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We explore some aspects of nonequilibrium statistical mechanics of classical

and quantum systems. Two chapters are devoted to fluctuation theorems which

were originally derived for classical systems. The main challenge in formulating

them in quantum mechanics is the fact that fundamental quantities of interest, like

work, are defined via the classical concept of a phase space trajectory. We utilize

the decoherent histories conceptual framework, in which classical trajectories emerge

in quantum mechanics as a result of coarse graining, and provide a first-principles

analysis of the nonequilibrium work relation of Jarzynski and Crooks’s fluctuation

theorem for a quantum system interacting with a general environment based on the

quantum Brownian motion (QBM) model. We indicate a parameter range at low

temperatures where the theorems might fail in their original form.

Fluctuation theorems of Jarzynski and Crooks for systems obeying classical

Hamiltonian dynamics are derived under the assumption that the initial conditions

are sampled from a canonical ensemble, even though the equilibrium state of an iso-

lated system is typically associated with the microcanonical ensemble. We address



this issue through an exact analysis of the classical Brownian motion model. We

argue that a stronger form of ensemble equivalence than usually discussed in equi-

librium statistical mechanics is required for these theorems to hold in the infinite

environment limit irrespective of the ensemble used, and proceed to prove it for this

model. An exact expression for the probability distribution of work is obtained for

finite environments.

Intuitively one expects a system to relax to an equilibrium state when brought

into contact with a thermal environment. Yet it is important to have rigorous results

that provide conditions for equilibration and characterize the equilibrium state. We

consider the dynamics of open quantum systems using the Langevin and master

equations and rigorously show that under fairly general conditions quantum systems

interacting with a heat bath relax to the equilibrium state defined as the reduced

thermal state of the system plus environment, even in the strong coupling regime.

Our proof is valid to second-order in interaction strength for general systems and

exact for the linear QBM model, for which we also show the equivalence of multi-

time correlations.

In the final chapter we give a sampling of our investigations into macroscopic

quantum phenomena. We work out in detail a specific example of how and un-

der what conditions the center of mass (CoM) coordinate of a macroscopic ob-

ject emerges as the relevant degree of freedom. Interaction patterns are studied in

terms of the couplings they induce between the CoM and relative coordinates of two

macroscopic objects. We discuss the implications of these interaction patterns on

macroscopic entanglement.
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Chapter 1: Introduction

1.1 Motivation

Statistical Mechanics. It is generally accepted that all the physics at the mi-

croscopic level is governed by quantum mechanics. At the macroscopic level we

encounter a completely different world with a rich variety of phenomena. For in-

stance elements occur in different phases with qualitatively different properties and

transitions between phases occur although the underlying microscopic theory is un-

changed. The nature of the phenomena is also very different. In microscopic theory

the dynamics is reversible whereas at the macroscopic level irreversibility is far more

common. Even the objects of study of micro and macro physics are different; quan-

tities of interest to macrophysics like temperature, entropy, heat etc. and events like

phase transitions do not have direct analogues in microphysics. These macroscopic

phenomena emerge from the complexity of the underlying microphysics due to the

large number of constituents. Although the large number of constituents makes a

straightforward application of the underlying Schrödinger equation impractical, it

makes a statistical description of macroscopic objects feasible. The aim of statistical

physics is to study complex systems composed of many degrees of freedom using the

tools of probability theory and statistics and provide a bridge between micro and

1



macro scales.

The most developed branch of statistical physics is equilibrium statistical me-

chanics. It provides a unifying framework in which various results can be interpreted

and is extremely successful in describing a vast range of phenomena [1]. In equilib-

rium statistical mechanics systems are described by various ensembles, like canoni-

cal, microcanonical and grand canonical depending on the macroscopic constraints.

These ensembles assign a probability to microstates of the system consistent with

the observed macrostate. The central object of study of equilibrium statistical me-

chanics is the partition function, from which various quantities of physical interest

can be derived by differentiation. This universal recipe can be applied to any equi-

librium system, barring technical difficulties. The success of this approach led to its

application to various fields outside physics like biology and economics [2].

Nonequilibrium Statistical Mechanics. Even though equilibrium statistical

physics is familiar and powerful, nonequilibrium phenomena are ubiquitous in na-

ture. Any transition between two equilibrium states that happens in finite time

necessarily involves nonequilibrium states. Moreover, physical phenomena of great

theoretical as well as practical importance like heat transfer (Fourier Law [3], dif-

fusion, dissipation etc.) are inherently nonequilibrium. Nonequilibrium also plays

a very important role in biological systems since most processes in cells occur un-

der nonequilibrium circumstances which can mostly be approximated by steady

states [4].

Unlike equilibrium statistical mechanics, where the ensemble approach and

partition function methods provide a recipe to study a wide variety of systems,

2



there is no prescription for nonequilibrium phenomena of comparable generality.

Moreover, some of the trusted methods of equilibrium theory do fail under nonequi-

librium conditions, among which one can mention divergences in the virial expansion

for the calculation of transport coefficients of dense gases [5–8].

A large number of results in this field are obtained for individual models.

Although solvable models play an important role in our understanding, the ulti-

mate goal is to place them all in a unifying framework. Recently there have been

serious attempts to achieve this goal for a restricted class of states, i.e. nonequilib-

rium steady states. These are nonequilibrium states in which the parameters that

describe the state do not change in time. This raises the possibility to describe

such systems via nonequilibrium ensembles, which are meant to be generalizations

of equilibrium ensembles. [9, 10] It is desirable to have general physical principles

to motivate these ensembles similar to the use of the principle of equal a priori

probabilities together with conservation laws in the construction of microcanonical

ensemble. Nonequilibrium steady states are also interesting because they exhibit

long-range correlations [6, 7].

Fluctuation Theorems. Fluctuations at or near equilibrium have been rel-

atively well understood. The famous fluctuation-dissipation relation, most often

proven within the linear response regime, relates the response of the system away

from equilibrium to the properties of fluctuations at equilibrium. An important

set of results in linear response theory are the Green-Kubo relations which relate

transport coefficients to integrals of two-time correlation functions. Thus equilib-

rium fluctuations contain some information about behavior under nonequilibrium

3



conditions. It is then reasonable to ask whether nonequilibrium fluctuations, far

from equilibrium, also contain meaningful information. The answer turns out to

be yes and results obtained in this area are gathered under the name “fluctuation

theorems”.

There are few theoretical results valid for systems far away from equilibrium,

and fluctuation theorems belong to this group. This is a vast topic, and there are

numerous theorems applying to various nonequilibrium set-ups. For instance, tran-

sient fluctuation theorems are applicable to systems driven away from an initial state

of equilibrium. The nonequilibrium work theorem of Jarzynski [11, 12] (Eq. 4.20)

and Crooks’s fluctuation theorem [13–15] (Eq. 1.47), which deal with work fluctu-

ations and play an important role in this dissertation, fall into this category. The

former is an equality which relates the free energy difference between two equilib-

rium states to the ensemble average of the exponentiated negative work done on the

system as it is driven arbitrarily far from equilibrium, and it can be derived from

the latter. Steady state fluctuation theorems, like that of Gallavotti, Evans and Co-

hen [16–20] dealing with fluctuations in entropy production, concern nonequilibrium

steady states. This theorem expresses a symmetry of the probability distribution of

entropy production, by relating the probabilities of entropy generation and annihi-

lation of equal amount [20]. The relationships between these various theorems have

been studied. Close to equilibrium, fluctuation theorems can be used to recover lin-

ear response results [21]. Far away from equilibrium they provide us with valuable

theoretical tools where most of the standard results of statistical mechanics are no

longer applicable.

4



Small Systems. Thermodynamics describes physical processes at the macro-

scopic scale. For macroscopic systems fluctuations away from the expected behavior

are often suppressed due to the law of large numbers. Ensemble equivalence follows

from this “rule”, whereby the relative fluctuations of thermodynamic parameters

that are not held fixed vanish. Phase transitions offer an important exception to this

“rule” within thermodynamics. Second-order phase transitions are accompanied by

diverging susceptibilities which in turn require there being long-range correlations

inside matter. The fact that phase transitions can only occur (strictly speaking)

in the limit of N → ∞ V → ∞ with N/V = fixed is yet another way in which

they exemplify deviations from the “rule” that fluctuations are suppressed in large

systems.

With the recent advances in nanotechnology, it has become possible to make

real-time observations of small systems, and even design and build structures and

machines at the nano scale. For small systems fluctuations are both relatively larger

and more frequent such that the standard thermodynamic description is not ade-

quate [22]. Developing a “thermodynamics” of small systems is important both

because of the need to explain the physics observed at small scales, but also to

guide the engineers in their designs of nano devices like molecular motors [4]. Yet,

it is not even clear whether a thermodynamical description of very small objects

is possible. Fluctuation theorems are very useful at this frontier, since they can

address large fluctuations under nonequilibrium conditions.

Small systems have some similarities to systems with long-range interactions [23,

24]. Whenever the size of the small system is comparable to the range of interactions
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the energy becomes non-additive. In the absence of a thermodynamical limit, non-

additivity can occur even for short-ranged interactions as long as the system size is

comparable to the range of interactions. 1 Additivity is essential in the derivation

of the canonical ensemble, and its absence manifests itself in surprising ways in sys-

tems with long-range interactions like inequivalence of ensembles, negative specific

heat and susceptibilities, which we might expect to see in small systems as well

(to the extent that the non-additivity is at the source of these effects). Although

mathematically speaking phase transitions require the thermodynamical limit, they

are also observed in small systems like clusters of atoms etc. which need to be con-

sidered from a more general point of view [23]. This suggests that phase transitions

in small systems may show anomalies similar to those in systems with long-range

interactions.

Strong coupling. Besides the lack of large number statistics, fluctuations are

important in small systems due to the strong influence of the environment. Un-

like macroscopic systems with short-range interactions, the interaction energy can

become comparable to the system energy in small systems with any type of in-

teractions. This translates into a strong influence by the environment in terms of

dissipation and noise, which in turn induces strong fluctuations in the system dy-

namics. In order to describe this influence correctly we need an approach that fully

incorporates the dynamic interplay between system and environment. The open

quantum systems paradigm, which we will describe soon, meets this need.

1In contrast, for long-range interactions non-additivity persists even in the thermodynamical

limit.

6



An important aspect of the canonical distribution of equilibrium statistical

mechanics is its simplicity. For instance the entire effect of the thermal bath on the

system is encoded in one parameter, the temperature. The nature of the bath or

the nature of the coupling between the system and the bath do not matter. This

simplicity is a direct consequence of the weak coupling assumption. In the presence

of non-vanishing coupling, temperature is not sufficient to specify the influence of the

thermal bath on the equilibrium phase space distribution and the dynamics of the

system. The effect on the phase space distribution is captured by the “Hamiltonian

of mean force” A.3 which replaces the isolated system Hamiltonian in the canonical

distribution and depends on the details of the bath and the system-bath coupling.

The dynamics of the system is also modified accordingly with the bath causing

dissipation and decoherence in the quantum case. These effects can be adequately

studied within the open systems framework which we will return to briefly.

The difficulty of dealing with small systems from the classical perspective is

furthered by the fact that below a certain “size” quantum coherence needs to be

included in ones consideration. Decoherence, the mechanism responsible for the

suppression of quantum coherence, is, as a general rule, stronger on large scales and

high temperatures, and quantum effects are more dominant at low temperatures and

small scales. Yet under special circumstances they can survive at large scales and

high temperatures as well. We will analyse this possibility closer when we talk about

macroscopic quantum phenomena (MQP) later. Some quantum features are merely

quantitative deviations from the expectations based on classical mechanics. Others

involve qualitative effects that can not be accounted for at all in the paradigm of
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classical mechanics. Among these effects entanglement is arguably the one most

unique to quantum mechanics. [25]

Quantum Dissipative Systems. Most physical systems we encounter in nature

as well as in the laboratory are not perfectly isolated from their surroundings. They

display dissipative dynamics, whereby energy and other conserved quantities can

be exchanged between the system and its environment. Such systems can be phe-

nomenologically modelled in classical mechanics by going beyond the Hamiltonian

formalism, for instance by adding a phenomenological friction and noise terms into

the equations of motion of the system. Such additions to the dynamical rule do not

in general violate any fundamental laws of classical mechanics. This is not true in

quantum mechanics.

The standard formulation of quantum mechanics relies on Hamiltonians for

the canonical quantization scheme. However, Hamiltonian systems cannot describe

dissipative dynamics. Addition of phenomenological friction and noise terms is

not as straightforward as in classical mechanics because quantum mechanics puts

numerous restrictions (for instance via the uncertainty principle) on the types of

dynamics allowed. Thus one has to be much more careful in describing dissipative

dynamics in quantum mechanics.

Open Quantum Systems. There are two common approaches to overcome this

difficulty. One approach is to resort to alternative quantization schemes. The other

is through open quantum systems (OQS) paradigm [26–31], which is the approach

used in this dissertation. In this approach one applies standard quantum mechanics

to a closed system composed of the system of interest and an environment it interacts
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with. When the environmental degrees of freedom are coarse grained, or “integrated

over”, the resulting open system dynamics displays dissipation, fluctuations and de-

coherence in a way that respects all the rules of quantum mechanics by construction.

The effect of the environment on the system is called the “back-action” and its in-

clusion in the open system dynamics requires careful treatment. The influence func-

tional (IF) approach we use includes back-action in a self-consistent manner, which

ensures the resultant open system dynamics satisfies basic conditions like positivity

of the density matrix and the fluctuation dissipation relation.

The use of a microphysics model such as the quantum Brownian motion (QBM)

model could provide a rigorous basis for any phenomenological description. It makes

explicit any assumption made in the phenomenological models which enables one

to clearly define the range of validity of the results derived from each model, as

well as being able to provide the details in the derivations with or without these

assumptions. Applying methods of nonequilibrium statistical mechanics such as

the Zwangzig-Mori-Nakajima projection operator or the Feynman-Vernon influence

functional formalism [26] to a microscopic model consummates the objectives of

quantum open-system treatment. Using these methods one obtains a description

of the open-system dynamics in terms of open system variables alone. With the

back-action of the environment taken into account in a self-consistent manner, the

dynamics of the open system will in general be non-Markovian as it contains mem-

ories, and the noise in the environment is generally colored, as it contains many

time scales characterized by its spectral density and varies with temperature. Dis-

sipation in the open system dynamics is controlled and balanced by the noise in
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the environment as manifested in the existence of fluctuation-dissipation relations

between these two sectors. In the QBM model, the deterministic component of the

back-action is dissipation and the stochastic component is the noise, which is also

responsible for decoherence.

Environment related quantities like heat can also be addressed within this

framework. The IF is one of the key methods we use, since it has the advantage

of including the back-action in a self-consistent manner and one can invoke field

theory techniques (by way of the almost equivalent Schwinger-Keldysh closed time

path formalism) to address nonequilibrium statistical mechanics issues. Moreover,

the dissipative and decoherent effects due to the environment are neatly separated in

this method, which allows us to draw conclusions about quantum-classical transition

such as encountered in decoherent histories formalism.

Equilibration. At the intersection of equilibrium and nonequilibrium lies the

process of equilibration which is closely related to the problem of dissipation and

irreversibility. Recently, equilibration in quantum systems has attracted a lot of at-

tention [32–37]. Unlike classical mechanics, where chaotic molecular dynamics pro-

vides an explanation for the emergence of irreversibility from underlying reversible

dynamics [7], quantum dynamics is unitary and consequently arguments used in

classical mechanics based on chaotic dynamics do not directly apply to quantum

systems.2 The quantum open systems paradigm described above provides a useful

framework in which we studied the equilibrium states and the process of equilibra-

2Quantum chaos, which is quite different from the classical chaos, may one day play a similar

role in quantum systems.
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tion beyond weak coupling approximation.

Macroscopic Quantum Phenomena. We mentioned that in small systems quan-

tum mechanical effects might become important. This statement implicates a belief

that quantum effects are absent at macroscopic systems. Indeed, the traditional

view is that only “small” objects necessitate a quantum description, while classical

mechanics, a limiting case of quantum mechanics, is sufficient for the description

of the macro world. In the face of new challenges from macroscopic quantum phe-

nomena (MQP), viz, quantum features occurring in objects of “large” sizes, systems

with many components or degrees of freedom, organized in some ways where they

can be identified as macroscopic objects, this common belief now requires a much

closer scrutiny, involving possible reformulations and/or reinterpretations. Faced

with the challenge of MQP, even a naive and seemingly unequivocal notion, like

what is meant by “macroscopic”, needs to be reconsidered.

This emerging field is ushered in by several categories of definitive experiments.

A common example of MQP is superconductivity, where the Cooper pairs can extend

to very large scales compared to interatomic distances, and Bose-Einstein condensate

(BEC), where in the N-body ground state, a finite fraction of atoms occupy the same

quantum state. Other important examples are in nanoelectromechanical devices

[38–40], where the center of mass of a macroscopic object, the cantilever, is seen to

obey a quantum mechanical equation of motion. Experimental proposals to detect

the superposition between a mirror and the quantum field, and between two mirrors,

have been proposed [41, 42] while the interference pattern formed when a large

object composed of C60 molecules passing through two slits have been observed [43].
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Likewise for experiments in quantum optomechanics, see e.g., [44, 45].

By contrast, this new field, which is rich in open issues at the foundation of

quantum and statistical physics, remains little explored theoretically (with the im-

portant exception of the work of Leggett [46]). At first sight it might appear that

MQP should be already covered under quantum statistical mechanics (QSM), how-

ever a close inspection reveals that the role played by quantum mechanics in QSM

is rather limited. Only energy levels are used in the construction of the partition

function which do not carry any information about the quantum coherence of the

corresponding quantum states. The “quantum” in QSM also refers to effects due

to spin-statistics, in the difference between bosons and fermions, and distinguisha-

bility: different combinatorics in distinguishable (classical feature) versus identical

(quantum feature) particles. Quantum features over and beyond those contained

in particle spin statistics and energy levels, such as large scale quantum coherence

and entanglement, is what the “quantumness”in MQP highlights. QSM, although

perfectly valid in its domain of validity, is limited in scope to mostly thermodynamic

quantities. For example, based on the standard QSM treatment we would not be

able to conclude that two BECs could interfere. The coherence properties necessary

for this effect are not contained in the limited information entering the partition

function and thus cannot be recovered from it.

In the following sections we provide some of the background material essential

to the understanding of later chapters. We conclude this chapter with an outline of

the dissertation and a summary of the contributions of this work to the field.
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1.2 Quantum Mechanics - A Brief Review

First we briefly review some basic formulations of quantum mechanics that

will be used in the analysis of QBM model.

1.2.1 Density Matrix Formalism

The most common formulation of quantum mechanics is in terms of pure states

(or kets) |ψ〉, which are vectors living in a Hilbert space H. In the conventional

interpretation of quantum mechanics, the kets represent states which are known as

well as is allowed by quantum mechanics [1]. In this sense, pure states correspond

to micro-states of classical mechanics.3 The dynamics of the pure quantum states

are governed by the Schrödinger Equation:

ı~
∂

∂t
|ψ〉 = H |ψ〉 , (1.1)

where H is the Hamiltonian operator.

The concept of micro-states is not useful in describing macroscopic systems,

where our knowledge of the system is incomplete. In statistical mechanics a macro-

scopic system is usually described by a macro-state, which is a probability distribu-

tion over the micro-states the system may in reality be in. This leads to a description

3An important difference between classical and quantum mechanical micro-states is that classi-

cal micro-states specify the state completely, with no probabilistic element whereas pure quantum

states have probabilities built into them.
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of the state of the system in terms of a density matrix (also called density operator)

ρ =
∑
i

pi |ψi〉 〈ψi| , (1.2)

where pi is the probability that the micro-state is |ψi〉. The dynamics of the density

matrix follows from that of the kets (1.1):

ı~
dρ

dt
= [H,ρ] (1.3)

Observables are described by operators in quantum mechanics. The expecta-

tion value of an observable associated with an operator O is given by:

〈O〉 = Tr[ρO] (1.4)

1.2.2 Wigner Representation

It is not easy to establish a correspondence between classical and quantum me-

chanics using the density matrix representation described in the previous section. In

classical mechanics phase space plays a central role, whereas the density matrix does

not resemble anything like a phase space distribution. The Wigner representation

is arguably the description of quantum systems that most resembles the classical

phase space [47].

Consider a system of N particles. Let x = (x1, · · ·xN) and p = (p1, · · · ,pN)

be the position and momentum operators, respectively. Any operator O can be
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written as a linear combination of the following form [1]:

O =

∫
dx dpOW (x, p)Θ(x, p), (1.5)

Θ(x, p) =

(
1

4π2

)N ∫
dα dβ eıα·(x−x)+ıβ·(p−p), (1.6)

OW (x, p) = (2π~)N Tr[OΘ(x, p)]. (1.7)

In the above we used x = (x1, · · · , xN), p = (p1, · · · , pN), x = (x1, · · · ,xN), p =

(p1, · · · ,pN) and “ · ” indicates the inner product between vectors. In this section we

use bold symbols exclusively for quantum mechanical operators to avoid confusion.

Eqs. (1.5-1.7) define the Wigner representation. Being an operator, the density

matrix also admits a representation of the form (1.7), which is referred to as the

Wigner function:

W(x, p) = (2π~)N Tr[ρΘ(x, p)] =

∫
dye

ı
~p·yρ(x− y/2, x+ y/2, t). (1.8)

Quantum mechanical expectation values can be calculated in the Wigner represen-

tation as:

〈O〉 =
1

(2π~)N

∫
dx dpW(x, p)OW (x, p) (1.9)

Because of its appearance in phase space variables it, is often said that the Wigner

function is the quantum correspondence of the classical phase space density [48],

and the peak of the Wigner function coincides with the classical trajectory in phase

space. This is an erroneous statement. The Wigner function is by construction

equivalent to the density matrix and as such gives a complete quantum mechanical

description of the macro-state of the system. For instance, although the density
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matrix is a positive operator, the corresponding Wigner function can take negative

values, which makes its interpretation as a real probability distribution impossible.

That’s why it is referred to as a quasi-probability distribution. Even in cases where

the Wigner function is positive-definite everywhere in phase space, it should not be

thought of as a classical phase space density [48,49]. When we study the dynamics

of the Wigner function later in this chapter we will encounter further differences

between the classical phase space density and the Wigner function.

Under special conditions for Gaussian systems such as a free simple harmonic

oscillator (closed system) or one which interacts bilinearly with an ohmic bath at

high temperature (an open system), the Wigner function remains positive definite for

all times. The quantum and classical dynamics have the same form in the equations

of motion [50]. For more general conditions by including environmental influence

the reduced Wigner function, defined in Sec. 1.3, may become positive definite at

late times after the system has sufficiently been decohered. This can indeed be used

as a criterion for the appearance of classicality. We will comment more on this issue

in Chapter 3 when we study quantum fluctuation theorems using the decoherent

histories conceptual framework.

1.2.3 Dynamics of the Wigner Function

If the dynamics of the quantum system is governed by a Hamiltonian as in

(1.1), the corresponding dynamics of the Wigner function is governed by the Moyal
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equation:

∂W(x, p; t)

∂t
= {{H(x, p; t),W(x, p; t)}}, (1.10)

where the Moyal bracket is defined as:

{{g, h}} ≡ 2

~
g(x, p) sin

(
~
2

N∑
i=1

( ←
∂xi

→
∂pi −

←
∂pi

→
∂xi

))
h(x, p) (1.11)

and the arrows indicate the direction the partial derivatives act. The Moyal bracket

is a generalization of the Poisson bracket and reduces to it in the limit ~→ 0.

{g, h} ≡ lim
~→0
{{g, h}} =

N∑
i=1

(
∂g

∂xi

∂h

∂pi
− ∂g

∂pi

∂h

∂xi

)
(1.12)

Eq. (1.10) is the quantum generalization of the Liouville equation, which determines

the dynamics of the classical phase space density f(x, p):

∂f(x, p; t)

∂t
= {H(x, p; t), f(x, p; t)} (1.13)

The Moyal equation (1.10) allows us to have an expansion in term of ~, thus iden-

tifying the corrections to classical dynamics due to quantum mechanics.

A special case, very relevant to the content of this dissertation, is that of

linear systems. By linear systems we mean systems whose dynamics is governed

by a Hamiltonian that is at most quadratic in phase space variables. For example:

N harmonic oscillators that are coupled amongst each other via further harmonic

potentials. For such systems it is easy to see from Eqs. (1.10,1.11) that the terms

of O(~) vanish identically. This means that the Moyal bracket when acting on

an arbitrary Wigner function and a linear Hamiltonian, reduces to the classical

Poisson bracket. This, on the other hand, means that the quantum dynamics of
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a Wigner function generated by a linear Hamiltonian is identical to the classical

dynamics, generated by the same Hamiltonian, of a phase space density. Thus, we

can directly apply our understanding of the classical dynamics of linear systems

to the dynamics of quantum systems. In the rest of this dissertation we will use

statements like: “for linear systems quantum and classical dynamics are identical”

to refer to this correspondence. The Wigner representation proves especially useful

for linear systems exactly for this reason.

A complete description of a quantum system requires the specification of the

Hamiltonian as well as the initial state. For linear systems all the quantum mechan-

ical effects are contained in the initial state, because the quantum dynamics are

identical to the classical dynamics. As an example, consider the thermal state of a

harmonic oscillator with frequency ω at inverse temperature β = 1/kBT in classical

and quantum mechanics:

W(x, p) =
2

coth(β~ω/2)
e−

HHO(x,p)

coth(β~ω/2)~ω/2 , (1.14)

f(x, p) = lim
~→0
W(x, p) = β~ωe−βHHO(x,p) =

e−βHHO(x,p)

ZHO(β)
, (1.15)

where we adopted the normalization suggested by (1.9). As this trivial example

shows, the quantum and classical thermal states differ, with the difference being

more pronounced at low temperatures.
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1.3 Open Quantum Systems (OQS)

We describe an open quantum system by starting with a closed system (C)4

comprised of the system of interest (S) and an environment (E). The Hilbert space of

the closed system is a tensor product of the Hilbert spaces of the system of interest

and the environment: HC = HS ⊗ HE. The density matrix of the closed system

obeys unitary dynamics governed by the equation of motion (1.3) with the closed

system Hamiltonian given by

HC = HS + HE + HI + HR , (1.16)

where HR contains all of the “renormalization” (R) effects. We shall comment on

“renormalization” later.

The expectation value of an observable only on the system S can be calculated

using the reduced density matrix, which is obtained from the full density matrix via

a partial trace:

ρS = TrE [ρC] (1.17)

〈OS〉 = TrS [OSρS] (1.18)

In the Wigner representation the partial trace corresponds to integration over

phase space variables. If we denote the system variables by (X,P ) and the environ-

4In the literature the adjective “isolated” is sometimes used to indicate no exchange of particles

and energy and “closed” only refers to no exchange of particles but allowing for an exchange of

energy. In this thesis, we use the adjective “closed” to indicate both no exchange of particles and

energy.
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ment variables by (x, p) we have

WS(X,P ) =

∫
dxdp

(2π~)NE
WC(X, x, P, p) (1.19)

where NE is the number of degrees of freedom in the environment.

The time evolution of the open quantum system is in general governed by

non-unitary dynamics. The equations governing the time evolution of the reduced

density matrix and Wigner function are called master equation and Fokker-Plank

equation, respectively. The theory of OQS is a highly developed field [30, 31]. In

this chapter we will only go into the details of the exactly solvable QBM model.

In Chapter 2 we will use perturbative results for general system and environments

developed in Refs. [51,52].

1.4 Quantum Brownian Motion (QBM) Model

In this section we introduce and solve the QBM that will be used to study

various themes of this dissertation in following chapters. Our treatment follows

closely that of Ref. [51]. The model consists of NS+NE coupled harmonic oscillators.

The system of interest consists of NS oscillators, and NE denotes the number of

degrees of freedom that constitutes the environment.
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1.4.1 The Hamiltonian

The Hamiltonian governing the unitary dynamics of the closed system dynam-

ics is given by

H =HS(X,P) + HE(x,p) + HI(X,x) + HR(X), (1.20)

=
1

2

(
PTM−1P + XTCX

)
+

1

2

(
pTm−1p + xTcx

)
− xTgX + HR(X). (1.21)

Since there is not much danger of confusing quantum mechanical operators and

regular parameters in this section, bold symbols are used to indicate matrices and

vectors of both types. Operators are not distinguished by a hat either, since that

notation is reserved for the Laplace transform. In the rest of this dissertation, we will

use bold symbols for operators only in places where confusion is likely or in places we

want to emphasize the operator nature. Thus X and P are vectors of size NS whose

elements are the coordinates and momenta of the system oscillators. Similarly the

environmental coordinates and momenta are denoted by x and p, respectively. These

should be interpreted as operators in the quantum case and as ordinary numbers

in the classical case. We assume that the spring constant matrices C, c as well as

the mass matrices M,m are real and positive definite, and can be considered in

general to be symmetric. If necessary, one can relax the positivity condition and

even consider time-dependent mass matrices, spring constant matrices and system

environment coupling matrix g [51].

In general, the coupling to the environment modifies, or “renormalizes”, the

dynamic frequency of the system oscillators. The frequency “renormalization” is a
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well-understood effect, and it is often balanced by adding a counter-term Hren(X)

to the Hamiltonian. This is especially useful if one wants to focus on other envi-

ronmental effects like dissipation and decoherence.5 This motivates the choice of

“renormalization” which is equivalent to inserting the entire system-environment

interaction in the square of the potential:

HC =
1

2

(
PTM−1P + XTCX

)
+

1

2

(
pTm−1p +

[
x− c−1gX

]T
c
[
x− c−1gX

])
,

(1.22)

since this keeps the phenomenological system-system couplings from changing as

will be seen in (1.33).

1.4.2 Solution of the QBM Model

We have seen in Sec. 1.2.3 that for quantum systems which have at most

quadratic terms in their Hamiltonians, the dynamics in phase space representation

is the same as the corresponding classical dynamics. This allows us to utilize the

classical mechanical solution in terms of trajectories in phase space for both the

classical and quantum models. This will be done in the next section. The difference

between quantum and classical case will be manifest in the implementation of initial

conditions, which will be briefly discussed in the section following the next. Further

details will be provided in the individual chapters.

5An added technical advantage to this choice is that the spectrum of the resulting Hamiltonian

is always bounded from below as can be seen in (1.22). Compare this with the treatment of

Chapter 4, where we chose not to add the counter-term. As a result we had to make an extra

assumption to rule out Hamiltonians without lower bound (see the paragraph following Eq. (4.10)).
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1.4.2.1 Dynamics

The equations of motion can be obtained from the Hamiltonian (1.22) in the

usual way by taking partial derivatives with respect to coordinates and momenta.

This can be done while maintaining the compact matrix notation, although special

care needs to be taken in maintaining the order of terms and in the interpretation

of divisions. The resulting equations of motion are:

MẌ(t) + (C + δC) X(t) = gTx(t), (1.23)

mẍ(t) + cx(t) = gX(t), (1.24)

δC ≡ gTc−1g, (1.25)

We proceed by first solving the equation of motion (1.24) for the environmental

degrees of freedom in terms of the system oscillators.

x(t) =
(
ḟ(t)mx0 + f(t)p0

)
+ (f ∗ gX)(t), (1.26)

f(t) ≡m−
1
2

sin(ωt)

ω
m−

1
2 , (1.27)

ω2 ≡m−
1
2 cm−

1
2 , (1.28)

(A ∗B)(t) ≡
∫ t

0

dsA(t− s)B(s), (1.29)

where ∗ indicates the Laplace convolution, f is the free Green’s function of the bath

positions and ω is the free bath frequencies upon diagonalization. The solution

(1.26) can then be substituted into (1.23) to yield the first form of the Langevin
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Equation:

MẌ(t) + 2(µ ·X)(t) + (C + δC) X(t) = ξ(t), (1.30)

µ(t) ≡ −1

2
gTf(t)g, (1.31)

ξ(t) = gT
(
ḟ(t)mx0 + f(t)p0

)
. (1.32)

Here µ(t, s) is called the dissipation kernel for reasons that will become clear later

and ξ(t) is the noise acting on the system. Note that the dissipation kernel is

independent of the environment’s initial state, whereas the properties of noise are

determined by it. In certain limits of physical interest, i.e. the Ohmic limit which

we will encounter in Chapter 3, the dissipation kernel becomes ill-defined, and it is

customary to integrate by parts the integral in which it appears. This amounts to

trading the dissipation kernel µ for what is called the damping kernel γ and in the

process picking up a boundary term. The resulting Langevin equation is what we

will use in the rest of this dissertation:

MẌ(t) + 2

∫ t

0

dsγ(t, s)Ẋ(s) + CX(t) + 2γ(t)X0 = ξ(t), (1.33)

γ(t, s) = gTm−
1
2

cos (ω[t− s])
2ω2

m−
1
2 g, (1.34)

The Langevin equation is a linear integro-differential equation. As such, it has two

linearly independent solutions per degree of freedom.

Given that our damping kernel is stationary, the Langevin equation can be

expressed in the Laplace domain as

[
z2M + 2zγ̂(z) + C

]
X̂(z) = [zMX0 + P0] + ξ̂(z), (1.35)
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where P = MẊ and (X0,P0) correspond to the initial values at t = 0, and the

Laplace transform is defined as

f̂(z) ≡
∫ ∞

0

dte−ztf(t). (1.36)

Formally, the solutions in the Laplace domain can be easily found by inversion:

X̂(z) = Ĝ(z)[zMX0 + P0] + Ĝ(z)ξ̂(z), (1.37)

Ĝ(z) =
[
z2M + 2zγ̂(z) + C

]−1
. (1.38)

Note that since the damping kernel is symmetric, i.e. γ(t, s) = γ(t, s)T, so are

the propagator G(t, s) and its Laplace transform. It is also useful to consider the

following representation:

Ĝ(z) = M− 1
2

[
z2 + 2zλ̂(z) + Ω2

]−1

M− 1
2 , (1.39)

λ̂(z) ≡M− 1
2 γ̂(z)M− 1

2 , (1.40)

Ω2 ≡M− 1
2 CM− 1

2 , (1.41)

where the eigenvalues of Ω2 coincide with the squared frequencies of the normal

modes of the free system. Back in the time domain we have

X(t) = Ġ(t)MX0 + G(t)P0 + (G ∗ ξ)(t), (1.42)

This is the exact solution for the dynamics of the NS system oscillators. Because the

Langevin equation is a linear equation, its solutions consist of the sum of a homoge-

nous solution and a particular solution. The two sets of independent homogenous
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solutions satisfy the initial conditions:

MĠ(0) = 1, MG̈ = 0, (1.43)

G(0) = 0, Ġ(0) = M−1. (1.44)

(1.45)

1.4.2.2 On Initial Conditions

In the previous section we focused on the dynamics without worrying about

initial conditions. The role of initial conditions of the system oscillators are easily

seen in (1.42). As mentioned before, the damping kernel is independent of the initial

conditions and as a result so are the homogenous solutions G(t) and MĠ(t). The

initial conditions of the environmental oscillators effect the open system in two ways.

First, dynamically the system is driven by the noise term ξ. Second, correlations

may exist between system and environment initial conditions. We will consider three

types of initial conditions for the BM model in this work: in Chapter 2 the thermal

state of the closed system + environment , in Chapters 2 and 3 uncorrelated system

and environment with the environment in a thermal state, and in Chapter 4 the

classical microcanonical ensemble of the closed system + environment .

1.4.3 Significance and generality of the QBM model

Microscopic models, that make first principles calculations possible, allow one

to examine all the assumptions entering the derivation rather than relying on phe-

nomenology, and explore new horizons, like the low temperature or strong coupling
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regimes. The QBM model is used extensively in the open quantum systems literature

thanks to its exact solubility and its generality. The solubility is due to the linearity

of the model. The generality may not be immediately obvious. Representing the

environment by a set of simple harmonic oscillators might appear to be a serious

restriction to weak influences on the system, because of its linearity. Yet it is known

from the influence functional formalism [26], that such a model environment can

emulate any source of Gaussian noise with proper choice of coupling. An argument

for the generality of the model is given by Caldeira and Leggett [53]: “For most

cases of interest, at least when the system variable is macroscopic, this assumption

is physically reasonable; in that case the environment is usually also (geometrically)

macroscopic and the interaction of the system with any one environmental degree of

freedom is generally proportional to the inverse of the volume, while the character-

istic energy of such a degree of freedom is volume-independent.” The applicability

of the model is limited to cases where the influence of the system on each bath

mode is weak. This does not imply that the influence of the bath as a whole on the

system is weak as well. The Brownian particle interacts with a very large number

of environmental degrees of freedom. The effect of these interactions can add up to

yield strong dissipation, fluctuations and decoherence for the Brownian particle.

1.5 Fluctuation Theorems (FTs)

Recent advances in technology, like real-time monitoring and control of single

molecules, enable experiments where small systems can be studied under nonequilib-
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rium conditions [22]. Alongside these advances, there has been considerable progress

in our theoretical understanding of the nonequilibrium statistical mechanics of small

systems. The fluctuation theorems (FTs) of Jarzynski [11] and Crooks [14] are

among these advances. For earlier work on entropy fluctuation theorems, such as

by Cohen, Evans, Searles and others, see, e.g., [20].

FTs relate equilibrium thermodynamic quantities of a physical system, such

as free energy differences, to the averages of mechanical quantities in nonequilibrium

processes, like exponentiated work. For complex biological systems like proteins and

DNAs, the free energy differences are difficult to calculate while the averages of work

in nonequilibrium processes can be obtained from measurements in experiments or

via careful numerical simulations.

1.5.1 Classical Fluctuation Theorems

In this dissertation we will be mostly concerned with the nonequilibrium work

relation [11,12],

〈e−βW 〉 = e−β∆F , (1.46)

and the closely related fluctuation theorem, due to Crooks [13–15],

P (W )

P̃ (−W )
= eβ(W−∆F ) . (1.47)

Both of these relate the statistical fluctuations in the work W performed on a sys-

tem during a nonequilibrium process, to a free energy difference ∆F between two

equilibrium states of the system. The angular brackets in Eq. (1.46) denote an
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average over an ensemble of realizations of the process, and β specifies the inverse

temperature at which the system is prepared prior to each realization. In Eq. (1.47)

the numerator and denominator denote the distributions of work values correspond-

ing to a conjugate pair of “forward” and “reverse” processes. Eqs. (1.46) and (1.47)

have been derived by various means, using a variety of equations of motion to model

the microscopic dynamics – see Ref. [54] for a review with extensive references – and

have been confirmed experimentally [55–60].

Here we will focus our attention on the formulation of these results within the

framework of Hamiltonian dynamics. The Hamiltonian for the system of interest

is assumed to depend on a control parameter λ, whose time dependence over an

interval 0 ≤ t ≤ τ is specified by a schedule, or protocol, λt. The free energy

difference ∆F refers to two different equilibrium states, corresponding to the initial

and final parameter values, λ0 and λτ . Work done during this process is defined as

6

W =

∫ τ

0

dt
∂H

∂λ
λ̇(t), (1.48)

where an overdot denotes derivative with respect to time. Although the Hamiltonian

dynamics of the system is entirely deterministic, due to the probabilistic nature of

the initial conditions that are sampled from the thermal phase space density, work

is described by a probability distribution P (W ).

6For a discussion of various definitions of work, their relationship to each other and how that

affects the content and context of the fluctuation theorems see [61].
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1.5.2 Quantum Fluctuation Theorems

The main difficulty in formulating fluctuation theorems for quantum mechanics

is defining work. Except for closed systems there is no agreement on a definition of

work in quantum mechanics. For closed systems there is general agreement on the

following operational definition [62, 63]: 1) Measure the energy of the system using

the Hamiltonian initially at t = 0 to be E0
n, thus “collapsing the wavefunction” to

one of the eigenfunctions of the Hamiltonian at the initial time: H(0)|ψ0
n〉 = E0

n|ψ0
n〉.

2) Let the system evolve under the time dependent Hamiltonian according to the

prescribed protocol. 3) At the end of the protocol measure the energy of the system

using the Hamiltonian at t = τ to be Eτ
m, thus collapsing the wavefunction to an

eigenfunction of the Hamitonian at τ : H(τ)|ψτm〉 = Eτ
m|ψτm〉. For this specified

realization, work is defined as W = Eτ
m − E0

n. Since the system is closed, one can

interpret the change in energy of the system as work performed on the system. In

classical mechanics of isolated systems work acquires a probabilistic feature only

due to the sampling of the initial conditions, since the dynamics is deterministic.

In quantum mechanics work acquires an additional probabilistic feature from the

dynamics:

P (W ) =
1

2π

∫
du e−ıuWTr[eıuHH(τ)e−ıuHH(0)ρβ]

=
∑
m,n

δ
[
W −

(
Eτ
m − E0

n

)]
| 〈ψτm|U(τ, 0)

∣∣ψ0
n

〉
|2
〈
ψ0
n

∣∣ρβ ∣∣ψ0
n

〉
=
∑
m,n

δ
[
W −

(
Eτ
m − E0

n

)]
p(n→ m)p0(n) , (1.49)
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where the subscript H indicates Heisenberg operators, p0(n) is the probability that

the result of the first energy measurement is |ψ0
n〉, and p(n→ m) is the probability

of transition from |ψ0
n〉 to |ψτm〉 during time evolution from 0 to τ . Jarzynski equality

and Crooks’s fluctuation theorem can be proven in a few lines for a closed system

with this definition of work. In Chapter 3 we present our approach to quantum

fluctuation theorems, which differs from the above formulation in that it does not

involve energy measurements.

1.6 Summary of Major Findings

In chapter 2 we investigate the late-time steady states of open quantum sys-

tems coupled to a thermal reservoir in the strong coupling regime. In general such

systems do not necessarily relax to a Boltzmann distribution if the coupling to the

thermal reservoir is non-vanishing or equivalently if the relaxation time scales are

finite. Using a variety of nonequilibrium formalisms valid for non-Markovian pro-

cesses, we show that starting from a product state of the closed system = system

+ environment , with the environment in its thermal state, the open system which

results from coarse graining the environment will evolve towards an equilibrium

state at late times. This state can be expressed as the reduced state of the closed

system thermal state at the temperature of the environment. For the quantum

Brownian motion model, which is exactly solvable, we are able to show in a rigor-

ous way that all multi-time correlations of the open system evolve towards those

of the closed system thermal state. Multi-time correlations are especially relevant
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in the non-Markovian regime, since they cannot be generated by the dynamics of

the single-time correlations. For more general systems, which cannot be exactly

solved, we are able to provide a general proof that all single-time correlations of

the open system evolve to those of the closed system thermal state, to first-order

in the relaxation rates. For the special case of a zero-temperature reservoir, we are

able to explicitly construct the reduced closed system thermal state in terms of the

environmental correlations.

In Chapter 3 we present a first-principles analysis of the nonequilibrium work

distribution and the free energy difference of a quantum system interacting with a

general environment (with arbitrary spectral density and for all temperatures) based

on the quantum Brownian motion model. We use the decoherent history conceptual

framework to explain how the notion of trajectories in a quantum system can be

made viable and use the environment-induced decoherence scheme to assess the

strength of noise which could provide sufficient decoherence to warrant the use of

trajectories to define work in open quantum systems. From the solutions to the

Langevin equation governing the stochastic dynamics of such systems we were able

to produce formal expressions for these quantities entering in the FTs, and using

these expressions prove explicitly the validity of the FTs at the high temperature

limit. At low temperatures our general results would enable one to identify the range

of parameters where FTs may not hold or need be expressed differently. We explain

the relation between classical and quantum FTs and the advantage of this micro-

physics open-system approach over the phenomenological modeling and energy-level

calculations for substitute closed quantum systems.
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In Chapter 4 we calculate the probability distribution of work for the ex-

actly solvable classical Brownian motion model with a finite environment. The

initial conditions of the combined system and environment are sampled from a mi-

crocanonical distribution and the system is driven out of equilibrium by changing

the control parameter according to a prescribed protocol. In the limit of infinitely

large environment, i.e. N → ∞, we recover the nonequilibrium work theorem and

Crooks’s fluctuation theorem. Moreover, the microcanonical Crooks relation is ver-

ified for finite environments. The equivalence of multi-time correlation functions

of the system in the infinite environment limit for canonical and microcanonical

ensembles is proven. Our results support the hypothesis that for macroscopically

large environments the sampling of the initial conditions from a canonical or mi-

crocanonical distribution is equivalent as far as system observables are concerned.

Albeit restricted to one simple model, our results go beyond the standard results

on ensemble equivalence in a number of ways. First of all, the system plus environ-

ment model considered in this chapter is not extensive and homogenous (like gas

particles in a container). Second, the thermodynamic limit (of the environment) is

taken with the system size fixed. Thus, the quantities we consider do not have to

be macroscopic. Third, we consider multi-time averages taken over nonequilibrium

processes. This implies that even fluctuations behave identically for canonical and

microcanonical ensembles. Finally, we show that in the infinite environment limit,

the Brownian particle relaxes to an equilibrium state which does not depend on

whether the canonical or microcanonical ensemble is used for the environment.

In Chapter 5 we summarize our thoughts in attempting a systematic investi-
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gation into some key foundational issues of quantum macroscopic phenomena, with

the goal of ultimately revealing or building a viable theoretical framework. Three

major themes discussed are the large N expansion [64], the correlation hierarchy [65]

and quantum entanglement [66, 67]. We give a sketch of the first two themes. We

then discuss several key issues in the consideration of macro and quantum. We

point out that there exist many levels of structure in a composite body and only by

judicious choice of an appropriate set of collective variables can one give the best

description of the dynamics of a specific level of structure. To understand how the

coupling pattern amongst the constituents of two macro objects (modelled by N

harmonic oscillators), enters into the picture, we consider two types of coupling:

each constituent particle is coupled to only one other particle (1-to-1) versus cou-

pled to all particles (1-to-all). In the 1-1 case with pairwise interactions of equal

strength, the entanglement is independent of the number of constituent particles N

in the macroscopic object. In the 1-to-all case the relative coordinates are decoupled

and the center of mass (CoM) coupling scales with N . Here we expect the entangle-

ment between the CoM variables to increase with increasing size of the macroscopic

objects and survive at higher temperatures. We provide a proof of the conditions

whereby the CoM variable decouples, a prerequisite for the CoM variable to be pro-

tected from decoherence and play a special role in the entanglement between two

such macroscopic objects. Similar qualitative behavior is found when the couplings

between the constituents of the macroscopic objects are statistically independent

Gaussian random variables.

Quantum entanglement is known to persist at high temperatures [68] and
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large scales [69] under certain conditions, and may actually decrease with increased

connectivity in a quantum network [70]. We pick out these somewhat counter-

intuitive examples to show that there are blind spots worthy of our attention and

issues which we need to analyze closer. Our purpose is to try to remove the stigma

that quantum only pertains to micro, in order to make way for deeper probes into

the conditions whereby quantum features of macroscopic systems are manifest.

Some technical details related to Chapter 2 have been provided in the Ap-

pendix A and those related to Chapter 4 are provided in Appendix B.
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Chapter 2: Equilibrium states of open quantum systems in the strong

coupling regime

2.1 Introduction

Equilibrium states are typically discussed and derived in one of three settings

or scenarios. In the more-common equilibrium (Gibbs) perspective, originally based

upon classical ensemble theory, the entire system consisting of a system of interest

plus its environment is taken to have some well-defined state or set of states, and

upon coarse graining the environment, the system can appear thermal [33,34]. In the

less-common non-equilibrium perspective, the environment is taken to be initially

thermal, whereas the open system is allowed to dynamically relax from an arbitrary

initial state into an equilibrium state [29,71–73]. This approach is referred to as the

Langevin paradigm [74]. Both scenarios described above apply to situations where

there is a clear distinction and separation between the system and environment

degrees of freedom. When there is no clear distinction or the separation is not

physically justifiable, as in a molecular gas where each particle is identical, a very

different set of physical variables and different kind of coarse graining measure need

be considered. One can examine the behavior of the n-particle distribution functions
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and perform the coarse graining (e.g., “slaving” in [74]) on the Bogoliubov-Born-

Green-Kirkwood-Yvon (BBGKY) hierarchy [8]. This approach is referred to as the

Boltzmann paradigm.

The equilibrium and non-equilibrium perspectives can be made to complement

each other rather naturally within the Langevin or open system paradigm. In the

former case, Popescu et al. [33] have shown that for an overwhelming majority of

pure states of the system + environment (within a narrow energy interval), the

reduced density matrix is very close to the reduced density matrix corresponding to

the microcanonical state of the system + environment (defined in the same energy

interval). In their approach the comparison is done without explicitly determining an

equilibrium state. The authors emphasize that for strong coupling, the equilibrium

state is not of Boltzmann type, and yet their results are valid in this domain. It

is important to note that dynamics does not play any role in their derivation; the

entire argument is based on kinematics. The beauty of this approach is that one

can explain the abundance of thermal-like states without referring to ensembles or

time averages.

Linden et al [36] expands upon the approach of [33, 34] to demonstrate dy-

namical relaxation1 under very weak assumptions. Specifically, they proved that

any subsystem of a much larger quantum system will evolve to an approximately

steady state. On the other hand Reimann [37] showed that the expectation value of

1See Sec. 2.1.1 for the definition of the terms relaxation, equilibration and thermalization as

used in this work. There we also describe the meaning of the term equilibration as used in Refs. [36,

37,75,76], which differ from our definition.
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any “realistic” quantum observable will relax to an approximately constant value.

( [75] gave a clear analysis and unification of these two results.) Finally [76] proves

relaxation over a finite amount of time both in the sense of [36] and [37].

Dynamical relaxation of an open quantum system has been studied in the limit

of vanishing coupling to the environment in [29,71–73]. In this limit the equilibrium

state is shown to be of Boltzmann form, i.e. described by a canonical ensemble.

In this case the result is called thermalization, rather than just relaxation. In our

work reported here, we derive the equilibrium state of an open system coupled to

a thermal reservoir explicitly, even in the strong coupling regime. Moreover for the

N oscillator quantum Brownian motion (N-QBM) model we are able to show the

relaxation of multi-time correlations of the open system as well. To do so we need

to restrict the environment to be in a thermal initial state.

Relaxation in quantum lattice systems have been studied in great detail in

[77,78]. These papers demonstrate local relaxation of the system to Gaussian states

under dynamics generated by quadratic Hamiltonians with short-range interactions.

Relaxation occurs irrespective of the initial state. However, the parameters of the

asymptotic local Gaussian states do depend on it. By “local” it is meant that any

“small” subset of lattice sites relaxes to a steady state whereby every part of the

lattice acts as an environment for the other parts. Their proofs feature a non-

commutative central limit theorem for non-i.i.d. random variables.

Recently, Pagel et al. [79] studied relaxation in the QBM model with a single

system oscillator. Similar to [78] and unlike our work, [79] shows relaxation even

for non-thermal initial states for the environment. They derived conditions for ther-
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malization and a relation of the asymptotic temperature to the energy distribution

in the initial bath state. The methodology of this work is the same as our treatment

of the QBM model. Their derivation involves discarding rapidly oscillating terms at

late times. This step has a similar effect to the use of the non-commutative central

limit theorem in [78]; however, in our opinion it is mathematically not as rigorous.

Neither of these works consider multi-time correlations.

Another difference between our work and [36,37,75–78] is in the methods and

emphasis. We take the open quantum systems approach [26–31] of assuming an

environment (E) which the system (S) interacts with, keeping some coarse grained

information about the environment and accounting for its systematic influences on

the system in a self-consistent manner. The time evolution of the open quantum

system is in general governed by non-unitary dynamics. In contradistinction, [36,

37,75–78] consider the unitary time evolution of the closed system (S + E) and then

trace out the environment to get the system state. Both approaches are equally valid,

each providing a different perspective into the physics with different emphasis. We

will provide a more detailed comparison of our results to those in the literature in

the discussion section at the end.

2.1.1 Relaxation, Equilibration and Thermalization

Before we present our approach, we want to define carefully what is meant by

equilibration. To begin with let us consider a system in contact with two thermal
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reservoirs2 at different temperatures. The system relaxes into a late-time steady

state, which can be described by a reduced density matrix. All expectation values

of system operators will also be time-independent at late times. Yet there will be

a steady heat flux from the hot reservoir to the cold reservoir through the system.

This is an example of a non-equilibrium steady state.

In general we define steady states via time independent density matrices:

dρ(t)/dt = 0 and use the term relaxation to describe the generic convergence of

the reduced density matrix to a fixed but arbitrary state in the late-time limit. If

the density matrix is diagonal in the energy eigenbasis of the system, we call it a

stationary state. An isolated stationary state is also a steady state, but this is not

true for open systems with non-vanishing coupling to their environments.

In this work we reserve the term equilibrium for systems whose multi-time

correlations can be derived from the thermal state of a possibly extended closed

system which is governed by Hamiltonian dynamics. As a result of our defini-

tion, equilibration implies relaxation but the reverse is not true. The thermal

reservoir distinguishes itself from other possible environments by the universal-

ity of its fluctuation-dissipation relation (FDR)3, detailed-balance conditions and

2We call an environment a reservoir if the environment has an infinite number of degrees of

freedom, and a reservoir at constant temperature, a thermal reservoir.
3As long as the environment is modelled after a physical system, fluctuations will be related to

dissipation; hence there will be a FDR. However for general environments this relation depends on

the specifics of the system-environment coupling. Thermal environments are unique in that the

FDR does not depend on the details of the system and the coupling to the system [80]. This is why

our proof does not extend to non-equilibrium steady states arising from non-thermal environments
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Kubo-Martin-Schwinger (KMS) relations. In the vanishing coupling limit thermal

reservoirs lead to the thermalization of the system as defined below. However for

non-vanishing coupling to a thermal reservoir the equilibrium state of the system

does not need to be of the Boltzmann form

ρS(β) =
e−βHS

TrS [e−βHS ]
. (2.1)

The asymptotic states we derive in this chapter in the strong coupling limit describe

equilibration and not thermalization.

The term thermalization is reserved for the relaxation of the density matrix of

a system to the Boltzmann form (2.1) irrespective of the initial state of the system.

Thermalization defined in this sense can take place only if the system-environment

coupling is vanishingly weak. To be specific, one requires (1) decaying environmen-

tal correlation functions, defined in Sec. 2.3, (2) an initially thermal reservoir and

(3) vanishing relaxation rates4 or, equivalently, vanishing environmental correlation

functions.

These conditions are customarily achieved by assuming short-range interac-

tions and a relatively large system size, see Fig. (2.1). However this assumption is

generally not justifiable for small systems as Fig. (2.2) suggests. In this chapter,

we address the stationary state of open quantum systems in contact with a thermal

such as two thermal reservoirs at different temperatures. A treatment of non-thermal environments

in QBM model can be found in [79].
4To see a simple example of a relaxation rate consider the N-QBM model of Sec. 1.4 for N=1.

In the Markovian limit the damping kernel can be written as γ(t, s) = γ0Mδ(t− s), where γ0 acts

as the damping rate.

41



System

Interaction

Environment

Figure 2.1: Depiction of a system embedded in its environment, with short-range in-

teractions. The typical argument for neglecting the interaction energy is that in the

macroscopic limit the boundary becomes immeasurable in relation to the bulk.

reservoir at temperature kBT = 1/β, without the assumption of a vanishing inter-

action strength and allow for finite relaxation timescales. Relation (2.1) is known

not to hold under these conditions [81]. Phenomenologically, one can estimate the

corrections we describe by the ratio of the relaxation rates γ to the system’s energy

level splittings Ω, or γ/Ω.5

As thoroughly discussed in Ref. [81], this fact is often overlooked in many

circumstances, due to the effects of ancillary approximations such as the rotating-

wave approximation, renormalization of environmentally-induced energy-level shifts

5A well-known example is the density of states for an atom or molecule, which is necessarily

interacting with the electromagnetic field to a degree which cannot be ignored when considering

the Lamb shift, black-body radiation shifts, etc.. For optical frequencies, the emission rates of

atoms are very small relative to their transition frequencies, and so these corrections are very

small. However in other systems, such as condensates, these corrections can be of considerable

size.
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and overly-simplistic models. As we explain in Appendix A.1, this fact may also

be overlooked due to its absence in the case of classical, Gaussian noise.

Figure 2.2: Depiction of systems of decreasing particle number. For systems consisting of

a small number particles, the argument in Fig. 2.1 obviously does not apply. Furthermore,

it is known that neglecting the interaction energy in these finite systems always results in

infinite relaxation and thermalization times.

Finally, the term equilibrium is used in Ref. [36] to describe what in our

terminology are steady states and in Ref. [37] to describe what in our terminology

are stationary states. Both cases have been covered in Refs. [75,76] with the single

term equilibrium. These states do not necessarily meet our more stringent criteria

of equilibrium described above. Here we refer to the result of these works using the

terminology we defined above.

2.1.2 Model and Assumptions

In this chapter we use the open quantum system setup described in Sec. 1.3

which describes a system coupled to an environment. The interaction Hamiltonian

HI in (1.16) generates environmental correlation functions, c.f. Eqs. (2.41), (2.45)),

43



and we assume these correlations to be decaying functions. This assumption allows

for irreversible dynamics in the open system. Implicit in this assumption is that

the environment contains a continuum of modes (e.g. infinite volume). This latter

assumption can be satisfied by coupling the system directly to field degrees of free-

dom that are uncountably infinite, such as the electromagnetic field. Note, however,

that we do not assume the interaction Hamiltonian to be negligible compared to the

system Hamiltonian.

Finally, for mathematical simplicity we assume the initial state of the system

and environment to be uncorrelated at t = 06

ρC(0) = ρS(0)⊗ e−βHE

ZE(β)
, (2.2)

where the environment (a thermal reservoir) is in its isolated equilibrium state with

partition function ZE(β) = TrE[e−βHE ], and the system (S) is in an arbitrary state.

The proofs in this chapter depend crucially on the properties of thermal states as

discussed before.

The assumption of a thermal state for the environment can be justified, for

instance, by the approach of Popescu et al. [33] in the weak coupling limit, by

giving the environment its own environment, without any restriction on the system-

environment coupling strength. In this sense the work of Popescu et al., and those

prior, serve as a pedagogical springboard for our analysis of strongly-coupled sys-

tems.
6The implication of initial correlations are considered in Ref. [82, 83]: Correlated initial states

are more physical, particularly in the early time evolution, but they have essentially no bearing on

the mathematical results we derive herein, which are focused upon the asymptotic time evolution.
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2.1.3 Results

It is well known that in the limit of vanishing interaction strength, an open

system coupled to a single thermal reservoir relaxes to its thermal state [29,52,71,81]

lim
γ→0

lim
t→∞

ρS(t) =
e−βHS

ZS(β)
, (2.3)

where ρS(t) = TrE[ρC(t)] denotes the reduced density matrix and γ a generic re-

laxation rate of the open system. Note that all relaxation rates are, at minimum,

second-order in the interaction, being primarily determined by the two-time corre-

lations of the environment.

In Ref. [84], it was shown to second-order in the interaction, and for a single

tensor-product coupling of system and environment operators, that an open system

coupled to a single thermal reservoir can be confirmed to relax to the reduced closed

system thermal state

lim
t→∞

ρS(t) = TrE

[
e−βHC

ZC(β)

]
. (2.4)

We extend this proof to general system-environment couplings. For zero-temperature

environments we demonstrate agreement with the ground state obtained from the

time-independent Schrödinger equation. Moreover, we give a non-perturbative proof

of Eq. (2.4) for the exactly-solvable model of N -oscillator quantum Brownian mo-

tion (N-QBM), wherein the interacting system and environment are linear. In that

model we are also able to rigorously prove that all multi-time correlations of the open

system relax to those of the closed system thermal state with non-vanishing interac-

tion. Correspondence of the multi-time correlations is an important consideration

45



as, outside of the Markovian regime, the dynamics of the multi-time correlations

cannot be generated by the dynamics of the single-time correlations, as per the

quantum regression theorem [85].

2.1.3.1 The reduced, closed system thermal state

It is important to emphasize that Eq. (2.4) pertains strictly to the open system

S and not to the closed system (S + E), as equilibration requires not only a reservoir

and late-time limit, but also a degree of coarse graining. As we show in Sec. 2.2.5,

if one considers any individual mode of the environment, then its dependence upon

the initial state of the system never decays. In this sense, information pertaining

to the system’s past is encoded in the environment, but only when considering the

state of the closed system (S + E). However, upon coarse graining the environment

by considering the time-evolution of a continuum of environment energies, and not

one individual mode energy, then all dependence upon the initial state of the system

is seen to decay away in time. In this sense, information pertaining to the system’s

past is only measurable for a finite span of time.

The above statement is based on the fact that, while the open system ex-

periences irreversible dynamics: dissipation, diffusion and decoherence, the closed

system (S + E) experiences reversible dynamics. Consider, for instance, the cou-

pling of a mixed state of the system to a zero-temperature reservoir. Given unitary

dynamics, the joint state of the system and environment cannot relax from a mixed

state into a pure state (the ground state of the interacting theory). However, the
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environment is exceedingly large when compared to the system, and so the sys-

tem’s entropy, when spread out over every mode of the environment, can become

immeasurable. This is a general phenomena of environmentally-induced irreversible

dynamics: conserved quantities such as energy and entropy can flow into the en-

vironment, and owing to the overwhelmingly large number of degrees of freedom,

become difficult to track or retrieve.

The chapter is organized as follows: In Sec. 2.2 we derive the equilibrium

state for the linear N-QBM model. In Sec. 2.3 we extend our analysis to nonlinear

systems via perturbation theory. In Sec. 2.4 we summarize our results and compare

them to relevant works in the literature and provide some new insights into the key

issues. Some technical details have been provided and the notation is defined in the

Appendices.

2.2 Linear systems

Calculation of the late-time steady state and multi-time correlations of an open

quantum system requires the knowledge of and the ability to treat the dynamics with

due consideration to initial state. As mentioned in the Sec. 1.2.3, the dynamics

of quantum and classical linear systems are identical. As a result they can be

solved exactly by finding the transformation which maps the system into a set of

uncoupled harmonic oscillators (eigenmodes) undergoing undamped oscillations of

a single eigenfrequency. This method, referred to as the “diagonalization of the

Hamiltonian” or a generalized Bogoliubov transformation, gives the time evolution
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of all oscillators as superpositions of the eigenmodes. In the limit of an infinite

environment (and only then), the superposition for the system oscillators can result

in dissipative and stochastic behavior at late times.

However as mentioned in Sec. 1.4.2.2 the initial conditions are different for

thermal states in quantum mechanics versus classical mechanics, the difference being

especially pronounced at low temperatures (for an example see Eq.(1.14)). This is

the main source of non-triviality of our result Eq. (2.4) as it applies to linear systems.

As has been detailed in Appendix A.1, it is relatively simple to account for the effects

of a linear environment in classical mechanics. This is not so in quantum mechanics

because the Wigner function of the thermal state is quite complicated (especially for

systems with multiple degrees of freedom), and coarse graining the environmental

degrees of freedom remains challenging.

In this section we adopt the open quantum system approach in following the

dissipative dynamics of our system in the form of a Langevin equation wherein the

noise terms fully incorporate the influence of the environmental degrees of freedom.

This method produces the same result as the explicit diagonalization of the Hamil-

tonian of the closed system, yet it shifts the focus on the reduced system early in

the derivation and is mathematically more straightforward. A trivial observation

allows us to simplify the derivation even further. Since the thermal state of a closed

Hamiltonian system is stationary, we can replace the closed system thermal state by

its own late-time steady state (see Fig. 2.3). This way we have a symmetry between

the quantities we want to compare and fewer terms to calculate overall.
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=(system only!)

Figure 2.3: The thermal state of the combined system + environment is stationary, i.e.

it does not change over time. Also the multi-time correlations are unchanged under time

translations. Our goal is to compare this state with the late-time limit of the product

initial state Eq. (2.2), as far as the system observables are concerned. Instead of doing

this directly, we also take the late-time limit of the former, which does not change that

state as argued above. The comparison of two late-time expressions prove to be much

easier technically in the open system approach.

2.2.1 Noise

We consider the case in which the system and environment are uncorrelated

at t = 0 and the environment is in its thermal state e−βHE/ZE(β). The noise has

zero mean and the two time correlation is given by the noise kernel

ν(t, t′) =
〈
ξ(t)ξ(t′)T

〉
ξ

= gm−
1
2

coth (β~ω/2) cos (ω [t− t′])
2ω

m−
1
2 g, (2.5)

where the Gaussian average over the stochastic process ξ is equivalent to tracing over

the environment degrees of freedom. The noise and damping kernels then satisfy
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the fluctuation-dissipation relation (here in the Fourier domain)

ν̃(ω) = κ̃(ω)γ̃(ω), (2.6)

κ̃(ω) ≡ ~ω coth

(
~ω

2kBT

)
, (2.7)

with the Fourier transform defined

f̃(ω) ≡
∫ +∞

−∞
dte−ıωtf(t), (2.8)

and where κ̃ is the (quantum) FDR kernel. Therefore, the problem is completely

specified in terms of the damping kernel. For general Gaussian states of the closed

system, for which the system and environment are correlated, the noise can be

correlated with (X0,P0) and the noise kernel modified. This is the case for the

closed system thermal state given by the density matrix e−βHC/ZC(β), as we will

see in the following sections.

2.2.2 Single-time correlations in the closed system thermal state

In this section we calculate the single-time correlations in the closed system

thermal state of the N-QBM model. The partition function for the N-QBM model

has been derived in Appendix A.3, Eq. (A.41). In the rest of the chapter including

associated appendices we suppress the dependence of the partition function on β for

brevity of notation. As a first step we take the logarithm of the partition function

and write it as:

logZC = logZE −
1

2
Tr log M−1 − 1

2
Tr log C−

∞∑
r=1

Tr log
(
M−1Ĝ(νr)

−1
)

+ constant,

(2.9)
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where νr = 2πr/~β are the Matsubara frequencies.

We begin by making a general observation. Consider the thermal state of

a system described by a Hamiltonian where the momenta appear only in the ki-

netic energy term of the form
∑

a p
2
a/2m. Then all correlations between position

and momentum operators vanish: 〈xapb〉 = 0. This can be seen by noting that

all correlations are time-translation-invariant in equilibrium and forming the deriva-

tives d
dt
〈xa(t)xb(t)〉 and d

d(t−t′) 〈xa(t)xb(t
′)〉
∣∣
t=t′

. This observation applies to N-QBM

model.

Let angular bracket with the subscript C denote expectation values in the

closed system thermal state. Expectation values corresponding to the uncorrelated

initial state are denoted by attaching the subscript E to the bracket. For the purpose

of partial differentiation, the partition function is to be regarded as a function of

C, M, c, m, g and not (explicitly) of ω. With a straightforward application of

Theorem 1, the reduced system correlations are given by:

〈
XXT

〉
C

= − 2

β

∂ logZC

∂C
, (2.10)

〈
XPT

〉
C

=
〈
PXT

〉
= 0, (2.11)〈

PPT
〉

C
= − 2

β

∂ logZC

∂M−1
. (2.12)

The position-position and position-momentum correlations between system and
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reservoir modes are calculated similarly:

〈
XxT

〉
C

=
〈
xXT

〉T

C
=

1

β

∂ logZC
∂gT

+
〈
XXT

〉
C

gTc−1,

〈
XpT

〉
C

=
〈
pXT

〉T

C
= 0, (2.13)〈

PxT
〉

C
=
〈
xPT

〉T

C
= 0. (2.14)

To calculate the momentum-momentum correlations between system and environ-

ment, we take the time derivative of
〈
X(t)pT(t)

〉
C

and set it to zero. Since in the

closed system thermal state all expectation values are time-independent, we know

that there is in fact no dependence on time. Using the equations of motion it is

straightforward to show that:

〈
PpT

〉
C

= M
〈
XxT

〉
C

c−M
〈
XXT

〉
C

gT. (2.15)

The environment correlations can be calculated by direct differentiation of the par-

tition function:

〈
xxT

〉
C

= − 2

β

∂ logZC
∂c

+ c−1g
〈
XXT

〉
C

gTc−1, (2.16)

〈
xpT

〉
C

=
〈
pxT

〉
C

= 0, (2.17)〈
ppT

〉
C

= − 2

β

∂ logZC
∂m−1

. (2.18)

Now we are in a position to determine all the single-time correlations of the

interacting theory in the closed system thermal state. Since the equilibrium state is

stationary these single-time correlations are time-independent. The details for some

of these formulae are provided in Appendix A.4. All the nonzero correlations are
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given by:

〈
XXT

〉
C

=
1

β
Ĝ(ν0) +

2

β

∞∑
r=1

Ĝ(νr), (2.19)

〈
PPT

〉
C

=
1

β

(
M− ν2

0MĜ(ν0)M
)

+
2

β

∞∑
r=1

(
M− ν2

r MĜ(νr)M
)
, (2.20)

〈
XxT

〉
C

=
〈
XXT

〉
C

gTc−1 − 2

β

∞∑
r=1

νrĜ(νr)γ̂(νr)g
−1, (2.21)

〈
PpT

〉
C

= M
〈
XxT

〉
C

c−M
〈
XXT

〉
C

gT, (2.22)〈
p0p

T
0

〉
C

=
〈
p0p

T
0

〉
E
− 2

β

∞∑
r=1

ν2
r mf̂(νr)gĜ(νr)g

Tf̂(νr)m, (2.23)

〈
x0x

T
0

〉
C

=
〈
x0x

T
0

〉
E

+ c−1g 〈X0X〉C gTc−1 − 2

β

∞∑
r=1

ν2
r

(
c−1mf̂(νr)gĜ(νr)g

Tf̂(νr)
)

− 2

β

∞∑
r=1

ν2
r

(
f̂(νr)gĜ(νr)g

Tf̂(νr)mc−1
)

− 2

β

∞∑
r=1

ν4
r

(
c−1mf̂(νr)gĜ(νr)g

Tf̂(νr)mc−1
)
, (2.24)

where f̂ is the Laplace transform of the free reservoir propagator given by Eq. (1.27).

2.2.3 Equivalence of single-time correlations for the open system

In this subsection we show that the single-time correlations of system variables

for the uncorrelated initial state are asymptotically identical to the single-time cor-

relations corresponding to the closed system thermal state. We start by calculating

the variances for the closed system thermal state. The requirement that G(t) is a

decaying function means that the Laplace transform Ĝ(z) is analytic in the right

half-plane. Hence Ĝ(−ıω) is analytic in the upper-half plane. On the other hand

coth(β~ω/2) has simple poles on the imaginary axis at the Matsubara frequencies

νr. The summations over r in Eq. (2.19) can be written as a contour integral using
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Cauchy’s theorem:

〈
XXT

〉
C

=
β~/2
2πı

× 2

β

∫
C

dz coth(β~z/2)Ĝ(−ız). (2.25)

The contour of integration is chosen to encircle the upper-half plane in a counter-

clockwise direction. The poles on the imaginary axis at Matsubara frequencies νr

for r ≥ 1 are encircled, but only half of the pole at the origin is enclosed. The arc of

the contour does not contribute to the integral when the radius is taken to infinity.

Hence we can write this expression as an integral on the real line. Furthermore, by

the symmetry of the integrand, the real part vanishes and the integral is given by:

〈
XXT

〉
C

=
~
2π

∫ +∞

−∞
dω coth(β~ω/2)Im

[
Ĝ(−ıω)

]
. (2.26)

A similar argument can be used to derive:

〈
PPT

〉
C

=
~
2π

∫ +∞

−∞
dωω2 coth(β~ω/2)Im

[
Ĝ(−ıω)

]
. (2.27)

Eqs. (2.26,2.27) are identical to the results obtained by [86] for the asymptotic

values of variances corresponding to an uncorrelated initial state. Therefore, we

have proven that the single-time correlations of the open system relax to those of

the closed system thermal state.

2.2.4 Equivalence of multi-time correlations

In this section we generalize the results of the previous section to include

multi-time correlations. We begin by calculating the two-time correlation function〈
X(t)X(t′)T

〉
C

using the trajectories obtained from the Langevin equation. Note

that for the closed system thermal state this quantity is stationary. To simplify the
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proof we make use of this observation and take the late-time limit of the closed sys-

tem thermal state as well without loss of generality. This trick makes the comparison

of the two cases easier and reduces the amount of computation.

The dynamics of the system is given by the solution (1.42) of the Langevin

equation, which is valid for any initial state. The dependence on initial state is hid-

den in the correlations between X0, P0 and ξ(t). The two-time position correlation

is given by

〈
X(t)X(t′)T

〉
= Ġ(t)M

〈
X0X

T
0

〉
C

MĠ(t′) + G(t)
〈
P0P

T
0

〉
C

GT(t′)

+ Ġ(t)M

∫ t′

0

ds′
〈
X0ξ(s′)T

〉
C

G(t′−s′) +

∫ t

0

dsG(t−s)
〈
ξ(s)XT

0

〉
C

MĠ(t′)

+ G(t)

∫ t′

0

ds′
〈
P0ξ(s′)T

〉
C

G(t′−s′) +

∫ t

0

dsG(t−s)
〈
ξ(s)PT

0

〉
C

Ġ(t′)

+

∫ t

0

ds

∫ t′

0

ds′G(t−s)
〈
ξ(s)ξ(s′)T

〉
C

G(t′−s′). (2.28)

As mentioned earlier, unlike the uncorrelated initial state, the terms in the second

and third lines do not vanish in the closed system thermal state. We consider the

case where

lim
t→∞

G(t) = lim
t→∞

γ(t) = 0. (2.29)

These are the criteria for dissipative dynamics. Under these assumptions the first

two terms in Eq. (2.28) vanish in the late-time limit for any initial state. The terms

in the second and third lines have one factor of G(t) or Ġ(t), that goes to zero in the

late-time limit, multiplied by a convolution integral. In Appendix A.4 we show that

these convolution integrals are finite. Hence, the terms in second and third lines

also vanish asymptotically. Finally we show the equivalence of the term in the last
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line for the uncorrelated and thermal initial states at late times in Appendix. A.5.

The comparison of more general multi-time correlations can be done similarly

using the trajectories of the Langevin equation. The above example demonstrates

how in the late-time limit the effects of initial conditions of the system die out and

the noise statistics of both preparations converge. The equivalence at the level of

trajectories ensures that all the multi-time correlations will be identical.

Let us reiterate the result we just obtained: a linear system linearly coupled

to a linear thermal reservoir (with uncountably many degrees of freedom) at inverse

temperature β does relax to the equilibrium state described by (2.4). This state is

different from the Boltzmann state given by (2.3) whenever the interaction between

the system and environment is not negligible. Moreover the multi-time correlations

of system observables also relax to their corresponding values in the closed system

thermal state.

2.2.5 The effect of coarse graining

Up until this point we only focused on the system degrees of freedom. Now

we turn our attention to the environment. Following Ref. [51, 86], the trajectories

of the environment oscillators, as driven by the system oscillators, are given by

x(t) =
[
ḟ(t)mx(0) + f(t)p(0)

]
+ f(t) ∗ gX(t), (2.30)

in terms of their free propagator f(t) given by Eq. (1.27). Into Eq. (2.30) we substi-

tute the system trajectories, which are damped oscillations driven by noise for the
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continuum environment:

X(t) =
[
Ġ(t)MX(0) + G(t)P(0)

]
+ G(t) ∗ ξ(t). (2.31)

We then find the environmental dependence upon the initial state of the system to

be

x(t) = f(t)g ∗
[
Ġ(t)MX(0) + G(t)P(0)

]
+ · · · , (2.32)

with all additional terms only dependent upon the initial state of the environment.

The system-dependent terms correspond to a convolution of harmonic oscillations

of the environment with non-locally damped oscillations of the system. Resolving

these integrals leads to some terms which oscillate with environment frequencies ω

and do not decay.

As a simple example, consider the local damping of a single system oscillator.

The open-system propagator or Green’s function is given by

G(t) =
sin(Ω̃t)

MΩ̃
e−γ0t, (2.33)

Ω̃ =
√

Ω2 − γ2
0 . (2.34)

The environment’s dependence upon the initial state of the system is given by

xk(t) =

{
X(0)

d

dt
+
P (0)

M

}{
d2

dt2
− 2γ0

d

dt
+ Ω2

}
hk(t) + · · · , (2.35)

hk(t) ≡
gkfk(t)

(ω2
k − Ω2)

2
+ 4γ2

0ω
2
k

, (2.36)

plus terms that decay exponentially and the terms which depend upon the initial

state of the environment. The function hk(t) oscillates forever, the same as fk(t),

and therefore the environment retains information pertaining to the initial state of
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the system forever. However, this information is not measurable forever. The system

only interacts with the integrated trajectories, which resolve to a convolution of the

damping kernel and open-system propagators.

gTx(t) = −2γ̇(t) ∗
[
Ġ(t)MX(0) + G(t)P(0)

]
+ · · · , (2.37)

and, upon integrating over a continuum of environment frequencies (here performed

by multiplication with the infinite matrix gT), the oscillatory terms decay in time.

Thus, the late-time limit and coarse graining together are responsible for the erasure

of all information pertaining to the initial state of the system.

2.3 General systems

Here we consider the single-time correlations of a discrete or nonlinear quan-

tum system with arbitrary (linear or nonlinear) coupling to a quantum thermal

environment, but under the assumption that the influence of the environment on

the open system may be treated perturbatively. First we derive the second-order

steady state, as much as is possible, from the second-order master equation. Second

we derive the reduced thermal state directly from the closed-system thermal state.

Finally we derive the reduced thermal state via canonical perturbation theory, for

the case of zero temperature. All of these formalisms will be shown to produce

equivalent results where valid.
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2.3.1 Steady state

The time-evolution of the reduced density matrix of the open system can be

generated by a perturbative master equation

ρ̇S(t) = L(t){ρS(t)} , (2.38)

where the Liouville operator can be expanded in terms of the interaction Hamilto-

nian by a variety of methods [52,87–89].

L(t) = L0 + L1(t) + L2(t) + · · · , (2.39)

L0{ρ} = −ı[HS,ρ], (2.40)

In general, L1(t) can be absorbed into the system Hamiltonian, and so we will

primarily concern ourselves with the second-order term. For simplicity we will as-

sume there is no degeneracy or near-degeneracy in the system energy spectrum;

generalization to degenerate or nearly-degenerate systems is straightforward.

Expanding the interaction Hamiltonian in terms of system Ln and environment

ln operators

HI =
∑
n

Ln ⊗ ln, (2.41)

the multivariate master equation can be represented [52]

L2ρ =
∑
nm

[
Ln,ρ(Anm� Lm)† − (Anm� Lm)ρ

]
, (2.42)

where the A operators and � product define the second-order operators

(Anm� Lm)(t) ≡
∫ t

0

dsαnm(t, s) {G0(t, s)Lm(s)} , (2.43)
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in terms of the zeroth-order (state) propagator of the system

G0(t, s){ρ} = e−ı(t−s)HSρe+ı(t−s)HS , (2.44)

and the (multivariate) environmental correlation function

αnm(t, s) ≡ 〈ln(t)lm(s)〉E . (2.45)

The second-order operator can be expressed as the Hadamard product

〈ωi|Anm� Lm |ωi′〉 = A(ωi−ωi′) 〈ωi|Lm |ωi′〉 , (2.46)

where |ωi〉 are the energy eigenbasis for the isolated system. In the late-time limit,

the second-order coefficients resolve

Anm(ω) =
1

2
α̃nm(ω)− ıP

[
1

ω

]
∗ α̃nm(ω), (2.47)

where α̃(ω) denotes the Fourier transform of the stationary environment correlation

function α(t − s) = α(t, s), P the Cauchy principal value and ∗ the appropriate

Fourier convolution.

With the multivariate master equation detailed, we can prove relation (2.4) to

second-order in the interaction. This generalizes the univariate proof in Ref. [84],

which considered a single tensor-product interaction between the system and envi-

ronment. As the proof is straightforward in either case, we will give an outline and

focus upon differences which arise in the multivariate treatment.

We are looking for the stationary state ρβ, such that

L{ρβ} = 0, (2.48)

60



we know from detailed balance that the zeroth-order stationary state is the thermal

state (2.3), e.g. see [52]. Second-order corrections can be generated from the second-

order master equation via canonical perturbation theory. More explicitly, we have

〈ωi|ρβ |ωj〉i 6=j ∝ e−βωiδij − ı
〈ωi|L2{e−βH} |ωj〉

ωi − ωj
, (2.49)

but only for the denoted off-diagonal perturbative corrections (in the energy basis

|ω〉). As explained in Ref. [90], due to unavoidable degeneracy, specifically that

the diagonal elements are all stationary to zeroth-order, the second-order master

equation cannot determine the second-order corrections to the diagonal elements

of the density matrix. Calculating these second-order diagonal terms would re-

quire knowledge of the fourth-order master equation, and, unfortunately, the general

fourth-order master equation has never been rendered to the degree of tractability

that the second-order master equation has.

By a simple application of the multivariate master equation to Eq. (2.49),

we easily obtain these second-order corrections to the thermal state of the system.

Corrections to the steady state can be represented

〈ωi| δρβ |ωj〉 =
∑
nmk

Cnm
ijk

Z0(β)
〈ωi|Lm |ωk〉 〈ωk|Ln |ωj〉 , (2.50)

where Z0(β) is the partition function of the free system and with the off-diagonal

(and non-resonant) coefficients given by

Cnm
ijk

∣∣
ωi 6=ωj

= An

[
e−βωk

Anm(ωik)− Anm(ωjk)

ωi − ωj

]
+ An

[
e−βωiAmn(ωki)− e−βωjAmn(ωkj)

ωi − ωj

]
, (2.51)
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where ωij = ωi − ωj and Anm(ω) are the second-order master equation coefficients

in (2.47). “An” denotes the anti-Hermitian part; the Hermitian and anti-Hermitian

parts are defined

He[Qnm] ≡ 1

2
(Qnm +Q∗mn), (2.52)

An[Qnm] ≡ 1

2
(Qnm −Q∗mn), (2.53)

and for univariate noise (one collective coupling to the reservoir) the Hermitian and

anti-Hermitian parts are simply the real and imaginary parts. In either case the

anti-Hermitian part of (2.47) is the second term.

2.3.2 Equilibrium state

We wish to compare the straightforward expansion of (2.49) to the reduced

closed system thermal state at second-order, and so we require a perturbative ex-

pansion of (2.4). There exists such a perturbative expansion of exponential matrices

utilizing the identity

d

dε
eA+εB = eA+εB

∫ 1

0

due−u(A+εB)Be+u(A+εB), (2.54)

to obtain an operator-Taylor series in the perturbation εB. After a fair amount of

simplification, one can determine the second-order stationary state to be

ρβ ∝e−βHS + e−βHS

∫ β

0

dβ′
∫ β′

0

dβ′′ 〈HI(−ıβ′)HI(−ıβ′′)〉E , (2.55)

in terms of the complex-time operators

HI(−ıβ) ≡ e+β(H+HE)HIe
−β(H+HE), (2.56)
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where the noise average is taken with respect to the free thermal state of the environ-

ment, and factors inside the environmental trace have been written to suggest their

correspondence with the environmental correlation function evaluated at imaginary

times. Finally, note that the weak coupling expansion of the thermal state has the

potential for secular behavior in β, due to the fact that a factor of β necessarily

accompanies every factor of the interaction. Therefore, some terms in the expan-

sion will only be accurate in the high-temperature regime if they retain polynomial

dependence in β after integration.

The double integrals in Eq. (2.55) reduce to

∑
nm

∫ β

0

dβ′
∫ β′

0

dβ′′αnm(−ıβ′,−ıβ′′)Ln(−ıβ′)Lm(−ıβ′′), (2.57)

in terms of the complex-time operators

L(−ıβ) ≡ e+βHSLe−βHS . (2.58)

After a Fourier expansion of the complex-time correlation functions, expressions

(2.49) and (2.57) can be compared term-by-term in the energy basis wherein the

imaginary-time integrals of Eq. (2.57) can be resolved as the master equation oper-

ators were. Though the two expressions will then be composed of the same objects,

they will not immediately appear to be equivalent. The final step is to apply the

relevant multivariate Kubo-Martin-Schwinger (KMS) relations (also found in [52])

α̃(+ω) = α̃T(−ω)e−βω = α̃∗(−ω)e−βω, (2.59)

and then one can see that the two expressions are equivalent in their off-diagonal

elements. Moreover, as can be seen in (2.51), the off-diagonal expressions are free
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of behavior secular in β and are, therefore, valid in the low-temperature regime.

Whereas the second-order diagonal corrections to the steady state could not

be obtained from the second-order dynamics due to unavoidable degeneracy, there

is no such obstruction for the equilibrium state here. As studied in [91], these terms

can be obtained by analytic continuation

Cnm
iik = lim

ωi→ωj
Cnm
ijk , (2.60)

Cnm
iik =

d

dωi
An
[
e−βωkAnm(ωik) + e−βωiAmn(ωki)

]
. (2.61)

However, notice that the second term will contain a (d/dω)e−βω = −βe−βω, and

therefore this term is secular in β. So whereas the diagonal corrections of the

second-order steady state could not be determined from the second-order master

equation, here they can be determined, but they are only generally valid at high

temperature. Despite this, [91] reported good agreement for a harmonic oscillator

at low temperature.

2.3.3 Zero-Temperature Analysis

Though correspondence was established where valid, the previous analysis

was seen to be insufficient for the complete calculation of low-temperature equi-

librium states of the open system. However, as we shall now show, at least for

zero-temperature noise, it is still possible to easily construct the reduced closed sys-

tem thermal states in terms of the same environmental correlation functions which

occurred in the previous analysis. The following relations were applied towards

the inspection of two-level atoms interacting via a zero-temperature quantum field
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in [92].

In the zero-temperature regime we can apply mundane perturbation theory

to derive the stationary-state perturbations. One merely considers the perturbed

ground state of the system + environment

ψ = ψ0 +ψ1 +ψ2 + · · · , (2.62)

ψ0 ≡ |0〉 ⊗ |0〉E , (2.63)

and then traces out the environment

ρβ = |0〉〈0|+
〈
ψ2ψ

†
0 +ψ1ψ

†
1 +ψ0ψ

†
2

〉
E

+ · · · , (2.64)

where we neglect the first moment of the reservoir as previously discussed. Without

loss of generality let us set the ground-state energy of the system to zero. The

calculation of the reduced state is then a straightforward application of canonical

perturbation theory with some coarse graining. In doing this we obtain the same

off-diagonal corrections (2.51), however for the diagonal (and similarly, resonant)

corrections we obtain

Cnm
iik = An

[
e−βωk

d

dωi
Anm(ωik) + e−βωi

d

dωi
Amn(ωki)

]
, (2.65)

where the Boltzmann weights are guessed, as these relations have only been de-

rived here at zero temperature. Note that the second term here is different from its

analytically-continued value in (2.61). Whereas the analytically-continued values

may diverge in the zero-temperature limit, obviously these values cannot. There-

fore Eq. (2.65) is exact for zero-temperature and our best guess for the positive-

temperature coefficients: it has the correct functional dependence upon the Boltz-
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mann weight and fourth-order master equation coefficients. At worst this is an

interpolation of the zero and high-temperature states.

2.4 Discussion

In this chapter we investigated the equilibrium states of open quantum systems

from dynamics / non-equilibrium point of view. We show that starting from a prod-

uct state (2.2) the open system which results from coarse graining the environment

will evolve to a late-time steady state. This state can be expressed as the reduced

state of the closed system thermal state at the temperature of the environment, i.e.

Eq. (2.4). This result is important when the system-environment coupling is not

negligible7, or alternatively, when relaxation rates are not insignificant in relation to

the system frequencies. In this case the stationary state of the system (2.4) differs

from the canonical Boltzmann state (2.3), although we have not focused on this

difference in this chapter (see Hilt et al. [93] for an example). One might argue that

this state is the closest one can get to thermalization in the strong coupling regime.8

However in this work we use the term equilibrium state for Eq. (2.4) and reserve

the term thermal state to the standard Boltzmann form (2.3).

Our proof is exact for the linear model and to second-order in interaction

7Based on the discussion of Fig. 2.2, we expect our results to be most relevant to small systems.
8Alternatively one could define this state to be the thermal state in the strong coupling regime.

However this state depends on the specifics of the reservoir and the coupling to the reservoir.

Hence it is not specified by the system parameters alone and referring to it as the thermal state

is, in our opinion, misleading.
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strength for nonlinear models. Moreover, for the exactly solvable linear case we prove

the equivalence of multi-time correlations. The issue of multi-time correlations in the

context of equilibration/thermalization seems to be mostly ignored in the literature.

We argue that multi-time correlations are important outside the Markovian regime,

as was pointed out in [94]. For instance, the relaxation of multi-time correlations

cannot be deduced from the relaxation of the reduced density matrix of the system,

neither can the explicit value of the multi-time correlations be derived from the

equilibrium state, if the dynamics is non-Markovian. In this respect our analysis of

the linear N-QBM model provides insight into equilibration phenomena beyond the

density matrix formalism.

An essential ingredient of our proofs is the continuum limit for the environ-

ment. For a finite environment the t → ∞ limit of the reduced state does not

exist within the formalism presented here and another ingredient is necessary to

ensure relaxation to equilibrium. Having classical molecular dynamics in mind [7],

we entertain the possibility that quantum chaos might be one avenue to explore [35].

On the other hand we can consider a large but finite environment. It can be

argued that for any relevant times t > 0 the effect of an infinite reservoir can be

approximated arbitrarily closely by a large but finite reservoir. Then equilibration is

observed for the time-interval between the relaxation time and the recurrence time.

Note that this interval is huge for a large environment, since the recurrence time

grows very rapidly with the number of degrees of freedom. As a result the system

stays close to its equilibrium most of the time. This interpretation helps us touch

base with the results of [36, 37, 76] where relaxation in finite systems is proven for
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time averaged quantities.

2.4.1 Comparison with recent literature

To put this work in developmental context, here we compare more specifically

our results to that of Linden et al. [36], Reimann [37], and Short and Ferrelly [76]9.

All these works have in common with us the set-up of a small system coupled to

a large environment and relaxation is achieved dynamically via time-evolution. A

major difference is the choice of initial conditions: they allow for any initial state,

which is spread over sufficiently many energies, whereas we restrict our environment

to be in a thermal state. In turn we can derive the form of the equilibrium state

explicitly.

Unlike what is done here these authors all make the assumption of non-

degenerate energy gaps (this assumption is relaxed to a certain degree in [76]) and

assume finite dimensional Hilbert spaces. The linear model we solved exactly here

has infinitely degenerate energy gaps and we considered a reservoir consisting of an

infinite number of degrees of freedom. Ref. [36] considers only pure states for the

closed system (in the spirit of [33, 34]). Finally they all define relaxation in terms

of time averaged quantities, i.e. systems behave as if they are in their steady state

most of the time. Ref. [76] also provides upper limit for the relaxation time.

The proofs of [36, 37, 75, 76] rely on the much greater dimensionality of the

Hilbert space of the environment compared to that of the system. The system +

9See Sec. 2.1.1 for the clarification of the different use of the term equilibration in the literature

and here.
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environment state is propagated as a whole using unitary dynamics. The fact that

the environment is large is utilized in the tracing out of the environment at the end

of time evolution. In this derivation the effect of the environment on the system

dynamics is not so easily accessible.

In our proof, the fact that the environment consists of a large number of

degrees of freedom manifests itself in the form of its decaying correlations. These

correlations in turn determine the non-unitary aspects of the open system dynamics.

We use this non-unitary open system dynamics to evolve the reduced state of the

system to its equilibrium state. In particular we do not refer to the state of the closed

system explicitly10. Our derivation is more in the idioms of open quantum systems

paradigm, where the influence of the environment on the system dynamics can be

continuously monitored and explicitly expressed (e.g., consistent back-reaction from

the environment is fully embodied in the influence functional [26]).

Relaxation is demonstrated in [36,37,76] for very general Hamiltonians, includ-

ing strong coupling between the system and the environment. In their derivation

the strong coupling regime does not present any extra difficulty. In the open sys-

tem approach we adopted in this dissertation strong coupling is difficult to handle.

On the other hand, as a benefit of our method we can describe the nature of the

equilibrium state, i.e. Eq. (2.4), besides proving its existence and uniqueness.

10Except for Sec. 2.2.5, where we do look at the individual environmental modes just to make

the point that the closed system (S + E) does not equilibrate.
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Chapter 3: Quantum fluctuation theorems

3.1 Introduction

Compared to equilibrium statistical physics, few theorems of generality are

established for nonequilibrium systems. Hence any valid statement with a broad

spectrum of implications and wide range of applications is of great value. The

fluctuation theorems of Jarzynski [11] and Crooks [14] in nonequilibrium statistical

mechanics are of such a nature and have stimulated intense research interest and

activities in the past decade and a half. Both theorems were already introduced

in Sec. 1.5.1 but we recite them here for convenience. The fluctuation theorem of

Jarzynski:

〈e−βW 〉 = e−β∆F . (3.1)

The fluctuation theorem of Crooks:

P (W )

P̃ (−W )
= eβ(W−∆F ). (3.2)

Fluctuation theorems were originally formulated for classical systems and their

derivation relied heavily on the concept of a phase space, wherein the system evo-

lution can be described as a trajectory. Quantities of interest for thermodynamical

considerations appearing in these theorems like work, heat, entropy etc. were given
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microscopic definitions based on trajectories. There are even detailed fluctuation

theorems about distributions of trajectories themselves [54,95,96].

In standard quantum mechanics, states are described by vectors living in a

Hilbert space. Observables, including the Hamiltonian, are associated with Hermi-

tian operators. Trajectories in phase space are not part of this description. 1 This

mismatch between classical mechanics and the standard formulation of quantum

mechanics hindered a straightforward derivation of quantum fluctuation theorems

based on the classical derivation. It is then natural to ask if FTs hold for quan-

tum systems, and if not, under what conditions would they fail, and whether there

exist quantum fluctuation theorems (QFTs) different in form and content from the

classical FTs. If this is not possible, can one identify corrections due to quantum

mechanical effects?

How to define work in quantum physics? In the derivation of fluctuation

theorems of Jarzynski and Crooks, henceforth referred to as FTs in short, the main

conceptual obstacle is how to make sense of work in a quantum setting. To begin

with, work is not an observable [97], and as such, treating it as a quantum mechanical

operator [98,99] is largely a computational convenience. Thus the foremost task is to

find a physically meaningful definition and an operationally feasible way to calculate

it. We will address this issue with a new approach described below.

Let us try to appreciate the content of this pivotal point. In classical mechanics

exclusive work [61] imparted to a system, say a particle, is defined as the integration

1Although the Wigner representation can cast quantum mechanics in a phase space picture,

this analogy is not perfect as argued in section 1.2.2.
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of applied force on the system with displacement along a path. The force is exerted

by an external agent which causes the system to move along a trajectory. Once one

knows the trajectory, work can be calculated, but the difficulty for quantum system

is that particles don’t follow trajectories, they are described by a wave function

which is a very different notion and entity from paths. The key challenge is to make

sense of trajectories in quantum physics. We mention several approaches below and

then present our own.

Closed versus open quantum system. If one restricts one’s attention to closed

quantum systems, i.e., isolated quantum systems having no interaction with any of

their environments, one can define work via two-time energy measurements discussed

in Sec. 1.5.2, and general agreement seems to be reached. However this is merely an

idealization of realistic physical systems which are more often open. The influence

of their environments which the systems of interest interact with need be accounted

for in the open system’s evolution. Even in the simplest cases when one talks

about temperature or refers to (equilibrium) thermodynamic quantities a heat bath

(canonical ensemble) or a particle reservoir (grand canonical ensemble) is implicitly

assumed, which are open-system setups.

Since for closed quantum systems fluctuation theorems can be easily derived,

one can think of the system + environment as a closed system and work out the

QFTs. This was done in [63, 100, 101]. However, this formulation has the innate

shortcoming that the work defined therein requires the energy measurement of the

combined system at two times while the FTs refer to the work done on the open

system of interest. This shortcoming is remedied in our treatment by adopting the
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open quantum systems approach. Before going into the details of our treatment we

give a brief account of the literature on FTs in open quantum systems (OQS).

Open quantum system fluctuation theorems in the literature. Using microscopic

models and open system dynamics several suggestions for trajectories have been

made. For example, De Roeck [102] used the unraveling of the open system master

equation and compared his results to that of the closed system approach. Deffner

et al. [103] used the quantum Smoluchowski equation (QSE), which was derived

from taking the high friction and high temperature limit in [104], as a starting

point. They considered the solution to the QSE in terms of classical path integrals

and interpreted these paths as trajectories. But these trajectories are difficult to

interpret physically, being more in the nature as devices (to help solve a differential

equation) than actual physical entities. By making the assumption that the reduced

dynamics of a driven open quantum subsystem is described by a quantum master

equation Esposito and Mukamel [105] recast its solution in a representation which

takes the form of a birth-death master equation (BDME) with time-dependent rates

and used it to define “quantum” trajectories. But these QSE and BDME, just as the

Pauli master equation, govern transition probabilities, are equivalent to a reduced

density matrix with only diagonal elements, and thus contain no quantum phase

information 2.

2This may be viewed as the completely decohered end product of a decoherent history or

environment-induced decoherence process (complete diagonalization of the reduced density matrix)

but as we shall explain in more detail below, it corresponds to the case of very strong noise acting

on the subsystem, which is possible for high temperatures, and thus it falls under the parameter

regime where the classical FTs are valid. In fact for Gaussian systems, the QFT derived under
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Alternatively Crooks [106] proved the Jarzynski equality by considering the

Markovian dynamics of a quantum system in the following setting: Instead of mea-

suring the system, generalized measurement superoperators were used to represent

measurements of heat flow. If the quantum environment is assumed to be large,

to have rapidly decohered and always remain at thermal equilibrium, plus being

uncorrelated and unentangled with the system, then the change in energy of the

bath can be measured without further disturbing the dynamics of the system.

Horowitz [107] adopted the strategy of Crooks to study a model similar to

ours: a one-dimensional forced harmonic oscillator weakly coupled to a thermal

reservoir. Unlike the QBM model, there the environment is engineered by weakly

coupling the harmonic oscillator to a sequence of two-level systems. The evolution of

the harmonic oscillator is monitored and the amount of energy exchanged with the

environment is inferred by measuring the state of each two-level system after its in-

teraction with the oscillator. Quantum trajectories are obtained from the stochastic

Schrödinger equation, which governs the evolution of the harmonic oscillator condi-

tioned on the measurement outcomes. Consistent trajectory-dependent definitions

are introduced for work, heat, and entropy and a detailed fluctuation theorem is

proven.

The treatment of [107] has the advantage of possible experimental realizations

in cavity quantum electrodynamics. Its validity is limited to weak coupling regime

and Markovian dynamics. The approach we develop in this chapter, on the other

hand, will allow us to go beyond the weak coupling regime and study non-Markovian

these conditions have exactly the same form as the classical FTs.
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effects as well. A correspondence between trajectories obtained from a stochastic

Schrödinger equation and those emerging within decoherent histories framework has

been established in Ref. [108,109].

In comparison with earlier work our approach is closest in spirit to that of

Chernyak and Mukamel [98]. However our methods (they use superoperators in

Liouville space) and interpretations (they use von Neumann’s wave function collapse

for quantum measurement) are different. We will detail the differences after we have

a chance to describe our approach.

3.1.1 Our approach and findings

For the sake of conciseness we just state what we do and name the ingredients

in our approach here, leaving more detailed explanations to the next section.

In this chapter we analyze the fluctuation theorems (FTs) using the exactly

solvable microscopic quantum Brownian motion (QBM) model of a quantum har-

monic oscillator coupled to a heat bath of NE quantum harmonic oscillators with

arbitrary spectral density function and for all temperatures (see Sec. 1.4 with NS = 1

for details). This is referred to as a “general” environment in [28] where an exact

master equation for these full ranges was obtained and where our discussions in the

application of this model to QFTs are based upon 3. The low temperature results

are of special interest for the derivation of QFTs since this is the regime where

3We advise against calling this a non-Markovian environment, because non-Markovian refers

to stochastic processes, not systems. Instead, use, e.g., colored noise environments, which can

engender non-Markovian dynamics in the open subsystem.
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deviations from the classical FTs might be observed.

Decoherent history approach to define trajectories for quantum systems.

We resort to the conceptual framework of decoherent [110] or consistent [111,

112] histories (dechis) and the key notion of decoherence for understanding the

process of quantum to classical transition. We believe this is the most faithful and

intuitive way of defining trajectories or explaining how they arise from quantum

mechanics. To be more precise, these trajectories are actually stochastic classical

paths in a quasi-classical domain as a result of decoherence in the histories. They

arise by the action of noise which is defined as variations in neighboring histories.

(For a succinct explanation of the first point see e.g., [111, 113] and [114] on the

second point.)

Environment-induced decoherence for explicit computations.

While the decoherent history paradigm is conceptually clear for explaining the

origin and mechanisms in the emergence of classical stochastic trajectories, it is less

versatile in actual computations. The environment-induced decoherence (envdec)

approach can be of more practical use. Here, the approximate diagonalization of

the reduced density matrix of the reduced or open system with respect to some basis

is used as a signifier of decoherence of the quantum system in transit to classicality,

whereby the notion of trajectory becomes viable. But which basis? This is the

physically relevant issue. The quantum system is more readily decohered in the

so-called “pointer basis” [115], which is affected by the form of interaction between

the system and its environment. Here, with an explicit environment specified, it

is easier to see how noise arises and its nature (colored, multiplicative [116]) than
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in the dechis approach. The connection between these two approaches is discussed

in [117]. An explicit model calculation (the QBM model) was given in the dechis

approach [118] where one can compare these two approaches in operational details.

Significance of stochastic regime between quantum and classical.

In reference to trajectories of quantum origin, we notably attach the word

“stochastic” to classical. This is because there is a stochastic component to them

after the quantum histories decohere. They are described by a probability distribu-

tion function. 4 Each such trajectory is a realization of this distribution. Taking the

stochastic average of an ensemble of such trajectories will yield the unique classical

path which is a solution of a deterministic classical equation of motion.

Decoherence is due to noise, quantum or thermal or both. In the envdec

scheme, one can see this explicitly from the stochastic equations governing the open

(reduced) system. Noise is responsible for quantum diffusion which brings forth de-

coherence. The stronger the noise, the more complete the decoherence process and

the more classical the trajectories. In fact for the QBM model there are two diffu-

sion terms: a normal diffusion dominates at high temperatures and an anomalous

diffusion which dominates at low temperature. The latter is what one should focus

on in marking the difference between the classical and the quantum FTs. Therefore

4 The stochastic component does not necessarily arise from the use of an ensemble. Even for a

pure state of the universe, there is a stochastic component to the decoherent set of histories due

to coarse graining which is related to the fact that the reduced state of a pure state is in general

mixed. This is a fundamental difference between classical and quantum mechanics regarding the

origin of probabilities in each theory.
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the behavior of a system in the stochastic regime actually holds the key to quantum-

classical transition or correspondence. It is particularly suitable for the exploration

of FTs in open systems as they are also cast in a stochastic framework in terms of

the probability distribution of work.

Our findings. In this chapter we present a first-principles analysis of the

nonequilibrium work distribution and the free energy difference of a quantum system

interacting with a general environment (with arbitrary spectral density and for all

temperatures) based on a well-understood micro-physics (quantum Brownian mo-

tion) model under the conditions stipulated by the Jarzynski equality and Crooks’

fluctuation theorem (FTs). We use the decoherent history conceptual framework

to explain how the notion of trajectories in a quantum system can be made viable

and use the environment-induced decoherence scheme to assess the strength of noise

which could provide sufficient decoherence to warrant the use of trajectories to de-

fine work in open quantum systems. From the solutions to the Langevin equation

governing the stochastic dynamics of such systems we were able to produce formal

expressions for these quantities entering in the FTs, and from them prove explic-

itly the validity of the FTs at the high temperature limit. At low temperatures

our general results could lead to the identification of a parameter range where FTs

may not hold or need to be expressed differently. We explain the relation between

classical and quantum FTs and the advantage of this micro-physics open-system

approach over the phenomenological modeling and energy-level calculations for sub-

stitute closed quantum systems.
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3.2 Key points and main ideas

We are seeking a derivation of quantum fluctuation theorems in nonequilibrium

physics by applying concepts and practices in quantum foundation and measurement

theory via decoherent histories and environment-induced decoherence with its ensu-

ing classical stochastic equations. Classical and quantum fluctuation theorems have

been introduced in Sec. 1.5.1 and Sec. 1.5.2, respectively. In this chapter we will

present our formulation of quantum fluctuation theorems in terms of trajectories.

To understand how trajectories can emerge in quantum mechanics we review the

decoherent histories and environment-induced decoherence approaches to quantum-

classical transition. For good reviews on this subject we mention [111,112,119].

3.2.1 Trajectories in classical mechanics

Consider a classical harmonic oscillator, without a bath. Initial position and

momentum of the oscillator are sampled from the thermal phase space density. The

rest of the trajectory is entirely determined by the protocol of how the external

force is applied. Work is calculated using this deterministic trajectory according to

eq.(1.48). However, deterministic trajectory is strictly a classical notion and cannot

be applied to a general quantum mechanical system. A state that is sampled from

the thermal density matrix in general does not have a well-defined position and

momentum. Furthermore, the time evolution usually causes the wavefunction to

spread further. We cannot talk about the quantum oscillator being at one point in

space, having a certain velocity, and moving in a deterministic continuous trajectory
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as a function of time.

Next consider the same classical model with a heat bath. For each realization

of the protocol, the initial data for both the system oscillator and the bath are

sampled from the initial phase space density. The initial data for the bath determines

the noise for that particular realization. The system oscillator follows a trajectory

determined by a combined action of the deterministic force f(t) and the stochastic

force ξ(t). Although the noise is stochastic, each realization of the experiment

corresponds to a unique noise and hence a unique trajectory. The definition of work

in terms of trajectories is unaffected.

It is a simple yet subtle and deep point how the interaction with a bath would

help to define a trajectory for a quantum particle. To understand this conceptually

we adopt the decoherent or consistent histories viewpoint of quantum mechanics as

described below.

3.2.2 Trajectories in quantum mechanics

Trajectories which are well-defined in classical mechanics are generally ill de-

fined in quantum mechanics except under certain conditions. We shall spell out

these conditions here. Let us begin with something simple, such as a quantum par-

ticle in motion. In a closed quantum system S, namely, a system subjected to no

outside (environmental) influence except for its own quantum fluctuations, the clos-

est entity to its “trajectory” is a wave packet moving with a certain group velocity

but which also spreads in time due to the Heisenberg uncertainty relation between
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the variance of the canonical variables, position and momentum in this case. The

same system at a finite temperature is no longer closed because for it to exist at

finite temperature it must be or have been in contact with a source with energy

exchange or a bath B. The influence of the environment E (we call an E a bath

B if it is infinitely large and is described by a thermal density matrix with inverse

temperature β) has complicated and interesting consequences. This is the subject

of open quantum systems.

There are at least two major effects an environment brings in “opening up”

a closed quantum system: a) it turns the original Hamiltonian (unitary) dynamics

to dissipative (nonunitary) dynamics – this refers to energy flow from the system to

the environment, b) fluctuations in the environment decoheres the quantum system

– this refers to quantum phases of the system being dispersed into the environ-

mental variables. The latter is responsible for shaping the notion of trajectories in

quantum system and there are precise conditions pertaining to the features of the

environment (e.g. high temperature) whereby they become physically well-defined

in a measurement. One way is to construct the reduced density matrix of the open

quantum system and look at whether and how quickly its off-diagonal elements de-

cay in time, leaving the system’s statistical state describable by an approximately

diagonal density matrix with respect to some physically meaningful basis (related

to measurement instruments and interaction, such as Zurek’s “pointer basis” [115]).

This time, called decoherence time, marks the appearance of classical features, be-

cause after it is effectively decohered this open system is adequately described by

probabilities rather than amplitudes, its quantum phase information is lost (more
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accurately, dispersed into or shared by the multitude of environmental degrees of

freedom). This process is captured by the stochastic equations, the most common

forms are the master equation, the Langevin and the Fokker-Planck equations.

What distinguishes these equations is the presence of noise or fluctuations in

the environment, and dissipative dynamics of the open (reduced) system, depicting

the two distinct features of open system dynamics. In general two kinds of noise

exist in any quantum system, the intrinsic quantum noise entering in the Heisenberg

relation which exists for all systems including closed ones, and noise from a finite

temperature bath 5. Both contribute to decohering a quantum system, although the

thermal noise usually dominates at high temperatures.

There are many ways to characterize a quantum system as approaching its

classical limit. The familiar cases are the correspondence principle, the Bohr-

Sommerfeld rules in quantum mechanics, the description of Maxwell-Boltzmann

distribution as limits of the Fermi-Dirac and the Bose-Einstein distributions, or

the more simplistic h → 0 or “at high temperature” stipulations. One can show

that the coherent state is the “most classical” of quantum states [120]. One can

derive an uncertainty function at finite temperature [121] or equivalently calculate

the entropy function and be able to demarcate the transition from the quantum

noise- dominated regime to the thermal noise- dominated regime. There have been

significant advances in the last two decades in our understanding of the quantum

5The noise due to bath itself has two components: one due to intrinsic quantum fluctuations

in the bath, which are present even at zero temperature, and the other due to regular thermal

fluctuations.
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classical correspondence (see e.g., [122]). Decoherence is at the heart of the quan-

tum to classical transition issue, and the main cause of it is noise of all forms, either

in the fluctuations of the environment or in the separation of neighboring coarse

grained histories, and in the precision of the measurement devices and procedures

(see Sec. 3.3.1 for details). We will use the decoherent or consistent history [110–112]

viewpoint for conceptual clarity, especially pertaining to the issue of trajectories but

adopt the environment-induced decoherence (envdec) scheme for computations, as

it is technically easier to manipulate.

3.2.2.1 Decoherence Functional in Dechis and Influence Functional

in Envdec

The main idea of dechis approach is to define a history α by a set of projection

operators Pα(tk) acting at times tk. As a special case we consider projections in

position basis. These kind of histories are naturally implemented in the path integral

approach. The projectors are represented by window functions wα [x(tk)], which

take on unit value if the instantaneous configuration satisfies the requirement of the

history α, and vanish otherwise. As a limiting case we mention a fine-grained history,

for which the path is specified exactly at all times and is assigned an amplitude

exp(ıS/~) as usual. It is useful to define the decoherence functional of two histories
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α and α̃ by [114]:

D[α, α̃] =

∫
DxDyei(S[x]−S[y])/~ρ(x(ti), y(ti); ti)

{∏
k

wα[y(tk)]

}{∏
l

wα̃[x(tl)]

}
.

(3.3)

Figure 3.1: Depiction of a pair of paths in Eq. (3.3). Note that the paths have the

endpoints at tf common as required by the trace function.

The product over k and l can be discrete or continuous as is the case in Section

(3.3.1). The probability of a given history α is given by the diagonal element of the

decoherence functional: P [α] = D[α, α]. For classical trajectories it is required that

the probability of a coarse grained history to be the sum of its constituents. For

an arbitrary set of histories quantum interference effects lead to a violation of the

probability sum rule: P [α∨ α̃] = D[α, α] +D[α̃, α̃] + 2ReD[α, α̃] 6= P[α] + P[α̃]. If a

set of histories can be identified for which the real part of the off-diagonal elements of

the decoherence functional vanishes (or are much smaller than the diagonal elements

for approximate decoherence) for all pairs of trajectories α, α̃ in the set, probabilities

can be assigned to individual histories. The challenge is to identify the conditions

under which, and to what extent, the decoherence condition is satisfied.
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Technically the environment-induced decoherence (envdec) program is easier

to implement, the relation between these two programs are explained or illustrated

in [117, 118]. This is what we will do by way of the QBM model presented in

the next section. We will argue that for histories obtained by coarse graining the

environment sufficiently, and the system of interest to some extent (determined by

the strength of noise), an approximate decoherence condition can be satisfied to the

desired degree. At the other end, if quantum interference between particle histories

continues to play a dominant role, decoherence is not consummated, the classical

world is not reached and the concept of trajectories is ill-defined.

The quantum open system formulation, via the influence functional, provides

one with a clear perspective in the organic relation between the processes of fluctu-

ations / noise, correlation, decoherence and dissipation and how they enter in the

transition from the quantum to the classical world with the intermediate stochastic

and semiclassical regimes. While it is useful to explain this with the aid of stochas-

tic equations which we will derive below, the key idea can be put succinctly: The

stronger the effect of noise in the environment, the more efficiently it decoheres the

quantum system and the clearer the classical notion of trajectory can be defined and

used for the description of a quantum particle. The important new understanding

is the existence of a stochastic regime between the quantum and the classical, and

how quantum features are expressed in terms of classical stochastic variables 6.

6A famous case is the transcription of Gaussian quantum fluctuations in the environment as

classical noise via the Feynman-Vernon identity [26].

85



3.2.2.2 Worldline Influence Functional Formalism

Thus far we learned that the decoherence of a quantum system due to the

noise arising from a coarse grained environment is instrumental to the emergence of a

classical world. How strongly the system is coupled to its environment(s), the nature

of the noise from the environment and its temperature all enter in determining how

completely the system is decohered, and there is always a stochastic component in

the open system’s dynamics governed by a Langevin equation or its (near) equivalent

master or Fokker-Planck equations. Almost complete decoherence is a necessary

condition for a classical description which, in this context, is what trajectories are

predicated upon. Under this condition a powerful approach called the worldline

(WL) influence functional (IF) formalism has been used effectively for more than

two decades in nuclear / particle physics communities, see e.g., [123]. We shall only

mention its key features so as to bring out its relevance to the present problem but

skip all the details.

The influence functional technique of Feynman and Vernon [26], or the closely

related closed-time-path effective action method of Schwinger [124] and Keldysh

[125] are initial value (in-in) formulations which are particularly suitable for explor-

ing the time evolution of many-body systems, unlike the S-matrix (in-out) formu-

lation used for calculating scattering processes. In general this yields a nonlocal

and nonlinear coarse grained effective action (CGEA) for the system’s motion. The

CGEA may be used to treat the nonequilibrium quantum dynamics of interacting

particles. Take for example the QBM model: When the particle trajectory becomes
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largely well-defined as a result of effective decoherence due to interactions with the

environment, with some degree of stochasticity caused by noise, the CGEA can be

meaningfully transcribed into a stochastic effective action, describing stochastic par-

ticle motion. The evolution propagator for the reduced density matrix of the open

system is dominated by the particle trajectory given by the extremal solution of the

real part of the CGEA. Stochastic fluctuations around the decohered semiclassical

trajectories are described by the imaginary part of the CGEA. For further technical

details, see [126,127].

When the back-action of the environment is taken into account the dynamics

of the open system will in general be non-Markovian as it contains memories, and

the noise in the environment is generally colored, as it contains many time scales

characterized by its spectral density and vary with temperature. Dissipation in the

open system dynamics is controlled and balanced by the noise in the environment

as manifested in the existence of fluctuation-dissipation relations between these two

sectors. What is more important, because the influence action includes the back-

action of the environment in a self-consistent manner, the worldline is not merely

a prescribed classical entity, or a simple solution to an equation of motion at the

tree level (in truth, with an ever-present stochastic component), but rather, a dy-

namical one, as the result of constant negotiation between the open system and its

environments at all times. This is the special beauty of the IF method.
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3.3 The QBM model

QBM model has been analyzed in Sec. 1.4 using the Wigner representation.

In this section we provide an alternative derivation of the dynamics of the Wigner

function due to [94] partly because of its elegance but also because of the importance

of the techniques used in this derivation. Here the density matrix is propagated using

configuration space path integrals and the back-action of the environment is encoded

in the influence functional. Techniques similar to those used in this section are also

used to derive the explicit form of the decoherence functional (3.20).

A closed quantum system can be partitioned into several subsystems according

to the relevant physical scales. If one is interested in the details of one such sub-

system, call it the distinguished, or relevant system, which interacts with the other

subsystems comprising the environment, the details of which are not of interest, one

can coarse grain the information in the environment but keep its overall influence on

the distinguished subsystem of interest, thereby rendering it an open system. This

influence is best captured by the influence functional technique of Feynman and

Vernon [26] which we use here. We consider the QBM model with a time dependent

external driving force f(t):

HS =
P 2

2M
+

1

2
MΩ2X2 − f(t)X, (3.4)

Note that we did not use bold symbols for the position and momentum operators

as well as mass and coupling constants above as opposed to Chapters 1 and 2. This

is to emphasize the fact that for NS = 1, regular QBM model, these operators are
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not vectors and the constants are not matrices. This convention will be used in this

chapter and the next.

The renormalization of the potential is the one shown in Eq. (1.22), which

preserves the physical (observed) frequency of the system oscillator for any system-

bath coupling. Moreover, without the renormalization term the potential might

have no minimum and the thermal state might become ill-defined.

The combined system being closed, the Hamiltonian HC gives rise to unitary

evolution, its density operator ρC obeys the von-Neumann equation (1.3). However

what we are interested in is how the system S behaves under the influence of its

environment, in this case a heat bath B at temperature 1/β. The state of the open

system at any one time is completely specified by the reduced density matrix ρS

defined in (1.17), which is obtained from the density matrix of the combined system

by integrating out the bath degrees of freedom.

Because it incorporates the back-action of the environment the time evolution

of the reduced density matrix of the open system is nonunitary and in general

non-Markovian. The reduced density matrix of the system oscillator in position

representation at tf can be obtained from the reduced density matrix at some earlier

time ti via [128]:

ρS(xf , x
′
f , tf ) =

∫
dxidx

′
iJ(xf , x

′
f , tf ;xi, x

′
i, ti)ρS(xi, x

′
i, ti), (3.5)

where J is the propagator. If the system and the bath are initially uncorrelated and

the bath is in a Gaussian state the propagator J can be calculated exactly:

J(xf , x
′
f , tf ;xi, x

′
i, ti) =

∫ x(tf )=xf

x(ti)=xi

Dx

∫ x′(tf )=x′f

x′(ti)=x′i

Dx′e
ı
~ (SS[x]−SS[x′]+SIF[x,x′]). (3.6)
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Above
∫
Dx denotes Feynman’s configuration space path integral. Now introduce

the following notation: for functions A(s), B(s) and kernel K(s, s′) define

A ·K ·B ≡
∫ tf

ti

ds

∫ tf

ti

ds′A(s)K(s, s′)B(s′). (3.7)

In terms of the new variables the exponent appearing in Eq.(3.6) can be written as:

SS[x]− SS[x′] = −MẊ(tf )yf +MẊ(ti)yi + y · (L0 ·X − f), (3.8)

SIF[x, x′] = −y · µ ·X +
ı

2
y · ν · y, (3.9)

where L0(t, t′) = M( d
2

dt2
+ Ω2)δ(t − t′) and SS[x] is the action associated with the

trajectory x and the system Lagrangian. The kernels µ(s, s′) and ν(s, s′) are the

dissipation and noise kernels, respectively. The former has been defined in (1.34)

and the latter for a thermal environment in (2.5).

In the equivalent description in terms of the Wigner function one defines a

reduced Wigner functionWS in terms of the reduced density matrix formally in the

same way as in Eq. (1.7). Using Eqs.(1.7-3.6) it can be shown that the reduced

Wigner function evolves from time ti to a later time tf via

WS(Xf , Pf , tf ) =
1

2π~

∫
dyfe

ı
~Pfyf

∫
dxidx

′
i

∫ x(tf )=Xf−yf/2

x(ti)=xi

Dx

∫ x′(tf )=Xf+yf/2

x′(ti)=x′i

Dx′

× e
ı
~ (SS[x]−SS[x′]+SIF[x,x′])

∫
dpie

− ı
~Pi(x

′
i−xi)WS(

xi + x′i
2

, Pi, ti). (3.10)

First we perform a functional change of variables from the variables x(t), x′(t) to

X(t) = (x′(t) + x(t))/2, y(t) = x′(t) − x(t). We also perform a regular change of

variables from xi, x
′
i to Xi = (x′i − xi)/2, yi = x′i − xi. The Jacobian determinant

for both change of variables is one. Then we use eqs.(3.8,3.9) and define L = L0−µ
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to obtain:

WS(Xf , Pf , tf ) =

∫
dXi

∫
dPiWS(Xi, Pi, ti)

1

2π~

∫
dyfe

ı
~Pfyf

∫
dyie

− ı
~Piyi

×
∫ y(tf )=yf

y(ti)=yi

Dy

∫ X(tf )=Xf

X(ti)=Xi

DXe
ı
~(−MẊ(tf )yf+MẊ(ti)yi+y·(L·X−f)− 1

2
y·ν·y).

(3.11)

The functional integral over y is Gaussian and can be evaluated formally to give:

∫ y(tf )=yf

y(ti)=yi

Dye
ı
~ (y·(L·X−f)− 1

2
y·ν·y) =

√
1

det(ν/2π~)
e−

1
2~ (L·X−f)T ·ν−1·(L·X−f). (3.12)

For the type of noise kernels displayed in Eq. (2.5) the outcome of this functional

integral is independent of the endpoints yi and yf , irrespective of the distribution

of bath frequencies. As a result the integral over yi and yf is trivial and gives

(2π~)2δ(MẊ(ti)− pi)δ(MẊ(tf )− pf ). We have

WS(Xf , Pf , tf ) =
2π~√

det(ν/2π~)

∫
dXi

∫
dPiWS(Xi, Pi, ti) (3.13)

×
∫ X(tf )=Xf

X(ti)=Xi

DX(2π~)2δ(MẊ(ti)− Pi)δ(MẊ(tf )− Pf )e−
1
2

(L·X−f)T ·ν−1·(L·X−f).

Next we do another functional change from X(t) to ξ(t) where

X(t)→ {Xi = X(ti), Pi = MẊ(ti), ξ(t) = (L ·X − f)(t)}. (3.14)

For linear change of variables the Jacobian functional determinant is independent

of ξ. To ensure that the boundary condition at tf is satisfied, we need to place a

delta function inside the new path integral. The net effect of the functional change

of variables is:

∫ X(tf )=Xf

X(ti)=Xi

DXδ(MẊ(ti)− Pi)→
∫
Dξδ(Xξ(tf )−Xf ), (3.15)
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where Xξ(t) is the solution of the Langevin equation (L ·Xξ)(t) = f(t) + ξ(t) with

the initial conditions (Xi, Pi). After this functional change we obtain:

WS(Xf , Pf , tf ) =

∫
dXi

∫
dPiWS(Xi, Pi, ti)

×
∫

Dξ√
det(2π~ν)

e−
1
2
ξT ·ν−1·ξδ(MẊξ(tf )− Pf )δ(Xξ(tf )−Xf )

≡
∫
dXi

∫
dPiWr(Xi, Pi, ti)

∫
DξPξ[ξ]

× δ(MẊξ(tf )− Pf )δ(Xξ(tf )−Xf )

=
〈
δ(MẊξ(tf )− Pf )δ(Xξ(tf )−Xf )

〉
(Xi,Pi),ξ

. (3.16)

Here ξ(t) is a random noise with Gaussian statistics and is characterized by its mean

and variance:

〈ξ(t)〉ξ = 0. (3.17)

〈ξ(t)ξ(t′)〉ξ = ν(t, t′). (3.18)

Furthermore since the system and bath are assumed to be uncorrelated initially:

〈Xiξ(t)〉ξ = 〈piξ(t)〉ξ = 0. (3.19)

For the sake of brevity we will drop the subscript ξ on the angular brackets as well

as in Xξ in the rest of this chapter. These properties of the random noise are direct

consequences of the fact that the environment is composed of harmonic oscillators

and that it is initially in a thermal state. Eq.(3.16) has a clear interpretation. The

dynamics of the reduced Wigner function is identical to the dynamics of the phase

space density of a stochastic classical system described by the Langevin equation
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(L ·X)(t) = f(t) + ξ(t). This conclusion is of course the same as the one obtained

in Sec. 1.4 using a completely different approach.

As argued in [94] the Langevin equation provides a more detailed description

of the dynamics than the master and Fokker-Plank equations, in the sense that the

class of quantum correlation functions which may be retrieved from the Langevin

equation is larger than the corresponding class for the master or Fokker-Planck

equations unless the dynamics is Markovian. Work as defined in Eq.(3.29) is an

example of this kind of quantity, since its statistics requires the calculation of multi-

time correlations. The non-triviality of multi-time correlations for non-Markovian

dynamics has been emphasized in Chapter 2.

It is important to realize that this method gives exact quantum mechanical

results at any parameter regime, including arbitrarily low temperatures. The fact

that solutions X(t) of a classical Langevin equation are used in eq.(3.16) should not

be conjured as having made a semiclassical approximation as was done in e.g. [98].

The effect of environment-induced decoherence at work which validates the

notion of a physical trajectory is implicitly contained in this method (depending on

the temperature of the bath and its spectral density), not extrinsically introduced

by hand. Since these processes are dynamically and self-consistently determined,

no semiclassical approximation has been made specifically in the derivation. The

real challenge is in the interpretation of the physical variables in light of quantum

measurement theory, as we discussed previously. In the following section we discuss

under what conditions physical trajectories emerge from the dechis formalism.
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3.3.1 Decoherence Functional

We consider histories where the system variable X(t) is specified to follow

a trajectory χ(t) with a given precision σ(t), while the environment variables are

left completely unspecified. For technical reasons it is convenient to use Gaussian,

rather than sharp, window functions wχ[x(·)]. In the path integral this roughly

corresponds to using exp
{
−
∫
dt (x(t)−χ(t))2

2σ2(t)

}
in eq.(3.3). Furthermore we introduce

window functions at every instance of time rather than at discrete time intervals.

The set of Gaussian window functions with this property acts as a noise term in

the influence action. This can be seen in eq.(3.20) where the noise kernel always

occurs in the combination ν + (2σ2)−1. There is some error introduced due to

the overlap of projectors defined as above. As a result we will be talking about

approximate decoherence. In addressing the diagonal and off-diagonal elements of

the decoherence functional it is convenient to define U = (χ′+χ)/2 and u = χ′−χ.

In [74] it is shown that the decoherence functional for two histories χ(t) and χ′(t)

defined via these projectors is approximately given by:

|D[U − u/2, U + u/2]| ∼ (3.20)

exp

{
−1

2
(L · U)T · (ν + (2σ2)−1)−1 · (L · U)− 1

2
u · (ν−1 + 2σ2)−1 · u

}
.

Here we again used the compact notation defined in (3.7). The off-diagonal elements

vanish as a Gaussian for u &
√
ν−1 + 2σ2. Hence an approximately consistent set

of histories can be obtained by picking histories that differ by at least this amount.

However, if the Langevin noise is weak such that ν−1 � σ2, we run into trouble.
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Because now the decoherence condition requires u &
√
ν−1 � σ. Histories of

precision σ in a set do not interfere with each other only if they are separated

by a distance much larger than σ. This suggests that we cannot account for all

probabilities within such a set.

We conclude that the precision should be adjusted to the noise level by:

σ2 ∼ ν−1. Then the decoherence condition requires that u & σ. Now we can

have a set of histories which decohere approximately and for which the resulting

probabilities add up to one. “A picture of the system evolution based on actual

nearly-classical trajectories may only result from a compromise whereby the preci-

sion of observations is adjusted to the noise level, σ2 ∼ ν−1, where σ is the precision

at which the trajectories are defined. Larger noise for a given σ means more decoher-

ence but less predictability; for a weaker noise, predictability is only limited by the

Heisenberg bounds, but individual trajectories will not decohere.7 If we are satis-

fied with predictability within the limits imposed by the Langevin equation, then in

the strong noise limit we may consider individual trajectories as depicting physical

reality.” 8 This condition is ordinarily satisfied at temperatures high enough that

the quantum and classical trajectories agree, even for non-Markovian dynamics, as

we will see below.

For a given precision σ the higher the temperature, the stronger the noise and

the more effectively it brings about decohering histories into trajectories. Thus, even

at moderate temperatures and for relatively weak noise, by judicious choices of the

7We will continue the exploration of this regime in future work.
8Quotation is from [74], p. 89.
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coarse graining measure σ, decoherence can be effective enough to warrant the notion

of trajectories. It is in this regime that deviations from FTs can be identified using

this method. At even lower temperatures no reasonable set of histories decohere and

the notion of trajectories lacking, we cannot say the FTs are violated (even though

it appears reasonable to doubt their validity) because the contents of FTs may be

phrased without invoking trajectories. For completeness of technical presentation,

we provide a low temperature expansion in section (3.5.1.2).

3.4 Solutions of the Langevin Equation

We rewrite the Langevin equation (L ·X)(t) = f(t)+ξ(t) (also given by (1.33)

but this time including the external force f(t) and allowing for arbitrary initial time

ti):

MẌ(t) + 2

∫ t

ti

dsγ(t− s)Ẋ(s) +MΩ2X(t) = f(t)− 2γ(t− ti)X(ti) + ξ(t), (3.21)

Note that we have placed the “slip-term” 2γ(t − ti)Xi to the right hand side of

the equality contrary to what we did in (1.33). A formal solution of the Langevin

equation without the external force f(t) has been obtained in Sec. 1.4.2.1. The

effect of the external force can be incorporated trivially. But, for technical reasons

we will use a slightly different solution in this chapter and the next. The difference

is due to the interpretation of the “slip-term” as a driving force as opposed to being

part of the homogenous equation, as indicated by being placed to the right of the

equality sign in (3.21). Let us call the two linearly independent homogenous (with
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respect to (3.21)) solutions K(t) and G(t) such that:

K(0) = MĠ(0) = 1; K̇(0) = G(0) = 0. (3.22)

The formal solution of the Langevin equation is then:

X(t) = X(ti)K(t−ti)+P (ti)G(t−ti)+
∫ t

ti

dt′G(t−t′) [f(t′)− 2X(ti)γ(t′ − ti) + ξ(t)] .

(3.23)

K(t) and G(t) can be calculated using the Laplace transforms:

K̂(z) =
2γ̂(z)/M + z

z2 + 2zγ̂(z)/M + Ω2
, Ĝ(z) =

1/M

z2 + 2zγ̂(z)/M + Ω2
. (3.24)

Note that K(t) differs from Ġ(t)M (which is the second homogenous solution in

Sec. 1.4.2.1) whereas G(t) stays the same since the “slip-term” vanishes for the

initial conditions G(0) = 0. Eq. (3.24) shows the relation between the two linearly

independent homogenous solutions:

sK̂(s) = 1−MΩ2Ĝ(s), sMĜ(s) = K̂(s)− 2γ̂(s)Ĝ(s),

K̇(t) = −MΩ2G(t), MĠ(t) = K(t)− 2

∫ t

0

dsγ(t− s)G(s). (3.25)

3.4.1 Initial State Preparation

The derivation of classical mechanical FTs for closed systems requires the

closed system to be in a thermal state initially. As pointed out earlier our derivation

of the Langevin equation (3.21) assumes an uncorrelated initial state in which the

bath is in the thermal state of its own Hamiltonian HE. Such a state is obviously

not the thermal state of the combined system and it is not stationary for any choice
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of the system’s initial state. For this reason the uncorrelated initial state is not

appropriate for applications to FTs. This observation is valid even for the classical

Brownian motion model and is therefore not due to a quantum mechanical effect.

Assume that the bath oscillator frequencies form a continuum. It is customary

to define the spectral density of the bath as

J(ω) ≡
∑
n

g2
n

2mnωn
δ(ω − ωn) (3.26)

and interpret J(ω) as a continuous function. Here gn denotes the coupling constant

to the n’th bath oscillator with mass mn and frequency ωn. As long as the spectral

density is non-vanishing near the system frequency the resulting Langevin dynamics

is truly dissipative, in the sense that limt→∞G(t), γ(t) = 0. Physically, true dissi-

pation corresponds to a positive average heat rate at all times. If the spectrum of

bath frequencies is discrete, the resulting damping kernel is oscillatory. This is the

case even for an infinite but countable number of discrete frequencies. As a result

after some (possibly very long) time, there may be average heat flow from the bath

into the system. By true dissipation we mean a definite arrow of time for all times.

Under these assumptions it has been shown in Chapter 2 that if the uncorrelated

initial state is prepared at the infinite past, for times t > 0 the dynamics of the

system oscillator is indistinguishable from that of a combined system + bath ther-

mal state preparation. In other words the effect of a thermal initial state can be

achieved by allowing the uncorrelated system to equilibrate for an infinite amount

of time. At t=0 the system density matrix is Gaussian. Means and variances of

position and momentum are equal to those of the combined thermal state of QBM
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given in [30]:

σxx =
1

Mβ

∞∑
r=−∞

1

Ω2 + ν2
r + 2νrγ̂(νr)/M

(3.27)

σpp =
M

β

∞∑
r=−∞

Ω2 + 2νrγ̂(νr)/M

Ω2 + ν2
r + 2νrγ̂(νr)/M

(3.28)

where νr = 2πr/~β are the bosonic Matsubara frequencies These variances differ

from those corresponding to a Boltzmann distribution with respect to the system

Hamiltonian alone. The differences start at second-order in the coupling strength

between the system and the bath. In the literature ignoring these differences is

sometimes referred to as the weak coupling approximation. The results of this chapter

do not depend upon the weak coupling approximation in this sense.

It is worth emphasizing that the equivalence of ensemble preparations is not

just on the level of reduced density matrices, which can give only single-time correla-

tions for general non-Markovian dynamics. FTs require multi-time correlations and

equivalence of preperations at this level has been shown by proving the equivalence

of corresponding trajectories for t > 0. This means that any quantum mechanical

correlation function involving only the open system variables and times larger than

zero will be identical in both preparations.

As a result the trajectories we obtained in the previous section can be used

to describe a thermal state as long as we take ti → −∞ and assume a continuous

spectrum for the bath frequencies which does not vanish near the system frequency.

The thermal state preparation procedure is as follows: at the infinite past the system

and bath are in a product state: the bath is in the thermal state, and the system is

in an arbitrary state. The combined system evolves in time under the Hamiltonian
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(1.16) with HS given by (3.4) with f(t) = f(0) for t < 0. At t = 0 the force protocol

is started as usual. Although the formulation of FTs is independent of the value of

f after t = τ , it proves convenient to define f(t) = f(τ) for t > τ .

3.5 Probability Distribution of Work and the FTs

With these conceptual and technical preparations, we now can define work

performed on the system in the time interval [0, τ ] in the QBM model using the

trajectories given by the solutions of the Langevin equation (3.23) as:

W =

∫ τ

0

dt
∂HC

∂t
= −

∫ τ

0

dtḟ(t)X(t) = −
∫ ∞
−∞

dtḟ(t)X(t) ≡ −ḟT ·X, (3.29)

where the superscript T stands for transpose. In the last equality we utilized the

notation of Eq.(3.7), and the integration limits have been set to plus and minus

infinity. This change does not introduce any error since ḟ(t) vanishes outside the

interval (0, τ) due to the extended definition given at the end of the previous section.

We will adopt this convention about integration limits for the rest of the chapter.

We define the retarded Green’s function as Gret(t − t′) = G(t − t′)θ(t − t′).

Then for positive times:

X(t) = [Gret · f ](t) + [Gret · ξ](t), (3.30)

〈X(t)〉 = [Gret · f ](t), (3.31)

σxx(t, t
′) ≡ 〈X(t)X(t′)〉 − 〈X(t)〉 〈X(t′)〉 = [Gret · ν ·GT

ret](t, t
′), (3.32)

W = −ḟT ·Gret · f − ḟT ·Gret · ξ. (3.33)

That σxx(t, t
′) is a function of t− t′ only will be verified explicitly later.
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Work defined in Eq.(3.33) is linear in ξ(t) and ξ(t) is a Gaussian random

process. Thus, W itself is a Gaussian random variable. As a result the first two

moments of W specify its entire statistics given by:

P (W ) =
1√

2πσ2
W

e−(W−〈W 〉)2/2σ2
W . (3.34)

The mean of work is given by:

〈W 〉 = −ḟT ·Gret · f. (3.35)

Integrating this by parts and defining ∆F = −(f(τ)2 − f(0)2)/2MΩ2 we get:

〈W 〉 = ∆F +
ḟT ·Ke · ḟ

2MΩ2
, (3.36)

where we have defined Ke(t, t
′) ≡ K(|t−t′|) and used the symmetry of the integrand.

The standard deviation of work is calculated as:

σ2
W =

〈
W 2
〉
− 〈W 〉2 = ḟT · σxx · ḟ . (3.37)

The Jarzynski equality states that:

〈
e−βW

〉
=

∫
dWP(W )e−βW = e−β(〈W 〉−βσ

2
W /2) = e−β∆FC , (3.38)

where ∆FC is the difference in free energy of the combined system for two different

values of the external force f calculated quantum mechanically. Due to the linearity

of the QBM model ∆FC has the same form as ∆F defined earlier, which is the

classical result. Note that this is only true for the difference of the free energies,

since the quantum and classical free energies themselves are different even for the

simple harmonic oscillator. The quantum mechanical free energy in the case of f = 0
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is given by:

FC = FE −
1

β
log

(
1

β~Ω

∞∏
r=−∞

ν2
r

Ω2 + ν2
r + 2νrγ̂(νr)/M

)
(3.39)

where FE is the free energy of the isolated bath. The corresponding free energy in

the classical model is simply the sum of the free energies of the isolated system and

bath. The equality of the difference of free energies due to a driving force in classical

and quantum mechanics can be understood easily by noting that the main effect of

the linear driving force is to shift the energy levels.

As a consequence Jarzynski equality is satisfied if and only if:

ḟ · σxx · ḟ =
ḟ ·Ke · ḟ
βMΩ2

. (3.40)

Note that this equality should hold for any ḟ(t). This condition can be stated

mathematically as

δ

δḟ(s)

∫ tf

0

dt

∫ tf

0

dt′ḟ(t)

[
K(|t− t′|)
βMΩ2

− σxx(t− t′)
]
ḟ(t′) = 0, (3.41)∫ tf

0

dtḟ(t)

[
K(|t− s|)
βMΩ2

− σxx(t− s)
]

= 0. (3.42)

This equation should also be valid for any ḟ(t). Differentiating one more time with

respect to ḟ(s′) we get the condition:

σxx(s− s′) =
K(|s− s′|)
βMΩ2

. (3.43)

For Crooks’s fluctuation theorem we need to consider the reverse process which

corresponds to a reversed force protocol and an initial state with the force value f(τ).

We will use a subscript R for the quantities associated with the reversed process
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and no subscript for forward process.

fR(t) = f(τ − t); ∆FR = −∆F. (3.44)

The corresponding work distribution is again specified by its first two moments,

which can be shown to be:

〈W 〉R = 〈W 〉 − 2∆F, (3.45)

(σ2
W )R = σ2

W .

Note that the standard deviation of work is the same for the forward and reverse

protocols. The probability distribution of work in the reversed process is given by:

PR(W ) =
1√

2π(σ2
W )R

e−(W−〈W 〉R)2/2(σ2
W )R =

1√
2πσ2

W

e−(W−(〈W 〉−2∆F ))2/2σ2
W . (3.46)

Consider the ratio:

PF (W )

PR(−W )
= e

(〈W 〉−∆F )

βσ2
W
/2

β(W−∆F )
. (3.47)

Crooks’s fluctuation theorem is satisfied if

〈W 〉 −∆F = βσ2
W/2. (3.48)

This condition is equivalent to the condition (3.43) for the validity of Jarzynski

equality. In general these two conditions need not be the same since Crooks’s fluc-

tuation theorem is more general than Jarzynski equality. However, this is the case

for Gaussian distributed work.

Let us now try to understand the nature and meaning of condition (3.43).

H and G are solutions to the homogenous Langevin equation. As such they do

depend on the damping kernel but not on the noise kernel. σxx on the other hand
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depends on both the damping kernel via G and on the noise kernel. For this equality

to hold there has to be a relation between the noise and dissipation kernels. The

same conclusion can be reached by studying Eq.(3.48). The average of work is

independent of the noise kernel, but depends on the damping kernel. On the other

hand the standard deviation of work does depend on both kernels.

There is indeed such a relationship between the damping and noise kernels

for a thermal bath: the fluctuation dissipation relation (FDR) (2.6). However, the

quantum mechanical FDR does not lead to condition (3.43), and thus the FTs do

not need to hold. To see this note that the damping kernel is independent of ~. As

a result the homogenous solutions of the Langevin equation, K(t) and G(t), do not

depend on ~. On the other hand σxx in general is a function of arbitrarily large

powers of ~ via the coth term in the noise kernel. FTs are satisfied if ~ is set to

zero. Corrections to FTs is expected at O(~2).

3.5.1 High and Low Temperature Regimes

As described in the previous subsection, the noise kernel is the only place where

quantum effects are manifest, as can be seen by the appearance of ~. Assumptions

made about the properties of the bath render the quantum features associated with

the initial state of the system oscillator forgotten completely. In FTs the noise

kernel appears only in the standard deviation of work σ2
W . In this subsection we

will investigate this term in the high and low temperature regimes.
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Using the Fourier transform one can show from Eq.(3.37) that:

σ2
W = (2π)2

∫ ∞
−∞

dωf̃d(ω)σ̃xx(ω)f̃d(−ω), (3.49)

where f̃d(ω) denotes the Fourier transform of ḟ(t). Recall that in our convention

ḟ(t) vanishes outside the interval [0, τ ], thus the Fourier transform is well-defined.

Using the FDR (2.6) it can be shown that:

σ̃xx(ω) = ~ω coth

(
β~ω

2

)
K̃e(ω)

2MΩ2
. (3.50)

3.5.1.1 High temperature expansion

For frequencies satisfying β~ω < 1, coth can be expanded into a Laurent series:

coth(
β~ω

2
) =

2

β~ω
+
∞∑
k=1

22nB2n

(2n)!

(
β~ω

2

)2n+1

, (3.51)

σ̃xx(ω) =
K̃e(ω)

βMΩ2
+
∞∑
k=1

22nB2n

(2n)!

(
β~ω

2

)2n+2
K̃e(ω)

βMΩ2
, (3.52)

where Bn is the n’th Bernoulli number. If we assume that either K̃e(ω) or f̃d(ω)

decreases sufficiently fast for large frequencies such that β~ω ≥ 1, the Laurent series

is a good expansion. Hence, the characterization of “high” temperature depends on

two time scales: the intrinsic time scale of the oscillator (determined by its interac-

tion with the bath as well as its natural frequency) and the time scale of the driving

force. It is reasonable to assume that K̃e(ω) vanishes for frequencies larger than

the bath cutoff. Usually this is taken to be very large. We will assume that f̃d(ω)

becomes negligible at frequencies much smaller than this cutoff frequency, denoted

as ωh. This is expected to be a reasonable assumption for typical driving forces.

Then, the high temperature expansion is strictly valid for β~ωh � 1. However, this
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condition is too conservative since not all environmental modes have equal influ-

ence on the system dynamics. The high temperature expansion is good whenever

the temperature is high with respect to the most relevant environmental modes,

which might be significantly smaller than ωh. The relevant frequency range of the

environment can be read directly from the spectral density (3.26).

If we keep only the first term in the expansion (3.52) we see that condition

(3.40) for the validity of FTs is satisfied. Deviations from FTs to all orders of ~ can

be calculated to be:

1

βMΩ2

∞∑
n=1

22nB2n

(2n)!

(
β~ı
2

)2n+2

ḟ ·K(2n+2)
e · ḟ . (3.53)

The superscript on Ke denotes the order of derivatives taken with respect to its

argument. The correction term can also be written as:

1

βMΩ2

∞∑
n=1

22nB2n

(2n)!

(
β~
2

)2n+2

f (n+2) ·Ke · f (n+2). (3.54)

Note that the knowledge of the homogenous solution to the Langevin equation, a

purely classical object, is enough to calculate the correction term to all orders of ~.

3.5.1.2 Low temperature expansion

Below we present the form of the standard deviation of work in a low temper-

ature expansion but we won’t go into the details of the low temperature expansion

because the notion of trajectories will ultimately break down at sufficiently low tem-

peratures. For high frequencies the following expansion of coth is more suitable than
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Eq.(3.51):

coth

(
β~ω

2

)
= sgn(ω)

[
1 + 2

∞∑
k=1

e−kβ~|ω|

]
, (3.55)

σ̃xx(ω) =
~

2MΩ2
|ω|K̃e(ω)

[
1 + 2

∞∑
k=1

e−kβ~|ω|

]
. (3.56)

This expansion is convergent for all frequencies. However convergence is fastest for

β~ω � 1. If we assume that either K̃e(ω) or f̃d(ω) decreases sufficiently fast for

ω → 0 such that β~ω ≤ 1, expansion (3.56) is a good one to use for Eq.(3.49). Hence

the characterization of low temperature depends on two time scales: the intrinsic

time scale of the oscillator and the time scale of the driving force. It is reasonable

to assume that K̃e(ω) vanishes for frequencies lower than the lowest bath frequency.

Usually this is taken to be very small. We will assume that f̃d(ω) becomes negligible

at frequencies much higher than the lowest bath frequency. 9 Let us denote this

frequency by ωl. Then, the low temperature expansion is strictly valid for β~ωl � 1.

However, this condition is too conservative since not all environmental modes have

equal influence on the system dynamics. The low temperature expansion is good

whenever the temperature is low with respect to the most relevant environmental

modes, which might be significantly larger than ωl. The relevant frequency range of

the environment can be read directly from the spectral density (3.26).

9This condition could be violated by a very slowly changing driving force. However, this case

is not interesting for the study of FTs since the system would be evolving adiabatically and the

work distribution would be sharply peaked around W = ∆F .
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3.5.1.3 High temperature conditions and Markovian Dynamics

An important special case is the Ohmic bath characterized by the spectral

density:

J(ω) =
2γ0

π
ω. (3.57)

Without a high frequency cutoff, the damping kernel becomes local in time. The

Langevin equation at late times takes on the form:

MẌ(t) + 2γoẊ(t) +MΩ2X(t) = f(t) + ξ(t). (3.58)

Physically one would like to have a high frequency cutoff, which in turn makes

the damping kernel nonlocal in time. The high frequency cutoff also cures the

pathologies of the noise kernel that occur in the Ohmic case without cutoff. A

large cutoff Λ ensures that the damping kernel is strongly peaked around zero. If

the driving force f(t) doesn’t change significantly on time scales of order 1/Λ, the

Markovian approximation can be justified.

However, Markovian dynamics is not the criterion for FTs to be satisfied, high

temperature is. This is because even at high temperature if the bath is non-Ohmic

the dynamics of the open system can be non-Markovian.

3.6 Relation between Classical and Quantum FTs

In section 1.4 we have established that the dynamics of the QBM model is

in fact classical. One may wonder if FTs are satisfied in classical dynamics, with
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the above observation, what is it then that causes the possible violation of QFTs at

low temperatures? Although the dynamics is the same for classical and quantum

models, initial conditions are not. The thermal state, as characterized by the phase

space density and the Wigner function, respectively, is different at low temperatures.

The damping kernel does not depend on the initial conditions and thus is the same

for both quantum and classical models. The noise kernel on the other hand depends

on the initial state of the bath. As a result it is the noise kernel that is different

and could give rise to deviations from FTs.

In the previous section we have seen how the classical limit is reached at high

temperatures. We identified high temperatures as the ones such that all the relevant

bath modes are multiply occupied. As is well known from elementary quantum

mechanics, multiply-occupied harmonic oscillators act classically. In this classical

limit FTs are satisfied.

Alternatively one can solve the classical version of the QBM model exactly,

which is possible due to the linearity of the model. Moreover, in the classical model

one can use the thermal state of the combined system (also allowing for a finite

environment) instead of resorting to the infinite time preparation10. The result is

a Langevin equation in which the noise is correlated with the initial conditions of

the system oscillator. One can define a new noise by ξ(t) − 2X(ti)γ(t − ti) → ξ(t)

which is uncorrelated with the initial conditions of the system oscillator and obeys

the standard FDR. This redefinition also gets rid of the slip term [30, 129] in the

10The equivalence of both preparations for the classical model follows directly from the ~ → 0

limit of the quantum result obtained in Chapter 2. This point is also made in Appendix A.
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Langevin equation and one obtains the familiar form:

MẌ(t) + 2

∫ t

0

dsγ(t− s)Ẋ(s) +MΩ2X(t) = f(t) + ξ(t), (3.59)

〈ξ(t)〉cl = 0, (3.60)

〈ξ(t)ξ(t′)〉cl =
2

β
γ(t− t′), (3.61)

〈Xiξ(t)〉cl = 〈Piξ(t)〉cl = 0, (3.62)

where the initial conditions of the open system are sampled from the reduced phase

space density of the system that is obtained from the thermal phase space density of

the combined system by integrating out the bath degrees of freedom. This reduced

phase space density happens to be the thermal state with respect to the system

Hamiltonian, as seen below in Eq. (3.63).

Eqs.(3.59-3.62) are the beginning point of the analysis of Mai and Dhar [130].

They start with the phenomenological Langevin equation that is identical to (3.59).

They further assume a Gaussian noise with the classical FDR (3.61). Finally they

assume that the initial values of the system oscillator coordinates are sampled from

the classical phase space density fS(Xi, Pi, ti) ∝ exp[−βHS(Xi, Pi, ti)]. This last

point can be justified from the microphysics model:

fS(Xi, Pi, ti) =
N∏
n=1

∫
dxni

∫
dpni fC(Xi, Pi; {xni}, {pni}; ti)

∝ exp[−βHS]
N∏
n=1

∫
dxni

∫
dpni e

−β
∑N
n=1

[
p2ni
2mn

+ 1
2
mnω2

n

(
xni− gn

mnω
2
n
Xi

)2
]

∝ exp[−βHS(Xi, Pi, ti)]. (3.63)

Similarly the change in free energy that appears in Jarzynski equality and Crooks’s
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fluctuation theorem is that of the combined system. However, the structure of

the coupling and renormalization terms make it coincide with that of the isolated

system oscillator. This clever scheme notwithstanding, we point out that in their

phenomenological approach [130] the free energy difference is mistakenly interpreted

as that of the free oscillator, since there is not enough information to track down its

origin. Similarly initial conditions are sampled from the system thermal state with

uncorrelated noise. Our microscopic model shows that none of these assumptions

are individually justified, yet their combination somehow conspires to validate the

fluctuation theorems. This kind of ambiguity and disconnectedness often found in

the phenomenological models in the literature heightens the importance and ad-

vantage of using a first-principles approach based on micro-physics models, as is

adopted here.

Starting from a microscopic model we were able to recover all the features of

the phenomenological Langevin equation. From there on, using the same analysis as

in [130] leads to the verification of FTs. However, it is crucial to make the following

distinction: In the phenomenological theory there is no a priori reason why FTs

should hold because the open system dynamics is not Hamiltonian. As a result

one needs to show the validity of FTs explicitly. In our formalism, on the other

hand, we start with a closed (system + bath) Hamiltonian system in a thermal

state (of the combined system). Hence all the premises of the FTs are satisfied and

one expects that they should hold. What needs to be done is to verify them from

explicit calculations.

One might object to this claim by noting that an uncountably infinite bath is
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required for the preparation described in section (3.4.1). The proof of FTs for close

Hamiltonian systems utilizes the Liouville theorem, for which we have seen only

proofs for finite number of degrees of freedom. In this sense our model, with infinite

preparation time also doesn’t trivially satisfy FTs, and needs the explicit verification.

On the other hand for finite baths one can use the thermal state of the combined

system at t=0 and then the FTs follow trivially. This second procedure is very easy

for the classical model though somewhat complicated yet still straightforward for

the quantum model. For the quantum model one would use the correlations of initial

condition with noise and the noise kernel derived for Chapter 2 in Appendix A. The

important point is that the infinite time preparation is only introduced for technical

convenience. It can be argued that for any relevant times t > 0 the effect of an

infinite bath can be approximated arbitrarily closely by a large but finite bath.

Hence our results are insensitive to the unphysical assumptions about the bath we

made in our derivation.

It is worth mentioning that Speck and Seifert [131] have shown that the Jarzyn-

ski relation holds for general classical ergodic systems governed by stochastic dynam-

ics including non-Markovian processes. Ohkuma and Ohta [132] studied classical

systems described by a non-linear, non-Markovian Langevin equation with Gaussian

colored noise. Both of these works are more general than our work when applied

to classical systems because they are not restricted to linear models. On the other

hand both adopt a phenomenological approach without an underlying microscopic

model, as we do.
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3.7 Discussion

3.7.1 Comparison to previous work

As mentioned in sections 1.5.2 and 3.1 there seems to be a consensus on how

to define work in closed quantum systems [63]. Work is defined as the difference of

the energy of the closed system measured at two different times. This method is

less attractive when applied to open systems (treating the system+environment as

the closed system) since it involves measuring the energy of the combined system.

Furthermore, work is restricted to the open system, and it is only a part of the total

energy which involves also heat exchange with the bath. This can lead to big errors

if one calculates the work of the combined system since work is the difference of two

large numbers.

In this chapter we used the decoherent history conceptual framework to explain

how the notion of trajectories in a quantum system can be made viable and use them

to define work for open quantum systems. These quantities are likely to be more

easily accessible than the energy levels for practical purposes related to experiments,

especially for open quantum systems. The classical mechanical definition of work in

terms of trajectories is used in the formulation of FTs.

The work operator is another route taken [62] but there is no satisfactory

definition of work as an operator [97]. Besides, the work operator approach does

not place any limit on the range of validity of its predictions. Using the environment-

induced decoherence scheme we can assess how strong the noise in the environment
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needs to be to provide sufficient decoherence to warrant the use of trajectories so

as to be able to define work in open quantum systems. The question of whether

deviations from FTs can be observed in low temperature experiments at all, and

if so in which parameter range, requires more quantitative analysis. We intend to

address this question in the future.

Compared with previous work in the literature the approach of Chernyak and

Mukamel [98] is closest to ours in spirit. However, in substance our approach differs

from theirs in several important ways, as numerated below. Foremost a theoretical

justification of the use of and the derivation of the range of validity of the trajectory

concept in quantum mechanics are necessary in the formulation of FTs. To this

end the authors of [98] invoke continuous measurements and wave function collapse

together with taking the semi-classical limit. We point out the key conceptual and

procedural steps which we believe [98] are flawed.

Conceptual flaws.

It is said in [98] that “the classical limit can be reproduced by using the Wigner

function”. Also, “Q+ (Our X) is a classical coordinate variable and Q− (our y) is a

quantum coordinate”

These wrong statements stem from, we believe, a lack of understanding of the

central issues in quantum decoherence. Misconceptions like these were common but

were addressed and clarified in the 90s. See e.g., [48, 110].

Quantitative differences.

The range of validity is not stated clearly in [98] and the generating functional

of work given in their Eq.(9) is said to be valid at arbitrary temperature. We believe
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this is an overclaim.

In the dechis or envdec formalism trajectories emerge due to the influence of

the environment, in particular, the strength of noise: The stronger the noise, the

more pronounced trajectories take shape; the weaker the noise, the more quantum

features prevail. These conditions of classicality can be quantified clearly and from

them one obtains the criteria for determining the range of validity of quantum FTs

as we discussed in an earlier section.

Eq.(13) of [98] gives the lowest order in ~ correction to the Jarzynski equality.

We provide the corrections to arbitrary orders of ~ in our Eq.(3.54) in terms of the

homogenous solutions to the Langevin equation. Furthermore we show that these

corrections apply to Crooks’s fluctuation theorem as well. At the classical level

we derive Crooks’s fluctuation theorem and Jarzynski’s equality for the Brownian

motion model.

3.7.2 New issues brought forth

The dechis and envdec approach bring forth a number of new issues which

were not so clearly noted before. We name three here.

Initial state preparation.

Initial state preparation is an important aspect of FTs. Most of the literature

on FTs for closed systems is usually clear on this aspect. However a certain level of

ambiguity exists in open system treatments. In this work we considered an initial

thermal state for the closed system made up of the system of interest plus its envi-
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ronment. However, for computational ease and clarity of exposition we developed

an equivalent initial state preparation method based on product initial states for

the system and the bath. This equivalence is proven in Chapter 2. Our initial state

preparation replaces the system’s dependence on the initial state by the properties

of noise statistics. As a result our preparation method has only one probabilistic

element as opposed to two. This makes the analysis clearer and the identification

of quantum effects easier.

On the meaning of the average in Eq.(3.1).

The averages that are calculated using the statistics of noise can alternatively

be expressed in terms of expectation values of quantum mechanical operators. The

important point is that products of position and momentum operators need to be

symmetrized owing to the properties of Wigner function, which is used in the av-

eraging process. In the specific case of the Jarzynski equality, we observe that the

average over noise realizations can also be obtained by taking the expectation value

of the quantum mechanical operators as:

〈
e−βW

〉
=

∫
DξPξ[ξ]

∫
dXidPiWS(Xi, Pi, 0)eβ

∫ τ
0 dtḟ(t)Xξ(t)

= TrS+E

[
eβ
∫ τ
0 dtḟ(t)XH(t)ρ̂β

]
, (3.64)

where the subscript H indicates the Heisenberg picture. In this special case sym-

metrization is achieved by the exponential function together with the fact that

the dynamics is linear and work itself is a linear function of position. Conse-

quently we don’t need to impose the symmetrization procedure explicitly. It is

in this strict sense that the results that are obtained using the work operator

116



W ≡ −
∫ τ

0
dtḟ(t)XH(t) = HH(τ) − HH(0) for Jarzynski equality agree with our

results obtained via trajectories.

How to decide if possible violations to FTs can be observed?

The formulation of FTs involves averages over noise realizations, with idealized

situations where trajectories are perfectly well resolved for each realization of noise.

But of course in an experiment, even classically, there is only finite resolution. Let

us assume that the resolution of the experiment is independent of temperature. This

introduces an error to the FTs obtained from this data that is independent of the

temperature.

In the quantum case the condition σ2 ∼ ν−1 suggests that for stronger noise

we can resolve the trajectory to a higher precision. As the noise weakens, such

as at decreasing temperature, the stochastic features of classical trajectories are

enhanced due to the decoherence condition and measurement results on a particle’s

trajectory becomes less precise. Further weakening the noise we will get to a point

in which quantum or “Heisenberg” noise dominates [121]. Here lies a fundamental

difference between classical and quantum. In quantum mechanics the ability of

resolving trajectories is not only determined by the precision of the measurement

device but also by the temperature. As a result the error, or inaccuracy, in FTs

introduced by the resolution of trajectories increases constantly as the temperature

is lowered, unlike in classical mechanics. Below a certain temperature, upon entering

the quantum dominated regime, the imprecision in measurements will become too

large to render any free energy calculations using FTs meaningless.

The properties of noise acting on the quantum Brownian particle are differ-
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ent from the noise in the corresponding classical model, as was shown above. This

introduces a deviation from FTs which is independent of the error introduced by

the limited precision of measurements (discussed in the previous paragraph). The

quantum corrections to the noise kernel become larger at lower temperatures. As

a result we expect to observe deviations from FTs at low temperatures. However,

the precision of trajectories diminish with temperature which introduces increasing

errors to the calculation of averages. Given these competing effects, it is not clear

if there is a parameter range where quantum corrections to the noise kernel are

large enough to cause deviations from FTs observable beyond the error, or inaccu-

racy, introduced by measurement imprecision imposed by the decoherence condition.

Further quantitative analysis is necessary to establish the domain of validity of our

approach and the magnitude of possible violations to FTs within this domain as a

function of temperature.

118



Chapter 4: Microcanonical work and fluctuation relations for an open

system: an exactly solvable model

4.1 Introduction

In the previous chapter we have studied quantum fluctuation theorems. Now

we turn our attention to classical fluctuation theorems, in particular the nonequi-

librium work relation due to Jarzynski [11, 12],

〈e−βW 〉 = e−β∆F , (4.1)

and the closely related fluctuation theorem, due to Crooks [13–15],

P (W )

P̃ (−W )
= eβ(W−∆F ), (4.2)

both of which were already introduced in Sec. 1.5.1.

Ref. [11] presents Hamiltonian derivations of Eq. (4.1) for two different sce-

narios. In the first, a system of interest is prepared in equilibrium by being placed

in weak contact with a thermal reservoir, which is then removed. In this case it is

natural to treat the initial conditions of the system of interest as a random sam-

ple from the canonical distribution (reflecting the method of preparation), and also

to use Hamiltonian dynamics to model the subsequent evolution of the thermally

isolated system as the control parameter is varied (0 ≤ t ≤ τ).
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In the second scenario considered in Ref. [11], the system remains in weak

thermal contact with the reservoir throughout the process. In this derivation, initial

conditions for the combined system and reservoir were assumed to be sampled from a

canonical distribution, and then Hamilton’s equations were used to model evolution

in the full phase space. In Ref. [133] this approach was extended to a system in

strong thermal contact with a reservoir, again assuming canonically sampled initial

conditions in the full phase space.

In both derivations described in the previous paragraph, the use of Hamilton’s

equations to model the dynamics in the full phase space implies that the combined

system of interest and reservoir are being treated as a large, thermally isolated

system. The assumption of a canonical distribution of initial conditions for this

combined system renders the derivation of Eq. (4.1) (as well as Eq. (4.2)) straight-

forward. However, from a conceptual perspective this assumption is somewhat prob-

lematic, as the equilibrium state of an isolated system is typically associated with the

microcanonical ensemble. It is therefore natural to wonder whether Eqs. (4.1) and

(4.2) remain valid when initial conditions are sampled microcanonically rather than

canonically. In this chapter we will address this question through the exact analysis

of the classical Brownian motion model 1.4, involving a harmonic oscillator (the

system of interest) coupled strongly to a bath of NE other harmonic oscillators (the

thermal reservoir). This model has previously been studied by Hasegawa [134], who

considered initial conditions sampled from the canonical ensemble. More generally,

the study of model systems for which exact results can be obtained has illustrated

and illuminated a variety of issues related to Eqs. (4.1) and (4.2). [135–156]
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It is widely believed that in the thermodynamic limit, the average thermody-

namic properties of a physical system are independent of the choice of the ensemble.

This is the idea of ensemble equivalence [1]. However, the situation is quite different

when fluctuations are considered [157]. (As a simple example note that the variance

of the total energy is proportional to heat capacity in the canonical ensemble, but

vanishes identically in the microcanonical ensemble.) This suggests that the va-

lidity of Eqs. (4.1) and (4.2), for microcanonically sampled initial conditions, does

not follow immediately from the equivalence of ensembles, even when the thermal

reservoir is assumed to be macroscopic. This issue is especially relevant since large

fluctuations with very small probabilities play a dominant role in the nonequilibrium

work theorem [158] whereas standard ensemble equivalence results do not make any

claim about or depend on such low probability events. Moreover, the work W is not

simply a function of the phase space variables, but rather a functional of the phase

space trajectory, and its fluctuations may be more complex than that of typically

considered phase space functions.

For a system interacting with a large environment it has been suggested in

Ref. [96], using heuristic arguments, that the validity of the nonequilibrium work

theorem may be insensitive to the particular distribution used and that the canonical

ensemble should be viewed primarily as a computational convenience. A more de-

tailed argument supporting this claim has been developed in Ref. [159]. In Ref. [160]

the following microcanonical version of the Crooks fluctuation relation was derived:

PE(W )

P̃E+W (−W )
=

Σf (E +W )

Σi(E)
, (4.3)
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where PE(W ) stands for the probability density of doing work W during the forward

process and P̃E+W (−W ) stands for the probability density of doing work −W during

the time reversed process. The subscript indicates the energy of the microcanonical

distribution from which the initial conditions are sampled. The right-hand side is

the ratio of two densities of states at different energies and associated with initial

and final Hamiltonians. (Note that Ref. [160] uses Ω to denote the density of states,

which we reserve for the system frequency. Thus we opted to use Σ for the density

of states instead). It was then argued in Ref. [160] that in the appropriate thermo-

dynamic limit, one recovers Eq. (4.2). To the best of our knowledge, our work is

the first to explore this issue using a model system for which the work distributions

can be computed exactly.

The organization of this chapter is as follows. The model is introduced in

Sec. 4.2. Exact expressions for the left-hand side of Eq. (4.1) are obtained in

Sec. 4.3.1 and for the probability distribution of work in Sec. 4.4.1. The valid-

ity of nonequilibrium work relation in the limit of an infinite environment is proven

in Sec. 4.3.2. The validity of microcanonical Crooks relation is shown in Sec. 4.4.2.

Ensemble equivalence in its most general form is shown in Sec. 4.5.2. Some technical

details of the derivation are provided in Appendix B.

4.2 The Model

We consider the classical Brownian motion model with NE +NS ≡ N degrees

of freedom. NS is the number of degrees of freedom of the system of interest and
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NE � NS is the number of degrees of freedom of the environment. The Hamiltonian

governing the dynamics of this closed system is of the form (1.20) with the renor-

malization Hamiltonian set to zero. For explicit calculations we consider the case

where the system consists of a single harmonic oscillator, i.e. NS = 1:

HC = HS(Z;λt) +HI(Z, z) +HE(z)

HS(Z;λt) =
P 2

2M
+

1

2
MΩ2(X − λt)2 + αX,

HI(Z, z) = −
N∑
n=1

gnxnX,

HE(z) =
N∑
n=1

(
p2
n

2mn

+
1

2
mnω

2
nx

2
n

)
. (4.4)

where Z = {X1, P1, · · · , XNS
, PNS

}, z = {x1, p1, · · · , xN , pN}, λt is a time-dependent

parameter determined by the protocol, α is a constant and we let N ≡ NE to simplify

the notation. This system Hamiltonian can be realized by the physical system

depicted in Fig. 4.1. A mass on a slope is attached to a spring. The support of the

spring is moved according to a time-dependent protocol; λt denotes the position of

the support at time t. To recover the Hamiltonian (4.4) one identifies Mg sin θ ≡ α.

Friction is modelled via linear coupling to N harmonic oscillators that constitute

the environment. Generalization to more than one system oscillator and allowing

for interactions among environmental oscillators can be achieved by adopting the

matrix notation of Chapter 1. However, such a general treatment is not necessary

for the purpose of this work.
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x

λ

Figure 4.1: A mass on a slope is attached to a spring. The support of the spring is moved

according to a time-dependent protocol; λt denotes the position of the support at time

t. To recover the Hamiltonian (4.4) one identifies Mg sin θ ≡ α. Friction is modelled via

linear coupling to N harmonic oscillators that constitute the environment.

4.2.1 The Solution

It will prove convenient to define

f(λt) ≡MΩ2λt − α, (4.5)

J (λt) ≡
1

2
MΩ2λ2

t . (4.6)

Then the system Hamiltonian can be written as:

HS(Z;λt) =
P 2

2M
+

1

2
MΩ2X2 − f(λt)X + J (λt). (4.7)
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The corresponding Langevin equation is the same as (3.21) except for the renormal-

ized frequency:

MẌ(t) + 2

∫ t

0

dsγ(t− s)Ẋ(s) +MΩ̄2X(t) = f(λt)− 2γ(t)X(0) + ξ(t), (4.8)

γ(t) ≡
N∑
n=1

g2
n

2mnω2
n

cos(ωnt), (4.9)

Ω̄2 ≡ Ω2 − 2γ(0), (4.10)

ξ(t) ≡
N∑
n=1

gn

(
xn(0) cos(ωnt) +

pn(0)

mnωn
sin(ωnt)

)
. (4.11)

The system-environment coupling is required to satisfy Ω2 ≥ 2γ(0) for the dynamics

to be stable and we will make this assumption henceforth.

The solution to Eq. (4.8) can be written as

X(t) = X(0)K(t) + P (0)G(t) +

∫ t

0

dsG(t− s) [f(λs)− 2γ(s)X(0) + ξ(s)] , (4.12)

where K(t) and G(t) are the homogenous solutions of Eq. (4.8) with the right hand

side set equal to zero. For details of this solution refer to Sec. 3.4.

4.3 Nonequilibrium Work Relation

We assume a protocol λt in the time interval [0, τ ]. This corresponds to a

function f(λt) via Eq. (4.5). The work associated with the Hamiltonian (4.7) for

the duration of the protocol ∆t = τ is given by

W =

∫ τ

0

dtλ̇
∂HC

∂λ
= −

∫ τ

0

dtḟ(λt)X(t) + ∆J . (4.13)

The dot over a function indicates time derivative, and ∆J ≡ J (λτ )− J (λ0). This

definition of work is motivated by the observation ąW = dλHC

dλ
= displacement ×
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force. For a discussion of alternative definitions of work and various fluctuation

theorems they lead to see Ref. [61].

For the nonequilibrium work relation (4.1) the initial state is sampled from the

canonical ensemble at inverse temperature β using the Hamiltonian HC(Z, z;λ0).

The free energy difference of the combined system + environment is defined via

∆FC ≡ ∆F ≡ FC(λτ ) − FC(λ0). In our model the free energies can be calculated

explicitly.

Zβ(λ) = e−βFC(λ) =

∫
dZdze−βHC(Z,z;λ). (4.14)

Here Zβ(λ) is the partition function associated with the Hamiltonian HC(λ; Z, z).

The integral over the environmental degrees of freedom gives:∫
dze−β(HI(Z,z)+HE(z)) ∝ e

βX2
∑
n

g2n
2mnω

2
n = eβγ(0)X2

. (4.15)

Irrelevant constants that will eventually cancel out in the expression for ∆F have

been omitted in the above expression. We use the definition (A.3) of the Hamiltonian

of mean force as [133,161]:

H∗(Z;λt) = HS(Z;λt)− γ(0)X2 =
P 2

2M
+

1

2
MΩ̄2X2 − f(λt)X + J (λt), (4.16)

which amounts to shifting the frequency form Ω to Ω̄ in the original system Hamil-

tonian. Then Eq. (4.14) becomes (up to some irrelevant constants):

e−βFC(λ) ∝
∫
dZe−βH

∗(Z;λ) ∝ eβ
f(λ)2

2MΩ̄2−βJ (λ). (4.17)

The free-energy difference is not an extensive quantity and is given by

∆F = −f(λτ )
2 − f(λ0)2

2MΩ̄2
+ ∆J ≡ −G + ∆J , (4.18)
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where

G ≡ f(λτ )
2 − f(λ0)2

2MΩ̄2
. (4.19)

Note that an overall shift in f(λ0) simply changes the equilibrium positions and one

is tempted to set f(λ0) = 0 in order to simplify the calculation. However, in the

analysis of some fluctuation theorems, where both forward and reverse processes

are considered, this would cause a loss of generality. Unless f(λ0) = f(λτ ), or

equivalently ∆F = 0, the reverse process is necessarily described with nonzero

f(λ̃0).

In the next section we will consider the quantity:

〈e−β̄W 〉mc =

∫
dZdzδ(HC(Z, z;λ0)− E) exp

[
β̄
(∫ τ

0
dtḟ(t)X(t; Z, z)−∆J

)]
∫
dZdzδ(HC(Z, z;λ0)− E)

(4.20)

which represents the average of exp
(
−β̄W

)
, over an ensemble of trajectories with

microcanonically sampled initial conditions in the full phase space. We will obtain

an exact expression for this average, Eq. (4.22) below, valid for any positive value

of the parameter β̄. We will then show that in the thermodynamic limit, N → ∞,

Eq. 4.1 emerges when the value of β̄ is set equal to the inverse temperature βmc

associated with the microcanonical energy E (see Eq. 4.31). That is:

lim
N→∞

〈e−βmcW 〉mc = e−βmc∆F . (4.21)

Although we obtain this result for the case of a single system oscillator, it is easily

generalized to any number NS of system oscillators, provided the limit N → ∞

is taken with NS fixed. Moreover, heuristic arguments [159] suggest that this re-

sult holds for more general systems with nonlinear interactions. However nonlinear
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models are difficult to treat analytically and careful numerical experiments are nec-

essary to test this hypothesis in such models. In this work our aim is to focus on

the analytically solvable harmonic oscillator model, for which exact results can be

obtained.

4.3.1 Exact Result for finite N

The integrals appearing in the denominator and numerator of Eq. (4.20) have

been computed in Appendix B.1. The trick is to use an integral representation of

the delta function in order to transform the integrals over the phase space variables

into Gaussian integrals. Once the phase space integrals are performed, it is seen that

the integration left over from the representation of the delta function can also be

performed exactly. Below we cite the results and refer the reader to Appendix B.1

for the technical details.

Combining Eq. (B.15) for the denominator and Eq. (B.31) for the numerator

of Eq. (4.20) we obtain for Eq. (4.20):

〈e−β̄W 〉mc = e−β̄∆J eβ̄G−β̄
−1D N !

(AD)N/2
IN(
√

4AD). (4.22)

where

A ≡ E +
f(λ0)2

2MΩ̄2
− J (λ0), (4.23)

D ≡ β̄2

MΩ̄2
If , (4.24)

If =

∫ τ

0

dt

∫ t

0

dsḟ(λt)K(t− s)ḟ(λs). (4.25)

Eq. (4.22) is the exact expression for a system of one harmonic oscillator dragged
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up a slope in the presence of gravity and coupled to an environment modelled by N

harmonic oscillators in a microcanonical ensemble at energy E.

The effect of the environment is implicit in Eq. (4.22). The microcanonical

temperature and A both depend on the total energy E. Also If depends on K(t),

which is the homogenous solution to the Langevin equation. Finally D and A

contain factors of Ω̄ which is the renormalized frequency.

4.3.2 The thermodynamic limit, N →∞

In this limit we define energy per particle

E ≡ E

N + 1
=
E

N
+O(N−1), (4.26)

A = N

(
E +

1

N

(
f(λ0)2

2MΩ̄2
− J (λ0)

))
= NE +O(1). (4.27)

Eq. (4.22) becomes:

〈e−β̄W 〉mc = e−β̄∆J eβ̄G−β̄
−1D N !

(EDN)N/2
IN(
√

4NED). (4.28)

The asymptotic behaviour of the Bessel function IN(x) is usually given for cases

where x goes to zero or infinity while N is fixed. In Eq. (4.28) x ∼
√
N as N →∞.

Luckily there is a formula for the limit we are looking for:1

lim
N→∞

IN(
√
Nx) =

1

N !

(
Nx

4

)N/2
ex/4. (4.29)

1To see this, first note that the Bessel function can be written in terms of the generalized

hypergeometric functions as IN (y) = 0F1(N + 1; y2/4)(y/2)N/N !. Looking at the series expansion

of the hypergeometric function it is easy to see that 0F1(N,Ny2/4) → 0F0(y2/4) as N → ∞.

Finally one notes that 0F0(y) = ey to arrive at the desired formula. We thank Dr. Yury A.

Brychkov for the proof of Eq. (4.29) as outlined here.
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Using this formula with x = 4DE in Eq. (4.28) we obtain:

lim
N→∞

〈e−β̄W 〉mc = e−β̄(∆J−G)−β̄−1D+ED = e−β̄∆F+(E−β̄−1)D, (4.30)

which, like Eq. (4.22), is valid for arbitrary β̄ > 0.

Since the quantity D depends on the protocol used to vary the parameter λ

(see Eqs. (4.24), (4.25)), the right side of Eq. (4.22) generally cannot be expressed in

terms of a difference between two state functions. However, consider the particular

choice

β̄ = βmc ≡ E−1, (4.31)

corresponding to the inverse temperature given by the equipartition theorem for

a collection of one-dimensional harmonic oscillators. For this choice the protocol

dependent term vanishes, and – as advertised (Eq. (4.21)) – we recover the nonequi-

librium work relation.

For more general models there is still going to be a well-defined relationship

between energy per particle and temperature, but it will no longer be linear as in

Eq. (4.31). In such models we expect Eq. (4.30) will be protocol independent only

for the particular choice of β̄ = βmc which satisfies the corresponding relationship

between energy per particle and temperature.

This concludes the derivation of work fluctuation theorem for the classical

Brownian motion model in the microcanonical ensemble.
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4.4 Crooks’s Fluctuation Theorem

4.4.1 Probability Distribution of Work

The moment generating function of work is defined as:

GW (s) = 〈e−ısW 〉mc. (4.32)

It can be obtained from Eq. (4.22) by analytic continuation via β̄ → ıs. The

probability distribution of work is the Fourier transform of the moment generating

function

PE(W ) =
1

2π

∫
C
dseısWGW (s), (4.33)

where PE(W ) has been defined earlier in the Introduction.

Assuming If > 0 and after some manipulations we are lead to the following

formula:

PE(W ) =
N !2N

2π
√
N2σ2

W

∫
C
ds
e
ıs

(W−〈W 〉)√
N2σ2

W JN(s)

sN
, (4.34)

where 〈W 〉 ≡ ∆F +
If
MΩ̄2 is the expectation value of work and σ2

W ≡ 2AIf/NMΩ̄2 is

related to the variance of work in the canonical ensemble, as we will see later. The

integral can be done analytically to give:

PE(W ) =
N !

Γ(N + 1/2)N1/2

1√
2πσ2

W

(
1− (W − 〈W 〉)2/2σ2

W

N

)N−1/2

×Θ
(√

2NσW − |W − 〈W 〉|
)
. (4.35)

This is the exact expression for the probability distribution of work done on a single

harmonic oscillator coupled to an environment of N harmonic oscillators.
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The step function in Eq. (4.35) shows that the maximum deviation from the

average value of work scales as the square root of N . The fact that the work

is bounded is a consequence of the fact that microcanonical ensemble describes a

distribution with finite support over the phase space. By applying the method of

Lagrange multipliers on the expression of work (4.13), with the constraint of fixed

energy , the extreme values of work can be verified independently. This analysis

also yields analytical expressions for the phase space trajectory of each particle for

the realizations corresponding to extreme values of work.

The special case of If = 0 is very easy to handle. Using Eq. (B.32) with

β̄ → is in Eq. (4.33) we see that the resulting integral is the representation of the

delta function. Hence PE(W ) = δ(W −∆F ) for If = 0.

Next we take the limit of infinite environment. The first factor of Eq. (4.35)

can easily be seen to converge to one as N → ∞. For the third factor we use the

formula:

ex = lim
N→∞

[
1 +

x

N

]N
. (4.36)

Thus for the infinite environment limit we recover the Gaussian form:

lim
N→∞

PE(W ) =
e
− (W−〈W 〉)2

2σ2
W√

2πσ2
W

, (4.37)

lim
N→∞

σ2
W = 2E If

MΩ̄2
=

2

βmc
(〈W 〉 −∆F ) . (4.38)

Eqs. (4.37) and (4.38) ensure that the nonequilibrium work and Crooks’s fluctua-

tion theorems are satisfied whenever β is identified with βmc in Eqs. (4.1,4.2). (Note

that (4.38) is the same condition as (3.48)). The probability distribution (4.37) is
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identical to the probability distribution of work for the case where the initial condi-

tions of the system plus environment are sampled from a canonical ensemble, with

the temperature of the canonical ensemble related to the total energy of the micro-

canonical ensemble according to β = βmc. This can be easily checked, since all the

integrations are Gaussian for the system plus environment canonical initial condi-

tions (as opposed to the presence of the delta function in the microcanonical initial

conditions). Sections 3.5 and 3.6 contain some calculations and results relevant to

this point.

4.4.2 Microcanonical Crooks Relation

Below we will show the validity of Eq. (4.3) for our specific model and for

finite environments. First we note that the initial density of states Σi is given by

the denominator of Eq. (4.20), and a similar expression applies to the final density

of states Σf (only with λ0 replaced by λτ ). From Eq. (B.15) we have:

Σf (E +W )

Σi(E)
=

(
Ã
A

)N

, (4.39)

where

Ã ≡ (E +W ) +
f(λτ )

2

2MΩ̄2
− 1

2
MΩ2λ2

τ . (4.40)

The expressions for Σf (E + W ) and Ã for the reverse process have been obtained

from Eqs. (B.15) and (4.23) by letting λ0 → λτ and E → E + W . The probability
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distribution of work in the forward and reverse processes are given by:

PE(W ) ∝ 1

σ2N
W

(
2Nσ2

W − (W − 〈W 〉)2

2N

)N− 1
2

Θ
(√

2NσW − |W − 〈W 〉|
)
,

(4.41)

P̃E+W (−W ) ∝ 1

σ̃2N
W

2Nσ̃2
W −

(
−W − 〈W̃ 〉

)2

2N


N− 1

2

Θ
(√

2Nσ̃W − | −W − 〈W̃ 〉|
)
,

(4.42)

where σ̃2
W = 2IfÃ/NMΩ̄2 and the following quantities for the time reversed process

have been defined in analogy with the forward process:

˜〈W 〉 ≡ −∆F +
If
MΩ̄2

= 〈W 〉 − 2∆F =
If
MΩ̄2

−∆F, (4.43)

∆F̃ ≡ −∆F =
f(λτ )

2 − f(λ0)2

2MΩ̄2
− MΩ2 (λ2

τ − λ2
0)

2
, (4.44)

σ̃2
W =

2If
MΩ̄2N

(
E +W +

f(λτ )
2

2MΩ̄2
− 1

2
MΩ2λ2

τ

)
=
Ã
A
σ2
W . (4.45)

Here we have used the fact that If is the same for the forward and reverse process by

the virtue of the symmetry of its defining double integral. Based on these formulas

we can write the left-hand side of Eq. (4.3) purely in terms of λ and If , whereas the

right-hand side is simply given by Eq. (4.39). Ignoring the step functions for the

moment Eq. (4.3) can be written as

PE(W )

P̃E+W (−W )
=

(
σ̃2
W

σ2
W

)N (
2Nσ2

W − (W − 〈W 〉)2

2Nσ̃2
W − (−W − 〈W̃ 〉)2

)
(4.46)

=

(
Ã
A

)N (
2Nσ2

W − (W − 〈W 〉)2

2Nσ̃2
W − (−W − 〈W̃ 〉)2

)
=

(
Ã
A

)N

, (4.47)
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This implies, again disregarding the step function for the moment,

2Nσ2
W − (W − 〈W 〉)2 = 2Nσ̃2

W − (−W − 〈W̃ 〉)2, (4.48)

2W
(
〈W 〉+ 〈W̃ 〉

)
+
(
〈W̃ 〉2 − 〈W 〉2

)
= 2N

(
σ̃2
W − σ2

W

)
, (4.49)

This equality can be verified by calculating the following relations.

〈W 〉+ 〈W̃ 〉 =
2If
MΩ̄2

, (4.50)

〈W̃ 〉2 − 〈W 〉2 = − 4If
MΩ̄2

∆F, (4.51)

σ̃2
W − σ2

W =
2If

MΩ̄2N
(W −∆F ). (4.52)

Now we return to the question of whether the step functions appearing in

PE(W ) and PE+W (−W ) are identical, so that they cancel when forming the ratio

Eq. (4.3). To this end consider the conditions for the probabilities PE(W ) and

P̃E+W (−W ) to vanish:

2Nσ2
W = (W − 〈W 〉)2 , (4.53)

2Nσ̃2
W =

(
W + 〈W̃ 〉

)2

. (4.54)

To see that both conditions are identical observe that the difference of both equations

gives Eq. (4.49) which has been shown to hold. Thus we have demonstrated the

validity of the microcanonical Crooks relation in our particular model and for finite

environments.

4.5 Ensemble Equivalence

In most textbooks the term ensemble equivalence is used to describe the fol-

lowing property of extensive systems: macroscopic physical quantities assume the
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same value in any equilibrium ensemble, i.e. microcanonical, canonical or grand

canonical. In this section we will deviate from this definition in three ways. The

system plus environment model considered in this chapter is not extensive. Second,

the thermodynamic limit is taken with the system size fixed (in the particular case

treated here the system consists of a single oscillator). Thus the quantities we con-

sider do not have to be macroscopic. Third, we will consider multi-time averages

taken over nonequilibrium processes.

4.5.1 Initial Phase Space Distribution

In this section we show that as N → ∞ the phase space probability density,

fS(Z), of the system oscillator approaches that of a canonical distribution if the

probability distribution for the system plus environment closed system is given by

the microcanonical distribution.

The derivation is similar to the previous sections.

fS(Z) =

∫
dzδ(HC(λ; Z, z)− E)∫
dZdzδ(HC(λ; Z, z))

. (4.55)

For the numerator we again substitute the integral representation of the delta func-

tion to obtain:

∫
C
dze−ızE

∫
dzeı(HS(Z)+HI(Z,z)+HE(z)) =

∫
C
dz
e−ız(E−H

∗(λ;Z))

zN
. (4.56)

Here we used Eq. (B.9). This integral can be obtained using the Cauchy theorem.

The integrand has a pole of order N at the origin and the integration contour C

is passing below this pole in the complex plane. For E > H∗(λ; Z) the contour

136



can be closed from above to enclose the pole, and there is a nonzero outcome. For

E < H∗(λ; Z) the contour is closed from below where the function is analytic.

Hence the outcome of the integral is zero. The final expression for the normalized

probability density of system degrees of freedom is given by:

fS(Z) =
NΩ̄

2π

(E −H∗(0; Z))N−1

AN
Θ(E −H∗(0; Z)). (4.57)

where Θ denotes the Heaviside step function. The existence of the step function is

a manifestation of the fact that the energy of the system oscillator cannot exceed

that of the system plus environment.

Next consider the N →∞ limit.

lim
N→∞

fS(Z) =
Ω̄

2πE
lim
N→∞

(
1− H∗(Z)/E

N + 1

)N−1

=
Ω̄

2πE
e−E

−1H∗(Z), (4.58)

where we used (4.36) in the last equality. The limit in Eq. (4.58) needs to be

interpreted as follows: For any finite N the probability density (4.57) agrees with

the canonical distribution (4.58) for small energies. However at large enough energies

relative differences become significant. These differences would also show up at high

order moments of position and momenta. The limit in Eq. (4.58) means that given

an energy interval or equivalently a maximum order for the moments of interest,

one can choose a large enough N such that the microcanonical result will agree with

the asymptotic result to the desired degree.

Eq. (4.58) describes a Boltzmann state with the Hamiltonian of mean force

replacing the system Hamiltonian. Note that the same probability distribution

is obtained, albeit for any N , if the system plus environment is sampled from a

canonical distribution. In fact this is how the Hamiltonian of mean force is usually
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motivated. Eq. (4.58) states that for a large environment the phase space density of

the system degrees of freedom is the same if the system plus environment is sampled

from a canonical or microcanonical distribution.

4.5.2 Multi-time Correlations

The most general multi-time correlation function during the nonequilibrium

process can be obtained from the generating functional

Zens[j(·)] = 〈e
∫ τ
0 dtj(t)X(t)〉ens, (4.59)

where X(t) is the solution to the equations of motion with some initial conditions

and the averaging is done over the desired ensemble. Here we will compare the gen-

erating functionals for the canonical and microcanonical ensembles. Any multi-time

correlation can be obtained from the generating functional by applying differential

operators to it, for example:

δ

δj(t1)
Z[j(·)]

∣∣∣
j=0

= 〈X(t1)〉, (4.60)

M
∂

∂t1

δ

δj(t1)
Z[j(·)]

∣∣∣
j=0

= 〈P (t1)〉, (4.61)

M
∂

∂t1

δ

δj(t1)
· · ·M ∂

∂tk

δ

δj(tk)

δ

δj(tk+1)
· · · δ

δj(tl)
Z[j(·)]

∣∣∣
j=0

=

〈P (t1) · · ·P (tk)X(tk+1) · · ·X(tl))〉. (4.62)

Note that even the average appearing in nonequilibrium work relation Eq. (4.20)

can be obtained from this generating functional via

〈e−βW 〉 = e−β∆J 〈eβ
∫ τ
0 dtḟ(t)X(t)〉 = e−β∆JZ[βḟ(·)]. (4.63)
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The results presented in this section thus include that of Sec. 4.3.1 as a sub-case.

The calculation of the generating functional in both canonical and micro-

canonical ensembles is straightforward but tedious. For the canonical ensemble the

calculation involves only Gaussian integrals and the use of properties of the solutions

of the Langevin equation. The derivation for the microcanonical ensemble mimic

closely the treatment presented in Appendix B.1. Here we only provide the final

results.

Zcan[j(·)] = e
∫ τ
0 dtj(t)

(
f(λ0)

MΩ̄2 K(t)+
∫ t
0 dsG(t−s)f(λs)

)
+
∫ τ
0 dt

∫ t
0 dt
′j(t)

(
K(|t−t′|)
βMΩ̄2

)
j(t′)

= exp

(∫ τ

0

dtj(t)〈X(t)〉+

∫ τ

0

dt

∫ t

0

dt′j(t)σxx(t, t
′)j(t′)

)
, (4.64)

Zmc[j(·)] = exp

(∫ τ

0

dtj(t)〈X(t)〉
)

N !(
AD̄[j(·)]

)N/2 IN (√4AD̄[j(·)]
)
. (4.65)

where 〈X(t)〉 stands for the average position at time t and σxx(t, t
′) ≡ 〈X(t)X(t′)〉−

〈X(t)〉〈X(t′)〉 stands for the two time fluctuations of the position. We also defined

D̄[j(·)] ≡
∫ τ

0
dt
∫ t

0
dt′j(t)K(t−t′)

MΩ̄2 j(t′) analogous to D whereby j(t) replaces βḟ(λt).

The equivalence of Zcan and Zmc in the N → ∞ limit for fixed j(·) follows

directly form the asymptotic formula of the Bessel function given by Eq. (4.29).

lim
N→∞

Zmc[j(·)] = Zcan[j(·)] (4.66)

Similar to the discussion at the end of the previous section the meaning of this limit

calls for some elaboration. As mentioned before the generating functional can be

used to obtain correlation functions. For large but fixed N and given force protocol

and temperature, the low order correlation functions for microcanonical and canon-

ical ensembles will be very close. However one can always go to high enough orders
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where relative differences will become significant. The limit in Eq. (4.66) means

that given a certain order we can always choose a large enough N such that the

microcanonical correlation functions up to that order agree with the corresponding

canonical correlation functions to the desired degree.

4.5.3 Equilibration

In Chapter 2 we have proven equilibration for the quantum Brownian motion

model at late times for an uncorrelated initial state whereby the bath is in its isolated

thermal state. As argued in Sec. A.1 in the ~ → 0 limit this implies equilibration

in the classical Brownian motion model. In this section we show that even a bath

initially sampled from a microcanonical ensemble gives rise to equilibration in the

classical Brownian motion model. Recall that we use the word bath for an infinite

environment. Thus the thermodynamic or N → ∞ limit is already taken in this

setup, which is implicit in the assumptions (2.29).

As argued in Chapter 2 for the uncorrelated initial conditions the noise proper-

ties of the environment determine the late-time state of the system completely. Thus

we could simply compare the probability distribution of noise for the two ensembles.

We can do slightly better by directly comparing the resulting moment-generating

functionals at late times. For this purpose let us redefine the generating functional

(4.65) to allow for the late-time limit:

Zens[j(·)] = 〈e
∫ t0+τ
t0

dtj(t)X(t)〉ens, (4.67)

Using the methods of this section (and almost identical calculations to that of Ap-
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pendix B.1) one can show that:

lim
t0→∞

lim
N→∞

Zmc[j(·)] = Zcan[j(·)], (4.68)

which is valid for the proper choice of the microcanonical temperature (4.31).

4.6 Discussion

In this chapter we treated the exactly solvable model of a harmonic oscillator

driven out of equilibrium by an external force and bilinearly coupled to an environ-

ment of N harmonic oscillators. An exact expression for the probability distribution

of work, i.e. Eq. (4.35), is obtained for any value of N , assuming that the combined

system and environment is initially sampled microcanonically. Using this expres-

sion the microcanonical Crook’s relation (4.3) is verified. In the limit of an infinite

environment, nonequilibrium work theorem (4.1) and Crooks’s fluctuation theorem

(4.2) are shown to hold. Finally in Sec. 4.5.2 the equivalence of all multi-time cor-

relations of the system oscillator in the canonical and microcanonical ensembles in

the infinite environment limit is obtained.

Our results support the hypothesis that for macroscopically large environments

the sampling of the initial conditions from a canonical or microcanonical distribution

is equivalent as far as system observables are concerned.

In the model used in this chapter the system oscillator is singled out not

just by the virtue of the time-dependent force being only applied to it but also by

the fact that all the environmental modes are coupled to it but not to each other.

This may seem like a limitation of the model. However, the most general system of
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coupled harmonic oscillators, i.e. allowing for the environmental oscillators to couple

among themselves, can be represented by the model used in this chapter by first

decomposing the environment into its eigenmodes, which in turn leads to a trivial

change in the environment frequencies ωn and coupling constants cn [162]. Since we

allow for arbitrary ωn and cn in our derivation, our model is able to represent any

set of coupled harmonic oscillators. Also refer to Sec. 1.4.3 for further arguments

about the generality of this model.

The fact that a microcanonical bath causes relaxation of the system to the

same equilibrium state as that of a canonical bath (with the proper choice of tem-

perature) when coupled to the system is yet another form of ensemble equivalence.

Although all the forms of ensemble equivalence we discussed in this chapter are quite

intuitive and by no means unexpected, they do not imply each other. At least there

is no a priori reason why all these forms should be satisfied. In our studies of the

Brownian motion model we have not come across any meaningful setup in which

there is no ensemble equivalence in the thermodynamic limit.
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Chapter 5: Macroscopic Quantum Phenomena

5.1 Introduction

Macroscopic quantum phenomena (MQP) manifest in a number of systems.

Superconductivity is probably the oldest example; Bose-Einstein condensate (BEC)

[163] and electro- and opto-mechanical devices [164,165] are amongst the recent ex-

citements. It is a relatively new research venue, with exciting ongoing experiments

and bright prospects, yet with surprisingly little theoretical activity. From the tradi-

tional point of view that macroscopic objects are classical and quantum describes the

microscopic realm, MQP appears like a transgression. This of course is what makes

it interesting intellectually. This simplistic and hitherto rarely challenged view needs

to be scrutinized anew, perhaps eventually with much of the conventional wisdoms

repealed. In a series of papers we attempted to explore systematically into some key

foundational issues of MQP, with the hope of finding a viable theoretical framework

for this new endeavour. The three major themes discussed are the large N expan-

sion, the correlation hierarchy and quantum entanglement for systems of “large”

sizes, with many components or degrees of freedom.
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5.1.1 Quantum / classical, micro / macro

There are many ways to deal with the issue of quantum-classical correspon-

dence [122]. In the most common and traditional view the classical limit corresponds

to ~ → 0, or, invoking the Bohr correspondence principle, the principal quantum

number of a system n→∞, or regarding the coherent state as the “most classical”

quantum state, or the Wigner function as the “closest to classical” distribution. Less

precise criteria also abound, such as the loose concept that a system at high tem-

perature behaves classically, or viewing the thermodynamic / hydrodynamic limits

(of a quantum system) as classical (For a description of the various criteria, see,

e.g., [121]). There are holes in almost all of the above common beliefs. A more so-

phisticated viewpoint invokes decoherence, the process whereby a quantum system

loses its coherence (measured by its quantum phase information) through interac-

tion with its environment [119]. In this chapter we examine the common belief

that quantum pertains to the small (mass, scale) while classical to the large (size,

multiplicity). This common belief now requires a much closer scrutiny in the face

of new challenges from macroscopic quantum phenomena (MQP), namely, quantum

features may show up even at macroscopic scales. A common example is super-

conductivity where the Cooper pairs can extend to very large scales compared to

interatomic distances and Bose-Einstein condensate (BEC) where a large number

N of atoms occupy the same quantum state, the N-body ground state. Other ex-

amples include nanoelectromechanical devices [166] where the center of mass of a

macroscopic classical object, the cantilever, obeys a quantum mechanical equation
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of motion. Experiments to demonstrate the quantum features such as the exis-

tence of interference between two macroscopic objects have been carried out, e.g.,

for C60 molecules passing through two slits [167] or proposed mirror superposition

experiments [168,169].

A most direct account of the difference between the microscopic and the macro-

scopic behaviours of a quantum system is by examining N, the number of physically

relevant (e.g. for atomic systems, forgetting about the tighter-bound substructures)

quantum particles or components in a macroscopic object. One may ask: At what

number of N will it be suitable to describe the object as mesoscopic with quali-

tatively distinct features from microscopic and macroscopic? For classical systems

significant advances in the recent decade have been made in providing a molecular

dynamics basis to the foundations of thermodynamics [7], relating the macroscopic

thermodynamic behaviour of a gas to the chaotic dynamics of its molecular con-

stituents. One could even calculate the range in the number of molecules where

a microscopic system begins to acquire macroscopic behaviour and hence identify

the approximate boundaries of mesoscopia [170]. For quantum systems one needs

to deal with additional concerns of quantum coherence and entanglement which are

critically important issues in quantum information processing [171]. A fundamen-

tal issue in quantum information processing is how the performance of a quantum

information processor alters as one scales the system up. This dependence on N is

known as the “scaling” problem [172].

There are many important and interesting issues of MQP. Of special inter-

est to us is how quantum expresses itself in the macroscopic domain since usually
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macro conjures classicality. In this inquiry even the simplest yet far from naive

questions need to be reconsidered properly. For example, why is it that an os-

tensibly macroscopic object such as a cantilever should follow a quantum equation

of motion. The “center of mass ” is that the quantum mechanical behaviour of

a macroscopic object placed in interaction with an environment, behavior such as

quantum decoherence, fluctuations, dissipation and entanglement, can be captured

by its COM behavior. This is implicitly assumed in many descriptions of MQP but

rarely justified. The conditions upon which this can be justified are explored in [173]

with the derivation of a master equation for N coupled harmonic oscillators (NHO)

in a finite temperature harmonic oscillator bath (A mathematically more vigorous

and complete treatment of NHO system is given in [174]). We continue to explore

the conditions where one could infer macroscopic quantum behavior, specifically in

terms of the existence and degree of quantum entanglement in this coupled NHO

model. One aspect is in terms of entanglement at finite temperature [175–178] and

large distance [69, 179], the other in terms of entanglement between different levels

of structure (micro to meso to macro) [180] and the crucial role in a judicious choice

of the appropriate collective variables [66, 181]. This is discussed in Section 5.2. In

Section 5.4 we use the results of a recent paper on complex quantum network [70]

to illustrate the somewhat counterintuitive finding that entanglement does not nec-

essarily increase with connectivity but varies with the strength of coupling and the

type of connectivity. (See also [182].)
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5.1.2 Pathways toward understanding macroscopic quantum phenom-

ena

In what follows we present two pathways as explored in two recent essays [64,

65]. The first concerns what macroscopic means. Does it mean large size or number

of constituents? What about the degree of complexity of its constituents? What if

the constituents are non-interacting versus interacting? Weakly interacting versus

strongly interacting? The second pathway explores how quantum correlations and

fluctuations impact on MQP using the n-particle-irreducible (nPI) representation.

5.1.2.1 Pathway 1: From the large N perspective

In this paper [64] we used different theories in a variety of contexts to ex-

amine the conditions or criteria whereby a macroscopic quantum system may take

on classical attributes, and, more interestingly, that it keeps some of its quantum

features.

The theories we considered there are, the O(N) quantum mechanical model,

semiclassical stochastic gravity and gauge / string theories; the contexts include

that of a “quantum roll” in inflationary cosmology, entropy generation in quantum

Vlasov equation for plasmas, the leading order and next-to-leading order large N

behaviour, and hydrodynamic / thermodynamic limits. The criteria for classicality

in our consideration include the use of uncertainty relations, the correlation between

classical canonical variables, randomization of quantum phase, environment-induced
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decoherence, decoherent history of hydrodynamic variables, etc.

All this exercise is to ask only one simple question: Is it really so surprising

that quantum features can appear in macroscopic objects? By examining different

representative systems where detailed theoretical analysis has been carried out, we

found that there is no a priori good reason why quantum phenomena in macroscopic

objects cannot exist.

5.1.2.2 Pathway 2: From the Correlation, Coupling and Criticality

Perspectives

In this sequel paper [65] we explored how macroscopic quantum phenomena

can be measured or understood from the behavior of quantum correlations which

exist in a quantum system of many particles or components and how the interaction

strengths change with energy or scale, under ordinary situations and when the sys-

tem is near its critical point. We used the nPI (master) effective action related to

the Boltzmann-BBGKY / Schwinger-Dyson hierarchy of equations as a tool for sys-

tematizing the contributions of higher order correlation functions to the dynamics

of lower order correlation functions.

Together with the large N expansion discussed in our first paper [64] we ex-

plored the conditions whereby an H-theorem is obtained for the O(N) model, which

can be viewed as a signifier of the emergence of macroscopic behavior in the system.

We compared the nonequilibrium dynamics of N atoms in an optical lattice under

the large N (field components), 2PI and second-order perturbative expansions, il-
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lustrating the role of N and N in quantum correlations, coherence and coupling

strength. We also explored the behavior of an interacting quantum system near

its critical point, the effects of quantum and thermal fluctuations and the condi-

tions under which the system manifests infrared dimensional reduction. Finally we

discussed how the effective field theory concept bears on macroscopic quantum phe-

nomena: the running of the coupling parameters with energy or scale imparts a

dynamical-dependent and an interaction-sensitive definition of “macroscopia”.

5.2 Levels of structure and the special role of collective variables

“Macroscopic” conveys a sense of being “large”, but what exactly does “large-

ness” mean? Do all the basic constituents of a large object contribute equally

towards its quantum feature? (This point is highlighted in footnote 2 of [173].) In

some cases we may actually know what the basic constituents are and how they

are organized. A C60 molecule is made of carbon atoms, each atom is made of

nuclei and electrons, each nucleus contains a certain number of protons and neu-

trons, each of them in turn is made up of quarks and gluons. Are we to simply

count the number of quarks /gluons or protons /neutrons when we say an object

is macroscopic? Obviously the tight binding of them to form a nucleus enters into

our consideration when we treat the nucleus as a unit which maintains its own more

or less distinct identity, features and dynamics. Thus when one talks about the

mesoscopic or macroscopic behavior of an object one needs to specify which level of

structure is of special interest, and how important each level contributes to these
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characteristics.

The coupling strength between constituents at each level of structure (e.g.,

inter-atomic) compared to that structure’s coupling with the adjacent and remaining

levels (which can be treated as an environment to this specific level of structure in

an effective theory description, and its influence on it represented as some kind

of noise [183, 184]) will determine the relative weight of each level of structure’s

partaking of the macroscopic object’s overall quantum behavior. Often the best

description of the behavior and dynamics of a particular level of structure is given

by an effective theory for the judiciously chosen “collective variables”.

5.2.1 Choose the right collective variables before considering their

quantum behavior

Same consideration should enter when one looks for the “quantumness” of an

object, be it of meso or macro scale. One can quantize any linear system of whatever

size, even macroscopic objects, such as sound waves from their vibrations. Giving

it a name which ends with an “on” such as phonon and crowning it into a quantum

variable is almost frivolous compared to the task of identifying the correct level

of structure and finding the underlying constituents – the atoms in a lattice in this

example, and their interactions. Constructing the relevant collective variables which

best capture the salient physics of interest should come before one considers their

quantum features. Thus, viewed in this perspective in terms of collective variables,

we see that quantum features need not be restricted to microscopic objects. In
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fact “micro” is ultimately also a relative concept as new “elementary” particles are

discovered which make up the once regarded “micro” objects.

We illustrate this idea first with a discussion of the relevance of the center

of mass variable in capturing the quantum features of a macroscopic object, then

in the following sections, with a description of quantum entanglement between two

macroscopic objects.

5.2.2 The quantum and macroscopic significance of center of mass

variable

We can ask the question: what are the conditions upon which the mechani-

cal and statistical mechanical properties of a macroscopic object can be described

adequately in terms mainly of its center of mass (CoM) variable kinematics and dy-

namics, as captured by a master equation (for the reduced density matrix, with the

environmental variables integrated out). The CoM axiom is an implicit assumption

made in many MQP investigations, namely, that the quantum mechanical behavior

of a macroscopic object, like the nanoelectromechanical oscillator [164, 166], a mir-

ror [168], or a C60 molecule [167], placed in interaction with an environment can be

captured adequately by its CoM behavior. This assertion is intuitively reasonable,

as one might expect it to be true from normal-mode decompositions familiar in

classical mechanics, but when particles (modeled by NHO) interact with each other

(such as in a quantum bound state problem) in addition to interacting with their

common environment, all expressed in terms of the reduced density matrix, it is not
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such a clear-cut result.

With the aim of assessing the validity of the CoM axiom Chou, Hu and Yu [173]

considered a system modeled by N harmonic oscillators interacting with an envi-

ronment consisting of n harmonic oscillators and derived an exact non-Markovian

master equation for such a system in a bath with arbitrary spectral density and

temperature. The authors outlined a procedure to find a canonical transformation

to transform from the individual coordinates (xi, pi) to the collective coordinates

(X̃i, P̃i), i = 1, ..., N where X̃1, P̃1 are the center of mass coordinate and momen-

tum respectively. In fact they considered a more general type of coupling between

the system and the environment in the form f(xi)qj (instead of the ordinarily as-

sumed xiqj) and examined if the CoM coordinate dynamics separates from the

reduced variable dynamics. They noted that if the function f(x) has the property∑N
i=1 f(xi) = f̃(X̃1) + g(X̃2, ..., X̃N), for example f(x) = x or f(x) = x2, one can

split the coupling between the system and environment into couplings containing

the CoM coordinate and the relative coordinates. Tracing out the environmental

degrees of freedom qi, one can easily get the influence action which characterizes the

effect of the environment on the system.

However, as the authors of [173] emphasized, the coarse graining made by

tracing out the environmental variables qi does not necessarily lead to the separation

of the CoM and the relative variables in the effective action. When they are mixed

up and can no longer be written as the sum of these two contributions, the form of

the master equation will be radically altered as it would contain both the relative

variable and the center of mass variable dynamics.
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With these findings they conclude that for the N harmonic oscillators quantum

Brownian motion model, the coupling between the system and the environment

need be bi-linear, in the form xiqj, for this axiom to hold. They also proved that

the potential Vij(xi − xj) is independent of the center of mass coordinate. In that

case, one can say that the quantum evolution of a macroscopic object in a general

environment is completely described by the dynamics of the center of mass canonical

variables (X̃1, P̃1) obeying a master equation of the Hu-Paz-Zhang (HPZ) [28] type.

What is the relevance of this finding to MQP? Within the limitations of the

N harmonic oscillator model it conveys at least two points: 1) For certain types of

coupling the center of mass variable of an object composed of a large number of

constituents does play a role in capturing the collective behavior of this object 2)

Otherwise, more generally, the environment-induced quantum statistical properties

of the system such as decoherence and entanglement could be more complicated.

(For a similar conclusion considering the cross level (of structure) coarse graining,

see [180].)

We next investigate the quantum entanglement between two macroscopic ob-

jects, comparing the entanglement between the micro-variables of their constituents

in two types of couplings: one-to-one and one-to-all. The very different natures

between these two types serve to illustrate the relevance of how the microscopic

constituents organize into a macro object and how entanglement between collective

variables reveals the quantum features of a macroscopic entity.
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5.2.3 Two different interaction patterns

We first apply the methods developed in [173] to the study of the entanglement

between the CoM coordinates of two macroscopic objects. Each macroscopic object

is modeled by N identical coupled oscillators. However, unlike [173], we do not

include an environment in our discussion because our focus is on the entanglement

between the two objects induced by various types of direct interactions between

their microscopic constituents. We denote the coordinates and the momenta of the

microscopic constituents of the two macroscopic objects A and B by {xAi, pAi} and

{xBi, pBi} respectively. The interactions between the microscopic constituents of one

macroscopic object are assumed to be functions of the difference of variables only

and we restrict ourselves to bilinear couplings between the microscopic constituents

of the two macroscopic objects. The total Hamiltonian is then given by:

HA =
N∑
i=1

(
p2
Ai

2M
+

1

2
MΩ2x2

Ai

)
+

N∑
iNEj

Vij (xAi − xAj) , (5.1)

HB =
N∑
i=1

(
p2
Bi

2M
+

1

2
MΩ2x2

Bi

)
+

N∑
iNEj

Vij (xBi − xBj) , (5.2)

HI =
N∑
i,j

GijxAixBj. (5.3)

The canonical transformation described in the Appendix A of [173] can be applied

to each object separately to yield a new set of phase space variables
{
X̃Ai, P̃Ai

}
and

{
X̃Bi, P̃Bi

}
and the associated masses M̃i. Here X̃A1 = 1

N

∑N
n=1 xAi and X̃B1 =

1
N

∑N
n=1 xBi are the CoM coordinates. The Hamiltonians of the macroscopic objects
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can be written in terms of these variables as:

HA =
∑N

i=1

(
P̃ 2
Ai

2M̃i
+ 1

2
M̃iΩ

2X̃2
Ai

)
+ Ṽ

(
X̃A2, · · · , X̃AN

)
= HA,CoM +HA,REL,(5.4)

HB =
∑N

i=1

(
P̃ 2
Bi

2M̃i
+ 1

2
M̃iΩ

2X̃2
Bi

)
+ Ṽ

(
X̃B2, · · · , X̃BN

)
= HB,CoM +HB,REL.(5.5)

It has been proven in [173] that the potential Ṽ is not a function of the CoM variable.

This is a consequence of the form assumed for the potential energy. For a general

bilinear coupling characterized by Gij the interaction Hamiltonian HI can take on a

complicated form, possibly mixing the CoM variables with the relative variables.

In what follows we will focus on two particular choices of Gij, inspired by

Martins [181]. The use of the new set of canonical variables which include the CoM

will help interpret the behaviour of macroscopic entanglement.

5.2.3.1 One-to-one interaction pattern

The one-to-one interaction pattern is defined by Gij = λδij (see Fig. 1(a)). In

other words one constituent particle modeled by an oscillator from object A couples

to one oscillator from object B, assuming that all pairwise couplings have the same

strength. Using the canonical transformation of [173] it can be shown that the

interaction Hamiltonian takes the form:

HI =
∑N

i
λ
M
M̃iX̃AiX̃Bi. (5.6)

Note that pairwise interactions among the original variables translate into pairwise

interactions among the transformed variables. A very important difference is that

whereas the pairwise interactions in the original variables were all of equal strength,
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the strength of the interactions scale with the mass of the variables after the trans-

formation. As a result the relative strength of interactions between variable pairs

are the same for all the variables, including the CoM. To see this explicitly let us

consider the case with Ṽ = 0 for simplicity, namely the microscopic constituents of

each macroscopic object do not interact with each other. Then we rescale the coordi-

nates by X̃Ai → X̄Ai

√
M/M̃i and X̃Bi → X̄Bi

√
M/M̃i, after which the Hamiltonian

takes the form:

H =
∑N

i=1

(
P̄ 2
Ai

2M
+ 1

2
MΩ2X̄2

Ai +
P̄ 2
Bi

2M
+ 1

2
MΩ2X̄2

Bi + λX̄AiX̄Bi

)
. (5.7)

In this form it is easy to see that the effective strength of interactions in the CoM

variable is the same as the effective strength of interactions in all the other variables.

Hence the pairwise interaction pattern will induce the same amount of entanglement

between pairs of transformed variables, without distinguishing the CoM variable.

Entanglement between non-CoM variables would be directly effected if the interac-

tions among the oscillators within the same object, i.e. Vij, are not set to zero. If

we only focus on the effect of the pairwise interactions, it is fair to say that such

interactions couple the pairwise transformed variables with equal effective strength

independent of the size N of the macroscopic objects. As a consequence we expect

the behavior of entanglement between the corresponding variables of the objects to

be independent of the size of the macroscopic objects, even for the CoM coordi-

nate. For instance, at a given temperature the amount of entanglement between the

two corresponding variables of the objects will not depend on N . Also the critical

temperature above which entanglement ceases to exist is independent of N .
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(a) (b)

A AB B

Figure 5.1: Schematic representation of the two types of couplings studied in this chapter:

(a) Pairwise or one-to-one interaction pattern (b) One-to-all interaction pattern

5.2.3.2 One-to-all interaction pattern

The one-to-all interaction pattern is characterized by Gij = λ (see Fig. 1(b)).

Then it is easy to see that the interaction Hamiltonian in the transformed variables

takes the form:

HI = N2λX̃A1X̃B1. (5.8)

Note that one-to-all interaction pattern corresponds to a coupling only between

the CoM variables of the macroscopic objects, the relative variable Hamiltonian

is unaffected. Thus one-to-all pattern differs from the pairwise pattern in that it

distinguishes the CoM variable. Moreover if we perform the same rescaling of the

previous section to determine the effective strength of this coupling we get:

HCoM =
P̄ 2
A1

2M
+

1

2
MΩ2X̄2

A1 +
P̄ 2
B1

2M
+

1

2
MΩ2X̄2

B1 +NλX̄A1X̄B1. (5.9)
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We see that the effective strength of the coupling increases with increasing N for the

one-to-all pattern. Thus, in this case we expect the entanglement between the CoM

variables to increase with increasing size of the macroscopic objects and survive at

higher temperatures.

The one-to-all interaction pattern is crucial for the scaling of the entangle-

ment of CoM variables with N . Hence it is important to investigate if this type of

interaction pattern can occur in realistic situations and if so how common it is. It

is clear that this pattern can not occur in arbitrarily large objects since this would

imply forces which don’t decay with distance. However, it might be applicable to a

certain extend to many-body systems with long-range interactions or to nucleons in

a large nucleus.

5.3 Conditions for CoM variable to decouple and its role in MQP

In this section we derive the necessary and sufficient conditions for the CoM

variables of two macroscopic objects to decouple from the rest of the degrees of

freedom. The macroscopic objects are modeled by N coupled oscillators and interact

via bilinear couplings. Eqs.(5.4, 5.5) show that HA and HB obey the CoM axiom

independently. Below, we demonstrate under which conditions HI = HI,CoM +

HI,REL where HI,CoM is a function of the CoM coordinates of both macroscopic

objects only and HI,REL does not depend on the CoM coordinates of either object.
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Specifically, we will derive the conditions under which

HI = HI,CoM(X̃A1, X̃B1) +HI,REL(X̃A2, · · · , X̃AN , X̃B2, · · · , X̃BN)

= G̃11X̃A1X̃B1 +
∑
i,jNE1

G̃ijX̃AiX̃Bj (5.10)

To this end we follow the strategy adopted in Appendix C of Ref. [173] and determine

the functional form of HI by calculating its partial derivatives.

∂HI

∂X̃A1

=
∑
i,j

Gij
(
∂xAi

X̃A1

)
xBj =

∑
j

xBj

(∑
i

Gij

)
(5.11)

where in the second equality we used ∂xAi/∂X̃A1 = 1 for all i, which can be shown

by explicitly constructing a coordinate transformation whereby one coordinate is

the CoM coordinate. For an example, consider the construction described in the

Appendix B of [173] or the explicit construction described in Section 5.3.1, albeit

with a different normalization for the CoM coordinate. Since we want HI to have

the form given by Eq.(5.10) we require N
∑

i Gij = G̃11, which is independent of

j. Repeating this derivation by replacing subscript A with B we obtain the second

condition that N
∑

j Gij = G̃11, which is independent of i. To summarize, the

necessary and sufficient conditions for the CoM variables of both macroscopic objects

to decouple from the relative coordinates is:

G̃11 = N
∑
i

Gij = N
∑
j

Gij. (5.12)

If we do the same rescaling as in Eq. (5.7) we obtain:

HI,CoM = Ḡ11X̄A1X̄B2 (5.13)

Ḡ11 =
N∑
i=1

gij =
N∑
j=1

gij (5.14)

159



As a quick check it can be easily verified that both the “pairwise” and “one-

to-all” couplings satisfy this condition with Ḡ11 = λ and Ḡ11 = Nλ respectively.

These results agree with Eq. (5.7) and Eq. (5.9).

Up to this point we have only discussed two different patterns of couplings

in detail, the pairwise and one-to-all. By analyzing Eq. (5.14) we can see how the

effective coupling strength of the CoM variables will behave for different patterns.

For instance, if the summations converge as N →∞ we conclude that in the ther-

modynamic limit the effective coupling strength of the CoM variables is an intrinsic

quantity, independent of the size of the system. The only interaction pattern for

which the effective coupling strength is extensive is the one-to-all pattern. Any

other pattern for which the summation in Eq. (5.14) is divergent corresponds to an

effective coupling that increases with the system size. If |gij| > |gik| for k > j > i,

this corresponds to a sub-linear growth. For example:

gij =
λ

(i− j)modN + c1

, where c1 is a constant, (5.15)

Ḡ11 = λ
N∑
i=1

1

(i− j)modN + c1

= λ
N−1∑
i=0

1

i+ c1

−−−−−→
limN→∞

log(N) + c2, (5.16)

where c2 is a constant that depends on c1 and we used the convention (−i)modN =

N − i for i < N . The reason we used (i− j)modN in the interaction term is in order

to satisfy the condition Eq. (5.12). We see that in the thermodynamical limit the

effective interaction strength scales as log(N).
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5.3.1 Explicit Canonical Transformation for N = 2ν

In this section we describe a change of coordinates from the original set

{xAi, xBi} into a new set {XAi, XBi}. This new canonical transformation is more

symmetric than the one used in the previous section and in [173], and allows for a

general analysis for N = 2ν , where ν is an arbitrary integer. Since we are mainly

interested in the behavior of the CoM coordinate (and how it differs from the rest

of the coordinates), we require that the new set includes two coordinates XA1 and

XB1, which correspond to the CoM of objects A and B. 1

This set of new coordinates allow us to generalize our previous analysis to

include randomness in the couplings between the microscopic constituents of objects

A and B which is shown in the next subsection. Our results show that the CoM

variable is singled out by i.i.d. (independent and identically distributed) random

couplings between the micro-variables. Moreover, the properties of the canonical

transformation provide insights into the reason why the CoM variable is special.

To distinguish this set of coordinates from those defined in Section 5.2.3 we

drop the tilde. The transformation described below is only valid for N = 2ν . How-

ever, this is enough for our purpose of addressing MQP for large N .

Let AN be the matrix associated with the linear transformation from the

1Note however that these are not the standard CoM coordinates but are rescaled by a factor

of
√
N , i.e. XA1 = (xA1 + · · · + xAN )/

√
N . See Figure 5.3.1 for the definition of the rest of the

coordinates. This rescaling is purely conventional and does not effect the physical conclusions

drawn about the CoM.
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original coordinates x = {xi} to the new coordinates X = {Xi}. In the rest of the

chapter we denote vectors and matrices with bold characters, whereas individual

entries will be indicated by regular characters with subscripts. Then

X = AN · x. (5.17)

Explicit form of AN for N = 1, 2, 4, 8 is given in Figure 5.3.1 and the procedure

for obtaining N = 2ν for arbitrary integer n is described. For brevity of notation

the subscript N will be dropped in the rest of this section. A nice property of the

transformation matrix is that A−1 = A = AT . Note that A has the first column

(row) of identical entries, which corresponds to the CoM coordinate. The relative

coordinates defined in this section are different from those used in Section 5.2.3 as

defined in [173]. The coordinates of this section are in a way more symmetric; for

instance all the associated masses are equal to the original mass M . Demanding this

symmetry together with the condition that there are two coordinates proportional to

the CoM of each object forces a specific form on the matrix A: all the columns (rows)

corresponding to the relative coordinates have half of the entries with positive and

the other half with negative sign and all equal magnitudes. This property, which

singles out the CoM coordinate kinematically, will play an important role in the

proceeding analysis.

Using the transformation (5.17) we can write the Hamiltonian for the new set

of canonical variables. In this section we will set Vij = 0 since we are interested in

the effect of interactions between the constituents of the two macroscopic objects.

The Hamiltonians HA and HB preserve their original form under the transformation
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Figure 5.2: AN is the transformation matrix from the original coordinates to the new

set of coordinates which include the CoM. A procedure to explicitly construct AN is

illustrated above for N = 2ν . If A2ν is known, A2ν+1 can be constructed by copying

the block matrix A2ν to the off-diagonal blocks and by putting the negative of it to the

lower diagonal. Note that any transformation matrix for a smaller N can be obtained by

restricting to the upper left corner of the larger matrix.
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since ATA = 1. The interaction Hamiltonian becomes:

HI =
∑
ij

XAiGijXBj, G = A · g ·A. (5.18)

As a quick check of this formalism we calculate G for the pairwise and one-to-all

interaction patterns studied in Sections 5.2.3.1 and 5.2.3.2. For pairwise interactions

gab = λδab and we get Gij = λ
∑

abAiaδabAbj = λ (A2)ij = λ1ij = λδij. Note that

each coordinate is coupled with equal strength in this type of coupling (there was no

need to renormalise the coordinates since the associated masses are already equal in

this set of coordinates). For one-to-all interactions we have Gab = λ which translates

to Gij = λ
∑

abAiaAbj = λ (
∑

aAia) (
∑

bAbj) = Nλδi1δ1j. Note that only the CoM

coordinates are coupled in this type of interaction and the coupling strength scales

as N , which agrees with previous analysis.

5.3.2 Independent and Identically Distributed Gaussian Couplings

In previous sections we treated coupling patterns that are deterministic. It

is reasonable to ask whether the conclusions we reach about the significance of the

CoM coordinate and its decoupling from the relative coordinates are stable under

perturbations. To investigate this issue, we reconsider the one-to-one and one-to-all

patterns and this time allow for Gaussian variations around the non-zero coupling

strengths. Our analysis shows that the conclusions of previous sections regarding

the significance of the CoM variable and the decoupling of it from the relative

coordinates are not altered by the addition of fluctuations.

Note that in what follows we do not allow for fluctuations in the vanishing
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coupling strengths, for example the non-pairwise coupling strengths in the one-to-

one pattern (see Eq. (5.24)). We motivate this choice by noting that the vanishing

couplings can be the result of a constraint based on symmetry or geometry and thus

immune to fluctuations. On the other hand, to assume that the values of non-zero

coupling constants are fixed without fluctuations would be more difficult to justify,

hence the need to study fluctuations.

5.3.2.1 One-to-all interaction pattern

With the canonical transformation of the previous section we can address

the case where the coupling constants gij are sampled from identical independent

Gaussian distributions characterised by the mean and variances:

〈Gab〉 = Ḡ (5.19)

〈GabGcd〉 − 〈Gab〉〈Gcd〉 = δacδbdσ
2
G (5.20)

We now ask the question, how do the coupling constants Gij behave? We can use the

transformation (5.17) and the properties of the matrix A to calculate the statistical
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properties as:

〈Gij〉 =
∑
ab

Aia〈Gab〉Abj

= Ḡ

(∑
a

Aia

)(∑
b

Abj

)
= N Ḡδi1δj1 (5.21)

〈GijGkl〉 = 〈
∑
ab

AiaGabAbj
∑
cd

AkcGcdAdl〉

=
∑
abcd

AiaAbjAkcAdl
(
Ḡ2 + δacδbdσ

2
G
)

= N2Ḡ2δi1δj1δk1δl1 + σ2
G
(
A2
)
ik

(
A2
)
jl

〈GijGkl〉 − 〈Gij〉〈Gkl〉 = σ2
Gδikδjl (5.22)

Thus if the couplings between the constituents of the macroscopic objects are statis-

tically independent Gaussian random variables, the corresponding couplings between

the new variables are also independent Gaussian random variables, which follows

from the fact that the new and old variables are related by a linear transformation.

The main difference is that only the CoM-to-CoM coupling has a non vanishing

expectation value which is equal to the expectation value of the couplings of the

original coordinates multiplied by N . As expected, the average behavior is that

of the deterministic rule around which we are perturbing. On the other hand, the

coupling constants of all of the new coordinates, i.e. both CoM and relative coor-

dinates, have the same variance which is the same as the variance of the couplings

of the original coordinates. Note that the fluctuations of the CoM coupling become

negligible in the thermodynamic limit, but not those of the relative coordinates.

Thus the conclusions of previous sections about the CoM hold with respect to the

perturbations considered here in the thermodynamic limit.
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5.3.2.2 One-to-one interaction pattern

Here we repeat the analysis of the previous section for the one-to-one cou-

pling pattern. The coupling constants gij are sampled from identical independent

Gaussian distributions characterised by the mean and variances:2

〈Gab〉 = Ḡδab (5.23)

〈GabGcd〉 − 〈Gab〉〈Gcd〉 = δabδacδbdσ
2
G (5.24)

We now ask the question, how do the coupling constants Gij behave? After some

algebra we get:

〈Gij〉 =
∑
ab

Aia〈Gab〉Abj = Ḡ

(∑
a

AiaAaj

)
= Ḡδij (5.25)

〈GijGkl〉 = 〈
∑
ab

AiaGabAbj
∑
cd

AkcGcdAdl〉

=
∑
abcd

AiaAbjAkcAdl
(
Ḡ2δabδcd + δabδacδbdσ

2
G
)

= Ḡ2δijδkl + σ2
G

∑
a

(AiaAjaAkaAla)

|〈GijGkl〉 − 〈Gij〉〈Gkl〉| ≤ σ2
G/N. (5.26)

In the last step we used the fact that the matrix elements of A are ±1/
√
N to

conclude that |
∑

a (AiaAjaAkaAla)| ≤ 1/N . We see that, unlike the one-to-all

case, the CoM coupling behaves the same as those of the relative coordinates and

for CoM as well as relative coordinates the fluctuations become negligible in the

thermodynamic limit.

2Note the difference with Eq. (5.20) in the variance term. As mentioned before, we allow for

fluctuations of couplings with non-vanishing means only.
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5.4 Macroscopic quantum phenomena from the entanglement per-

spective

Entanglement is considered as a uniquely quantum feature [25], and quantum

is habitually viewed as a zero or low temperature phenomenon, pertaining only to

small systems. Both of these conditions are now being reconsidered, the “small

system” restriction facing new challenges from macroscopic quantum phenomena

(MQP) we are considering here. The “low temperature” restriction is lifted by

theoretical observations [68, 185] and experimental proposals [186] that entangle-

ment can survive at high temperatures, some even speculate that it is witnessed in

biological systems [187].

5.4.1 Quantum entanglement at high temperatures and long dis-

tances?

Theoretical analysis of this issue for such systems has been carried out for

coupled oscillator chain (1D) [175] or lattices (2D or 3D), where bounds and phase

diagrams showing entangled and separable states were obtained by Anders [176]. For

a nice exposé of the general issues on this topic we refer readers to the Discussion

and Conclusion Section of [177].

Thermal entanglement can be studied by generalizing the (zero-temperature)

quantum field mimicking a harmonic lattice to a thermal (finite temperature) field.

In terms of model description quantum entanglement between two inertial harmonic
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oscillators interacting via a zero-temperature quantum field was studied earlier by

Lin and Hu [188] who showed that in addition to the temporal evolution of their

entanglement there is also a dependence on their spatial separation. This general-

ization is done recently in [178] wherein both the temporal and spatial dependence

of quantum entanglement studied before are shown to be sensitive to temperature

variation. These authors also considered thermal entanglement in a harmonic lattice

but with strong coupling, extending the comprehensive study of [177].

Another aspect is how much quantum entanglement can survive at large dis-

tance. Long-range entanglement in a coupled oscillator chain was claimed by Wolf

et al [69]. Their setup of two harmonic oscillators interacting with a one dimensional

harmonic lattice in a Gibbs state and their choice of parameters (continuum limit)

map snugly to the thermal field model mentioned above. There are advantages in

approaching the thermal entanglement issue for continuum systems from a quantum

field theory perspective. Besides the technical ease to perform integrals over finite

sums, the special properties of lower-dimensional systems (such as the Coleman-

Mermin-Wegner theorem and the Berezinskii-Kosterlitz-Thouless phase transition)

are well known, in some cases aided by elegant conformal field theory properties.

This calculation is presently carried out in [179] where existence of zeros in the

spectral density is found to be the cause of long-range entanglement. How general

is this tie has yet to be decided.
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5.4.2 Quantum networks: more connected not always more entangled

Finally we mention the results from a recent paper to illustrate a point on

the relation between connectivity in a quantum network and entanglement. The

following are excerpted from Cardillo et al. [70].

A network is defined as a set of N nodes and E edges accounting for their

pairwise interactions. The network is usually characterized by its adjacency matrix,

A, with elements Aij = 1 if an edge connects nodes i and j while Aij = 0 otherwise.

We restrict attention to the undirected network where Aij = Aji. The Laplacian

is related to the adjacency matrix by Lij = kiδij − Aij, where ki =
∑

j Aij is the

connectivity of node i, i.e., the number of nodes connected to i.

We can represent the nodes of the network by identical quantum oscillators

interacting in accordance to the network topology encoded in L. The Hamiltonian

of the harmonic quantum network is given by:

Hnetwork =
1

2

(
pTp + xT(I + 2cL)x

)
, (5.27)

here I is the N × N identity matrix, c is the coupling strength between connected

oscillators while pT = (p1, p2, ..., pN) and xT = (x1, , x2, ..., xN) are the operators

corresponding to the momenta and positions of nodes respectively, satisfying the

usual commutation relations: [x,pT] = i~I.

The properties of the ground state of Hamiltonian (5.27) can be studied to

quantify the amount of information each element of a network shares with the rest

of the system via quantum fluctuations. Even at zero temperature the nodes are not
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at rest due to Heisenberg uncertainty principle. Their spatial fluctuations depend

on the pattern of physical interactions, i.e., the network structure. To show this,

the authors of Cardillo et al. [70] consider the partition of the network into a node,

say i, and its complement ic, i.e. the rest of the network. The mutual information

shared by the two parties is given by:

I(i|ic) = Si + Sic − Stot. (5.28)

Here Si and Sic are marginal entropies and Stot is the total entropy of the network. It

is natural to choose the Von Neumann entropy to quantify the quantum information

of the system, yielding Stot = 0 for the ground state (as it is a pure state). Since

the total network is in its ground (and pure) state we have Si = Sic = I(i|ic)/2.

Therefore, the information that a node shares with the network is intrinsically due

to quantum correlations. Equivalently, the mutual information is, itself, a measure

of the entanglement (quantified by Si) between a single node and the rest of the

system.

The authors then quantify the entanglement entropies of nodes embedded in

different network topologies. They consider two homogeneous network substrates:

(i) Random Regular Graphs (RRG), in which all the nodes have the same num-

ber of contacts (ki = 〈k〉,∀i), and (ii) Erdős-Rényi (ER) networks [189], for which

the probability of finding a node with k neighbors, P (k), follows a Poisson distri-

bution so that most of the nodes have a degree k close to the average 〈k〉. They

also analyze two networks having a scale-free (SF) pattern for the probability dis-

tribution, P (k) ∼ k−3, constructed by means of a configurational random model

171



(SF-CONF) [190] and the Barabási-Albert model (SF-BA) [191]. Their results are

presented in plots of the average entanglement entropy of a node with connectivity

k, i.e 〈Sk〉, vs k for the three network models: ER, SF-CONF and SF-BA.

Interesting features can be gleaned from the figures in [70]: Fig.2 plots 〈Sk〉 for

fixed average connectivity 〈k〉 and 4 different values of coupling strength c. It shows

that the average entanglement of a node with given connectivity k increases with in-

creasing coupling strength. As a check the case c = 0 corresponds to non-interacting

oscillators which in their ground state are not entangled. It is expected that as the

interactions get stronger the ground state becomes more and more entangled. Fig.3

plots 〈Sk〉 vs k for fixed c and different values of 〈k〉. It can be seen that for fixed

k the entanglement 〈Sk〉 increases for decreasing 〈k〉 for all graphs.

Here we offer some tentative explanations on such qualitative behaviors. We

can understand this using the idea of monogamy of entanglement, which says that

a system which is fully entangled to another system cannot be entangled to a third

system. Keeping k fixed while decreasing 〈k〉 amounts to reducing the connections

the neighbors of the node of interest has. Thus its neighbors have less neighbors

to get entangled with. As a result they can be entangled more with the node of

interest.

Another observation we can make from both Fig.2 and Fig.3, which is less

intuitive, is the fact that 〈Sk〉 flattens out for ER for large 〈k〉 and first rises and

then falls for SF. This indicates that for ER the nodes with large connectivity have

all the same amount of entanglement with the rest of the network. On the other

hand for SF there is an optimal number for the connectivity such that those nodes
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with the optimal number of connections have the highest amount of entanglement

with the rest of the network.

How can we make sense of this? Naively one expects the entanglement to

increase with increasing number of connections, because more connections means

more correlations. However entanglement is not just correlations. There may be

a competition between correlations and monogamy of entanglement (or some argu-

ment using properties of quantum mutual information) that causes the rise and fall

of entanglement in SF and the saturation in ER.

5.5 Discussion

In this chapter, we studied the relevance of interaction patterns between the

microscopic constituents of two macroscopic objects, modeled by N harmonic oscil-

lators, to the adequacy of the CoM variable as a quantifier of the quantum behavior

of macroscopic objects. We focused on two types of coupling patterns : one-to-one

(or pairwise) and one-to-all. In the former case we observed that although a trans-

formation to a set of decoupled coordinates is possible, no linear transformation

singles out a coordinate. This is in contrast to the latter case, where only the CoM

coordinates of the objects are coupled and the coupling strength scales with N .

Using the explicit transformation 5.3.1 we constructed for N = 2ν , we analyzed the

effect of Gaussian fluctuations in the couplings among the microscopic constituents

on the couplings among transformed coordinates. We showed that in the large N

limit the fluctuations of the CoM coupling becomes negligible for both patterns,

meaning that our conclusions are stable against this type of perturbations.
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Chapter 6: Conclusion

In this dissertation we presented our contributions in three areas: nonequi-

librium fluctuation theorems, equilibrium states in the strong coupling limit and

macroscopic quantum phenomena. In this chapter we summarize our findings, dis-

cuss their implications to the issues raised in the Motivation 1.1 and point at future

directions.

6.1 Equilibrium states in the strong coupling regime

An important component of nonequilibrium statistical mechanics is to describe

the relaxation to equilibrium. In closed systems, like a gas in an isolated container,

equilibration can occur due to the large number of constituents and the complexity

of the underlying dynamics, as exemplified by the Boltzmann equation. On the

other hand, integrable systems like QBM or small systems need to be coupled to

a bath in order to equilibrate. Assuming the existence of thermal states in nature,

we asked the following questions: to what state do systems (not necessarily weakly)

coupled to large thermal environments relax, and how does this state differ from

the thermal state for non-vanishing coupling strength? These questions are relevant

for practical purposes, since in most experimental setups equilibrium systems are
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prepared by being placed in thermal contact with a heat bath.

To address this question we investigated the late-time steady states of open

quantum systems coupled to a thermal reservoir in the strong coupling regime in

Chapter 2. Beyond the weak coupling limit the asymptotic state shows deviations

from the canonical density matrix. We used a variety of nonequilibrium formalisms

valid for non-Markovian processes to show that starting from a product state of the

closed system = system + environment , with the environment in its thermal state,

the open system which includes the back-action of the coarse grained environment

will evolve towards an equilibrium state at late times. This state can be expressed

as the state obtained by tracing out the environment in the closed system thermal

state (at the temperature of the initial state of the environment):

ρC(0) = ρS(0)⊗ e−βHE

ZE(β)
, (6.1)

lim
t→∞

ρS(t) = TrE

[
e−βHC

ZC(β)

]
≡ ρeq. (6.2)

Above, S, E and C refer to system, environment and closed system = system +

environment. HC includes an interaction term besides the system and environment

Hamiltonians. Z(β) denotes the partition function. We expect this result to be

relevant to small systems to the degree they are likely to be strongly coupled to

their environments.

In the vanishing coupling limit the relaxation rates vanish and relaxation takes

an infinite amount of time. Thus, it is important to go beyond this limit in order

to gain access to the time scales of equilibration. Note that the relaxation rates we

are referring to here are those due to environmental influences. Other mechanisms
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may bring about local equilibration in large systems at different rates which are

independent of system size. Yet the time scales to reach equilibrium with an external

environment are determined by the system-environment coupling strength.

For the exactly solvable quantum Brownian motion model we were able to

go beyond the limitations of the density matrix formalism and show in a rigorous

way that all multi-time correlations of the open system evolve towards those of the

closed system thermal state. Multi-time correlations are especially relevant in the

non-Markovian regime, since they cannot be generated by the dynamics of the single-

time correlations using the quantum regression theorem. Showing equilibration at

the level of density matrices only may not be enough for all applications. For

instance, let us imagine a situation in which the equilibrium system of interest is

coupled to yet another, much smaller system to which it serves as an environment.

The system will induce non-Markovian dynamics on the smaller system since it

is a finite environment, with the system’s multi-time correlations determining the

nature of the noise, such as multiplicative for nonlinear systems and colored as

opposed to white. The state of the small system, given by its density matrix, and as

a consequence all single-time expectation values will depend on noise statistics. This

demonstrates that multi-time correlations play an important role in an equilibrium

system’s capacity to serve as an environment to other, much smaller, systems.

In this dissertation we have not focused on the nature of the difference between

the equilibrium state defined in Eq. 6.2 and the thermal state. A quantification in

terms of the Hamiltonian of mean force for the special case of an Ohmic environment

is given by Hilt et al. [93]. Characterizing this difference for general environments
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would be a useful next step.

For general systems beyond the linear quantum Brownian motion model, which

cannot be exactly solved, we were able to provide a general proof that all single-time

correlations of the open system evolve to those of the closed system thermal state,

to second-order in coupling strength. For the special case of a zero-temperature

reservoir, we were able to explicitly construct the reduced closed system thermal

state in terms of the environmental correlations. Due to unavoidable degeneracy

the second-order master equation cannot determine the second-order corrections to

the diagonal elements of the density matrix. A fourth-order master equation is

required to obtain the full second-order solution, so a useful extension of our work

would be to attempt to derive the equilibrium state from the fourth-order master

equation in order to prove full equilibration of the density matrix to second-order.

A complete proof, which would be non-perturbative for non-linear systems,

would have to be very different than the second-order proof presented here. Our

nonlinear proof, though very general in its application to different systems and

environments, is not robust enough for non-perturbative multi-time correlations. It

is not immediately clear how such a proof could be attempted, whereas the elegance

of the final result makes the possibility of its existence seem reasonable.

An analogous proof for classical systems should be attempted by coarse grain-

ing the symplectomorphic (Hamiltonian) time evolution of the system and envi-

ronment in much the same way that quantum master equations result from coarse

graining the unitary time evolution of the system and environment. Unfortunately

the literature on such an analog is not well developed (e.g., it would involve higher-
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order Fokker-Planck equations which might only perturbatively preserve probabil-

ity), and this would be more mathematically challenging than the quantum proof.

Note that the ~→ 0 limit of the quantum results obtained in this chapter yield the

corresponding classical results, as has been argued in Appendix A.1.

Finally, equilibration via coupling to a microcanonical environment, as op-

posed to a thermal state, has been demonstrated for the classical Brownian motion

model in Chapter 4. It would be interesting to extend this result to the QBM model.

6.2 Quantum Fluctuation Theorems

The main conceptual obstacle in deriving fluctuation theorems for quantum

systems is how to make sense of quantities like work in a quantum setting. Ap-

proaches in the literature to address this difficulty may be grouped into two, those

who try to make sense of trajectories in quantum mechanics [98,103,107,192] (mostly

applied to systems interacting with an environment or being monitored via measure-

ments) and those proposing definitions of work that do not rely on the trajectory

concept at all [63] (mostly applied to closed quantum systems). Our approach falls

into the former category.

In Chapter 3 we used the decoherent histories conceptual framework to explain

how the notion of trajectories in a quantum system can be made viable and subse-

quently used these trajectories to define work for open quantum systems. Decoherent

histories formalism enables one to consider trajectories in quantum mechanics with-

out the need to make measurements (or the existence of an observer), much like in
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classical mechanics. In this formalism trajectories emerge in quantum mechanics as

a result of coarse graining. Having justified the use of trajectories, we provided a

first-principles analysis of the nonequilibrium work relation and Crooks’s fluctuation

theorem for a quantum system interacting with a general environment based on the

QBM model.

In the high-temperature limit we recover the classical fluctuation theorems

as applied to the system + environment as a closed system. Moreover this result

is proven for a bath composed of uncountably many oscillators, whereas standard

proofs usually presuppose systems with a finite number of degrees of freedom. A

phenomenological Langevin equation has been used before to derive fluctuation the-

orems for a damped harmonic oscillator [130] which is equivalent to the classical

limit of our result. Yet phenomenological approaches have their limitations. For

instance, in [130] the free energy difference is mistakenly interpreted as that of the

free oscillator since there is not enough information to track down its origin. More-

over the system is initially assumed to be in its isolated thermal state with the noise

being uncorrelated from initial conditions. We show that this scheme works only due

to some coincidences particular to the linear oscillator model, whereas in the true

Langevin equation there are strong correlations between system initial conditions

and the noise, and the free energy difference is that of the combined system. This

kind of ambiguity and disconnectedness, often found in phenomenological models

in the literature, heightens the importance and advantage of using a first-principles

approach based on microphysics models, as is adopted here.

At low temperatures we speculated on the existence of a regime where fluctu-
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ation theorems formulated according to the classical prescription may not hold, but

came short of working this out quantitatively. An analysis of the statistics of noise

reveals that the discrepancy between quantum and classical gets larger at lower

temperatures. At the same time noise gets weaker and only coarsely grained, or

fuzzy, trajectories decohere. This is because the minimum level of coarse graining

that would allow a consistent trajectory description is determined by the strength

of the noise in the decoherent histories approach and thus depends on temperature.

The fuzziness (or lack of precision) of the trajectories in turn reduces the accuracy

at which averages can be calculated. Thus, there are two competing effects re-

garding possible violations of fluctuation theorems. At low temperatures deviations

due to quantum effects become significant, but they are masked to some degree by

the decreased precision at which trajectories can be meaningfully resolved. Here

we emphasize a fundamental difference between classical and quantum systems. In

quantum mechanics the ability to resolve trajectories is not only determined by the

precision of the measurement device but also by the temperature.

In the future we want to answer the following question: Is there a temperature

range for which experiments done to the precision prescribed by the decoherent

histories interpretation result in deviations from the fluctuation theorems beyond

that caused by the limited precision. If so what are the form of the corrections? Such

a deviation would be due to quantum mechanics exclusively, and this is what we

mean by violations of the fluctuation theorems at low temperatures due to quantum

mechanical effects. To the best of our knowledge, this statement of the problem in

terms of the interplay between precision and temperature is original to us.
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The use of open quantum system concepts and especially the influence func-

tional method adopted here enable us to define and quantify heat flow in terms

of the dissipative dynamics of the open system which results from a self-consistent

treatment of the back-action from its environment. We want to take advantage of

this approach to address questions about energy exchange between the system and

the bath, and apply it to fluctuation theorems related to entropy production.

6.3 Microcanonical Fluctuation Theorems

The sampling of initial conditions from the canonical ensemble in the deriva-

tion of fluctuation theorems for isolated systems is somewhat counter-intuitive since

isolated systems are typically associated with the microcanonical ensemble. On

the other hand, for a system interacting with a large environment it has been ar-

gued [96, 159, 160] that the validity of these theorems might be insensitive to the

ensemble used and that the canonical ensemble should be viewed primarily as a

computational convenience. This intuition is based on the idea of ensemble equiva-

lence . In Chapter 4 we confirmed this intuition for the Brownian motion model via

exact calculations, yet there are many reasons why this intuition should be doubted.

First, ensemble equivalence is usually discussed in homogenous systems (like

a gas in a container) and not a system + environment setting. Also equivalence of

ensembles is established for certain thermodynamic quantities like energy, pressure,

etc. In the context of fluctuation theorems we are interested in fluctuations of work,

which is a functional of the system trajectory over a time interval. Moreover, very
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rare large fluctuations are known to dominate the average in the nonequilibrium

work theorem. Ensemble equivalence results do not make any claim about such

small probability events or about fluctuations in general; in fact they are aimed at

the thermodynamic limit where fluctuations are small and usually neglected.

As a result, our demonstration of the validity of fluctuation theorems using

the microcanonical ensemble in the infinite environment limit, albeit for a partic-

ular model, is valuable as a proof of principle. In the process we derived exact

expressions for the work distribution for finite environments, from which the rate

of convergence of various quantities can be obtained. We also showed the equiva-

lence of all multi-time correlation functions of the system in the infinite environment

limit for canonical and microcanonical ensembles. Finally we showed that when cou-

pled to a harmonic oscillator both ensembles cause the system oscillator to relax to

the same equilibrium state. Thus we have demonstrated ensemble equivalence in a

number of ways that are usually not considered.

Treatment of a nonlinear model would be a natural extension to this work.

The O(N) x4 theory we studied in some previous work [64,65], not presented in this

dissertation, appears to be a good candidate. This theory has a sensible large N

limit and a controlled (non-perturbative) 1/N expansion we can work with.

6.4 Macroscopic Quantum Phenomena

In Chapter 5 we presented several pathways toward understanding MQP, iden-

tified some key issues we need to address or be concerned with, and provided some
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examples to illustrate possibly counter-intuitive behavior. For quantum entangle-

ment, specifically, using its extent and behavior to measure the quantumness of a

system, we pointed out the necessity to recognize the levels of structure and the use-

fulness of collective variables in describing a macroscopic composite object when we

try to identify its quantum features. One needs to be aware of the qualitative differ-

ences between the entanglement amongst the micro-constituents and that between

collective variables which reveal MQP.

For concrete calculations we studied a model where two macro objects are

made up of a large number of coupled oscillators. To understand how the coupling

pattern amongst the constituents of the two macro objects enters into the picture,

we considered two types of coupling, each constituent particle is coupled to only

one other particle (1-to-1) versus coupled to all particles (1-to-all). In the 1-1 case

with pairwise interactions of equal strength, the entanglement is independent of the

number of constituent particles N in the macroscopic object. In the 1-to-all case

the relative coordinates are decoupled and the center of mass (CoM) coupling scales

with N . Here we expect the entanglement between the CoM variables to increase

with increasing size of the macroscopic objects and survive at higher temperatures.

We provided a general proof of the conditions whereby the CoM variables decouple

from the rest. For the case the macro objects contain N = 2n constituents, we

provided an explicit canonical transformation, with high symmetry properties, into

a new set of coordinates containing the CoM. Using this transformation we showed

that the decoupling of the CoM coordinates is stable under Gaussian fluctuations

of the coupling strengths.
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Finally we discussed the possibility of entanglement at finite temperature and

at long-ranges, and used quantum coupled oscillator networks to illustrate the vary-

ing degrees of entanglement with different types of connectivity. We hope this sam-

pling of ideas, approaches and illustrative examples will serve as a guide to thinking

about the quantum nature of macroscopic objects, and, perhaps along the way, lead

to a deeper understanding of quantum physics itself.
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Chapter A: Appendix for Chapter 2

In this appendix we provide some technical details that were left out of the

presentation in Chapter 2.

A.1 The triviality of classical, Gaussian noise

While Ref. [81] gives many cases in quantum mechanics in which the effect of

system-environment coupling on the equilibrium state may be overlooked, here we

would like to motivate the fact that this point is often overlooked in the classical

regime as well, perhaps due to the ubiquitous employment of Gaussian noise. Let us

consider the Hamiltonian of a system coupled linearly, via the system operator L,

to an environment of harmonic oscillators, indexed by k, which mock our Gaussian

noise [26, 193].

HC = HS +
∑
k

[
p2
k

2mk

+
mkω

2
k

2
x2
k

]
+ L

∑
k

gkxk + HR,

= HS +
∑
k

[
p2
k

2mk

+
mkω

2
k

2

(
xk −

gkL

mkω2
k

)2
]
, (A.1)

where the linear interaction is included in the square of the environment potential

as a means of “renormalization”. Otherwise, the influence of the environment ef-

fectively introduces a negative L2 term proportional to the cutoff into the system
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Hamiltonian when considering the open-system dynamics.

Tracing over the environmental degrees of freedom is equivalent to integrating

over the environmental dimensions in phase space,

TrE[· · ·] =
∏
k

∫
dxk

∫
dpk · · · , (A.2)

where classically-speaking, xk and pk are independent, commuting variables. There-

fore, in the classical and Gaussian model, relations (2.3) and (2.4) are equivalent

as tracing over the environmental degrees of freedom constitutes a trivial Gaussian

integral in phase space. The classical result can also be reached as the ~→ 0 limit of

the quantum result. This limit is most straight-forward when applied to the Wigner

function, since the ~→ 0 limit of the thermal state Wigner function is well-defined

and gives the classical Boltzmann distribution function. In Eq. 1.15 this is shown

explicitly for the simple harmonic oscillator but is true in general.

For classical open systems it is well known that if the system + environment is

in a thermal state of the full Hamiltonian, which includes the system-environment

coupling, then the reduced distribution of the system is in general not the thermal

distribution of the system Hamiltonian alone. The term potential of mean force

is used in (classical) chemical-physics literature for the quantity that replaces the

potential energy in the Hamiltonian in the familiar Boltzmann distribution [161].

In the literature on quantum open systems the term Hamiltonian of mean force is

used more often nowadays, which in addition includes the kinetic energy term as

the name suggests. We will use this name for the classical case as well. The linear

reservoir is a special case where the Hamiltonian of mean force coincides with the
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system Hamiltonian. The Hamiltonian of mean force is defined by1:

H∗(X,P) ≡ − 1

β
log

∏
k

∫
dxk

∫
dpke

−βHC(X,P;x,p)∏
k′

∫
dxk′

∫
dpk′e−βHE(x,p)

. (A.3)

To the best of our knowledge, the asymptotic time evolution of a general

classical open system, with a nonlinear environment initially in its thermal state, is

not known. We conjecture that the reduced system is asymptotically described by

e−βH
∗

as described in the previous paragraph, and as would follow from (2.4). In

this work we provide a proof of the analogous statement for quantum systems to

second-order in interaction strength. Obviously, our second-order proof extends to

classical systems which can arise in the limit ~→ 0. For linear systems we have an

exact proof, and unlike its classical counterpart, the quantum linear case is highly

nontrivial.

A.2 Theorems on matrix derivatives

Notation and Remarks : A letter in bold like A indicates a matrix. Referring

to an element of the matrix we use subscripts: Aab. The inverse of the matrix is

indicated by A−1. An element of the inverse matrix is written as (A−1)ab to avoid

confusion with 1/Aab. Transpose of the matrix is denoted by AT. Tr without a

subscript indicates ordinary matrix trace. TrC indicates quantum mechanical trace

1In most treatments HR is absent. In that case even for linear reservoir H∗ differs from HS by a

frequency “renormalization”. For instance see Eq. (4.10) of Chapter 4. However, the point is that

this simple frequency shift is much more trivial compared to the quantum mechanical case, where

the Wigner function is altered in a highly nontrivial way due to the coupling to the environment.
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over the closed system Hilbert space. A systematic study of matrix derivatives

including some of the theorems below is given by [194].

Before proceeding to the derivations we clarify a mathematical subtlety. The

theorems derived in this appendix will mostly be applied to symmetric matrices for

which Aab = Aba. When taking the derivative of such a matrix with respect to one

of its elements one can adopt two different conventions. If the derivative is taken

under the constraint that only symmetric variations of the matrix is allowed the

result is:

∂Aab

∂Acd

= δacδbd + δadδbc(1− δab). (A.4)

On the other hand if independent variations of all matrix elements are allowed the

second term in the above equation is absent. In the following theorems we adopt

the second convention.

Theorem 1. Consider a system in a thermal state at inverse temperature β de-

scribed by a Hamiltonian with parametric dependence on a set of variables {λn}.

Then the expectation value of the derivative of the Hamiltonian with respect to these

parameters can be calculated from the partition function by:

〈
∂H

∂λn

〉
C

≡ TrC

[
∂H

∂λn

e−βH

Z

]
= − 1

β

∂

∂λn
ln(Z). (A.5)

Proof. In this proof we will make use of the following operator identity valid for an

arbitrary operator O:

∂

∂λn
eO =

∫ 1

0

dueuO
∂O
∂λn

e(1−u)O. (A.6)
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Using this formula we can write the right hand side (RHS) of Eq. (A.5) as:

− 1

β

∂

∂λn
ln(Z) = − 1

βZ
TrC

[
∂

∂λn
e−βH

]
=

1

βZ
TrC

[
−
∫ 1

0

due−uβH
∂βH

∂λn
e−(1−u)βH

]
.

(A.7)

We use the cyclic property of trace to get:

− 1

β

∂

∂λn
ln(Z) =

1

Z
TrC

[∫ 1

0

du
∂H

∂λn
e−βH

]
=

1

Z
TrC

[
∂H

∂λn
e−βH

]
=

〈
∂H

∂λn

〉
C

. (A.8)

Theorem 2. For a matrix A

Tr log A = log det A. (A.9)

Proof. Trace operation is basis-independent. In the basis in which A is diagonal

log A is also a diagonal matrix with entries log an where an are the eigenvalues of

A. Taking the trace gives:

Tr log A =
∑
n

log an = log

(∏
n

an

)
. (A.10)

The last expression is recognized to be log det A since the product of eigenvalues

equals the determinant.

Theorem 3. For an arbitrary number of matrices Ak indexed by k, the following

is true:

Tr log

(∏
k

Ak

)
=
∑
k

Tr log(Ak) . (A.11)

Proof. To show this equality we make use of Theorem 2, the well known fact that

the determinant of the product of matrices equals the product of the determinants
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and properties of ordinary logarithms:

Tr log

(∏
k

Ak

)
= log det

(∏
k

Ak

)
= log

(∏
k

det Ak

)

=
∑
k

log det Ak =
∑
k

Tr log(Ak) . (A.12)

A corollary of this theorem is the fact that Tr log is invariant under any per-

mutation of its arguments.

Theorem 4. Consider a matrix A and a parameter λ. Then:

∂

∂λ
Tr log A = Tr

[
A−1∂A

∂λ

]
. (A.13)

In particular:

∂

∂A
Tr log A = (A−1)T. (A.14)

where ∂
∂A

is defined as the matrix obtained by differentiating with respect to the

entries of matrix A.

Proof. Let A ≡ 1 + B and use

log(1 + B) = B−B2/2 + B3/3 + · · · , (A.15)

to write the left hand side (LHS) of Eq. (A.13) as:

∂

∂λ
Tr

[
B− B2

2
+

B3

3
+ · · ·

]
= Tr

[
∂B

∂λ
− 1

2
(
∂B

∂λ
B + B

∂B

∂λ
) +

1

3
(
∂B

∂λ
B2 + B

∂B

∂λ
B + B2∂B

∂λ
) + · · ·

]
.

(A.16)
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Using the cyclic property of trace we obtain:

Tr

[
∂B

∂λ

(
1−B + B2 −B3 · · ·

)]
. (A.17)

Note that ∂B/∂λ = ∂A/∂λ and

1−B + B2 −B3 + · · · = (1 + B)−1 = A−1, (A.18)

which proves Eq. (A.13). To prove Eq. (A.14) let λ ≡ Aab.

∂

∂Aab

Tr log A = Tr

[
A−1 ∂A

∂Aab

]
=
∑
cd

(
A−1

)
cd

∂Adc

∂Aab

=
(
A−1

)
ba
. (A.19)

Theorem 5. Let A be an invertible matrix and λ a parameter. Then:

∂A−1

∂λ
= −A−1∂A

∂λ
A−1. (A.20)

In particular:

∂(A−1)ab

∂Amn

= −(A−1)am(A−1)nb. (A.21)

Proof. We write A−1 = A−1AA−1, and differentiate both sides with respect to λ.

Looking at an element of this matrix equation we have:

∂(A−1)ab

∂λ
=
∑
cd

(
∂(A−1)ac

∂λ
Acd(A−1)db + (A−1)ac

∂Acd

∂λ
(A−1)db

+ (A−1)acAcd
∂(A−1)db

∂λ

)
, (A.22)

=
∂(A−1)ab

∂λ
+

(
A−1∂A

∂λ
A−1

)
ab

+
∂(A−1)ab

∂λ
. (A.23)

This proves Eq. (A.20). For the proof of Eq. (A.21) we set λ = Amn.
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A corollary of this theorem is the following identity valid for independent

matrices Ak:

∂

∂A1

Tr
[
A2A

−1
1 A3

]
= −

(
A−1

1 A3A2A
−1
1

)T
. (A.24)

A.3 N-QBM Partition Function

In this section we calculate the partition function of the N-QBM model. Our

treatment mimics and generalizes that of Weiss [30], which treats one system os-

cillator only and does not allow for interactions among reservoir oscillators and

non-diagonal mass matrix.2 The partition function has an imaginary-time path

integral representation given by:

ZC =

∮
DxDX exp

(
−S(E)[x,X]/~

)
, (A.25)

S(E) =

∫ ~β

0

dτL(E)(τ), (A.26)

L(E)(τ) =
1

2

(
ẊTMẊ + XTCX

)
+

1

2

(
ẋTmẋ +

[
x− c−1gX

]T
c
[
x− c−1gX

])
,

(A.27)

where S(E) is the Euclidean action, τ the imaginary time and the path integral is

over all periodic trajectories in the interval [0, ~β]. This path integral is Gaussian

and can be evaluated exactly. It is convenient to represent the integration paths via

2Since a set of non-interacting oscillators can represent the most general Gaussian thermal

reservoir, considering a non-diagonal mass matrix may appear superfluous. However we need the

non-diagonal elements to generate the correlation function of two different reservoir momenta by

partial differentiation of the partition function.
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their Fourier series, which takes care of the condition on periodicity.

x(τ) =
∞∑

r=−∞

xre
ıνrτ , (A.28)

X(τ) =
∞∑

r=−∞

Xre
ıνrτ , (A.29)

where x−r = x†r, X−r = X†r (dagger stands for Hermitian conjugation) since x(τ)

and X(τ) are real and νr ≡ 2πr/~β are the bosonic Matsubara frequencies. Written

in terms of the Fourier coefficients the Euclidean action becomes:

S(E) =
~β
2

∞∑
r=−∞

(
X†r(ν

2
r M + C)Xr

)
+

~β
2

∞∑
r=−∞

(
x†rν

2
r mxr +

[
xr − c−1gXr

]†
c
[
xr − c−1gXr

])
. (A.30)

Next we decompose xr = x̄r + yr where

x̄r = (ν2
r m + c)−1gXr, (A.31)

is chosen such that S(E) does not have a term linear in yr. The action can be written

as:

S(E) = S
(E)
reservoir[y] + S

(E)
system[X], (A.32)

=
~β
2

∞∑
r=−∞

(
y†r(ν

2
r m + c)yr

)
+

~β
2

∞∑
r=−∞

(
X†r(ν

2
r M + C + 2νrγ̂(νr))Xr

)
,

(A.33)

where the damping kernel is given by

γ̂(z) =
1

2
gTm−

1
2ω−1 z

ω2 + z2
ω−1m−

1
2 g, (A.34)
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which is the Laplace transform of Eq. (1.34). The partition function of the closed

system is given by:

ZC = N
∫ ∞∏

r=−∞

dXr exp
(
−S(E)

system[X]/~
)∫ ∞∏

r=−∞

dyr exp
(
−S(E)

reservoir[y]/~
)
.

(A.35)

The normalization factor N is yet unspecified because it is not easy to determine the

measure of the path integral. N will be determined indirectly at the final stage of

this calculation by considering the limiting case of no system-environment coupling.

The integrals in Eq. (A.35) are all Gaussian. Ignoring the normalization for

now the integration gives:

ZC ∝
∞∏

r=−∞

1√
det [ν2

r m + c]

1√
det [ν2

r M + C + 2νrγ̂(νr)]
, (A.36)

∝ 1√
det[c]

1√
det[C]

∞∏
r=1

1

det [ν2
r m + c]

1

det [ν2
r M + C + 2νrγ̂(νr)]

. (A.37)

In the second line we used the fact that the elements of the product corresponding

to positive and negative values of r are identical to restrict the product to positive

r and pulled out the r = 0 entry. To determine the normalization let us recall the

partition function for a simple harmonic oscillator:

Z1HO =
1

2 sinh(β~ω/2)
=

1

β~ω

∞∏
r=1

ν2
r

ω2 + ν2
r

. (A.38)

This naturally generalizes to N harmonic oscillators by:

ZNHO =
1

det[2 sinh(β~ω/2)]
=

1

β~ det[ω]

∞∏
r=1

ν2
r

det[ω2 + ν2
r ]
. (A.39)

In the limit of no coupling we demand that the partition function be a product of

two partition functions of this form. This condition fixes the normalization and the
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final answer is:

ZC = ZE × det

(
1

β~Ω

) ∞∏
r=1

det

(
ν2

r

Ω2 + ν2
r + 2M− 1

2νrγ̂(νr)M
− 1

2

)
, (A.40)

where ZE = Tr [exp(−βHE)] is the partition function of reservoir oscillators without

coupling to the system. Using the definition(1.38) the partition function can also

be written as:

ZC = ZE × det

(
1

~βΩ

) ∞∏
r=1

det
(
Mν2

r Ĝ(νr)
)
. (A.41)

A.4 Derivation of Eqs. (2.19-2.24)

In this appendix we derive some of the results presented in Sec. 2.2.2. An-

gular bracket with the subscript C denotes expectation values in the closed system

thermal state. Expectation values in the uncorrelated state are denoted by attach-

ing the subscript E to the bracket. Note that the damping kernel depends on the

environmental variables and the coupling constants alone. There is no dependence

on system variables. Using Eq. (2.10) we calculate the single-time system position-

position correlation as:

〈(
XXT

)
AB

〉
C

=
1

β

∂

∂CAB

Tr log C +
2

β

∂

∂CAB

∞∑
r=1

Tr log
[
M−1Ĝ(νr)

−1
]
, (A.42)

=
1

β

(
C−1

)
AB

+
2

β

∞∑
r=1

Tr

[(
M−1Ĝ(νr)

−1
)−1

M−1∂Ĝ(νr)
−1

∂CAB

]
,

(A.43)

=
1

β
Ĝ(ν0)AB +

2

β

∞∑
r=1

Ĝ(νr)AB, (A.44)

〈
XXT

〉
C

=
1

β
Ĝ(ν0) +

2

β

∞∑
r=1

Ĝ(νr), (A.45)
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where we used the fact that C and Ĝ(νr) are symmetric matrices and Ĝ(ν0) =

Ĝ(0) = C−1. The system momentum-momentum correlations can be calculated in

a similar way using Eq. (2.12).

〈(
PPT

)
AB

〉
C

=
1

β

∂

∂(M−1)AB

Tr log(M−1) (A.46)

+
2

β

∂

∂(M−1)AB

∞∑
r=1

(
Tr log

[
M−1

]
+ Tr log

[
Ĝ(νr)

−1
])
,

=
MAB

β
+

2

β

∞∑
r=1

(
MAB + Tr

[
Ĝ(νr)

∂Ĝ(νr)
−1

∂(M−1)AB

])
, (A.47)

〈
PPT

〉
C

=
M

β
+

2

β

∞∑
r=1

(
M−Mν2

r Ĝ(νr)M
)
. (A.48)

We used Theorem 3 in the first line. In the second line we used Theorem 4 for all

terms and Theorem 5 for the last term with A1,A2,A3 →M−1, ν2
r Ĝ(νr),1.

For the system-environment position correlations note that only the damping

kernel depends on the interaction matrix:

1

β

∂ logZC
∂(gT)Aa

= − 1

β

∞∑
r=1

∂

∂(gT)Aa

Tr log[Ĝ(νr)
−1]− 2

β

∞∑
r=1

∑
BC

Ĝ(νr)BCνr
∂γ̂(νr)CB

∂(gT)Aa

.

(A.49)

The partial derivative of the damping kernel can be calculated explicitly. For this

differentiation it is useful to rewrite γ̂(νr) as:

2νrγ̂(νr) = ν2
r gTc−1

(
m−1 + ν2

r c−1
)−1

c−1g (A.50)
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For brevity of notation we define a(νr) such that γ̂(νr) = 1
2
gTνra(νr)g.

2νr
∂γ̂(νr)CB

∂(gT)Aa

=
∂

∂gaA

∑
ef

(
gT
)

Ce

(
ν2

r a(νr)
)

ef
gfB, (A.51)

=
∑

ef

{
δeaδCA

(
ν2

r a(νr)
)

ef
gfB +

(
gT
)

Ce

(
ν2

r a(νr)
)

ef
δfaδBA

}
, (A.52)

=
(
ν2

r a(νr)g
)

aB
δCA +

(
gTν2

r a(νr)
)

Ca
δBA. (A.53)

Plugging this result in Eq. (A.49) we get:

1

β

∂ logZC
∂gT

= − 2

β

∞∑
r=1

νrĜ(νr)γ̂(νr)g
−1. (A.54)

Using this result in Eq. (2.13) we get Eq. (2.21).

To derive Eq. (2.23) we start from Eq. (2.18):

− 2

β

∂ logZC
∂m−1

=
〈
ppT

〉
E

+
2

β

∞∑
r=1

∂

∂m−1
Tr log

[
M−1Ĝ−1(νr)

]
. (A.55)

Using Theorem4 we get:

∂

∂(m−1)ab

Tr log
[
M−1Ĝ−1(νr)

]
= Tr

[
Ĝ(νr)

∂Ĝ−1(νr)

∂(m−1)ab

]
, (A.56)

where

∂Ĝ−1(νr)

∂(m−1)ab

= 2νr
∂γ̂(νr)

∂(m−1)ab

. (A.57)
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Next use Theorem 5 and plug the result back into Eq. (A.56):

2νr
∂γ̂(νr)

∂(m−1)ab

= −ν2
r gTa(νr)

−1 ∂a(νr)

∂(m−1)ab

a(νr)
−1g, (A.58)

= −ν2
r gTc−1(m−1+ ν2

r c−1)−1∂(m−1+ ν2
r c−1)

∂(m−1)ab

(m−1+ ν2
r c−1)−1c−1g,

(A.59)

Tr

[
Ĝ(νr)

∂Ĝ−1(νr)

∂(m−1)ab

]

=
∑
ABcd

Ĝ(νr)AB

(
−ν2

r

(
gTa(νr)c

)
Bc

∂(m−1 + ν2
r c−1)cd

∂(m−1)ab

(ca(νr)g)dA

)
.

(A.60)

Observe that:

∂(m−1 + ν2
r c−1)cd

∂(m−1)ab

= δcaδdb. (A.61)

It follows that

Tr

[
Ĝ(νr)

∂Ĝ−1(νr)

∂(m−1)ab

]
= −

∑
AB

ν2
r Ĝ(νr)AB

(
gTa(νr)c

)
Ba

(ca(νr)g)bA ,

= −
(
ca(νr)gν

2
r Ĝ(νr)g

Ta(νr)c
)

ba
. (A.62)

In the last step we used the fact that both Ĝ(νr) and a(νr) are symmetric matrices.

Eq. (A.56) becomes:

∂

∂(m−1)
Tr log

[
M−1Ĝ−1(νr)

]
= −ca(νr)gν

2
r Ĝ(νr)g

Ta(νr)c. (A.63)

We plug this into Eq. (A.55) and note that ca(νr) = mf̂(νr) to get Eq. (2.23).

The derivation of Eq. (2.24) is almost identical to that of Eq. (2.23) but with

more terms. We do not show the details of that derivation here.
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A.5 Proof of conclusions of Sec. 2.2.4

Using the fact that all position-momentum correlations vanish we get:

〈
ξ(s)XT

0

〉
C

= gTḟ(s)m
〈
x0X

T
0

〉
C
, (A.64)〈

ξ(s)PT
0

〉
C

= gTf(s)
〈
p0P

T
0

〉
C
, (A.65)

where the expectation values on the RHS are given by Eqs. (2.21,2.22).

〈
ξ(s)XT

0

〉
C

= gTm−
1
2

cos(ωs)

ω2
m−

1
2 g
〈
X0X

T
0

〉
C

+
2

β

∞∑
r=1

gTm−
1
2

cos(ωs)ν2
r

ω2(ω2 + ν2
r )

m−
1
2 gĜ(νr). (A.66)

The first term on the right-hand side can be seen to decay by the fact that

gTm−
1
2

cos(ωs)

ω2
m−

1
2 g = 2γ(s). (A.67)

The second term can be seen to decay by noting the inequality

gTm−
1
2

cos(ωs)ν2
r

ω2(ω2 + ν2
r )

m−
1
2 g ≤ gTm−

1
2

cos(ωs)

ω2
m−

1
2 g ≤ 2γ(s),

in the sense of positive-definite matrix kernels, since both ω2 and (ω2 + ν2
r ) are

positive matrices and cosine is a positive-definite kernel. The summation over r

in Eq. (A.66) is finite as can be seen from Eq. (2.19). As a result
〈
ξ(s)XT

0

〉
C

is

a function that decays over time like γ(s). When we take the convolution of this

with another decaying function Ĝ(t − s) and let t → ∞ the overlap goes to zero.

This way we argue that second line of Eq. (2.28) vanishes. A similar calculation
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establishes the same goes for the third line.

〈
ξ(s)PT

0

〉
C

= gTf(s)c
〈
x0X

T
0

〉
C

M + gTf(s)g
〈
X0X

T
0

〉
C

M, (A.68)

=
1

β

∞∑
r=1

gTf(s)cm−
1
2

ν2
r

ω2(ω2 + ν2
r )

m−
1
2 gĜ(νr)M, (A.69)

=
1

β

∞∑
r=1

gTm−
1
2

sin(ωs)ν2
r

ω(ω2 + ν2
r )

m−
1
2 gĜ(νr)M, (A.70)

= − 1

β

∞∑
r=1

d

ds

[
gTm−

1
2

cos(ωs)ν2
r

ω2(ω2 + ν2
r )

m−
1
2 g

]
Ĝ(νr)M. (A.71)

The term inside square brackets decays as γ(s) as can be seen from Eq. (A.68)

and the argument following it. The summation over r is finite as before. Hence〈
ξ(s)PT

0

〉
C

decays over time like γ̇(s). The convolution of this with another decaying

function G(t− τ) gives zero in the limit t→∞.

The second and third lines of Eq. (2.28) are zero for the uncorrelated initial

state as well. This follows trivially from:
〈
ξ(s)XT

0

〉
E

=
〈
ξ(s)PT

0

〉
E

= 0.

Finally we need to show that the fourth line of Eq. (2.28) is the same for both

cases. This requires showing that the late-time limit of the noise kernel is the same.

We know that the noise kernel is stationary for the uncorrelated initial state. Let

us focus on the noise kernel of the closed system thermal state.

〈
ξ(s)ξ(s′)T

〉
C

= gT
(
ḟ(s)m

〈
x0x

T
0

〉
C

mḟ(s′) + f(s)
〈
p0p

T
0

〉
C

f(s′)
)

g. (A.72)

We use Eqs. (2.23,2.24) on the RHS. The derivation is straightforward but tedious.

The theorems in App. A.2 are utilized repeatedly.

The uncorrelated noise kernel is obtained if only the first terms in Eqs. (2.23,

2.24) are kept and the rest ignored. Hence we need to show that all the other terms

vanish in the late-time limit. The strategy is the same as before: we show that
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these terms are bounded by a function proportional to the damping kernel or its

derivatives. We work out the details for two terms explicitly.

First consider the term in the noise kernel Eq. (A.72) due to the second term

in Eq. (2.24).

gTḟ(s)mc−1g
〈
X0X

T
0

〉
C

gTc−1mḟ(s′)g

= gTm−
1
2 cos(ωs)m−

1
2 mm−

1
2ω−2m−

1
2 g

×
〈
X0X

T
0

〉
C

gTm−
1
2ω−2m−

1
2 mm−

1
2 cos(ωs′)m−

1
2 g, (A.73)

= gTm−
1
2

cos(ωs)

ω2
m−

1
2 g
〈
X0X

T
0

〉
C

gTm−
1
2

cos(ωs′)

ω2
m−

1
2 g,

= 4γ(s)
〈
X0X

T
0

〉
C
γ(s′). (A.74)

Unlike previous cases we were able to express this term exactly in terms of the

damping kernel. It is a decaying function in both s and s′ variables. The convolution

of γ(s) with Ĝ(t−s) in Eq. (2.28) goes to zero if we let t→∞. Similarly the overlap

of γ(s′) with Ĝ(t′ − s′) vanishes in the limit t′ →∞.

Secondly, consider the term in the noise kernel Eq. (A.72) due to the third

term in Eq. (2.24).

− 2

β

∞∑
r=1

gTḟ(s)m−
1
2

1

ω2(ω2 + ν2
r )

m−
1
2 gν2

r Ĝ(νr)g
Tm−

1
2

1

ω2(ω2 + ν2
r )
ω2m−

1
2 mḟ(s′)g

= − 2

β

∞∑
r=1

gTm−
1
2

cos(ωs)

ω2(ω2 + ν2
r )

m−
1
2 gν2

r Ĝ(νr)g
Tm−

1
2

cos(ωs′)

ω2 + ν2
r

m−
1
2 g,

=
2

β

∞∑
r=1

[
gTm−

1
2

cos(ωs)ν2
r

ω2(ω2 + ν2
r )

m−
1
2 g

]
Ĝ(νr)

ν2
r

d2

ds′2

[
gTm−

1
2

cos(ωs′)ν2
r

ω2(ω2 + ν2
r )

m−
1
2 g

]
.

(A.75)

As before we conclude that the terms in square brackets decay like the damping

kernel. The summation over r is finite as can be seen from Eq. (2.19) and noting
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that νr > 1 for all positive r.

Close inspection of all the other terms in Eq. (A.72) reveals that they have

roughly the same form as those we worked out the details explicitly. All these terms

vanish in the late-time limit.

This proves the equivalence of the late-time limit of the uncorrelated initial

state to that of the late-time limit of the closed system thermal state. Since the

closed system thermal state is stationary our proof is complete.
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Chapter B: Appendix for Chapter 4

In this appendix we provide some technical details that are left out of the

presentation in Chapter 4.

B.1 Derivation of the Main Result Eq.(4.20)

In this section we will compute the integrals appearing in Eq. (4.20). But

first we review the integral representation of the delta function to be used in the

derivation.

B.1.1 The Delta Function

The delta functions make the integrals in (4.20) difficult to evaluate. To get

around this difficulty we invoke the following integral representation of the delta

function:

δ(HC(Z, z;λ0)− E) =
1

2π

∫ ∞
−∞

dse−ıs(HC(Z,z;λ0)−E). (B.1)

The logic behind this is to convert the phase space integral into a simple Gaussian

integral. After we perform that integral we will be able to do the s integration as

well.
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Observe that the integral formula for the delta function can be modified by

allowing the integration variable s to have a constant imaginary part. We rename

it z to emphasize the complex nature:

1

2π

∫ ∞−iε
−∞−iε

dze−ız(HC(Z,z;λ0)−E) =
1

2π

∫ ∞
−∞

dse−ı(s−ıε)(HC(Z,z;λ0)−E) (B.2)

= e−ε(HC(Z,z;λ0)−E) 1

2π

∫ ∞
−∞

dse−ıs(HC(Z,z;λ0)−E) (B.3)

= e−ε(HC(Z,z;λ0)−E)δ (HC(Z, z;λ0)− E) (B.4)

= δ (HC(Z, z;λ0)− E) , (B.5)

In the complex plane this contour passes parallel to the real axis, and is shifted down

by an amount ε. One could reach the same result by noting that the integrand in

(B.1) is an analytical function everywhere and thus the integration contour can be

shifted down without changing the value of the integral. We will denote this contour

by C and use

δ(HC(Z, z;λ0)− E) =
1

2π

∫
C
dze−ız(HC(Z,z;λ0)−E). (B.6)

B.1.2 Denominator of Eq. (4.20)

The denominator of Eq. (4.20) gives the density of states associated with the

initial Hamiltonian. Using Eq. (B.6), we write this density as:

Σi(E) =
1

2π

∫
C
dzeızE

∫
dZe−ızHS(Z;λ0)

∫
dze−ız(HI(Z,z)+HE(z)) (B.7)
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We begin by evaluating the last factor appearing above:

∫
dze−ız(HI(Z,z)+HE(z)) =

(
2π

ıωz

)N
exp

(
ızX2

∑
n

g2
n

2mnω2
n

)
(B.8)

=

(
2π

ıωz

)N
eızγ(0)X2

(B.9)

where ωN ≡ ω1 · · ·ωN . The integrals are convergent due to the negative imaginary

part of z as the contour C is shifted below the real axis.

Using the definition of the renormalized frequency (4.10) we get:

Σi(E) =
1

2π

(
2π

ıω

)N ∫
C
dz
eızE

zN

∫
dZe−ızH

∗(Z;λ0) (B.10)

=
1

ıΩ̄

(
2π

ıω

)N ∫
C
dz

eızA

zN+1
, (B.11)

where in the last equality we used the definition of A introduced in Eq. (4.23). The

sign of A will play an important role later in the derivation.

A = E + J (λ)− f(λ)2

2MΩ̄2
= HC(Z, z;λ) + J (λ)− f(λ)2

2MΩ̄2
(B.12)

=
P 2

2M
+

1

2
MΩ̄2

(
X − f(λ)

MΩ̄2

)2

+
N∑
n=1

[
p2
n

2mn

+
1

2
mnω

2
n

(
xn −

gn
mnω2

n

X

)2
]
≥ 0.

(B.13)

A = 0 occurs only for a single point in the phase space. In the rest of this work we

take A > 0. The integral in Eq. (B.11) can be evaluated by enclosing the residue at

the origin,

∫
C
dz

eızA

zN+1
=

2πı

N !
ıNAN . (B.14)

which finally brings us to the expression:

Σi(E) =
1

N !

(2π)N+1

Ω̄ωN
AN . (B.15)
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B.1.3 Numerator of Eq. (4.20)

We begin by using Eq. (B.6) to express the numerator as follows:

e−β̄∆J 1

2π

∫
C
dzeızE

∫
dZe−ızHS(Z;λ0)

∫
dze−ız(HI(Z,z)+HE(z))

× eβ̄
∫ τ
0 dtḟ(λt)[XK(t)+PG(t)+

∫ t
0 dsG(t−s)(f(λs)−2Xγ(s)+ξ(s))] (B.16)

= e−β̄∆J eβ̄
∫ τ
0 dt

∫ t
0 dsḟ(λt)G(t−s)f(λs)

1

2π

∫
C
dzeızE

×
∫
dZe−ızHS(Z;λ0)+X[β̄

∫ τ
0 dtḟ(λt)K(t)−2β̄

∫ τ
0 dt

∫ t
0 dsḟ(λt)G(t−s)γ(s)]+P β̄

∫ τ
0 dtḟ(λt)G(t)

×
∫
dze−ız(HI(Z,z)+HE(z))+β̄

∫ τ
0 dt

∫ t
0 dsḟ(λt)G(t−s)

∑
n gn(xn cos(ωns)+

pn
mnωn

sin(ωns)).

(B.17)

To simplify the notation we define

φn = gnβ̄

∫ τ

0

dt

∫ t

0

dsḟ(λt)G(t− s) cos(ωns), (B.18)

ψn = gnβ̄

∫ τ

0

dt

∫ t

0

dsḟ(λt)G(t− s) sin(ωns), (B.19)

IK =

∫ τ

0

dtḟ(λt)K(t), (B.20)

IG = MΩ̄

∫ τ

0

dtḟ(λt)G(t). (B.21)

After integration by parts the second factor of the first line of Eq. (B.17) can be

rewritten as

eβ̄
∫ τ
0 dt

∫ t
0 dsḟ(λt)G(t−s)f(λs) = eβ̄G−

β̄

MΩ̄2 If−
β̄

MΩ̄2 f(λ0)IK , (B.22)

where If has been defined in (4.25). The last Gaussian integral over z in Eq. (B.17)

yields: (
2π

ıωz

)N
e
ızX2

∑
n

g2n
2mnω

2
n

+X
∑
n
gnφn
mnω

2
n
− ı
z

∑
n
φ2
n+ψ2

n
2mnω

2
n . (B.23)
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The first term in the exponent above can be added to−ızHS(Z;λ0) on the second line

of Eq. (B.17) to give −ızH∗(Z;λ0). The second term in the exponent of Eq. (B.23)

can be shown to be equal to:

X
∑
n

gnφn
mnω2

n

= Xβ̄2

∫ τ

0

dt

∫ t

0

dsḟ(λs)G(t− s)γ(s). (B.24)

This term cancels the corresponding term on the second line of Eq. (B.17).

The third term of the sum in the exponent of Eq. (B.23) is independent of Z

and can be pulled out of the Z integration. Using the definitions of φn and ψn it

can also be written as

B ≡
∑
n

φ2
n + ψ2

n

2mnω2
n

= β̄2

∫ τ

0

dt

∫ τ

0

dt′ḟ(t)ḟ(t′)

∫ t

0

ds

∫ t′

0

ds′G(t− s)γ(s− s′)G(t′ − s′).

(B.25)

In Appendix B.2 it is shown that the expression for B can be simplified further by

using the relations (3.25) to obtain:

2

∫ t

0

ds

∫ t′

0

ds′G(t− s)γ(s− s′)G(t′ − s′) =
K(|t− t′|)
MΩ̄2

− K(t)K(t′)

MΩ̄2
−G(t)G(t′),

(B.26)

B =
β̄2

2Ω̄2

(
2If − I2

K − I2
G

)
. (B.27)

The factor of two in front of If is due to the fact that both integration limits are

from 0 to τ in Eq. (B.25) whereas the second integral is from 0 to t in Eq. (4.25).

Note that B ≥ 0, which can be seen from its definition (B.25). Together

with (B.27) this indicates that If ≥ 0. This fact will soon be used in the following

derivation.
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The Z integration of Eq. (B.17) yields:

∫
dZe−ızH

∗(Z,λ0)+Xβ̄IK =
2π

ıΩ̄z
e−ı

(β̄IK+ızf(λ0))2

2zMΩ̄2 −ızJ (λ0)− ı
z

β̄2I2G
2MΩ̄2 . (B.28)

Gathering all the terms Eq. (B.17) becomes, after a number of cancellations:

(2π)N

ıN+1ωN Ω̄
e−β̄∆J eβ̄G−

β̄

MΩ̄2 If

∫
C
dz
eızA−

ı
z

β̄2

MΩ̄2 If

zN+1
. (B.29)

In order to proceed further we have to treat two cases separately: If > 0 and

If = 0. For the more general case If > 0 we define D as in (4.24) and change the

integration variable to z → z
√
D/A, where D/A > 0 as explained before. Then the

integral becomes

(
A
D

)N/2 ∫
C
dz
eı
√
AD(z− 1

z )

zN+1
. (B.30)

which is proportional to a Bessel function of second kind: (2πı)JN(ı2
√
AD) =

(2πı)ıNIN(
√

4AD). Therefore, the numerator in Eq. (4.20) can finally be written as

e−β̄∆J eβ̄G−β̄
−1D (2π)N+1

ωN Ω̄

AN/2

DN/2
IN(
√

4AD). (B.31)

Combining (B.15) and (B.31) we obtain the final result (4.22).

In the If = 0 case the integral in (B.29) is identical to Eq. (B.11), and cancels

that term in Eq. (4.20) to yield:

〈e−β̄W 〉mc = e−β̄∆F . (B.32)

Note that this is true for any choice of β̄ irrespective of the total energy E. As is

shown in Sec. 4.4.1, this is a consequence of the fact that If = 0 corresponds to a
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delta function work distribution at W = ∆F . One example of this case is given in

Ref. [61]. For realistic environments we expect If > 0.1

Finally we note that the result of If = 0 case, i.e. (B.32), can be recovered

from that of If > 0 case by taking the limit If → 0 (or equivalently D → 0) in (4.22)

and using the asymptotic formula IN(x) ≈ xN/N !2N as x → 0. Thus Eq. (4.22) is

valid for the most general case If ≥ 0.

B.2 Derivation of Eq. (B.26)

To derive Eq. (B.25) we follow the method described in [130]. First ob-

serve that like any even function the damping kernel can be written as: γ(t) =

γ(t)θ(t) + γ(−t)θ(−t). We substitute this form into Eq. (B.25) and then take

Laplace transforms with respect to t and t′ denoted by the operators Lt(z) and

1If ≥ 0 is a direct consequence of and can be proven directly using the fact that γ(t) is a positive

function. Realistic environments will most likely be described by strictly positive dissipation kernels

which in turn yield the strict inequality If > 0 via application of Bohner’s theorem [195]. The

reason behind this is that for an environment with strictly positive dissipation kernel the average

dissipated energy is always positive, whereas for a positive dissipation kernel it is possible that

after a while all the dissipated energy, but not more, can flow back into the system. For any finite

N and arbitrarily large τ this is certainly the case. But for large environments and realistic τ we

expect this special case to be very improbable. If < 0 can not occur in our model as mentioned

before, which is due to the fact that the harmonic oscillator environment is a passive environment.
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Lt′(z′) respectively.

Lt′(z′)Lt(z)

{
2

∫ t

0

ds

∫ t′

0

ds′G(t− s)γ(s− s′)θ(s− s′)G(t′ − s′)

+ 2

∫ t

0

ds

∫ t′

0

ds′G(t− s)γ(s′ − s)θ(s′ − s)G(t′ − s′)
}
.

(B.33)

Let us consider the first term. If we treat γ(s−s′)θ(s−s′) as a function of s only, the

Laplace transform with respect to t has the form of a convolution of this function

with G(t − s). The result is the product of Laplace transforms of each function.

Using the formula for the Laplace transform of time-shifted functions:

Lt(z) {f(t− a)θ(t− a)} = e−azf̂(z), (B.34)

we get for the first term of Eq. (B.33):

Lt′(z′)

{
2

∫ t′

0

ds′G(t′ − s′)γ̂(z)e−zs
′
Ĝ(z)

}
= 2

Ĝ(z)Ĝ(z′)

z + z′
γ̂(z). (B.35)

An identical calculation, except for the change of the order of Laplace transforms,

gives 2 Ĝ(z)Ĝ(z′)
z+z′

γ̂(z′) for the second term of Eq. (B.33). To write the final answer

independent of the damping kernel we use Eq. (3.25) to express γ̂ in terms Ĝ and

K̂.

Ĝ(z)Ĝ(z′)

z + z′

(
K̂(z)

MĜ(z)
+

K̂(z′)

MĜ(z′)
− (z + z′)

)
=
K̂(z)Ĝ(z′) + Ĝ(z)K̂(z′)

M(z + z′)
− Ĝ(z)Ĝ(z′).

(B.36)

Then write the first term exclusively in terms of K̂ again using Eq. (3.25), i.e.

Ĝ(z) =
(

1− zK̂(z)
)
/MΩ̄2.

1

M2Ω̄2

K̂(z) + K̂(z′)

(z + z′)
− K̂(z)K̂(z′)

M2Ω̄2
− Ĝ(z)Ĝ(z′). (B.37)
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Using Lt(z)Lt′(z′)
{
K̂(z)
z+z′

}
= Lt(z)

{
e−t

′zK̂(z)
}

= K(t − t′)θ(t − t′), it is easily

verified that the double inverse Laplace transform of Eq. (B.37) proves Eq. (B.25).
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[190] Michael Molloy and Bruce Reed. A critical point for random graphs with
a given degree sequence. Random Structures & Algorithms, 6(2-3):161–180,
1995.
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