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 Declining dissolved oxygen (DO) conditions in the Chesapeake Bay 

negatively affect human uses of the Bay, including recreational striped bass fishing. 

These changes impact where, when, and if fishermen will catch a fish. Development 

of human-use indicator models allow for more precise quantification of low DO’s 

effect on catch. In this study, improved modeling determined optimum DO for striped 

bass recreational catch in the Chesapeake to be in the range of 8-9 mg/L. Positive 

relationships between increased DO and catch were seen in the majority of statistical 

analysis for the Chesapeake. When DO is increased from 2 to 5 mg/L DO over the 

whole Chesapeake Bay, there is a corresponding increase in striped bass catch of 

149.4%. Results from this study and others demonstrate that not only do human 



  

activities impact the form and function of ecosystems, but the use and enjoyment of 

those ecosystems by humans is also impaired. 
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Introduction 

 Degraded dissolved oxygen (DO) conditions in the coastal US including the 

Chesapeake Bay have been increasing since the early 20th century (Boesch and 

Brinsfield 2000; Diaz and Rosenberg 1995). Hypoxic and anoxic trends in the 

Chesapeake Bay over this time period have expanded from the deeper mid and lower 

channel regions up into the upper Bay and some of the major tributaries, including the 

Patuxent and Potomac rivers (CPB 1994; Kuo and Neilson 1987; Officer et al. 1984; 

Simon 1984; Taft et al. 1980; Tuttle et al. 1987). This pervasive low DO problem, 

which stems from anthropogenic sources of nutrients, has wide ranging impacts for 

the marine environment including loss of habitat (Boesch et al. 2001), changes in 

growth and feeding in marine organisms (Dauer et al. 1992; Van der Oost et al. 

2003), and changes in marine diversity (Dauer et al. 1992).  

 Low DO and other secondary results of nutrient inputs and eutrophic 

conditions in turn significantly affect human uses of coastal waterbodies, including 

negative impacts to recreational fishing (Bricker et al. 2006; Massey et. al. 2006), 

human health (Anderson et al. 2000), and boating (Lipton and Hicks 1999; Lipton 

and Hicks 2003). For recreational fishing, low DO causes changes in fish distribution 

(Bricker et al. 2006) and feeding habits (Van der Oost et al. 2003) which impact 

where, when, and if fishermen catch fish. 

 Traditionally, the study of water quality degradation focuses on how human 

activities affect coastal water quality. However, there has recently been increased 

interest in the inverse relationship: how water quality affects human uses of coastal 

waters and estuaries (US EPA 2005). Researchers have tried to quantify, analyze, and 
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predict the effect of water quality on human uses of coastal waters through the use of 

indicators (Bricker et al. 2006; Lipton and Hicks 1999; Lipton and Hicks 2003; 

Massey et al. 2006). These human-use indicators serve to describe a portion of the 

overall effect that degraded water quality have on human uses of coastal waters.  

The extent of the impact of low DO on recreational fishermen in US estuaries was 

explored by Bricker et al. (2006) through the use of a model that links changes in DO 

to changes in fish catch. This research also introduced the idea of using this 

recreational fish catch model to predict fish catch rates within their study region at 

important DO thresholds. One of the perceived short comings of Bricker et al. (2006) 

was the use of point water quality to calculate their fish catch rate. An alternate 

method is the use of interpolated water quality data, which describes more accurately 

the water quality in a given area (Figure 1). 

  

Figure 1. Examples of point sampling data (a) and interpolated data (b) used for this study. 

 This study recreates the work of Bricker et al. (2006) for the Chesapeake Bay 

and the Patuxent and Potomac rivers. A human-use indicator, according to Bricker’s 

previous model and based on striped bass catch, is developed using the most recent 
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complete years of data (as of printing time) and using interpolated DO data along 

with point data. The use of the interpolated DO data, representing DO concentrations 

covering the entire bay and its tributaries (Figure 1), is hypothesized to better 

represent water quality conditions where the fisherman likely fished and also allows 

for the comparison of parameter estimates for both point and interpolated data types 

to determine if the use of interpolated water quality data is significantly different than 

the use of point water quality data.  

  This study also explores both the statistical significance of DO’s relationship 

on recreational fish catch of striped bass (Morone saxatilis) observed in the 

Chesapeake Bay and in what direction is it affecting the catch using one-way analysis 

of variance (ANOVA), contingency table analysis, and logistic nominal regression.  

 This improved model allows coastal managers to better determine where 

resources and further study, pertaining to DO and striped bass, should be allocated in 

the Chesapeake Bay. Additionally, it can potentially provide fishermen with 

information, based on DO concentrations, on what regions of the Bay they have the 

best chance to catch striped bass. 

Study Site Description 

 At over 300 km long with a tidal area of approximately 11,000 km2, the 

Chesapeake Bay is the largest estuary in the US. Six states and over 15 million people 

inhabit the Bay’s 167,000 km2 watershed. The airshed of the Chesapeake Bay 

includes parts of 15 states and Canada and stretches from South Carolina to above the 

Great Lakes (Figure 2). Nutrient related impacts within the Bay are well documented 

(Boesch et al. 2001; Bricker et al. 1999; Dauer et al. 1992; Malone et al. 1993; 
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Mistiaen et al. 2003; Scavia et al. 2006; Simon 1984; and USEPA 2000a), causing 

oxygen depletion, increased turbidity, loss of submersed aquatic vegetation, and 

alteration of food webs. In the last 25 years, the importance of the degradation of 

coastal and estuarine waters by human related nutrient over-enrichment has become 

apparent (Malone et al. 1993).  

 

Figure 2. Chesapeake Bay airshed with watershed (inset) (CPB 2008). 

 In 1983 the multi-state Chesapeake Bay Agreement between the 

Environmental Protection Agency (EPA), the State of Maryland, the Commonwealths 

of Pennsylvania and Virginia, and the District of Columbia was signed with the 

directive to “fully address the extent, complexity, and sources of pollutants entering 

the Bay”. That original agreement has been updated multiple times since then, with 
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the most recent being in 2000. Clear goals were set for the reduction of nutrients and 

nutrient related impacts to the bay (USEPA 2000a). 

 

Figure 3. Map of Chesapeake Bay area and sub-regions. 

 The Chesapeake Bay and its major navigable tributaries were selected for 

inclusion in this study due to the amount and availability of both water quality data 

and fish catch data for the region. This study looks at the bay as a whole, as well as 

selected geographical regions in an attempt to better understand the interrelationships 

between physical and geographical variability may be having on the fish catch. The 

regions are the Upper Bay including waters north of the Chesapeake Bay Bridge, the 

Middle Bay including waters south of the Chesapeake Bay Bridge down to the lower 
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mouth of the Potomac River, the Lower Bay including waters south of the lower 

mouth of the Potomac River down to the mouth of the Chesapeake Bay, the Patuxent 

River, and the Potomac River (see figure 3). The Patuxent and Potomac rivers were 

initially included as sub-regions in this study in order to compare this study’s results 

to the findings of Bricker et al. (2006) but results were not significant for either river 

by itself. 

 Striped bass were selected as the indicator species of this study because they 

are known to be sensitive to changes in water quality (Breitburg et al. 1997; Bricker 

et al. 2006; Hodson and Hayes 1989; Lipton and Hicks 1999, Lipton and Hicks 2003; 

Massey et al. 2006). Additional reasons for the selection of striped bass as the 

indicator species is because they are a heavily targeted fish species by recreational 

fishermen (ASMFC 2008), and because the species is well studied and the population, 

as far as overall numbers are concerned, is healthy (Evans and Norton 2000; 

Sheppard et al. 2005; Welsh et al. 2003; ASMFC 2007; and Cook et al. 2006). 

Bricker et al. (2006) suggested that the striped bass was the most sensitive of their 

indicator fish species to DO levels in the water column. Striped bass have the ability 

to migrate in and out of the Bay and their total population ranges from the St. 

Lawrence River in Canada all the way down to the St. John’s River in Florida 

(Bigelow and Schroeder 1953). Any decrease in the number of striped bass within an 

estuary or other semi-enclosed waterbody that is not reflected by a similar decrease in 

the overall Atlantic population of striped bass is assumed to be caused by specific 

changes to the striped bass’s habitat within the estuary. 
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Methods 

Data Sources and Preparation 

Fish Catch Data 

 Data for striped bass catch were obtained from the National Marine Fisheries 

Service (NMFS) Office of Science and Technology’s (OST) Marine Recreational 

Inventory Initiative (MRII), formerly known as the Marine Recreational Fisheries 

Statistical Survey (MRFSS). The MRII program includes collection and archiving of 

recreational fishing data. The MRII program has been collecting data since 1979 in all 

coastal states except Texas, Hawaii, Alaska, and U.S. territories (Gray et al. 1994). 

 MRII data are collected using two different methods: a telephone survey and 

interviews at fish landing intercept sites. For this study only the data from the 

intercept site interviews were used for calculating the fish catch totals. The reason for 

using only the intercept site interviews is because the estimated catch calculated from 

the intercept interviews is based on the interviewer actually observing catch as well as 

the close proximity in time to the catch effort. In contrast, telephone interviews can 

occur at any point after the fishing effort and details are often forgotten. Intercept site 

interviews are conducted in what are referred to as ‘Waves’ representing a continuous 

survey effort conducted by multiple interviewers over a two month period at locations 

across the US (Gray et al. 1994). 

 Only intercept sites with interviews that fell within the study area during the 

2000-2006 time-period were included in the final analysis (Figure 4). The MRII 

intercept interview data provide a host of information including, but not limited to, 

the date and time of the interview, the primary species sought by the angler during the 



 

 8 
 

fishing trip, the total number of fish caught of a particular species, the length of time 

spent fishing, the number of days the angler has gone fishing in the past 12 months, as 

well as the mode of fishing (e.g. by personal boat, charter boat, from the dock, or 

from the shore). Only data from fishing trips where striped bass are the primary or 

secondary species sought by the angler are included. This is because by including 

only records of striped bass catch where striped bass were targeted helps correct for 

fisherman avidity or the ability and effort each fisherman puts into catching a fish.  

 

Figure 4. Point water quality sampling locations (green) and fish survey intercept locations  
(red). 
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 The most recent complete year of available MRII data at the time of this study 

was for 2006. The total scope of MRII data used in this analysis includes data from 

January 1, 2000 through December 31, 2006. Total Striped bass catch is calculated 

from observed catch and released (unobserved) catch respectively. Additional data 

includes information about the angler, such as hours fished and number of times 

fished in the last year. These data are used in the model (Equation 1 and Table 3, β2 

and β3) to correct for fisherman avidity or skill. The final fish catch dataset was 

comprised of these three groups of data (observed and unobserved catch, and 

fisherman avidity) merged by a unique identification code variable representing a 

single fisherman interview. 

Water Quality Data 

Water quality data used for this analysis came in two parts. Salinity, temperature, and 

DO point data for the 2000-2006 time period came from the EPA’s Chesapeake Bay 

Program’s (CBP) online data hub (CBP 2008), while interpolated DO data, 

representing 13,000 one meter2 surface cells and variable additional one meter2 cells 

depending on depth at a particular location, were received by direct request (Linker 

pers. comm. 2007). Interpolated data are calculated by using monitoring data from 

over 50 stations throughout the Bay and its tributaries. The water quality data at these 

stations, including water quality measurements down the water column, are combined 

(with a minimum of four measured values) at fixed distances of one kilometer or less 

in order to produce a three-dimensional average value for the one meter  square cell. 

The two water quality datasets were merged by date and then parsed out by depth.  
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 DO levels and their effects on Striped bass catch are the basis for this study 

and lower DO values are of more interest than high ones. This is because Striped bass 

are sensitive to low DO levels in the water column (Breitburg et al. 1997). Due to the 

nature of stratification in the bay and its tributaries, the pycnocline plays an important 

role in oxygen turnover rates and thus the length and severity of low DO events 

(Baird and Ulanowicz 1989). Because of this, bottom water quality values were 

separated out from total range of data in order to better capture the complete range of 

DO (e.g. surface waters tend to have fewer low DO values and thus less variation on 

which to run statistical analysis). The pycnocline in the Chesapeake was calculated to 

be at approximately 58% of total depth on average (USEPA 2003). With this 

guideline, all water quality data below 60% of the total depth was classified as 

“bottom” water and was subset for use in the study. 

 DO thresholds used in this study come from NOAA’s Estuarine 

Eutrophication Survey (NOAA 1997). NOAA’s DO thresholds are 0 mg/L being 

anoxic, >0 to 2 mg/L being hypoxic, and >2 to 5 mg/L being a range of biological 

stress. DO levels above 5 mg/l are not considered problematic and here are given the 

value of OK. These thresholds are slightly modified for this study from those of 0 

mg/L being anoxia to 0-0.5 mg/L being anoxic. The 0-0.5 mg/L classification comes 

from the EPA’s DO criteria (USEPA 2000b). This change to the EPA’s anoxic value 

was made after looking at the DO data distribution for the study region and finding 

that without changing the threshold, a large number of extremely low DO values 

would be incorporated into the hypoxic classification. Further modifications were 

made to the NOAA thresholds with the added classification of DO levels of >5 mg/L 
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to 12 mg/L being considered OK and >12 mg/L and above being classified as high. 

Additional thresholds for OK were further broken down into values above and below 

8 mg/L with values below 8 classified as lower levels of OK and values above 8 

classified as the upper levels of OK. 8 mg/L was chosen because the median and 

mean values of all DO data (approximately 3.4 million interpolated data points) were 

8.12 and 8.27 mg/L, respectively. The additional threshold for >12 mg/L was 

calculated by examining the distribution of DO data and finding that the 90th 

percentile of bottom water DO fell at 11.68 mg/L for the entire Chesapeake during 

the 2000-2006 time period. 

 To better capture the effect of the water quality on striped bass catch, both 

water quality and fish intercept sites were plotted onto a map of the Chesapeake Bay 

using a Geographic Information System (GIS). As a proxy for determining the most 

likely water quality values for the area a given fisherman fished in, 16 km (10 mi) 

buffers were drawn around each intercept site and only the water quality values inside 

those buffers were processed. The 16 km buffer was chosen based on two factors, the 

reported distance fisherman traveled to get to a given fishing site (MRII data), and the 

average speed and distance typical striped bass fishing boats travel in the Chesapeake 

Bay (Brown pers. comm. 2008). The MRII distance from landing site data for the 

2000-2006 time-period showed that over 90% of fisherman fished within 3 miles of 

the landing site. It is important to note that a larger number of records lacked distance 

related data than those that had corresponding distance data. Because of this, a small 

fishing craft expert was consulted on the average speed and distance traveled by local 

fishermen and charter boats in the Chesapeake Bay. On average, charter boats travel 
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faster and go farther than personally owned and operated small fishing vessels, but 

the majority of trips occur within the 16 km buffer. These same buffers were 

conducted for each sub-region of the Chesapeake Bay as well.  

 Both datasets (one for water quality and one for fish catch) represented large 

quantities of data, both in the millions of records. All sub-regions were compared and 

merged with the same fish catch dataset which represented a total of 2,227,445 

records for the entire Chesapeake over the years of 2000-2006. Each sub-region had 

large water quality datasets associated with them, the largest of which was comprised 

of 3,390,287 bottom water DO values for the whole Chesapeake region.  Table 1 

summarizes the number of water quality records for each region. 

 

Table 1. Summary of the number of water quality records for each region and subset. 

 Salinity, temperature, and DO values represented the larger of the datasets and 

required a large amount of processing for eventual combination with the fish catch 

dataset. The fish catch data represented a set of records at a fixed location (x,y) at 

date (z), for an individual fisherman (f), but the associated water quality for that x, y, 

z, and f could entail multiple thousands of water quality values at numerous depths 

within the 16 km buffer zone. Mean values were taken for salinity, temperature, and 

DO in order to create the estimate of the water quality at the location where the 

fisherman fished. This processing inherently removed a large amount of variation 
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from the dataset. To recapture some of the lost variability, means for DO were also 

calculated using only the lower 10th percentile, and the lower 25th quartile data. 

Further reasoning behind this data partitioning is explained later. 

 Water quality data from the CBP was merged with Striped bass catch and 

fisherman data from the MRII using both SAS and JMP statistical analysis software. 

The two datasets were merged by location and date with the final dataset being 

comprised of a unique identification code representing one fisherman’s total Striped 

bass catch on date z (from MRII Types two and three data), information about the 

fisherman’s avidity (Type one data) and the related water quality for the area that he 

or she fished in (water quality). Each region was subset from this total merged dataset 

for the entire Chesapeake Bay. 

 

Data Analysis and Statistical Methods 

Following Lipton and Hicks (2003) and Bricker et. al. (2006), the expected 

recreational fish catch was modeled as a function of environmental variables and 

fisherman-related variables (equation 1). 

 
Equation 1: Cf,r = α + β1MCr  + β2HRSFf,r + β3FDAYf + β4BSALINr + β5BTEMPr + 
β6BDOr + β7(BDOr)2 + β8(BDOr*BTEMPr) 
 
 (Where Cf,r is the estimated catch of recreational fisherman f, in area r, 

representing the sub-regions of the Chesapeake and the Chesapeake as a whole. MCr 

is the mean catch of all fishermen fishing in region r. HRSF represents the number of 

hours spent fishing during the interviewee’s recreational fishing trip. FDAY captures 

the fisherman’s skill by showing how many days in the past year the fisherman was 
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out fishing. The environmental variables are characterized by BSALIN, BTEMP, and 

BDO representing bottom water salinity, bottom water temperature, and bottom water 

DO respectively. In addition to these environmental variables, BDO was included as a 

squared term. This is because in quadratic form, the squared term is expected to have 

a negative coefficient and as such the effect of increased DO on fish catch would 

decrease with increasing DO concentrations. BDO was also crossed with BTEMP to 

further explore habitat interaction effects on fish catch.) 

 Comparison of parameter estimates between the point environmental data and 

the interpolated environmental data was done following Elton and Greenwood’s 

(1987) comparison of parameter estimates methods through the calculation of the 

difference of two parameter estimates (Equation 2), and then testing z against 

Student’s t with the degrees of freedom provided by Equation 3. 

 
Equation 2: z = (b1 – b2)/√(s2

2 + s2
2) 

 
 (Where si is the standard error of the estimate bi.)  
 
Equation 3: df = (n1-2)(n2-2) (s1

2 + s2
2)2 / [(n1-2)s2

4 + (n2-2)s1
4 

 
 (Where ni is the sample size of the corresponding parameter estimate.) 
 
 Nonparametric statistics were also used to examine and describe the 

relationship between DO and recreational fish catch. Further analysis of the 

distribution of the data showed that for each sub-region of the bay, the mean bottom 

water DO level per month rarely dipped below 5 mg/L. With this in mind, further 

subsets of the data were taken to again try to capture what interactions were occurring 

during low DO concentrations. These subsets take both the lower 10th percentile and 
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lower 25th quartile of the water quality for each region and then merge them with the 

fish catch dataset. The result is a set of smaller datasets (fewer matching fish catch 

records) that inherently favored late spring and summer months when low DO events 

tend to occur. These subsets of 10th and 25th water quality data showed a more 

complete range of data over the DO values of interest (0-5 mg/L). Figure 5 shows the 

interpolated sample site distribution of DO values for the Chesapeake Bay for all DO 

means, and for each subset. 

 

Figure 5. Dissolved oxygen distribution for the Chesapeake Bay for all DO means and for  
each data subset. 

 Three main types of statistical analysis were conducted on each region and 

each subset of data. Cluster analysis was performed for both total catch and DO using 

contingency table analysis for statistical significance, while cluster and frequency 

analysis for total catch and DO, respectively, were conducted also using contingency 

table analysis. Both of these types of analysis are based on Pearson’s Chi-squared 

test. The third type of statistical analysis was nominal logistic regression. All 

significant results are at minimum p-values of <0.05 (Table 2). 
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Table 2. Results for the three types of non-parametric statistical test for each region and data  
subset. NLR = Nominal Logistic Regression. 

 Cluster analysis was conducted by using Ward’s agglomerative or hierarchical 

clustering using JMP where the distances between points is given by equation 4 (JMP 

2002). A dendrogram or clustering tree, such as those pictured in Figure 6, are then 

used to help visually partition the data into roughly equal clusters. Once the clusters 

have been assigned, one-way ANOVA is used to determine that the means of each 

resulting cluster are significantly different from each other (Figure 7). The one-way 

ANOVA tests H0: μ1 = μ2 = μ3 = … + μn, and HA: That the means are not all equal, at 

α = 0.05 where H0 is the null hypothesis, HA  is the alternative hypothesis, μ is the 

population mean, and n is the number of population means being tested. To calculate 



 

 17 
 

the variation among sample means, or F-statistic, first the treatment mean square 

(MSTR), the error sum of squares (SSE), the error mean square (MSE), and treatment 

sum of squares (SSTR) had to be calculated for the data. Calculation of SSTR, 

MSTR, SSE, and MSE are given in equations 5 through 8, respectively (Weiss 2004). 

Calculation of the final F-statistic is given by equation 9. 

 

Figure 6. Example of One-way ANOVA means analysis results for the Middle Bay sub-
region. 

 

Figure 7. Untransformed total striped bass catch clustering (a) and (log10) + 1 transformed 
total striped bass catch clustering (b). 
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Equation 4: DKL= (||xK-xL||2)/[(1/ NK)+(1/ NL)] 
         
 (Where D is the distance between clusters, K and L are the Kth or Lth cluster 

(subset of {1, 2,..., n}), ||xK-xL|| is the square root of the sum of the squares of the 

elements of xK-xL (the Euclidean length of the vector xK-xL), and N is the number of 

observations.) 

 
Equation 5: SSTR = n1(μ1 – μx)2 + n2(μ2 – μx)2 + … + nk(μk – μx)2 
 

 (Where k is the number of clusters, n is the number of rows of data (per 

cluster), μx is the overall population mean given by μx = Σx/n, and μ is the cluster 

mean.) 

 
Equation 6: MSTR = SSTR/(k – 1) 
 
Equation 7: SSE = (n1 – 1)s1

2 + (n2 – 1)s2
2 + … + (nk – 1)sk

2 

 
 (Where s2 is the sample variance given by s2 = Σ(x – μx)2/(n – 1).) 
 
Equation 8: MSE = SSE/(n – k) 
 
Equation 9: F = MSTR/MSE 
 
 The means of each cluster were then also compared with each other using 

Tukey’s HSD test (α = 0.05). Tukey’s HSD compares multiple means of a given 

sample population by calculating two statistics, q and qs, and gives a final value, a, 

which determines whether the means in question are significantly different from one 

another (see Equations 10 through 12).  

Equation 10: q = range/s  
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 (Where q is the studentized range, range = max – min value of random 

population sample 1, and s = the standard deviation of random population sample 2.) 

Equation 11: qs = (YA-YB)/SE  
 
 (Where YA is the largest mean of all available means, YB is one of the 

remaining smaller means, and SE is the standard error of the data.) 

 
Equation 12:  a = (qs – q) 
 
 If a is a positive number then the means are significantly different. 

Conversely, if a is a negative number then the means are not significantly different. 

The resulting one-way analysis plot also allowed for the renaming of the cluster 

categories into meaningful groups (e.g. high, medium, and low). The (log10) + 1 of 

the total Striped bass catch were taken in order to facilitate cluster analysis. 

Transforming the total catch did not normalize the data, but helped to cluster the data 

into similar groups (Figure 7). By transforming the total striped bass catch via (log10) 

+ 1, a natural byproduct was the creation of a category of total stripe catch with 

missing values. These missing values denoted where no fish were caught and thus 

renamed NC for No Catch. This additional class was later used in both DO cluster vs. 

catch cluster analysis and frequency vs. catch cluster analysis. By either including or 

excluding this No Catch class, the effect of the dependent DO variable on the 

independent catch response variable could be examined as an overall effect on the 

sample, or the effect only when a fish was caught.  

 DO square values were also analyzed as clusters. This was done because by 

squaring the DO variable a parabolic variable was created that helps account for 
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perceived decreasing effect of DO at higher concentrations. Where the means of 

clusters were significantly different from each other, the clusters for both striped bass 

total catch and DO were then analyzed using contingency tables and correspondence 

analysis (Figure 8).  

 

Figure 8. Examples of contingency table (a) and correspondence analysis (b) for Cluster 
analysis for all water quality in the whole Chesapeake Bay. NC= No Catch, L= Low, ML=  
Medium Low, MH= Medium High, H= High. 
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 Frequency analysis was conducted by breaking the DO values for a given 

region or subset into its corresponding classification. As previously discussed, the DO 

classes used are 0-0.5 mg/l being anoxia, >0.5 mg/L to 2 mg/L being hypoxia, >2 

mg/L to 5 mg/L being biological stress (Stress), >5 mg/L to 8 mg/L being Lower 

levels of OK (LOK), >8 mg/L to 12 mg/L being the Upper levels of OK (UOK), and 

>12 mg/L being high (SS). These classifications were then compared using 

contingency tables and correspondence analysis with the previous cluster analysis 

results for the (log10) + 1 total striped bass catch (Figure 9). 

 The third method of statistical analysis was nominal logistic regression. Total 

catch was converted to a new variable called ‘catch’. The variable ‘catch’ describes 

simply whether striped bass were caught by the fisherman during their trip with either 

a 0 or a 1 representing the presence or absence of any fish caught, respectively. Using 

equation 13, ‘catch’ was regressed against either the mean DO or DO2 for each region 

and data subset. 

Equation 13: ln(pg/p1) =  ln(Pg/P1) + βg1X1 + βg2X2 +…+ βgnXn,  
  
 (Where pg is equal to the probability that an individual with values X1, X2, Xn 

is in group g, Pg equals the prior probabilities of group membership, and βgn equals 

the population regression coefficients that are to be estimated from the data (JMP 

2002).) 
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Figure 9. Examples of contingency table analysis (a) and correspondence analysis (b) for the 
Middle Bay for the 25th quartile water quality values. NC= No Catch, L= Low Catch, M= 
Medium Catch, H= High Catch. 

Results 

Model Results 

 Table 3 shows the modeled parameter estimates and their respective 

significance for each region studied and for all eight variables included in the model.  
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Table 4 shows the modeled parameter estimates and their respective significance for 

the nominal logistic regression analysis for each region that had significant results, 

while Table 5 shows the DO parameter estimate results for the Poisson regression 

models for each region of the Bay with their respective p-values. The Patuxent, 

Potomac, and the Lower Bay did not have significant results for DO during the 2000 

to 2006 time period. 

 

Table 5. DO parameter estimate results with corresponding p-values for the Poisson 
regression model for each region of the Bay. 

Non-parametric Results 

 As can be seen in Table 2, significant results for the Upper and Lower Bay, 

and the Patuxent and Potomac River regions were low, having only three significant 

tests combined. The Bay as a whole and the Middle Bay both exhibited good 

response to statistical analysis, having fourteen significant tests between the two 

regions. Possible reasons for this breakdown of results are addressed later. Table 6 

shows the number of rows of data that were used in the calculation of the statistical 

results. 
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Table 6. Number of rows of data for statistical analysis by region and water quality (WQ) 
group. 

Chesapeake Bay 

 Cluster analysis was conducted on all water quality data for the variables 

mean DO and the (log10) + 1 of total striped bass catch (from here on simply called 

catch) for the Chesapeake Bay region. The means of each of the clusters for all of the 

Chesapeake for both variables were statistically significant from the others using 

Tukey’s HSD. Based on the ANOVA means the clusters were assigned the names 

Low (L), Medium Low (ML), Medium High (MH), and High (H) for both DO and 

DO2 and Low (L), Medium Low (ML), Medium (M), Medium High (MH), High (H), 

and No Catch (NC) for catch. Figure 10 shows the correspondence analysis plots for 

DO vs. catch with and without the “No Catch” class.  The Chi squared probability for 

contingency table for the two clusters with the “No Catch” class included was 

<0.0001 and the R-squared value was 0.0051, while the Chi squared probability 

without the “No Catch” class was 0.0026 and the R-squared value was 0.0054. 

 The correspondence analysis of DO clusters vs. catch clusters with the “No 

Catch” class included appeared to show that for the whole Chesapeake Bay region 

that medium low (ML), medium (M), and high (H) catch corresponded with high (H) 

DO, that low (L) catch corresponded with medium low (ML) and medium high (MH) 
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Figure 10. Correspondence analysis for Chesapeake Bay all DO Clusters vs. Catch Clusters 
with the No Catch class (NC) included (a) and excluded (b). NC= No Catch, L= Low, ML=  
Medium Low, M= Medium, MH= Medium High, H= High. 

DO, and that No Catch (NC) was corresponded to low DO (Figure 10a). Medium 

high catch did not appear to correspond with the other clusters. The correspondence 

analysis of DO clusters vs. catch clusters with the “No Catch” class excluded 
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appeared to show that low catch corresponded to medium low and medium high DO, 

that medium low, medium, and high catch corresponded to low DO, and that medium 

high catch corresponded to high DO (Figure 10b). 

 Cluster analysis was also conducted on the square of the mean DO. The DO2 

means were significantly different from each other using Tukey’s HSD and the 

resulting statistics for “No Catch” included and excluded were Chi squared 

probabilities of <0.0001 and 0.0134, respectively, and R-squared values of 0.0044 

and 0.0035, respectively.  

 The correspondence analysis of DO2 clusters vs. catch clusters with the “No 

Catch” class included appeared to show that “No Catch” corresponded to low DO, 

that low catch corresponded to medium DO, and that medium and high catch 

corresponded to high DO (Figure 11a). The correspondence analysis of DO2 clusters 

vs. catch clusters with the “No Catch” class excluded appeared to show that low catch 

corresponded to medium DO, that medium catch corresponded to low DO, and that 

high catch corresponded to high DO (Figure 11b). 

 The cluster analysis for the same variables as above was also conducted on the 

lower 10th percentile and lower 25th percentile water quality datasets. The means of 

all clusters for both the lower 10th and 25th percentiles were all significantly different 

from each other. Only the mean DO clusters were significant for the contingency and 

correspondence analysis for the lower 10th percentile. The resulting statistics for the 

“No Catch” class included and excluded were Chi squared probabilities of <0.0001 

and 0.0004, respectively, and R-squared values of 0.0094 and 0.0142, respectively. 

Like the lower 10th percentile, the lower 25th percentile water quality contingency and 
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correspondence analysis, only the mean DO clusters were significant. The resulting 

statistics for “No Catch” included and excluded were Chi squared probabilities of 

0.0098 and 0.0404, respectively, and R-squared values of 0.0024 and 0.0032, 

respectively.  

 

Figure 11. Correspondence analysis for Chesapeake DO2 Clusters vs. Catch Clusters with the 
No Catch class (NC) included (a) and excluded (b). NC= No Catch, L= Low, M= Medium, 
H= High. 

 Correspondence analysis of DO clusters vs. catch clusters with the “No 

Catch” class included for the lower 10th percentile water quality appeared to show 

that low catch corresponded to medium low DO, and that no catch and medium high 

catch corresponded to medium high and high DO. Medium low and high catch and 
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low DO did not appear to correspond with any clusters of the opposite type (Figure 

12a). The correspondence analysis of DO clusters vs. catch clusters with the “No 

Catch” class excluded for the lower 10th percentile water quality appeared to show 

that low catch corresponded to medium low DO, that medium low and medium high 

catch corresponded to medium high and high DO, and that high catch corresponded to 

low DO (Figure 12b). 

 

Figure 12. Correspondence analysis for Chesapeake Bay Lower 10th DO Clusters vs. Catch 
Clusters with the No Catch class (NC) included (a) and excluded (b). NC= No Catch, L=  
Low, ML= Medium Low, MH= Medium High, H= High. 
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 Correspondence analysis of DO clusters vs. catch clusters with the “No 

Catch” class included for the lower 25th percentile water quality appeared to show 

that no catch corresponded to medium high DO, that medium catch corresponded to 

high DO, and that high catch corresponded with low DO. Low catch did not appear to 

correspond to any DO cluster (Figure 13a). Correspondence analysis of DO clusters 

vs. catch clusters with the “No Catch” class excluded appeared to show that medium 

catch corresponded to high DO and that high catch corresponded to low DO (Figure 

13b). Low catch and medium high DO did not appear to correspond to any other 

clusters. 

 DO frequency vs. catch cluster contingency and correspondence analysis for 

the entire Chesapeake region was only significant for the 10th and 25th percentile 

water quality datasets (Table 2). For the 10th percentile the resulting statistics for the 

“No Catch” class included were a Chi squared probability of 0.0013, and an R-

squared value of 0.0054. Results for the “No Catch” class excluded were not 

significant. The resulting statistics for the lower 25th percentile for the “No Catch” 

class included and excluded were Chi squared probabilities of 0.0007 and 0.0144, 

respectively, and R-squared values of 0.0040 and 0.0051, respectively. 

 Correspondence analysis for DO frequency vs. catch cluster for the lower 10th 

percentile water quality data with the “No Catch” class included appeared to show 

that no catch corresponded to DO stress, low catch corresponded to hypoxia, and high 

catch corresponded to anoxia (Figure 14). Medium catch did not appear to correspond 

with any DO frequency.  Correspondence analysis for the lower 10th percentile was 

not statistically significant. 
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Figure 13. Correspondence analysis for Chesapeake Bay Lower 25th DO Cluster vs. Catch 
Clusters with the No Catch class (NC) included (a) and excluded (b). NC= No Catch, L=  
Low, M= Medium, MH= Medium High, H= High. 

 

 



 

 33 
 

 

Figure 14. Correspondence analysis for Chesapeake Bay Lower 10th DO Frequency Clusters 
vs. Catch Clusters with the No Catch class included. NC= No Catch, L= Low, M= Medium,  
H= High. 

 The correspondence analysis for DO frequency vs. catch cluster for the lower 

25th percentile water quality data with the “No Catch” class included appeared to 

show that “No Catch” corresponded to hypoxia and DO stress, while low and high 

catch corresponded to anoxia (Figure 15a). Medium catch and LOK DO levels did not 

appear to correspond to other groups. Without the “No Catch” class, low catch 

appeared to correspond to DO stress and hypoxia, medium catch to correspond with 

LOK DO, and high catch to correspond to anoxia (Figure 15b). 

 Nominal logistic regression for all DO data in the Chesapeake region for both 

mean DO (Figure 16a) and DO2 (Figure 16b) was significant with a Chi square 

probability of <0.0001 for both, and R-square values of 0.0043 and 0.0034, 

respectively. Nominal logistic regression was also significant for the lower 10th 
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percentile DO data with a Chi square probability of 0.0022 and an R-square value of 

0.0042 (Figure 17). 

 

Figure 15. Correspondence analysis for the Chesapeake Bay Lower 25th DO Frequency 
Clusters vs. Catch Clusters with the No Catch class (NC) included (a) and excluded (b). NC=  
No Catch, L= Low, M= Medium, H= High. 
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Figure 16. Nominal logistic regression for the Chesapeake Bay for all DO (a) and DO2 (b). 
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Figure 17. Nominal logistic regression for the Chesapeake Bay Lower 10th DO. 

Upper Bay 

 The only significant results for the Upper Bay region were the cluster analysis 

on all water quality data for the catch vs. mean DO and DO2. Both the DO and DO2 

means were significantly different using Tukey’s HSD.  Based on the ANOVA means 

the clusters were assigned the names Low (L), Medium Low (ML), Medium High 

(MH), and High (H) for both DO and DO2 and Low (L), Medium (M), High (H), and 

No Catch (NC) for catch. The resulting statistics for DO vs. catch including the “No 

Catch” class were a Chi squared probability of 0.0360 and an R-squared value of 

0.0255. For DO vs. catch excluding the “No Catch” class, the Chi squared probability 

was 0.0080 with an R-square of 0.0641. Statistics for DO2 for “No Catch” included 

and excluded were Chi squared probabilities of 0.0071 and 0.0014, respectively, and 

R-squared values of 0.0318 and 0.0804, respectively. 
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Figure 18. Correspondence analysis for Upper Bay all DO Clusters vs. Catch Clusters with 
the NO Catch class (NC) included (a) and excluded (b). NC= No Catch, L= Low, ML=  
Medium Low, M= Medium, MH= Medium High, H= High. 

 Correspondence analysis for DO vs. catch clusters in the Upper Bay region for 

all water quality data with the “No Catch” class included appeared to show that “No 

Catch” corresponded to medium high DO, low catch corresponded to medium low 

and high DO, and medium catch corresponded to low DO. High catch did not appear 
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to correspond to any DO cluster (Figure 18a). The correspondence analysis without 

the “No Catch” class appeared to show that low catch corresponded to medium low 

and high DO while medium catch corresponded with low DO (Figure 18b). High 

catch and medium high DO did not appear to correspond to other groups. 

 

Figure 19. Correspondence analysis for Upper Bay DO2 Clusters vs. Catch Clusters with the 
No Catch class (NC) included (a) and excluded (b). NC= No Catch, L= Low, ML= Medium 
Low, M= Medium, MH= Medium High, H= High. 

 The correspondence analysis for DO2 vs. catch clusters with the “No Catch” 

class included appeared to show that low catch corresponded to medium low DO 

while medium catch corresponded to low DO (Figure 19a). No catch and high catch 
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did not appear to correspond to any DO clusters while medium high and high DO did 

not appear to correspond with any catch clusters. With the “No Catch” class excluded 

correspondence analysis appeared to show that low catch corresponded to medium 

high and high DO and that medium catch corresponded to low DO (Figure 19b). High 

catch and medium low DO did not appear to correspond with other clusters. 

Middle Bay 

 Clustering analysis was conducted on all water quality data for the variables 

mean DO and catch for the Middle Bay region. The means of each of the clusters for 

all of the Middle Bay for both variables were statistically significant from the others 

using Tukey’s HSD. Based on the ANOVA means the clusters were assigned the 

names Low (L), Medium (M), and High (H) for DO, Low (L), Medium Low (ML), 

Medium High (MH), and High (H) for DO2, and Low (L), Medium Low (ML), 

Medium (M), Medium High (MH), High (H), and No Catch (NC) for catch. The Chi 

squared probability for contingency table analysis for DO vs. catch clusters with the 

“No Catch” class included was 0.0002 and the R-squared value was 0.0287. The Chi 

squared probability for contingency table analysis for DO2 vs. catch with the “No 

Catch” class was 0.0001 and the R-squared value was 0.0369. For both DO and DO2, 

when the “No Catch” class was excluded results were not significant. 

 Correspondence analysis for DO vs. catch clusters for all water quality data in 

the Middle Bay region with the “No Catch” class included appeared to show that “No 

Catch” corresponded to high DO while medium low catch corresponded to low DO 

(Figure 20). The remaining categories did not appear to correspond to any other 

opposite cluster. Correspondence analysis for DO2 vs. catch clusters appeared to 
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show “No Catch” corresponding to medium low and high DO while medium low, 

medium high, and high catch appeared to correspond to low DO (Figure 21). Neither 

low catch nor medium high DO appear to correspond to other clusters. 

 

Figure 20. Correspondence analysis for the Middle Bay all DO Clusters vs. Catch Clusters 
with the No Catch class (NC) included. NC= No Catch, L= Low, ML= Medium Low, M= 
Medium, MH= Medium High, H= High. 

 

Figure 21. Correspondence analysis for the Middle Bay DO2 Clusters vs. Catch Clusters with 
the No Catch class (NC) included. NC= No Catch, L= Low, ML= Medium Low, M= 
Medium, MH= Medium High, H= High. 
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 The clustering analysis for the same variables as above was also conducted on 

the lower 10th percentile and lower 25th percentile water quality datasets. The means 

of all clusters for both the lower 10th and 25th percentiles were all significantly 

different from each other. Only the mean DO clusters were significant for the 

contingency and correspondence analysis for the lower 10th percentile. The resulting 

statistics for the “No Catch” class included and excluded were Chi squared 

probabilities of 0.0307 and 0.0430, respectively, and R-squared values of 0.0243 and 

0.0348, respectively. Like the lower 10th percentile, the lower 25th percentile water 

quality contingency and correspondence analysis, only the mean DO clusters were 

significant. The resulting statistics for the “No Catch” class included and excluded 

were Chi squared probabilities of 0.0278 and 0.0308, respectively, and R-squared 

values of 0.0259 and 0.0400, respectively. 

 Correspondence analysis for DO vs. catch clusters for the lower 10th 

percentile water quality data for the Middle Bay region with the “No Catch” class 

included appeared to show that low catch corresponded to medium DO, medium 

catch corresponded to low DO, and high catch corresponded to high DO (Figure 22a). 

The “No Catch” class did not appear to correspond with any DO clusters. For the “No 

Catch” class excluded the correspondence analysis appeared to show that low catch 

corresponded with low DO and high catch corresponded with high DO (Figure 22b). 

Medium catch and medium DO appear to group, despite being on opposite sides of 

the c1-axis. 

 The correspondence analysis for DO vs. catch clusters for the lower 25th 

percentile water quality data in the Middle Bay region with the “No Catch” class 
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Figure 22. Correspondence analysis for Middle Bay Lower 10th DO Clusters vs. Catch 
Clusters with the No Catch class (NC) included (a) and excluded (b). NC= No Catch, L=  
M= Medium, H= High. 

included appeared to show that “No Catch” corresponded to high DO, low catch 

corresponded to medium low, medium catch corresponded to low DO, and high catch 

corresponded to medium high DO (Figure 23a). The correspondence analysis with the 

“No Catch” class excluded appeared to show that low catch corresponded to medium 

low DO, medium catch corresponded to medium high catch, and high catch 
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corresponded with high DO (Figure 23b). Low DO did not appear to correspond with 

any catch cluster. 

 

Figure 23. Correspondence analysis for Middle Bay Lower 25th DO Clusters vs. Catch 
Clusters with the No Catch class (NC) included (a) and excluded (b). NC= No Catch, L=  
ML= Medium Low, M= Medium, MH= Medium High, H= High. 



 

 44 
 

 DO frequency vs. catch cluster contingency and correspondence analysis for 

the entire Middle Bay region was only significant for the 10th and 25th percentile 

water quality datasets. For the 10th percentile the resulting statistics for the “No 

Catch” class included were a Chi squared probability of 0.0247, and an R-squared 

value of 0.0240. Results for the “No Catch” class excluded were a Chi squared 

probability of 0.0283, and an R-squared value of 0.0385. The statistics for the lower 

25th percentile for the “No Catch” class included was a Chi squared probability of 

0.0143 and an R-squared value of 0.0247. Results for the “No Catch” class excluded 

were not significant. 

 Correspondence analysis for DO frequency vs. catch cluster for the lower 10th 

percentile water quality data with the “No Catch” class included appeared to show 

that low catch corresponded to anoxia, medium catch corresponded with hypoxia, and 

high catch corresponded to DO stress (Figure 24a). The “No Catch” did not appear to 

correspond with any DO frequency class. With the “No Catch” class excluded, low 

catch corresponded to anoxia and high catch appear to correspond to DO stress 

(Figure 24b). Neither medium catch nor hypoxia appeared to corresponded with 

another group. 

 The correspondence analysis for DO frequency vs. catch cluster for the lower 

25th percentile water quality data with the “No Catch” class included appeared to 

show that low catch corresponded to hypoxia, and high catch corresponded to DO 

stress (Figure 25). Anoxia, “No Catch”, and medium catch did not appear to directly 

correspond to any opposite class.  
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Figure 24. Correspondence analysis for Middle Bay Lower 10th DO Frequency vs. Catch 
Clusters with the No Catch class (NC) included (a) and excluded (b). NC= No Catch, L= 
Low, M= Medium, H= High. 
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Figure 25. Correspondence analysis for Middle Bay Lower 25th DO Frequency vs. Catch 
Clusters with the No Catch class (NC) included. NC= No Catch, L= Low, M= Medium, H=  
High. 

 Nominal logistic regression for all DO data in the Middle Bay region for both 

mean DO (Figure 26a) and DO2 (Figure 26b) was significant with a Chi square 

probability of <0.0001 for both, and R-square values of 0.0318 and 0.0432, 

respectively. Nominal logistic regression was also significant for the lower 25th 

percentile DO (Figure 26c) data with a Chi square probability for the whole model of 

0.0188 and an R-square value of 0.0114. The positive mean DO parameter estimate 

was 0.1410 and significant with a Chi square probability of 0.0197. 

Lower Bay 

 Clustering analysis was conducted on all water quality data for the variables 

mean DO and catch for the Lower Bay region. The means of each of the clusters for 

all of the Lower Bay for both variables were statistically significant from the others 

using Tukey’s HSD. Based on the ANOVA means the clusters were assigned the  
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Figure 26. Nominal logistic regression for the Middle Bay for all DO (a), DO2 (b), and Lower 
25th DO (c). 
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Figure 27. Correspondence analysis for Lower Bay all DO Clusters vs. Catch Clusters with 
the No Catch class (NC) included (a) and excluded (b). NC= No Catch, L= Low, ML=  
Medium Low, M= Medium, MH= Medium High, H= High. 

names Low (L), Medium Low (ML), Medium High (MH), and High (H) for both DO 

and DO2, and Low (L), Medium (M), High (H), and No Catch (NC) for catch. The 

Chi square probabilities for contingency table analysis for DO vs. catch clusters with 

the “No Catch” class included and excluded was 0.0001 and 0.0190, respectively and 

the R-squared values were 0.0082 and 0.0084, respectively. The Chi squared 
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probability for contingency table analysis for DO2 vs. catch with the “No Catch” class 

included and excluded was <0.0001 and 0.0157, respectively and the R-square values 

were both 0.0087. 

 Correspondence analysis for DO vs. catch clusters for all water quality data in 

the Lower Bay region with the “No Catch” class included appeared to show that “No 

Catch” corresponded with low and medium low DO, low catch corresponded with 

high DO, medium catch corresponded with medium DO, and high catch corresponded 

with medium high DO (Figure 27a). With the “No Catch” class excluded, low catch 

appear to correspond to both low and high DO, medium catch appeared to correspond 

to medium low DO, and high catch appeared to correspond with medium DO (Figure 

27b). Medium high DO did not appear to correspond with any catch class. 

 The correspondence analysis of DO2 clusters vs. catch clusters for all water 

quality in the Lower Bay region with the “No Catch” class included appeared to show 

that “No Catch” corresponded to medium low DO, low catch corresponded to both 

low and high DO, and medium catch corresponded to both medium and medium high 

DO (Figure 28a). High catch did not appear to correspond with any DO cluster. With 

the “No Catch” class excluded low catch appeared to correspond with both low and 

high DO, medium catch appeared to correspond with medium low DO, and high 

catch appeared to correspond with medium DO (Figure 28b). Medium high DO did 

not appear to correspond with any catch cluster. 

  Nominal logistic regression for all DO data in the Lower Bay region for both 

mean DO (Figure 29a) and DO2 (Figure 29b) was significant with a Chi square 
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probability of <0.0001 for both, and R-square values of 0.0318 and 0.0432, 

respectively.  

 

Figure 28. Correspondence analysis for Lower Bay DO2 Clusters vs. Catch Clusters with the 
No Catch class (NC) included (a) and excluded (b). NC= No Catch, L= Low, ML= Medium 
Low, M= Medium, MH= Medium High, H= High. 
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Figure 29. Nominal logistic regression for the Lower Bay for all DO (a) and DO2 (b). 
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Patuxent River 

 There were no statistically significant results at all in the Patuxent River 

region. 

Potomac River 

 There were no statistically significant results at all in the Potomac River 

region. 

Discussion 

Model Results 

 The parameter estimate results for the point water quality data versus the 

interpolated water quality results appear to show the point data inflating the parameter 

estimate. However, using equations 2 and 3 it was found that none of the parameter 

estimates for any sub-region were significantly different between point water quality 

data and interpolated water quality data. 

 For the Chesapeake Bay as a whole, and for the Upper and Middle Bay sub-

regions, DO significantly influenced the recreational striped bass catch. In each of 

these cases DO was the largest contributing variable to striped bass catch, followed 

by the mean striped bass catch and hours fished. All other variables in general were 

orders of magnitude smaller. Following Bricker et al. (2006), where the models were 

reasonable (significant results) they were used to predict striped bass catch at key DO 

concentrations. The expected striped bass catch for the Chesapeake Bay as a whole 

over the 2000-2006 time-period at mean DO concentrations of 9.28 mg/L was 5.85 

striped bass per fisherman per trip. When the DO concentration is set at 5 mg/L or the 
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upper level of biological stress, the corresponding expected striped bass catch is 2.03 

(Table 7). When the DO concentration is set at 2 mg/L or the upper level of hypoxia, 

the corresponding expected fish catch drops to 0.67 striped bass per angler per trip. 

The change in expected striped bass catch between 2 mg/L to 5 mg/L DO represents 

an increase of 149.4%. 

 For the Upper Bay sub-region, the expected striped bass catch for the 2000-

2006 time-period at mean DO concentrations of 8.35 mg/L was 9.90 striped bass per 

fisherman per trip. When the DO concentration is set at 5 mg/L the model predicts a 

drop to 3.98 striped bass per fisherman per trip (Table 7). When the DO concentration 

is dropped to 2 mg/L the corresponding expected striped bass catch decreases to 0. 

The change in expected striped bass catch between 2 mg/L to 5 mg/l DO represents 

and infinite increase since at 2 mg/L the expected catch is 0. 

 

Table 7. Striped bass expected fish catch (per angler per trip) results at mean and predictive 
conditions. *= Results from this study (2000-2006), **= Results from Bricker (2006) (August 
2002 data). 
 For the Middle Bay sub-region, the expected striped bass catch for the 2000-

2006 time-period at mean DO concentrations of 7.49 mg/L was 0.25 striped bass per 

fisherman per trip. When the DO concentration is set at 5 mg/L the corresponding 

striped bass catch is 0 striped bass catch per fisherman per trip (Table 7). The same is 
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true when the DO concentration is set to 2 mg/L DO. Since the modeled striped bass 

catch for 5 mg/L and 2 mg/L DO are both 0, the percent change between the two is 0 

as well. 

 The difference in the expected striped bass catch between the two sub-regions 

and the Bay as a whole shows the variability caused by changes in habitat, depth, and 

susceptibility to low DO concentrations. Figure 30 shows average summer DO 

concentrations, using the same interpolated DO data as that in this study, in the 

Chesapeake Bay with the sub-region boundaries marked. As Figure 30 shows, the 

Middle Bay is most susceptible to low DO concentrations and as the model predicts, 

has the lowest expected striped bass catch of the sub-regions where the model was 

significant.  

 As can be seen in the model predictions, the striped bass are migrating out of 

the areas of low DO concentrations and are being caught in larger numbers in regions 

where the DO concentrations are higher. This relationship is also solidified by the 

non-parametric statistical analysis which the next section covers in detail. 

 The generally low R-square values for most results in this study (Tables 3 and 

4) are to be expected as in a region as large and dynamic as the Chesapeake Bay, the 

number of variables that contribute to the probability and ability of a fisherman to 

catch striped bass are numerous. When only looking at a few variables’ effect on the 

estimated total striped bass catch the amount of variability that these variables 

account for, while significant, should be low. 
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Non-parametric Results 

 The majority (55%) of DO cluster and frequency analysis when significant 

followed expected relationships of low catch corresponding to low DO and high catch 

corresponding to high DO (Table 8). Of the remaining analysis only 10% showed 

clear relationships between the two categories. However, these relationships were 

exactly inverse to what the expected outcome would predict. The cause of this 

phenomenon is unclear, however it only occurred during the DO frequency analysis. 

Two additional analysis, cluster analysis for all DO in the Middle and Lower regions, 

followed the expected outcome with the exception of the high DO cluster 

corresponding to no catch (NC) (Table 8). It is important to note that in both these 

cases that the high DO class includes only DO 12 mg/L and above. Temporal 

variability may possibly play a role in the explanation of this result, such that DO 

concentrations in the Bay tend to be highest in the winter months (November through 

February) during the off season for striped bass in the Chesapeake Bay. 

 The statistically significant results of the tests favored the Chesapeake Bay as 

a whole, and the Middle Bay region. The lack of statistical significance in the 

Patuxent and Potomac rivers for both types of cluster analysis (cluster analysis for 

total catch and DO and cluster and frequency analysis for total catch and DO, 

respectively) can possibly be attributed to lack of data. The lack of statistical 

significance for the Upper and Lower Bay regions, with the exception of cluster 

analysis for all water quality data for both regions and nominal logistic regression for 

all water quality data for the Lower Bay, is likely due to a number of different factors. 

For the Lower Bay it is speculated that many of the fisherman may actually have been  
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leaving the Bay and fishing in nearshore and coastal waters instead of actually inside 

of the Bay. This would serve to mask the relationship between DO and striped bass 

catch in that the estimated water quality for where the fisherman fished would be 

inaccurate. Other factors that may play a role in the Lower Bay may be the overall 

depth and size of the region as well as the increased tidal flushing as compared to 

other regions of the Bay. Striped bass are sensitive to changes in DO concentrations 

(Breitburg et al. 1997), and are likely to leave areas of low DO (and possibly areas of 

very high DO as described later). However, in deeper waters where stratification is 

present, or in larger more open geographical areas the striped bass may be able to 

migrate higher up into the water column or move to a different location still within 

the region (e.g. the Lower Bay) and be caught there despite low DO concentrations in 

bottom waters (Bricker et al. 2006) (see Figure 30). Also, when looked at over larger 

regions, (e.g. the whole Chesapeake and the Lower Bay) when extreme low DO 

events decrease the available habitat for Striped bass, it is speculated that the fish may 

essentially be corralled into a smaller area making the density of fish per area of 

water greater, thereby increasing the chances of catching a fish.  Modern fishermen 

are easily equipped with fish locating devices which would also serve to help them in 

locating areas of greater fish density. 

 It is important to note that many organisms change their behavior including 

feeding habits when under stressful conditions caused by chemical changes to their 

environment (Van der Oostet al. 2003). Breitburg et al. (1997) found that predation 

by juvenile Striped bass decreased in low but non-lethal DO events. This would help 

to explain why catch is expected to decrease as DO levels drop.    
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Figure 30. Map of dissolved oxygen concentrations for July 2006 in the Chesapeake Bay. 

 Figure 5 gives a generalized view of the locations of the water quality used to 

calculate the statistics for each region and data subset (i.e. the lower 10th and 25th 

percentiles). It is not surprising that the regions with the most even distribution of 

water quality had greater numbers of statistically significant results as well as results 

closer to the expected result of increased striped bass catch with increasing DO. 

 For the entire Chesapeake Bay, results for the clustering analysis for all water 

quality mean DO vs. catch clustering were close to the expected outcome of 

increasing fish catch with increasing DO (Figure 10). The results for mean DO2 were 

even closer to the expected result with “No Catch” appearing to being associated with 
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low DO where the “No Catch” was included and high catch associated with high DO 

without the “No Catch” class (e.g. the effect of DO only when fish were actually 

caught) (Figure 11). For the lower 10th percentile the data distribution of the DO 

covers 0.09 mg/L to 4.3 mg/L and covers most of the entire range of DO of interest. 

The lower 25th percentile covers the entire range of DO of interest from 0.09 mg/L to 

5.95 mg/L. The clustering correspondence also appears to tend to follow the results of 

Breitburg et al. (1997) in that for the high DO cluster medium catch was shown, and 

for the medium high DO cluster, low catch was shown (e.g. decreasing catch or 

striped bass feeding activity as DO decreased). However, the lower 10th and 25th 

percentile clusters for DO vs. catch appear to show an inverse relationship to the 

expected outcome (Figures 13 and 14). This type of relationship was seen repeatedly 

throughout the analysis for Chesapeake Bay 10th and 25th percentile (both for DO 

clusters and for DO frequency - Figures 13-16). It is speculated that there are multiple 

spatial-temporal variations in both fish behavior (e.g. migration, feeding, growth, 

and/or reproductive habits) and DO variability (e.g. seasonal variation) that may 

account for this relationship. For example, an exact date or season that the fishing 

effort occurred in is not intentionally chosen or selected, rather initially the entire year 

of data (averaged down to a single monthly value for all water quality variables) is 

made available for the analysis. However, by taking the lower 25th and 10th subsets, a 

natural tendency towards the summer months is introduced. When looking at the 

entire Chesapeake, seasonal variability may also play a role in this inverse expected 

relationship. Since in the Chesapeake, the highest DO levels may be experienced 

during the winter months when striped bass are naturally less likely to be caught, thus 
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possibly causing this apparent relationship between very high DO and low or no 

catch. Another possible explanation comes from Dauer et al. (1992). They found that 

extreme low DO (<2 mg/L) in the Chesapeake Bay caused lower diversity and 

biomass in the macrobenthic communities which support juvenile striped bass. This 

lower availability can cause higher competition for food and may in part account for 

the increased striped bass catch during extremely low DO. As the fish are forced 

higher in the water column in the search for food that is less available, they may find 

fishing bait more ‘attractive’. 

 As previously mentioned in the DO vs. catch analysis DO frequency class vs. 

catch for the lower 10th and 25th water quality datasets for the entire Chesapeake 

tended to show inverse relationships. These inverse relationships are basically 

identical to those above because they represent the same dataset and the DO 

frequency classes are essentially proxies for the DO clusters. 

 When the Bay was divided up into the sub-regions an interesting relationship 

appeared in the DO vs. catch clustering for all water quality. The correspondence 

analysis plots generally follow the expected outcome of increasing catch with 

increasing DO with the distinct exception that for each sub-region, the highest DO 

cluster most often corresponded to the low or “No Catch” clusters (Figures 19-26, 28-

29). Further studying of the data appears to show that for all water quality the highest 

DO cluster generally included only DO values 12 mg/L and above. It also appears 

that not only does the positive effect of increasing DO on catch taper off at higher 

levels, it actually looks as though at very high levels of DO reduced striped bass catch 

is shown. This phenomenon is the same as the inverse relationship described above, 
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and again is speculated to be caused by spatial-temporal variations in both fish 

behavior and DO variability. Nominal logistic regression analysis for the whole Bay 

and for the Lower Bay region support this conclusion showing a decreasing 

probability of catching a fish as DO climbs into the upper OK and very high 

ranges(>12 mg/L) (Figures 17 and 30). The distribution of DO data for the nominal 

logistic regression for both the whole Bay and the Lower region generally ranged 

from 5 mg/L through 13.5 mg/L. These datasets naturally exclude the lower DO that 

is of interest for the other tests (as do all the datasets that include all water quality). 

 Results for the Middle Bay lower 10th and 25th percentile data showed very 

well the expected relationship between increases in striped bass catch as DO increases 

(Figures 23 and 25). For the Middle Bay both DO subsets always showed high catch 

clusters correlating with the high DO cluster or the highest DO frequency class (DO 

Stress). The other clusters and frequencies for DO followed suit corresponding to 

their catch cluster counterpart (e.g. medium catch with medium DO, or low catch 

with anoxia).  

 For the whole Chesapeake Bay, the data showed that when a striped bass was 

caught, on average the DO was approximately 9 mg/L (Table 7). Hill et al. (1981) 

found that striped bass preferred water with DO levels above 7.5 mg/L if available. 

This correlates well with the nominal logistic regression results for the whole Middle 

Bay region where it was found that the threshold of catching a striped bass versus not 

catching striped bass occurs at approximately 7.8 mg/L of DO (Figure 26). Looking 

at the nominal logistic regression for the whole Bay again (Figure 16), the decreasing 

relationship crosses the catch versus no catch threshold at approximately 9 mg/L DO. 
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These combined results point toward a possible optimum DO range for catching 

striped bass in the Chesapeake Bay hinging around 8-9 mg/L DO. 

 The reason for the differences in available rows of data (as seen in Table 7) 

between the three subsets of water quality data is caused by the loss of fisherman 

interview records due to lack of water quality variables for those records. The lack of 

water quality variables stems from the partitioning of the total water quality dataset 

into the subsets of the lower 10th and 25th percentiles. This partitioning, while 

capturing the lower DO events, causes the exclusion of fish interview records where 

there was no water quality in the lower 10th or 25th percentiles. 

Conclusions and Recommendations 
 
 Increasingly degraded DO conditions, caused by anthropogenic sources, in the 

Chesapeake Bay over the past century have been negatively impacting human uses of 

the Bay, including recreational striped bass fishing. For recreational striped bass 

fishing these losses impact where, when, and if fishermen will catch a fish. 

Development of a human-use indicator model that describes the effect of water 

quality on recreational striped bass catch in the Chesapeake Bay allows for the more 

precise quantification of low DO’s effect on fish catch. These improved models 

determine optimum DO for striped bass recreational catch in the Chesapeake to be in 

the range of 8-9 mg/L. Positive relationships between increased DO and catch are 

seen in the majority of statistical analysis for the Chesapeake. The predictive 

capability of the model also allows coastal managers to better determine where 

resources, further research, and remediation will have the greatest returns. 
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 For the series of non-parametric analysis 55% followed expected trends of 

increasing catch with increasing DO while 10% had inverse relationships (Table 8). 

The remaining 35% of analysis had unclear results. According to the Poisson 

distribution multivariate model when DO is increased from 2 to 5 mg/L DO over the 

whole Chesapeake Bay there is a corresponding increase in striped bass catch of 

149.4% (Table 7). 

 Even though interpolated water quality did not improve results in this study it 

is still recommended that for future assessments of this kind that they are used. This is 

because for other species, geographic locations, or time periods interpolated data may 

improve results. Also, under different circumstances interpolated data may actually 

perform better than point data.  

 A further recommendation for the non-parametric portion of this assessment 

and future assessments of this type would be to take a further step and create 95% 

confidence intervals for the resulting correspondence analysis plots. The addition of 

the 95% confidence intervals would allow for further interpretation of the 

correspondence analysis. 

 Although this study demonstrates well that degraded DO conditions impair 

recreational striped bass catch, there are many other human uses that can be affected 

by degraded water quality. Understanding the relationships between human uses such 

as swimming, boating, and fishing for fish species other than striped bass are also 

important and should be studied in future assessments. Improved modeling of 

multiple human uses of coastal waters will allow for improved management and 

policy, as well as making estuarine restoration a priority. 
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