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New approaches for dictionary learning and domain adaptation are proposed for

face and action recognition. We first present an approach for dictionary learning of action

attributes via information maximization. We unify the class distribution and appearance

information into an objective function for learning a sparse dictionary of action attributes.

The objective function maximizes the mutual information between what has been learned

and what remains to be learned in terms of appearance information and class distribution

for each dictionary atom. We propose a Gaussian Process (GP) model for sparse repre-

sentation to optimize the dictionary objective function. Hence we can describe an action

video by a set of compact and discriminative action attributes. More importantly, we can

recognize modeled action categories in a sparse feature space, which can be generalized

to unseen and unmodeled action categories.

We then extend the attribute-based approach to a two-stage information-driven dic-

tionary learning framework for general image classification tasks. The proposed method

seeks a dictionary that is compact, discriminative, and generative. In the first stage, dictio-



nary atoms are selected from an initial dictionary by maximizing the mutual information

measure on dictionary compactness, discrimination and reconstruction. In the second

stage, the selected dictionary atoms are updated for improved reconstructive and discrim-

inative power using a simple gradient ascent algorithm on mutual information.

When designing dictionaries, training and testing domains may often be different,

due to different view points and illumination conditions. We further present a domain

adaptive dictionary learning framework for the task of transforming a dictionary learned

from one visual domain to the other, while maintaining a domain-invariant sparse repre-

sentation of a signal. Domain dictionaries are modeled by a linear or non-linear paramet-

ric function. The dictionary function parameters and domain-invariant sparse codes are

then jointly learned by solving an optimization problem.

Finally, in the context of face recognition, we present a dictionary learning approach

to compensate for the transformation of faces due to changes in view point, illumination,

resolution, etc. The approach is to first learn a domain base dictionary, and then describe

each domain shift (identity, pose, illumination) using a sparse representation over the base

dictionary. The dictionary adapted to each domain is expressed as sparse linear combi-

nations of the base dictionary. With the proposed compositional dictionary approach, a

face image can be decomposed into sparse representations for a given subject, pose and

illumination respectively. The extracted sparse representation for a subject is consistent

across domains and enables pose and illumination insensitive face recognition. Sparse

representations for pose and illumination can be used to estimate the pose and illumi-

nation condition of a face image. By composing sparse representations for subjects and

domains, we can also perform pose alignment and illumination normalization.
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Chapter 1

Introduction

Describing human actions and faces using attributes is closely related to representing

an object using attributes [10]. Several studies have investigated the attribute-based ap-

proaches for object recognition problems [10–14]. These methods have demonstrated

that attribute-based approaches can not only recognize object categories, but can also de-

scribe unknown object categories. In this dissertation, we first present a dictionary-based

approach for learning human action attributes which are useful to model and recognize

known action categories, and also describe unknown action categories. We then extend

the action attributes learning approach to an information-theoretic dictionary learning

framework for general image classification tasks. When designing dictionaries, we of-

ten face the problem that training and testing domains may be different, due to different

view points and illumination conditions. We further propose a domain adaptive dictionary

learning framework for the task of transforming a dictionary learned from one visual do-

main to the other, while maintaining a domain-invariant sparse representation of a signal.

Finally, we discuss a compositional dictionary approach for domain adaptive face recog-

nition. The dictionary adapted to each domain is expressed as sparse linear combinations

of a base dictionary.

1



1.1 Sparse Dictionary-based Attributes Learning

In the first contribution, we consider dictionary learning of human action attributes through

information maximization. In addition to using the appearance information between dic-

tionary atoms, we also exploit the class label information associated with dictionary atoms

to learn a compact and discriminative dictionary for human action attributes. The mutual

information for appearance information and class distributions between the learned dictio-

nary and the rest of the dictionary space are used to define the objective function, which is

optimized using a Gaussian Process (GP) model [15] proposed for sparse representation.

The property of sparse coding naturally leads to a GP kernel with compact support result-

ing in significant speed-ups. The representation and recognition of actions are through

sparse coefficients related to learned attributes. A compact and discriminative attribute

dictionary should encourage the signals from the same class to have very similar sparse

representations. In other words, the signals from the same class are described by a similar

set of dictionary atoms with similar coefficients, which is critical for classification using

learned dictionaries. Experimental results on four public action datasets demonstrate the

effectiveness of our approach in action recognition and summarization.

1.2 Information-theoretic Dictionary Learning

In the second contribution, we extend the action attributes learning approach to a two-

stage information-theoretic dictionary learning framework for general image classifica-

tion tasks. A key feature of our framework is that it can learn not only reconstructive but

also compact and discriminative dictionaries. Our method consists of two main stages

2



involving greedy atom selection and simple gradient ascent atom updates, resulting in a

highly efficient algorithm. In the first stage, dictionary atoms are selected in a greedy way

such that the common internal structure of signals belonging to a certain class is extracted

while simultaneously maintaining global discrimination among the classes. In the second

stage, the dictionary is updated for better discrimination and reconstruction via a simple

gradient ascent method that maximizes the mutual information (MI) between the signals

and the dictionary, as well as the sparse coefficients and the class labels. Experiments

using public object and face datasets demonstrate the effectiveness of our approach for

image classification tasks.

1.3 Domain Adaptive Dictionary Learning

In the third contribution, we explore a function learning framework for the task of trans-

forming a dictionary learned from one visual domain to the other, while maintaining a

domain-invariant sparse representation of a signal. When designing dictionaries for im-

age classification tasks, we are often confronted with situations where conditions, e.g.,

view points and illumination, in the training set are different from those present during

testing. Given the same set of signals observed in different visual domains, our goal is to

learn a dictionary for the new domain without corresponding observations. We formulate

this problem of dictionary transformation in a function learning framework, i.e., dictio-

naries across different domains are modeled by a parametric function. The dictionary

function parameters and domain-invariant sparse codes are then jointly learned by solv-

ing an optimization problem. The problem of transforming a dictionary trained from one

3



visual domain to another without changing signal sparse representations can be viewed

as a problem of domain adaptation [16] and transfer learning [17]. We demonstrate the

effectiveness of our approach for applications such as face recognition, pose alignment

and pose estimation.

1.4 Domain Adaptive Compositional Dictionary Learning

In the final contribution, we present a compositional dictionary approach for domain adap-

tive face recognition. Face recognition across domains, e.g., pose and illumination, has

proved to be a challenging problem [6,18,19]. We propose to first learn a domain base dic-

tionary, and then describe each domain shift (identity, pose, illumination) using a sparse

representation over the base dictionary. The dictionary adapted to each domain is then

expressed as sparse linear combinations of the base dictionary. Using this approach, a

face image can be decomposed into sparse representations for a given subject, pose and

illumination respectively. This approach has three advantages: first, the extracted sparse

representation for a subject is consistent across domains and enables pose and illumina-

tion insensitive face recognition. Second, sparse representations for pose and illumination

can subsequently be used to estimate the pose and illumination condition of a face im-

age. Finally, by composing sparse representations for subject and the different domains,

we can also perform pose alignment and illumination normalization. Extensive experi-

ments using two public face datasets are presented to demonstrate the effectiveness of our

approach for face recognition across domains.
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1.5 Organization of the Dissertation

In Chapter 2, we discuss an approach for dictionary learning of action attributes via in-

formation maximization. In Chapter 3, we introduce a two-stage information-theoretic

dictionary learning framework for image classification tasks. In Chapter 4, a domain

adaptive dictionary learning framework is presented. In Chapter 5, a compositional dic-

tionary approach is discussed for domain adaptive face recognition. Finally, in Chapter 6,

we discuss directions for future work.
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Chapter 2

Dictionary-based Attributes for Action Recognition and Summarization

2.1 Introduction

Dictionary learning is one of the approaches for learning attributes (i.e., dictionary atoms)

from a set of training samples. In [20], a promising dictionary learning algorithm, K-

SVD, is introduced to learn an over-complete dictionary. Input signals can then be repre-

sented as a sparse linear combination of dictionary atoms. K-SVD only focuses on focus

on representational capability, i.e., minimizes the reconstruction error. The method of

optimal direction (MOD) [21] shares the same sparse coding as K-SVD. [22] manually

selects training samples to construct a dictionary. [23] trains one dictionary for each class

to obtain discriminability.

Discriminative dictionary learning is gaining attention in many disciplines. Dis-

criminative K-SVD in [24] extends K-SVD by incorporating the classification error into

the objective function to obtain a more discriminative dictionary. [25] aims to obtain

the discriminative power of dictionary by iteratively updating the dictionary from the

results of a linear classifier. [26] introduces a label consistent constraint to obtain the

discrimination of sparse codes among the classes. Some other examples include LDA-

based basis selection [27], distance matrix learning [28], hierarchical pairwise merging

of visual words [29], maximization of mutual information (MMI) [1, 30, 31], and sparse

coding-based dictionary learning [23, 32].
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Figure 2.1: Sparse representations of four actions (two are known and two are unknown

to the attribute dictionary) using attribute dictionaries learned by different methods. Each

action is performed by two different humans. For visualization purpose, each waveform

shows the average of the sparse codes of all frames in an action sequence. We learned

several attribute dictionaries using methods including our approach, the Maximization

of Entropy approach (ME), the MMI-3 approach motivated by [1] and the K-means ap-

proach. A compact and discriminative attribute dictionary should encourage actions from

the same class to be described by a similar set of attributes, i.e., similar sparse codes. The

attribute dictionary learned by our approach provides similar waveforms, which shows

consistent sparse representations, for the same class action sequences.
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Recent dictionary-based approaches for learning action attributes include agglom-

erative clustering [33], forward selection [34] and probabilistic graphical model [35]. [36]

proposes an unsupervised approach and uses L1 minimization to find basic primitives to

represent human motions.

In this chapter, we propose an approach for dictionary learning of human action

attributes via information maximization. In addition to using the appearance information

between dictionary atoms, we also exploit class label information associated with dictio-

nary atoms to learn a compact and discriminative dictionary for human action attributes.

The mutual information for appearance information and class distributions between the

learned dictionary and the rest of the dictionary space are used to define the objective func-

tion, which is optimized using a Gaussian Process (GP) model [15] proposed for sparse

representation. The property of sparse coding naturally leads to a kernel with compact

support, i.e., zero values for a most portion, in GP for significant speed-ups. Represen-

tation and recognition of actions are accomplished through sparse coefficients related to

learned attributes.

Unlike previous dictionary learning methods that mostly consider learning recon-

structive dictionaries, our algorithm can encourage dictionary compactness and discrim-

inability simultaneously. Sparse representation over a dictionary with coherent atoms has

the multiple representation problem [37]. A compact dictionary consists of incoherent

atoms, and encourages similar signals, which are more likely from the same class, to

be consistently described by a similar set of atoms with similar coefficients. A discrim-

inative dictionary encourages signals from different classes to be described by either a

different set of atoms, or the same set of atoms but with different coefficients [23,37,38].
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Both aspects are critical for action classification using sparse representation. As shown

in Fig. 2.1, our approach produces consistent sparse representations for the same class of

signals.

Our approach adopts the rule of Maximization of Mutual Information to obtain a

compact and discriminative dictionary. The dictionary atoms are considered as attributes

in our approach. Compared to previous methods, our approach maximizes the mutual in-

formation for both the appearance information and class distribution of dictionary atoms

to learn a dictionary while [31] and [1] only maximize the mutual information for class

distribution. Thus, we can expect improved dictionary compactness from our approach.

Both [31] and [1] obtain a dictionary through merging of two visual words, which can be

time-consuming when the dictionary size is large. Besides, our approach is efficient be-

cause the dictionary is learned in the sparse feature space so we can leverage the property

of sparse coding to use kernel locality for speeding up the dictionary learning process.

This chapter makes the following contributions:

• We propose a novel probabilistic model for sparse representation.

• We learn a compact and discriminative dictionary for sparse coding via information

maximization.

• We describe and recognize human actions, including unknown actions, via a set of

human action attributes in a sparse feature space.

• We present a simple yet near-optimal action summarization method.

The rest of this chapter is structured as follows. In Sec. 2.2, we discuss human

action features and attributes. We then propose a novel probabilistic model for sparse
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representation in Sec. 2.3. In Sec. 2.4, we present our attribution dictionary learning

framework. We describe how to adopt our attribution dictionary learning method for ac-

tion summarization in Sec. 2.5. Experimental results are given in Sec. 2.6 to demonstrate

the effectiveness of our approach for action recognition and summarization.

2.2 Action Features and Attributes

Human action features are extracted from an action interest region for representing and

describing actions. The action interest region is defined as a bounded region around the

human performing the activity, which is obtained using background subtraction and/or

tracking.

2.2.1 Basic Features

The human action attributes require feature descriptors to represent visual aspects. We

introduce basic features, including both local and global features, used in the chapter.

Global Features: Global features encode rich information from an action interest

region, so they generally perform better than local features in recognition. When cam-

eras and backgrounds are static, we use the silhouette-based feature descriptor presented

in [39] to capture shape information, while we use Histogram of oriented gradient (HOG)

descriptors used in [40] for dynamic backgrounds and moving cameras. For encoding

motion information, we use optical-flow based feature descriptors as in [41]. We use Ac-

tion Bank descriptors introduced in [42] to demonstrate that our attribute learning method

can enhance the discriminability of high-level global features.
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Local Features: Spatio-temporal local features describe a video as a collection of

independent patches or 3D cuboids, which are less sensitive to viewpoint changes, noise

and partial occlusion. We first extract a collection of space-time interest points (STIP)

introduced in [2] to represent an action sequence, and then use HOG and histogram of

flow to describe them.

2.2.2 Human Action Attributes

Motivated by [33–35], an action can be represented as a set of basic action units. We refer

to these basic action units as human action attributes. In order to effectively describe hu-

man actions, we need to learn a representative and semantic set of action attributes. Given

all the basic features from training data, we aim to learn a compact and discriminative dic-

tionary where all the dictionary atoms can be used as human action attributes. The final

learned dictionary can be used as a “Thesaurus” of human action attributes. Each human

action is then decomposed as sparse linear combinations of attributes in the thesaurus

though sparse coding. The sparse coefficient associated with each attribute measures its

weight in representing an action.

2.3 A Probabilistic Model for Sparse Representation

Before we present our dictionary learning framework, we first suggest a novel probabilis-

tic model for sparse representation motivated by [43].
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2.3.1 Reconstructive Dictionary Learning

A reconstructive dictionary can be learned through K-SVD [20], which is a method to

learn an over-complete dictionary for sparse coding. Let Y be a set of N input signals

in a n-dimensional feature space Y = [y1...yN ], yi ∈ Rn. In K-SVD, a dictionary with

a fixed number of K atoms is learned by finding a solution iteratively to the following

problem:

arg min
D,X
‖Y −DX‖2

2 s.t.∀i, ‖xi‖0 ≤ T (2.1)

where D = [d1...dK ], di ∈ Rn (K > n) is the learned dictionary, X = [x1, ..., xN ], xi ∈

RK are the sparse codes of input signals Y , and T specifies the sparsity that each signal

has fewer than T atoms in its decomposition. Each dictionary atom di is L2-normalized.

The learned dictionary D from (2.1) only minimizes the reconstruction error, so it is not

optimal in terms of compactness and discriminability.

2.3.2 A Gaussian Process

Given a set of input signals Y , Y = [y1...yN ], yi ∈ Rn, there exists an infinite dictio-

nary space D ⊆ Rn. Each dictionary atom di ∈ D maps the set of input signals to its

corresponding sparse coefficients xdi = [xi,1...xi,N ] in X , which can be viewed as its ob-

servations to the set of input signals. When two dictionary atoms di and dj are similar, it

is more likely that input signals will use them simultaneously in their sparse decomposi-

tion [13]. Thus the similarity of two dictionary atoms can be assessed by the correlation

between their observations (i.e., sparse coefficients). Such correlation property of sparse

coefficients has been used in [13] to cluster dictionary atoms.
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With the above formulation, we obtain a problem which is commonly referred as

a GP model. A GP is specified by a mean function and a symmetric positive-definite

covariance function K. Since we simplify our problem by assuming an initial dictionary

Do, we only need to specify entries in the covariance function K for atoms existing in

Do, and leave the rest undefined. For each pair of dictionary atoms ∀di, dj ∈ Do, the

corresponding covariance function entryK(i, j) is defined as the covariance between their

associated sparse coefficients cov(xdi , xdj). For simplicity, we use the notation K(di,dj) to

refer to the covariance entry at the indices of di, dj . Similarly, we use K(D∗,D∗) to denote

the covariance matrix for a set of dictionary atoms D∗.

The GP model for sparse representation provides the following useful property:

given a set of dictionary atomsD∗ and the associated sparse coefficientsXD∗ , the distribu-

tion P (Xd∗|XD∗) at any given testing dictionary atom d∗ is a Gaussian with a closed-form

conditional variance [15].

V(d∗|D∗) = K(d∗,d∗) −KT(d∗,D∗)K−1
(D∗,D∗)K(d∗,D∗) (2.2)

where K(d∗,D∗) is the vector of covariances between d∗ and each atom in D∗.

2.3.3 Dictionary Class Distribution

When the set of input signals Y is labeled with one of M discrete class labels, we can

further derive class related distributions over sparse representations.

As mentioned, each dictionary atom di maps the set of input signals to its corre-

sponding sparse coefficients xdi = [xi,1...xi,N ] in X . Since each coefficient xi,j here

corresponds to an input signal yj , it is associated with a class label. If we aggregate xdi
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based on class labels, we obtain a M sized vector. After normalization, we have the con-

ditional probability P (L|di), L ∈ [1,M ], where P (L|di) represents the probability of

observing a class given a dictionary atom.

2.4 Learning Attribute Dictionary

As the optimal dictionary size is rarely known in advance, we first obtain through K-SVD

an initial dictionary Do of a large size K. As discussed, the initial dictionary Do from

(2.1) only minimizes the reconstruction error, and is not optimal in terms of compactness

and discriminability. Then we learn a compact and discriminative dictionary from the

initial dictionary via information maximization.

Given the initial dictionary Do obtained from (2.1), we aim to compress it into a

dictionary D∗ of size k, which encourages the signals from the same class to have very

similar sparse representations, as shown in Fig. 2.1. In other words, the signals from the

same class are described by a similar set of attributes, i.e., dictionary atoms. Therefore, a

compact and discriminative dictionary is more desirable.

An intuitive heuristic is to start with D∗ = ∅, and iteratively choose the next best

atom d∗ from Do\D∗ which provides a maximum increase for the entropy of D∗, i.e.,

arg maxd∗ H(d∗|D∗), until |D∗| = k, where Do\D∗ denotes the remaining dictionary

atoms after D∗ have been removed from the initial dictionary Do. Using the GP model,

we can evaluate H(d∗|D∗) as a closed-form Gaussian conditional entropy,

H(d∗|D∗) =
1

2
log(2πeV(d∗|D∗)) (2.3)

where V(d∗|D∗) is defined in (2.2). This heuristic is a good approximation to the maxi-
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mization of joint entropy (ME) criteria, i.e., arg maxD∗ H(D∗).

With the ME rule, as atoms in the learned dictionary are less correlated to each other

due to their high joint entropy, the learned dictionary is compact. However, the maximal

entropy criteria will favor attributes associated with the beginning and the end of an ac-

tion, as they are least correlated. Such a phenomenon is shown in Fig. 2.3b and Fig. 2.3d

in the experiment section. Thus we expect high reconstruction error and weak discrim-

inability. To mitigate this in our dictionary learning framework, we adopt Maximization

of Mutual Information (MMI) as the criteria for ensuring dictionary compactness and

discriminability.

2.4.1 MMI for Unsupervised Learning (MMI-1)

The rule of maximization of entropy only considers the entropy of dictionary atoms. In-

stead we choose to learn D∗ that most reduces the entropy about the rest of dictionary

atoms Do\D∗.

arg max
D∗

I(D∗;Do\D∗) (2.4)

It is known that maximizing the above criteria is NP-complete. A similar problem

has been studied in the machine learning literature [43]. We can use a very simple greedy

algorithm here. We start with D∗ = ∅, and iteratively choose the next best dictionary

atom d∗ from Do\D∗ which provides a maximum increase in mutual information, i.e.,

arg max
d∗∈Do\D∗

I(D∗ ∪ d∗;Do\(D∗ ∪ d∗))− I(D∗;Do\D∗)

= H(d∗|D∗)−H(d∗|D̄∗); (2.5)
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where D̄∗ denotes Do\(D∗ ∪ d∗). Intuitively, the ME criteria only considers H(d∗|D∗),

i.e., forces d∗ to be most different from already selected dictionary atomsD∗, now we also

consider −H(d∗|D̄∗) to force d∗ to be most representative among the remaining atoms.

It has been proved in [43] that the above greedy algorithm is submodular and serves

a polynomial-time approximation that is within (1 − 1/e) of the optimum. Using argu-

ments similar to the ones presented in [43], the near-optimality of our approach can be

guaranteed if the initial dictionary size |Do| is sufficiently larger than 2|D∗|.

Using the proposed GP model, the objective function in (2.5) can be written in a

closed form using (2.2) and (2.3).

arg max
d∗∈Do\D∗

K(d∗,d∗) −KT(d∗,D∗)K−1
(D∗,D∗)K(d∗,D∗)

K(d∗,d∗) −KT(d∗,D̄∗)
K−1

(D̄∗,D̄∗)
K(d∗,D̄∗)

(2.6)

Given the initial dictionary size |Do| = K, each iteration requires O(K4) to eval-

uate (2.6). Such an algorithm seems to be computationally infeasible for any large initial

dictionary size. The nice feature of this approach is that we model the covariance kernel

K over sparse codes X , which entitles K a compact support, i.e., most entries of K have

zero or very tiny values. After we ignore those zero value portion while evaluating (2.6),

the actual computation becomes very efficient.

2.4.2 MMI for Supervised Learning (MMI-2)

The objective functions in (2.4) and (2.5) only consider the appearance information of

dictionary atoms, hence D∗ is not optimized for classification. For example, attributes to

distinguish a particular class can possibly be missing inD∗. So we need to use appearance
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information and class distribution to construct a dictionary that also causes minimal loss

information about labels.

Let L denote the labels of M discrete values, L ∈ [1,M ]. In Sec. 2.3.3, we dis-

cussed how to obtain P (L|d∗), which represents the probability of observing a class

given a dictionary atom. Give a set of dictionary atom D∗, we define P (L|D∗) =

1
|D∗|

∑
di∈D∗ P (L|di). For simplicity, we denote P (L|d∗) as P (Ld∗), and P (L|D∗) as

P (LD∗).

To enhance the discriminative power of the learned dictionary, we propose to mod-

ify the objection function (2.4) to

arg max
D∗

I(D∗;Do\D∗) + λI(LD∗ ;LDo\D∗) (2.7)

where λ ≥ 0 is the parameter to regularize the emphasis on appearance or label informa-

tion. When we write (2.7) in its approximation version as (2.8)

arg max
d∗∈Do\D∗

[H(d∗|D∗)−H(d∗|D̄∗)]

+λ[H(Ld∗|LD∗)−H(Ld∗|LD̄∗)] (2.8)

where

H(Ld∗ |LD∗) = −
∑

L∈[1,M ]

P (Ld∗)P (LD∗) logP (Ld∗)

we can easily notice that now we also force the classes associated with d∗ to be most

different from classes already covered by selected atoms D∗; and at the same time, the

classes associated with d∗ should be most representative among classes covered by the

remaining atoms. Thus the learned dictionary is not only compact, but also covers all

classes to maintain the discriminability. It is interesting to note that MMI-1 is a special

case of MMI-2 with λ = 0.
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The parameters λ in (2.8) are data dependent and can be estimated as the ratio

between the maximal information gained from an atom to the respective compactness and

discrimination measure, i.e.,

λ =
maxd∗∈Do [H(Ld∗|LD∗)−H(Ld∗ |LD̄∗)]

maxd∗∈Do [H(d∗|D∗)−H(d∗|D̄∗)] . (2.9)

For each term in (2.8), only the first greedily selected atoms are involved in parameter

estimation. This leads to an efficient process in finding the parameters.

2.4.3 MMI using dictionary class distribution (MMI-3)

MMI-1 considers the appearance information for dictionary compactness, and MMI-2

uses appearance and class distribution to enforce both dictionary compactness and dis-

criminability. To complete the discussion, MMI-3, which is motivated by [1], only con-

siders the dictionary class distribution, discussed in Sec. 2.3.3, for dictionary discrim-

inability.

In MMI-3, we start with an initial dictionary Do obtained from K-SVD. At each

iteration, for each pair of dictionary atoms, d1 and d2, we compute the MI loss if we merge

these two into a new dictionary atom d∗, and pick the pair which gives the minimum MI

loss. We continue the merging process till the desired dictionary size. The MI loss is

defined as,

4I(d1, d2) =
∑

L∈[1,M ],i=1,2

p(di)p(L|di) log p(L|di)

−p(di)p(L|di) log p(L|d∗) (2.10)

where
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p(L|d∗) =
p(d1)

p(d∗)
p(L|d1) +

p(d2)

p(d∗)
p(L|d2)

p(d∗) = p(d1) + p(d2)

2.5 Action Summarization using MMI-1

Summarizing an action video sequence often considers two criteria: diversity and cover-

age [44]. The diversity criterion requires the elements in a summary be as different from

each other as possible; and the coverage criterion requires a summary to also represent

the original video well.

In (2.5), the first termH(d∗|D∗) forces d∗ to be most different from already selected

dictionary atoms D∗. The second term −H(d∗|D̄∗) to force d∗ to be most representative

among the remaining atoms. By considering an action sequence as a dictionary, and each

frame as a dictionary atom, MMI-1 serves a near-optimal video summarization scheme.

The first term in (2.5) measures diversity and the second term in (2.5) measures coverage.

The only revision required here is to define the kernel of the Gaussian process discussed

in Sec. 2.3.2 as K(di,dj) = dTi dj .

The advantage in adopting MMI-1 as a summarization/sampling scheme can be

summarized as follows: first, MMI-1 is a simple greedy algorithm that can be executed

very efficiently. Second, the MMI-1 provides near-optimal sampling/summarization re-

sults, which is within (1−1/e) of the optimum. Such near-optimality is achieved through

a submodular objective function that enforces diversity and coverage simultaneously.
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2.6 Experimental Evaluation

This section presents an experimental evaluation using four public action datasets: Keck

gesture dataset [39], Weizmann action dataset [45], UCF sports action dataset [46], and

UCF50 action dataset [47]. On the Keck gesture dataset, we thoroughly evaluate the ba-

sic behavior of our proposed dictionary learning approaches MMI-1, MMI-2, and MMI-3,

in terms of dictionary compactness and discriminability, by comparing with other alter-

natives. Then we further evaluate the discriminability of our learned action attributes

over the popular Weizmann aciton dataset, the challenging UCF sports and UCF50 action

datasets.

2.6.1 Comparison with Alternative Approaches

The Keck gesture dataset consists of 14 different gestures, which are a subset of the

military signals. These 14 classes include turn left, turn right, attention left, attention

right, flap, stop left, stop right, stop both, attention both, start, go back, close distance,

speed up, come near. Each of the 14 gestures is performed by three subjects. Some sample

frames from this dataset are shown in Fig. 2.1.

For comparison purposes, in addition to MMI-1, MMI-2 and MMI-3 methods pro-

posed in Sec. 2.4, we also implemented two additional action attributes learning ap-

proaches. The first approach is the maximization of entropy (ME) method discussed

before. The second approach is to simply perform k-means over an initial dictionary Do

from K-SVD to obtain a desired size dictionary.
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(b) Compactness

Figure 2.2: Purity and compactness of learned dictionary D∗: purity is the histograms of

the maximum probability observing a class given a dictionary atom, and compactness is

the histograms of D∗TD∗. At the right-most bin of the respective figures, a discriminative

and compact dictionary should exhibit high purity and small compactness. MMI-2 dic-

tionary is most “pure” and second most compact (MMI-1 is most compact but much less

pure.)

2.6.1.1 Dictionary Purity and Compactness

Through K-SVD, we start with an initial 500 size dictionary using the shape feature (spar-

sity 30 is used). We then learned a 40 size dictionary D∗ from Do using 5 different

approaches. We let λ = 1 in (2.8) throughout the experiment. To evaluate the dis-

criminability and compactness of these learned dictionaries, we evaluate the purity and

compactness measures as shown in Fig. 2.2. The purity is assessed by the histograms of

the maximum probability observing a class given a dictionary atom, i.e., max(P (L|di)),
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and the compactness is assessed by the histograms of D∗TD∗. As each dictionary atom is

L2-normalized, dtidj ∈ [0, 1] and indicates the similarity between dictionary atoms di and

dj . Fig. 2.2a shows MMI-2 is most “pure”, as around 25% of dictionary atoms learned

by MMI-2 have 0.6-above probability to only associate with one of the classes. MMI-3

shows comparable purity to MMI-2 as the MI loss criteria used in MMI-3 does retain the

class information during dictionary learning. However, as shown in Fig. 2.2b, MMI-2

dictionary is much more compact, as only about 20% MMI-2 dictionary atoms have 0.80-

above similarity. As expected, comparing to MMI-2, MMI-1 shows better compactness

but much less purity.

2.6.1.2 Describing Unknown Actions

We illustrate here how unknown actions can be described through a learned attribute

dictionary. We first obtain a 500 size initial shape dictionary Do using 11 out of 14

gesture classes, and keep flap, stop both and attention both as unknown actions. We

would expect a near perfect description to these unknown actions, as we notice these

three classes are composed by attributes observed in the rest classes. For example, flap is

a two-arm gesture “unseen” by the attribute dictionary, but its left-arm pattern is similar

to turn left, and right-arm is similar to turn right.

As shown in Fig. 2.3, we learned 40 size dictionaries using MMI-2, ME and MMI-

3 respectively from Do. Through visual observation, ME dictionary (Fig. 2.3b) is most

compact as dictionary atoms look less similar to each other. However, different from

MMI-2 dictionary (Fig. 2.3a), it contains shapes mostly associated with the action start
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(a) MMI-2 shape attributes (b) ME shape attributes (c) MMI-3 shape attributes

Original 
shape

=

=

= =

= =

+ + + + + + + + +

+ + + + + + + + +

MMI-2 ME MMI-3

(d) Description to two example frames in an unknown action flap using attribute dictionaries (Sparsity 10 is

used and top-4 attributes are shown.)

Figure 2.3: Learned attribute dictionaries on shape features (“unseen” classes: flap, stop

both and attention both)

and end as discussed in Sec. 2.4, which often results in high reconstruction errors shown

in Fig. 2.3d. MMI-3 dictionary (Fig. 2.3c) only concerns about the discriminability, thus

obvious redundancy can be observed in its dictionary. We can see from Fig. 2.3d, though

the action flap is unknown to the dictionary, we still obtain a nearly perfect reconstruc-

tion through MMI-2, i.e., we can perfectly describe it using attributes in dictionary with

corresponding sparse coefficients.
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2.6.1.3 Recognition Accuracy

In all of our experiments, we use the following classification schemes: when the global

features, i.e., shape and motion, are used for attribute dictionaries, we first adopt dynamic

time warping (DTW) to align and measure the distance between two action sequences

in the sparse code domain; then a k-NN classifier is used for recognition. When the

local feature STIP [2] is used, DTW becomes not applicable, and we simply perform

recognition using a k-NN classifier based on the sparse code histogram of each action

sequence.

In Fig. 2.4, we present the recognition accuracy on the Keck gesture dataset with

different dictionaries sizes and over different global and local features. We use a leave-

one-person-out setup, i.e., sequences performed by a person are left out, and report the

average accuracy. We choose an initial dictionary size |Do| to be twice the dimension

of an input signal and sparsity 10 is used in this set of experiments. In all cases, the

proposed MMI-2 outperforms the rest. The sparse code noise has more effects on the

DTW methods than the histogram method, thus, MMI-2 brings more improvements on

global features over local features. The peak recognition accuracy obtained from MMI-2

is comparable to 92.86% (motion), 92.86% (shape), 95.24% (shape and motion) reported

in [39].

As discussed, the near-optimality of our approach can be guaranteed if the initial

dictionary size |Do| is sufficiently larger than 2|D∗|. We usually choose a size for D∗ to

keep |Do| be 10 to 20 times larger. As shown in Fig. 2.4, such dictionary size range usually

produces good recognition performance. We can also decide |D∗| when the MI increase
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in (2.8) is below a predefined threshold, which can be obtained via cross validation from

training data.

2.6.2 Discriminability of Learned Action Attributes

In this section, we further evaluate the discriminative power of learned action attributes

using MMI-2.

2.6.2.1 Recognizing Unknown Actions

The Weizmann human action dataset contains 10 different actions: bend, jack, jump,

pjump, run, side, skip, walk, wave1, wave2. Each action is performed by 9 different

people. We use the shape and the motion features for attribute dictionaries. In the exper-

iments on the Weizmann dataset, we learn a 50 size dictionary from a 1000 size initial

dictionary and the sparsity 10 is used. When we use a leave-one-person-out setup, we

obtain 100% recognition accuracy for the Weizmann dataset.

To evaluate the recognition performance of attribute representation for unknown

actions, we use a leave-one-action-out setup for dictionary learning, and then use a leave-

one-person-out setup for recognition. In this way, one action class is kept unknown to the

learned attribute dictionary, and its sparse representation using attributes learned from the

rest classes is used for recognition. The recognition accuracy is shown in Table 2.1.

It is interesting to notice from the second row of Table 2.1 that only jump can not be

perfectly described using attributes learned from the rest 9 actions, i.e., jump is described

by a set of attributes not completely provided by the rest actions. By examining the
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dataset, it is easy to notice jump does exhibit unique shapes and motion patterns.

As we see from the third row of the table, omitting attributes of the wave2, i.e.,

the wave-two-hands action, brings down the overall accuracy most. Further investigation

tells us, when the wave2 attributes are not present, such accuracy loss is caused by 33%

pjump being misclassified as jack, which means the attributes contributed by wave2 are

useful to distinguish pjump from jack. This makes great sense as jack is very similar to

pjump but jack contains additional wave-two-hands pattern.

Unknown Action bend jack jump pjump run side skip walk wave1 wave2

Action Accuracy 1.00 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Overall Accuracy 1.00 1.00 0.98 0.98 1.00 1.00 1.00 0.99 0.97 0.94

Table 2.1: Recognition accuracy on the Weizmann dataset using a leave-one-action-out

setup for dictionary learning. The second row is the recognition accuracy on the unknown

action, and the third row is the overall average accuracy over all classes given the unknown

action. The second row reflects the importance of attributes learned from the rest actions

to represent the unknown action, and the third row reflects the importance of attributes

from the unknown action to represent the rest actions.

2.6.2.2 Recognizing Realistic Actions

The UCF sports dataset is a set of 150 broadcast sports videos and contains 10 different

actions shown in Fig. 2.5. It is a challenging dataset with significant variations in scene

content and viewpoints. As the UCF dataset often involves multiple people in the scene,
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we use tracks from ground-truth annotations. We use the HOG and the motion features for

attribute dictionaries. We learned a 60 size dictionary from a 1200 size initial dictionary

and the sparsity 10 is used. We adopt a five-fold cross-validation setup. With such basic

features and a simple k-NN classifier, we obtain 83.6% average recognition accuracy over

the UCF sports action dataset, and the confusion matrix is shown in Fig. 2.6.

2.6.3 Attribute dictionary on high-level features

We learn our sparse attribute dictionary from features. As discussed in Sec. 2.2, human

actions are typically represented by low- or mid-level features, which contain little se-

mantic meanings. Recent advances in action representations suggest the inclusion of se-

mantic information for high-level action features. A promising high-level action feature,

ActionBank, is introduced in [42]. The ActionBank representation is a concatenation of

max-pooled detection features from many individual action detectors sampled broadly in

a semantic space. As reported in [42], the action recognition accuracy using ActionBank

features is better than the state of the art, better by 3.7% on UCF Sports, and 10% on

UCF50.

In this section, we demonstrate that our learned action attributes can not only ben-

efit from but also enhance high-level features in terms of discriminability. We perform

experiments on the UCF Sports and UCF50 action datasets.

We revisit the UCF sports dataset. Instead of the low-level HOG and motion fea-

tures, we adopt the ActionBank high-level features for attribute dictionaries. A 29930

dimensional ActionBank feature is extracted for each action, and such feature is reduced
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to 128 dimensions through PCA. Then, we learned a 40-sized attibute dictionary from a

128-sized initial dictionary and the sparsity 20 is used. We use the same leave-one-out

cross-validation setup as [42] for action recognition. In order to emphasize the discrim-

inability of learned action attributes, we adopt a simple k-NN classifier.

The recognition accuracies using high-level ActionBank features are reported in

the second part of Table 2.2. We obtain 90.7% by using ActionBank features directly

with a k-NN classifier. The recognition accuracy using the initial K-SVD dictionary on

ActionBank features is 52.1%. The recognition accuracy using the attribute dictionar-

ies learned by MMI-1, MMI-2 and MMI-3 are 93.6%, 91.5% and 87.9%. We made the

following three observations: first, the proposed dictionary learning method significantly

enhances dictionary discriminability (better by 41.5% than the initial K-SVD dictionary).

Second, the learned attributes using MMI-1 further improve the state of the art discrim-

inability of ActionBank features (better by 3.0%). Third, discriminability improvements

from considering class distribution during dictionary learning are less significant while

using high-level features, comparing to low-level ones. This can be due to that high-

level features like ActionBank have already encoded such semantic information, i.e., the

feature appearance carries class information. Though MMI-2 significantly outperforms

both MMI-2 and MMI-3 given low-level features, MMI-1 is preferred when high-level

semantic features are used.

We conduct another set of experiments using high-level features on the UCF50

action dataset. UCF50 is a very challenging action dataset with 50 action categories,

consisting of 6617 realistic videos taken from youtube. Sample frames from the UCF50

action dataset are shown in Fig. 2.7. A 14965 dimensional ActionBank feature is first
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Method Accuracy (%)

Rodriguez et al. [46] 69.2

Yeffet and Wolf [48] 79.3

MMI-2 (HOG&motion) 83.6

Varma and Babu [49] 85.2

Wang et al. [50] 85.6

Le et al. [51] 86.5

Kovashka and Grauman [52] 87.3

Wu et al. [53] 91.3

K-SVD 52.1

MMI-3 87.9

ActionBank 90.7

MMI-2 91.5

MMI-1 93.7

Table 2.2: Recognition accuracies on the UCF Sports dataset using high-level features.

extracted for each action, and such feature is reduced to 512 dimensions through PCA.

Then, we learned a 128-sized dictionary from a 2048-sized initial dictionary and the spar-

sity 60 is used. We use 5-fold group-wise cross-validation setup suggested in [42] for

action recognition. Again, we adopt a simple k-NN classifier. We obtain 36.7% by us-

ing ActionBank features directly with a k-NN classifier, and 41.5% by using the MMI-1

attribute dictionaries learned from ActionBank features. The learned action attributes

further improve the discriminability of ActionBank features by 4.8%.
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2.6.4 Action Sampling/Summarization using MMI-1

This section presents experiments demonstrating action summarization using the pro-

posed MMI-1 algorithm. We first use the MPEG shape dataset [54] to provide an ob-

jective assessment of diversity and coverage enforced by the MMI-1 sampling scheme.

Then we provide action summarization examples using the UCF sports dataset.

As discussed in Sec 2.2, actions are described using features extracted from an ac-

tion interest region. Global action features are typically shape-based or motion-based

descriptors. As video summarization often lacks of objective assessment schemes, shape

sampling provides an objective alternate to measure diversity and coverage of a sam-

pling/summarization method.

We conducted shape sampling experiments on the MPEG dataset. This dataset con-

tains 70 shape classes with 20 shapes each. As shown in Fig. 2.8a, we use 10 classes

with 10 shape each in our experiments. To emphasize both diversity and coverage crite-

ria, we keep our shape descriptor be variant to affine transformations. Thus, shapes with

distinct rotation, scaling or translation are considered as outliers. The Top-10 shape sam-

pling results using ME in Fig. 2.8b, which only considers diversity, retrieved 3 classes.

The sampling results using k-means in Fig. 2.8c, which focuses on coverage, retrieved 7

classes. As shown in Fig. 2.8d, the sampling results using the proposed MMI-1 method,

which enforces both diversity and coverage criteria, retrieved all 10 classes.

In Fig. 2.9, we provide an action summarization example using the proposed MMI-

1 method. For the dive sequence in Fig. 2.9a, we describe each frame of the action using

both the HOG and the motion features. Then we sample Top-10 frames using MMI-1 and
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sort them by timestamps, as shown in Fig. 2.9b. Through a subjective assessment, the

dive action summarized using MMI-1 in Fig. 2.9b is compact yet representative.

2.7 Conclusion

We presented an attribute dictionary learning approach via information maximization for

action recognition and summarization. By formulating the mutual information for ap-

pearance information and class distributions between the learned dictionary and the rest

of dictionary space into an objective function, we can ensure the learned dictionary is

both representative and discriminative. The objective function is optimized through a GP

model proposed for sparse representation. The sparse representation for signals enable

the use of kernels locality in GP to speed up the optimization process. An action se-

quence is described through a set of action attributes, which enable both modeling and

recognizing actions, even including “unseen” human actions. Our future work includes

how to automatically update the learned dictionary for a new action category.
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(a) Shape (|Do| = 600)
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(b) Motion (|Do| = 600)
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(c) Shape and Motion (|Do| = 1200)
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(d) STIP (|Do| = 600)

Figure 2.4: Recognition accuracy on the Keck gesture dataset with different features and

dictionary sizes (shape and motion are global features. STIP [2] is a local feature.). The

recognition accuracy using initial dictionary Do: (a) 0.23 (b) 0.42 (c) 0.71 (d) 0.81. In all

cases, the proposed MMI-2 (red line) outperforms the rest.
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Figure 2.5: Sample frames from the UCF sports action dataset. The actions include:

diving, golfing, kicking, weight-lifting, horse-riding, running, skateboarding, swinging-1

(on the pommel horse and on the floor), swinging-2 (at the high bar), walking.

Figure 2.6: Confusion matrix for UCF sports dataset
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Figure 2.7: Sample frames from the UCF50 action dataset. UCF50 is an action recog-

nition dataset with 50 action categories, consisting of 6617 realistic videos taken from

youtube.
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(a) 10 classes from MPEG shape dataset

(b) Top-10 shapes sampled using ME

(c) Top-10 shapes sampled using k-means

(d) Top-10 shapes sampled using the proposed MMI-1

Figure 2.8: Shape sampling on the MPEG dataset. The proposed MMI-1 method, which

enforces both diversity and coverage criteria, retrieved all 10 shape classes.
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(a) A UCF sports sample dive sequence

(b) A dive action summary obtained using MMI-1

Figure 2.9: An MMI-1 action summarization example using the UCF sports dataset
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Chapter 3

Information-theoretic Dictionary Learning

3.1 Introduction

Sparse signal representations have recently drawn much traction in vision, signal and

image processing [55], [56], [57], [58]. This is mainly due to the fact that signals and

images of interest can be sparse in some dictionary. Given a redundant dictionary D

and a signal y, finding a sparse representation of y in D entails solving the following

optimization problem

x̂ = arg min
x
‖x‖0 subject to y = Dx, (3.1)

where the `0 sparsity measure ‖x‖0 counts the number of nonzero elements in the vector

x. Problem (3.1) is NP-hard and cannot be solved in a polynomial time. Hence, approxi-

mate solutions are usually sought [57], [59], [60], [61].

The dictionary D can be either based on a mathematical model of the data [57] or it

can be trained directly from the data [62]. It has been observed that learning a dictionary

directly from training rather than using a predetermined dictionary (such as wavelet or

Gabor) usually leads to better representation and hence can provide improved results in

many practical applications such as restoration and classification [55], [56], [58], [63].

Various algorithms have been developed for the task of training a dictionary from

examples. One of the most commonly used algorithms is the K-SVD algorithm [20].
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Given a set of examples {yi}ni=1, K-SVD finds a dictionary D that provides the best

representation for each example in this set by solving the following optimization problem

(D̂, X̂) = arg min
D,X
‖Y −DX‖2

F subject to ∀i ‖xi‖0 ≤ T0, (3.2)

where xi represents the ith column of X, Y is the matrix whose columns are yi and T0

is the sparsity parameter. Here, the Frobenius norm is defined as ‖A‖F =
√∑

ij A
2
ij .

The K-SVD algorithm alternates between sparse-coding and dictionary update steps. In

the sparse-coding step, D is fixed and the representation vectors xis are found for each

example yi. Then, the dictionary is updated atom-by-atom in an efficient way.

Dictionaries can be trained for both reconstruction and discrimination applications.

In the late nineties, Etemand and Chellappa proposed a linear discriminant analysis (LDA)

based basis selection and feature extraction algorithm for classification using wavelet

packets [64]. Recently, similar algorithms for simultaneous sparse signal representation

and discrimination have also been proposed in [37,38,65,66]. Some of the other methods

for learning discriminative dictionaries include [4, 24, 26, 65, 67–69]. Additional tech-

niques may be found within these references.

In this chapter, we propose a general method for learning dictionaries for image

classification tasks via information maximization. Unlike other previously proposed dic-

tionary learning methods that only consider learning only reconstructive and/or discrim-

inative dictionaries, our algorithm can learn reconstructive, compact and discriminative

dictionaries simultaneously. Sparse representation over a dictionary with coherent atoms

has the multiple representation problem. A compact dictionary consists of incoherent

atoms, and encourages similar signals, which are more likely from the same class, to be
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consistently described by a similar set of atoms with similar coefficients [4]. A discrim-

inative dictionary encourages signals from different classes to be described by either a

different set of atoms, or the same set of atoms but with different coefficients [37,38,68].

Both aspects are critical for classification using sparse representation. The additional

reconstructive requirement to a compact and discriminative dictionary enhances the ro-

bustness of the discriminant sparse representation [37]. All these three criteria are critical

for classification using sparse representation.

Our method of training dictionaries consists of two main stages involving greedy

atom selection and simple gradient ascent atom updates, resulting in a highly efficient

algorithm. In the first stage, dictionary atoms are selected in a greedy way such that the

common internal structure of signals belonging to a certain class is extracted while at the

same time ensuring global discrimination among the different classes. In the second stage,

the dictionary is updated for improved discrimination and reconstruction via a simple

gradient ascent method that maximizes the mutual information (MI) between the signals

and the dictionary, as well as the sparse coefficients and the class labels.

Fig. 3.1 presents a comparison in terms of the discriminative power of the information-

theoretic dictionary learning approach presented in this chapter with three state-of-the-art

methods. Scatter plots of sparse coefficients obtained using the different methods show

that our method provides more discriminative sparse representation, leading to signifi-

cantly better classification accuracy.

This chapter makes the following contributions:

• We propose a two-stage information-theoretic dictionary learning framework for
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image classification tasks.

• We learn reconstructive, compact and discriminative dictionaries simultaneously.

• We achieve an efficient dictionary learning algorithm through greedy atom selection

and simple gradient ascent atom updates.

The organization of the chapter is as follows. Section 3.2 defines and formulates the

information theoretic dictionary learning problem. In Section 3.3, the proposed dictionary

learning algorithm is detailed. Experimental results are presented in Section 3.4 and

Section 3.5 concludes the chapter with a brief summary and discussion.

3.2 Background and Problem Formulation

Suppose we are given a set of N signals (images) in an n-dim feature space Y =

[y1, ...,yN], yi ∈ Rn. Given that signals are from p distinct classes and Nc signals are

from the c-th class, c ∈ {1, · · · , p}, we denote Y = {Yc}pc=1, where Yc = [yc1, · · · ,ycNc
]

are signals in the c-th class. When the class information is relevant, similarly, we define

X = {Xc}pc=1, where Xc = [xc1, · · · ,xcNc
] is the sparse representation of Yc.

Given a sample y at random, the entropy (uncertainty) of the class label in terms of

class prior probabilities is defined as

H(C) =
∑
c

p(c)

(
1

p(c)

)
.

The mutual information which indicates the decrease in uncertainty about the pattern y

due to the knowledge of the underlying class label c is defined as

I(Y;C) = H(Y)−H(Y|C),
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where H(Y|C) is the conditional entropy defined as

H(Y|C) =
∑
y,c

p(y, c) log

(
1

p(y|c)

)
.

Given Y and an initial dictionary Do with `2 normalized columns, we aim to learn

a compact, reconstructive and discriminative dictionary D∗ via maximizing the mutual

information between D∗ and the unselected atoms Do\D∗ in Do, between the sparse

codes XD∗ associated with D∗ and the signal class labels C, and finally between the

signals Y and D∗, i.e.,

arg max
D
λ1I(D; Do\D) + λ2I(XD ;C) + λ3I(Y; D) (3.3)

where {λ1, λ2, λ3} are the parameters to balance the contributions from compactness,

discriminability and reconstruction terms, respectively.

It is widely known that inclusion of additional criteria, such as a discriminative

term, in a dictionary learning framework often involves challenging optimization algo-

rithms [65,68,69]. As discussed above, compactness, discriminability and reconstruction

terms are all critical for classification using sparse representation. Maximizing mutual

information enables a simple way to unify all three criteria for dictionary learning. As

suggested in [43] and [4], maximizing mutual information can also lead to a sub-modular

objective function, i.e., a greedy yet near-optimal approach, for dictionary learning.

A two-stage approach is adopted to satisfy (3.3). In the first stage, each term in

(3.3) is maximized in a unified greedy manner and involves a closed-form evaluation,

thus atoms can be greedily selected from the initial dictionary while satisfying (3.3). In

the second stage, the selected dictionary atoms are updated using a simple gradient ascent
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method to further maximize

λ2I(XD ;C) + λ3I(Y; D).

3.3 Information-theoretic Dictionary Learning

In this section, we present the details of our Information-theoretic Dictionary Learning

(ITDL) approach for classification tasks. The dictionary learning procedure is divided

into two main steps: Information-theoretic Dictionary Selection (ITDS) and Information-

theoretic Dictionary Update (ITDU). In what follows, we describe these steps in detail.

3.3.1 Dictionary Selection

Given input signals Y and an initial dictionary Do, we select a subset of dictionary atoms

D∗ from Do via information maximization, i.e., maximizing (3.3), to encourage the sig-

nals from the same class to have very similar sparse representation yet have the discrimi-

native power. In this section, we illustrate why each term in (3.3) describes the dictionary

compactness, discrimination and representation, respectively. We also show that how

each term in (3.3) can be maximized in a unified greedy manner that involves closed-

form computations. Therefore, if we start with D∗ = ∅, and greedily select the next best

atom d∗ from Do\D∗ which provides an information increase to (3.3), we obtain a set of

dictionary atoms that is compact, reconstructive and discriminative at the same time. To

this end, we consider in detail each term in (3.3) separately.
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3.3.1.1 Dictionary compactness I(D∗; Do\D∗)

The dictionary compactness I(D∗; Do\D∗) has been studied in our early work [4]. We

summarize [4] to complete our information-driven dictionary selection discussion. [4]

suggests dictionary compactness is required to avoid the multiple sparse representation

problem for better classification performance. In [4], we first model sparse representation

through a Gaussian Process model to define the mutual information I(D∗; Do\D∗). A

compact dictionary can be then obtained as follows: we start with D∗ = ∅ and iteratively

choose the next best dictionary item d∗ from Do\D∗ which provides a maximum increase

in mutual information, i.e.,

arg maxd∗∈Do\D∗I(D∗ ∪ d∗; Do\(D∗ ∪ d∗))− I(D∗; Do\D∗). (3.4)

It has been proved in [43] that the above greedy algorithm serves a polynomial-time ap-

proximation that is within (1− 1/e) of the optimum.

3.3.1.2 Dictionary Discrimination I(XD∗;C)

Using any pursuit algorithm such as OMP [60], we initialize the sparse coefficients XDo

for input signals Y and an initial dictionary Do. Given XD∗ are sparse coefficients as-

sociated with the desired set of atoms D∗ and C are the class labels for input signals Y,

based on [70], an upper bound on the Bayes error over sparse representation E(XD∗) is

obtained as

1

2
(H(C)− I(XD∗ ;C)).
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This bound is minimized when I(XD∗ ;C) is maximized. Thus, a discriminative dictio-

nary D∗ is obtained via

arg max
D∗

I(XD∗ ;C). (3.5)

We maximize (3.5) using a greedy algorithm initialized by D∗ = ∅ and iteratively choos-

ing the next best dictionary atom d∗ from Do\D∗ which provides a maximum mutual

information increase, i.e.,

arg max
d∗∈Do\D∗

I(XD∗∪d∗ ;C)− I(XD∗ ;C), (3.6)

where I(XD∗ ;C) is evaluated as follows

I(XD∗ ;C) = H(XD∗)−H(XD∗|C) (3.7)

= H(XD∗)−
p∑
c=1

p(c)H(XD∗|c).

Entropy measures in (3.7) involve computation of probability density functions

p(XD∗) and p(XD∗|c). We adopt the kernel density estimation method [71] to non-

parametrically estimate the probability densities. Using isotropic Gaussian kernels (i.e.

Σ = σ2I, where I is the identity matrix), the class dependent density for the c-th class

can be estimated as

p(x|c) =
1

Nc

Nc∑
j=1

KG(x− xcj, σ
2I), (3.8)

where KG is a d-dim Gaussian kernel defined as

KG(x,Σ) =
1

(2π)
d
2 |Σ| 12

exp

(
−1

2
xTΣ−1x

)
. (3.9)

With p(c) = Nc

N
, we can estimate p(x) as

p(x) =
∑
c

p(x|c)p(c).
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3.3.1.3 Dictionary Representation I(Y; D∗)

A representative dictionary D∗ maximizes the mutual information between dictionary

atoms and the signals, i.e.,

arg max
D∗

I(Y; D∗). (3.10)

We obtain a representative dictionary via a similar greedy manner as discussed above.

That is, we iteratively choose the next best dictionary atom d∗ from Do\D∗ which pro-

vides the maximum increase in mutual information,

arg max
d∗∈Do\D∗

I(Y; D∗ ∪ d∗)− I(Y; D∗). (3.11)

By assuming the signals are drawn independently and using the chain-rule of en-

tropies, we can evaluate I(Y; D∗) as

I(Y; D∗) = H(Y)−H(Y|D∗) (3.12)

= H(Y)−
N∑
i=1

H(yi|D∗).

H(Y) is independent of dictionary selection and can be ignored. To evaluate H(yi|D∗)

in (3.12), we define p(yi|D∗) through the following relation holding for each input signal

yi,

yi = D∗xi + ri,

where ri is a Gaussian residual vector with variance σ2
r . Such a relation can be written in

a probabilistic form as,

p(yi|D∗) ∝ exp(− 1

2σ2
r

||yi −D∗xi||2).
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3.3.1.4 Selection of λ1, λ2 and λ3

The parameters λ1, λ2 and λ3 in (3.3) are data dependent and can be estimated as the ratio

between the maximal information gained from an atom to the respective compactness,

discrimination and reconstruction measure, i.e.,

λ1 = 1, (3.13)

λ2 =
maxi I(Xdi

;C)

maxi I(di; Do\di)
,

λ3 =
maxi I(Y; di)

maxi I(di; Do\di)
.

For each term in (3.3), only the first greedily selected atom based on (3.4), (3.6) and

(3.11), respectively are involved in parameter estimation. This leads to an efficient process

in finding parameters.

3.3.2 Dictionary Update

A representative and discriminative dictionary D produces the maximal MI between the

sparse coefficients and the class labels, as well as the signals and the dictionary, i.e.,

max
D

λ2I(XD ;C) + λ3I(Y; D).

In the dictionary update stage, we update the set of selected dictionary atoms D to further

enhance the discriminability and representation.

To achieve sparsity, we assume the cardinality of the set of selected atoms D is

much smaller than the dimension of the signal feature space. Under such an assumption,

the sparse representation of signals Y can be obtained as XD = D†Y which minimizes
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the representation error ‖Y −DXD‖2
F , where

D† = (DTD)−1DT.

Thus, updating dictionary atoms for improving discriminability while maintaining repre-

sentation is transformed into finding D† that maximizes

I(D†Y;C).

3.3.2.1 A Differentiable Objective Function

To enable a simple gradient ascent method for dictionary update, we first approximate

I(D†Y;C) using a differentiable objective function. I(X;C) can be viewed as the

Kullback-Leibler (KL) divergence D(p‖q) between p(X, C) and p(X)p(C), where X =

D†Y. Motivated by [72], we approximate the KL divergence D(p‖q) with the quadratic

divergence (QD), defined as

Q(p‖q) =

∫
t

(p(t)− q(t))2 dt,

making I(X;C) differentiable. Due to the property that

D(p‖q) ≥ 1

2
Q(p‖q),

by maximizing the QD, one can also maximize a lower bound to the KL divergence. With

QD, I(X;C) can now be evaluated as,

IQ(X;C) =
∑
c

∫
x

p(x, c)2 dx (3.14)

− 2
∑
c

∫
x

p(x, c)p(x)p(c) dx

+
∑
c

∫
x

p(x)2p(c)2 dx.
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In order to evaluate the individual terms in (3.14), we need to derive expressions for the

kernel density estimates of various density terms appearing in (3.14). Observe that for the

two Gaussian kernels in (3.9), the following holds

∫
x

KG(x− si,Σ1)KG(x− sj,Σ2) dx = KG(si − sj,Σ1 + Σ2). (3.15)

Using (3.8), p(c) = Nc

N
and p(x, c) = p(x|c)p(c), we have

p(x, c) =
1

N

Nc∑
j=1

KG(x− xcj, σ
2I).

Similarly, since p(x) =
∑

c p(x, c), we have

p(x) =
1

N

N∑
i=1

KG(x− xi, σ
2I).

Inserting expressions for p(x, c) and p(x) into (3.14) and using (3.15), we get the follow-

ing closed form

IQ(X;C) =
1

N2

p∑
c=1

Nc∑
k=1

Nc∑
l=1

KG(xck − xcl , 2σ
2I) (3.16)

− 2

N2

p∑
c=1

Nc

N

Nc∑
j=1

N∑
k=1

KG(xcj − xk, 2σ
2I)

+
1

N2

(
p∑
c=1

(
Nc

N

)2
)

N∑
k=1

N∑
l=1

KG(xk − xl, 2σ
2I). (3.17)

3.3.2.2 Gradient Ascent Update

For simplicity, we define a new matrix Φ as

Φ , (D†)T.

Once we have estimated IQ(X;C) as a function of the data set in a differential form,

where X = ΦTY, we can use gradient ascent on IQ(X;C) to search for the optimal Φ
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maximizing the quadratic mutual information with

Φk+1 = Φk + ν
∂IQ
∂Φ
|Φ=Φk

where ν ≥ 0 defining the step size, and

∂IQ
∂Φ

=

p∑
c=1

Nc∑
i=1

∂IQ
∂xci

∂xci
∂Φ

.

Since xci = ΦTyci , we get

∂xci
∂Φ

= (yci )
T .

Note that

∂

∂xi
KG(xi − xj, 2σ

2I) = KG(xi − xj, 2σ
2I)

(xi − xj)

2σ2
.

We have

∂

∂xci
IQ =

1

N2σ2

Nc∑
k=1

KG(xck − xci , 2σ
2I)(xck − xci)

− 2

N2σ2

(
p∑
c=1

(
Nc

N

)2
)

N∑
k=1

KG(xk − xci , 2σ
2I)(xk − xci)

+
1

N2σ2

p∑
k=1

Nk +Nc

2N

Nk∑
j=1

KG(xkj − xci , 2σ
2I)(xkj − xci). (3.18)

Once Φ is updated, the dictionary D can be updated using the relation Φ = (D†)T. Such

dictionary updates guarantee convergence to a local maximum due to the fact that the

quadratic divergence is bounded [73].

3.3.3 Dictionary Learning Framework

Given a dictionary Do, a set of signals Y, the class labels C and a sparsity level T , the

supervised sparse coding method given in Algorithm 1 represents these signals at once
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as a linear combination of a common subset of T atoms in D, where T is much smaller

than the dimension of the signal feature space to achieve sparsity. We obtain a sparse

representation as each signal has no more than T coefficients in its decomposition. The

advantage of simultaneous sparse decomposition for classification has been discussed

in [37]. Such simultaneous decompositions extract the internal structure of given signals

and neglects minor intra-class variations. The ITDS stage in Algorithm 1 ensures such

common set of atoms are compact, discriminative and reconstructive.

When the internal structures of signals from different classes can not be well rep-

resented in a common linear subspace, Algorithm 2 illustrates supervised sparse coding

with a dedicated set of atoms per class. It is noted in Algorithm 2 that both the discrimi-

native and reconstructive terms in ITDS are handled on a class by class basis.

A sparse dictionary learning framework, such as K-SVD [20] which learns a dictio-

nary that minimizes the reconstruction error, usually consists of sparse coding and update

stages. In K-SVD, at the coding stage, a pursuit algorithm is employed to select a set of

atoms for each signal; and at the update stage, the selected atoms are updated through

SVD for improved reconstruction. Similarly, in Algorithm 3, at the coding stage, ITDS is

employed to select a set of atoms for each class of signals; and at the update stage, the se-

lected atoms are updated through ITDU for improved reconstruction and discrimination.

Algorithm 3 is also applicable to the case when sparse coding is achieved using global

atoms.
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3.4 Experimental Evaluation

This section presents an experimental evaluation on three public datasets: the Extended

YaleB face dataset [74], the USPS handwritten digits dataset [75], and the 15-Scenes

dataset [76]. The Extended YaleB dataset contains 2414 frontal face images for 38 indi-

viduals. This dataset is challenging due to varying illumination conditions and expres-

sions. The USPS dataset consists of 8-bit 16×16 images of “0” through “9” and 1100

examples for each class. The 15-Scenes dataset contains 4485 images falling into 15

scene categories. The 15 categories include images of living rooms, kitchens, streets, in-

dustrials, etc.. In all of our experiments, linear SVMs on the sparse coefficients are used

for classifiers. First, we thoroughly evaluate the basic behaviors of the proposed dictio-

nary learning method. Then we evaluate the discriminative power of the ITDL dictionary

over the full Extended YaleB dataset, the full USPS dataset, and the 15-Scenes dataset.

3.4.1 Evaluation with Illustrative Examples

To enable visualized illustrations, we conduct the first set of experiments on the first four

subjects in the Extended YaleB face dataset and the first four digits in the USPS digit

dataset. Half of the data are used for training and the rest is used for testing.

3.4.1.1 Comparing Atom Selection Methods

We initialize a 128 sized dictionary using the K-SVD algorithm [20] on the training face

images of the first four subjects in the Extended YaleB dataset. A K-SVD dictionary

only minimizes the reconstruction error and is not yet optimal for classification tasks.
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Though one can also initialize the dictionary directly with training samples or even with

random noise, a better initial dictionary generally helps ITDL in terms of classification

performance, due to the fact that an ITDL dictionary converges to a local maximum.

In Fig. 3.2, we present the recognition accuracy and the reconstruction error with

different sparsity on the first four subjects in the Extended YaleB dataset. The Root Mean

Square Error (RMSE) is employed to measure the reconstruction error. To illustrate the

impact of the compactness, discrimination and reconstruction terms in (3.3), we keep one

term at a time for the three selection approaches, i.e., the compact, the discriminative and

the reconstructive method. The compact method is equivalent to MMI-1 [4].

Parameters λ1, λ2 and λ3 in (3.3) are estimated as discussed in Section 3.3.1.4. As

the dictionary learning criteria becomes less critical when sparsity increases, i.e., more en-

ergies in signals are actually preserved, we focus on curves in Fig. 3.2 when sparsity<20.

Although sparse coding methods generally perform well for face recognition, it is still

easy to notice that the proposed ITDS method using all three terms (red) significantly out-

performs those which optimize just one of the three terms, compactness (black), discrim-

ination (blue), and representation (green), in terms of recognition accuracy. For example,

the discrimination term alone (blue) leads to a better initial but poor overall recognition

performance. The proposed ITDS method also provides moderate reconstruction error.

It is noted that IDS exhibits comparable recognition accuracy to MMI-2 (pink) [4]

with global atoms, and significantly outperforms it with class dedicated atoms. The reason

is that, instead of explicitly considering the discriminability of dictionary atoms, MMI-

2 enforces the diversity of classes associated with atoms. Such class diversity criteria

becomes less effective when there are only two classes in the dedicate atom case. In
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Fig. 3.2, it is interesting to note that the reconstructive method delivers nearly identical

recognition accuracy and RMSE to SOMP [3] with both the shared and dedicated atoms,

given the different formulations of two methods. The proposed dictionary selection using

all three terms provides a good local optimum to converge at the dictionary update stage.

3.4.1.2 Enhanced Discriminability with Atom Update

We illustrate how the discriminability of dictionary atoms selected by the ITDS method

can be further enhanced using the proposed ITDU method. We initialize a 128 sized K-

SVD dictionary for the face images and a 64 sized K-SVD dictionary for the the digit

images. Sparsity 2 is adopted for visualization, as the non-zero sparse coefficients of each

image can now be plotted as a 2-D point. In Fig. 3.3, with a common set of atoms shared

over all classes, sparse coefficients of all samples become points in the same 2-D coordi-

nate space. Different classes are represented by different colors. The original images are

also shown and placed at the coordinates defined by their non-zero sparse coefficients.

The atoms to be updated in Fig. 3.3a and 3.3d are selected using ITDS. We can see from

Fig. 3.3 that the proposed ITDU method makes sparse coefficients of different classes

more discriminative, leading to significantly improved classification accuracy. Fig. 3.4

shows that the ITDU method also enhances the discriminability of atoms dedicated to

each class. It is noted that, though the dictionary update sometimes only converges after

a considerable number of iterations, based on our experience, the first 50 to 100 iterations

in general bring significant improvement in classification accuracy.
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3.4.1.3 Enhanced Reconstruction with Atom Update

From Fig. 3.5e, we notice obvious errors in the reconstructed digits, shown in Fig. 3.5d

with atoms selected from the initial K-SVD dictionary using ITDS. After 30 ITDU itera-

tions, Fig. 3.5f shows that all digits are reconstructed correctly with a unified intra-class

structure and limited intra-class variation. This leads to a more accurate classification as

shown in Fig. 3.4. It is noted that Fig. 3.5 and Fig. 3.4 are results from the same set of

experiments. As can be seen from Fig. 3.5g, after ITDU converges, all digits are recon-

structed correctly with the true underlying intra-class structures, i.e., the left-slanted and

right-slanted styles for both digits “1” and “0”. Fig. 3.5h shows the images in Fig. 3.5d

with 60% missing pixels. The recognition rate for Fig. 3.5i, Fig. 3.5j, and Fig. 3.5k are

76.87%, 85.03% and 85.71%, respectively.

3.4.2 Discriminability of ITDL Dictionaries

We evaluate the discriminative power of ITDL dictionaries over the complete USPS

dataset, where we use 7291 images for training and 2007 images for testing, and the

Extended YaleB face dataset, where we randomly select half of the images as training

and the other half for testing, and finally the 15-Scenes dataset, where we randomly use

100 images per class for training and used the remaining data for testing.

For each dataset, we initialize a 512 sized dictionary from K-SVD and set the spar-

sity to be 30. Then we perform 30 iterations of dictionary update and report the peak

classification performance. Here we adopt a dedicated set of atoms for each class and in-

put the concatenated sparse representation into a linear SVM classifier. For the Extended
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YaleB face dataset, we adopt the same experimental setup in [26]. As shown in Table 3.1,

Table 3.2, and Table 3.3, our method is comparable to some of the competitive discrimi-

native dictionary learning algorithms such as SDL-D [69], SRSC [38], D-KSVD [24] and

LC-KSVD [26]. Note that, our method is flexible enough that it can be applied over any

dictionary learning schemes to enhance the discriminability.

3.5 Conclusion

We presented an information theoretic approach to dictionary learning that seeks a dictio-

nary that is compact, reconstructive and discriminative for the task of image classification.

The algorithm consists of dictionary selection and update stages. In the selection stage,

an objective function is maximized using a greedy procedure to select a set of compact,

reconstructive and discriminative atoms from an initial dictionary. In the update stage,

a gradient ascent algorithm based on the quadratic mutual information is adopted to en-

hance the selected dictionary for improved reconstruction and discrimination. Both the

proposed dictionary selection and update methods can be easily applied for other dictio-

nary learning schemes.
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(d) Sparse representation for four handwritten digits (Sparsity = 3)

Figure 3.1: Sparse representation using dictionaries learned by different approaches

(SOMP [3], MMI-1 and MMI-2 [4]). For visualization, sparsity 3 is chosen, i.e., no more

than three dictionary atoms are allowed in each sparse decomposition. When signals are

represented at once as a linear combination of a common set of atoms, sparse coefficients

of all the samples become points in the same coordinate space. Different classes are repre-

sented by different colors. The recognition accuracy is obtained through linear SVMs on

the sparse coefficients. Our approach provides more discriminative sparse representation

which leads to significantly better classification accuracy.
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Input: Dictionary Do, signals Y, class labels C, sparsity level T

Output: sparse coefficients X, reconstruction Ŷ

begin

Initialization stage:

1. Initialize X with any pursuit algorithm,

i = 1, · · · , N minxi ‖yi −Doxi‖22 s.t. ‖xi‖0 ≤ T .

ITDS stage (shared atoms):

2. Estimate λ1, λ2 and λ3 from Y, X and C;

3. Find T most compact, discriminative and reconstructive atoms:

D∗ ← ∅; Γ← ∅ ;

for t=1 to T do
d∗ ← arg max

d∈Do\D∗
λ1[I(D∗ ∪ d; Do\(D∗ ∪ d))− I(D∗; Do\D∗)] +

λ2[I(XD∗∪d;C)− I(XD∗ ;C)] + λ3[I(Y; D∗ ∪ d)− I(Y; D∗)];

D∗ ← D∗
⋃

d∗;

Γ← Γ
⋃
γ∗, γ∗ is the index of d∗ in Do ;

end

4. Compute sparse codes and reconstructions:

X← pinv(D∗)Y;

Ŷ ← D∗X;

5. return X, Ŷ, D∗, Γ ;

end

Algorithm 1: Sparse coding with global atoms.
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Input: Dictionary Do, signals Y = {Yc}pc=1, sparsity level T

Output: sparse coefficients {Xc}pc=1, reconstruction {Ŷc}pc=1

begin

Initialization stage:

1. Initialize X with any pursuit algorithm,

i = 1, · · · , N minxi ‖yi −Doxi‖22 s.t. ‖xi‖0 ≤ T .

ITDS stage (dedicated atoms):

for c=1 to p do

2. Cc ← {ci|ci = 1 if yi ∈ Yc, 0 otherwise } ;

3. Estimate λ1, λ2 and λ3 from Yc, X and Cc;

4. Find T most compact, discriminative and reconstructive atoms for class c:

D∗ ← ∅; Γ← ∅ ;

for t=1 to T do
d∗ ← arg max

d∈Do\D∗
λ1[I(D∗ ∪ d; Do\(D∗ ∪ d))− I(D∗; Do\D∗)] +

λ2[I(XD∗∪d;Cc)− I(XD∗ ;Cc)] + λ3[I(Yc; D
∗ ∪ d)− I(Yc; D

∗)];

D∗ ← D∗
⋃

d∗;

Γ← Γ
⋃
γ∗, γ∗ is the index of d∗ in Do ;

end

D∗c ← D∗; Γc ← Γ;

5. Compute sparse codes and reconstructions:

Xc ← pinv(D∗c)Yc;

Ŷc ← D∗cXc;

end

6. return {Xc}pc=1, {Ŷc}pc=1, {D∗c}pc=1, {Γc}pc=1 ;

end

Algorithm 2: Sparse coding with atoms per class.
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Input: Dictionary Do, signals Y = {Yc}pc=1, class labels C, sparsity level T , update step

ν

Output: Learned dictionary D, sparse coefficients X, reconstruction Ŷ

begin

Sparse coding stage:

Use supervised sparse coding to obtain {D∗c}pc=1.

ITDU stage:

foreach class c do
[In the shared atom case, use the global label C instead of Cc, and one iteration is

required as the same D∗c is used for all classes.]

Cc ← {ci|ci = 1 if yi ∈ Yc, 0 otherwise } ;

Φ1 ← pinv(D∗c)
T ;

X← pinv(D∗c)Y;

repeat

Φk+1 = Φk + ν
∂IQ(X,Cc)

∂Φ |Φ=Φk
;

D∗ ← pinv(ΦT
k+1);

X← pinv(D∗)Y;

until convergence;

D∗c ← D∗ ;

end

foreach class c do

Xc ← pinv(D∗c)Yc;

Ŷc ← D∗cXc;

end

return {Xc}pc=1, {Ŷc}pc=1, {D∗c}pc=1 ;

end

Algorithm 3: Sparse coding with atom updates.
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(c) Recognition Rate
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Figure 3.2: Recognition accuracy and RMSE on the YaleB dataset using different dictio-

nary selection methods. We vary the sparsity level, i.e., the maximal number of dictionary

atoms that are allowed in each sparse decomposition. In (a) and (b), a global set of com-

mon atoms are selected for all classes. In (c) and (d), a dedicated set of atoms are selected

per class. In both cases, the proposed ITDS (red lines) provides the best recognition

performance and moderate reconstruction error.
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(a) Before update (b) After 100 updates (c) Converge after 489 updates

(d) Before update (e) After 50 updates (f) Converge after 171 updates

Figure 3.3: Information-theoretic dictionary update with global atoms shared over classes.

For a better visual representation, sparsity 2 is chosen and a randomly selected subset of

all samples are shown. The recognition rate associated with (a), (b), and (c) are: 30.63%,

42.34% and 51.35%. The recognition rate associated with (d), (e), and (f) are: 73.54%,

84.45% and 87.75%. Note that the proposed ITDU effectively enhances the discriminabil-

ity of the set of common atoms.
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(a) Before dictionary update (Acc.= 85.71%)
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(b) After 30 update iterations (Acc.= 89.11%)
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(c) Converge after 57 update iterations (Acc.= 90.47%)

Figure 3.4: Information-theoretic dictionary update with dedicated atoms per class. The

first four digits in the USPS digit dataset are used. Sparsity 2 is chosen for visualization.

In each figure, signals are first represented at once as a linear combination of the dedicated

atoms for the class colored by red, then sparse coefficients of all signals are plotted in the

same 2-D coordinate space. The proposed ITDU effectively enhances the discriminability

of the set of dedicated atoms.
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(a) before update (b) 30 iterations (c) 57 iterations

(d) original images (e) before update (f) 30 iterations (g) 57 iterations

(h) noisy images (i) before update (j) 30 iterations (k) 57 iterations

Figure 3.5: Reconstruction using class dedicated atoms with the proposed dictionary up-

date (sparsity 2 is used.). (a), (b) and (c) show the updated dictionary atoms, where

from the top to the bottom the two atoms in each row are the dedicated atoms for class

‘1’,‘2’,‘3’ and ‘0’. (e), (f) and (g) show the reconstruction to (d). (i), (j) and (k) show

the reconstruction to (h). (h) are images in (d) with 60% missing pixels. Note that ITDU

extracts the common internal structure of each class and eliminates the variation within

the class, which leads to more accurate classification.
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Table 3.1: Classification rate (%) on the USPS dataset.

Proposed SDL-D [69] SRSC [38] FDDL [65] k-NN SVM-Gauss

98.28 96.44 93.95 96.31 94.80 95.80

Table 3.2: Classification rate (%) on the 15 scenes dataset.

Proposed ScSPM [77] KSPM [76] KC [78] LSPM [77]

81.13 80.28 76.73 76.67 65.32

Table 3.3: Classification rate (%) on the Extended YaleB face dataset.

Proposed D-KSVD [24] LC-KSVD [26] K-SVD [20] SRC [79] LLC [80]

95.39 94.10 95.00 93.1 80.5 90.7
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Chapter 4

Domain Adaptive Dictionary Learning

4.1 Introduction

In recent years, sparse and redundant modeling of signals has received a lot of attention

from the vision community [56]. This is mainly due to the fact that signals or images

of interest are sparse or compressible in some dictionary. In other words, they can be

well approximated by a linear combination of a few elements (also known as atoms) of a

redundant dictionary. This dictionary can either be an analytic dictionary such as wavelets

or it can be directly trained from data. It has been observed that dictionaries learned

directly from data provide better representation and hence can improve the performance

of many applications such as image restoration and classification [55].

When designing dictionaries for image classification tasks, we are often confronted

with situations where conditions in the training set are different from those present during

testing. For example, in the case of face recognition, more than one familiar view may be

available for training. Such training faces may be obtained from a live or recorded video

sequences, where a range of views are observed. However, the test images can contain

conditions that are not necessarily presented in the training images such as a face in a

different pose. The problem of transforming a dictionary trained from one visual domain

to another without changing signal sparse representations can be viewed as a problem of

domain adaptation [16] and transfer learning [17].
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(a) Example dictionaries learned at known poses with

observations.

(b) Domain adapted dictionary at a pose (θ = 17◦)

associated with no observations.

Figure 4.1: Overview of our approach. Consider example dictionaries corresponding to

faces at different azimuths. (a) shows a depiction of example dictionaries over a curve

on a dictionary manifold which will be discussed later. Given example dictionaries, our

approach learns the underlying dictionary function F (θ,W). In (b), the dictionary corre-

sponding to a domain associated with observations is obtained by evaluating the learned

dictionary function at the corresponding domain parameters.

Given the same set of signals observed in different visual domains, our goal is to

learn a dictionary for the new domain without corresponding observations. We formulate

this problem of dictionary transformation in a function learning framework, i.e., dictio-

naries across different domains are modeled by a parametric function. The dictionary

function parameters and domain-invariant sparse codes are then jointly learned by solv-

ing an optimization problem. As shown in Figure 4.1, given a learned dictionary function,

a dictionary adapted to a new domain is obtained by evaluating such a dictionary function

at the corresponding domain parameters, e.g., pose angles.

For the case of view variations, linear interpolation methods have been discussed
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in [81] to predict intermediate views of faces given a frontal and profile views. These

methods essentially apply linear regression on the PCA coefficients corresponding to two

different views. In [82], Vetter and Poggio present a method for learning linear transfor-

mations from a basis set of prototypical views. Their approach is based on the linear class

property which essentially states that if a 3D view of an object can be represented as the

weighted sum of views of other objects, its rotated view is a linear combination of the

rotated views of the other objects with the same weights [82], [83], [84]. Note that our

method is more general than the above mentioned methods in that it is applicable to visual

domains other than pose. Second, our method is designed to maintain consistent sparse

coefficients for the same signal observed in different domains. Furthermore, our method

is based on the recent dictionary learning methods and is able to learn dictionaries that

are more general than the ones resulting from PCA.

This chapter makes the following contributions:

• A general continuous function learning framework is presented for the task of dic-

tionary transformations across domains.

• A simple and efficient optimization procedure is presented that learns dictionary

function parameters and domain-invariant sparse codes simultaneously.

• Experiments for various applications, including pose alignment, pose and illumina-

tion estimation and face recognition across pose, are presented.
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4.2 Overall Approach

We consider the problem of dictionary transformations in a learning framework, where we

are provided with a few examples of dictionaries Di with corresponding domain parame-

ter θi. Let the parameter space be denoted by Θ, i.e. θi ∈ Θ. Let the dictionary space be

denotedD. The problem then boils down to constructing a mapping function F : Θ 7→ D.

In the simple case where Θ = R and D = Rn, the problem of fitting a function can be

solved efficiently using curve fitting techniques [85]. A dictionary of d atoms in Rn is

often considered as an n × d real matrix or equivalently a point in Rn×d. However, of-

ten times there are additional constraints on dictionaries that make the identification with

Rn×d not well-motivated. We present below a few such constraints:

• Subspaces: For the special case of under-complete dictionaries where the matrix is

full-rank and thus represents a choice of basis vectors for a d-dimensional subspace

in Rn, the dictionary space is naturally considered as a Grassmann manifold Gn,d

[86]. The geometry of the Grassmann manifold is studied either as a quotient-space

of the special orthogonal group or in terms of full-rank projection matrices, both of

which result in non-Euclidean geometric structures.

• Products of subspaces: In many cases, it is convenient to think of the dictionary

as a union of subspaces, e.g. a line and a plane. This structure has been utilized

in many applications such as generalized PCA (GPCA), sparse subspace clustering

[87] etc. In this case, the dictionary-space becomes a subset of the product space of

Grassmann manifolds.
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• Overcomplete dictionaries: In the most general case one considers an over-complete

set of basis vectors, where each basis vector has unit-norm, i.e. each basis vector is

a point on the hypershere Sn−1. In this case, the dictionary space becomes a subset

of the product-space S(n−1)×d.

To extend classic multi-variate function fitting to manifolds such as the ones above,

one needs additional differential geometric tools. In our case, we propose extrinsic ap-

proaches that rely on embedding the manifold into an ambient vector space, perform

function/curve fitting in the ambient space, and project the results back to the manifold of

interest. This is conceptually simpler, and we find in our experiments that this approach

works very well for the problems under consideration. The choice of embedding is in

general not unique. We describe below the embedding and the corresponding projection

operations for the manifolds of interest describe above.

• Subspaces: Each point in Gn,d corresponds to a d-dimensional subspace of Rn.

Given a choice of orthonormal basis vectors for the subspace Y, the n×n projection

matrix given by P = YYT is a unique representation for the subspace. The projec-

tion matrix represntation can then be embedded into the ambient vector-space Rn×n.

The projection operation Π is given by Π(M) = UUT, where M = UΣVT is a

rank-d SVD of M [5].

• Products of subspaces: Following the procedure above, each component of the

product space can be embedded into a different vector-space and the projected back

to the manifold using the corresponding projection operation.
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• Overcomplete dictionaries: The embedding from Sn−1 to Rn is given by a vec-

torial representation with unit-norm. The projection Π : Rn 7→ Sn−1 is given by

Π(V) = V
‖V‖ , where ‖.‖ is the standard Euclidean norm. A similar operation on the

product-space S(n−1)×d can be defined by component-wise projection operations.

In specific examples in the chapter, we consider the case of over-complete dictio-

naries. We adopt the embedding and projection approach described above as a means

to exploit the wealth of function-fitting techniques available for vector-spaces. Next, we

describe the technique we adopt.

4.2.1 Problem Formulation

We denote the same set of P signals observed in N different domains as {Y1, ...,YN},

where Yi = [yi1, ...,yiP], yip ∈ Rn. Thus, yip denotes the pth signal observed in the ith

domain. In the following, we will use Di as the vector-space embedded dictionary. Let Di

denote the dictionary for the ith domain, where Di = [di1...diK], dik ∈ Rn. We define

a vector transpose (V T ) operation over dictionaries as illustrated in Figure 4.2. The V T

operator treats each individual dictionary atom as a value and then perform the typical

matrix transpose operation. Let D denote the stack dictionary shown in Figure 4.2b over

all N domains. It is noted that D = [DVT]VT.

The domain dictionary learning problem can be formulated as (4.1). Let X =

[x1, ...,xP], xp ∈ RK , be the sparse code matrix. The set of domain dictionary {Di}Ni

learned through (4.1) enable the same sparse codes xp for a signal yp observed across N
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Figure 4.2: The vector transpose (VT) operator over dictionaries.

different domains to achieve domain adaptation.

arg
{Di}Ni ,X

min
N∑
i

‖Yi −DiX‖2
F s.t. ∀p ‖xp‖o ≤ T, (4.1)

where ‖x‖o counts the number of non-zero values in x. T is a sparsity constant.

We propose to model domain dictionaries Di through a parametric function in (4.2),

where θi denotes a vector of domain parameters, e.g., view point angles, illumination

conditions, etc., and W denotes the dictionary function parameters.

Di = F (θi,W) (4.2)

Applying (4.2) to (4.1), we formulate the domain dictionary function learning as

(4.3).

arg
W,X

min
N∑
i

‖Yi − F (θi,W)X‖2
F s.t. ∀p ‖xp‖o ≤ T. (4.3)

Once a dictionary is estimated it is projected back to the dictionary-space by the

projection operation described earlier.
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4.2.2 Domain Dictionary Function Learning

We first adopt power polynomials to model DVT
i in Figure 4.2a through the following

dictionary function F (θi,W),

F (θi,W) = w0 +
S∑
s=1

w1sθis + ...+
S∑
s=1

wmsθ
m
is (4.4)

where we assume S-dimensional domain parameter vectors and an mth-degree polyno-

mial model. For example, given θi a 2-dimensional domain parameter vector, a quadratic

dictionary function is defined as,

F (θi,W) = w0 + w11θi1 + w12θi2 + w21θ
2
i1 + w22θ

2
i2

Given Di contains K atoms and each dictionary atom is in the Rn space, as DVT
i =

F (θi,W), it can be noted from Figure 4.2 that wms is a nK-sized vector. We define the

function parameter matrix W and the domain parameter matrix Θ as

W =



w
(1)
0 w

(2)
0 w

(3)
0 ... w

(nK)
0

w
(1)
11 w

(2)
11 w

(3)
11 ... w

(nK)
11

.

.

.

w
(1)
mS w

(2)
mS w

(3)
mS ... w

(nK)
mS



Θ =



1 1 1 ... 1

θ11 θ21 θ31 ... θN1

.

.

.

θm1S θm2S θm3S ... θmNS



Each row of W corresponds to the nK-sizedwTms, and W ∈R(mS+1)×nK . N different do-

mains are assumed and Θ ∈ R(mS+1)×N . With the matrix W and Θ, (4.4) can be written
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as,

DVT = WTΘ (4.5)

where DVT is defined in Figure 4.2b. Now dictionary function learning formulated in

(4.3) can be written as,

arg
W,X

min ‖Y − [WTΘ]VTX‖2
F s.t. ∀p ‖xp‖o ≤ T (4.6)

where Y is the stacked training signals observed in different domains as illustrated in

Figure 4.3. With the objective function defined in (4.6), the dictionary function learning

can be performed in the following steps,

Step 1: Obtain the sparse coefficients X and [WTΘ]VT via any dictionary learning

method, e.g., K-SVD [20].

Step 2: Given the domain parameter matrix Θ, the optimal dictionary function can be

obtained as [88],

W = [ΘΘT]−1Θ[[[WTΘ]VT]VT]T. (4.7)

Step 3: Sample the dictionary function at desired parameters values, and project it to the

dictionary-space using an appropriate projection operation.

4.2.3 Non-linear Dictionary Function Models

Till now, we only assume power polynomials for the dictionary model. In this section,

we discuss non-linear dictionary functions. We only focus on linearizeable functions, and

a general Newton’s method based approach to learn a non-linear dictionary function is

briefly discussed in Algorithm 4..
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Figure 4.3: The stack P training signals

observed in N different domains.

Rθ1 

Rθ2 

pole Lθ1 Lθ2 

Lθi =logm(Rθi) 

Rθi =expm(Lθi) 

Figure 4.4: Illustration of exponential maps expm

and inverse exponential maps logm [5].

4.2.3.1 Linearizeable Models

There are several well-known linearizeable models, such as the Cobb-Douglass model,

the logistic model, etc. We use the Cobb-Douglass model as the example to discuss in

detail how dictionary function learning can be performed over these linearizable models.

The Cobb-Douglass model is written as,

DVT
i = F (θi,W) = w0 exp(

S∑
s=1

w1sθis + ...+
S∑
s=1

wmsθ
m
is ) (4.8)

The logarithmic transformation yields,

log(DVT
i ) = log(w0) +

S∑
s=1

w1sθis + ...+
S∑
s=1

wmsθ
m
is

As the right side of (4.8) is in the same linear form as (4.4), we can define the corre-

sponding function parameter matrix W and the domain parameter matrix Θ as discussed.

The dictionary function learning is written as,

arg
W,X

min ‖Y − [exp(WTΘ)]VTX‖2
F s.t. ∀p ‖xp‖o ≤ T.

Through any dictionary learning methods, we obtain [[exp(WTΘ)]T]VT and X.
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Then, the dictionary function is obtained as,

W = [ΘΘT]−1Θ[log([[exp(WTΘ)]VT]VT)]T.

Input: signals in N different domains {Yi}Ni=1, domain parameter matrix Θ

Output: dictionary function W

begin

Initialization:

1. Create the stack signal Y and initialize D from Y using K-SVD;

2. Initialize W with random values ;

repeat

3. Compute current residuals: R← D− F(Θ,W) ;

4. Compute the row vector of derivatives w.r.t. W evaluated at Θ

P← ∇F(Θ,W) ;

5. Learn the linear dictionary function B using R = PB

6. Update the dictionary function parameters: W←W + λB

until convergence;

7. return W;

end

Algorithm 4: A general method for nonlinear dictionary function learning.

4.2.4 Domain Parameter Estimation

Given a learned dictionary function F (θ,W), the domain parameters θy associated with

an unknown image y, e.g., pose (azimuth, altitude) or light source directions (azimuth,

altitude), can be estimated using Algorithm 5.

It is noted that we adopt the following strategy to represent the domain parameter

vector θ for each pose in a linear space: we first obtain the rotation matrix Rθ from the az-
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imuth and altitude of a pose; we then compute the inverse exponential map of the rotation

matrix logm(Rθ) as shown in Figure 4.4. We denote θ using the upper triangular part of

the resulting skew-symmetric matrix [5]. The exponential map operation in Figure 4.4 is

used to recover the azimuth and altitude from estimated domain parameters. We represent

light source directions in the same way.

4.3 Experimental Evaluation

We conduct our experiments using two public face datasets: the CMU PIE dataset [89]

and the Extended YaleB dataset [90]. The CMU PIE dataset consists of 68 subjects in

13 poses and 21 lighting conditions. In our experiments we use 9 poses which have

approximately the same camera altitude, as shown in the first row of Figure 4.5. The

Extended YaleB dataset consists of 38 subjects in 64 lighting conditions. All images are

in 64× 48 size. We will first evaluate the basic behaviors of dictionary functions through

pose alignment. Then we will demonstrate the effectiveness of dictionary functions in

face recognition and domain estimation.

4.3.1 Dictionary Functions for Pose alignment

4.3.1.1 Frontal Face Alignment

In Figure 4.5, we align different face poses to the frontal view. We learn for each subject

in the PIE dataset a linear dictionary function F (θ,W) (m=4) using 5 out of 9 poses.

The training poses are highlighted in blue in the first row of Figure 4.5. Given a source

image ys, we first estimate the domain parameters θs, i.e., the pose azimuth here, by
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Figure 4.5: Frontal face alignment. For the first row of source images, pose azimuths are

shown below the camera numbers. Poses highlighted in blue are known poses to learn

a linear dictionary function (m=4), and the remaining are unknown poses. The second

and third rows show the aligned face to each corresponding source image using the linear

dictionary function and Eigenfaces respectively.

following Algorithm 5. We then obtain the sparse representation xs of the source image

as minxs ‖ys−F (θs,W)xs‖2
2, s.t. ‖xs‖o ≤ T (sparsity level) using any pursuit methods

such as OMP [60]. We specify the fontal pose azimuth (00o) as the parameter for the

target domain θt, and obtain the frontal view image yt as yt = F (θt,W)xs. The second

row of Figure 4.5 shows the aligned frontal view images to the respective poses in the first

row. These aligned frontal faces are close to the actual image, i.e., c27 in the first row. It

is noted that images with poses c02, c05, c29 and c14 are unknown poses to the learned

dictionary function.

For comparison, we learn Eigenfaces for each of the 5 training poses and obtain

adapted Eigenfaces at 4 unknown poses using the same function fitting method in our

framework. We then project each source image (mean-subtracted) on the respective eigne-
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(b) Pose synthesis using Eigenfaces

Figure 4.6: Pose synthesis using various degrees of dictionary polynomials. All the syn-

thesized poses are unknown to learned dictionary functions and associated with no actual

observations. m is the degree of a dictionary polynomial in (4.4).

faces and use frontal Eigenfaces to reconstruct the aligned image shown in the third row

of Figure 4.5. The proposed method of jointly learning the dictionary function parame-

ters and domain-invariant sparse codes in (4.6) significantly outperforms the Eigenfaces

approach, which fails for large pose variations.

4.3.1.2 Pose Synthesis

In Figure 4.6, we synthesize new poses at any given pose azimuth. We learn for each

subject in the PIE dataset a linear dictionary function F (θ,W) using all 9 poses. In
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Figure 4.6a, given a source image ys in a profile pose (−62o), we first estimate the domain

parameters θs for the source image, and sparsely decompose it over F (θs,W) for its

sparse representation xs. We specify every 10o pose azimuth in [−50o, 50o] as parameters

for the target domain θt, and obtain a synthesized pose image yt as yt = F (θt,W)xs. It

is noted that none of the target poses are associated with actual observations. As shown

in Figure 4.6a, we obtain reasonable synthesized images at poses with no observations.

We observe improved synthesis performance by increasing the value ofm, i.e., the degree

of a dictionary polynomial. In Figure 4.6b, we perform curve fitting over Eigenfaces as

discussed. The proposed dictionary function learning framework exhibits better synthesis

performance.

4.3.1.3 Linear vs. Non-linear

In Figure 4.7, we conduct the same frontal face alignment experiments discussed above.

Now we learn for each subject both a linear and a nonlinear Cobb-Douglass dictionary

function discussed in Section 4.2.3. As a Cobb-Douglass function is linearizeable, various

degrees of polynomials are experimented for both linear and nonlinear dictionary func-

tion learning. As shown in Figure 4.7a and Figure 4.7c, the nonlinear Cobb-Douglass

dictionary function exhibits better reconstruction while aligning pose c05, which is also

indicated by the higher PSNR values. However, in Figure 4.7b and 4.7d, we notice

that the Cobb-Douglass dictionary function exhibits better alignment performance only

when m ≤ 7, and then the performance drops dramatically. Therefore, a linear dictionary

function is a more robust choice over a nonlinear Cobb-Douglass dictionary function;
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Figure 4.7: Linear vs. non-linear dictionary functions. m is the degree of a dictionary

polynomial in (4.4) and (4.8) .

however, at proper configurations, a nonlinear Cobb-Douglass dictionary function out-

performs a linear dictionary function.

4.3.2 Dictionary Functions for Classification

Two face recognition methods are adopted for comparisons: Eigenfaces [91] and SRC

[22]. Eigenfaces is a benchmark algorithm for face recognition. SRC is a state of the art
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Figure 4.8: Face recognition accuracy on the CMU PIE dataset. The proposed method is

denoted as DFL in color red.

method to use sparse representation for face recognition. We denote our method as the

Dictionary Function Learning (DFL) method. For a fair comparison, we adopt exactly

the same configurations for all three methods, i.e., we use 68 subjects in 5 poses c22, c37,

c27, c11 and c34 in the PIE dataset for training, and the remaining 4 poses for testing.

For the SRC method, we form a dictionary from the training data for each pose

of a subject. For the proposed DFL method, we learn from the training data a dictionary

function across pose for each subject. In SRC and DFL, a testing image is classified using

the subject label associated with the dictionary or the dictionary function respectively that

gives the minimal reconstruction error. In Eigenfaces, a nearest neighbor classifier is used.

In Figure 4.8, we present the face recognition accuracy on the PIE dataset for different

testing poses under each lighting condition. The proposed DFL method outperforms both
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Figure 4.9: Pose azimuth estimation histogram (known subjects). Azimuths estimated

using the proposed dictionary functions (red) spread around the true values (black).

Eigenfaces and SRC methods for all testing poses.

4.3.3 Dictionary Functions for Domain Estimation

4.3.3.1 Pose Estimation

As described in Algorithm 5, given a dictionary function, we can estimate the domain

parameters associated with an unknown image, e.g., view point or illumination. It can be

observed from the face recognition experiments discussed above that the SRC and eigen-

faces methods can also estimate the domain parameters based on the domain associated

with each dictionary or each training sample. However, the domain estimation accuracy

using such recognition methods is limited by the domain discretization steps present in
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Figure 4.10: Pose azimuth estimation histogram (unknown subjects). Azimuths estimated

using the proposed dictionary functions (red) spread around the true values (black).

the training data. We perform pose estimation along with the classification experiments

above. We have 4 testing poses and each pose contains 1428 images (68 subjects in 21

lighting conditions). Figure 4.9 shows the histogram of pose azimuth estimation. We

notice that poses estimated from Eigenfaces and SRC methods are limited to one of the 5

training pose azimuths, i.e., −62o (c22), −31o (c37), 00o (c27), 32o (c11) and 66o (c34).

As shown in Figure 4.9, the proposed DFL method enables a more accurate pose estima-

tion, and poses estimated through the DFL method are distributed in a continuous region

around the true pose.

To demonstrate that a dictionary function can be used for domain estimation for

unknown subjects, we use the first 34 subjects in 5 poses c22, c37, c27, c11 and c34 in

the PIE dataset for training, and the remaining 34 subjects in the rest 4 poses for testing.
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(a) Lighting condition f40

26 

(b) Lighting condition f45

27 

(c) Lighting condition f51

Figure 4.11: Illumination estimation in the Extended YaleB face dataset.

We learn from the training data a dictionary function across pose over the first 34 subjects.

As shown in Figure 4.10, the proposed DFL method provides a more accurate continuous

pose estimation.

4.3.3.2 Illumination Estimation

In this set of experiments, given a face image in the Extended YaleB dataset, we estimate

the azimuth and elevation of the single light source direction. We randomly select 50%

(32) of the lighting conditions in the Extended YaleB dataset to learn a dictionary function

across illumination over all 34 subjects. The remaining 32 lighting conditions are used for

testing. For the SRC method and for each training illumination condition, we form a dic-

tionary from the training data using all 34 subjects. We perform illumination estimation

in a similar way as pose estimation. Figure 4.11a, 4.11b, and 4.11c show the illumination

estimation for several example lighting conditions. The proposed DFL method provides

reasonable estimation to the actual light source directions.
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4.4 Conclusion

We presented a general dictionary function learning framework to transform a dictionary

learned from one domain to the other. Domain dictionaries are modeled by a parametric

function. The dictionary function parameters and domain-invariant sparse codes are then

jointly learned by solving an optimization problem with a sparsity constraint. Extensive

experiments on real datasets demonstrate the effectiveness of our approach on applica-

tions such as pose alignment, pose and illumination estimation and face recognition. The

proposed framework can be generalized for non-linearizeable dictionary functions.
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Input: a dictionary function F (θ,W), an image y, domain parameter matrix Θ

Output: an S-dimensional domain parameter vector θy associated with y

begin

1. Initialize with mean domain parameter vector: θy = mean(Θ) ;

2. Estimate θ(s), the sth value in θy ;

for s← 1 to S do
3. Obtain the value range to estimate θ(s)

θ
(s)
min = min (sth row of Θ) ;

θ
(s)
max = max (sth row of Θ) ;

θ
(s)
mid = (θ

(s)
max + θ

(s)
max)/2 ;

4. Estimate θ(s) via a search for the parameters to best represent y.

repeat

θmin ← replace the sth value of θy with θ(s)min ;

θmax ← replace the sth value of θy with θ(s)max ;

xmin ← min
x
|y − F (θmin,W)|22, s.t.|x|o ≤ t (sparsity) ;

xmax ← min
x
|y − F (θmax,W)|22, s.t.|x|o ≤ t (sparsity) ;

rmin ← y − F (θmin,W)xmin ;

rmax ← y − F (θmax,W)xmax ;

if rmin ≤ rmax then

θ
(s)
max = θ

(s)
mid ;

else

θ
(s)
min = θ

(s)
mid ;

end

θ
(s)
mid = (θ

(s)
max + θ

(s)
max)/2 ;

until |θ(s)max − θ(s)min| ≤ threshold;

θ(s) ← θ
(s)
mid;

end

7. return θy;

end

Algorithm 5: Domain parameters estimation.
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Chapter 5

Compositional Dictionaries for Domain Adaptive Face Recognition

5.1 Introduction

Many image recognition algorithms often fail while experiencing a significant visual do-

main shift, as they expect the test data to share the same underlying distribution as the

training data. A visual domain shift is common and natural in the context of face recogni-

tion. Such domain shift is due to changes in poses, illumination, resolution, etc.. Domain

adaptation [92] is a promising methodology for handling the domain shift by utilizing

knowledge in the source domain for problems in a different but related target domain. [93]

is one of the earliest works on semi-supervised domain adaptation, where they model data

with three underlying distributions: source domain data distribution, target domain data

distribution and a distribution of data that is common to both domains. [94] follows a sim-

ilar model in handling view point changes in the context of activity recognition, where

they assume some activities are observed in both source and target domains, while some

other activities are only in one of the domains. Under the above assumption, certain

hyperplane-based features trained in the source domain are adapted to the target domain

for improved classification. Domain adaptation for object recognition is studied in [95],

where the subspaces of the source domain, the target domain and the potential interme-

diate domains are modeled as points on the Grassmann manifold. The shift between do-

mains is learned by exploiting the geometry of the underlying manifolds. A good survey
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× × × 

Base dictionary Subject codes Pose codes Illumination codes 

= 

Same pose Same illumination 

Figure 5.1: Trilinear sparse decomposition. Given a domain base dictionary, an unknown

face image is decomposed into sparse representations for each subject, pose and illumi-

nation respectively. The domain-invariant subject (sparse) codes are used for pose and

illumination insensitive face recognition. The pose and illumination codes are also used

to estimate the pose and lighting condition of a given face. Composing subject codes with

corresponding domain codes enables pose alignment and illumination normalization.

on domain adaptation can be found in [95].

Face recognition across domain, e.g., pose and illumination, has proved to be a chal-

lenging problem [6,18,19]. In [18], the eigen light-field (ELF) algorithm is presented for

face recognition across pose and illumination. This algorithm operates by estimating the

eigen light field or the plenoptic function of the subject’s head using all the pixels of var-

ious images. In [8, 19], face recognition across pose is performed using stereo matching

distance (SMD). The cost to match a probe image to a gallery image is used to evaluate

the similarity of the two images. Both ELF and SMD methods are state-of-the-art meth-

ods for face recognition across pose and/or illumination variations. Our proposed domain
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adaptive dictionary learning approach shows comparable performance to these two meth-

ods for face recognition across domain shifts due to pose and illumination variations. In

addition, our approach can also be used to estimate the pose and lighting condition of a

face, and to perform pose alignment and illumination normalization.

The approach presented here shares some of the attributes of the Tensorfaces method

proposed in [6,7,96], but significantly differs in many aspects. In the Tensorfaces method,

face images observed in different domains, i.e., faces imaged in different poses under dif-

ferent illuminations, form a face tensor. Then a multilinear analysis is performed on the

face tensor using the N -mode SVD decomposition to obtain a core tensor and multiple

mode matrices, each for a different domain aspect. The N -mode SVD decomposition

is similar to the proposed multilinear sparse decomposition shown in Fig. 5.1, where a

given unknown image is decomposed into multiple sparse representations for the given

subject, pose and illumination respectively. However, we show through experiments that

our method based on sparse decomposition significantly outperforms the N -mode SVD

decomposition for face recognition across pose and illumination. Another advantage of

the proposed method approach over Tensorfaces is that, the proposed approach provides

explicit sparse representations for each subject and each visual domain, which can be

used for subject classification and domain estimation. Instead, Tensorfaces performs sub-

ject classification through exhaustive projections and matchings. Another work similar

to Tensorfaces is discussed in [97], where a bilinear analysis is presented for face match-

ing across domains. In [97], a 2-mode SVD decomposition is first performed and then a

Gaussian mixture model is employed to classify subjects. Tensorfaces can be considered

as an extension of this work to enable multilinear analysis to face images.
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This chapter makes the following contributions:

• We learn a domain base dictionary, and describe each visual domain shift as a sparse

representation over the base dictionary.

• We express the dictionary adapted to each domain as sparse linear combinations of

the base dictionary.

• We learn for each subject a domain invariant sparse representation.

• We perform pose alignment and illumination normalization by composing sparse

representations for subjects and domains.

The remainder of the chapter is organized as follows: Section 5.2 discusses some

details about sparse decomposition and multilinear image analysis. In Section 5.3, we

formulate the domain adaptive dictionary learning problem for face recognition. In Sec-

tion 5.4, we present the proposed domain adaptive dictionary learning approach, which

consists of algorithms to learn a domain base dictionary, and perform domain invariant

sparse coding. Experimental evaluations are given in Section 5.5 on two public face

datasets. Finally, Section 5.6 concludes the chapter.

5.2 Background

5.2.1 Sparse Decomposition

Sparse signal representations have recently drawn much attention in vision, signal and

image processing [55], [56], [57], [4], [98]. This is mainly due to the fact that signals and

images of interest can be sparse in some dictionary. Given an over-complete dictionary

90



D and a signal y, finding a sparse representation of y in D entails solving the following

optimization problem

x̂ = arg min
x
‖x‖0 subject to y = Dx, (5.1)

where the `0 sparsity measure ‖x‖0 counts the number of nonzero elements in the vector

x. Problem (5.1) is NP-hard and cannot be solved in a polynomial time. Hence, approxi-

mate solutions are usually sought [57], [59], [60], [99].

The dictionary D can be either based on a mathematical model of the data [57] or it

can be trained directly from the data [62]. It has been observed that learning a dictionary

directly from training rather than using a predetermined dictionary (such as wavelet or

Gabor) usually leads to better representation and hence can provide improved results in

many practical applications such as restoration and classification [55], [56].

Various algorithms have been developed for the task of training a dictionary from

examples. One of the most commonly used algorithms is the K-SVD algorithm [20]. Let

Y be a set of N input signals in a n-dimensional feature space Y = [y1...yN], yi ∈ Rn.

In K-SVD, a dictionary with a fixed number of K items is learned by finding a solution

iteratively to the following problem:

arg min
D,X
‖Y −DX‖2

F s.t. ∀i, ‖xi‖0 ≤ T (5.2)

where D = [d1...dK], di ∈ Rn is the learned dictionary, X = [x1, ...,xN], xi ∈ RK are

the sparse codes of input signals Y, and T specifies the sparsity that each signal has fewer

than T items in its decomposition. Each dictionary item di is L2-normalized.
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5.2.2 Multilinear Image Analysis

Linear methods are popular in facial image analysis, such as principal components anal-

ysis (PCA) [91], independent component analysis (ICA) [100], and linear discriminant

analysis (LDA) [101]. These conventional linear analysis methods work best when varia-

tions in domains, such as pose and illumination, are not present. When any visual domain

is allowed to vary, the linear subspace representation above does not capture such varia-

tion well.

Under the assumption of Lambertian reflectance, Basri and Jacobs [102] have shown

that images of an object obtained under a wide variety of lighting conditions can be ap-

proximated accurately with a 9-dimensional linear subspace. [103] utilizes the fact that

2D harmonic basis images at different poses are related by close-form linear transforma-

tions [104], [105], and extends the 9-dimensional illumination linear space with additional

pose information encoded in a linear transformation matrix. The success of these meth-

ods suggests the feasibility of decomposing a face image into separate representations for

subject and individual domains, e.g. associated pose and illumination, through multilinear

algebra.

A multilinear image analysis approach, called Tensorfaces, has been discussed in

[6], [7], [96]. Tensor is a multidimensional generalization of a matrix. An N -order tensor

D is anN -dimensional matrix comprisingN spaces. N -mode SVD, illustrated in Fig. 5.2,

is an extension of SVD that decomposes the tensor as the product ofN -orthogonal spaces,

where Tensor Z , the core tensor, is analogous to the diagonal singular value matrix in

SVD. Mode matrix Un contains the orthonormal vectors spanning the column space of
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mode-n flattening ofD, i.e., the rearranged tensor elements that form a regular matrix [6].

D 

U1 

U2 

U3 

Z 

= 

Figure 5.2: An N -mode SVD (N=3 is illustrated) [6].

Consider the the illustration example presented in [6]. Given faces images of 28

subjects, in 5 poses, 3 illuminations and 3 expressions, and each image contains 7943

pixels, we obtain a face tensor D of size 28 × 5 × 3 × 3 × 7943. Suppose we apply a

multilinear analysis to the face tensor D using the 5-mode decomposition as (5.3).

D = Z ×Usubject ×Upose ×Uillum ×Uexpre ×Upixels (5.3)

where the 28 × 5 × 3 × 3 × 7943 core tensor Z governs the interaction between the

factors represented in the 5 mode matrices, and each of the mode matrix Un represents

subjects and respective domains. For example, the kth row of the 28 × 28 mode matrix

Usubject contains the coefficients for subject k, and the jth row of 5 × 5 mode matrix

Upose contains the coefficients for pose j.

Tensorfaces performs subject classification through exhaustive projections and match-

ings. In the above examples, from the training data, each subject is represented with a

28-sized vector of coefficients to the 28× 5× 3× 3× 7943 base tensor in (5.4)

B = Z ×Upose ×Uillum ×Uexpre ×Upixels (5.4)

93



One can then obtain the basis tensor for a particular pose j, illumination l, and expression

e as a 28 × 1 × 1 × 1 × 7943 sized subtensor Bj,l,e. The subject coefficients of a given

unknown face image are obtained by exhaustively projecting this image into a set of

candidate basis tensors for every j, l, e combinations. The resulting vector that yields the

smallest distance to one of the rows in Upose is adopted as the coefficients for the subject

in the test image. In a similar way, one can obtain the coefficient vectors for pose and

illumination associated with such test image.

5.3 Problem Formulation

In this section, we formulate the domain adaptive dictionary learning (DADL) approach

for face recognition. It is noted that our approach is general and applicable to both image

and non-image data. Let Y denote a set of N signals (face images) in an n-dim feature

space Y = [y1, ...,yN], yi ∈ Rn. Given that face images are from K different subjects

[S1, · · · , SK ], in J different poses [P1, · · · , PJ ], and under L different illumination con-

ditions [I1, · · · , IL], Y can be arranged in six different forms as shown in Fig. 5.3. We

assume here that one image is available for each subject under each pose and illumination,

i.e., N = K × J × L.

A denotes the sparse coefficient matrix of J different poses, A = [a1, ..., aJ], where

aj is the sparse representation for the pose Pj . Let dim(aj) denote the chosen size of

sparse code vector aj, and dim(aj) ≤ J . B denotes the sparse code matrix of K differ-

ent subjects, B = [b1, ...,bK], where bk is the domain invariant sparse representation

for the subject Sk, and dim(bk) ≤ K. C denotes the sparse coefficient matrix of L
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different illumination conditions, C = [c1, ..., cL], where cl is the sparse representation

for the illumination condition Il and dim(cl) ≤ L. The domain base dictionary D con-

tains dim(aj) × dim(bk) × dim(cl) atoms arranging in a similar way as Fig. 5.3. Each

dictionary atom is in the Rn space.
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Figure 5.3: Six forms of arranging face images of K subjects in J poses under L illumi-

nation conditions. Each square denotes a face image in a column vector form.

Any of the six forms in Fig. 5.3 can be transformed into another through a sequence

of vector transpose operations. A vector transpose operation is to consider (stacked) im-

age vectors in Fig. 5.3 as values and perform typical matrix transpose operation. For

simplicity, we define six aggregated vector transpose operations {Ti}6
i=1. For example, Ti

transforms an input matrix, which is in any of the six forms, into the i-th form defined in

Fig. 5.3.
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Let yjl
k be a face image of subject Sk in pose Pj under illumination Il. The dictionary

adapted to pose Pj and illumination Il is expressed as

[[DT2aj]
T3cl]

T1 .

yjl
k can be sparsely represented using this dictionary as,

yjl
k = [[DT2aj]

T3cl]
T1bk,

where the subject sparse codes bk are independent of both Pj and Il. In this way, we can

represent Fig. 5.3 in a compact matrix form as shown in (5.5).

Y1 = [[DT3C1]T2A1]T1B1 (5.5a)

Y2 = [[DT3C2]T1B2]T2A2 (5.5b)

Y3 = [[DT1B3]T2A3]T3C3 (5.5c)

Y4 = [[DT1B4]T3C4]T2A4 (5.5d)

Y5 = [[DT2A5]T1B5]T3C5 (5.5e)

Y6 = [[DT2A6]T3C6]T1B6 (5.5f)

The proposed domain adaptive dictionary model is built as follows,

• We learn a base dictionary D that is independent of subjects and domains.

• We learn a sparse representation over the base dictionary for each visual domain,

e.g., a specific pose or illumination condition.

• We express the dictionary adapted to a specific domain as sparse linear combina-

tions of the base dictionary using sparse representation of the domain under con-

sideration..
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• We learn for each subject a domain invariant sparse representation.

We now provide the details of solutions to the following two problems

• How to learn a base dictionary that is independent of subject and domains.

• Given an input face image and the base dictionary, how to obtain the sparse repre-

sentation for the associated pose and illumination, and the domain invariant sparse

representation for the subject.

5.4 Domain Adaptive Dictionary Learning

In this section, we first show, given a domain base dictionary D, sparse coefficient ma-

trices {Ai}6
i=1, {Bi}6

i=1 and {Ci}6
i=1 are equivalent across different equations in (5.5).

Then, we present algorithms to learn a domain base dictionary D, and perform domain

invariant sparse coding.

5.4.1 Equivalence of Six Forms

To learn a domain base dictionary D, we first need to establish the following proposition.

Proposition: Given a domain base dictionary D, matrices {Ai}6
i=1 in all six equations in

(5.5) are equivalent, and so are matrices {Bi}6
i=1 and {Ci}6

i=1.

First we show matrices Bi in (5.5a) and (5.5f) are equivalent. Y1 and Y6 in Fig. 5.3

are different only in the row order. We assume a permutation matrix P16 will permutate

the rows of Y1 into Y6, i.e., P16Y1 = Y6. Through a dictionary learning process, e.g.,

k-SVD [20], we obtain a dictionary D1 and the associated sparse code matrix B1 for Y1.
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Y1 can be reconstructed as Y1 = D1B1. We change the row order of D1 according to

P16 without modifying the actual atom value as D6 = P16D1. We decompose Y6 using

D6 as Y6 = D6B6, i.e., P16Y1 = P16D1B6, and we have B1 = B6.

Then we show that matrices Ai, Bi and Ci in (5.5a) and (5.5b) are equivalent. If we

stack all the images from the same subject under the same pose but different illumination

as a single observation, we can consider Y2 = Y1
T . By assuming a bilinear model, we

can represent Y1 as Y1 = [DcA1]TB1, and we have Y2 = Y1
T = [Dc

TB1]TA1. As

Y2 = [Dc
TB2]TA2, Ai and Bi are equivalent in (5.5a) and (5.5b). As both equations

share a bilinear map DT3Ci, with a common base dictionary D, matrices Ci are also

equivalent in (5.5a) and (5.5b).

Finally, we show matrices Ai and Ci in (5.5a) and (5.5f) are equivalent. We

have shown in (5.5a) and (5.5f) that matrices Bi are equivalent. [[DT3C1]T2A1]T1 and

[[DT2A6]T3C6]T1 are different only in the row order. We can use the bilinear model ar-

gument made above to easily show that matrices Ai and Ci are equivalent in (5.5a) and

(5.5f).

Through the transitivity of equivalence, we can further show matrices Ai in all six

equations in (5.5) are equivalent, and so are matrices Bi and Ci. We drop the subscripts

in subsequent discussions and denote them as A, B and C.

5.4.2 Domain Invariant Sparse Coding

As matrices A, B and C are equivalent across all six forms in (5.5) , we propose to learn

the base dictionary D using Algorithm 6 given below. Algorithm 1 is designed as an
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iterative method, and each iteration consists of several typical sparse dictionary learning

problems. Thus, this algorithm is flexible and can rely on any sparse dictionary learning

methods. We adopt the highly efficient dictionary learning method, k-SVD [20]. It is

noted that we can easily omit one domain aspect through dictionary “marginalization”.

For example, after learning the based dictionary D, we can marginalize over illumination

sparse codes matrix C and adopt [DT3C]T2 as the base dictionary for pose domains only.

With the learned base dictionary D, we can perform domain invariant sparse coding

as shown in Algorithm 7. This algorithm accepts any pursuit algorithms, such as OMP

[60, 99]. Through this algorithm, an input face image can be decomposed into sparse

representations for the associated pose and illumination, and a domain invariant sparse

representation for the subject.

Convergence of Algorithms 6 and 7 can be established using the convergence re-

sults of k-SVD discussed in [20]. The convergence of both algorithms depends on the

success of pursuit algorithms involved in each iteration step. We have observed empirical

convergence for both Algorithm 6 and 7 in all the experiments reported below.

5.5 Experimental Evaluation

This section presents experimental evaluations on two public face datasets: the CMU

PIE dataset [89] and the Extended YaleB dataset [90]. The PIE dataset consists of 68

subjects imaged simultaneously under 13 different poses and 21 lighting conditions, as

shown in Fig. 5.4. The Extended YaleB dataset contains 38 subjects with near frontal pose

under 64 lighting conditions. 64 × 48 sized images are used in the domain composition
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Figure 5.4: Pose and illumination variation in the PIE dataset.

experiments in Section 5.5.2 for clearer visualization. In the remaining experiments, all

the face images are resized to 32×24. The proposed Domain Adaptive Dictionary learning

method is refereed to as DADL in subsequent discussions.

5.5.1 Learned Domain Base Dictionaries

In our experiments, four different domain base dictionaries D10, D4, D34, and D32 are

learned. We explain here the configurations for each base dictionary.

• D4: This dictionary is learned from the PIE dataset by using 68 subjects in 4 poses

under 21 illumination conditions. The four training poses to the dictionary are c02,

c07, c09 and c14 poses shown in Fig. 5.4. The coefficient vector sizes for subject,

pose and illumination are 68, 4 and 9. The respective coefficient sparsity values,

i.e., the maximal number of non-zero coefficients, are 20, 4 and 9.

• D10: This dictionary is learned from the PIE dataset by using 68 subjects in 10
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poses under all illumination conditions. The three unknown poses to the dictionary

are c27 (frontal), c05 (side) and c22 (profile) poses. The coefficient vector sizes for

subject, pose and illumination are 68, 10 and 9. The respective coefficient sparsity

values are 20, 8 and 9.

• D34: This dictionary is learned from the PIE dataset by using the first 34 subjects in

13 poses under 21 illumination conditions. The coefficient vector sizes for subject,

pose and illumination are 34, 13 and 9. The respective coefficient sparsity values

are 12, 8 and 9.

• D32: This dictionary is learned from the Extended YaleB dataset by using 38 sub-

jects under 32 randomly selected lighting conditions. The coefficient vector sizes

for subject and illumination are 38, and 32. The respective coefficient sparsity val-

ues are 20 and 20.

5.5.2 Domain Composition

Using the proposed trilinear sparse decomposition over a base dictionary as illustrated in

Algorithm 7, we extract from a face image the respective sparse representations for sub-

ject, pose and illumination. We can translate a subject to a different pose and illumination

by composing the corresponding subject and domain sparse codes over the base dictio-

nary. As discussed in Sec. 5.2.2, Tensorfaces also enables the decomposition of a face

image into separate coefficients for the subject, pose and illumination through exhaustive

projections and matchings. We adopt the Tensorfaces method here for a fair comparison

in our domain composition experiments.
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5.5.2.1 Pose Alignment

In Fig. 5.5a, the base dictionary D34 is used in the DADL experiments. To enable a fair

comparison, we adopt the same training data and sparsity values for D34 in the corre-

sponding Tensorfaces experiments. Given faces from subject s01 under different poses,

where both the subject and poses are present in the training data, we extract the subject

(sparse) codes for s01 from each of them. Then we extract the pose codes for c27 (frontal)

and the illumination codes for f05 from an image of subject s43. It is noted that, for such

known subject cases, the composition (s01, c27, f05) through both DADL and Tensor-

faces provides good reconstructions to the ground truth image. The reconstruction using

DADL is clearer than the one using Tensorfaces.

In Fig. 5.5b, we first extract the subject codes for s43, which is an unknown subject

to D34. Then we extract the pose codes and the illumination codes from the set of images

of s01 in Fig. 5.5a. In this unknown subject case, the composition using our DADL

method provides significantly more accurate reconstruction to the groudtruth images than

the Tensorfaces method. The central assumption in the literature on sparse representation

for faces is that the test face image should be represented in terms of training images of

the same subject [22], [106]. As s43 is unknown to D34, therefore, it is expected that the

reconstruction of the subject information is through a linear combination of other known

subjects, which is an approximation but not exact.

In Fig. 5.5c, the base dictionary D10 is used in the DADL experiments, and the

same training data and sparsity values for D10 are used in the corresponding Tensorfaces

experiments. We first extract the subject codes for s43. Then we extract the pose codes
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for pose c22, c05 and c27, which are unknown poses to the training data. Through domain

composition, for such unknown pose cases, we obtain more acceptable reconstruction to

the actual images using DADL than Tensorfaces. This indicates that, using the proposed

DADL method, an unknown pose can be much better approximated in terms of a set of

observed poses.

5.5.2.2 Illumination Normalization

In Fig. 5.6a, we use frontal faces from subject s28, which is known to D34, under differ-

ent illumination conditions. For each image, we first isolate the codes for subject, pose

and illumination, and then replace the illumination codes with the one for f11. If f11

is observed in the training data, the illumination codes for f11 can be obtained during

training. Otherwise, the illumination codes for f11 can be extracted from any face image

under f11 illumination. It is shown in Fig. 5.6a that, for such known subject cases, af-

ter removing the illumination variation, we can obtain a reconstructed image close to the

ground truth image using both DADL and Tensorfaces.

Subject s43 in Fig. 5.6b is unknown to D34. The composed images from DADL

exhibit significantly more accurate subject, pose and illumination reconstruction than Ten-

sorfaces. As discussed before, the reconstruction to the subject here is only an approxi-

mation but not exact.
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5.5.3 Pose and Illumination Invariant Face Recognition

5.5.3.1 Classifying PIE 68 Faces using D4 and D10

Fig. 5.7 shows the face recognition performance under combined pose and illumination

variation for the CMU PIE dataset. To enable the comparison with [8], we adopt the

same challenging setup as described in [8]. In this experiment, we classify 68 subjects in

three poses, frontal (c27), side (c05), and profile (c22), under all 21 lighting conditions.

We select one of the 3 poses as the gallery pose, and one of the remaining 2 poses as

the probe pose, for a total of 6 gallery-probe pose pairs. For each pose pair, the gallery is

under the lighting condition f11 as specified in [8], and the probe is under the illumination

indicated in the table. Methods compared here include Tensorface [6, 7], SMD [8], and

our method DADL. DADL-4 uses the dictionary D4 and DADL-10 uses D10. In both

DADL-4 and DADL-10 setups, three testing poses c27, c05, and c22 are unknown to

the training data. It is noted that, to the best of our knowledge, SMD reports the best

recognition performance in such experimental setup. As shown in Fig. 5.7, among 4 out

of 6 Gallery-Probe pose pairs, the proposed DADL-10 is better or comparable to SMD.

SMD methods perform classification based on the stereo matching distance be-

tween each pair of gallery-probe images. The stereo matching distance becomes more

robust when the pose variation between such image pair decreases. However, the pro-

posed DADL classifies faces based on subject codes extracted from each image alone.

The robustness of the extracted subject codes only depends on the capability of the base

dictionary to reconstruct such a face. This explains why our DADL method significantly

outperforms SMD for more challenging pose pairs, e.g., Profile-Frontal pair with 62o
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pose variation; but performs worse than SMD for easier pairs, e.g., Frontal-Side with 16o

pose variation.

It can be observed in Fig. 5.5c that an unknown pose can be approximated in terms

of a set of observed poses. By representing three testing poses through four training poses

in D4, instead of ten poses in D10, we obtain reasonable performance degradations but

with 60% less training data.

Though the Tensorface method shares a similar multilinear framework to DADL,

as seen from Fig. 5.7, it only handles limited pose and illumination variations.

5.5.3.2 Classifying Extended YaleB using D32

We adopt a similar protocol as described in [26]. In the Extended YaleB dataset, each of

the 38 subjects is imaged under 64 lighting conditions. We split the dataset into two halves

by randomly selecting 32 lighting conditions as training, and the other half for testing.

Fig. 5.8 shows the illumination variation in the testing data. When we learn D32 using

Algorithm 6, we also obtain the sparse codes for each subject. During testing, we extract

the subject codes from each testing face image and classify it based on the best match in

subject codes learned from the training data. As shown in Table 5.1, the proposed DADL

method outperforms other state-of-the-art sparse representation methods (The results for

other compared methods are taken from [26]). When the extreme illumination conditions

are included, we obtain an average recognition rate 98.67%. By excluding two extreme

illumination condition f34 and f35, we obtain an average recognition rate 99.7%.
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5.5.4 Pose and Illumination Estimation

In Section 5.5.3, we report the results of experiments over subject codes using base dic-

tionaries D10 and D4. While generating subject codes, we simultaneously obtain pose

codes and illumination codes. Such pose and illumination codes can be used for pose and

illumination estimation. In Fig. 5.9, we show the pose and illumination estimation per-

formance on the PIE dataset using the pose and illumination sparse codes through both

DADL and Tensorfaces. The proposed DADL method exhibits significantly better do-

main estimation accuracy than the Tensorfaces method. By examining Fig. 5.9, it can be

noticed that the most confusing illumination pairs in DADL, e.g., (f05, f18), (f10, f19)

and (f11, f20) are very visually similar based on Fig. 5.4.

5.5.5 Mean Code and Error Analysis

As discussed in Sec. 5.2.2, the Tensorface method shares a similar multilinear framework

to the proposed DADL method. However, we showed through the above experiments

that the proposed method based on sparse decomposition significantly outperforms the

N -mode SVD decomposition for face recognition across pose and illumination. In this

section, we analyze in more detail the behaviors of the proposed DADL and Tensorfaces,

by comparing subject and domain codes extracted from a face image using these two

methods.

For the experiments in this section, we adopt the base dictionary D10 for DADL,

and the same training data and sparsity values of D10 for Tensorfaces to learn the core

tensor and the associated mode matrices. The same testing data is used for both methods,
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i.e., 68 subjects in the PIE dataset under 21 illumination conditions in the c27 (frontal),

c05 (side) and c22 (profile) poses, which are three unseen poses not present in the training

data.

Fig. 5.10 and Fig. 5.11 shows the mean subject codes of subject s1 and s2 over

21 illumination conditions in each of the three testing poses, and the associated standard

errors. In each of the two figures, we compare the first row, the subject codes from

DADL, with the second row, the subject codes from Tensorfaces. We can easily notice

the following: first, the subject codes extracted using DADL are more sparse; second,

DADL subject codes are more consistent across pose; third, DADL subject codes are

more consistent across illumination, which is indicated by the smaller standard errors. By

comparing Fig. 5.10 with Fig. 5.11, we also observe that the DADL subject codes are

more discriminative. Therefore, face recognition using DADL subject codes significantly

outperforms recognition using Tensorfaces subject codes.

Fig. 5.12 shows the mean illumination code of illumination condition f1 over 68

subjects in each of the three testing poses, and the associated errors. By comparing the

first row with the second row in Fig. 5.12, we find that illumination codes extracted using

DADL are more consistent across subject and pose than codes from Tensorfaces. Fig. 5.13

shows the mean pose code of subject s1 over 21 illumination conditions for each of the

three testing poses, and the associated error. By comparing the first row with the second

row in Fig. 5.13, we notice that pose codes from DADL are significantly more consistent

across different illumination conditions, indicated by the smaller standard errors.
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5.6 Conclusion

We presented an approach to learn domain adaptive dictionaries for face recognition

across pose and illumination domain shifts. With a learned domain base dictionary, an un-

known face image is decomposed into subject codes, pose codes and illumination codes.

Subject codes are consistent across domains, and enable pose and illumination insensitive

face recognition. Pose and illumination codes can be used to estimate the pose and light-

ing condition of the face. The proposed method can be generalized for multilinear face

image analysis, however, more experimental validations are needed. We also plan to eval-

uate the usefulness of our domain adaptive dictionary learning framework in applications

other than face recognition.
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Input: signals Y, sparsity level Ta, Tb, Tc

Output: domain base dictionary D

begin

Initialization stage:

1. Initialize B by solving (5.5a) via k-SVD

min
Db,B
‖Y1 −DbB‖2

F s.t. ∀k ‖bk‖o ≤ Tb, where Db = [[DT3C]T2A]T1

repeat
2. apply B to (5.5a) and solve via k-SVD (B† = (BTB)−1BT )

min
Da,A
‖(Y1B†)

T2 −DaA‖2
F s.t. ∀j ‖aj‖o ≤ TA, where Da = [DT3C]T2

3. apply A to (5.5d) and solve via k-SVD

min
Dc,C
‖(Y4A†)

T3 −DcC‖2
F s.t. ∀l ‖cl‖o ≤ Tc, where Dc = [DT1B]T3

4. apply C to (5.5e) and solve via k-SVD

min
Db,B
‖(Y5C†)

T1 −DbB‖2
F s.t. ∀k ‖bk‖o ≤ Tb, where Db = [DT2A]T1

until convergence;

5. Design the domain base dictionary:

D← [DT2A]A†;

6. return D;

end

Algorithm 6: Domain base dictionary learning.
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Input: an input image y, domain base dictionary D, sparsity level Ta, Tb, Tc

Output: sparse representation vector for pose a, illumination c, subject b

begin

Initialization stage:

1. Initialize domain sparse code vector a and c with random values;

Sparse coding stage:

repeat
2. apply a and c to (5.5a) and obtain b via any pursuit algorithm,

min
b
‖y − [[DT3c]T2a]Tb‖2

2 s.t. ‖b‖o ≤ Tb,

3. apply b and c to (5.5d) and obtain a via any pursuit algorithm,

min
a
‖y − [[DT1b]T3c]Ta‖2

2 s.t. ‖a‖o ≤ Ta,

4. apply a and b to (5.5e) and obtain c via any pursuit algorithm,

min
c
‖y − [[DT2a]T1b]Tc‖2

2 s.t. ‖c‖o ≤ Tc,

until convergence;

5. return

domain invariant sparse codes for the input subject: b,

sparse codes for the input pose: a,

sparse codes for the input illumination: c;

end

Algorithm 7: Domain invariant sparse coding for a face image.
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(c) Composition using base dictionary D10. c22, c05 and c27 are unknown poses to

D10.

Figure 5.5: Pose alignment through domain composition. In each corresponding Tensor-

faces experiment, we adopt the same training data and sparsity values used for the DADL

base dictionary for a fair comparison. When a subject or a pose is unknown to the training

data, the proposed DADL method provides significantly more accurate reconstruction to

the ground truth images.
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(b) Composition using base dictionary D34. s43 is an unknown subject to D34.

Figure 5.6: Illumination normalization through domain composition. In each correspond-

ing Tensorfaces experiment, we adopt the same training data and sparsity values used for

the DADL base dictionary for a fair comparison. When a subject is unknown to the train-

ing data, the proposed DADL method provides significantly more accurate reconstruction

to the ground truth images.

Table 5.1: Face recognition rate (%) on the Extended YaleB face dataset across 32 differ-

ent lighting conditions. By excluding two extreme illumination condition f34 and f35, we

obtain an average recognition rate 99.7%

DADL D-KSVD [24] LC-KSVD [26] K-SVD [20] SRC [22] LLC [80]

98.67 94.10 95.00 93.1 80.5 90.7
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(a) Gallery: profile. Probe: frontal.
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(b) Gallery: profile. Probe: side.
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(c) Gallery: frontal. Probe: side.
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(d) Gallery: frontal. Probe: profile.
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(e) Gallery: side. Probe: frontal.
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(f) Gallery: side. Probe: profile.

Figure 5.7: Face recognition under combined pose and illumination variations for the

CMU PIE dataset. Given three testing poses, Frontal (c27), Side (c05), Profile (c22),

we show the percentage of correct recognition for each disjoint pair of Gallery-Probe

poses. See Fig. 5.4 for poses and lighting conditions. Methods compared here include

Tensorface [6,7], SMD [8] and our domain adaptive dictionary learning (DADL) method

. DADL-4 uses the dictionary D4 and DADL-10 uses D10. To the best of our knowledge,

SMD reports the best recognition performance in such experimental setup. 4 out of 6

Gallery-Probe pose pairs, i.e., (a), (b), (d) and (e), our results are comparable to SMD.
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Figure 5.8: Illumination variation in the Extended YaleB dataset.
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(c) Illumination estimation with Tensorfaces
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Figure 5.9: Illumination and pose estimation on the CMU PIE dataset using base dictio-

naries D4 and D10. Average accuracy: (a) 0.63, (b) 0.58, (c) 0.28, (d) 0.98, (e) 0.83,

(f) 0.78. The proposed DADL method exhibits significantly better domain estimation

accuracy than the Tensorfaces method.
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(a) Frontal pose (c27).
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(b) Side pose (c05).
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(c) Profile pose (c22).
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(d) Frontal pose (c27).
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(e) Side pose (c05).
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(f) Profile pose (c22).

Figure 5.10: Mean subject code of subject s1 over 21 illumination conditions in each

of the three testing poses, and standard error of the mean code. (a),(b),(c) are generated

using DADL with the base dictionary D10. (d),(e),(f) are generated using Tensorfaces.
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(a) Frontal pose (c27).
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(b) Side pose (c05).
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(c) Profile pose (c22).
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(d) Frontal pose (c27).
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(f) Profile pose (c22).

Figure 5.11: Mean subject code of subject s2 over 21 illumination conditions in each

of the three testing poses, and standard error of the mean code. (a),(b),(c) are generated

using DADL with the base dictionary D10. (d),(e),(f) are generated using Tensorfaces.

116



0 2 4 6 8 10
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Ill
um

in
at

io
n 

C
od

e

(a) Frontal pose (c27).
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(b) Side pose (c05).
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(c) Profile pose (c22).
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(d) Frontal pose (c27).
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(e) Side pose (c05).

0 2 4 6 8 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Ill
um

in
at

io
n 

C
od

e

(f) Profile pose (c22).

Figure 5.12: Mean illumination code of illumination condition f1 over 68 subjects in each

of the three testing poses, and standard error of the mean code. (a),(b),(c) are generated

using DADL with the base dictionary D10. (d),(e),(f) are generated using Tensorfaces.
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(a) Frontal pose (c27).
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(b) Side pose (c05).
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(c) Profile pose (c22).
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(d) Frontal pose (c27).
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(e) Side pose (c05).
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(f) Profile pose (c22).

Figure 5.13: Mean pose code of subject s1 over 21 illumination conditions for each of the

three testing poses, and standard error of the mean code. (a),(b),(c) are generated using

DADL with the base dictionary D10. (d),(e),(f) are generated using Tensorfaces.
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Chapter 6

Directions for Future Work

In this chapter, we outline several potential directions in which the problems addressed in

this dissertation can be explored further.

6.1 Unsupervised Domain Adaptive Dictionary Learning

Domain Adaptation discussed in this dissertation assumes correspondence between the

source and target data. Unsupervised domain adaptation is a more challenging problem

where no correspondence information is assumed across domains. Unsupervised DA

is a more realistic setting frequently seen in real-life applications. For instance, face

recognition models trained on faces collected under constrained conditions may not easily

generalize to test data collected in unconstrained environments, where it is difficult to get

labeled data for all possible variations.

We present here some initial considerations on unsupervised domain adaptation

using dictionary-based methods for object recognition. This preliminary approach based

on generating a set of intermediate domains which smoothly connect the source and target

domains such that they correspond to the solutions of an optimization problem. This

approach allows the synthesis of data associated with the intermediate domains. The

intermediate domain data is used to build a classifier for recognition under domain shift.

This initial approach will be further explored in future, for example additional geometry
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constraints while generating intermediate domain observations.

6.1.1 Initial Considerations on Unsupervised DADL

Sparse representations are representations known for their succinct representation of stim-

uli and are able to represent high level patterns in the input signals. Let Xs ∈ Rn×Ns and

Xt ∈ Rn×Nt be the data instances from the source and target domain respectively, where

n is the dimension of the data instance and Ns , Nt denote the number of samples in

the source and target domain. Given the source domain data Xs, the standard dictionary

learning technique aims to optimize the following cost function

arg
Ds,Γs

min ‖Xs −DsΓs‖2
F , s.t.∀i, ‖αi‖0 ≤ T, (6.1)

where Ds is the dictionary learned from Xs, Γs = {αi}Ns
i=1 are the corresponding sparse

codes for Xs, and T is the sparsity level. We use the K-SVD algorithm to train the recon-

structive dictionary Ds. The resulting sparse codes provide a good feature representation,

and we train a linear SVM classifier C from Γs.

One can expect that the atoms in Ds are not necessarily optimal for the target do-

main data Xt. Directly decomposing the target domain data Xt with Ds will result in a

large reconstruction residue Js, and the corresponding classifier C will most likely per-

form unsatisfactorily on Xt.

A feature representation which is preserved across different domains is an important

factor for successful domain adaptation. We design sparse codes as an invariant feature

across the source, the target, andK−1 intermediate domains, which leads to the following

120



Source 
domain 

Target 
domain 

Di Dj Dk . .  

Figure 6.1: Given labeled data in the source domain and unlabeled data in the target domain, we

propose an iterative dictionary learning procedure to learn a set of intermediate domains. We then

generate corresponding intermediate observations associated with the intermediate domains.

objective function

arg
Dk,Γ

min
K∑
k=0

‖Xk −DkΓ‖2
F , s.t.∀i, ‖αi‖0 ≤ T, (6.2)

For simplicity, we denote here the source domain and the target domain as the 0th

and the Kth domains respectively. In (6.2), Xk = {xk,i}Ns
i=1 are the intermediate data in

the kth intermediate domain generated from the source data, Γ = {αi}Ns
i=1 are the domain

invariant sparse codes. D0, {Dk}K−1
k=1 , and DK represent the dictionary associated with

the source, intermediate and the target domains.

If intermediate data {Xk}K−1
k=1 are observed, (6.2) becomes similar to the problem

discussed in [98]. However, as we do not assume the availability of {Xk}K−1
k=1 , the objec-

tive function (6.2) is highly under-constrained. Hence, we propose the approach outlined

in Algorithm 8 to approximately estimate {Dk}Kk=1. The intuition behind this algorithm

is that: during each iteration, the reconstruction residue Jk gives an estimate of the gap

between the current kth intermediate domain and the target domain. The residual Jk pro-
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vides gradient descent estimate for the next intermediate dictionary . In Algorithm 8, the

learning rate λ is chosen to satisfy the smoothness assumption of the transition path, i.e.,

dictionaries Dk and Dk+1 for adjacent domains do not change abruptly. This procedure is

repeated until the reconstruction residue Jk is below the threshold δ. The final dictionary

DK will approximate the target data Xt. We empirically observe the convergence of our

algorithm in all our experiments.

Input: Dictionary Ds learned from the source data, target data Xt, sparsity level T , threshold δ,

learning rate λ

Output: Dictionaries {Dk}K−1
k=0 for intermediate domains and DK for the target domain.

begin

1. Initialize D0:

D0 = Ds, k = 0

2. Sparse coding: decompose the target data with the estimate of the dictionary Dk for the

current intermediate domain:

arg
Γk

min ‖Xt −DkΓk‖2F , s.t.∀i, ‖αi‖0 ≤ T ;

3. Compute the reconstruction residue:

Jk = Xt −DkΓk ;

4. If ||Jk||2F < δ, set Dt = Dk, return {Dk}Kk=0;

5. Get an estimate of the dictionary Dk+1 for the next domain

Dk+1 = Dk + λJkΓT
k (ΓkΓT

k )−1 ;

6. k = k + 1, go to step 2 ;

end

Algorithm 8: Algorithm to generate dictionaries for intermediate domains.

Next, given the set of dictionaries {Dk}Kk=0, we are able to generate the intermedi-

ate data from the source data Xs, i.e., the approximated observations in the intermediate
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domains. We first decompose the source data Xs with D0 to obtain Γ0, and obtain the in-

termediate data as {Xk}Kk=1 = {DkΓ0}Kk=1. During each iteration, the intermediate data

Xk are updated pertaining to the direction of the transition path, which is represented

by Dk+1 −Dk. The resulting sparse codes {Γk}Kk=0 appear to be consistent across the

intermediate domains. Similarly, by traveling along the transition path in the reverse

direction, we can generate intermediate data from the target data in a similar way as

{Xk}Kk=1 = {DkΓK}Kk=1.

We will investigate two approaches for classifying target data based on the transition

path represented in one of two schemes. First, a DA Classifier Invariant Codes (DAC-

IC) approach: Given target data Xt, and target domain dictionary Dt, sparse codes are

demonstrated to be invariant across different domains. Second, a Classifier Transition

Path (DAC-TP) approach: We incorporate the rich information encoded in the transition

path for improved classifier performance. As discussed, for each labeled source data xs,i ,

we can generate a sequence of intermediate data {x(k)
s,i }Kk=1 as discussed above. Similarly,

we obtain {x(k)
t,i }Kk=1 for each unlabeled target data xt,i . We define the distance between

the source data and the target data as the L2 norm between x(k)
s,i and x(k)

t,i , and then a nearest

neighbor classifier is used to infer the label of the unlabeled target data.

6.2 Structure-Preserved Sparse Decomposition for Actions

Extensive research has been conducted for modeling and recognition of human activities.

Most existing work has focused on modeling and recognition of single person actions,

including early approaches like 2D-templates model [108], hidden Markov model [109],
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Figure 6.2: Sample frames of a football Hitch play video sequence
ECCV-10 submission ID 153 13

To validate our hypothesis for individual action cases, based on the knowl-393 393

edge on human articulations, in Table 1, we suggest five groups of human body394 394

landmarks that likely share common simultaneous motions.

Group 1: {head, left shoulder,right shoulder}
Group 2: {left elbow, left wrist, left hand}
Group 3: {right elbow, right wrist, right hand}
Group 4: {hip, left knee, left ankle, left foot}
Group 5: {hip, right knee, right ankle, right foot}

Table 1: Human body common motion groups

395 395

We perform k-means (k=5) clustering over 3 major components of trajecto-396 396

ries from various human actions in the CMU motion capture datasets [20]. As397 397

shown in Fig. 4, we found that when landmark points belong to the same group398 398

in Table 1, their trajectories more often enter the same cluster.399 399

For group activities in the GA Tech football datasets 1, as shown in Fig. 5,400 400

trajectories in the same cluster tend to exhibit highly correlated curvature, i.e.,401 401

similar motion discontinuities in terms of velocity and acceleration, which in-402 402

dicates highly collaborative motions. It is important to notice from Fig. 5 that403 403

the same type of activities tend to give very similar grouping results, and such404 404

robustness is vital to obtain atomic motion segments.405 405

(a) Human body motion
groups

(b) Run (c) Salsa
Dance

(d) Indian
Dance

Fig. 4: Grouping for individual actions based on common motion. Trajectories
at one time instant are shown. The resulting groups are of different shapes and
colors.

1 The authors are grateful to GA Tech for providing the datasets.

(a) Human body motion groups (b) Run (c) Salsa

Dance

(d) Indian Dance

Figure 6.3: Grouping for actions based on common motion. Trajectories at one time

instant are shown. The resulting groups are of different shapes and colors.

or more recent approaches based on bag-of-words model [110], linear dynamical systems

[111], etc.. Most of these approaches can not be directly applied to group activities due

to the inherent difficulties in modeling inter-person interactions.

Group activities have been mostly modeled using Belief Networks [107], [112],

[113], or other types of models like Petri nets [114]. Though many of these approaches

are successful in modeling various group activity scenarios, they suffer from the following

drawbacks. 1.) Manual specification of model structures is often required [114], [107].

Given the complex and unpredictable nature of human interactions, it is difficult to man-

ually specify a comprehensive activity model. 2.) Models are often designed to handle

specific types of activities, e.g., football plays [107], pairwise activities [113], etc. It
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(a) Chalkboard sketch [107]

4 ECCV-10 submission ID 153

– A MLN activity model that requires separate knowledge encoding and recog-121 121

nition for each predicate can be very domain-specific.122 122

– Often only part of an activity is observed. Possible reasons for such incom-123 123

plete observations can be as follows: entities are occluded or excluded from124 124

scenes, or just part of an activity is captured in the video.125 125

Activity Modeling in MLN To address the challenges above, we start with126 126

a similar way as [12] to describe human actions or activities using entities and127 127

predicates. For example, a running action is interpreted as ∃ b1, b2, LeftLeg(b1)128 128

∧ RightLeg(b2) ∧ RunMotion(b1) ∧ RunMotion(b2) ∧ Simultaneous(RunMotion(b1),129 129

RunMotion(b2)). A Simple-p51curl football play activity involving 4 offensive130 130

players and 1 defensive player shown in Fig. 1a, which can be sketched by a131 131

coach, is represented as Fig. 1b, where we only list temporal constraints among132 132

motion units. One can also incorporate spatial constraints such as orientation133 133

and distance.134 134

O4O3

O1

O2

D

(a) Chalkboard sketch [1]

∃ x1, x2, x3, x4, x5,
Offensive(x1) ∧ Offensive(x2) ∧ Offensive(x3)∧ Offensive(x4) ∧ Defensive(x5) ∧ GoStraightUp(x3)

∧ TurnRight(x3) ∧ GoStraightUp(x4) ∧ TurnLeft(x4)
∧ GoStraightUp(x2) ∧ StandStill(x1) ∧ StandStill(x5)
∧ Sequential (GoStraightUp(x3), TurnRight(x3))
∧ Sequential (GoStraightUp(x4), TurnLeft(x4))
∧ Simultaneous(GoStraightUp(x3), GoStraightUp(x4))
∧ Simultaneous(TurnRight(x3), TurnLeft(x4))
∧ Simultaneous(GoStraightUp(x3), GoStraightUp(x2))
∧ Simultaneous(GoStraightUp(x2), StandStill(x1))
∧ Simultaneous(StandStill(x1), StandStill(x5))

(b) Semantic interpretation

Fig. 1: The football simple-p51curl play

∃ p1, p2, p3, p4, p5,135 135

Offensive(p1) ∧ Offensive(p2) ∧ Offensive(p3)136 136

∧ Offensive(p4) ∧ Defensive(p5) ∧ GoStraightUp(p3)137 137

∧ TurnRight(p3) ∧ GoStraightUp(p4) ∧ TurnLeft(p4)138 138

∧ GoStraightUp(p2) ∧ StandStill(p1) ∧ StandStill(p5)139 139

∧ Sequential (GoStraightUp(p3), TurnRight(p3))140 140

∧ Sequential (GoStraightUp(p4), TurnLeft(p4))141 141

∧ Simultaneous(GoStraightUp(p3), GoStraightUp(p4))142 142

∧ Simultaneous(TurnRight(p3), TurnLeft(p4))143 143

∧ Simultaneous(GoStraightUp(p3), GoStraightUp(p2))144 144

∧ Simultaneous(GoStraightUp(p2), StandStill(p1))145 145

∧ Simultaneous(StandStill(p1), StandStill(p5))146 146

From the above two examples, one can notice that a formula for each action147 147

or activity consists of three types of predicates describing respectively entities,148 148(b) Semantic interpretation

Figure 6.4: The football simple-p51curl play

can be difficult for extensions to activities involving more persons or other scenarios. 3.)

Techniques for matching entities in a video and entities in the model are often not care-

fully addressed [115], [107]. Given activities like football plays shown in Fig. 6.2, which

involve 22 players, such entity correspondence problem can not be trivially handled.

To address the challenges above, we start with an approach similar to [116] which

describes human actions or activities using entities and predicates. For individual ac-

tions, as shown in Fig. 6.3, body parts share common motions due to human articula-

tion constraints. For example, the running action is interpreted as ∃ b1, b2, LeftLeg(b1) ∧

RightLeg(b2)∧ RunMotion(b1)∧ RunMotion(b2)∧ Simultaneous(RunMotion(b1), RunMotion(b2)).

For structured group activities, collaborative players can have correlated motions. A

Simple-p51curl football play activity involving 4 offensive players and 1 defensive player

in Fig. 6.4a, which can be sketched by a coach, is represented in Fig. 6.4b, where we

list the temporal constraints among motions. One can also incorporate spatial constraints

such as orientation and distance.

From the above examples, one can notice that a formula for each action or activity
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consists of three types of predicates describing entities, e.g., Offensive(p3), atomic mo-

tions, e.g., TurnRight(p3), and pairwise motion constraints, e.g., Simultaneous(TurnRight(p3),

TurnLeft(p4)). It is noted that an entity here is defined as any moving person, body part,

or object. A group of people moving in a coordinated way sometimes can be as a whole

considered as an entity. Though only we limit ourselves to pairwise interactions, higher

order relationships can be introduced using more complex models.

The above formulation faces the following two specific problems for activity mod-

eling. First, an MRF constructed from an MLN that models activities can easily contains

a large number of nodes. During grounding, an existential quantifier in MLN is expended

over the entire entity domain to obtain a disjunction of the original formula. For ex-

ample, an activity is given as a formula ∃p1, p2, TurnRight(p1)∧ TurnLeft(p2), and two

entities P1 and P2 are detected in the video. Since it is typically difficult to associate

entities in a video with entities specified in the formula, the grounded formula will be

(TurnRight(P1)∧ TurnLeft(P2)) ∨ (TurnRight(P2)∧ TurnLeft(P1)). Thus, using the MLN

exhaustive grounding scheme, we can ground extremely complex MRF structure from an

MLN, e.g., a network corresponds to the disjunction of 22! conjunctive clauses for a 22

player football activity. Second, Each predicate can require separate manual modeling to

encode the knowledge [116], which is a tedious task. Therefore, we seek for a scheme

to perform structure-preserved decomposition for complex actions. With such structure-

preserved decomposition, a complex activity can be described as Fig. 6.4b, i.e., a set of

semantic units connected using spatial and temporal constraints.
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6.3 Alignment Invariant Sparse Representation

Sparse representation-based approaches are known to be sensitive to misalignment. For

example, the sparse representation-based classification (SRC) method [79] has demon-

strated the state of the art recognition performance despite severe occlusion or corruption.

The main idea of SRC is that the nonzero coefficients should concentrate on the training

samples with the same class label as the test sample. However, as shown in Fig. 6.5, SRC

does not deal well with misalignments between the test and training images. Even small

registration error against the training images, the sparse representation obtained for test-

ing images can become non-informative. We propose to study the problem of alignment

invariant sparse representation.

Figure 6.5: Effects of misalignments on recognition using sparse representation [9]. Top:

The input face is from Viola and Jones’ face detector. Bottom: The input face is well

aligned to the training data.
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