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The Greenland ice sheet is melting at an accelerating rate due to increasing 

global average temperatures.  Ice penetrating radar surveys and ice cores extracted 

from the southeastern margin of the Greenland ice sheet near Helheim glacier 

discovered that a liquid water aquifer has formed within the near surface 

recrystallized and compacted snow (firn). Here we use active source seismology to 

probe the structure of this aquifer in the firn, and present results from a joint inversion 

technique that uses S-waves, P-waves, and surface waves to constrain the attenuation 

and seismic velocities that inform on the liquid water stored within the aquifer. 

Confirming past studies, we find that the aquifer lies at 27.9  3.5 m and has an 

approximate thickness of 10  4 m. We determine there is 1565  769 kg m-2 of water 

within the aquifer, a downward revision from past studies. Our study of S-waves and 

surface waves identified a complex structure in the aquifer layer and future work 

must incorporate full waveform modeling to use these waves for understanding firn 

aquifers.  
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Chapter 1: Introduction 

 

1.1: Background 

The worldwide decline of glaciers and sustained degradation of the cryosphere 

are direct consequences of global climate change. Increasing global temperature 

averages have caused parts of the Greenland Ice sheet (GIS) to melt at an alarming 

rate, exceeding 535 Gt/a (Enderlin et al. 2014). Although the mass budget is variable 

from year to year, an observable increase total mass loss of the GIS has been 

observed and attributed to increased surface melting, runoff, and ice discharge from 

marine-terminating glaciers (Enderlin et al. 2014, Rignot et al. 2011). In Greenland, 

ice dynamics via ice discharge accounts for two-thirds of its mass loss, and the rest of 

the mass loss from increased runoff and decreased accumulation (Rignot et al. 2006). 

Diurnal and seasonal variations imply a steady state between the freezing and melting 

processes in the ice sheet (McGrath et al. 2011), where accumulation of snow and the 

freezing of surface melt is expected during the winter, while ablation and melting of 

snow occurs during the summer. The ablation zone is predominantly glacial ice, while 

snow and firn dominate the accumulation zone, firn being the transitional material 

from snow to glacial ice (Fountain et al. 1998). Although some regions of the GIS 

have not shown mass loss since 1960, present-day mass loss persists in the warming 

climate setting near ice sheet margins (Rignot et al. 2011). Past studies have assumed 

surface melt to simply discharge into the ocean (Drinkwater et al. 2001; Fettweis et 
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al. 2011). However, there is new evidence for the accumulation and perhaps storage 

of liquid water in sub- and supra-glacial environments of the Greenland ice sheet.  

A new type of melt feature, the perennial storage of liquid water in the firn of 

southeastern Greenland, has been detected by radar surveys over the last decade (Chu 

et al. 2018; Forster et al. 2014; Miège et al. 2016; Rignot et al. 2012). These firn 

aquifers extend to a depth of 25-30 m and span an area of 17,920 km2 - 21,900 km2 in 

the vicinity of the Helheim glacier (Miège et al. 2016; Montgomery et al. 2017). Firn 

aquifers originate from the accumulation of surface melt drainage in the percolation 

zone of the firn, concentrating liquid above the solid ice layer (Forster et al. 2014; 

Munneke et al. 2014, Zwally et al. 2002). When refreezing occurs in the winter, the 

ice releases latent heat during the phase change process, which is absorbed by the 

surrounding water and keeping the aquifer liquid during the winter (Steger et al. 

2017). Furthermore, an insulating effect is generated by the 300 – 360 mm/yr of fresh 

snowfall during the winter, allowing subsurface water to remain liquid (Forster et al. 

2014; Hakuba et al. 2012; Steger et al. 2017). The underlying hydrology and flux of 

the liquid water from the firn aquifers into the englacial system is unknown, and the 

focus of our study. 

Annually, firn is created through deposition and compaction of snow. As more 

snow is accumulated, it compresses the underlying snow. This drives 

recrystallization, and increases ice grain size, reducing the amount of pore space in 

the zone through which liquid water can percolate. The base of the firn aquifer is thus 

correlated to a depth where compaction closes the continuous pore space, i.e., a pore 

closure depth and loss of permeability through the ice (Koenig et al. 2014; 
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Montgomery et al. 2017). This depth is defined by the solidus temperature and 

pressure for the liquid phase, as any liquid water saturating the pore space that freezes 

will close porosity (Lliboutry et al. 1996). Aquifers are thus stable to a limited depth 

and continued accumulation of melt will eventually saturate the entirety of the firn 

column, resulting in surficial lakes if water cannot enter the subglacial system.  

The evolution of this system is dependent upon the availability of liquid water 

produced through melt at the surface, and lateral transport within the system. 

Throughout the melt season, surface water drains into the percolation zone and forms 

a complex subglacial hydrological system that transports meltwater. If there is 

significant drainage, the warmer waters would expand preexisting pores in the firn 

through melting, enabling further drainage of surface water into the system (McGrath 

et al. 2011). Surface melt drainage creates “pipes” or pathways that the surface water 

travel through as it is melting the surrounding ice, further enhancing flow into the 

system (Pfeffer and Humphrey 1996). During the winter season, these pipes refreeze, 

and near surface pore spaces containing meltwater refreeze into ice lenses, creating a 

complex, heterogenous ice stratigraphy in which the surface melt water must traverse 

(Miège et al. 2016; Miller et al. 2017; Pfeffer and Humphrey 1996, Vaňková et al. 

2018). Thus, the amount of water that can be accommodated in the firn aquifer is 

controlled by the amount of water draining into the glacier, as well as the evolving 

porosity at depth (Miller et al. 2017; Pfeffer and Humphrey 1996).  

To quantify the water abundance and porosity structure of firn aquifer 

systems, these properties have been investigated using seismic data and Ground 

Penetrating Radar (GPR) to determine the depth to the snow/ice transition (Godio and 
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Rege 2015), and to map water deep underneath glaciers (Christianson et al. 2012; 

Horgan et al. 2012). Recent discoveries of perennial aquifers, surface lakes and their 

contribution to water drainage, raise questions about the communication and 

pathways of this liquid water into the deep glacial system. There is evidence to 

suggest that the drainage of surface melt from glacial lakes and firn aquifers can 

increase the velocities of ice flow, either by creating new cracks or destabilizing 

existing ones within the glacier early in the melting season bringing liquid to the bed 

(Chandler et al. 2013; Hoffman et al. 2011; Palmer et al. 2011). This indicates that 

glacial dynamics may be influenced by the meltwater process within the glacier 

beyond the consideration of the volume of surface melt alone (Flowers 2018).  

This brief review of the importance of firn aquifers indicates that determining 

the volume of water in these aquifers is essential to the understanding of glacier 

dynamics. Geophysical methods provide the best opportunity to evaluate firn aquifer 

thickness and lateral extent that inform on these properties. Radar surveys provide a 

large areal data coverage and are an ideal tool for detecting the presence and depth of 

the water table. However, radar energy does not readily penetrate the liquid water, 

making it difficult to estimate the thickness of the saturated zone. Ground-penetrating 

radar surveys on glaciers have primarily been used to determine subglacial 

hydrological processes at depths of 100s of meters. The instruments used in these 

surveys usually have a source that emit low bandwidths, ranging from 10-80 MHz 

(Ross et al. 2018). Instruments used for shallow surface surveys emit higher 

bandwidths (> 200 MHz or a resolution depth of 1s-10s of meters), but do not 

penetrate as deeply into the ice sheet. The resolution of these types of radars are 
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generally a function of bandwidth and center frequency; as frequency is increased, the 

finer the resolution, but the penetration depth of the signal is decreased (e.g. 0.5 m 

resolution at 200 MHz) (Moorman et al. 2000). 

Similar to radar surveys, airborne radar surveys detect the areal extent of the 

aquifers. For example, airborne radio echo soundings, such as the one used by Jordan 

et al. (2018), penetrate the upper 20 m to detect a wet-dry transition in the glacier. 

While airborne radar surveys can collect data across a large area, the speed of the 

moving aircraft conducting these surveys can result in poor resolution in depth and 

extent. The high frequency emitted from airborne surveys are insensitive to thin ice 

margins. Thus, airborne surveys are not ideal for accurate and detailed ice-aquifer 

thickness measurements but are useful in detecting the presence of an aquifer system 

in a larger and more general scale. (Ross et al. 2017).  

 In-situ geophysical techniques that are sensitive to shallow water include 

active-source seismology and magnetic-resonance sounding. Both techniques can 

provide high spatial resolution of the water table. Magnetic resonance sounding 

(MRS) method (Legchenko et al. 2018) transmits a low frequency electromagnetic 

field that excites the hydrogen molecules within the medium below, and the resulting 

resonance frequency emitted by the water hydrogen atoms is proportional to the 

abundance of liquid water present. The accuracy of the water volume is dependent on 

the forward modeling and subsequent inversions and calibration of the MRS signal. 

The results are non-unique and dependent upon choices for thickness of the aquifer, 

even in a relatively homogeneous subsurface such as that of Greenland (Legchenko et 

al. 2018). MRS resolution of the layer is dependent on its thickness and depth, the 
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deeper and thicker a layer is, the more resolvable it is, and vice versa (Legchenko et 

al. 2018).  MRS and radar combined (Legchenko et al. 2018) can improve estimates 

of water content, but are limited without any constraint on aquifer thickness, which 

must either be measured directly from ice cores or inferred by high frequency 

seismology. Thus, a combination of techniques is needed to best elucidate water 

content. Here we focus on how a high frequency active source seismology 

investigation can provide improved estimates for aquifer water content and thickness 

that will ultimately feed into these other geophysical methods. 

1.2: Applications of Active Source Seismology to Ice/Firn 

Active source seismology uses artificial sources of seismic energy (e.g. 

hammers, explosives) recorded at an array of seismic stations with precisely known 

locations. These surveys provide a relatively inexpensive method of imaging the 

shallow subsurface in a smalltime window and at high frequencies (>50 Hz). Seismic 

sources generate seismic energy, in the form of compressional waves (P-waves) and 

shear waves (S-waves and surface waves). These waves travel downward at an angle 

of incidence (angle between the horizontal surface and the path the energy is 

traveling) through layers and refract where there are changes in velocity of the 

underlying media (Aki and Richards 1980). Any differences in the velocity structure 

can be estimated by measuring the travel time curves (i.e. travel times as a function of 

distance between the source and receiver) of the P- and S-waves. Changes in the 

slope of the refracted waves are indicative of velocity changes with depth. 

The velocity of the P-wave, given by Equation (1), is sensitive to the bulk 

modulus  (Gpa), shear modulus  (GPa), and density  (kg m-3) of a material, and 
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are the result of dilation or volume change in the elastic media: (Aki and Richards 

1980) 

 

VP = √
+

4

3



    (1) 

 

The S-wave velocity, given by Equation (2), is sensitive to the shear modulus 

 and density (Aki and Richards 1980), and are the results of shearing a solid.  

 

VS =√



    (2) 

 

 

The bulk modulus is the incompressibility, or resistance to compression, of a 

material. In firn, the bulk modulus typically increases as pore space decreases from 

compression. Similar to , the shear modulus  is the rigidity of a material. The shear 

modulus in firn increases as firn is compacted. However, the presence of liquid water 

reduces the shear modulus to zero, as there is no rigidity to water, a fluid. The density 

 is controlled by the state of the ice or water in the subsurface (Figure 1.1). The firn 

has a low density due to being highly porous, air-filled, and mostly unconsolidated. 

The saturated firn has a higher density, due to the replacement of pore space air by 

water and the increase in the amount of ice. The solid ice lacks is less dense than the 

saturated firn owing to the decrease in density of water as it goes from liquid to solid, 

but is more dense than unsaturated firn (Table 1).  

S-waves are slower than P-waves, exhibit no volume change, and cannot 

travel through liquids (Aki and Richards 1980, Stein and Wysession 2003). An 
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increase in the fraction of liquid subsurface will reduce the velocity of S-waves. 

However, in the firn, the pore space is filled with air, also a fluid. In Greenland, since 

the firn aquifer is not completely liquid, rather, it is an ice layer saturated with water 

and higher density, so an observable decrease in the velocities of the S-waves could 

be detected. Lower density in the unsaturated firn is due to larger and poorly 

consolidated grains of firn with air-filled pores. The presence of water in the firn 

increases the density of the system consolidation of the ice grains. The shear modulus 

is controlled by the continuity of the individual firn grains and presence of ice layers.  

 

 

 

 

 

Table 1: Density and Velocities of firn and ice 

Parameter Value Source 

VPsnow (m s-1) 500-1000 Johnson (1981), Sommerfield (1982) 

VPfirn (m s-1) 1000-2200 Clarke and Echelmeyer (1996), Godio and Rege (2015) 

VPice (m s-1) 3400-3800 Kirchner and Bently (1979), Godio and Rege (2015), 

Montgomery et al. (2017) 

VPH2O (m s-1) 1450 Shearer (2009) 

VSfirn (m s-1) 600-1400 Armstrong (2009) 

VSice (m s-1) 1500-1800 Kirchner and Bentley (1979), Godio and Rege (2015) 

snow (kg m-3) 300 – 330  Munneke et al. (2014), Armstrong (2009) 

firn (kg m-3) Dry: 490-600 

Wet: 650-780 

Kawashima et al. (1993), Huss (2013), Munneke et al. 

(2014), Miller et al. (2017) 

H2O (kg m-3) 1000 Shearer (2009) 
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ice (kg/m3) 815 - 920 Shumskiy (1960), Huss (2013), Godio and Rege (2015), 

Miller et al. (2018) 

  

A parameter sensitive to fluid content is the VP/VS ratio. We can take the 

VP/VS ratio to better identify presence of liquid water since VP/VS may be more 

sensitive to the liquid than VP or VS may be individually (Hamada 2004). The VP/VS 

ratio has been used to identify the presence of fluids at depth (Biot 1962, Lee 2003) 

and may serve as a constraint in determining the water content and layering within the 

firn aquifer system.  

In addition to direct P- and S-waves, use of surface waves that are generated 

by active source experiments can constrain aquifer structure. Surface waves are 

seismic waves that propagate along the surface and are sensitive to shallow structure 

and low-frequency source properties (Shearer 2009). The surface waves are 

dispersive where velocity increases with depth. Surface waves are either horizontally 

(Love waves) or vertically (Rayleigh waves) polarized (Stein and Wysession 2003). 

Surface wave phase velocity is frequency dependent because waves of different 

frequency are sensitive to different depth ranges. High frequency surface waves travel 

with shorter wavelengths and are thus more sensitive to shallow structure than their 

lower frequency counterparts (Shearer 2009). Longer wavelengths typically exhibit 

greater phase velocities as they penetrate deeper into the subsurface and are more 

sensitive to the elastic properties if higher velocity layers are found at depth (Xia et 

al. 1999). As a result, surface waves tend to exhibit characteristic dispersion. Since a 

given wavelength is accompanied with a unique frequency, the dispersion curve of 

the seismic signal can be found by measuring the move out of a surface wave phase 
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train across narrowly banded filters. The resulting phase velocity dispersion curve is 

used as another constraint in an inversion for P- and S- wave velocity as a function of 

depth.  

 

 
 

Figure 1.1: Simple 3-layer interpretation of the firn aquifer system. Hypothetical seismic scenario for a firn 

aquifer system, using the properties of firn, ice, water, and air presented in Table 1. Compaction is assumed to 

reduce pore space with depth increasing the  and , while density is controlled by the relative proportions of ice, 

air and water. We assume the firn layer is saturated in water.  

1.3: Active Source Seismology on the Helheim Glacier 

To determine the aquifer depth, an active-source refraction seismic survey 

was conducted in 2015 and 2016 along the Helheim glacier in southeast Greenland to 

temporally and spatially sample the structure of firn aquifer. Previous analysis of the 

data from this survey by Montgomery et al. (2017) reported the aquifer at a depth of 

27.7 ± 2.9 m under the surface, with an average thickness of 11.5 ± 5.5 m.  

The active-source seismology profile was conducted over a profile of 15 km, 

with the experiments spaced every 1-2 km (Fig. 1.2). This line followed the local ice 

flow velocity of the Helheim Glacier. The instruments were 40 Hz vertical 

component geophones spaced every 5 m, and data were recorded by a Geometrics 

Geode multi-channel data recorder, using a record length of 1 s and a sampling rate of 

16 kHz, or 62.5 s per sample (Montgomery et al. 2017). The active seismic source 
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for the experiment was generated by an 8-kg sledgehammer striking a 30x30x1.5 cm 

thick steel plate (Montgomery et al. 2017). Two different array geometries were used 

in 2015 and 2016, such that the 2015 array geometry yielded a sampling depth of ~30 

m, while the 2016 array geometry yields a sampling depth of ~50 m (Fig 1.2). The 

geophones were buried ~10 cm below the surface to minimize the effects of sources 

of noise such as wind, distant anthropogenic generator noise, small firn disturbances, 

and human movement. Multiple hammer strikes (or shots) were stacked to maximize 

the signal to noise ratio (Montgomery et al. 2017).  

 

 

Figure 1.2: Location of field site and array geometry for the seismic experiment conducted in southeastern 

Greenland. A) Geographic location of the field site on the Helheim Glacier (red circle). B) Location of the 

seismic refraction experiments conducted by Montgomery et al. (2017). Data from 2015 in red, data from 2016 in 

black. C) Geometry of the geophones and hammer strikes for the data set collected in 2016.  

 

Here, we build on the P-wave velocity and water content analysis conducted 

by Montgomery et al. (2017) and incorporate information from S-waves, surface 

waves, and attenuation, as joint constraints for an inversion for the water stored of the 

aquifer. We construct a joint model of P- and S- wave velocity to test for the 
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sensitivity of the liquid by examining the travel times and amplitudes of P-waves, S-

waves and surface wave dispersion in the field data. This additional data should better 

constrain the dimensions of the aquifer and incorporate additional information 

contained in the S-wave and surface wave velocities.  

There is a tradeoff in the P-wave analysis due to the presence of air bubbles in 

the saturated firn (Virieux 1986). Theoretically, shear waves are insensitive to the 

relative air/water fraction in the pores and only are sensitive to the total pore space. 

Using a porosity derived by the shear waves provides a true porosity measurement 

and comparing it to a porosity derived from the P-waves is indicative of the water 

content found within the saturated firn Shear waves traveling through the saturated 

firn aquifer are theoretically more sensitive to the underlying transition from water to 

ice (Fig 1.1) and are predicted  to have a stronger reflection coefficient at the firn/ice 

transition than the P-waves. The Rayleigh surface wave data should be sensitive to P-

and S- waves and provide information on both the top and bottom of the aquifer as 

well as the amount of liquid water content (LWC). The goal of our study is to 

combine this information and learn more about the liquid water present within the 

Helheim aquifer system and firn across the Greenland ice sheet in general.  
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Chapter 2: Methods 
 

 

2.1: Data Processing 

Our dataset consists of the seismic traces generated by active source seismic 

experiment, presented as an assembled dataset from IRIS (Incorporated Research 

Institutions for Seismology) called the Greenland Ice Seismic Experiment (GreenISE) 

in 2015 and 2016 (Schmerr 2018). The data was filtered using a Butterworth band-

pass filter between 40 and 250 Hz to remove the low and high frequency noise that 

potentially influence the picking of the first arrivals. This noise consisted of 

atmospheric (wind and blowing snow) and cultural artifacts. After filtering, the data 

are high quality enough to readily select the first arrivals of the various waves (Fig 

2.1). The first arrival pick was defined as the first positive break from the zero 

amplitude of each seismogram.  

To guide our picking process, particularly for the S-wave, a simple, 3-layer 

model was created. The model assumes a three layer case with a 15 m thick top firn 

layer, with a P-wave velocity of 3800 m/s and S-wave velocity of 1600 m/s, a 15 m 

thick middle aquifer layer, with a P-wave velocity of 3400 m/s and S-wave velocity 

of 2000 m/s and a 15 m thick bottom solid ice layer, with a P-wave velocity of 4000 

m/s. The parameters used in the model were averages of the depth to the aquifer and 

thickness of layers from Table 1 and Montgomery et al. (2017). Predicted travel times 

are computed using a ray tracing approach, where take off angles from 0 to 90 
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degrees and expected refractions of waves from velocity changes are determined 

using Snell’s law. Finding the range of takeoff angles that penetrate all layers, we find 

synthetic travel time curves can be found based on our parameters. We fit a two-term 

exponential model for the P-wave (PTT) and S-wave (STT), whose coefficients were 

applied to the Greenland data, and used as the picking guide (Equations 3 and 4), 

where x is the distance from the source in m: 

𝑃𝑇𝑇 = 0.042𝑒0.0031𝑥 − 0.036𝑒−0.019𝑥   (3) 

𝑆𝑇𝑇 = 0.084𝑒0.0031𝑥 − 0.073𝑒−0.019𝑥   (4) 

The uncertainty of the P-wave picks is less than 5 ms. Similarly, the S-wave 

arrival times were picked using the first positive breaks as well but with an 

uncertainty of about 10 ms (Fig. 2.1). The higher uncertainty in the S-waves is 

assigned due to the overlap of the P-coda and noise.  

Surface wave dispersion was measured using the suphasevel tool in Seismic 

Unix. Seismic Unix is an open source processing package developed at the Colorado 

School of Mines (Cohen and Stockwell 2013) and is a standardized tool in the 

analysis and processing of seismic datasets. The process suphasevel uses the 

transformation methods described by Park et al. (1998) to determine the phase 

velocity dispersion of the Rayleigh surface wave. This transformation method 

separates the frequency component of a given frequency and its arrival time 

information is preserved in the phase spectrum. The sum of the offsets in the arrival 

times are then taken after the phase shift at that frequency is determined, giving the 

phase velocity. Once the frequency window is determined, the offset-dependent phase 
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shift (or how much the first arrival deviates from the assumed phase velocity) is 

determined (Park et al. 2018). As parameters, we used a max frequency of 400 Hz 

and a minimum velocity of 350 m/s as the starting parameters and applied a 

Butterworth bandpass filter to the phase velocity processing to filter out noise lower 

than 10 Hz and higher than 250 Hz. The offsets of the wavefields of a given 

frequency in the frequency window are summed up to determine the coherence of the 

signal to the phase velocity. The more coherent, or self-similar, a signal is, the more 

confidence in the dispersion. We pick a range of frequencies that best envelop the 

peak velocities and respective frequency to create a dispersion curve (Fig. 2.1). In our 

automated phase velocity measurements sometimes overtone phase velocity, rather 

than the fundamental mode, is picked, which causes complications (Fig. 2.1C). The 

occurrence of overtones representative of the complexity of the subsurface, 

frequencies and receiver location (Park et al. 1998). The surface wave dispersion 

used in the inversion remove any overtones greater than 1 standard deviation of the 

mean to minimize the influence they may have on the models.  
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Figure 2.1: Example of our Seismic Data Set. A) Data from the vertical component geophones of site 1, located 

at 66.36  longitude and -39.53 latitude. The seismic source is 30 m from the first station. Each seismogram was 

normalized to the maximum at that distance. The different arrivals are labeled in red. B) Travel time picks for the 

P- (blue)  and S-waves (orange). Expected layering structure from velocity changes labeled in red. Layer in which 

the waves are traveling through are labeled. C) Phase velocities from the surface waves dispersions. 

2.2: Data Inversion 

Traditional methods of inversions use optimization frameworks to search for 

the best fitting models. Here we implement a trans-dimensional Bayesian approach, 

using a reversible jump Markov chain Monte Carlo (rj-McMC) algorithm. We use a 

1-dimensional, flat layer model to represent the subsurface structure. This process 

allows different parameters to be constrained individually via a joint inversion 

without specification of a starting model to invert for the velocity model, using P-

waves, S-waves, and surface wave dispersions. The rj-McMC method is the sequence 

of models where the starting point is selected randomly, and the perturbations are 

dictated by the proposal probability distribution of the current model and a set of 

predetermined priors (Bodin et al. 2012).  
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The Bayesian method multiplies a likelihood function p(d|m), or the 

probability of the observed data, to the a pirori density of model m (p(m)) (Equation 

5)  

 

Posterior, p(m|d)   likelihood, p(d|m)  prior, p(m)  (5) 

 

where m is the vector of model parameters and d is the vector defined from the 

observed data (Sambridge et al. 2013; Bodin et al. 2012). The trans-dimensionality of 

the model is proposed by creating Voronoi cells that act as nodes at pre-determined 

velocities. As new models are proposed, the boundaries between the cells adjust (Fig. 

2.2). Our starting model for the VS consists of 5 layers, with 5 boundaries at 2 m, 9 m 

29 m, 44 m, and 55 m. The VS of the first layer is .08 km/s, 1.2 km/s, 1.8 km/s, 2.1 

km/s, 2.1 km/s. The VP is about twice that of the VS for each layer and the layering of 

VP varies slightly to prevent possible errors in the inversion. We specify priors for the 

velocities between 0 and 4500 m/s while the layer depths are between 0 and 55 m.  

The inversion begins with a random model and is allowed 3 million iterations 

to create an ensemble of 29000 accepted models that best represents the data 

collected (Figure 2.2). To allow the rj-McMC to converge to the observed data, we 

set a burn-in period of 100000 iterations. Once convergence occurs, the remaining 

number of iterations are collected into an ensemble of models. These models are 

collected every 100th iteration to increase the independency of the model (Bodin et al. 

2012).  

The starting model is proposed, perturbed, then the new model is accepted or 

rejected based on the misfit of the prior model (Montgomery et al. 2017; Gao et al. 

2018). Since we are inverting for P-waves, S-waves, and surface waves, there is more 
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uncertainty with the addition of more parameters, thus more models are required to 

reduce the amount of misfit. These parameters are added as covariance matrices of 

data error. By inverting for the data noise, the data independently infers the 

contribution of the noise into the misfit (Bodin et al. 2012). In other words, extra 

parameters can be added as data matrices without having to adjust or scale the data to 

the misfit.  

A primary assumption is that velocity is organized into constant layers with 

depth, with sharp contrasts in velocity, indicating a transition into a new layer. Based 

on the nature of P-waves, we anticipate sharp increases in velocity upon entering and 

exiting the aquifer structure (Montgomery et al. 2017). The S-waves should show a 

sharp increase in velocity occurring at the solid ice layer. The shear waves should be 

undeterred in the pore spaces filled with air and water but should be affected by the 

decrease in pore space from the compaction of snow into ice. Both P- and S-waves 

likely vary gradationally throughout the medium, but this is captured by multiple 

layers and are small relative to the larger material contrasts. The results from the 

inversion for the P- and S-wave inversions are shown in Figure 2.3 for site 1.   
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Figure 2.2: Schematic flow chart of the reversible-jump Monte Carlo Markov Chain. The model begins with 

model 1, runs n amount of iterations, then creates a new model until the Nth model is created. Modified from Gao 

and Lekic (2018).  

 

 

Figure 2.3: Inversion data from Site 1. A) S-wave inversions. The red line indicates the mean model based on 

the probabilistic distribution. B) P-wave inversion. The red line indicates the mean model. C) Travel time picks 

for the S-waves. The red dots indicate the physical picks. The misfit of the picks from the inversion are also 

plotted. D) Travel time picks for the P-waves with the misfit. 
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Chapter 3: Results 

 

3.1: Joint Inversions 

We conducted experiments using different combinations of the constraints 

(VP, VS, and surface waves) used in the reversible-jump Monte Carlo Markov Chain 

inversion to explore how well the combination of the constraints worked with one 

another. We first inverted P-wave travel time picks and the surface wave phase 

velocities (joint inversion 1), followed by inversions using P- and S-wave travel time 

picks and no surface waves (joint inversion 2), and inversions using all constraints (P- 

and S-wave travel time picks and surface wave velocities simultaneously) (joint 

inversion 3). Each combination of constraints in the joint inversion illustrate how 

different types of waves can either help or hinder the quality of the inversion. It 

should be noted that only the 2016 data set were used for the inversions, thus the 

exclusion of site 9 in the analysis. We exclude the 2015 data set as the resolution 

depth only resolves to 25-30 m, while the 2016 data resolves to 50-55 m 

(Montgomery et al. 2017). The uncertainties of the velocities were calculated to 1 

standard deviation. The inversions, particularly in the deeper ice layers, have a much 

wider velocity probability distribution in the ensembles, due to the large uncertainty 

in the S-wave travel time picks.   

The depths of the transitions can be found, with uncertainty, using the 

discontinuity probability/expectation, shown visually by the dotted lines in figures 
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3.1, 3.2 and 3.3, in conjunction with the inversions. The discontinuities are indicative 

of a change of velocity, as they portray the number of times the model had to reset 

until it was satisfied with the current model, as well as showing the likelihood of a 

transition change at a given depth. These discontinuities can be observed as velocity 

jumps in the inversions at each site.  

The uncertainties in the depth were determined using the probability 

distribution of discontinuities from the ensembles (Figures 3.1-3.3). The depths 

between the troughs above and below the peak discontinuity are interpreted as the 

range of depths that a layer change is likely to occur (Figure 3.4). The uncertainties of 

the velocities were derived from the inversions by calculating the median of the 

ensemble between every velocity jump and finding the lowest and highest velocities 

of each layer (Figure 3.5). At deeper depths, the mean is influenced from higher 

uncertainties in the ensemble, so the median is more representative of the most likely 

velocity of each layer. Figures 3.4 summarizes the results for the depths and Figure 

3.5 summarize the results for the velocities. 

There is consistent layering between all inversions, which we can attribute to 

what we expect to see in the ice sheet. We define layer 1 (L1) as the firn, and in some 

instances divide it into sublayers (i.e layer 1A, layer 1B, etc.) due to lower velocities 

to those expected in the aquifer. Layer 2 (L2) and layer 3 (L3) are distinguished by 

their velocity and velocity jumps from the inversion results and are inferred as the 

considered the aquifer and solid ice respectively. The discontinuities between layer 1 

and 2, and layer 2 and 3 are denoted as L1/L2 and L2/L3 respectively. 
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3.1.1: Joint Inversion 1- P-waves and Surface waves   

When the P-wave travel time picks and surface waves are used as constraints 

in the inversion for P- and S-wave velocities, the recovered velocities have a high 

uncertainty (Fig. 3.1). The P-wave inversions show that L1A is strongly detected at 

5.7  4.3 m. However, the next observable velocity jump lies at 23 m ± 4.6 m depth, 

the transition between L2 and L3, falling near the base of the aquifer. This depth is 

about 5 meters shallower than the recovered depth to the base of the aquifer in 

Montgomery et al. (2017). The velocity jump expected from the water table does not 

appear in the P-wave inversions nor the surface wave shear wave inversions. There is 

much greater uncertainty between 5 m to 20 m, where the aquifer is expected to 

reside. Due to the coupling of both constraints in the inversion, the surface waves 

may not be resolving the aquifer well, as the top of the aquifer, it would lie around 5.7 

± 4.3 m. as indicated by the large uncertainty in the probability distribution in the 

shear waves (Fig. 3.1). The P- and S-wave velocities are shown in Table 2. The VP of 

L1 is similar to the velocity of snow, or firn early in its development. The Vp of L2 is 

closer to firn (Table 1) than saturated firn. The VP of L3 is comparable to the ice 

velocities of 3590  133 m s-1 found in Montgomery et al. (2017). The S-wave 

velocities are expected to be approximately half of the P-wave velocities (Shearer 

2009), however, inversion 1 indicates that the velocities of layers 1, 2 and 3 are ~ 

47%, 41% and 37% of the P-wave velocity respectively. The slower velocities in the 

L2 and L3 are due to the large uncertainty in the inversion. 
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Table 2: P- and S-wave velocities of each layer and their uncertainties derived from the inversions 

 Inversion 1: VP and Surface 
Waves 

Inversion 2:  
VP and VS 

Inversion 3: VP, VS and 
Surface Waves 

 P-wave 

Velocity (m 

s-1) 

Shear wave 

velocity  

(m s-1) 

P-wave 

Velocity  

(m s-1) 

Shear wave 

velocity  

(m s-1) 

P-wave 

Velocity 

(m s-1) 

Shear wave 

velocity      

(m s-1) 

Layer 1A 1151  208 542  206 1397  183 745  99.8 1315  180 728  116 

Layer 1B N/A N/A 2269  354 1146  178 2142  340 1031  176 

Layer 2 2344  456 971  260 2903  198 1556  139 2911  175 1545  98 

Layer 3 3475  287 1307  103 3490  294 1671  189 3587  204 1716  132 
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3.1.2: Joint Inversion 2- P-Waves and S-waves 

Figure 3.2 show the results from inversion 2 for the P- and S-wave travel 

times across all sites on the Helheim glacier. The discontinuities and velocity jumps 

between L1/L2 and L2/L3 are observed across all sites. Sites 1- 4, 8 and 12 of the P-

wave inversions show an extra velocity jump at L1A. This jump can be attributed to a 

large accumulation of ice lenses at these particular sites, discussed in more detail in 

the next chapter. The S-wave inversions all depict L1A in the upper 10m. There is an 

increase in uncertainty in the S-wave inversions below 30-40 m. We attribute this to 

uncertainty in the S-wave picks (See section 4.2).  

The transition observed in the upper 2 m of site 12 in the P-wave inversions 

and all S-wave inversions is likely the compaction front from firn to ice. Sensitivity to 

this front is observed in the S-waves, and sparsely in the P-wave inversions. L1A is 

observed at sites 1-4, 8 and 12 in the P-wave inversion occur at a depth of 8 ± 3.4 m, 

and 7.2 ± 2.7 m in the S-wave inversion, giving an average depth of 7.6 ± 3 m. The 

transition L1/L2 occurs at 13.7 ± 4.3 m in the P-wave inversions occurs and 13.5 ± 

4.0 m in the S-wave inversions, averaging out to 13.6 ± 4.2 m. The transition L2/L3 

occurs at a depth of 27.9 ± 4.9 m in the P-wave inversion and 27.8 ± 4.2 m in the S-

wave inversion, averaging to 27.8 ± 4.6 m. The transitional layer L2/L3 is consistent 

to the base of the aquifer of 27.7  2.9 m from Montgomery et al. (2017), with the 

caveat being a higher uncertainty from our inversion results in the depths.  

The thickness of the aquifer was determined at each site by subtracting the 

collocated measurements of the water table from the GPR radar depths presented in 

Montgomery et al. (2017) from the base of the aquifer calculated by our inversions. 
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We use the GPR depths because they were collected in situ at each site and provide 

better resolution to the top of the aquifer than our inversions, particularly upslope 

where more ice lenses may be present. These data are collected with a 400 Hz 

antenna and have a depth resolution of 2-3 cm.  The average thickness of the aquifer 

using these constraints is 9.9 ± 4.9 m in the P-waves and 9.9 ± 4.2 m in the S-waves, 

yielding an overall aquifer thickness of 9.9 ± 4.6 m. Velocities from inversion 2 are 

shown in Table 2.  
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3.1.3: Joint Inversion 3- P-waves, S-waves, and Surface waves 

 The addition of the surface waves to the inversion provides another data set to 

refine the depths and velocities of the layers. In P-wave inversions, the only sites that 

do not have an additional sublayer, L1A, are sites 3-6. The S-wave inversions indicate 

another sublayer, Layer 1A, at all sites except sites 3-6. There is a velocity jump in 

the upper 2-3 meters present in most of the S-wave inversion sites, but this is not 

treated as an actual layer for consistency with the P-wave inversion comparison. It 

should be noted that the S-wave inversions, even with the inclusion of the surface 

waves, are more sensitive to the shallow structures than the P-waves. The shear 

waves at most sites consistently observe the presence of the ice lenses at shallow 

depths. The P-waves are not as sensitive to the upper 2-3 meters of each site as they 

have wavelengths about twice those of the S-waves.  

 The depths calculated from the inversions are comparable to that of inversion 

2 conducted in section 3.1.2. The transition layer L1A/L1B lies at a depth of 4.8 ± 2.7 

m in the P-wave inversion and 4.5 ± 2.3 m in the S-wave inversions. The transition 

L1/L2 occur at a depth of 13.1 ± 3.4 m in the P-wave inversion and 13.5 ± 3.4 m in 

the S-wave inversion. The transition L2/L3 occur at a depth of 27.8 ± 4.3 m in the P-

wave inversion and 28 ± 3.6 m in the S-wave inversion. On average, transition L1/L2 

occurs at 13.3 ± 3.4 m depth and transition L2/L3 lies at 27.9 ± 3.5 m depth. The 

thickness of the aquifer in this joint inversion is 9.9 ± 4.3 m in the P-wave inversion 

and 10 ± 3.6 m in the S-wave inversion, averaging to a thickness of 10 ± 4 m. The 

bulk velocities for inversion are shown in Table 2.  
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  Systemic changes from site 1, located upslope on the Helheim glacier, to site 

12, located downslope, can be observed. The velocities of the firn experience 29% 

increase from site 1 to site 10 but experience a velocity decrease from site 10 of 14% 

at site 11 and 24% at site 12. The increase in velocities could be a function of 

compaction of the firn, while the decrease in velocities at sites 11 and 12 may be due 

to a shallower water table and less snow/firn in this layer. The velocity of the aquifer 

at sites 1 and 12 are similar. However, there is large variability across all in the 

aquifer layer, possibly due to changes in water content at each site. The velocity of 

the ice increases systematically as sites traverse downslope. There is a 9.4% increase 

in velocity between site 1 and site 12, similar to the velocity change reported by 

Montgomery et al. (2017).  
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Figure 3.4: Depths of transitions between layers for the 3 inversion approaches. A) Joint VP and surface wave 

dispersion (inversion 1). B) Joint VP and VS (inversion 2) C) Joint VP,VS, and surface wave dispersion (inversion 

3). Error bars are calculated from taking the lowest and highest velocities from the median ensemble (Figures 3.1-

3.3).  

 

 

 
 

Figure 3.5: Velocity of different layers from the ( A-C ) P- and (D-F) Shear wave inversions. A,D) Joint VP 

and surface wave dispersion (inversion 1). B,E) Joint VP and VS (inversion  2). D,F) Joint VP,VS, and surface wave 

dispersion (inversion 3). Error bars are calculated from taking the lowest and highest velocities from the median 

ensemble (Figures 3.1-3.3). Montgomery et al. (2017) P-wave velocities are also plotted.  
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3.2: Calculating Water Content and Volume 

Perturbations in the aquifer layer velocity can be related to the liquid water 

content (LWC) in the aquifer. We use two different methods to calculate the LWC at 

each site. We first calculate the water content using Equation (6) (Wyllie et al. 1956), 

which describes the contribution of water content () and the P-wave velocity 

(VPaquifer) observed in the aquifer (Montgomery et al. 2017), under the assumption that 

pore space is saturated with water.  

 = 
𝑉𝑃𝐻2𝑂

 (
𝑉𝑃𝑖𝑐𝑒
𝑉𝑃𝑎𝑞

−1)

(𝑉𝑃𝑖𝑐𝑒−𝑉𝑃𝐻2𝑂
 )

  100%                                          (6) 

The value for VPH2O is 1450 m s-1 (Table 1), and VPice is derived from the measured 

velocity of ice below the inferred aquifer layer. We use this equation to compare the 

results from our inversions to the calculations from the previous study, where  

ranged from 8-24%. However, this method does not account for the empty pore 

spaces in the aquifer that are filled with air, rather than water. Thus, this method 

could be over estimating that amount of water present in the aquifer.  

The next equation can be expected to account for the air present in the pore 

spaces, we use the S-wave velocities. Since seismic velocities are sensitive to the 

relative fraction of solid and liquid in a two-phased mixed system (Montgomery et al. 

2017), we use Equation (6) to derive the bulk P-wave velocity of the aquifer,  

𝑉𝑃𝐵𝑢𝑙𝑘
= 𝑓𝑎𝑖𝑟𝑉𝑝𝑎𝑖𝑟

+ 𝑓𝐻2𝑂𝑉𝑃𝐻2𝑂
+ 𝑓𝑖𝑐𝑒𝑉𝑃𝑖𝑐𝑒

             (7) 

where the fair, fH2O and fice refer to the volume fraction of the pore space of air, water 

and ice respectively. The fice can be rewritten as (1-), as it refers to the volume of ice 
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present, and  refers to the bulk porosity. The same equation can be used for the S-

waves (Equation 8).  

𝑉𝑆𝑎𝑞𝑢𝑖𝑓𝑒𝑟
= 𝑓𝑎𝑖𝑟𝑉𝑆𝑎𝑖𝑟

+ 𝑓𝐻2𝑂𝑉𝑆𝐻2𝑂
+ 𝑓𝑖𝑐𝑒𝑉𝑆𝑖𝑐𝑒

             (8) 

However, S-waves do not travel through air or water, so their velocities are zero. 

Thus, the equation can be rewritten as:  

𝑉𝑆𝑎𝑞𝑢𝑖𝑓𝑒𝑟
= 𝑓𝑖𝑐𝑒𝑉𝑆𝑖𝑐𝑒

       (9) 

Substituting fice = (1-), a new () can be calculated, that should account for the water 

and air in the aquifer.  

𝑉𝑆𝑎𝑞𝑢𝑖𝑓𝑒𝑟
= (1 − )𝑉𝑆𝑖𝑐𝑒

                (10) 

        = 1 −
𝑉𝑆𝑎𝑞𝑢𝑖𝑓𝑒𝑟

𝑉𝑆𝑖𝑐𝑒

                            (11) 

The seismic velocities VSaquifer and VSice are derived from aquifer and ice velocities 

from the inversions in Sections 3.1-3.3 (Figure 3.5). Once a value for  is calculated, 

the fH2O can be determined by substituting the fair as the difference between  and fH2O 

into Equation (7) to get Equations (12) and (13), where the fraction of water can be 

derived:  

    𝑉𝑃𝑎𝑞𝑢𝑖𝑓𝑒𝑟
= ( − 𝑓𝐻2𝑂)𝑉𝑝𝑎𝑖𝑟

+ 𝑓𝐻2𝑂𝑉𝑃𝐻2𝑂
+ 𝑓𝑖𝑐𝑒𝑉𝑃𝑖𝑐𝑒

            (12)

               𝑓𝐻2𝑂 =  
𝑉𝑃𝑎𝑞𝑢𝑖𝑓𝑒𝑟

+𝜙(𝑉𝑃𝑖𝑐𝑒
−𝑉𝑃𝑎𝑖𝑟)−𝑉𝑃𝑖𝑐𝑒

(𝑉𝑃𝐻2𝑂−𝑉𝑃𝑎𝑖𝑟
)

                        (13) 

We then derive the water content (fH2O) from our analysis other aquifer presented in 

figure 3.5. However, the presence of a low velocity zone (LVZ) is likely influencing 

the shear wave velocities that were measured by the inversions, as discussed in the 

next chapter. Thus, we will focus on the water content derived by Equations 6 and 11 
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to observe the differences in the methods. Note that these  values are assuming the 

bubbles are filled with water only, thus can viewed as an upper bound of the water 

content in the aquifer.  

For the joint VP and surface wave inversions the LWC is > 25%, due to the 

poor delineation of the aquifer layer, while the other joint inversions are more similar 

to the LWC found by Montgomery et al. (2017). Comparing our results using 

Equation (6), the LWC of the VP and surface waves dispersion joint inversion is 28-

43%, the LWC of joint VP and VS inversion is 7-25%, and a similar amount (7-25%) 

is found in the joint VP, VS, and surface wave dispersion inversion. These ranges are 

similar to that of Montgomery et al. (2017). When we use the updated method from 

Equation (11), the water content averages from 22-33% in the VP and surface wave 

dispersion inversion, 2-20% in the VP and VS joint inversion, and 5-17% in the VP, VS 

and surface wave dispersion joint inversion at sites where porosity is present. These 

ranges are less than the ranges calculated using Equation (6), indicating a porosity 

less than Montgomery et al. (2017).  

 

Figure 3.6: Porosity () calculated from the inversions. The total water content using Equation 6 from 

Montgomery et al. (2017) is dashed for their results and ours, our values for LWC are indicated by the solid line. 

The calculations represented by the dotted lines use equation 6 to find water content. The solid blue line uses 

equation 11 to calculate water content. A) Joint VP and surface wave dispersion inversion. B) Joint VP and VS 

inversion C) Joint VP, VS, and surface wave dispersion inversion. Error bars are calculated from taking the lowest 

and highest velocities from the median ensemble (Figures 3.1-3.3). 
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Using the water content calculated from each site, the storage capacity of the aquifer 

can be estimated by calculating the total mass off water per m2 in the aquifer 

(Equation 14): 

𝑀𝐻2𝑂 =  𝜙𝐻𝜌      (14) 

where H is the thickness (m) of the aquifer,  is the water content (%), and  is the 

density of water (1000 kg m-3). We calculate the storage capacity using the LWC from 

Equations (5) and (10). Due to the omission of the 2015 data in our inversions, the 

storage capacity derived only accounts for sites 1-8, and 10-12, totaling 11 sites instead 

of the 22 sites used for storage capacity in Montgomery et al. (2017). Accounting for 

the sites used in our study, the Montgomery et al. (2017) average storage capacity is 

1634  983 kg m-2. Using the LWC from equation 6, the average storage capacity 1565 

 769 kg m-2, while the LWC from Equation (11) yields an average storage capacity of 

1082  443 kg m-2. The storage capacity for each site using the three data sets is shown 

in Figure 3.7. A general increase in the storage capacity can be observed from site 1 to 

site 12, as the system moves downslope.  
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Figure 3.7: Storage capacity calculated from inversions. The storage capacity derived from equation 6 (dotted 

line) and equation 11(solid). A) Joint VP and surface wave dispersion inversion. B) Joint VP and VS inversion C)) 

Joint VP, VS, and surface wave dispersion inversion. Error bars are calculated from taking the lowest and highest 

velocities from the median ensemble (Figures 3.1-3.3). 

 

 

Chapter 4: Discussion and Conclusion 

Our study provides a quantitative method for measuring the dimensions of the 

aquifer and its water content. Here we discuss the reliability of these methods. 

Furthermore, based upon our study of S and surface waves, we hypothesize the 

presence of a low velocity zone, and discuss how the aquifer can produce such a 

feature for the shear waves. To examine this hypothesis, we first look at synthetic 

seismograms to understand the behavior of the seismic waves and its interactions with 

the aquifer. We then compare results from our inversions to cores and hydrological 

data collected on the Helheim glacier to better understand the geophysical signals 

validated structures within the firn aquifer. Miller et al. (2017) extracted ice cores in 

situ from sites 6, 7, 8, 10, and 12 of our study area and measured the density of each 

core. Furthermore, sites 7, 8, and 12 had specific conductance and specific discharge 

measurements taken to measure the flow of water within the aquifer. Since the cores 

were extracted at similar sites to where the seismic data was collected, we can 
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directly validate the results of our inversions against the background structure and 

ground truth our interpretations.  

4.1: Implications of a Low Velocity Zone 

An experiment conducted by Helgaard et al. (2003) shows that VS decreases 

with increasing pressure in a three-phase mixing model (consisting of ice, water, and 

sediment), while VP is continuously increasing as a result of ice grains bonding from 

the compaction. S-wave inversions show a large uncertainty near the greatest depths 

of the firn system. The S-waves in our data are weaker at greater distances, increasing 

the difficulty of picking of their first arrivals. This translates to greater uncertainty at 

depths below the aquifer, with the mean velocity of the ensemble skewed by poor fits 

to these outlier data. One possibility is that surface waves may be overprinting the S-

waves, as energy from the surface waves is usually stronger than the energy of the S-

waves. With the velocity of the surface waves being about 90% of the S-waves, our 

picking may have selected surface wave moveout. Alternatively, near surface 

reflections and reverberations of P-waves or S-waves would mimic the moveout of 

direct S-waves and contaminate our S-wave travel time picks. If a low velocity zone 

is present in the aquifer layer, direct S-waves would experience a shadow zone and 

violate our assumption of velocity increasing with depth in the rj-McMC. 

These explanations elucidate the observed VP/VS ratio that we found in the rj-

McMC. As stated earlier, the VP/VS ratio is typically used as an indicator for the 

presence of fluid in a saturated rock, as it is dependent on the porosity and the fluid 

pressure (Lee 2003). Thus, calculating the VP/VS ratio should provide further 

evidence for the presence of water. We found an average VP/VS ratio for firn layer 1 
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of 1.86, 1.99 in firn layer 2, 1.84 in the aquifer layer, and 2.04 in the ice layer. Firn 

layer 1A and the aquifer have very similar ratios, while firn layer 2 more closely 

resembles the VP/VS ratio of 1.95  0.04 observed on the Rutford ice stream (Smith et 

al. 2015), more indicative of ice.  This is opposite of what is expected when 

comparing the VP/VS ratio of a saturated medium, for example, a saturated rock, 

where VP/VS is greater than 2. One reason could be because the ice lattice is stiffer 

than water and air, thus increasing the compression and shear of the waves as a 

function of the water-to-ice ratio (Zimmerman and King 1986). However, when we 

calculate the probable error of the VP/VS ratio of each site, the uncertainty is too large 

to accurately distinguish the ratios between layers (Figure 4.1). Given this large error, 

we instead examine the VP and VS velocities individually. 

 

 

Figure 4.1: VP/VS ratio calculated from Joint inversion 3 for the layers in our study. The VP and VS were 

divided against each other for each layer at each site. Error bars are calculated from taking the lowest and highest 

velocities from the median ensemble (Figures 3.1-3.3). The layers are offset by 0.01 longitude to compare the 

dataset.  
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By using Equation 13, we can calculate the expected velocity range needed in 

a case where there is no water content in the aquifer (fH2O = 0) and a case where all of 

the porosity available is filled with water (fH2O = ) (Figure 4.2). For this model, we 

assume the VP is 3700 m s-1, VPair is 340 m s-1 and the VPH2O is 1450 m s-1 (Table 1). 

The calculated water content derived from the S-waves lies outside the threshold set 

by our water content model, implying that Eq. 11 is underestimating pore space. To 

reach this threshold, we must increase porosity by a factor 2-3 to produce reasonable 

estimates for VP in the aquifer using the S-wave constraint of . Here we present 

synthetic modeling to investigate the effects of an LVZ on the shear waves. This 

discrepancy is consistent with lowered S-wave velocities in the aquifer that is not 

resolved in our data analysis and would lead to the unexpectedly low VP/VS for the 

aquifer layer.  

 

 

Figure 4.2: VP vs water porosity () derived from equation 11. The dotted lines represent the extreme cases of  

water content filling the pore spaces. The blue circles are the measurements from equation 11 for joint inversion 3. 
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The red circles indicate the water content derived from S-waves, multiplied by a factor of 2.7. The triangles 

indicate the water content reported by Montgomery et al. (2017).  

 

4.1.1: Synthetic Modeling 

We use Specfem2d (Tromp et al. 2008) to create synthetic seismograms to 

investigate the behavior of the seismic waves (Fig. 2.4). Specfem2d is a spectral 

element forward modeling software that simulates seismic wave propagation in a 

poro-elastic media in two dimensional or three-dimensional mesh. The forward 

modeling allows us to simulate the changes in velocity we expect to see, given the 

densities and velocities observed in glacial system (Table 1). We selected the base 

model geometry used for the synthetic forward modeling from site 11 as it is 

constrained from GPR (Legchencko et al. 2018), seismic (Montgomery et al. 2017), 

and ice core data (Miller et al. 2017). Our model has 24 geophone stations and a 

seismic source with a dominant frequency of 150 Hz at the surface and 10 layers to 

represent the gradational changes in the glacier that we expect to observe (Fig 1.2). 

The geometry of the synthetic survey is identical to the survey seen in Figure 1C. 

Six different models are tested to observe differences in the effects of 

attenuation and the presence of a low velocity aquifer layer (Fig. 4.3). The quality 

factor, Q, is representative of the attenuation of waves, where higher Q indicate lower 

attenuation and low Q indicate high attenuation. Q factors of 5, 10, and 50 were used 

to represent low, medium and high attenuation, respectively. Models 1-3 have no low 

velocity zone, where model 1 has high attenuation across all layers, model 2 has 

uniformly low attenuation, and model 3 has Q=5 for the top 3 layers, representative of 

firn, Q=10 for the middle 3 layers , representative of the aquifer, and Q=50 in the 
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bottom 4 layers, representative of ice. The goal of these synthetic models is to study 

the behavior of the S-waves and surface waves and determine how reliable the S-

waves and surface waves are in the inversions. Velocities in models 1 and 4, 2 and 5, 

and 3 and 6 are identical to one another, with the only difference being the presence 

of a low velocity zone in the aquifer, where we decrease the S-wave velocity from 

1550 m/s to 1100 m/s. Shot locations occur at 30m intervals beginning at the first 

station, and extend to 240 m from the first station, recreating our station geometry in 

the refraction experiments.   

 

Figure 4.3: Models of firn aquifer structure explored in our synthetic surveys. A-C) Models with no low 

velocity zone. D-F) Models with a low velocity zone. The panel on the left shows the velocity and densities for 

each model. The blue line depicts the P-wave velocity of the model while the red line depicts the S-wave velocity 

(m s-1). The green line depicts the density used for each layer (kg m-3). The panel on the right depict the Q-factor 

for each layer.   
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4.1.2: Synthetic Seismograms 

The synthetic data allow us to observe the behavior of the waves as we can 

control parameters such as the degree of attenuation in each layer or the velocity of 

each layer. We first compared the cases of high attenuation (Q=5) in all layers to the 

data from site 11 (Fig. 4.4 A,E,I). There is a large residual between the model with 

and without a low velocity zone. These residuals can be classified into 3 primary 

types: 1) reverberations in the near surface layers that are enhanced by the presence of 

a LVZ, arriving after the direct and refracted P-waves, 2) reverberations in the near 

surface layers that arrive near the predicted S-waves that are enhanced by the LVZ, 

and 3) additional energy in the surface wave field, presumably associated with the 

LVZ (Fig. 4.4: I-K). Multiples follow the P-waves as a coda can be observed in 

synthetic data, as well as the data collected in Greenland, indicating the likelihood of 

the reverberations caused by the impedance contrasts of the P-waves at the top of the 

aquifer. Due to the changes in the velocity and density, not all energy in the seismic 

waves gets transmitted in the next layer. Some of the energy is reflected off of the 

impendence contrast at the boundary, particularly when the density and velocity of 

the underlying layer is greater than that of the overlying layer. The low attenuation 

models (Q=50) has high frequency surface waves not seen in the data. Only the 

layered model produces waveforms similar to the observed data. Attenuation of the S-

waves and surface waves are observed in both cases, with more attenuation present in 

the low-velocity zone models. The data from site 11 show a clear arrival of both the 

S-wave and surface waves.  
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We then compare models 2 and 5, where all layers have low attenuation 

(Q=50) (Fig. 4.4: B,F,J). In this scenario, P-waves experience the reverberations 

previously observed, but to a lesser extent. The S-waves and surface waves are more 

prevalent due to less attenuation. The shear waves appear to experience greater 

reverberations. One possible explanation could be that the head wave converted from 

a P-wave to an S-wave upon reflection of the aquifer and continued as an S-wave 

because it could not be transmitted into the liquid aquifer layer. Similar 

reverberations can be observed in the surface waves as well. The presence of the low 

velocity zone appears to limit the distance of reverberations in the S-waves to 70-110 

m, but the effects on the surface waves are similar. The residual between models 2 

and 5 highlight a subtle increase in arrival times influenced by the low velocity zone. 

This corresponds to a dip in amplitudes of the observed seismic wavefield between 90 

and 110 m.  

Lastly, we compared models 3 and 6 (layered attenuation) with the data from 

site 11 (Fig. 4.4: C,G,K). This scenario mimics the subsurface expected in the real 

data. The P-waves in the synthetic models show that the reverberations still occur. 

However, the S-waves and surface waves appear to attenuate more, likely due to the 

high attenuation used in the firn layer. The presence of a low velocity zone makes it 

difficult to differentiate between the S-waves and surface waves. However, the real 

data shows that there is a clear separation between all the waves. The synthetic 

modeling indicates that the body waves are subject to reverberations, an effect that 

would make unique picking of the S-waves difficult.  
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4.2: Reliability of Joint Inversions 

In the previous section, we examined the presence of an LVZ and how it 

would affect the S-wave arrival times used in our survey. In this section, we compare 

the different joint inversions and how additional constraints on the data aid (or 

hinder) the inversions. A primary component is how the surface and body waves 

sample the firn structure. The P and S body waves experience less changes in 

frequency and less dispersion of waves than their surface wave counterparts 

(Kanamori and Anderson 1977). The hammer source creates body waves at a 

frequency of 150-200 Hz, we expect the body waves to retain most of the emitted 

frequency. Given the velocities given in Table 1, and a frequency of 150-200 Hz, the 

wavelength of the P-waves has a resolution depth of 14-20 m, while the S-waves are 

around 7-9 m. Surface waves are sensitive to the phase velocity (Fig. 1.2C), and thus 

observed dispersion is sensitive to both changes in velocity and attenuation.  High 

attenuation is present at the shallow surface structure and decreases for deeper 

structures. As a result, surface waves sensitivity to structure is variable throughout the 

subsurface. Below we discuss how different combinations of Joint Inversions 1, 2 and 

3 details affect the sensitivity of the inversion, and which is likely the most useful at 

detecting subsurface structure.  

Joint inversion 1 includes only surface waves and P-wave travel times as 

constraints, thus is sensitive to the large variability in attenuation across the aquifer, 

as indicated by the use of data only up to 1 standard deviation in all data sets. The 

sensitivity of the P-waves to subsurface structure starts at about 14 m, while any 

subsurface structure shallower than 14 m should be resolved by the surface waves. 
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For joint inversion 1, the seismic velocity jump between L1A and L1B at 5.7  4.3 m 

is likely to be a secondary, more compacted layer of firn, since this depth is more 

similar to the L1A/L1B transition of the other inversions rather than the depth of the 

aquifer. The velocity in the firn layer resembles the upper bound of that found in 

snow (Table 1), rather than firn. The velocity in the interpreted aquifer layer is more 

similar to the firn, rather than the expected velocity of saturated firn. The velocity in 

the ice from this inversion agrees with the ice velocities of the other two inversions. 

However, the L2/L3 transition occurs at a shallower depth of 23  4.6 m, roughly 4 m 

above the other calculated aquifer bases. The sensitivity of the P-waves allows for the 

detection of the bulk structure, as shown in Montgomery et al. (2017), but the larger 

wavelengths from the surface waves are likely sensing structure prior to reaching the 

aquifer, creating more attenuation and disparity in the waves at depth. Overall, using 

solely surface waves and the P-waves in a joint inversion is not reliable due to the 

large uncertainty caused by the data of the surface waves.  

 Joint inversion 2 uses the P-waves and S-waves as the main constraints in its 

inversion, while joint inversion 3 uses the P- and S-waves and surface waves in the 

inversion. The resolution depth from the S-waves is about 7 m, so joint inversion 2 

should be able to resolve any feature greater than 7 m into the subsurface and below, 

while joint inversion 3 should resolve the upper 7 m from the surface waves, 

providing a unified picture. Joint inversions 2 and 3 have very similar velocities for 

the firn, aquifer and ice layers (Table 2). However, joint inversion 2 has ~30% larger 

uncertainty than joint inversion 3. Based on Table 1, the velocities in L1A of both 

inversion 2 and 3 are consistent with a transitionary interface between snow and firn, 
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with larger pore space toward the surface. The velocities in layer L1B could be 

interpreted as firn that has undergone more compression, and reduction of porosity. 

Our velocity ranges in the aquifer are consistent with those found in the aquifer layer 

of Montgomery et al. (2017), while the velocities from layer 3 agree with velocities of 

solid ice of ~3400-3800 m s-1. As both joint inversions 2 and 3 are reliant upon S-

waves, and we identified the possibility of a shadow zone within the aquifer layer, the 

results for deeper structure are unreliable for the S-wave structure without the surface 

wave constraints. 

The biggest difference between the two inversions is the depths between L1A 

and L1B. In inversion 2, this transition depth occurs at 7.6  3 m, while in inversion 

3, this transition occurs at 4.8 2.7 m. The overlying firn layer are observed at sites 1, 

3, 4, 8 and 12 in the P-wave results of inversion 2, while the P-wave results of 

inversion 3 find that sites 1, 2, and 7-12 have an observable, overlying firn layer. The 

seismic velocity jump that occurs at 13.6  4.2 m in inversion 2 and 13.3  3.4 m in 

inversion 3 can be interpreted as the top of the aquifer in both inversions. However, 

the GPR measurement taken in situ indicate that this velocity jump is much shallower 

than the known depth to the water table. The difference between the two presumed 

depths to the aquifer in sites 1-9 are ~6.5 m on average, and at sites 10-12, the 

difference is ~ 1.6 m on average. The velocity jump at 27.8  4.6 m in inversion 2 and 

27.9  3.5 m in inversion 3 is inferred as the base of the aquifer, consistent with the 

pore closure depth of 27.7  2.9 m reported by Montgomery et al. (2017) and base of 

the firn layer of 27.7  4.4 m reported by Robertson and Bentley (1975). The base of 

the aquifer, or the pore closure depth, is controlled by the thermodynamics of the ice, 
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where melting requires the surrounding ice to absorb heat, and freezing requires the 

ice to release heat (Mishima and Endo 1980). Since the glacier is laterally relatively 

uniform, there is a similar amount of snow and firn from site to site. Thus, similar 

pressures and temperatures form a pore closure depth at a semi-constant depth across 

the study area, which we observe in our joint inversions, similar past studies. 

 The presence of ice lenses, on the order of decimeters to meters thick 

reported in Miller et al. (2017), indicate that ice stratigraphy could be influencing the 

seismic velocity recovered by the inversions. Figure 4.5 shows the comparison of our 

P-wave inversions at sites 6-8, 10 and 12 to the local stratigraphy. The increase in the 

fraction of ice lenses occurs near the velocity jumps observed in the inversion data. 

The velocity jump near the top of the aquifer in sites 6-8 does not correlate with the 

observed depth. Rather, the velocity jumps associated with the presence of large ice 

lenses, since ice and highly compacted firn have higher bulk velocities than 

uncompacted firn. Wherever increases in density in the ice cores are present, velocity 

jumps in the inversion data can also be seen. At sites 6, 7 and 8, the presence of water 

in the firn increases the density of the system, but the amount of ice lenses is 5-8% in 

the upper firn layer, to 23-24% in the lower firn and increases again 22-37% in the 

aquifer layer. At sites 10 and 12, the density increase, GPR depth, and the velocity 

jump of the inversion are observed at the top of the water table. This layer has ~10-17 

% ice lenses but is relatively thin compared to the other sites as there is only 1 firn 

layer in the inversion. However, the ice core at site 10 indicates a thick ice lens at 15 

m depth, which could also cause the jump in velocity observed at this depth.  
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The interpreted seismic base of the aquifer coincides with the occurrence of 

bubbly ice and clear ice in the ice cores at sites 6, 7, 8 and 10, where the ice lens 

percentage increases to ~76.4-100 %, thus indicating the pore closure depth or freeze 

out point. At sites 6, the seismic base of the aquifer occurs at 25 m depth. At site 12, 

the seismic base of the aquifer occurs between two intervals of clear and bubbly ice. 

The hydraulic conductivity from Miller et al. (2017) provides another indication to 

the base of the aquifer and where pore closure occurs. At sites 7 and 12, the saline 

solution introduced by the method would accumulate above the solid ice and is 

measured as the solution is diluted by the fresh water flowing through the aquifer. 

The large concentration of saline water at the base of the aquifer is comparable to the 

seismic bottom depth at these sites (Miller et al. 2017). However, there is no saline 

water accumulation at site 8 due to an increased and continuous flow of water (Miller 

et al. 2017). Given all the information together, there is agreement in the seismic 

bottom of the aquifer, which lies, on average, at 27.9  3.5 m.  
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The average thickness of the aquifer of inversion 2 is 9.9 ± 4.6 m and 10  4 

m in inversion 3. The uncertainty the aquifer is ~13% thinner in inversion 3. Both 

thicknesses are about 2 m thinner than the 11.5  5.5 m stated by Montgomery et al. 

(2017). The large uncertainty in thickness is a function of the increase in the aquifer 

seen downslope. At site 12, the aquifer is 20.3 m thick, while the thickness of the 

aquifer at sites 1-11 does not exceed 14 m. The inclusion of surface waves in 

inversion 3 as a constraint reduces the uncertainty in the velocities by ~30% and 

reduces the uncertainty to the bottom of the aquifer by ~15%.  

As shown in Figure 4.6, the velocity of the waves is more dependent on the 

amount of ice present rather than the presence of the aquifer, but there is still an 

observable influence of the presence of liquid water on the seismic data. In the 

aquifer layer (20-40% ice lenses), there are velocities in both the P-waves and S-

waves that are above and below the line of best fit, likely due to the water. When 

taking this into consideration, this returns to our arguments for why the presence of 

water does not increase the VP/VS ratio as expected. The S-waves that were picked 

are likely reverberations of the P-wave. The arrival of the S-waves may be influenced 

by the presence of a low velocity zone from the aquifer, so they may not be present in 

our data set. There is less than a 170 m s-1 difference between the S-waves of the 

aquifer layer and ice layer in joint inversions 2 and 3. This increase is most likely due 

to compaction. 
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Figure 4.6: P-wave velocity vs Percentage of ice lenses. The P-waves from joint inversion 3 were used. The 

percentage of ice lenses were taken by measuring the total thickness of ice lenses present in each layer, divided by 

the thickness of the given layer, up to 30 m. The ice core data from Miller et al. (2017) was used.  

 

Despite a general increase in seismic velocity with ice lens abundance, the 

seismic waves in our study are too long-wavelength to resolve thin ice lenses. As 

previously mentioned, the ice lenses themselves are on the orders of centimeters in 

thickness and the p-waves cannot detect anything smaller than ~15 m, or its 

resolution depth. Thus, it is more likely the bulk concentration of ice over a range of 

depths affects velocity. The ice stratigraphy observed in Miller et al (2017) is a result 

of the infiltration of surface melt water into the glacier, and the observable drainage 

from the percolation of the water front. Since the percolation is gravity driven, the 

extent of percolation is defined by a water front (Pfeffer and Humphrey, 1996). The 

depths, both shallow and deep, at which this water freezes exhibit clear ice that is 

interpreted as the depth where the pore spaces filled with water freeze, as shown by 
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the cores.  Since the wavelength of the P-and S-waves are greater than 15 m and 7 m 

respectively, then they can more readily resolve the pore closure depth than any of the 

shallow structure, with the caveat of the aquifer later producing a shadow zone for S-

waves. However, the surface waves are affected by the high attenuation of the firn 

and have wavelengths insensitive (>100 m) to the pore closure transition at 25-30 m 

depth.  

4.3: Water content across Greenland 

Seismology provides us a way of estimating water content stored within the 

firn aquifer. We find that the Montgomery et al. (2017) average storage capacity is 

1634  983 kg m-2, the average storage capacity 1565  769 kg m-2 using their method 

for calculating water content, and an average storage capacity of 1082  443 kg m-2 

using the updated water content calculated from Equation 11 using the S-wave 

velocities from the inversions. The primary differences between the Montgomery et 

al. (2017) and our data is the result of a thinner aquifer. For example, sites 10 and 11 

in the previous study using solely P-waves underestimated the base of the aquifer, 

depths of 25.7 m and 23.8 m respectively. However, our study for these sites provide 

updated depths that agree with pore closures depths or firn-ice transitions, with depths 

of 29 m at both sites, which are in agreement given the uncertainties. The storage 

capacity using the updated method (Eq. 6) indicates the aquifer layer may have 

significantly less water than the previous calculation, but also is within uncertainties. 

As discussed in section 4.1, the shear wave inversions may not be reliable, thus we 

focus on the storage capacity calculated by Equation 6.  
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 The areal extent of Greenland where firn aquifers across Greenland, detected 

by radar, is about 21,900 km2 (Miège et al. 2016). However, the lower part of the 

percolation zone, where meltwater is stored, is believed to span an area of 150,000 

km2 (Harper et al. 2012; Vandecrux et al. 2019). Using the area of detected aquifer 

and the total area of the lower percolation zone, we can calculate the total mass of 

water that is likely retained across the ice sheet using the derived storage capacity and 

the area in which the aquifers are present. The mass of water from the storage 

capacity using the old method from Montgomery et al. (2017) and our inversions are 

35.7  1012  kg and 34.1  1012  kg, which simplify to 35.7  21.5 Gt and 34.1  16.8 

Gt of H2O respectively. Across the entire ice sheet, the total mass of water that could 

reside in the percolation zone is ~235  11 Gt of H2O. Excluding the air bubbles in 

the aquifer, our inversions show the total amount of water is slightly less than the 

previous estimate. The detected aquifers alone account for ~15% of the total storage 

capacity within the firn throughout the Greenland ice sheet.  

 This can be extrapolated to the sea level rise stored within the aquifers, which 

is calculated from the mass of water required to raise the sea level by 1 mm. We use 

the following equations:  

SA*h = Vol1mm SL rise                     (15) 

where SA is the surface area of the earth (km3), h is the addition to 1 mm of water to 

the sea level and Vol1mm SL rise is the volume of water required to raise the sea level by 

1 mm in kg m-2. The surface area of earth is 510  106 km2, oceans cover roughly 

71% of the total surface area of the earth (Lutgens 1992). From Equation 15, the 

volume of water needed to raise the sea level by 1 mm is about 360 km3 or a mass of 
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360  1012 kg (360 Gt) of water. Thus, the total amount of water currently stored in 

the Helheim firn aquifers would raise the sea level by 0.06  0.03 mm if they were to 

completely drain, which is 1-2% of the current rate of sea level change of 2.5-3.4 

mm/yr (Cazenave et al. 2014). However, if we expand this number to potential 

aquifers across all of Greenland, the contribution of firn aquifers to the global sea 

level is 0.32-0.95 mm, ~13-40% of the annual rate of sea level rise.  

 The total discharge rate from the Greenland ice sheet is about 535 Gt/yr based 

on measurements taken between 2000 and 2012 (Enderlin et al. 2014). During 2000 

and 2005, there was an 17% annual increase in discharge (Enderlin et al. 2014). The 

totality of the GIS is covered by 2.9  106 Gt of water content (Bamber et al. 2001). 

Assuming constant discharge rate with an annual increase in discharge of 17%, the 

entirety of Greenland ice would melt in ~55 years. If the percolation zone across 

Greenland were filled with firn aquifers, then the firn aquifers would account for 

~44% of the annual discharge rate alone. Understanding the melting process and the 

amount of meltwater that is being held will help us prepare for the long-term effects 

from the melting of Greenland and determining the contribution of firn aquifers to 

meltwater is an essential component of mass balance on the Greenland ice sheet.  

 

4.4: Future Work 

 Our study of S and P-waves, along with surface waves, revealed that even 

with homogenous and stratified firn, there exists considerable complexities in the 

wave propagation. The aquifer layer itself may produce a low-velocity zone for S-

waves but not P-waves. Since we are using refracted waves, this creates a shadow 
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zone that would not be detected by S-waves turning within the layer. Also, this 

impedance contrast will trap S-wave energy in the near surface and form multiple 

reverberations in the shallow layers above the aquifer, creating a coda of energy 

following the P-waves that is observed in the data. With the reverberations 

influencing the travel time picks in the S-waves, a more precise method of picking 

these waves is needed. The following are a few ways that I suggest this study could 

be improved upon in future work.  

• Improved synthetic modeling: a full model space to explore the distance and 

frequency a source would need to be to account for the effects of the 

presumed low velocity zone.   

o The rj-McMC relies on heterogeneity of the data set to create a 

representative probability distribution of the ensemble of model. A 

more refined model geometry would improve the resolution of the 

synthetic modeling, thus improve the quality of the inversion.  

• Full Waveform inversion: this approach would use the waveform’s entire 

content of seismic traces, where each unexplained residual data sample is 

assumed to come from some interaction within the medium, and a summation 

of over the sources and receivers locating anomalies (Virieux et al. 2017).  

o The full-waveform inversion can use the seismic waves used in our 

study, as well as the reverberations and any waves that follow, in an 

optimized inversion that can better image the subsurface.   

• Bayesian inversion with more constraints: Killingbeck et al. (2018) developed 

a Bayesian inversion of seismic surface waves with depth constraints, 
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Multimodal Layered Transdimensional Inversion (MuLTI), that calculates the 

probability of shear waves as a function of depth from the Rayleigh wave 

dispersion as well as additional depth constraints such as GPR constrained 

layering (Killingbeck et al. 2018).  

o Our inversion results are biased to the initial inputs such that the 

velocity jumps we see may be forced by the model, and the velocities 

derived are fit to match the initial model as much as possible, rather 

than creating a most likely model based off the data alone. 

o Our surface wave data are Rayleigh wave data, so their algorithm is 

highly applicable to our problem. The depths to the aquifer from the 

GPR and density profiles as well as the depth to the pore closure depth 

from this study could all be implemented as depth constraints to 

improve the overall resolution of the aquifer.  

4.5: Conclusions 

In summary, the use of P-waves, S-waves, and surface waves in a joint 

inversion is a promising technique for improving the resolution of the Helheim firn 

aquifer across the upper 40 m. Here, we reproduced the results from Montgomery et 

al. (2017) and validated their results. Using their methods, we determine an overall 

decrease in the amount of water present in the aquifer to a storage capacity from 1634 

 983 kg m-2 in Montgomery et al. (2017) to 1565  769 kg m-2 in our study. The 

detected aquifer system along the coasts of Greenland is estimated to contain 34.1  

16.8 Gt of water, ~0.06  0.03 mm. The storage capacity in the firn across Greenland 
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could contain ~235  115 Gt of H2O, a potential contribution of 13-20% of the mass 

loss from Greenland and a contribution of 0.32-0.95 mm of H2O to the global sea 

level.  

We incorporated new constraints, in shear waves, to refine the previous 

estimates. The joint inversion of P-waves, S-waves, and surface waves calculated the 

base of the aquifer to lie at a depth of 27.9  3.5 m and the aquifer thickness averages 

to 10  4 m, consistent with past studies. Similarly, we find that the pore closure 

depth calculated by the inversion corresponds to the seismic base of the aquifer. 

However, the shear waves derived structure has a high uncertainty that need 

additional study. Our results show that the surface waves can resolve firn above the 

aquifer but are sensitive to both attenuation and seismic velocity. We need 

independent constraints on attenuation and subsurface stratigraphy. We also detected 

the contamination of the S-wave picks by reverberations of P-waves caused by a low 

velocity zone. The rj-McMC inversion does not account for the LVZ, thus the results 

may be biased by the starting parameters rather than the true aquifer structure. We 

provide evidence of a low velocity zone in our synthetic forward modeling, where the 

LVZ is consistent with the presence of a water saturated layer. The future work 

detailed above will help improve the resolution of the dimensions of the aquifer, and 

a better quantify the water content within the firn aquifer system.  
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Appendices 
 

Appendix A: Inversion QP and VP/VS ratio 

In this Appendix, we present the VP/VS ratio and QP that were derived from 

the different inversions.   
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Figure A1: Joint Inversion 1: P-waves and surface wave dispersion 
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Figure A2: Joint inversion 2: P-wave and S-wave  
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Figure A3: Joint inversion 3 – P-wave, S-wave and surface waves 
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Appendix B: Inversion Misfit 

In this Appendix, we present the misfit for every site for each inversion.  

 

B1: Joint inversion 1 

Figure B1.1: Site 1  

 

Figure B1.2: Site 2 

 

Figure B1.3: Site 3 
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Figure B1.4: Site 4

 

Figure B1.5: Site 5 



 

 

66 

 

 

Figure B1.6: Site 6

 

Figure B1.7: Site 7 
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Figure B1.8: Site 8

 

Figure B1.9: Site 10
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Figure B1.10: Site 11

 

Figure B1.11: Site 12
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B2: Joint inversion 2 

Figure B2.1: Site 1

 

Figure B2.2: Site 2
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Figure B2.3: Site 3

 

Figure B2.4: Site 4
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Figure B2.5: Site 5

 

Figure B2.6: Site 6
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Figure B2.7: Site 7

 

Figure B2.8: Site 8
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Figure B2.9: Site 10

 

Figure B2.10: Site 11
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Figure B2.11: Site 12

 

B3: Joint inversion 3 

Figure B3.1: Site 1
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Figure B3.2: Site 2

 

Figure B3.3: Site 3
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Figure B3.4: Site 4

 

Figure B3.5: Site 5
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Figure B3.6: Site 6

 

Figure B3.7: Site 7
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Figure B3.8: Site 8

 

Figure B3.9: Site 10
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Figure B3.10: Site 11

 

Figure B3.11: Site 12
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