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Topological photonics has opened new avenues to designing photonic devices

along with opening a plethora of applications. Recently, even though there have

been many interesting studies in topological photonics in the classical domain, the

quantum regime has remained largely unexplored. In this thesis, I will demonstrate

a recently developed topological photonic crystal structure for interfacing a single

quantum dot spin with a photon to realize light-matter interaction with topolog-

ical photonic states. Developed on a thin slab of Gallium Arsenide(GaAs) mem-

brane with electron beam lithography, such a device supports two robust counter-

propagating edge states at the boundary of two distinct topological photonic crystals

at near-IR wavelength. I will show the chiral coupling of circularly polarized lights

emitted from a single Indium Arsenide(InAs) quantum dot under a strong magnetic

field into these topological edge modes. Owing to the topological nature of these

guided modes, I will demonstrate this photon routing to be robust against sharp

corners along the waveguide. Additionally, taking it further into the cavity-QED



regime, we will build a topological photonic crystal resonator. This new type of

resonator will be based on valley-Hall topological physics and sustain two counter-

propagating resonator modes. Thanks to the robustness of the topological edge

modes to sharp bends, the newly formed resonators can take various shapes, the

simplest one being a triangular optical resonator. We will study the chiral coupling

of such resonator modes with a single quantum dot emission. Moreover, we will

show an intensity enhancement of a single dot emission when it resonantly couples

with a cavity mode. This new topological photonic crystal platform paves paths for

fault-tolerant complex photonic circuits, secure quantum computation, and explor-

ing unconventional quantum states of light and chiral spin networks.
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Chapter 1: Introduction

1.1 Brief Overview

After its discovery, the topological insulator in condensed matter system [1,2]

gained significant interest for its potential applications. Then the concepts were

translated to optics, giving rise to topological photonics [3, 4]. The conceptual

framework of band topology from condensed matter has successfully been applied

to photonic systems at microwave frequencies in various photonic crystal archi-

tectures [3, 6–8, 60]. Efforts are underway to extend these results into the optical

regime, and there have been notable achievements, for example the realization of

topologically protected edge states with near-infrared light in silicon ring resonator

arrays [9, 10] and visible light in fused silica photonic crystal fibers [11, 12]. One

particularly intriguing phenomena observed with such materials is that they ex-

hibit electronic edge states that can travel along the edge in one direction without

scattering even in the presence of impurities. This is due to the fact that band

topologies are a property of the entire system and not a local property, and so local

perturbations cannot alter the topology of the system.

A major motivation to introduce topologically protected edge states into pho-

tonic systems at optical frequencies is that they could potentially be incorporated
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into photonic integrated circuits which could form an important element in future

telecommunication technologies and reduce loss in the transmission of optical sig-

nals [13–15]. Looking beyond classical information processing, it is conceivable to

interface topologically protected edge states with quantum emitters to realize quan-

tum information processing [16], or more generally a quantum internet [17], and

to perform quantum simulation with photons [18, 19], for example giving rise to

fractional quantum Hall states [20].

The benefit of being able to interface topological light with quantum emitters

is that this can realize strong interactions between photons with directional con-

trol. Although photons are by themselves essentially non-interacting, it is possible

to introduce effective interactions through intermediaries such as cavities [21, 22],

atoms [23–25] or quantum dots [26–28]. Numerous theoretical studies have explored

ways to realize topological states of light in photonic systems [29,30,32–35], but to

my knowledge none have led to the proposal of a readily realizable system in an

all-dielectric substrate which has topological edge states in three dimensions and

can interface directly with quantum emitters and other nanophotonic elements. For

example, many of the structures considered theoretically use an array of rod-like ele-

ments, but the electromagnetic modes of these systems cannot be confined unless the

ends are capped, for example with metals which are inherently dissipative at optical

frequencies, and so cannot be used as a waveguide. Although recent experimental

results have demonstrated chiral modes in one-dimensional photonic waveguides in-

terfaced to emitters [36–38], these modes are not topologically protected, so it would

be difficult to extend to two dimensions as would be necessary for on-chip routing
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of light. The photonic crystal architecture we propose allows the integration of edge

states that are topologically protected in two dimensions which can interface with

quantum emitters and is confined with dielectric materials. Another notable aspect

of this system is that it does not require any magnetic fields or magnetic materials

to realize topological edge states [60].

Moreover, controlling light-matter at the single-photon level is at the heart

of quantum optics, and plays a central role in quantum information applications.

One way to control these interactions is by engineering the dielectric environment,

which can modify the emission and absorption of a quantum emitter. In addition,

proper design of the dielectric environment can create chiral modes of light that

lock polarization and momentum. When coupled to quantum emitters, these chiral

modes can control the directionality of spontaneous emission and modify photon-

mediated interactions [96]. This control opens up new opportunities to tailor light-

matter quantum states such as entangled spin states [109] and photonic clusters

states [110].

Nanophotonics provides an alternate platform to engineer chiral light-matter

coupling in a compact and scalable chip-integrated device. While chiral light-matter

interactions have been successfully realized in waveguides [37], nanofibers [36], and

millimeter-scale bottle resonators [111,112], the application of these ideas to optical

resonators that can strongly enhance coupling between emitters and photons, has

remained elusive. This is partly due to the complications in designing resonators

with chiral/helical properties. This is mainly because of the challenges in designing

chiral resonators while maintaining small mode volumes, minimizing bending losses

3



and the susceptibility of the nanophotonic devices to fabrication disorders. However,

A topological resonator could enable strong chiral light-matter interactions in a

compact chip-integrated device and provide robustness against disorder, a major

problem for nanophotonics in general.

Meanwhile, the field of topological photonics has emerged as a new paradigm to

create a photonic structure with robustness against deformation [4,58]. In particular,

in photonic crystals, this approach has been useful in realizing sharp bends and

zigzag structures, without requiring fine-tuning of system parameters [29,100].

To that aim, in this thesis, I examine different nanoscale photonic crystal struc-

tures with triangular holes that sustains topological edge states which can couple to

a quantum emitter in a chiral fashion. Structures like this can be fabricated with

popular dielectric materials like Si or GaAs, which can be incorporated into photonic

devices for reflectionless transport of light. We chose photonic crystals as the plat-

form to realize topological edge states because of the flexibility they offer to engineer

their band structures [39, 40]. This property is critical in realizing non-trivial band

topologies. Moreover, they allow the realization of nanophotonic structures ranging

from optical cavities [41, 42] to waveguides [44, 76] with well understood nanofabri-

cation technologies and techniques in slab materials, where the in-plane confinement

is provided by photonic band gaps and out-of-plane confinement is provided by total

internal reflection at the dielectric-air interface. Furthermore, dielectric nanopho-

tonic structures such as Gallium Arsenide (GaAs) can be readily integrated with

other nanophotonic elements, such as epitaxially grown quantum dots [45, 46, 69]

and cold atom systems [156–159].
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1.2 Outline of Thesis

In Chap. 2, we present an all-dielectric photonic crystal structure that sup-

ports two-dimensionally confined helical topological edge states. The topological

properties of the system are controlled by the crystal parameters. An interface be-

tween two regions of differing band topologies gives rise to topological edge states

confined in a dielectric slab that propagates around sharp corners without back-

scattering. Three dimensional finite-difference time-domain calculations show these

edges to be confined in the out-of-plane direction by total internal reflection. Such

nanoscale photonic crystal architectures could enable strong interactions between

photonic edge states and quantum emitters.

The application of topology in optics has led to a new paradigm in develop-

ing photonic devices with robust properties against disorder. Although significant

progress on topological phenomena has been achieved in the classical domain, the

realization of strong light-matter coupling in the quantum domain remains unex-

plored. In Chap. 3, we demonstrate a strong interface between single quantum emit-

ters and topological photonic states. We demonstrate light-matter coupling between

topologically protected photonic edge states and a quantum emitter. Our approach

creates robust counter-propagating edge states at the boundary of two distinct topo-

logical photonic crystals. We demonstrate the chiral emission of a quantum emitter

into these modes and establish their robustness against sharp bends. This approach

may enable the development of quantum optics devices with built-in protection,

with potential applications in quantum simulation and sensing.
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In Chap. 4, we demonstrate a chiral coupling of a quantum emitter inside

a topological photonic crystal resonator. Chiral nanophotonic components, such

as waveguides and resonators coupled to quantum emitters, provide a fundamen-

tally new approach to manipulate light-matter interactions. The recent emergence of

topological photonics has provided a new paradigm to realize helical/chiral nanopho-

tonic structures that are flexible in design and, at the same time, robust against

sharp bends and disorder. Here we demonstrate such a topologically protected chi-

ral nanophotonic resonator that is strongly coupled to a solid-state quantum emitter.

Specifically, we employ the valley-Hall effect in a photonic crystal to achieve topo-

logical edge states at an interface between two topologically distinct regions. Our

helical resonator supports two counter-propagating edge modes with opposite po-

larizations. We first show chiral coupling between the topological resonator and the

quantum emitter such that the emitter emits preferably into one of the counter-

propagating edge modes depending upon its spin. Subsequently, we demonstrate

strong coupling between the resonator and the quantum emitter using resonant Pur-

cell enhancement in the emission intensity by a factor of 3.4. Such chiral resonators

could enable designing complex nanophotonic circuits for quantum information pro-

cessing and studying novel quantum many-body dynamics.

In Chap. 5, I will provide the conclusion to the thesis along with potential

applications of this work in the filed of quantum nanophotonics.
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Chapter 2: Topological Edge States in Photonic Crystals

2.1 Review

Topology is a ubiquitous concept in physics, ranging from electrons in solid

state [1, 2], quantum degenerate gases [52, 53], and sound [54–57]. A key mani-

festation of topological physics is the presence of edge modes which are robust to

local disorder. The prospect of using topological photonic materials for such robust

propagation of light has attracted a great deal of interest [58, 59].

Topologically-protected edge states have been experimentally demonstrated

in systems at microwave frequencies [60, 61] and optical frequencies, specifically in

ring resonators [9, 10], and in coupled waveguides [11]. Subsequent work measured

the invariants characterizing the topology of two-dimensional photonic systems [62].

Embedding quantum emitters into these optical frequency devices could generate

strong optical non-linearities that exhibit new physical behavior. Theoretical work

has shown that the interplay between emitters and chiral states results in intriguing

phenomena such as many-body position-independent scattering [63], dimerization

of driven emitters [64] and fractional quantum Hall states [20,65,66].

Strong light-matter interactions with optical emitters usually require the con-

centration of light to small mode-volume nanophotonic devices [67]. Two-dimensional
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photonic crystals are one of the most promising nanophotonic platforms for this ap-

plication because they confine light to less than an optical wavelength [68, 69]. Re-

cently, several works have proposed all-dielectric photonic crystal structures where

deformations open a gap in the Dirac cone dispersion to achieve non-trivial topo-

logical bands [29–31, 70]. However, these proposals consider the flow of light using

two-dimensional numerical simulations with infinite extent in the third dimension

and therefore do not address practical issues associated with propagation and con-

finement of light in a physically realizable crystal. A notable exception is the work

of Wu et al. [29] which does consider structures of finite extent in the out-of-plane

direction, but uses metallic mirrors to achieve confinement in this dimension. In this

case the structure is no longer all-dielectric. Since metallic sheets are highly absorb-

ing at optical frequencies, these mirrors would render the device extremely lossy.

Thus, it would be highly desirable to create an all-dielectric topological photonic

crystal.

In this chapter, we demonstrate that an all-dielectric topological photonic

crystals can exhibit two-dimensionally edge states confined by total internal reflec-

tion in a dielectric slab. This design enables low-loss confinement of light in the

third dimension. This structure addresses the challenge of experimentally realizing

topological photonic crystals and enabling strong interactions with optical emitters.

Our system exhibits spin quantum Hall physics for pseudo-spin photonic polariza-

tions. As a result of time-reversal symmetry, the edge states are helical: edge states

of opposite helicity travel in opposite directions. We utilize a honeycomb periodic

structure with six-fold symmetry based on triangular holes. This structure ensures
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a complete bandgap for transverse electric modes. Deformations of the unit cell

that preserve its rotational symmetry change the topology of the structure. We

show that interfacing two materials of different band topologies results in robust

two-dimensionally confined edge states that can propagate around sharp bends.

2.2 Proposed structure

2.2.1 Honeycomb Lattice with Circular Holes

One idea is to implement our honeycomb-lattice-like photonic crystal structure

with circular holes instead of triangular holes, as shown in Fig. 2.1(a). Although

the band structure of the transverse-electric modes, as shown in Fig. 2.1(b), does

give rise to a Dirac point, it turns out that it does not give rise to a band gap

in the region of interest. The horizontal white dashed line shows the frequency at

the Dirac point and the white dotted region encloses a range of wavevectors for

which one of the bands crosses the frequency at the Dirac point, thus preventing the

appearance of a band gap across the Brillouin zone even after perturbation, which

is critical for realizing topological edge states. This can be avoided with the use of

equilateral triangular holes, where a band gap is possible after perturbations to the

system. This will be explored in detail next and will be a major point throughout

this project.
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Figure 2.1: Band structure of a honeycomb lattice with circular holes : (a) Schematic

of a honeycomb lattice made of circular holes, where the parameters a0 is the lattice

constant of the hexagonal clusters (white hexagons) which constitute a triangular

lattice, R is the distance from the center of the cluster to the center of a circular

hole within the cluster (R = a0/3 in this case), and s is the diameter of the circular

hole. (b) Band structure for transverse-electric modes of the structure shown in (a),

showing the appearance of a Dirac cone at 312 THz (indicated by the horizontal

white dashed line). White dotted ellipse shows one of the bands crossing the fre-

quency at the Dirac point, which prevents the appearance of a band gap across the

Brillouin zone after perturbation. Calculations were done with a0 = 350 nm and

s = 140 nm.
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2.2.2 Honeycomb Lattice with Triangular Holes

Fig. 2.2 shows a schematic of our photonic crystal structure. The reason behind

this geometry will be clear once we study the band structure of this system in the

next section. Unlike the previous case : the lattice with circular holes, in this case

there will be a complete band gap in the reciprocal space of the photonic lattice.

The starting point is a honeycomb lattice made of equilateral triangular holes in a

dielectric material as shown in Fig. 2.2(a). We can view this system as a triangular

lattice with a basis consisting of two triangular holes, as is typically done in studies

of graphene [71]. The black outline shows such a two-hole unit cell. Fig. 2.2(b)

shows the first Brillouin zone (dashed line), which is a hexagon. We denote the

high-symmetry points [161] by Γ, M̃ and K̃. Alternatively, we can also view this

structure as a triangular lattice of six-hole unit cells [white dashed hexagons in

Fig. 2.2(a) which we call honeycomb clusters], where the relevant parameters are

the lattice constant of the triangular lattice a0, the distance between the center of

each cluster to the centroid of each triangular hole R, the length of each side of

the equilateral triangular holes s, and the height of the dielectric material h. In

the honeycomb lattice, the relationship R = a0/3 holds. Fig. 2.2(b) shows the first

Brillouin zone as a solid hexagon and Γ, M and K indicate the high symmetry points.

Note that the first Brillouin zone for the six-hole unit cell is smaller than for the

two-hole unit cell due to the larger real space unit cell area.
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Figure 2.2: Schematic of our proposed honeycomb-lattice-like photonic crystal (a)

Baseline structure of equilateral triangular holes arranged in a honeycomb lattice in

a dielectric material. This honeycomb lattice can be viewed as a triangular lattice of

two-hole unit cells (black solid rhombus), or alternatively as a triangular lattice of

six-hole unit cells (white dashed hexagons), which we call honeycomb clusters with

R = a0/3. (b) First Brillouin zone for the six-hole (solid) and two-hole (dashed)

unit cells. The letters indicate high-symmetry points. (c) [and (d)] Same structure

as in (a) except that R < a0/3 (R > a0/3), which we call shrunken (expanded)

clusters.
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2.3 Band structure for TE modes

We first analyze the band structure of this photonic crystal in the two-hole

unit cell picture using three-dimensional numerical finite-difference time-domain cal-

culations (Lumerical FDTD Solutions). We perform simulations using GaAs as the

dielectric substrate, with index of refraction taken from Ref. [73]. The parameters

we use are a0 = 445 nm, s = 140 nm, and h = 160 nm, which are typical dimensions

for photonic crystal structures [46, 74, 75]. We focus on the transverse-electric-like

modes of the system where the electric field at the symmetric plane of the system

lies in-plane. Fig. 2.3(a) shows the band structure of the honeycomb lattice corre-

sponding to Fig. 2.2(a) along the high-symmetry points of the Brillouin zone. The

gray region indicates the portion of the band structure above the light line where

there are no guided modes confined in the dielectric material of finite thickness [76].

There is a Dirac point at the K̃ point, indicated by the red arrow in Fig. 2.3(a),

located below the light line. Near this Dirac point, we can modify the topological

properties of the photonic crystal by changing the ratio R/a0 [29]. However, these

perturbations also change the symmetry of the lattice and so we can no longer use

the rhombus-shaped two-hole unit cell to construct the band structure. Instead,

we use the hexagonal six-hole unit cell to construct the band structure without

destroying the rotational symmetry of the system.
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Figure 2.3: Band structures show opening and closing of a band gap around the

Dirac point as we perturb the lattice. (a) Band structure of the honeycomb lattice

in the two-hole unit cell picture. The gray area represents the region above the light

line, where light can leak out of the plane. A Dirac point exists at the K̃ point

(red arrow) and is below the light line. (b),(c) and (d) Band structure calculated

with the six-hole unit cell with honeycomb clusters (R = a0/3), shrunken clusters

(R = 0.91 × a0/3), and expanded clusters (R = 1.09 × a0/3) respectively. The red

arrow indicates the Dirac point, and the green areas represent the band gap.
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2.3.1 Band Folding

We obtain the band structure for the six-hole unit cell by appropriate band

folding of the bands obtained from the two-hole unit cell (Appendix A). Although

both Brillouin zones share the same Γ point, the K̃ and K̃′ points for the two-hole

unit cell [71] become folded over onto the Γ point of the six-hole unit cell to form

a doubly-degenerate Dirac point at 319 THz (which corresponds to 940 nm) as

indicated by the red arrow in Fig. 2.3(b).

2.3.2 Perturbation to the system parameters

We perturb this system by varying R with respect to a0 to get clusters that

are shrunken (R < a0/3) or expanded (R > a0/3) as shown in Figs. 2.2(c) and (d)

respectively. Figs. 2.3(c) and (d) show the corresponding band structures specifically

for R = 0.91 × a0/3 and R = 1.09 × a0/3 respectively. Increasing or decreasing

the ratio R/a0 about the honeycomb lattice opens a band gap at the Dirac point.

In particular, the band gaps are 13 THz and 25 THz wide for the shrunken and

expanded clusters respectively. By comparing the eigenstates at the Γ point for the

expanded and shrunken structures, we see that the eigenstates are inverted between

the two structures, indicating that the band topology changes as we tune the ratio

R/a0 (appendix A).
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2.3.3 Band inversion

To further confirm the numerically observed band inversion, we also analyti-

cally study the system with a tight-binding model(Appendix A). The Hamiltonian

of our system reduces to the Bernevig-Hughes-Zhang model for the quantum spin

Hall effect [77], where the mass term changes sign when the clusters are shrunken

and expanded around R = a0/3. Consequently, the bands acquire non-zero Chern

numbers that are the direct indication of non-trivial band topology. In this case,

the polarization profile of the in-plane electric field acts as the pseudo-spin.

2.4 Topological edge sates

2.4.1 Non-trivial topology

Non-trivial band topologies manifest themselves most dramatically in the form

of guided topological edge states at the boundary between two gapped regions that

have different band topologies. To confirm this, we perform three-dimensional sim-

ulations of the structure schematically shown in Fig. 2.4(a) using the same values

for the parameters a0, s and h as previously. We examine topological edge states at

an interface between one region composed of unit cells with shrunken clusters (13

clusters wide) and another region of expanded clusters (12 clusters wide). These

two regions share a common band gap in bulk as shown in Figs. 2.3(c) and (d).
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Figure 2.4: Schematic and band structure which gives rise to topological edge

states. (a) Schematic of two regions with different band topologies. White dotted

line marks the boundary between the two regions. The star (green) indicates the

location where we placed a circularly-polarized electric dipole to excite topological

edge states. (b) Corresponding one-dimensional band structure shows two bands

crossing the band gap in bulk. The opposite group velocities in the crossing region

indicate the existence of counter-propagating directional edge states.
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2.4.2 One-dimensional band structure

Figure 2.4(b) shows the one-dimensional band structure along the x-direction.

Note that introducing an interface creates two bands crossing the original bandgap of

the individual regions. The two newly formed bands have opposite group velocities,

indicating counter-propagating directional edge states.

2.5 Unidirectional propagation

2.5.1 Helical nature of edge states

The edge states in this system are helical, i.e., the pseudo-spin degree of

freedom controls the direction of propagation [1]. We verify the helicity of the edge

states by exciting the system with a circularly-polarized electric dipole placed at

the location indicated by the green star in Fig. 2.4(a). By choosing the excitation

polarization to be positively (negatively) circularly polarized, we can selectively

excite an edge mode propagating in the −x (+x) direction (Fig. 2.5(b-i)[(b-ii)]).

The excitation frequency is 320 THz (equivalent to a wavelength of 938 nm).

2.5.2 Topological confinement

Figs. 2.5(c) and (d) show the the electric field intensity distribution of the

three-dimensional, vertically confined edge state[corresponding to Fig. 2.5(b-ii)] in

xz and yz cross-sections respectively. The field is confined within the dielectric slab

due to total internal reflection at the air-dielectric boundary. This proves that one
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Figure 2.5: (a) Schematic diagram of the three-dimensional photonic crystal where

the colored planes correspond to the cross-sections shown in (b), (c), and (d). (b-

i) and (b-ii) Electric field intensities for a topological edge state excited with a

positively and negatively circularly-polarized electric dipole show directional prop-

agation in the −x and +x directions respectively. (c) and (d) Cross-section view

along the xz and yz plane of the electric field intensity confirms that total internal

reflection at the air-dielectric boundary prevents light from leaking out of the plane.

(e) Electric field intensity for an edge state with four 90◦ bends show that light can

propagate around defects without back scattering.
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can realize topological edge states in three dimensions within dielectric materials at

optical frequencies without significant out-of-plane loss.

2.6 Topological protection and robustness

One of the most distinguishing features of topological edge states is their ro-

bustness against perturbations. To test this robustness, we introduced four 90◦

bends to the structure as shown in Fig. 2.5(e). Excitation of the edge mode in

this configuration shows that there is very little back-scattering along the entire

path. Thus our edge states exhibit topological protection against certain types

of disorder and defects, in contrast to chiral, but topologically-trivial, waveguide

structures [36, 37].

2.7 Discussion

We note that the topological protection we obtain in the presence of time-

reversal symmetry differs in an important respect from that of electronic quantum

spin Hall systems. The general classification of topological insulators reveals that

the Z2 topological invariant describing the latter requires that T 2 = −1, where T

is the time-reversal symmetry operator. The minus sign is a particular feature of

fermionic systems. In contrast, Maxwell’s equations (and other bosonic systems)

obey T 2 = 1. This symmetry taken alone does not afford any topological protection

in two dimensions.

However, we can construct a pseudo’ time-reversal symmetry operator based
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on the (C6v) crystal symmetry of the lattice which obeys T 2 = −1 [29]. While

this assures that the bulk may be classified according to a Z2 topological invari-

ant, gapless edge modes are not guaranteed since this symmetry is broken at the

boundaries. This symmetry breaking can mix the counter-propagating edge states

and open a mini-gap in the edge mode [78]; in a quantum spin Hall system, this

would be akin to a magnetic impurity at the edge of the system. Apparently, in

our realization this symmetry breaking is weak since we do not observe a gap in

the edge states [Fig 2.4(b)]. We can decouple the pseudo-spin degrees of freedom

up to linear order in k near the Γ point. By considering these degrees of freedom

as being completely decoupled, we can characterize the topology of the system by

a stronger Z spin Chern number given by the difference of the Chern numbers for

each pseudo-spin [79].
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Chapter 3: Chiral coupling of a single photon inside a Topological

Photonic Crystal Waveguide

3.1 Review

The discovery of electronic quantum Hall effects has inspired remarkable de-

velopments of similar topological phenomena in a multitude of platforms ranging

from ultra cold neutral atoms [83, 84] to photonics [58, 85] and mechanical struc-

tures [86–88]. Like their electronic analogs, topological photonic states are unique

in their directional transport and reflectionless propagation along the interface of

two topologically distinct regions. Such robustness has been demonstrated in vari-

ous electromagnetic systems, ranging from microwave domain [60,89] to the optical

domain [90, 91], opening avenues for a plethora of applications, such as robust de-

lay lines, slow-light optical buffers [92], and topological lasers [93–95], to develop

optical devices with built-in protection. While the scope of previous works remains

in the classical electromagnetic regime, a great deal of interesting physics could

emerge by bringing topological photonics to the quantum domain. Specifically, in-

tegrating quantum emitters to topological photonics structures could lead to robust

strong light-matter interaction [96], generation of novel states of light and exotic
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many-body states [97–99].

In this chapter, we experimentally demonstrate light-matter coupling in a

topological photonic crystal. We utilize an all-dielectric structure [29, 100] to im-

plement topologically robust edge states at the interface between two topologically

distinct photonic materials, where the light is transversely trapped in a small area,

up to half of the wavelength of light. We show that a quantum emitter efficiently

couples to these edge modes and the emitted single photons exhibit robust transport,

even in the presence of a bend.

3.2 Fabricated structure

3.2.1 Device Design

Figure 3.1 shows a schematic of the device design. We begin with a honey-

comb lattice of equilateral triangles exhibiting hexagonal symmetry as our baseline

structure. This lattice is a triangular lattice of cells consisting of six equilateral

triangular holes, indicated by the dashed line. We use a lattice constant of a0 = 445

nm, an edge length of the equilateral triangle of s=140 nm, and a slab thickness of

h = 160 nm. R defines the distance from the center of a cell to the centroid of a

triangle. In this structure a perfect honeycomb lattice corresponds to R = a0/3.

With these parameters we obtain doubly degenerate Dirac cones at 319 THz

(940 nm). We form the two mirrors by concentrically expanding or contracting the

unit cell.

We create topologically distinct regions by deforming the unit cell of the pris-
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Figure 3.1: Design of honeycomb-like photonic crystal.

tine honeycomb lattice. One one side of the lattice, we concentrically shift the trian-

gular holes by increasing R to 1.05a0/3, thereby shifting all the triangular holes in an

individual cell outward. This deformation results in creation of a bandgap(Fig. 3.2

C). On the other side, we decrease R to 0.94a0/3, which pulls the holes towards

the center resulting in the band structure with similar bandgap but with different

topological properties(Fig. 3.2 D).

3.2.2 SEM image

Fig. 3.2 A shows the fabricated topological photonic crystal structure. The

device is composed of a thin GaAs membrane with epitaxially grown InAs quantum

dots at the center that act as quantum emitters (see Appendix B). The topological

photonic structure is comprised of two deformed honeycomb photonic crystal lat-
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Figure 3.2: Fabricated device and band structure. (A) Scanning electron microscope

image of the device composed of two regions identified by blue and yellow highlights,

corresponding to two photonic crystals of different topological properties. The in-

terface between the two photonic crystals supports helical edge states with opposite

circular polarization (σ+ / σ− ). Grating couplers at each end of the device scatter

light in the out-of-plane direction for collection. (B) Closeup image of the interface.

(C) and (D) show the band structures for the transverse electric modes of the two

photonic crystals.
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tices made of equilateral triangular air holes on a GaAs membrane [100]. Details

regarding the fabrication and methods are described in Appendix B. Fig. 3.2B shows

a closeup image of the interface, where the black dashed lines identify a single unit

cell of each photonic crystal. In each region, we perturb the unit cell by concen-

trically moving the triangular holes either inward (yellow region) or outward (blue

region).

3.2.3 Band structures : FDTD results

Fig. 3.2C-D shows the corresponding band structures of the two regions. Sim-

ilar to calculations in chapter 2, we use FDTD methods to compute the shown band

structures. The perturbations open two bandgaps exhibiting band inversion at the

Γ point [29, 100]. Specifically, the region with compressed unit cell, highlighted in

yellow, acquires a topologically trivial band gap, while the expanded region, high-

lighted in blue, takes on a nontrivial one. We design both regions so that their

bandgaps overlap. Photons within the common bandgap cannot propagate into ei-

ther photonic crystal. However, because the crystals have different topological band

properties, the interface between them supports two topological helical edge modes,

travelling in opposite directions, with opposite circular polarizations at the center

of the unit cell.
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Figure 3.3: Transmission characteristics of the topological waveguide. (A) A

schematic of the excitation scheme identifying the three relevant regions. (B) Sim-

ulated band structure of transverse electromagnetic modes of a straight topological

waveguide. The grey region corresponds to bulk modes of the individual topological

photonic crystals and red lines represent modes within the bandgap corresponding

to topological edge states. The adjacent panel shows the measured spectrum at the

transmitted end of the waveguide. The shaded region identifies the topological edge

band. (C) Transmission spectrum at grating L as a function of the excitation laser

position.
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3.3 Waveguiding via edge states

3.3.1 Transmission of the waveguide

To show the presence of the guided edge mode, we measure the transmission

spectrum. We illuminate the left grating (L) with a 780 nm continuous-wave laser

using a pump power of 1.3W, and collect the emission from the right grating (R)

(see Fig. 3.3A). At this power the quantum dot ensemble emission becomes a broad

continuum due to power broadening, resulting in an internal white light source that

spans the wavelength range of 900-980 nm. Fig. 3.3B shows the spectrum at the right

grating, presented with the band structure simulation [100]. Light emitted within

the topological band efficiently transmits through the edge mode and propagates to

the other grating coupler, while photons outside of the bandgap dissipate into bulk

modes.

3.3.2 Probing the guided modes at the interface

To confirm that the emission originates from guided modes at the interface

between the two topological materials, we excite the structure in the middle of

the waveguide (M), and collect the emission at the left and right grating coupler,

which we independently calibrate (Appendix B). Fig. 3.3C shows the transmission

spectrum collected from left coupler as a function of the laser spot position as we scan

the laser along the y-axis across the interface indicated by blue arrow (see Fig. 3.3A).

The spectrum attains a maximum transmission within the topological band when
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the pump excites the center of the structure. When we displace the excitation

beam, by approximately 1.5 microns along the y direction, the transmission vanishes,

indicating that the photons are coming only from the waveguide.

3.4 Observation of chiral coupling of a single emitter

3.4.1 Zeeman effect

A key feature of topological edge modes is the chiral nature of the coupling

between the helical topological edge mode and the quantum emitter. Specifically,

different dipole spins radiatively couple to opposite propagating helical edge states.

To demonstrate this helical light-matter coupling, we apply a magnetic field in the

out-of-plane (Faraday) direction on the entire sample. This field induces a Zeeman

splitting in the quantum dot excited state [101].This results in two non-degenerate

states that emit with opposite circular polarizations, denoted as σ± as described

next (Fig. 3.5A) . While this magnetic field does not play a role in the topological

nature of the waveguide, it enables us to identify the polarization of the dipole by the

frequency of emitted photons. By spectrally resolving the emissions we can identify

the dipole spin and correlate it with the propagation direction of the emitted photon.

3.4.2 Polarization of Quantum Dots Under Magnetic Field

We first measured the photoluminescence from a bare QD in the bulk. With

the application of magnetic field QD emission spectrum splitted into two branches

with circularly polarized emission as shown in Figure 3.4. A and denoted by σ±.
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Figure 3.4: Polarization of quantum dot emission in bulk under magnetic field. (A)

Splitting of single QD emission into σ+ and σ− exciton branches under application

of magnetic field. (B) Verification of circular polarization of excitonic branches with

polarization selective photoluminescence.

At a very high magnetic field of 3T the separation between two branches becomes

0.3 nm. at this stage to verify the selection rules we introduced a quarter wave

plate and a polarizer before collecting the signal. Figure 3.4.B shows recorded

photoluminescence obtained by rotating the polarizer angle. The antiphase relation

between the two branches along with the detection scheme confirms that they are

indeed circularly polarized in bulk under high magnetic field.

3.4.3 Chiral coupling of quantum dot emission into the waveguide

To isolate a single quantum emitter within the topological edge mode, we

reduce the power to 10 nW, which is well below the quantum dot saturation power.

Using the intensities of the collected light at the two ends, we calculate a lower bound

on the coupling efficiency of 68% (Appendix B), defined as the ratio of the photon
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Figure 3.5: Chirality in a straight topological waveguide. (A) Schematic of quantum

dot level structure in the presence of a magnetic field, and radiative transitions with

opposite circular polarizations. (B) Emission spectrum collected from the excitation

region as a function of magnetic field. (C) and (D) Transmission spectrum to left

and right gratings, respectively.
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emission rate into the waveguide to the total emission rate. This high efficiency is

due to the tight electromagnetic confinement of the guided modes which enhances

light-matter interactions. Figure 3.5B shows the emission spectrum as a function of

magnetic field, where we collect the emission directly from point M indicated in the

Fig. 3.3A. As the magnetic field increases, the quantum dot resonance splits into two

branches corresponding to the two Zeeman split bright exciton states. We compare

this spectrum to the one collected from left and right gratings (Fig. 3.5 C-D). At

the left grating we observe only the emission from the σ− branch, while at the right

grating we observe only the σ+ branch. These results establish the chiral emission

and spin-momentum locking of the emitted photons, and provide strong evidence

that the emitter is coupling to topological edge states that exhibit unidirectional

transport. Such chiral coupling is in direct analogy to one dimensional systems

[37, 102]. In contrast to one dimensional systems, the waveguided modes of our

structure originate from two dimensional topology. As a result, the topological edge

mode should exhibit robustness to certain deformations, such as bends.

3.5 Topological robustness

3.5.1 Waveguiding across a bend

In order to establish this topological robustness, we analyze the propagation

of emitted photons in the presence of a bend. We introduce a 60 degree bend into

the structure as shown in Fig. 3.6A, and perform measurements similar to those in

Fig. 3.5. Again we observe that emitted photons propagate in opposite direction in a
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Figure 3.6: Robust transport in two dimensions along a bend. (A) Schematic of

a modified topological waveguide with a bend. (B) and (C) Photoluminescence

collected from position L and position R, respectively, showing only one branch of

the quantum dot. (D) and (E) Second-order correlation measurement (g2(τ)) data

obtained from point L and R, respectively, showing anti-bunching.

33



chiral fashion and arrive at the grating associated with their respective polarization

(Fig. 3.6B-C). The preservation of the chiral nature of the emission demonstrates

an absence of back-reflection at the bend, which would result in a strong signal for

both polarizations at the left grating.

3.5.2 Routing single photon

We also confirm that these routed photons are indeed single photons by per-

forming a second order correlation measurement for photons collected from both

ends of the waveguide, which exhibits strong anti-bunching (Fig. 3.6D-E). We note

that the robustness in this system is due to C6v symmetry, and the boundary and

disorder can break this symmetry and lead to backscattering of the edge modes.

3.5.3 Robustness to disorder

Next, we analyze the transmission of the edge mode to certain types of disorder

and show that it maintains a good level of robustness. The full characterization of

robustness, beyond numerical simulations and tight-binding model [103], requires

further study.

The yellow and blue regions in Figure 3.2A represent the topologically dis-

tinct phases discussed above. Topological modes exist at the boundary, and are

protected from any disorder which respects the six-fold crystal symmetry. Disorder

that breaks this symmetry can lead to the backscattering of the edge modes. In

fact, the formation of the interface itself can break this symmetry, albeit weakly.
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Figure 3.7: Effect of defects on the transmission of edge modes : Simulation showing

a topological waveguide without a defect (A) compared to one with a large defect

(B) that exhibits no backscattering.

Through extensive simulations, we have found that the zigzag interface in our de-

vice adequately preserves the crystalline symmetry, thereby minimizing the coupling

between the counterpropagating edge modes. In Figure 3.7, we show simulations

illustrating the robustness of the edge modes to a certain type of defect. The defect,

an entire missing cell, breaks C6v crystal symmetry. However, this defect does not

adversely affect the transmission in the gapped region. We should note that the

disorder seen in our device is considerably less severe.

3.6 Discussion

Once thought to be limited to the quantum Hall effect, the notion of topological

insulating phases has revolutionized condensed matter physics and is the inspiration

for topological photonic systems. These states are based on the fact that insulating

Hamiltonians which obey certain combinations of symmetries (such as time-reversal)

can be classified according to their topology. The photonic crystal considered here

is described by a Z2 topological invariant, which takes the value 0 (trivial phase) or

1 (topological phase). The physical manifestation of this is that between regions of
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differing topology, protected edge modes are found. These modes cannot be coupled

since such a term would violate the protected symmetry.

The photonic crystal considered in this work is an analog of a quantum spin

Hall system for photons and is discussed in greater detail in [29]. The quantum

spin Hall system exhibits topological protection that is based on time-reversal sym-

metry. In the context of the photonic crystal, the role of time-reversal symmetry

is played by the six-fold rotational (C6v) crystal symmetry of the hexagonal unit

cell. In the energy range of interest, the band structure of the system is described

by the Dirac equation, where the mass is controlled by the spacing of triangles in

a hexagonal cluster. The topological Z2 index reflects the sign of the mass, and is

positive (negative) for compressed (expanded) regions. The topologically protected

counterpropagating modes exist in the region at which the mass changes sign. In

the context of the Dirac equation, these states are known as Jackiw-Rebbi states

[165].
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Chapter 4: Quantum optics with topological photonic crystal res-

onator

4.1 Review : Chiral quantum optics

Chiral propagation of light can fundamentally alter the way it interacts with

matter. In particular, chiral light-matter interactions can control the directionality

of spontaneous emission and modify photon-mediated interactions between quan-

tum emitters [96]. These capabilities in-turn enable engineering of novel quantum

states such as entangled spin states [109] and photonic clusters states [110]. Chi-

ral light-matter interactions based on polarization-momentum locking of evanescent

fields have been achieved previously, for example, using optical fibers [102] and

millimeter-scale bottle resonators [111, 112]. Chiral light-matter interactions have

also been explored using purely opto-mechanical interactions [113–116]. Recently,

nanophotonics has emerged as a versatile platform to engineer chiral light-matter

coupling in a compact and scalable fashion. In particular, chiral/helical waveguides

coupled to solid-state quantum emitters have demonstrated directional spontaneous

emission [117, 118]. However, extensions of these ideas to realize strong coupling

between a chiral resonator and a solid-state emitter have remained elusive. This
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is mainly because of the challenges in designing a nanophotonic resonator while

preserving polarization-momentum locking.

Recently, topology has emerged as a new paradigm to design chiral photonic

structures [4]. In particular, an interface between two topologically distinct regions

hosts edge states exhibit chiral/helical propagation of light where the photon’s mo-

mentum gets locked to a pseudospin degree of freedom, such as polarization. These

edge states have the additional benefit that they are robust to deformations and

disorders. Specifically, they also allow propagation of light around sharp bends

and defects without scattering [90,119–123], which is essential to engineer compact

resonators that exhibit chirality [124,125].

In this chapter, we demonstrate a topological resonator that exhibits strong

light-matter interaction. We realize this resonator by creating an interface between

two valley-Hall topological photonic crystals. By using an inhomogeneously broad-

ened ensemble of quantum emitters as a broad-band light source, we first establish

that our resonator supports edge modes that extend throughout the length of the

resonator. Subsequently, using a single quantum emitter and a chiral waveguide

coupled to the topological resonator, we demonstrate chiral spontaneous emission

where the direction of the emission depends on the polarization of the emitted light.

Having established the chirality of our resonator, we finally proceed to demonstrate

strong coupling between the quantum emitter and the topological resonator. Specif-

ically, we use a magnetic field to tune a quantum emitter into resonance with the

topological resonator and show Purcell enhancement of emission. Our results pave

the way for explorations of strong interactions between multiple solid-state quantum
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emitters coupled via a chiral nanophotonic resonator.

4.2 Proposed Structure

4.2.1 Valley-Hall topological photonic crystal

Our chiral resonator is based on a valley-Hall topological photonic crystal

[126–131], composed of a honeycomb lattice of triangular holes with a lattice con-

stant of ‘a’, as shown in Fig. 4.1a. The two triangular holes in each rhombic unit

cell(dotted rhombus), have different sizes ( 1.3a
2
√

3
and 0.7a

2
√

3
), which leads to the open-

ing of topological bandgaps, at the K and K’ points. Because of the time-reversal

symmetry, the Berry curvature integrated over the entire Brillouin zone is zero.

However, the Berry curvature at K and K’ valleys have opposite signs. Interchang-

ing the two triangular holes in the unit cell (green and violet regions in Fig. 4.1)

flips the sign of the Berry curvature at each valley. Therefore, by interfacing these

two topologically distinct regions, we form a pair of counter-propagating edge states

with opposite helicity at the boundary between the two topologically distinct regions

(shown as an orange band in Fig. 4.1c). These edge states are transverse electric

(TE) modes composed of an in-plane electric field and can be selectively excited

by placing an emitter at specific position along the interface of the waveguide with

suitable circular polarization (see Appendix C)
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Figure 4.1: Valley-Hall topological photonic crystal resonator and FDTD simulation

results: (a) Schematic of the topological interface showing two topologically distinct

regions (violet and green), by interchanging the triangular holes sizes. Black dashed

lines indicate the rhombic unit cells. (b) SEM image of the fabricated topological

interface. (c) Simulated TE-band structure of the interface. The orange band

highlights the edge band. (d) SEM image of a topological resonator shaped in the

form of a super-triangle, with two topologically distinct regions (violet and green).

(e) Simulated longitudinal modes of the resonator. As in (c), the shaded orange

region corresponds to the topological edge band. (f) and (g) The electric field

distribution of a resonator mode and a bulk mode.
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4.2.2 Fabricated resonator structure

The topological edge states are robust against sharp bends of 60 and 120

degrees, which preserve the symmetry of the structure. This robustness enables

them to form a resonator using a super-triangle (Fig. 4.1d), where the inside/outside

of the super-triangle corresponds to two topologically distinct regions. Analogous to

the one-dimensional edge states, this confined resonator structure hosts two counter-

propagating modes with opposite helicity. We fabricated the resonator structure on

a GaAs slab of thickness 160nm with an embedded layer of InAs quantum dots

as quantum emitters. We patterned the structure using electron beam lithography

followed by inductively coupled plasma reactive ion etching. We chose the lattice

spacing of a =265nm, such that the topological band gap coincides with the emission

spectra of quantum dots. Appendix C provides a detailed description of fabrication

steps.

4.2.3 Simulation results

The 3D Finite-difference Time-domain (FDTD) simulation for a resonator

of length 13µm (50-unit cells) shows multiple longitudinal modes, separated by a

free-spectral range (FSR) of 15nm (Fig. 4.1e). The calculated electric field profile

of the resonator modes exhibits strong transverse confinement at the topological

interface and extend over the super-triangle (Fig. 4.1f). Moreover, we do not observe

any scattering at the three sharp corners of the resonator, indicating topological

robustness. By contrast, the modes outside of the topological bandgap reside in the
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bulk and are not extended along the resonator perimeter (see Fig. 4.1g). Since these

modes are not protected, their frequency and their field profile are susceptible to

the disorder.

4.3 Observation of topological resonator modes

To show the modes of the topological resonator, we excite the quantum dots

at the tip of the resonator (shown in Fig. 4.2a) using a high-numerical aperture

objective and a continuous wave laser at 780nm. We perform all measurements in a

closed-cycle Helium cryostat, operating at 3K temperature. At this temperature, we

use a high pump power of 100µW such that the quantum dots saturate and broaden

to form a continuous internal white light source that probes the spectrum of the

resonator. We collect the photoluminescence spectra from different points along the

perimeter of the resonator (Fig. 4.2 b-d). We observe three peaks (within shaded

grey regions) within the expected topological band which do not change when we

move our collection point along the length of the resonator, indicating that these

are the extended longitudinal modes of the topological resonator. Moreover, their

free spectral range (≈ 13nm) matches closely with the simulation. The other peaks

in the PL spectra change with the collection point, and therefore, correspond to the

bulk modes of the photonic crystal structure.
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Figure 4.2: Topological waveguide-resonator system: (a) Schematic showing the

excitation and collection points on a topological resonator device. Numbered marks

show the position of collection spots. (b,c,d) The experimentally measured spectrum

of a topological resonator from three different collection points along the length of

the resonator. The peaks inside the grey regions correspond to the resonator modes.
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4.4 Observation of chiral coupling of an emitter inside topological

resonator

4.4.1 Waveguide-Resonator Hybrid Device : FDTD results

To probe the chiral coupling of an emitter to a topological resonator mode, we

coupled the resonator to a helical topological waveguide, which is similarly designed

(Fig. 4.3a). In this experiment, we excited the quantum dots at the point A on

the resonator and collected the emission from the ends of the waveguide through

the grating couplers. In order to analyze the chirality of the resonator mode, we nu-

merically calculate the Poynting vector for the coupled resonator-waveguide device.

Figure 4.3b shows the Poynting vector when the system is excited with a right

circularly polarized dipole (σ−). We observe that the electric field travels clock-

wise around the super-triangle, and then again chirally couples to the right of the

waveguide. Due to time reversal symmetry, when the system is excited with a left

circularly polarized dipole, we see the electric field travels anti-clockwise along the

super-triangle, before exiting to the left of the waveguide (Fig. 4.3c). Note that

the clockwise/anti-clockwise mode of the resonator couples to the right/left-going

waveguide mode, respectively. This is due to the fact that the region below the

waveguide has the same topology as the inside of the super-triangle, and therefore,

the helicity is preserved at the boundaries. Here, we emphasize that the above men-

tioned polarization-momentum locking is dependent on the spatial position of the

quantum dot with respect to topological interface.
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Figure 4.3: Chiral waveguide-resonator-emitter coupling: (a) SEM image of the

topological resonator coupled with a topological waveguide, terminated by two grat-

ing couplers (pink shaded half-circles). The yellow line indicates the interface be-

tween two topological regions, highlighted in green and violet. Point A indicates

the point of excitation. (b,c) Simulated Poynting vector profile along the perime-

ter of the resonator-waveguide system, when the system is excited with a right

circularly-polarized dipole and left circularly-polarized dipole respectively. (d,e,f)

The measured PL signal, as a function of the magnetic field strength, collected from

point A, Left grating, Right grating, respectively.
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4.4.2 Chiral coupling

To experimentally distinguish the chirality of the emitter-resonator-waveguide

coupling, we perform a photoluminescence measurement on device shown in Fig.

4.3a. Specifically, we use two degenerate dipole transitions of the QD which are

selectively coupled to the two helical edge states in the topological resonator. We

apply a magnetic field on QDs, in a Faraday configuration, such that the Zeeman

shift lifts the degeneracy of the two transitions [101]. This allows us to spectrally

resolve the chiral nature of the light-matter interaction. Note that the helical nature

of the resonator and the waveguide remains intact under such a magnetic field. We

excite the sample at point A with a continuous wave 780nm wavelength laser at

power 7µW, such that individual QDs can be spectrally resolved. When the single

is collected at the point A (Fig. 4.3d), we observe both branches of the Zeeman

split QD spectrum, corresponding to two oppositely-circular polarization. However,

when we collect the signal from either of the grating couplers (Fig. 4.3(e)-(f)), we

observe a single branch, as a signature of chiral coupling. We calculate near 89%

directionality between the two gratings in this measurement.

4.4.3 Polarization-momentum locking

The above mentioned spin-momentum locking in this type of resonator system

is dependent on the position of the quantum emitter along the waveguide. To affirm

this fact, we excite a single resonator modes at different spatial points along the

transverse direction with two circularly polarized dipoles and study the intensity
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grating, respectively.
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variations at the two gratings. The results show that if the position of the emitting

dipole is changed then the direction of the out-coupled light changes as shown in Fig.

4.4(a). Moreover, there are points of high chiral points where the magnitude of con-

trast reaches the maximum. Experimentally we further carry out PL measurements

on another device. We find that within one excitation spot of the laser, depending

on the position of the dot, the corresponding circular polarized emission will couple

differently to the right/left propagating modes. This is apparent from Fig. 4.4(b)

and (c) where the emission from a quantum dot at 903.95nm couples differently into

the waveguide compared to the ones at 904.1nm and 904.15nm. Here, we want to

note that even though the spin-momentum locking is similar to that found in ring

resonators [96, 111, 112], these topological resonator modes have topological origin

and arise from the fact that the two photonic crystals on either side of the triangular

resonator have different band topology and therefore robust to bends and certain

imperfection [130].

4.5 Intensity enhancement of a single emitter coupled to the res-

onator

In order to demonstrate that the quantum dots are coupled to the resonator, we

measure their intensity as a function of cavity detuning. By scanning the magnetic

field, one Zeeman branch of the QD spectrum can be tuned into the resonance of the

topological resonator. Figure 4.5a shows the spectrum at two different excitation

power. At high excitation power (100µW), the saturated QDs emission reveals the
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Figure 4.5: Purcell enhancement of a quantum emitter coupled to a topological

resonator: (a) The measured PL, at zero magnetic field, exhibiting the QD and the

resonator mode at high and low excitation power. (b) Enhancement of emitter’s

PL, when the QD is tuned to the topological resonator, by scanning the magnetic

field. (c) The intensity of the QD’s emission, as a function of detuning from the

resonator mode.

cavity mode, as shown by the green curve. By decreasing the excitation power to

20µW, the spectrum shows multiple individual quantum dot lines near the cavity

resonance. Fig. 4.5b shows the measured spectra as a function of the magnetic

field. As the magnetic field increases the quantum dots Zeeman split, and either the

lower or upper branch crosses the cavity mode (depending on the initial detuning).

The emission from the quantum dots is enhanced as they tune onto resonance with

the cavity mode.

We focus on one particular dot labeled “QD” in Fig. 4.5a. This dot becomes

resonant with the cavity at a magnetic field of 2.7 Tesla. To quantify the degree

of enhancement, we fit the quantum dot to a Lorentzian function at each magnetic

field and plotted its intensity as a function of detuning from the cavity (Fig. 4.5c).

At zero detuning from the resonator line, we see a nearly threefold increment in the
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count rates. From this emission enhancement, we estimate an intensity enhancement

of 3.4.

Note: we used different measurement schemes for obtaining results depicted

in different figures. We performed these measurements on different types of devices

with different does array. Data presented in Fig. 4.2 4.3 4.5 has been taken from

sample # D240 m3s2b 22 , # D240 m3s2b1d3 22, # D240 m3s2b1 21 respectively.

4.6 Summary

In summary, we demonstrate chiral light-matter interactions in a topological

resonator. We use valley-Hall topological edge states to realize a helical resonator.

Such a helical resonator is created at the interface of two distinct topological regions

that supports two counter-propagating light modes with opposite polarizations. We

show the chiral coupling of the resonator to a quantum emitter. Moreover, we

achieve an intensity enhancement of 3.4 due to resonant coupling. These findings

provide new approaches to study chiral quantum optics with potential applications

in quantum information processing and quantum many-body physics.
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Chapter 5: Conclusion and Outlook

In conclusion,we have proposed a new all-dielectric photonic crystal design

and presented simulation results showing that three-dimensionally guided topolog-

ical edge states at optical frequencies can be realized. The design parameters are

amenable to implementation with well-established nanofabrication techniques. The

simulations focus on GaAs as the dielectric substrate but the photonic crystal de-

sign principles that give rise to topological edge states are applicable to many other

dielectric materials which can be fabricated with well-established nanofabrication

techniques. The advantage of GaAs is that it can be integrated with quantum

dots for example made of InAs whose charged states in the presence of magnetic

fields have proven to be a promising solid-state qubit [136–138], and whose elec-

tronic transitions can emit circularly polarized light and can be interfaced with

the helical topological edge states. Another potential substrate is InP, which can

also be integrated with InAs quantum dots to realize topological edge states at

telecommunication wavelengths [?, 139]. Aside from epitaxially grown quantum

dots, defects in two-dimensional materials [80] can act as quantum emitters which

emit circularly polarized light at optical frequencies [140–142], and these can be

placed atop for example a silicon nitride photonic crystal [143, 144] nanofabricated
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into the honeycomb-lattice-like structure described here. Other potential quantum

emitters that could be integrated with topological edge states are defects in mate-

rials such as diamond [145, 146] or silicon carbide [147–149], which can be coupled

to a photonic crystal [150] or even directly fabricated into photonic crystal struc-

tures [151–153]. Finally, cold atom systems could also be integrated with these

photonic crystals [154–159]. Thus the demonstrated design should be applicable to

a wide range of dielectric materials to realize topological photonics at optical fre-

quencies and interfaced with various quantum emitters. With the further prospect of

integration with various quantum emitters ranging from quantum dots [136–138], de-

fects in two-dimensional materials [80] and diamond [145,146], this system promises

to open a new path to research in topological phenomena with optical systems.

Moreover,we also demonstrated coupling between single quantum emitters and

topologically robust photonic edge states. The present approach opens up new

prospects at the interface of quantum optics and topological photonics. In the con-

text of chiral quantum optics, one can explore new regimes of dipole emission in

the vicinity of a topological photonic structures and exploit the robustness of the

electromagnetic modes [96]. Furthermore, in a chiral waveguide, photon-mediated

interactions between emitters are location-independent [104]. This property could

facilitate the coupling of multiple solid-state emitters via photons while overcom-

ing scalability issues associated with random emitter position, enabling large-scale

super-radiant states and spin-squeezing. Ultimately, such an approach could form

a versatile platform to explore many-body quantum physics at a topological edge

[105], create chiral spin networks [104, 106], and realize fractional quantum Hall
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states of light [107,108].

Additionally, building on the already demonstrated topological platform, next

we studied a topologically robust and chiral interface between a photonic resonator

and a quantum emitter. This platform could provide a robust and scalable pathway

to engineer chiral light-matter interaction between multiple emitters coupled to a

single resonator. It is important to note that topological design does not require

fine tuning of system parameters, they are like LEGO! On the one hand, such

resonators could enable the generation of entangled states of photons, mediated by

chiral coupling of photons to quantum emitters [96], such as superradiant [132,133]

and cluster states [110]. On the other hand, one could conceive generating entangled

states of several solid-state spins, mediated by the helical-circulating photonic modes

[109]. In contrast to conventional waveguides, the mediated interaction strength

between spins does not depend on the distance, since the emitters cannot form a

mirror in a chiral interface. Ultimately, chiral and topological interfaces provide a

new approach to study QED in a new regime [107,108,134,135].
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Appendix A:

A.1 Honeycomb Lattice with a Six-Site Basis and Band Folding

The photonic crystal we study is a modification of the usual honeycomb lat-

tice. For the special case that the lattice parameters obey R = a0/3, the standard

honeycomb lattice is recovered (see main text for definitions). Typically, the honey-

comb lattice is taken to be a triangular lattice with a two-site basis. For the general

case R 6= a0/3, it is convenient to consider the system as a triangular lattice with a

six-site basis with primitive lattice vectors

a1 =
(√

3, 0
)
a, (A.1)

a2 =
(√

3/2, 3/2
)
a, (A.2)

where a =
√

3R. Figure A.1(a) shows the first Brillouin zones (FBZs) for both the

two-site (dashed hexagon) and six-site (solid hexagon) bases.

The equivalence of these two descriptions can be verified by counting the total

number of states in each case. The two-site basis is described by two bands over the

FBZ of area A, giving a total number of states corresponding to an effective k-space

area of 2A. In the six-site case, each linear dimension of the FBZ is reduced by a
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factor
√

3 and thus the area is A/3. Since there are six bands, this again gives a

total effective area of 6× A/3 = 2A.

In the case of graphene, it is well-known that the Dirac cones are located at the

edges of the FBZ [labeled by K̃ in Fig. A.1(a)]. In the six-site basis, these degrees

of freedom now reside at the zone center (Γ). The K̃ and Γ points are connected

by a reciprocal lattice vector. The bands in Fig. A.1(c) can be obtained by folding

along the vertical dashed lines in Fig. A.1(b) so that the K̃ is matched to Γ. At

this point, the bands formerly at the two inequivalent Dirac points K̃ and K̃ ′ come

together to form a doubly degenerate Dirac point. We will designate these degrees

of freedom by a pseudospin (±) [29].

A.2 Tight-Binding Description of the Dispersion

The dispersion of our system near Γ (k = 0) can be obtained by a tight-

binding model. Following [160], we take a set of basis states for which the magnetic

field profile is concentrated in a particular hole. The time-evolution of the system is

characterized by ‘hopping’ to adjacent holes in the lattice. Typically, the application

of tight-binding is limited to electronic systems in which electrons hop between

weakly coupled atomic orbitals [163]. In the present context, the tight-binding

method accurately captures the behavior of the band structure near Γ due to the

fact that the near Γ, the band-structure is tightly constrained by the symmetries of

the lattice. In particular, the tight-binding Hamiltonian H naturally incorporates

the C6v symmetry of the lattice and the triangular holes. For the generic case that
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Figure A.1: Correspondence between the two-site and six-site bases : (a) Bound-

aries of the first Brillouin zone for the two-site (dashed hexagon) and six-site (solid

hexagon) bases for the honeycomb lattice. (b) The band structure of the honey-

comb lattice considered with a two-site basis. The labels on the horizontal axis

corresponds to the high-symmetry points in k-space as designated in (a) [161]. The

gray area is the area above the light cone where guided modes are not possible. The

red triangles (blue squares) correspond to the red (blue) paths indicated in (a). (c)

The band structure of the honeycomb lattice with a six-site basis as obtained by

folding the band structure in (b) along the dotted vertical lines.
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a0 6= 3R, the spectrum is gapped. For a0 = 3R corresponding to a honeycomb

lattice, an additional C3v symmetry ensures that the dispersion remain gapless at

the Dirac point.

We describe our system as a triangular lattice with a six-site basis labeled

A,B,C..., F starting with the right-most site and progressing in a counter-clockwise

manner (Fig. A.2). The states of our system |A〉, |B〉, |C〉...,|F 〉 are the Wannier

functions for the system. For example, the state |C〉 describes an electromagnetic

field configuration for which the out-of-plane magnetic field is centered on the C

hole in each six-membered ring. In the bandwidth of interest, the magnetic field

configurations can be written as linear combinations

|Ψ(k, z)〉 =



ψA

ψB

ψC

ψD

ψE

ψF



eik·r, (A.3)
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Figure A.2: Schematic of our lattice parameters and the labeling of the lattice sites

for our tight-binding model. A cluster consists of six sites. Then the system is a

triangular lattice of clusters with lattice constant a0. The distance from the centroid

of each hole to the center of its cluster is R. The tunneling amplitudes t1 and t2

correspond to intra- and inter-cluster tunneling between the nearest neighbor holes.

The labels A, B, C, D, E, F denote each lattice site making up the basis.
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where r = (x, y) and Eq. (A.3) is written in the basis

|A〉 =


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0

0

0

0

0



, |B〉 =



0

1

0

0

0

0



, ... |F 〉 =



0

0

0

0

0

1



. (A.4)

The action of the Hamiltonian operator is to evolve the state in time. Roughly,

the matrix elements of H indicate the field configurations which can evolve into each

other on a time scale ∼ R/c. On this time scale, only states which are localized

to adjacent sites can evolve into each other appreciably and thus we only consider

nearest-neighbor ‘hopping’. The Hamiltonian H = H1 +H2 receives contributions

from intra- and inter-cluster couplings, respectively. Intra-cluster hopping is char-

acterized by a parameter t1 and takes the form

H1 = −t1



0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0



. (A.5)
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Inter-cluster coupling is described by

H2 = −t2



0 0 0 eik·a1 0 0

0 0 0 0 eik·a2 0

0 0 0 0 0 eik·(a2−a1)

e−ik·a1 0 0 0 0 0

0 e−ik·a2 0 0 0 0

0 0 t2e
−ik·(a2−a1) 0 0 0



. (A.6)

We introduce generalized plane wave states

|Ψ(k, z)〉 =
1√
6



1

z

z2

z3

z4

z5



eik·r, (A.7)

where z is a complex number of unit magnitude whose phase is associated with an-

gular momentum around the hexagonal clusters (or pseudospin, in the terminology

of of [29,160]) and k = (kx, ky). Although the full rotational symmetry is broken by

the crystal axis, the states corresponding to z = e±iπ/3 possess strong p-like char-

acter, while those with z = e±i2π/3 have d-like character. This can be most easily

seen by noting that the various states |Ψ(z)〉 are ‘sampled’ from continuous angular
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wave functions as follows

|Ψ(z = e±iπ/3)〉 = e±iθ → |p±〉, (A.8)

|Ψ(z = e±i2π/3)〉 = e±i2θ → |d±〉. (A.9)

The ± labels the pseudo-spin degree of freedom. The geometry of the wavefunctions

is clarified through the definitions

|px〉 =
1√
2

(|p+〉+ |p−〉) , (A.10)

|py〉 =
1

i
√

2
(|p+〉 − |p−〉) (A.11)

where |px〉 is odd about the x-axis, etc. Similarly, we have

|dx2−y2〉 =
1√
2

(|d+〉+ |d−〉) , (A.12)

|dxy〉 =
1

i
√

2
(|d+〉 − |d−〉) , (A.13)

where |dx2−y2〉 is a wave function whose maxima coincide with the x- and y-axes as

θ = 0→ 2π, etc.

We now derive the spectra associated with these 4 states near Γ by expanding

Eq. (A.6) to linear order in kx and ky. In this limit, the effective 4× 4 Hamiltonian

is block diagonal, and only states of the same pseudo-spin are coupled. The effective
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Hamiltonian for the (+)-pseudo-spin is given by

H+ =

√
3

2
t2a (−kxσx + kyσy) +

[
t2 − t1 +O(k2

x + k2
y)
]
σz, (A.14)

in the (|p+〉, |d+〉)T basis. Similarly, in the (|p−〉, |d−〉)T basis we find

H− =

√
3

2
t2a (kxσx + kyσy) +

[
t2 − t1 +O(k2

x + k2
y)
]
σz. (A.15)

In both cases, we have performed a unitary transformation U = ei
π
2
σz . We note

that in the limit that the various honeycombs are completely decoupled, t2 ≈ 0 and

Eqs. (A.14) and (A.15) reflect the fact that the p-states have a lower energy than

the d-states. For t1 = t2, H+ and H− are characterized by a Dirac cone spectrum.

For t1 6= t2, the spectrum acquires a gap of size |t1 − t2|.

A.3 Topology and Edge States

In the previous section, we showed that a honeycomb structure can be de-

scribed by a gapless Dirac Hamiltonian. When we introduce the lattice deforma-

tions, i.e., shrinking/expanding, a gap opens which can be described a mass term

(mσz). Here, we review the concept why the band inversion, i.e., changing the sign

of mass, results in having a topological edge at the boundary.

When the system is gapped, its topology can be characterized by a Chern
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number for the pseudospins (±). A spin Chern number takes the form

C = C+ − C−, (A.16)

where C± = ±1
2
sgn(m±), where m± are the masses for the two pseudo-spins [162].

Thus, we have

C = sgn(t2 − t1). (A.17)

Topologically-protected edge modes will exist between gapped regions with different

C ′s, i.e., any place that the quantity t2 − t1 changes sign.

In order to understand the edge state structure, we begin by considering H+

with a spatially varying mass. For concreteness, we consider the situation outlined

in Fig. 4b in the main text As we will see, edge states are localized to domain walls

for which m(x) = t2 − t1 ≈ 0. The edge states satisfy the Heisenberg equation

of motion which, for H+ [Eq. (A.14)], is the Dirac equation. The Dirac equation

corresponding to H+ is

[−ih̄v (−σx∂x + σy∂y) +mσz] Ψ = EΨ, (A.18)

where v =
√

3t1a0/2 and E is the energy of the eigenstate Ψ.

Consider the geometry shown in Fig. 4(b) of the main text, which shows an

area of shrunken hexagons above expanded hexagons. The system is described by a
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mass which depends only on y, i.e., m(x, y) = m(y) and m(0) = 0 with

dm

dy
< 0. (A.19)

In this case, the topologically protected solution

Ψ(y) = χ exp
(

1

h̄v

∫ y

0
m(y′)dy′

)
, (A.20)

is an x-independent solution of the Dirac equation with zero energy where χ is a two-

dimensional spinor. This is the celebrated Jackiw-Rebbi solution of the Dirac equa-

tion with a spatially varying mass [165]. The sign in the exponent of Ψ [Eq. (A.20)]

ensures that the solution is normalizable. The edge state decays exponentially for

both y > 0 and y < 0. The spinor χ obeys

σxχ = χ. (A.21)

Thus,

χ =
1√
2

 1

1

 , (A.22)

in the (|p+〉, |d+〉)T basis. The full edge mode is described by

Ψ(x, y) =
1√
2

 1

1

 exp
(

1

h̄v

∫ y

0
m(y′)dy′

)
eikxx. (A.23)
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Again, plugging into the Dirac equation gives an energy dispersion

E(kx) = −h̄vkx. (A.24)

Since the group velocity is given by v = 1
h̄
∂E
∂kx

, this represents an edge state travelling

in the −x-direction. Indeed, we see that in Fig. 4(b-i) of the main text, the

excitation of the +-pseudospin leads to a left-moving edge state. Similarly, an edge

state derived from the H− channel (opposite pseudo-spin) would travel in the +x-

direction.

A.4 Inversion of the Eigenstates

We examine the out-of-plane magnetic field eigenstates of the system at the

symmetry plane (z = 0) corresponding to the Γ point for the shrunken and expanded

clusters. The band structures for the shrunken and expanded cluster systems are

shown in Fig. A.3(a) and (d) and are the same as Fig. 2(c) and (e) in the main text.

The eigenstates corresponding to these band structures show that the eigenstates

are inverted; by that we mean that e.g., the eigenstate px (dxy) shown in Fig. A.3(b)

[A.3(c)] which appeared on the lower (upper) band for the shrunken cluster appears

on the upper (lower) band for the expanded cluster as shown in Fig. A.3(f) [(e)]. This

band inversion indicates that there is a change in the band topology, as discussed

in the previous section on the tight-binding model.
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Figure A.3: Band inversion : (a) and (d) Band structures for the shrunken and

expanded cluster systems, which are the same as Fig. 2(c) and (d) respectively

in the main text, with a subset of the eigenstates indicated at the Γ point. (b)

and (c) [(e) and (f)] Out-of-plane magnetic field eigenstates at the symmetry plane

z = 0 of the lower and upper band for the shrunken (expanded) cluster system

respectively. We see that e.g., the eigenstate px for the lower band in the shrunken

cluster system appears on the upper band for the expanded cluster system, which

indicates a change in the band topology.
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A.5 Polarization Pseudo-Spin of the Eigenstates

From Maxwell’s equations, at the symmetry plane z = 0, the out-of-plane

magnetic field eigenstates pxẑ and pyẑ lead to an in-plane electric field given by

E1 =
i

ωε0ε(r)
∇× (pxẑ) E2 =

i

ωε0ε(r)
∇× (pyẑ), (A.25)

where Ei = Eixx̂ + Eiyŷ (i = 1, 2), ε0 ≈ 8.854 × 10−12 Farad/m is the vacuum

permittivity, and ε(r) is the position-dependent relative permittivity. The out-of-

plane magnetic fields of the px and py eigenstates are shown in Figs. A.4(a) and (b),

respectively. We see that the px and py modes are related by a π/2 rotation, so we

have at the center of the cluster (r = 0) the relation

 E2x

E2y

 =

 −E1y

E1x

 (A.26)

From this we find the relation

i

ωε0ε(0)
∇× [(px ± ipy)ẑ] = (E1x ∓ iE1y)(x̂± iŷ). (A.27)

This implies that at the center of the clusters the in-plane electric field po-

larization is either σ+- or σ−-circularly polarized depending on the out-of-plane

magnetic field eigenstates p± = (px ± ipy)ẑ/
√

2 where σ± = (x̂ ± iŷ)/
√

2. We can

see this directly in Figs. A.4 (c) and (d), which show ∆σ ∼ |E+|2 − |E−|2 where

E± = (Ex ∓ iEy)/
√

2, characterizing the degree of circular polarization. In both
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Figure A.4: Out-of-plane magnetic field and in-plane electric field polarization in a

cluster of six holes outlined by black triangles. (a) and (b) depict the real part of

the out-of-plane magnetic field (Hz) for the eigenstates px and py respectively. The

colors indicate the strength of Hz. (c) and (d) show ∆σ ∼ |E+|2− |E−|2, indicating

the pseudo-spin nature of the bands excited at the Γ point with px+ ipy and px− ipy

modes, respectively.

cases we see that at the center the in-plane electric field is highly circularly polarized,

except with opposite handedness. Thus the out-of-plane magnetic field eigenstates

p± have an associated in-plane electric field circular polarization of σ± which act as

pseudo-spins for this topological photonic crystal.
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Appendix B:

B.1 Device Fabrication

To fabricate the device, we began with an initial wafer composed of a 160

nm GaAs membrane on top of 1 µm sacrificial layer of Al0.8Ga0.2As with quantum

dots grown at the center. The quantum dot density was approximately 50 µm−2

Based on the given quantum density and cross-sectional area of the waveguide, the

probability of finding two dots in the structure with the same resonance is less than

0.7%. Thus, it is extremely unlikely in a given device for a photon emitted by one

dot to be scattered by a second.

We fabricated the topological photonic crystal structure using electron beam

lithography, followed by dry etching and selective wet etching of the sacrificial layer.

We first spin-coated the wafer with ZEP520A e-beam resist, then patterned the

structure using 100 keV acceleration voltage and developed the resist using ZED50

developer. After patterning, we used chlorine-based inductively coupled plasma

etching to transfer the pattern on the GaAs membrane. We finally performed se-

lective wet etching using HF acid to create a suspended structure with air on top

and bottom. The rectangular structures in the periphery are included to facilitate

undercut of the sacrificial layer.
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Figure B.1: Mask design for fabrication of triangles. (A) Layout of regular mask.

(B) SEM image of rounded triangles resulted from use of regular mask. (C) Layout

of modified mask; triangles are bent from edges to mitigate etching imperfections.

(D) SEM image of sharp triangles fabricated with use of modified mask.
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Sharp corners with straight side walls are essential to observe the topological

helical edge modes. It is confirmed via simulation that triangles with rounded cor-

ners are detrimental for the device operation. However, even with highly directional

dry etch, creating sharp features like triangles is challenging at such small length

scales. We observed – by using a regular mask design (as shown in Figure B.1.A)

– that etching causes widening of holes which eventually results in rounded corners

much like a Reuleaux triangle (Figure B.1.B). We used a modified mask design to

overcome this challenge. Triangles with shrunk edges shown in Figure B.1.C are

used as a mask; this results in sharp triangles with edge lengths of 140 nm. Close

up SEM image of final structure is shown in Figure B.1.D.

B.2 Experimental Setup

To perform measurements, we mounted the sample in a closed-cycle cryo-

stat and cooled it down to 3.6 K. A superconducting magnet, contained within the

closed-cycle refrigerator, surrounds the sample and applies a magnetic field of up

to 9.2 T along the out-of-plane (Faraday) direction in order to generate a Zeeman

splitting between the two bright excitons of the quantum dot. We performed all

sample excitation and collection using a confocal microscope with an objective lens

with numerical aperture of 0.8. We collected the emission and focused it onto a

single mode fiber to perform spatial filtering. To perform spectral measurements,

we injected the signal to a grating spectrometer with a spectral resolution of 7

GHz. For autocorrelation measurements, we used a flip mirror to couple the light
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out of the spectrometer and processed the filtered emission using Hanbury-Brown

Twiss intensity interferometer composed of a 50/50 beamsplitter, two Single Pho-

ton Counting Modules (SPCMs) and a PicoHarp 300 time correlated single photon

counting system.

The quantum dots are less than 20 nm in diameter, while the laser spot size

is approximately 0.4 um. The density of quantum dots are 50 µm−2 which means

that there are approximately 25 dots within the excitation spots. However, due to

the large inhomogeneous broadening of the ensemble, each of these dots emits at a

different wavelength. We isolate individual quantum dots by spectral filtering using

a grating spectrometer with a resolution of 0.02 nm. The spectrometer selects the

emission from only a single dot, as evidenced by the anti-bunching dip observed in

Fig. 4D-E which dips below 0.5.

B.3 Grating Calibration

Since both left and right grating couplers are fabricated under similar condition

they are identical in terms of coupling efficiency. To test this fact we calibrated them

with respect to. the transmission spectrum of the topological waveguide. Figure

B.2.A shows the different positions on the device. We shine an intense excitation

beam of 780 nm with 1.5uW power at the center of the waveguide (M). At this

high power all the quantum dots are saturated and emit a broadband spectrum

ranging from 900-980nm. We collected the transmitted signal from left (L) and

right grating (R). Figure S B.2.B shows almost equal counts coming from both
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Figure B.2: Transmission data from left and right gratings. (A) Scheme for excita-

tion and collection. (B) Transmitted signal collected from two gratings.

the gratings with almost overlapping transmission spectrum. Additionally, the area

under the curves give approximately 40 million counts/sec for the gratings thus

indicating equal coupling efficiency.

B.4 Coupling Efficiency

The coupling efficiency of emission from a single quantum emitter into the

topological waveguide is defined by

β =
IL + IR

IL + IR + IM
(B.1)

where IL and IR are the integrated photon counts propagating to the left and

right waveguide modes respectively, and IM is the photon counts emitted directly

from the middle of the device into free space. We can estimate these intensities by

measuring the brightness at the three locations denoted in the main text. Table B.1

shows the coupling efficiencies calculated for different dots coupled to our topological
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device. The table reports integrated count rates for an integration time of 1s at each

point. We determine the average to be 68%.

Coupled QDs IM IL IR β(%)
1 699 772 740 77.98
2 655 755 735 88.89
3 680 780 780 84.93
4 1300 1400 1900 75.23
5 802 1080 933 81.17
6 739 1021 654 78.85
7 795 1206 645 77.95
8 1090 1061 724 53.50
9 976 934 667 50.00
10 677 1079 807 92.44
11 869 728 819 54.90
12 1531 809 986 37.56
13 884 716 700 39.06

Avg 68.65

Table B.1: Estimation of coupling efficiency.
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Appendix C:

C.1 The polarization profile of a topological resonator

The electric field for the topological resonator mode is composed of two circularly-

polarized components, where the high-field intensity points appear in different lo-

cations, as shown in Fig. C.1 Although these waveguides exhibit polarization-

momentum locking, these plots indicate that the polarization profile changes in the

transverse direction. If an emitter is located at the peak of right-circularly polarized

light, and the QD is prepared to emit into right/left-circularly polarized light, then

the emitted light travels in a clockwise/anti-clockwise fashion around the resonator.

C.2 Sample fabrication

The initial wafer is composed of 160 nm GaAs membrane with quantum dots

grown at the center of the growth axis. 1 µm sacrificial layer of Al0.8Ga0.2As be-

neath the active layer is used to undercut and to create suspended structures. The

quantum dot density was 50 µm−2, which is high enough to find emitters resonant

with the cavity mode. Based on the given quantum dot density and inhomogeneous

broadening, the photon emitted by one quantum dot to be scattered by a second
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Figure C.1: Simulated left/right circular polarization components of the electric

field. White dotted line marks the perimeter of the resonator.

is calculated to be extremely unlikely. Samples are first spin-coated with ZEP520A

positive e-beam resist, followed by patterning using 100 keV high-resolution e-beam

system. Exposed regions are developed by using ZED50 developer. After pattern-

ing, chlorine-based directional ICP etching is performed to transfer the patterns

from ZEP520A hard mask to the GaAs layer. Lastly, selective wet etching using HF

acid is performed to create a suspended structure with air on top and bottom.

Due to imperfections in e-beam exposure and directional dry etching, fabrica-

tion of small and sharp corners is challenging. The loss in the resolution is mitigated

by using a modified layout design for triangles. We incorporate rectangular struc-

tures in the periphery in order to facilitate a homogeneous undercut of the sacrificial

layer. Also, we fabricated an array of devices with different e-beam doses.
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Figure C.2: Schematic of the experimental setup. OL, BS, SMF represent objective

lens, beam splitter, single mode fiber, respectively.

C.3 Measurements

For photoluminescence measurement, we mount the sample on the cold finger

of a cryostat (Attocube-Attodry system) which can be cooled down to a temperature

3K. The cold mount is surrounded by a superconducting magnet, which provided

a variable magnetic field ranging from zero to 6 Tesla. In our setup, the sample is

mounted in a Faraday configuration, i.e., the applied magnetic field is perpendicular

to the sample plane.

We use a confocal microscope setup (Fig. C.2) for both exciting QDs and also

collecting the photoluminescence (PL) signal from them. We use a continuous-wave

780nm diode laser for excitation. In the experiment, the collimated laser beam

is focused on the sample by an objective lens with NA=0.8. We also image the
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whole sample surface by shining a broadband light. This helps us to locate both the

excitation and collection spots on the sample. The collected light is then focused

on a single mode fiber (SMF) which acts as a spatial filter. For spectrally resolving

individual QD lines, we pass this collected light through a spectrograph fitted with

grating. In our case the spectral resolution is 0.02nm. This resolved light is then

focused onto a nitrogen-cooled charge-coupled device (CCD) camera array capable

of imaging at the single-photon level.

In experiment, due to 0.6 µm2 spot size of the laser spot, we excite roughly

25 quantum dots at the same time. Now owing to their inhomogeneous broadening

and random placement all over the structure, they emit at different wavelengths

and couple differently into the waveguide mode. We then isolate individual dots

by spectrally filtering them through a grating spectrometer. We then confirm their

coupling into the waveguide by spectrally locating them from emissions from dif-

ferent places of the device e.g. either from different locations on the resonator, or

gratings at the end of the waveguide.

C.4 The quality factor of resonator in hybrid structures

We simulated the coupled waveguide-resonator system for different system

parameters. In particular, we look at the behavior of resonator quality factor (Q)

as we vary the amount of coupling between the waveguide and the resonator. Since

we fix the perimeter of the resonator, the coupling strength only depends on the

distance between the side of the resonator (facing the waveguide) and the topological
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Figure C.3: Quality factor of cavity in hybrid structure : (a)Schematic of the sim-

ulation setup. Red super triangle indicates the resonator perimeter. The double

arrowed red line indicates the position of the waveguide. (b) The quality factor (Q)

versus distance (δ), showing saturation of Q at high values of δ

waveguide. We define the parameter δ as the number of unit cells, characterizing this

coupling distance (Fig. C.3(a)). As shown in Fig. C.3(b) the Q of the resonator

attains a saturation after δ. In other words, at this parameter, the resonator is

weakly coupled into the waveguide. Also depending on the different values of δ one

can create resonators of different Q. In our experiment, we choose δ to be 6.

C.5 Resonator designs with Valley-Hall physics

Apart from a triangular geometry, one can also fabricate other types of res-

onator designs with the valley-hall topological photonic crystal. Since these valley

edge modes are immune to 600 and 1200, one can think of other resonator designs

such as hexagon, rhombus, 3-side equal trapezoid, or more complicated designs, such
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Figure C.4: More resonator ideas : (a) Possible resonator shapes using valley-Hall

edge states (b) Simulated longitudinal modes of a hexagonal resonator showing both

bulk modes and resonating modes. (c) The in-plane electric field distribution for

one of the resonator modes.

as a hexagram (Fig. C.4 a).

Here we analyze a hexagonal resonator. As in the case of the triangular res-

onator in the main text, here the inside region of the hexagon is topologically dis-

tinct from the outside zone. Fig. C.4(b) shows the simulated modes in such a

system. Color shaded regions correspond to different regimes on the band struc-

ture. Specifically, the orange shade represents the bulk modes in the system which

are susceptible to disorder thus can provide random localized modes. And the blue

band corresponds to edge band of the band structure. Thus these modes show strong

confinement along the perimeter of the resonator (Fig. C.4(c)).
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