|

), (5.11)

where K∗ is the adjoint operator of K in the l2 inner product space. This regu-

larization problem is non-linear and the TV term is not everywhere differentiable.
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Often the difficulty of the TV (u) term not being differentiable at zero is avoided by

adding a small positive constant β > 0 so that (5.11) becomes

g(u) = K∗(Ku− u0)− γ∇ · ( ∇u√
|∇u|2 + β

) = 0. (5.12)

Unlike the Tikhonov and TSVD problems, which have the closed-form solu-

tions (5.6) and (5.7), the TV problem must be solved iteratively by methods such as

time marching schemes, Newton’s method, lagged diffusivity fixed point iteration, or

primal-dual Newton method. We used a primal-dual Newton method as presented

in [11].

5.3.2.1 Formulation of Newton’s Method

The first step of this method is to find a quadratic model that fits the function

f(u + δu) where f(u) is given in (5.10), and δu is the search direction. The search

direction can be found by minimizing the quadratic model over δu. The resulting

step δu satisfies

H(u)δu = −g(u), (5.13)

where

H(u) = K∗K − γ∇ · ( 1√
|∇u|2 + β

(I − ∇u∇uT

|∇u|2 + β
)∇). (5.14)

5.3.2.2 Linearization Based on Introducing a New Variable

In [11] the authors suggest an improved method to solving the above problem

by introducing a new variable

w =
∇u
|∇u|

(5.15)
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or

w =
∇u√
|∇u|2 + β

. (5.16)

This technique is related to primal-dual optimization (details on the dual and primal-

dual optimization problem can be found in Appendix 5.3.3.3) and gives better global

convergence behavior than Newton’s method [11].

From (5.12) we find the equivalent system of equations:

K∗(Ku− u0)− γ∇ · w = 0, (5.17)

w
√
|∇u|2 + β −∇u = 0. (5.18)

We now linearize this system to find:
√
|∇u|2 + β −(I − w∇uT√

|∇u|2+β
)∇

−γ∇· K∗K


 δw

δu

 = −

 f(w, u)

g(w, u)

 . (5.19)

This method is called the primal-dual Newton’s method [11].

5.3.3 Discretization of the TV Regularization Method

The method of Section 5.3.2 has a discrete analogue. After discretization, the

regularization function becomes

Qtv(x) =
n∑
i=1

√
‖DT

i x‖2
2 + β. (5.20)

Assuming x is stacked by columns, DT
i x = [xi+nv−xi, xi+1−xi]T is the discretization

of ∇x (with zero used when a subscript is out of range) [11]. A small β > 0 is added

because the TV term is not differentiable at zero. The resulting discrete TV problem
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is

min
x

1

2
‖Ax− b‖2

2 + γ
n∑
i=1

√
‖DT

i x‖2
2 + β. (5.21)

5.3.3.1 Discrete Formulation of Newton’s Method

The discretization of (5.12) and (5.14) yields

g(x) = AT (Ax− b) + γDE−1DTx, (5.22)

where

νi =
√
‖DT

i x‖2 + β, (5.23)

E = diag(νiI2)i=1,..,m, (5.24)

I2 is a 2× 2 identity matrix and

H(x) = ATA + γDE−1FDT , (5.25)

where

F = diag(I2 −
DT
i xxTDi

ν2
i

)i=1,..,m. (5.26)

5.3.3.2 Formulation of Primal-Dual Newton’s Method

Analogous to the discretization in Section 5.3.3.1, we introduce the 2m × 1

vector y of dual variables and the discretization of the Primal-Dual Newton method

becomes  E −F̄DT

γD ATA


 ∆y

∆x

 = −

 Ey −DTx

γDy + AT (Ax− b)

 , (5.27)
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where F̄ = diag(I2 − yT
i xT Di

νi
)i=1,...,m. This can be written as:

C∆x = ¯g(x), (5.28)

∆y = −y + E−1DTx + E−1F̄DT∆x, (5.29)

where

C = γDE−1F̄DT + ATA (5.30)

and

¯g(x) = −(γDE−1DTx + AT (Ax− b)). (5.31)

Note that C is not symmetric and as suggested by the authors of [11] should be

replaced by symmetrization C̄ = 1
2
(C + CT ) of C.

5.3.3.3 Relationship to the Dual Problem

To understand the relationship of the above formulation to the primal-dual

problem we first rewrite our minimization or primal problem (5.21) as a min-max

problem by using the the following fact: ‖a‖ = max‖b‖≤1 aTb for any vector a,

as a result of the Cauchy-Schwartz inequality. Ignoring β we find that ‖DTx‖ =

max‖yi‖≤1 xTDy. The resulting primal problem is the minimization with respect to

x of:

P(x) =
1

2
‖Ax− b‖2

2 + γ max
‖yi‖≤1

xTDy, (5.32)

and from the concept of duality we know that the dual problem is simply the max-

min problem [35,57]. For more details on duality see Appendix A.
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Our dual problem becomes the maximization with respect to y of

N(y) = min
x

1

2
‖Ax− b‖2

2 + γxTDy. (5.33)

Because the function 1
2
‖Ax− b‖2

2 + γxTDy is convex in x and concave (actually

linear) and bounded for ‖yi‖ ≤ 1 we know there is a point that satisfies the saddle-

point condition. This implies that there is strong duality so:

min
x

P(x) = max
‖yi‖≤1

N(y). (5.34)

The authors in [11] suggest considering the primal-dual problem, formulated by

considering the conditions for which the difference between the primal and the dual

objective function (duality gap) is zero, which holds when x and y are optimal:

1

2
‖Ax− b‖2

2 + γ
m∑
i=1

yTi Dix =
1

2
‖Ax− b‖2

2 + γ
m∑
i=1

‖DT
i x‖, (5.35)

where equality holds when yTi DT
i x = ‖DT

i x‖ for every i where DT
i x 6= 0 and

‖yi‖ ≤ 1. The primal-dual formulation becomes

ATAx− b + γDy = 0, (5.36)

‖DT
i x‖yi −DT

i x = 0, (5.37)

and

‖yi‖ ≤ 1. (5.38)

We know the solution of the above system yields the optimal x for the primal

problem. Again we add a small constant β in order to make the above well defined

for all i. Therefore our primal-dual formulation yields the discretization of (5.17) -

(5.18).
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Figure 5.4: Results of Newton-CG for Total Variation regularization for two images.
Top is a 16 × 16 image generated in Matlab and the bottom image is 64 × 64
Modified Shepp-Logan generated in Matlab.

5.3.3.4 Implementing TV Regularization Method

The TV regularization method was implemented using the Primal-Dual New-

ton Method with Conjugate Gradients (CG) [11]. In Algorithm 1 and Algorithm 2

is the pseudo-code used for this work. In Figure 5.4 are results of applying the TV

method on two test images.
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Algorithm 1 Pseudo-Code for Primal-Dual Newton Method

Initialize: x0, set k = 0
while xk is not “good enough” do

Solve C̄∆xk = −ḡ(x) using CG to find the Newton direction ∆xk.
xk+1 = xk + αk∆xk where αk is determined by a linesearch1.
∆yk = −yk + E−1DTxk + E−1F̄DT∆xk.
yk+1 = yk + sk∆yk where sk is determined by sk = .9 sup{sd : ‖yi + sd∆yi‖ <
1, i = 1, . . . ,m}.
Set k = k + 1

end while

“good enough”: ‖g(xk)‖/‖g(x0)‖ < 10−3.

Algorithm 2 Pseudo-Code CG

Initialize: r = −ḡ(x)k − C̄(x)∆x, q = r, ρ = ‖r‖, γ = ρ2.
while ‖r‖/ρ >= tol do
α = γ

qTC̄(x)q
.

∆x = ∆x + αq.
r = r− αC̄(x)q.
γ̂ = ‖r‖2.
β = γ̂

γ
, γ = γ̂.

q = r + βq.
end while

Tolerance for CG: tol = 0.1 when k = 0 and tol =
min(0.1, 0.9‖g(xk)‖2/‖g(xk−1)‖2) are the suggested conditions in [11].
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5.4 Initial Parameter Selection

A number of automated parameter selection methods have been developed,

some based on prior knowledge of the particular problem (distribution of noise or

errors), others based on statistical criteria. The parameters chosen by these methods

are often far from those that minimize the deviation of the computed solution from

the true solution [37]. In this work, automated parameter selection methods are

used only to find a candidate range of parameters that the user can explore. We

choose to use generalized cross validation (GCV) for the SVD-based methods, since

the computation can be performed efficiently, and the discrepancy principle for TV,

since GCV is too costly.

5.4.1 Generalized Cross-Validation (GCV)

GCV is based on the popular leave-one-measurement-out model, checking the

reasonableness of a parameter determined from m− 1 measurements by seeing how

well the resulting model predicts the mth measurement [38, p. 95]. The idea is to

choose the parameter γ that minimizes the prediction errors. In GCV we formulate

this as minimizing

G(γ) =
m∑
k=1

[bk − (Ax(k)
γ )k]

2, (5.39)

where x
(k)
γ is the estimate that results from using the regularization parameter γ but

omitting the kth measurement of b. For SVD-based methods, the GCV expression

1We used cvsrch.m which was original developed by Jorge J. More’ and David J. Thuente as

part of minpack and translated to matlab by Dianne O’Leary.
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can be greatly simplified [39]. For Tikhonov regularization, G becomes

Gtik(γ) =

∑m
i=1(

uT
i b

σ2
i +γ2 )2∑m

i=1( 1
σ2
i +γ2 )2

(5.40)

while for TSVD,

Gtsvd(γ) =
1

(m− γ)2

m∑
i=γ+1

(uTi b)2. (5.41)

5.4.2 Discrepancy Principle

If we know the distribution of the noise ε then we can choose γ so that

‖Axγ − b‖2 = νE(‖ε‖2), (5.42)

where E denotes expected value and ν = 2 is a safety factor [38, p. 90]. The

appropriate value of γ is computed using an efficient root finding algorithm.

5.5 Statistical Diagnostics

We use statistical diagnostics to test the plausibility of a candidate regulariza-

tion solution as a solution to the original ill-posed problem. We use the three diag-

nostics from [73] to generate a range of plausible regularization parameters.

These diagnostics are based on the simple observation that since

ε = b−Ax (5.43)

is noise drawn from some statistical distribution, then

rγ = b−Axγ (5.44)
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should ideally equal ε and therefore be a sample from the same distribution. We

use standard statistical tests to evaluate how typical rγ is as a sample from the

distribution, which we assume to be normal with known variance.

5.5.1 Choice of Diagnostics

To use statistical diagnostics, we renormalize our problem so that ε ∼ N(0, Im).

We now discuss the three diagnostics shown on the right side of the GUI in Figure

5.3.

5.5.1.1 Residual Diagnostic 1

The sum of squares of a set of m independent identically distributed (i.i.d.)

standard normal (ε ∼ N(0, Im)) random samples is a random variable with a χ2

distribution. It has expected value m and variance 2m [70]. Therefore, our first

diagnostic tests whether the residual norm squared, ‖rγ‖2
2, should be within two

standard deviations (i.e., within the 95% confidence interval) of the expected value

of ‖ε‖2
2. Therefore, we want

‖rγ‖2
2 ∈ [m− 2

√
2m,m+ 2

√
2m]. (5.45)

GIDE displays the residual norm-squared and the endpoints of the confidence inter-

val.
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5.5.1.2 Residual Diagnostic 2

The histogram of the elements of rγ should look like a bell-shaped curve. GIDE

displays the histogram and the result of a goodness-of-fit test [70]. We used a χ2

goodness-of-fit test which tests whether the residual is drawn from an i.i.d standard

normal distribution (null hypothesis) by comparing it to the theoretical distribution.

GIDE displays the histogram of the residual as well as the p-value where if p > 0.05

then one should accept the null hypothesis with 95% confidence.

5.5.1.3 Residual Diagnostic 3

If we view the elements of ε and r as time series with index i = 1, . . . ,m then

εi ∼ N(0, 1) forms a white noise series. We would then expect {ri} to also be a

white noise series. One way to assess this is to compute the cumulative periodogram

of the residual [28, Chapter 7]. First we compute the Fourier transform

rt =
ao
2

+

p∑
k=1

(ak cos(wkt) + bk sin(wkt)), t = 1, . . . ,m, (5.46)

where p = ceil(m−1
2

) and the frequency is wk = 2πk
p

. The periodogram is defined

as

g(wk) =
p

2
(a2
k + b2

k), k = 0, . . . , p (5.47)

which represents the sum of squares of the coefficients at each frequency wk. The

cumulative periodogram is given by

cj =

∑j
(k=0) g(wk)∑p
(k=0) g(wk)

, j = 0, . . . , p (5.48)
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If we look at the periodogram of white noise, the expected value of g(wk) at every

frequency is constant and a plot of g(wk) should resemble a straight line from (0, 0)

to (p, 1). The 95% confidence interval for the plot of the cumulative periodogram

of white noise is shown in GIDE, along with the plot of c1, . . . , cp. The endpoints

of the interval are at approximately at plus or minus 1.36/
√

(p− 1) relative to the

straight line when p > 31 [28].

5.5.2 Validation of Residual Diagnostics

The three diagnostics all test the hypothesis that the residual components are

drawn from a normal distribution, but the diagnostics are sensitive to somewhat

different perturbations, as we illustrate here. Each of the diagnostics was tested

first with standard normal i.i.d. samples to confirm that it is satisfied approximately

95% of the time; see Table 5.5.2. From the first line in the table, for 1000 different

standard normal i.i.d. samples, this is true. In the second line of the table, we show

the results of 1000 trials of perturbing every 100th sample by one. Diagnostics 1 and

2 accurately detect that the result is not normal, but Diagnostic 3 is only correct in

54% of the trials. In the third line, we add a small amount of Poisson-distributed

noise; only Diagnostic 2 reports non-normality reliably.

Diagnostic 2 is reliable, but the others provide useful information as well.

Diagnostic 1 gives the user a range of residual norms that satisfy that diagnostic;

this helps the user easily find a range of feasible values for γ. Diagnostic 3 gives

a useful visualization of how similar the residual is to the Gaussian distribution,
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Table 5.1: For 1000 runs, number of times the Diagnostics fail to be satisfied.
I(i) = 1 if (i− 1)mod(100) = 0 or (i− 2)mod(100) = 0 and I(i) = 0 otherwise.

Residual Diag. 1 Diag. 2 Diag. 3

ri ∼ N(0, 1) 51 46 14

ri + I(i) 950 999 539

ri + .05 ∗ sp sp ∼ pois(1) 156 1000 149

which is sometimes difficult to see from Diagnostic 2.

5.6 The Software

GIDE was built using Matlab’s GUI toolbox. It was designed to enable a

user with limited or no experience with the methods discussed to find suitable

solutions to a problem. As Figure 5.3 shows, a user can select the type of blur,

an example test problem, and the regularization method. Clicking “Compute” finds

an initial solution based on the approximate parameter (found using GCV or the

discrepancy principle). The user can then use the slide bar below the images to vary

the regularization parameter in order to explore the results and find solutions that

satisfy each of the three diagnostics on the right. The user has the option of using

one of the pre-loaded blurs to generate a test problem (requires a true image) or to

upload a blurring matrix for their own test problem (does not require knowledge of

the true image). The blurring matrix titled “Boxcar” models a boxcar blur of band

size three where the PSF is given by

PSFboxcar =
1

9


1 1 1

1 1 1

1 1 1

 .
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The blurring matrix titled “Gaussian” models a Gaussian blur of band size three

and σ = .7 where

PSFgaussian =
1

2πσ2


exp(− (−1)2+12

2σ2 ) exp(−02+12

2σ2 ) exp(−12+12

2σ2 )

exp(− (−1)2+02

2σ2 ) exp(−02+02

2σ2 ) exp(−12+02

2σ2 )

exp(− (−1)2+(−1)2

2σ2 ) exp(−02+(−1)2

2σ2 ) exp(− (−1)2+(−1)2

2σ2 )

 .

The SVD-based methods, the matrix structures, and the implementations of

GCV and the discrepancy principle were taken from RestoreTools [56]. We imple-

mented the primal-dual TV algorithm and the statistical diagnostics.

The speed of today’s computers limits the size of images for which real-time

response is reasonable in the GUI. Nevertheless, it is quite practical to use the

GUI to explore results for a subimage of an image of interest, in order to choose an

appropriate regularization method and a statistically-validated candidate parameter

for the full image.

GIDE is a working proof-of-concept that can be scaled to a faster computational

tool by using a compiled computer language and high-performance computing.

5.7 Results and Testing

In this section we discuss some testing we performed on different components

of GIDE on a variety of test images.

5.7.1 Test Images

We used artificially generated images and PSF functions for development and

initial testing of the software. These data sets were created to be of any size. For
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testing and validation we used the images found in RestoreTools as well as a variety

of PSFs also found in RestoreTools.

5.7.2 Signal-to-Noise Ratio Effect on Diagnostics

As one may expect, the diagnostics are affected by the Signal-to-Noise Ratio

(SNR) which is defined as

SNR = 10 log10(
‖b‖2

‖ε‖2
). (5.49)

The range of plausible parameters that meet the diagnostics increases as the SNR

approaches to zero and as the SNR increases the range of plausible solutions becomes

smaller (Figure 5.5). Note that users should be careful when they have a very small

SNR as the diagnostics used may not be the best measure for plausible solutions.

This test was performed on a 16×16 piece of Matlab test image “cell.tif” where the

range of SNR was varied from 20 to 75. Ranges plotted are for Diagnostic 1 and

the Tikhonov method, although a similar relationship was found for the different

methods, diagnostics, and different test images included in the GUI.

5.7.3 Effects of γ on Computation Time

We found that the computation time of the TV regularization method (depen-

dent on the number of CG iterations) is dependent on the value of γ. See Figure

5.6 for results for different values of γ.
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Figure 5.5: For the 16× 16 segment of the image “cell.tif” the range (±0.0025) was
found for Diagnostic 1 using Tikhonov regularization. From the plot we can see
that as the Signal-to-Noise Ratio decreases the range of parameters satisfying the
diagnostic increases.
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Figure 5.6: The difference in log10 of computational time (seconds) for the TV
regularization method for parameters between γ = 1 and γ = 10−9. For all image
sizes the maximum time was for γ = 1.

As a result of this finding, we looked into using preconditioners to speed up

the algorithm for large γ. An incomplete LU factorization (ILU) is suggested as a

preconditioner for the Primal-Dual Newton method [11]. We did not find the use of

ILU to be robust enough to be included in the GUI as we had to adjust the drop

tolerance depending on γ.

5.7.4 Results on Larger Images and Varied PSF

Although the GUI is only able to handle very small images, additional tests

of the Primal Dual TV method were done on larger images as well as images with a

variety of PSFs. See Figure 5.2 and Figure 5.7 comparing the results using Tikhonov

and TSVD to the Primal Dual TV method.
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Figure 5.7: 129 × 129 image of “cell.tif” with Gaussian blur and zero boundary
conditions with SNR of 60.
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5.8 Summary and Conclusions

When decisions are based on images, it is important to use a regularization

method and parameter that can be justified on statistical grounds. In this work we

present software to help practitioners do this. The software takes advantage of the

practitioner’s trained eyes while limiting bias by using statistical diagnostics. With-

out knowledge of the numerical method the user can explore different solutions with

real time diagnostics determining whether the solution is statistically feasible.

There has been work in automatic parameter selection but these methods have

shown not to be reliable over a variety of problems. Given this challenge and the lack

of automatic approaches for choosing a regularization methods, our methodology is

a straightforward approach for finding the appropriate method and parameter.

To effectively be used in real time, our methodology is currently limited to

relatively small images. There remain many ways to scale the package as discussed in

future work in Chapter 6. That being said the software has been proved useful in an

undergraduate course on image restoration, giving the students immediate feedback

about the effects of different regularization methods and parameter choices.
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Part III

Conclusions and Future Work

151



Chapter 6: Conclusions and Future Work

With the increasing availability of high resolution imaging tools, even in our

pockets (i.e. smart phones), everyday users can do far more than simply digitally

capturing a family moment. The ease of new applications available in these portable

forms, linked with users who have expert knowledge about the images and task,

opens the door to new possibilities. With this in mind we developed two new

approaches that utilize the user’s knowledge for improved results. We applied these

approaches to real life problems in medical and scientific image applications.

In the first approach, presented in Part I, we introduced a class of linear and

nonlinear methods which we call the Domain-Specific Grayscale (DSGS) methods.

A DSGS method transforms a color image into an image analogous to a grayscale

image which utilizes user-specified information that is used to optimize the image

processing task at hand and reduce the computations. We studied an application

for which the DSGS methods proved to be an ideal method: DSGS proved useful for

tasks of segmenting and finding the boundaries of skin lesions including skin cancer

and responses to allergy tests.

In the second approach, presented in Part II, we introduced a methodology for

improved image deblurring that safeguards against bias that can easily be introduced
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as the user favors a particular reconstruction or deblurred image. This is particularly

important in scientific and medical applications used for discovery or diagnosis.

6.1 Part I: Domain-Specific Grayscale For Improved Image Process-

ing

In Chapter 2 and Chapter 3 we introduced a new class of methods, DSGS

methods, that can greatly improve the segmentation of a color image versus the tra-

ditional approaches of using a grayscale image (as well as other suggested transfor-

mations) given knowledge of the background and foreground. Even in experiments

where the background and foreground are multi-colored, we still found a space that

enables us to pick out the object(s) of interest by utilizing nonlinear transforma-

tions. We saw that these methods were especially applicable to dermatological

applications.

In Chapter 4 we applied DSGS to dermatological applications, and showed

that the DSGS images had heightened contrast between the lesions and unaffected

skin over previous suggested methods. In the case of measuring erythema and wheals

after skin-prick test in allergy testing, we foresee the DSGS image as an important

first step in developing an application for a smartphone for automatic measuring of

erythema and wheals for allergy diagnosis. Such an application could be used in a

variety of settings and eliminate the inconsistency between human measurements.

Development of such an application would require the study of more data sets,

development of protocols for best image capture, and clinical trials to determine
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effectiveness and usefulness.

In the task of finding the boundary of possible cancerous lesions, we feel that

the presented class of methods could improve existing algorithms’ lesion classifica-

tion as well as reduce the computational cost of some of these algorithms that utilize

color images, making the software required more portable.

6.1.1 Key Contribution

• We introduced a new class of methods call Domain-Specific Grayscale (DSGS)

methods which utilize user-specified information about the background and

object(s) of interest in a color image to find a single-coordinate image that op-

timizes the contrast between object and background in order to improve results

of edge detection and segmentation of that object. This new transformed im-

age is a single coordinate image, like a grayscale image, and therefore is faster

to process.

• We showed that the SVM method used for classification can be used as an

effective DSGS method where the SVM score becomes the coordinate of the

DSGS image. The use of SVM gives a natural extension to nonlinear methods

through the use of kernels.

• We developed the new Minimizing Area between Distributions (MAD) which

finds the orientation in RGB space that minimizes the overlapping area of the

distribution of the selected foreground and background pixels if we assume they

are normal distributed. This method was shown to be as effective as linear
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SVM without the need for any user-specified parameters.

• We developed a new nonlinear method, the Gaussian Sum (GSUM) method,

that showed potential of learning the background/foreground gamut. This is a

challenging problem since the enclosing shape is not guaranteed to be convex

or connected.

• We demonstrated that the choice of the log kernel in SVM is quite effective

for problems involving color image data.

• We applied our DSGS methods in dermatological image analysis. We showed

that in this application, the DSGS image had greater contrast between the

affected skin and the background skin. This improvement over existing meth-

ods can potentially lead to improved classification of melanoma and other skin

cancers and lead to an automatic application for detecting and determining

a positive response to a skin-prick test and skin-patch test. For the task of

measuring the wheal after a skin-prick test, our DSGS methods found edges

that retained the general shape of the wheal versus human drawn edges. This

suggests that the DSGS may be applicable for an automated diagnosis of a

positive skin-prick test.

6.1.2 Future Work

• Develop a methodology to determine if the linear DSGS is suitable or if non-

linear DSGS method is warranted.

• In the case where a nonlinear method is necessary, develop a methodology for
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selecting the kernel and kernel parameter (if a kernel method) based on the

image application.

• Find a model to determine the probabilistic output of the foreground and back-

ground after SVM for further improved segmentation/edge detection. With

this additional information standard image processing tools can be used for

possible further improved tasks.

• Learn the shapes/gamut of the background and foreground using a method

that is less dependent on variation in the data or that is better tuned to the

data. Finding shapes that are not convex or even connected is not trivial.

Previous work in compressed sensing and 3D graphics may be useful.

• Test the DSGS methods on a larger skin-prick data set to test the viability.

This dataset should be taken under all sorts of conditions to test the robustness

and to determine ideal conditions for capturing the image for most accurate

results.

• Develop a smart phone application to measure wheal as a proof of concept and

ultimately move to a clinical trial which would determine the feasibility of an

”app” for detecting erythema and measuring wheals as a medical device.

• Apply the DSGS methods to hyperspectral images, including possibly finding

a three coordinate false-color image to help aid the viewer.
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6.2 Part II: A Tool for Graphical Image Deblurring Exploration

(GIDE)

Our work created a methodology and software with a graphical user interface

(GUI) that can be used by practitioners to choose an appropriate regularization

method and associated parameter. At the same time it reduced the bias that can be

introduced by searching for a visually appealing reconstruction. This methodology

gives practitioners the ability to compare regularization methods while safeguarding

them against bias by displaying statistical diagnostics on the residuals produced by

various methods and parameter choices.

Mainstream research in image deblurring has emphasized automatic choice of

regularization parameters, but no method is completely reliable. The significance

of this work is in going back to basics: allowing the user, who has domain-specific

knowledge, to guide the choice of regularization using statistical criteria rather than

a bias guided by expectations about the image.

6.2.1 Key Contribution

• We developed a user-friendly Matlab interface called GIDE for debluring im-

ages that can be used by a novice user with little knowledge of the numerical

methods.

• We included diagnostics that limit user bias by testing the statistically feasi-

bility of the solution with the three residual diagnostics.
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• We used GIDE in an undergraduate class as a educational tool teaching students

about image deblurring.

• We included a variety of linear and nonlinear methods in GIDE: truncated

SVD, Tikhonov, and total variation regularization for deblurring.

6.2.2 Future Work

• Use a more robust numerical implementation of the TV regularization, that

is more reliable over all parameter selections. The split Bregman method is a

possible algorithm. It has been shown to be efficient on large problems [31].

• Incorporate additional regularization methods.

• Develop GIDE into a more efficient stand alone computer application or pos-

sible web application for image deblurring that can handle larger images and

more general PSF’s.
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Chapter A: Duality

A dual problem is a companion problem to an optimization (primal) problem

where the dual variable measures the sensitivity of the primal objective to changes

in the primal constraints. The dual problem is useful to measure the sensitivity of

the constraints and sometimes is computationally more convenient to solve.

Our overview of duality is based on [35,57,63]; please reference these texts for

more details.

A.1 Nonlinear Duality

A nonlinear optimization problem is given by

min
x
f(x)

s.t. ci(x) ≤ 0 for i = 1 . . .m. (A.1)

Suppose the problem has a solution x∗.

The Lagrangian of (A.1) is given by

L(x,α) = f(x) +
m∑
i=1

αic(x), (A.2)

where α is the Lagrange multiplier vector. Each element of the vector is the La-

grange multiplier for the corresponding constraint. Then the primal problem can
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be expressed as

min
x

max
α≥0

L(x,α). (A.3)

If the objective and constraints are continuously differentiable at optimal solu-

tion x∗, then the necessary conditions for optimality are given by the Karush-Kuhn-

Tucker (KKT) condition.

Definition 2 (Karush-Kuhn-Tucker). The Necessary Conditions, often called the

Karush-Kuhn-Tucker (KKT) conditions, are satisfied if at the point x∗ there exists

an α∗ such that

• ∇xL(x∗,α∗) = 0 (stationary condition),

• ci(x∗) ≤ 0 ∀ i (primal feasibility),

• α∗ ≥ 0 (dual feasibility),

• α∗i c(x∗) = 0 ∀ i (complementary slackness condition).

Notice that the complementary slackness condition implies that either the pri-

mal constraint is active or the associated Lagrange multiplier is zero at the solution,

hinting to a relationship between the dual and primal problems. If the objective

and inequality functions are convex and (x∗,α∗) satisfies the KKT conditions then

it is an optimal solution.

Now we will introduce the dual problem in the form of the Lagrangian dual.

We can express the dual of (A.3) as the max-min of the min-max problem [35].

Then the dual problem is given by

max
α≥0

min
x
L(x,α). (A.4)
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We see that the value of (A.4) is always bounded above by (A.3):

min
x

max
α≥0

L(x,α) ≥ max
α≥0

min
x
L(x,α). (A.5)

We have strong duality when there exists (x∗,α∗) such that

L(x∗,α∗)) = max
α≥0

min
x
L(x,α) = min

x
max
α≥0

L(x,α). (A.6)

This holds when the KKT conditions are satisfied and the problem is convex. In

such cases, we can choose to solve either the primal problem or the dual problem,

or to consider both problems together.

A.2 Duality for SVM

The soft-margin SVM optimization problem, which we will call the primal

problem, is given by

min
w,b,ξ

1

2
‖w‖2

2 + C|ξ|1 s.t. ui(〈w,pi〉 − b) ≥ 1− ξi,

ξi ≥ 0 for all i = 1, . . . , k. (A.7)

The Lagrangian of the soft margin SVM is

L(w, b, ξ,α,µ) =
1

2
‖w‖2

2+C
k∑
i=1

ξi−
k∑
i=1

αi(ui(〈w,pi〉−b)−(1−ξi))−
k∑
i=1

µiξi. (A.8)

The KKT stationary condition of (A.7) is given by

∇wL(w, b, ξ,α,µ) = w−
k∑
i=1

αiuipi = 0, (A.9)

∇bL(w, b, ξ,α,µ) =
k∑
i=1

αiui = 0, (A.10)
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∇ξL(w, b, ξ,α,µ) = Ce−α + µ = 0, (A.11)

where e is a vector of ones. In this case the KKT conditions are sufficient.

The dual problem of (A.7) is given by

max
α

∑
i

αi −
1

2

∑
i

∑
j

αiαjuiuj〈pi,pj〉 (A.12)

s.t.
∑
i

uiαi = 0 and 0 ≤ αi ≤ C. (A.13)

It can be verified that the KKT conditions for the dual are the same as the KKT

conditions for the primal problem, so we can substitute the dual whenever it is more

convenient.

A.3 Duality for TV

The primal total variation (TV) problem can be expressed in min-max form

as

min
x

1

2
‖Ax− b‖2

2 + γ max
‖yi‖≤1

xTDy. (A.14)

Then the dual TV is

max
‖yi‖≤1

min
x

1

2
‖Ax− b‖2

2 + γxTDy. (A.15)

In this case the function 1
2
‖Ax− b‖2

2 +γxTDy is convex in x and concave (actually

linear) and bounded for ‖yi‖ ≤ 1 and we have strong duality:

min
x

1

2
‖Ax− b‖2

2 + γ max
‖yi‖≤1

xTDy = max
‖yi‖≤1

min
x

1

2
‖Ax− b‖2

2 + γxTDy. (A.16)

Notice that

1

2
‖Ax− b‖2

2 + γ
m∑
i=1

yTi Dix =
1

2
‖Ax− b‖2

2 + γ
m∑
i=1

‖DT
i x‖. (A.17)
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Equality holds when yTi DT
i x = ‖DT

i x‖ for every i where DT
i x 6= 0 and ‖yi‖ ≤

1.

Then solving the following equations gives us the optimal solution to the primal

and the dual problem:

ATAx− b + γDy = 0, (A.18)

‖DT
i x‖yi −DT

i x = 0, (A.19)

and

‖yi‖ ≤ 1. (A.20)
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Chapter B: Level Set Methods

Consider the two-dimensional problem where the initial curve is a circle with

radius
√
L centered at the origin. We can define the curve in three dimensions as

the L level set of

ΓL = {(x, y) | ψ0(x, y) = L}. (B.1)

where

ψ0(x, y) = x2 + y2 = L. (B.2)

In general the model of the evolution of any curve, as it grows at a velocity v, is

given by the Cauchy problem

ψt + v · ∇ψ = 0, ψ(x, y, 0) = ψ0(x, y), (B.3)

or

ψt + F‖∇ψ‖ = 0, ψ(x, y, 0) = ψ0(x, y), (B.4)

where F = v · n and n = ∇ψ
‖∇ψ‖ .

We will first consider the case when F is constant. Without loss of generality,

consider the initial curve where L = 0 (point). In this case the solution to the

PDE is a cone with vertex (0, 0, 0). In general F will be a function of the position,

other geometrical quantities, and/or, physical quantities related to the application
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[84].

B.1 Level Set Methods for Boundary Detection

In using level set methods for boundary detection for images we want to evolve

an initial curve over a topology dependent on the image I. There are two commonly

cited level set methods for image boundary detection and segmentation.

The first method introduced by [10] uses a function F of the curvature (k) and

an edge indicator function (g). Their level set method is given by

ψt − g(x, y)‖∇ψ‖(k + v) = 0, ψ(x, y, 0) = ψ0(x, y). (B.5)

where v is a positive constant,

k = div(
∇ψ
‖∇ψ‖

), (B.6)

and

g(x, y) =
1

1 + ‖∇I(x, y)σ‖2
, (B.7)

where Iσ is an image that has been convolved with the Gaussian filter (smoothed).

We see that the evolution of the curve is controlled by the gradient map of the

image and the curvature of the evolving curve. For example for large gradients,

where there is likely to be an edge, g(x, y) approaches zero and the curve evolution

slows to zero. For large curvature, the velocity will increase resulting in a more

smoothed curve.

The second, called the Chan-Vese algorithm [13], is related to the Mumford-

Shah algorithm [55] which approximates an image by a piecewise smooth function.
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The Chan-Vese algorithm assumes that the image can be partitioned into back-

ground and foreground where there exists a curve that separates the regions. As-

sume that the image I can be approximated by a piecewise constant image of two

distinct values. We can assign c1 and c2 as constants given by the average of I

within some curve and outside the curve respectively. Then to find the separating

curve we want to minimize the energy function

E(ψ, c1, c2; I0) = µ

∫
Ω

δ(ψ)‖∇ψ‖dxdy

+ λ1

∫
Ω

|I0 − c1|2H(ψ)dxdy + λ2

∫
Ω

|I0 − c2|2(1−H(ψ))dxdy (B.8)

where H is the Heaviside function given by H(z) = 1 if z ≤ 0 and H(z) = 0 oth-

erwise and the Dirac measure δ = d
dz
H(z). The first term is a regularization term

controlling the length of the curve. The curve that minimizes (B.8) is the curve that

best separates the image into background and foreground. To write it as a level set

method we first need to find the Euler-Lagrange equation where it gives the govern-

ing PDE of the evolution of ψ. To solve the PDE numerically, the Heaviside function

needs to be replaced with a continuously differentiable approximation of H [13] sug-

gesting the continuously differentiable equation Hε(z) = 1
2
(1 + 1

π
arctan( z

ε
)).
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Francés, and Javier Calpe-Maravilla. Composite kernels for hyperspectral image

classification. IEEE Geoscience and Remote Sensing Letters, 3(1):93–97, 2006.

[8] Jonathan C Carr, Richard K Beatson, Bruce C McCallum, W Richard Fright,

Tim J McLennan, and Tim J Mitchell. Smooth surface reconstruction from

noisy range data. In Proceedings of the 1st International Conference on Com-

puter Graphics and Interactive Techniques in Australasia and South East Asia,

pages 119–ff. ACM, 2003.

[9] Thierry Carron and Patrick Lambert. Color edge detector using jointly hue,

saturation and intensity. In Proceedings of the IEEE International Confer-

ence on Image Processing, volume 3, pages 977–981. IEEE, 1994.
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