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This study focuses on comprehensive empirical and mechanistic understanding of the 

mechanical behavior of adhesive bonded assemblys bonded with pressure sensitive 

adhesives (PSAs).  PSAs are capable of very large deformation. The stress-strain and 

creep behavior of such bonded assemblys are complex due to constant competition 

between cavitation dynamics in the bulk and at interfaces; and fibrillation and nonlinear 

visco-plastic behavior of the PSA material.  The behavior is further altered by the 

presence of flexible or semi-rigid carrier layers because they alter the stress field within 

the bonded assembly and also provide additional interfaces for sequential cavity 

nucleation and growth. These mechanisms are known to result in multiple phases and 

transitions in their stress-strain and creep curves. The number of transitions depends on 

the presence (or absence) of carrier layers and the severity of the secondary transitions 

depends on the flexural compliance of the carrier layers). The effective mechanical 

response of the PSA bonded assembly is therefore affected by this complex set of 



 

events during slow deformation process, including the final stage when the PSA starts 

to debond from the substrate and/or carrier layer. This morphological evolution of the 

PSA depends on the adhesive material properties, bonded assembly configuration 

(bonded assembly aspect ratio and presence/absence of carrier layers), bonding 

substrate surface properties (surface energy, roughness and presence of contaminants), 

carrier layer properties (surface energy, surface roughness and flexural rigidity) and 

loading conditions (loading rate, stress level and temperature). This study consists of 

experimentation and mechanistic modeling. 

In the experimental study, bonded PSA test specimens were fabricated for selected 

PSA/substrate combinations, after detailed parametric study to gain insights into the 

influences of the lamination conditions (bonding pressure, bonding time, bonding 

pressure, post-cure and aging protocols).  The bonded assembly performance 

parameters of interest for this parametric study include: (i) tensile strength, ductility 

and creep resistance; (ii) peak stress and peak strain; and (iii) number of transitions and 

severity of transitions.  These specimens were subjected to mechanical tests on a 

dynamic mechanical analyzer (DMA) to measure stress-strain response and creep 

response for different loading conditions. 

In the modeling phase, mechanistic models are developed to provide fundamental 

insights about the dominant deformation mechanisms in PSA bonded assemblies  This 

has the added advantage of reducing the enormous amount of physical testing that 

engineers would need to conduct to empirically characterize every PSA-substrate 

combination of interest over all the loading conditions of interest The predictive 

mechanistic model is based on enhancement of a simple ‘block’ model that has been 



 

proposed in the literature for simulating the stress-strain and creep behavior of the 

PSA/substrate at different loading conditions. This model acts as a virtual test, 

predicting the mechanical response of a PSA bonded assembly by explicitly accounting 

for the PSAs’ nonlinear visco-plastic material properties, cavity dynamics in the bulk 

and at the interfaces, fibrillation dynamics, and other system configurations such as 

bonding substrate surface properties and carrier layer properties. This model is shown 

to be able to predict the stress-strain and creep behavior of PSA bonded assemblies 

under a broad range of operating conditions, after proper calibration by a few corner 

cases of physical tests. The predictive model can become a virtual testing method that 

for real-time prognostic health management (PHM) for PSA bonded assemblies. 

Test equipment includes a commercially available Dynamic Mechanical Analysis 

(DMA), to conduct the constant speed stress-strain test and constant force uniaxial 

creep test on the sample of selected PSA bonded assemblies at selected loading 

conditions. An observation fixture is also designed for studying the morphological 

evolution of PSA layer by video recording the cavitation and debonding at the PSA-

substrate interface during tensile deformation of a PSA bonded assembly.    

Complexity in the study includes: (i) structural change of PSA system due to cavitation 

and fibrillation; (ii) sequential cavitation and fibrillation due to additional interface 

introduced by carrier layer; (iii) bonded assembly parameter (material, configuration, 

surface roughness any surface energy); (iv) nonlinear rate-dependent plastic material 

properties of bulk PSA; and (v) implementation of new material model into commercial 

FEA tools.  

 



 

 

 

 

 

 

 

 

 

 

 

 

MECHANICAL CHARACTERIZATION OF PRESSURE-SENSITIVE ADHESIVE 

(PSA) BONDED ASSEMBLY   

 

 

by 

 

 

Hao Huang 

 

 

 

 

 

Dissertation submitted to the Faculty of the Graduate School of the  

University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

2019 

 

 

 

 

 

 

 

 

 

 

 

Advisory Committee: 

Professor Abhijit Dasguta, Chair 

Professor Hugh Bruck 

Professor Patrick McCluskey  

Professor Teng Li 

Professor Robert Briber (Dean’s Representative) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Hao Huang 

2019 

 

  



ii 

 

Acknowledgements 

 

I would like to thank my advisor, Professor Abhijit Dasgupta for guiding and supporting 

me over years. Abhijit is someone you will instantly love and never forget once you meet 

him. He has set an example of excellence as a researcher, instructor, mentor and role model. 

I am grateful to all the committee members of my dissertation, Professor Hugh Bruck, 

Professor Teng Li, Professor Robert Briber, and Professor Patrick McCluskey for their 

support and valuable suggestions to improve the quality of my work. Also, I would like to 

thank the Microsoft reliability team for their assistance in characterize mechanical 

properties of pressure-sensitive adhesive bonded assembly in my research.  

Additionally, I’d like to thank all the former and current A-Team members, CALCE 

sponsors and employees, and my friends in the engineering school, not only for their 

assistance and inspirations, but also for making my graduate school experience a fulfilled 

one: countless telecons, CALCE meetings, finals, reports, presentations, conferences … 

and the list goes on.  

Finally, I owe all the thanks to my beloved wife and my parents, with all their support, love 

and encouragements that I always need.   



iii 

 

Table of Contents 

 

Acknowledgements ........................................................................................................... ii 

Table of Contents ............................................................................................................. iii 

List of Tables .................................................................................................................... vi 

List of Figures ................................................................................................................. vii 

Chapter 1. Introduction ..................................................................................................... 1 

1.1 Background and motivation ........................................................................... 3 
1.2 Problem statement .......................................................................................... 4 
1.3 Literature review ............................................................................................ 7 

1.3.1 Debonding mechanisms of PSA bonded assembly:....................................... 7 

1.3.2 Effects of bonding conditions on mechanical performance of PSA bonded 

assembly:...................................................................................................... 13 
1.3.3 Effects of loading conditions on PSA bonded assemblies’ mechanical 

performance: ................................................................................................ 14 
1.3.4 Effects of configuration on mechanical behavior of PSA bonded assemblys:

...................................................................................................................... 18 
1.3.5 Effects of substrate surface properties on PSA bonded assemblies’ 

mechanical performance: ............................................................................. 21 

1.3.6 Modeling mechanical response of the PSA bonded assemblys: .................. 23 
1.4 Research gaps and Objectivities .................................................................. 25 

Chapter 2. Approaches of Dissertation ........................................................................... 29 

2.1 Mechanical testing on PSA bonded assemblies ........................................... 30 

2.1.1 Design of test setup: ..................................................................................... 31 

2.1.2 Stress-strain behavior of single-layered PSA: ............................................. 33 
2.1.3 Creep response of single-layered PSA:........................................................ 34 

2.1.4 Stress-strain and creep response of double-layered PSA: ............................ 34 
2.1.5 Optical In-situ observation of the bonding interface during debonding 

process: ........................................................................................................ 34 

2.1.6 Failure analysis in PSA bonding interface after debonding process: .......... 35 
2.2 Modeling the debonding process of PSA bonded assemblies ..................... 35 

2.2.1 Stress-strain mechanistic model:.................................................................. 42 

2.2.2 Creep behavior of single-layered PSA bonded assembly: ........................... 43 
2.2.3 Stress-strain and creep behaviors of double-layered PSA bonded assembly:

...................................................................................................................... 46 

Chapter 3. Stress-Strain Response of Assemblies Bonded with Single-Layered PSA ... 48 

3.1 Abstract ........................................................................................................ 48 
3.2 Introduction .................................................................................................. 49 

3.3 Uniaxial tensile experiment ......................................................................... 51 
3.3.1 Cavitation and fibrillation: ........................................................................... 53 
3.3.2 Effects of loading rate: ................................................................................. 55 
3.3.3 Effect of bonding conditions:....................................................................... 56 
3.3.4 Effect of surface roughness:......................................................................... 59 
3.3.5 Effect of substrate surface free energy: ....................................................... 64 



iv 

 

3.4 Predictive mechanistic model ...................................................................... 65 
3.4.1 Constitutive equation for bulk PSA: ............................................................ 69 
3.4.2 Cavitation criterion: ..................................................................................... 71 

3.4.3 Interfacial cavity growth criterion: .............................................................. 73 
3.4.4 Total debonding force: ................................................................................. 77 
3.4.5 Simulation results: ....................................................................................... 78 

3.5 Conclusion ................................................................................................... 81 
Chapter 4. Creep Response of Assemblies Bonded with Single-Layered PSA .............. 83 

4.1 Abstract ........................................................................................................ 83 
4.2 Introduction .................................................................................................. 84 
4.3 Uniaxial creep experiment ........................................................................... 87 

4.3.1 Unique creep response: ................................................................................ 87 
4.3.2 Effect of loading stress level: ....................................................................... 91 

4.3.3 Effect of bonded assembly geometry: .......................................................... 93 

4.3.4 Effect of substrate surface condition: .......................................................... 94 
4.4 Creep predictive mechanistic model ............................................................ 96 

4.4.1 PSA material constitutive model for creep: ................................................. 99 
4.4.2 Creep response of single-layered PSA bonded assembly: ......................... 103 

4.4.3 Deformation and history of stress component: .......................................... 105 
4.4.4 Effects of loading stress level: ................................................................... 106 

4.4.5 Effect of adhesive modulus and viscosity:................................................. 107 
4.4.6 Effect of substrate surface roughness: ....................................................... 109 
4.4.7 Effect of substrate surface free energy: ..................................................... 110 

4.5 Conclusion ................................................................................................. 111 
Chapter 5. Stress-Strain and Creep Response of Assemblies Bonded with Double-

Layered PSA .................................................................................................................. 113 

5.1 Abstract ...................................................................................................... 113 
5.2 Introduction ................................................................................................ 114 

5.3 Experiment ................................................................................................. 117 
5.3.1 Stress-strain behavior of double-layered PSA: .......................................... 119 
5.3.2 Creep of double-layered PSA: ................................................................... 125 

5.3.3 Delamination of PSA bonded assembly: ................................................... 128 
5.4 Mechanistic model ..................................................................................... 130 

5.4.1 Stress-strain response of double-layered PSA bonded assembly: ............. 131 
5.4.2 Creep response of double-layered PSA bonded assembly:........................ 140 

5.5 Conclusion ................................................................................................. 144 

Chapter 6. Discussion and Summary ............................................................................ 145 

6.1 Conclusions ................................................................................................ 146 
6.2 Contributions.............................................................................................. 150 
6.3 Limitations & future work ......................................................................... 153 

Appendices .................................................................................................................... 156 

A1: Identification of Preferred Bonding Conditions .................................................. 156 
A2: Finite Element Modeling the Effect of Carrier Layer Thickness on Deformation of 

Double-Layered PSA Bonded Assemblies ................................................................. 163 
A3: Statistical Significance ......................................................................................... 168 



v 

 

A4: Effects of Macro-Void (Air Trapped) on the Mechanical Response of PSA Bonded 

assembly ...................................................................................................................... 169 
A5: MATLAB Code: Stress-Strain Response of Single-Layered PSA ...................... 175 

A6: MATLAB Code: Creep Model of Single-Layered PSA ...................................... 181 
A7: MATLAB code: Stress-Strain and Creep Model of Double-Layered PSA ......... 189 
A8: Phenomenological Series Model for Creep Deformation of PSA Bonded with PSA 

Systems ....................................................................................................................... 199 
Bibliography .................................................................................................................. 206 

 

  



vi 

 

List of Tables 

Table 1: Simulation parameters for single-layered PSA model ........................................ 79 

Table 2: Simulation parameters ...................................................................................... 104 
Table 3: Simulation parameters for simplified double-layered model ........................... 133 
Table 4: Test matrix for desired fabrication conditions identification ........................... 158 
Table 5: Sample model constant of double-stage model ................................................ 202 
 

  



vii 

 

List of Figures 

Fig. 1. Stress-strain curves of selected single and double-layered PSA ............................. 5 

Fig. 2. Creep curves of selected single and double-layered PSA ....................................... 5 
Fig. 3. Different stages of adhesive layer during debonding process (Lakrout al et., 1999)

........................................................................................................................................... 11 
Fig. 4. Cavities grow from defects to hemisphere local and the macroscopic stress field 

becomes much flatter promoting the nucleation of cavities randomly distributed along the 

surface (Deplace et al., 2009b) ......................................................................................... 13 
Fig. 5. Schematic of five different types of stress-strain curves (Lakrout al et., 1999) .... 16 
Fig. 6. Image of bonding interface of late bonding stage: (A) Type I curve; (B) Type III 

curve; (C) Type II and Type IV curves; (D) Type V curve (Lakrout al et., 1999) ........... 17 
Fig. 7. (a) Typical force-displacement curve of PSA system with thin carrier layer. (b) 

Snapshots for displacement values corresponding to the letter in (a). The carrier layer is 

at the boundary between two colors (Yamaguchi et al., 2008) ......................................... 20 
Fig. 8. Force displacement curves at two separation speed (a) v1 = 10 μm/s and (b) v2 = 

100 μm/s for various double-layered PSA systems with different carrier layer thickness 

(Yamaguchi et al., 2010) ................................................................................................... 20 
Fig. 9. Approaches for mechanical characterization of PSA bonded assembly ............... 29 

Fig. 10. Schematic of selected PSA systems .................................................................... 30 
Fig. 11. Specimen configuration for uniaxial stress-strain and creep testing ................... 31 
Fig. 12. Specimen architecture for in-situ observation ..................................................... 32 

Fig. 13. Test setup for stress-strain tensile and creep test ................................................. 32 
Fig. 14. Optical setup for real time in-situ real-time observation ..................................... 33 

Fig. 15. Deformation of adhesive layer during the debonding process (top); schematic of 

2D block model (bottom) .................................................................................................. 36 

Fig. 16  Block numbering and model components. Pi is the pressure in the region between 

the block i-1 and i. Pcav,i is the internal pressure of the cavity. Ri is the character size of 

the cavity. .......................................................................................................................... 37 
Fig. 17. Realistic schematic of cavity in the ‘block’ model .............................................. 37 
Fig. 18. Material and spatial coordinate system to describe the block motion and 

deformation. A point at the internal coordinate (𝜉,) is transformed in the point (x, z) in the 

block. 𝜆 is the elongation ratio, (X, Z) are the coordinates of the center of gravity, and 𝑋𝑠 

is the coordinate of the central position of the surface. C is the parameter characterizing 

the parabola (Yamaguchi et al., 2006). ............................................................................. 38 

Fig. 19. Force balance acting on the block i. Xi is the mass center of the block and Xsi is 

the x-coordinate of the center point of the interface of PSA and bonding substrate ........ 40 
Fig. 20. Numerical algorithm of classic ‘block’ model (Yamaguchi et al., 2006) ........... 41 

Fig. 21. Approaches of enhanced the classic single-layered ‘block’ model ..................... 42 

Fig. 22. 2D schematic of PSA fibril during debonding. 𝜎𝑣𝑒𝑟𝑡 is the deviatoric stress along 

vertical (loading) direction in the fibril, σ is the converted stress along the fibril foot in 

horizontal direction (Glassmaker et al., 2007) .................................................................. 43 

Fig. 23. Approaches of develop a predictive model for creep response of single-layered 

PSA bonded assembly....................................................................................................... 44 
Fig. 24. Approaches of develop a predictive model for stress-strain and creep response of 

double-layered PSA bonded assembly.............................................................................. 46 



viii 

 

Fig. 25. Schematic of double-layered model configuration .............................................. 47 
Fig. 26. Schematic of test sample:  single-layered PSA bonded between two rigid 

substrates. .......................................................................................................................... 52 

Fig. 27. Surface of new PSA ............................................................................................. 54 
Fig. 28. Surface of PSA delaminated from bonding substrate .......................................... 54 
Fig. 29. highly cavitated and fibrillated adhesive layer during uniaxial deformation 

process............................................................................................................................... 55 
Fig. 30. Loading rate dependent stress-strain behavior of PSA bonded assemblys (missing 

part of yellow plot is due to the limitation of tester frame). ............................................. 56 
Fig. 31. Effects of bonding pressure and post bonding aging time on the bond strength of 

PSA bonded assemblys. .................................................................................................... 57 
Fig. 32. Effects of bonding time (10s and 30s) on the bond-strength of PSA bonded 

assemblys (30 psi bonding pressure and 24hrs post bonding age). .................................. 58 

Fig. 33. Effects of bonding temperature (RT and 50°C) on the bond strength of PSA 

bonded assemblys (30 psi bonding pressure and 24 hrs post bonding age)...................... 58 

Fig. 34. Stress-strain response of smooth glass (blue, Ra=20Å), matt glass (red, 

Ra=310Å), and rough glass (orange, Ra=3300Å) .............................................................. 60 

Fig. 35 Surface topography of (a) smooth glass (Ra=20Å); (b) matt glass (Ra=400Å); ... 61 
Fig. 36. schematic idealization of interfacial bonding condition between PSA and 

substrate. ........................................................................................................................... 61 
Fig. 37. Effect of roughness on stress-strain behavior of aluminum substrate with three 

different roughness (blue line, Ra=270Å; red line, Ra=715Å; orange line, Ra=3100Å) ... 62 

Fig. 38. Delamination interface of PSA bonded (a) with median rough substrate (large 

mean free path), (b) with rough substrate (small mean free path) .................................... 63 

Fig. 39. schematic of effects of wavelength on the size of initial defect .......................... 64 

Fig. 40. Effect of bonding substrate material .................................................................... 65 

Fig. 41. Coordinate description of block motion and deformation. Coordinate (ξ, ζ) is the 

material coordinate and coordinate (x, z) is the spatial coordinate ................................... 66 

Fig. 42. Force balance of i-th block. 𝑃𝑖 is the pressure in the cavity region between block 

i-1 and i. ............................................................................................................................ 68 

Fig. 43. Schematic of standard linear model ..................................................................... 70 
Fig. 44. Schematic idealization of interfacial bonding condition between PSA and 

substrate. ........................................................................................................................... 72 

Fig. 45. Effects of interfacial friction coefficient μ on the stress-strain prediction of 

Yamaguchi’s ‘block’ model .............................................................................................. 74 
Fig. 46. Footprint of PSA fibril on glass substrate ........................................................... 75 

Fig. 47. 2D schematic of PSA fibril during debonding. 𝜎𝑣𝑒𝑟𝑡 is the deviatoric stress 

along vertical (loading) direction in the fibril, σ is the converted stress along the fibril 

foot in horizontal direction................................................................................................ 76 
Fig. 48. Simulation result of total debonding stress and its deviatoric (loading direction) 

and hydrostatic stress component. .................................................................................... 78 
Fig. 49. Effect of substrate surface roughness, red line is the reference modeling 

prediction, Rz of blue line is 0.5Rz
*; Rz of blue line is Rz; Rz of orange line is 2Rz

*. ....... 80 

Fig. 50. Effects surface free energy (SFE) on the stress strain curve. SFE of red line is 

2𝛾 ∗; SFE of blue line is 2𝛾 ∗; SFE of orange line is  0.5𝛾 ∗. .......................................... 81 
Fig. 51. Schematic of single-layered PSA and loading direction ..................................... 87 



ix 

 

Fig. 52. Creep test result of single-layered PSA under 50 kPa and 70 °C ........................ 88 
Fig. 53. Top view of the PSA/glass substrate bonding interface (from the real time 

observation of stress-strain test). Filaments in the fibril foot area are highlighted by circle.

........................................................................................................................................... 90 
Fig. 54. highly fibrillated adhesive layer during debonding process (from the real time 

observation of stress-strain test)........................................................................................ 90 
Fig. 55. Schematic of change in hydrostatic σH and deviatoric σ' stress due to the 

mechanism of cavitation, cavity growth and fibrillation. Cavity initiation and growth 

decreases the geometric confinement of the adhesive layer, thus decreasing σH and 

increasing σ'. ..................................................................................................................... 91 
Fig. 56. Effects of stress-level on creep response of single-layered PSA bonded assembly 

at 70 °C ............................................................................................................................. 92 
Fig. 57. Creep test result of single-layered PSA under 70 KPa and 70 °C ....................... 93 

Fig. 58. Creep response of Thin PSA (50 µm) vs. Thick PSA (130 µm) PSA under 

loading conditions of 50 KPa and 70 °C ........................................................................... 94 

Fig. 59. Effect of surface roughness on the creep responses of PSA bonded with 

Aluminum substrate with different roughness (blue line, Ra=715Å; red line, Ra=3100Å)

........................................................................................................................................... 95 
Fig. 60. Marco-voids (air trapped) at the bonding interface during the bonding process 

when PSA bonded with glass substrates. The dark region is the good bonding region, 

where adhesive wets well to the substrate; the grey region is the poor bonding region, 

where the adhesive does not wet the substrate, potentially due to trapped air. ................ 96 

Fig. 61. Material coordinate and spatial coordination to describe the block motion and 

deformation ....................................................................................................................... 97 

Fig. 62. Force balance of i-th block. 𝑃𝑖 is the pressure in the region between block i-1 and 

i. b is the parameter to identify the actual contact length between the fibril foot and 

bonding substrate .............................................................................................................. 99 
Fig. 63. Initial stress ramp-up in creep test under different preset loading stress level. 

Targeted stress level is expected to apply on the test coupon within the first 3 seconds of 

the test. ............................................................................................................................ 101 

Fig. 64. Modeling algorithm of single-layered creep model .......................................... 101 
Fig. 65. Model prediction of creep response of PSA bonded assembly based on the 

parameter on Table 2 ...................................................................................................... 105 

Fig. 66. History plot of z-component of the deviatoric stress tensor and hydrostatic stress 

in the foot area of PSA fibril ........................................................................................... 106 
Fig. 67. Effects of loading stress level on creep model prediction ................................. 107 

Fig. 68. Effects of adhesive modulus on creep model prediction ................................... 108 
Fig. 69. Effects of PSA stress relaxation time on creep model prediction ..................... 109 

Fig. 70. Effect of substrate surface roughness on creep model prediction ..................... 110 
Fig. 71. Effect of substrate surface free energy on creep model prediction ................... 111 
Fig. 72. Schematic of double-layered PSA system and interested loading direction ..... 116 
Fig. 73. Double-layered PSA system bonded with aluminum tabs ................................ 118 
Fig. 74. Effect of carrier layer thicknesses on the stress-strain performance of PSA 

bonded assembly (carrier thickness: 30 vs.130 µm) ....................................................... 120 
Fig. 75. Different response of secondary transition when PSA on thick carrier layer ... 121 



x 

 

Fig. 76. Initial macro void at the bonding interface between PSA and glass substrate: (a) 

at the corner region; (b) at the center region ................................................................... 122 
Fig. 77. Flat of thick carrier layer due to force balance by high flexible rigidity of thick 

carrier layer ..................................................................................................................... 124 
Fig. 78. Global tilted of thick carrier layer due to asymmetric stress distribution ......... 124 
Fig. 79. Wrinkling of thin carrier layered due to transverse Poisson contraction .......... 125 
Fig. 80 Creep response of double-layered PSA bonded assembly ................................. 126 
Fig. 81. Creep response of single-layered PSA bonded assembly .................................. 127 

Fig. 82. Effects of carrier layer thickness on creep response of double-layered PSA 

bonded assembly ............................................................................................................. 128 
Fig. 83. Different failure modes of double-layered PSA bonded with aluminum substrate 

due to the variation of adhesion strength: (a) adhesive failure at PSA/carrier interface; (b) 

adhesive failure at PSA/substrate interface; (c) mixed mode failure; (d) cohesive failure

......................................................................................................................................... 130 
Fig. 84. Schematic of model configuration for double-layered PSA showing segmented 

carrier layer ..................................................................................................................... 132 
Fig. 85. Modeling algorithm of double-layered stress-strain model ............................... 136 

Fig. 86. Sample of model prediction of the simplified double-layered stress-strain model

......................................................................................................................................... 137 

Fig. 87. Stress-strain response of ‘compliant’ region (amber line) and ‘stiff’ region (red 

line) during the debonding process of double-layered PSA systems .............................. 138 
Fig. 88. Schematic of simulation result of five deformation stages of double-layered PSA 

bonded assembly (for stress-strain deformation the dark blue represents the ‘compliant’ 

region and the light blue represents the ‘stiff’ region; for creep deformation dark blue 

represents the ‘stiff’ region and the light blue represents the ‘compliant’ region) at (a) 

small deformation ɛ=0.2 (Region I in Fig. 80); (b) during primary transition ɛ=2 

(cavitation in ‘compliant’ region); (c) spring reaches maximum deformation; (d) during 

secondary transition (cavitation in ‘stiff’ region and fibrillation in ‘compliant’ region); (e) 

ɛ=8 (fibrillation in both regions) ..................................................................................... 139 
Fig. 89. Modeling algorithm of double-layered creep model ......................................... 141 
Fig. 90. Predictive model prediction of double-layered PSA bonded assembly creep 

response........................................................................................................................... 142 
Fig. 91. History of zz-component deviatoric stress (true stress) in bulk adhesive of ‘stiff’ 

and ‘compliant’ regions during debonding process. ....................................................... 143 
Fig. 92 Schematic of PSA bonded assembly in tester .................................................... 158 
Fig. 93 Effect of bonding pressure and post aging time on PSA bonded assemblies: .... 160 
Fig. 94 Effects of bonding temperature on the PSA bonded assembly strength and 

ductility ........................................................................................................................... 161 

Fig. 95 Effects of contact time on the PSA bonded assembly strength and ductility ..... 162 
Fig. 96 Wavy carrier layer during debonding process (thin carrier) ............................... 163 

Fig. 97 Flat carrier layer during debonding (thick carrier) ............................................. 164 
Fig. 98 Tilted carrier layer during debonding (thick carrier) .......................................... 165 
Fig. 99 Schematic of carrier layer pattern: (A) tilted (flat) carrier layer; (B) wavy carrier 

layer................................................................................................................................. 165 
Fig. 100 FEA result of PSA system with (a) pressure status of adhesive on thin carrier 

layer; (b) pressure status of adhesive on thick carrier layer ............................................ 166 



xi 

 

Fig. 101 FEA result of tilted carrier layer ....................................................................... 167 
Fig. 102 Hydrostatic stress history of elements on two side of carrier layer (thin and thick 

carrier) ............................................................................................................................. 168 

Fig. 103 Bonding interface of PSA and glass substrate .................................................. 171 
Fig. 104. non-wetted and good wetted area of PSA-substrate interface ......................... 172 
Fig. 105. Schematic of macro-voids at the bonding interface ........................................ 174 
Fig. 106. (a) Perfect bonding model; (b) Bonding interface with macro-voids .............. 174 
Fig. 107. FEA results with 0, 5, 10, 15, and 20 % non-wetted region and the theoretical 

prediction ........................................................................................................................ 175 
Fig. 108 segmental model for creep deformation ........................................................... 200 
Fig. 109 Multi-stage creep curves at different stress level ............................................. 200 
Fig. 110 (a) Schematic of symmetric half of test coupon; (b) FEA model and mesh .... 201 
Fig. 111 FEA model fit to creep curves at (a) different stress levels; (b) different loading 

temperature ..................................................................................................................... 204 
 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

Chapter 1. Introduction 

PSAs are widely used in industry as bonding media because of their ease of design, 

affordability, low processing temperature (room temperature), environmentally 

friendly bonding and re-work procedures, and uniform thickness and gap filling 

properties, but the debonding process of a PSA bonded assembly is an intractable issue 

in soft material with highly confined geometry. First, PSAs are highly deformable. 

Under some loading conditions, ductility of some PSAs that are able to cavitate and 

fibrillate during the debonding process can be more than 15 times their initial adhesive 

thickness. Second, stress-strain and creep response of highly ductile PSA bonded 

assemblies contain prominent transition behavior under suitable loading conditions. 

This unique behavior is due to the competition between the mechanism of cavitation, 

fibrillation, and interfacial slippage which can cause sudden changes in the apparent 

stiffness of the PSA layer during the debonding process (Chun et al., 2007; Ozel et al., 

2005). Third, the mechanical responses of a PSA bonded assembly are highly 

dependent on the surface conditions, such as surface free energy and surface roughness, 

of the bonding substrate which it bonds to. Accordingly, a proper constitutive model 

for a PSA bonded assembly should always include the effects of substrate surface 

conditions.  

One example of the PSAs application is bonding the liquid crystal display (LCD) 

panel and polarizing film in the monitor assembly (Shon et al., 2003; Chun et al., 2007; 

Lin et al., 2015). The deformation and degradation of the PSA layer can cause the edge 

of the polarizing film to shrink and misalign with the edge of LCD cell, then resulting 

in light leakage (backlight bleed). Light leakage causes uneven brightness of the screen 
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and is considered as a major failure mode of LCD module. Another application of PSA 

is to bond a heat sink to a power component for heat dissipation. Deformation and 

degradation of the PSA layer also leads to a decrement in the heat dissipation rate from 

the power component to the heat sink, reducing the performance of the cooling system 

(Eveloy et al., 2004). Understanding the mechanical behavior, failure modes and 

mechanisms of PSA bonded assembly are the keys to comprehend the lifetime and the 

reliability of PSA bonded assembly in a product under complex loading conditions 

during their life cycle. 

The mechanical performances of PSA bonded assemblies are mainly characterized 

by the industry standard test, such as peel, shear and tack (Sun et al., 2013), but these 

widely recognized test methods are not able to fully describe mechanical performance 

of the PSA bonded assembly in field applications. This can be the case of probe tack 

test; such test describes the stress-strain performance of a PSA bonded assembly with 

short-term bonding process (short contact time and no post-bonding aging). Despite, in 

most of applications, the PSA bonded assemblies have been stored for a certain period 

before they are use in the field. Therefore, the tackiness metric is enough to describe 

the performance of the PSA bonded assembly with short-term bonding process, such 

as the quick note and medical tape, but not the best metric for evaluating the assembly 

strength of the PSA bonded assemblies with long-term bonding and storage, i.e. product 

with self-storage in warehouse. The uniaxial test method presented in this dissertation 

study provides an opportunity to comprehend the mechanical performance of PSA are 

bonded assemblies from another perspective.  
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1.1 Background and motivation 

With the increase of PSA popularity and application in the electronics industry, the 

concerns in mechanical performance and reliability of PSA bonded assemblies 

increased. PSAs normally show superior performance in the shear direction. However, 

they are more vulnerable to loading in the tensile direction. Many studies have focused 

on the tack, shear and peel performance of PSAs, but limited attention has been paid to 

the evaluation and prediction of uniaxial stress-strain and long-term creep performance 

of PSA bonded assemblies. Due to the complexity of debonding mechanisms of PSA 

bonded assembly, three major factors are required for mechanical characterization of 

PSA bonded assembly. First, identifying loading conditions based on the operating 

conditions that a product is expected to experience throughout their lifecycle.  Second, 

the PSA configurations. PSAs are available in various configurations; some systems 

have sandwich structure with adhesive layer on both sides of a carrier layer; while some 

are available as a single-layered adhesive without a carrier film. Third, the surface 

properties of the bonding substrate. Substrates with different surface free energy and 

surface roughness can significantly influence the mechanical performance of PSA 

bonded assemblies. The mechanical performance of a PSA bonded assembly will also 

be influenced by the bonding conditions (Nakamura et al., 2012; Sun et al. 2013), that 

are bonding pressure, bonding temperature, bonding time and post-bonding aging time.  

The primary motivation of this dissertation is to facilitate a durability of assessment 

of PSA bonded assemblies that experience out-of-plane loadings due to the degradation 

and warpage of the bonding substrate during field application. In a broader sense, a 

thorough understanding of the stress-strain and creep behavior of PSA bonded 
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assemblies. Then based on the empirical finding to develop a mechanistic model for 

stress-strain and creep response of PSA bonded assembly. Such understanding and 

mechanistic model is useful to: i) guide product design for choosing suitable 

combination of PSA and substrates and minimizing the premature delamination of PSA 

bonded assemblies; ii) become a virtual testing method to supplement physical testing; 

and (iii) become a virtual tool for real-time prognostic health management (PHM). By 

continuously re-calibrating this model by using real-time in-situ data, such as strain, 

loading stress and temperature, the tune ‘digital twin’ can provide updated residual life 

of such adhesive assembly in real time.  

1.2 Problem statement  

Preliminary studies indicate that the mechanical responses of PSA bonded 

assemblies are complex and unique with multiple phases. Interaction of cavitation, 

fibrillation and interfacial slippage mechanisms during the debonding process can 

result in multi-transition and multi-phase uniaxial stress-strain and creep response, as 

shown in Fig. 1 and Fig. 2. The unique multiphase mechanical response is only 

observed in the assemblies bonded with highly ductile PSA systems. Assemblies 

bonded with less ductile PSAs delaminates soon after it reaches maximum stress in the 

stress-strain test, as shown in green line in Fig. 1.  
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Fig. 1. Stress-strain curves of selected single and double-layered PSA 

 
Fig. 2. Creep curves of selected single and double-layered PSA 

Additional phases and transitions in the stress-strain and creep curves of the selected 

double-layered PSA system are caused by sequential cavitation and fibrillation in the 

different layer of PSA in the multilayered PSA system when there is carrier layer 
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presented (Yamaguchi et al., 2012). For different combinations of PSA systems and 

bonding substrates, these transitions can cause an overall softening in its tensile 

strength or significant decrement in its creep resistance. The stress relaxation and 

transition of PSAs’ material properties during their deformation are rarely included by 

the conventional constitutive models that are used to describe the mechanical behaviors 

of polymeric materials. Debonding mechanisms mentioned above are also highly 

dependent on the bonding substrate surface conditions (surface roughness and surface 

free energy). Every time, a new combination of PSA and substrate is used, the 

mechanical response of the assembly can change dramatically. Therefore, when 

characterizing the mechanical behavior of PSA bonded assemblies, the PSA/substrate 

combination should always be treated as a single entity. A proper constitutive model 

for PSA bonded assemblies must include the effects of substrate surface properties. 

Consequently, the complexity of the mechanical behaviors of PSA bonded assemblies 

and the lack of modeling techniques on the corresponding mechanical response 

motivate the study of developing a predictive mechanics model. This model aims to 

predict the unique behaviors of the stress-strain and creep responses of the PSA bonded 

assemblies. The model prediction can be used as constitutive models to describe the 

mechanical behavior of different PSA and substrate combinations under various 

loading conditions. 

An insightful investigation is needed to understand the mechanical response of 

bonded assemblies with different PSA and substrate combinations. The following 

aspects of the mechanical characterization need further investigation 
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 The influence of bonding conditions (bonding pressure, temperature, contact 

time and post-bonding aging time) on mechanical performance of PSA bonded 

assemblies  

 Effects of loading and environmental conditions on the stress-strain and creep 

response and potential failure modes of PSA bonded assemblies  

 Effects of PSAs’ configuration and substrate surface properties on the stress-

strain and creep response and potential failure modes of PSA bonded assemblies  

 Effects of PSAs’ configuration and substrate surface properties on the failure 

modes of PSA bonded assemblies  

 Effects of carrier layer (double-layered PSA only) on the stress-strain and creep 

response of PSA bonded assemblies   

 Effects of carrier layer (double-layered PSA only) on the failure modes of PSA 

bonded assemblies  

1.3 Literature review 

Investigation on the PSA systems (single-layered PSA and PSA on either side of a 

carrier layer) are getting more focus as their popularity is fast-growing in electronics 

manufacturing. Based on the focuses on the bonding performance of PSA bonded 

assembly, these studies are classified into the following categories: 

1.3.1 Debonding mechanisms of PSA bonded assembly: 

Zosel (Zosel, 1985) first studied the morphological change of PSA during the 

debonding process of the probe-tack test. The real time observation on the bonding 

interface clearly shows formation of cavities and fibrillary structure due to the 



8 

 

excessive deformation in the adhesive layer. Formation and evolution of those 

structural are highly dependent on the PSA entanglement network. Change of the PSA 

structure shows significant effects on their mechanical performance (Zosel, 1989; 

Zosel, 1991). When PSA contact against an imperfect surface (as most bonding surface) 

leaves small air pockets where the adhesive not at contact with substrate. These pockets 

can be the seed of a localized deformation when a tensile stress is applied to the 

adhesive layer, leading to either the propagation of interfacial cracks or to the growth 

of cavities in the bulk that eventually evolve to a complex fibrillar structure (Zosel, 

1998; Chikina and Gay, 2000; Gay 2002) 

Lakrout and Creton study the morphological evolution of adhesive layer by directly 

observing the bonding interface through a probe tack apparatus. Their investigations 

indicated that formation of cavity first appeared at the interface between the adhesive 

and the probe after the initial homogeneous. Formation of cavities is due to the growth 

of hydrostatic stress in a highly geometric confined adhesive layer. Expansion of 

cavities release the hydrostatic stress in the adhesive, which results in reduction in the 

tension during the probe tack test. As the nominal strain increases, the ‘wall’ (bulk PSA) 

between cavities were being stretched in the direction normal to the bonding interface. 

Their experiments were conducted with a custom-design optical setup, which allows 

simultaneous acquisition of nominal stress-strain curve and deformation of the 

adhesive film from underneath the transparent substrate, on the MTS hydraulic testing 

machine. The tests results show that the stress-strain behavior in the probe tack test was 

directly related to cavitation. The debonding process of PSA in the probe tack test 
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abides by the following manner (corresponding pictures of different stages of 

debonding process are shown in Fig. 3) (Lakrout al et., 1999; Creton al et., 2000): 

i. Homogeneous deformation of the adhesive layer. In this phase, the force increases 

rapidly with displacement and no visible cavities. 

ii. Nucleation and rapidly growth of cavity at the interface between adhesive and the 

probe. The cavitation first happens in the region which was last brought into 

contact with the probe during the bonding stage and then relatively homogeneous 

over the whole bonding interface; 

iii. Cavities grow slowly and occupy most of the interfacial area. The length of this 

phase is highly sensitive to the PSA material and the conditions of bonding 

substrate. In Creton’s study, slowly growing process takes half of the total 

debonding time. But for some other materials, which will be discussed later, it lasts 

shorter; 

iv. Growth of the cavities normal to the film and formation of a fibrillary structure. 

There is not obviously structural change of the PSA layer during this phase (similar 

to Phase iii). But the thickness of adhesive wall of the cellular structure becomes 

thinner. 

v. Air penetrates the voids and the walls between the cells are broken forming 

isolated fibrils which eventually debond from the probe (adhesive failure) or break 

(cohesive failure). During this stage, nominal stress decreases slowly to zero.  

In the rest of the paper, Phase i is simply called as homogeneous deformation, Phase ii 

is called as cavitation, Phase iv is called fibrillation and Phase v is called interfacial 

delamination (interfacial slippage). Cavitation and expansion of cavities occurs in the 
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early stage of the debonding process and accompanied by material softening; 

fibrillation dominates the late stage of the debonding process and accompanied by 

strain hardening (Creton et al., 2011); interfacial delamination (interfacial slippage) 

determines the effective bonding area thorough the entire debonding process. 
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Fig. 3. Different stages of adhesive layer during debonding process (Lakrout al et., 

1999) 
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According to the equilibrium of bubble dynamics (Brennen, 1995), the rapid initial 

expansion of cavities (right after cavitation process) induces additional hydrostatic 

stress in the bulk of adhesive layer (medium around the cavities). As the size of cavities 

increases, the rate of cavity increment decreases, the induced hydrostatic stress will 

reach its maximum value and then start to release due to the loss of geometric 

confinement. Compared to the total debonding procedure, the change of hydrostatic 

stress of the PSA around the cavities lasts for a relatively short period of debonding 

time and lead to the corresponding fluctuation in the total separation stress during 

debonding process. Therefore, there are multiple phases in the stress-strain curve. Two 

kinds of cavity shown in Fig. 4: i) a more interfacial mechanism where cavities grow 

as cracks, mainly along the interface; ii) a bulk mechanism where cavities grow mainly 

grow in the direction parallel to the tensile direction, and form cigars (Deplace et al., 

2009b) 
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Fig. 4. Cavities grow from defects to hemisphere local and the macroscopic stress 

field becomes much flatter promoting the nucleation of cavities randomly distributed 

along the surface (Deplace et al., 2009b) 

1.3.2 Effects of bonding conditions on mechanical performance of PSA bonded 

assembly: 

A proper bonding temperature is necessary to ensure the PSA has enough flow 

capacity. Thus, the adhesive can make it easier to create a bond with the substrate when 

it is first brought into intimate contact with the adherent on a molecular scale (Vakula 

and Pritykin, 1991). Zosel studied the relationship between the fracture energy and the 

contact time through a probe tack test. The value of the adhesive fracture energy 

increased by an order of magnitude as the contact time increased from 0.02 to 100 s. 

His study also concluded that the fibrillation is incompletely developed within a short 

contact time (Zosel, 1992). Typically, PSA mechanical performance, such as strength, 

ductility and fracture energy increase proportionally to the applied stress and contact 

time, when the values of bonding conditions are at a relatively low level. However, 

assembly strength, ductility and fracture energy are saturated as the applied stress and 

contact time reach a critical level in the probe tack test (Creton and Leibler, 1996). 

Nakamura studied the effects of contact time and temperature on mechanical 

performance of three model adhesives by probe tack test. At room temperature, the 

tackiness increased as the contact time increased for most of model adhesives. The 

temperature dependence of tackiness shows peak tack value above room temperature 

and dependent of different model adhesive on temperature are various (Nakamura et 

al., 2011).  
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1.3.3 Effects of loading conditions on PSA bonded assemblies’ mechanical 

performance: 

In a peel test of PSA, the adherend energy increases with the peel angle and this 

dependence is separable from the peeling velocity dependence (Villey et al., 2015). 

Lakrout et al. studied the effects of temperature and separation rate on the maximum 

stress and adhesion energy alone with the probe tack tests. Their experimental results 

demonstrate that the physics of rate dependent mechanical behavior of PSA is believed 

to be the viscoelastic loss occurring in the adhesive layer (Lakrout al et., 1999). 

Moreover, they also concluded that the effects of temperature on the adhesive layer is 

more complicated, which includes the effects on the kinetics of bonding and debonding 

process. According to their investigations, the nominal stress-strain curve can be 

classified into five different categories based on the trends seen in Fig. 5. These stress 

strain curves are related to the different combinations of separation rate and loading 

temperature. The Type I curve occurs at high temperature and low debonding rate 

condition; the Type II curve occurs at intermediate temperature and low debonding rate; 

the Type III curve occurs at low to intermediate debonding rates and high temperatures; 

the Type IV curve occurs at high debonding rate (except at very low temperature); and 

the Type V curves are observed at low temperature and high debondng rates. The 

corresponding shape of cavities at the bonding interface of five types curve are shown 

in Fig. 6. To ensure the bonding stress relaxes in the adhesive and better conforms to 

the topographic irregularities of the substrate surface, bonding is designed to be a very 

low strain rate process at small deformation while debonding by peeling is typically a 

high rate process. The other part of Lakrout’s investigation studies the failure 
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mechanisms of PSA bonded assembly and the failure locus is believed to be related to 

the separation rate and loading temperature (Lakrout et al., 1999). The same 

phenomenon was found by Fujita et al. (Fujita et al. 1998) on their study of how the 

miscibility affects the peel strength of natural rubber-based PSA by 180° peel test. As 

the pulling rate increased, the failure mode of all tested PSA samples with different 

tackifier content changed from cohesive failure to interfacial, slip-stick and glassy 

failure. Poh and Khan carried out a systematic investigation on the effect of test rate on 

the loop tack, peel strength, and shear strength of natural rubber (ENR-25 and ENR50) 

based PSA. They found that at low testing rates, the rubber-based adhesives response 

is predominantly viscous and cohesive failure occurs. The cohesive failure is mainly 

due to the weaker internal strength rather than the bonded strength between adhesive 

and adherent at low separation speed, and the adhesive fails within its bulk. However, 

under higher testing loading, the response becomes predominantly elastic because its 

elastic components become significant and results in adhesion failure. Their study also 

showed that PSA sample strengths increased as the mechanical response changed from 

more viscous to more elastic (Poh and Khan, 2011).  
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Fig. 5. Schematic of five different types of stress-strain curves (Lakrout al et., 1999) 
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Fig. 6. Image of bonding interface of late bonding stage: (A) Type I curve; (B) Type 

III curve; (C) Type II and Type IV curves; (D) Type V curve (Lakrout al et., 1999) 

The temperature of PSAs field applications is usually above their glass transition 

region, in where, the PSAs can exhibit the maximum adhesion energy. In this 

temperature range, the intermolecular interactions determine the mechanical behavior 

of PSA (Lamanna and Basile, 2013). Creton and Leibler studied the temperature 

dependent of PSA tackiness. As temperature increases from Tg (glass transition 

temperature) to 60 °C, the adhesion energy of PSA with short-term contact time is first 

increases, then decreases. Meanwhile, the adhesion energy of PSA with long-term 

contact time decreases monotonically (Creton and Leibler, 1996). Lai et al. investigated 

the effect of humidity and temperature on the adhesive strength of the PSA (Flexbond 

150) with Mylar film. Their study shows that the adhesive strength decreases 

significantly with an increase in the temperature in general. However, the sample 

preparation conditions, e.g., bonding pressure and contact time, are important in 

determining the humidity effects (Lai et al., 1985). A PSA durability study conducted 

by Sohn also indicates that the life time of PSA bonded assemblies decreased by one 

order of magnitude, after the samples were exposed to a high humidity field (Shon, 

2003). Investigations on the effects of environmental conditions on PSA bonded 

assembly also indicates that the swelling process of moisture into the adhesive makes 

the failure site transition from the adhesive layer to the adhesive/adherent interface. 

Temiz et al. evaluated the durability of structural adhesives at very harsh environmental 

conditions. They exposed the samples to 100% RH conditions and 3.5% NaCl solution 

for 90 days (marine application). All specimens lost their bonding strength significantly 
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after the long-term exposure test and the SEM images of the fracture surface indicated 

the failure mode changed from cohesive failure to adhesive failure (Temiz et al., 2004). 

1.3.4 Effects of configuration on mechanical behavior of PSA bonded assemblys:  

In order to accommodate different applications and designs, PSA systems have their 

own configurations, including different area geometries and laminated structures. The 

differences for each kind of PSA system affects their mechanical performance in 

various ways. For example, for single-layered PSA system, under the same interfacial 

bonding quality, increases the PSA film aspect ratio (ratio of shortest edge to edge 

distance to thickness of adhesive layer) leads to significantly increase the PSA bonded 

assembly performance, such as peel strength, and tackiness (Kaelble, 1992). The reason 

behind that is as the thickness of the adhesive decreases, the in-plane deformation 

increases dramatically due to its thin film geometry and Poisson’s effects. Therefore, 

enhances the accumulation of hydrostatic stress in the bulk of the adhesive layer. Thus, 

increasing the resistance of adhesive layer to the mechanical loads. However, as the 

PSA system’s configuration becomes more complex, such as double-layered PSA 

system, the mechanical behaviors of PSA bonded assemblies are also affected by the 

interaction between each lamina in the system, such as flex of carrier layer and the 

interaction between the carrier layer and adhesive layer.  

Yamaguchi investigated the debonding process of double-layered adhesive tape 

with an inner film as its carrier layer. In their investigation, the PSA tape is bonded 

with two glass substrates and the deformation of each adhesive layer is video recorded 

during separation (Yamaguchi al et., 2012). Unlike the single-layered PSA, which 

shows only one peak in its force-displacement curve, the force-displacement curve of 
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the PSA with a carrier layer presents a secondary peak, shown in Fig. 7(a). By 

comparing the force-displacement curve and the video of debonding process of PSA 

system, the secondary peak of this force-displacement curve is caused by the 

progressive cavitation and fibrillation in both adhesives layer due to the additional 

interface introduced by the carrier layer as shown in Fig. 7(b). Fig. 8 shows the effects 

of loading rate and carrier film thickness on the force-displacement curve, at the lower 

test rate, an increase in the thickness of the carrier layer leads to a decrease in the degree 

of the second transition; at the higher loading rate, this trend becomes less obviously, 

but the secondary transition is noticeable in all the force-displacement curves presented 

in Fig. 8.  
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Fig. 7. (a) Typical force-displacement curve of PSA system with thin carrier layer. (b) 

Snapshots for displacement values corresponding to the letter in (a). The carrier layer 

is at the boundary between two colors (Yamaguchi et al., 2008) 

 
Fig. 8. Force displacement curves at two separation speed (a) v1 = 10 μm/s and (b) v2 

= 100 μm/s for various double-layered PSA systems with different carrier layer 

thickness (Yamaguchi et al., 2010) 
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1.3.5 Effects of substrate surface properties on PSA bonded assemblies’ mechanical 

performance: 

The wettability of PSA on the bonding substrate is affected both by the rheology 

properties of the PSA itself and the surface properties of the bonding substrate. Creton 

and Leibler studied the relation between the roughness of the substrate surface and 

tackiness of the PSA. Since the substrate surface is never perfect smooth, for a specific 

PSA under same bonding conditions, the actual surface area of substrate is proportional 

to the number of asperities, and the actual contact area is inversely proportional to the 

applied pressure (Creton and Leibler, 1998). However, considering the flow 

characteristic of the PSA, the longer contact time, the more relaxed the adhesive (time 

dependent elastic modulus decreases, then reach a plateau region as the stress applied 

time increases). This manner is also reflected in the effects of after bonding aging time. 

Normally, longer past bonding aging time (storage conditions) lets PSA relaxed more 

and creates a better contact with the adherent. Therefore, they believed the bonding 

energy or force, measured from tack test, was directly proportional to the actual area of 

contact when the other debonding conditions are kept constant and the variation in 

contact area does not affect the debonding mechanism. Investigations on the effects of 

substrate properties are also focusing on how the surface energy affects the wettability. 

Chiche et al. studied how to control the adhesion of soft PSA on a stainless-steel surface 

by controlling the surface roughness. To compare the effects of the roughness, five 

probes with different roughness have been used. Their test results indicated that the 

surface roughness has dual effects on the performance of PSA. Large surface roughness 

can (1) decrease the stress level at the beginning of the debonding process, due to the 
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earlier cavitation process (Chiche et al., 2000). Steven-Fountain et al. compared the 

fracture toughness of PSA bonded with two different thickness Melinex backing tape 

through a numerical method. Their study showed that the facture toughness of 90° 

peeling test increased by around 10% as the thickness of the backing tape increased 

from 0.34 to 0.76 mm (Steven-Fountain et. al., 2002). Toyama et al. investigated the 

relationship between the surface energy of adherends and PSA adhesion. The 

difference between surface energy of PSA and adherend has significant effect on the 

adhesion. Optimal bonding strength achieves when the surface energy of adherend is 

slightly higher (20% to 30%) than the PSA surface energy (Toyama et al., 1973).   Sohn 

and Yang studied the adhesion and peel strength between PSA and seven different 

polymeric films, whose surface energy varies from 35 to 72 mJ/m2 (Sohn and Yang, 

2003). For creating different value surface energies to fill the band gap some surface 

treatment methods, such as Corona treatment (Sun et al., 1999), were introduced to 

modify the surface energy of some polymeric film. The test results in Sun’s studies 

showing that the peel strength is proportional to the film surface energy under different 

peel rates. Besides that, the peel performance of the samples with higher surface energy 

are found to be more dependent on the peel rate. Kowalski et al. conducted similar 

study on understanding the role of surface energy on bonding performance. Their 

investigation found that increased the surface energy from 20.5 to 42.9 mJ/m2 increased 

the tackiness by about 300–700%, but a higher surface energy, 65 mJ/m2, reduces the 

adhesion (Kowalski and Czech, 2013). One of the latest studies by Kowalski indicates 

that increasing the surface roughness of bonding substrate could either enhance or 

decrease the tack performance depending on the thickness and the crosslinker 
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concentration of the PSA (Kowalski and Czech, 2015). They concluded that the tack 

of PSA decreases as the substrate surface roughness and PSA crosslinker degree both 

increases.  Chiche et al., investigated the tack performance of PSA bonded with 

stainless probe with five surface roughness. Their study indicated that the rougher 

surface results in deeper groove that can i) increase the size of air trapped during the 

contact stage; ii) alter the stress distribution near the surface in such a way that more 

spots are under residual tension stress. The amplitude of roughness plays an important 

role in the interfacial cavitation between PSA and substrate (Chiche et. al., 2000). 

1.3.6 Modeling mechanical response of the PSA bonded assemblys:  

The complicated mechanical behavior of PSAs motivates researchers to extend the 

investigations from the experimental perspective to the modeling perspective for 

systematic studying of the debonding dynamics of the PSA systems. Mohammed et al. 

(Mohammed et al., 2014) used the cohesive zone in finite element model (FEM) for 

studying the interfacial peeling of PSA. In their study the adhesive has been defined as 

a viscoelastic material and its interfacial properties was represented by a cohesive zone. 

The material and interfacial properties for the FEM were measured directly from the 

probe tack test and calculated analytically from the peel and relaxation experiments. 

Crosby et al. estimates the adhesive performance of PSA by using a linear elastic 

fracture mechanics approach (Crosby et al., 1999). In their model, the evolution of 

radius of contact area of viscoelastic materials is defined by Hui et al. (Hui et al. 1998) 

with a modified Johnson, Kendall and Roberts (JKR) model (Johnson et al. 1971).  

Debonding mechanism of PSA bonded assembly includes cavitation, fibrillation, 

and interfacial slippage. Instead of studying the debonding mechanism bonded 
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assemblyly, some scholar chose to understand effects of each mechanism on the 

performance of PSA bonded assembly separately. For example, in order to understand 

the effects of dense cavities on PSA, scholars started with understanding the dynamics 

of a single bubble in a different medium, such as a viscous medium (Brennen, 1995), 

elastic medium (Gent al et., 1958; Williams al et., 1965; Lin and Hui, 2004), or 

viscoelastic medium (Street, 1968; Everitt, 2003). The fundamental knowledge from 

the bubble dynamics has been applied to interpret the growth kinetic of cavities in PSA. 

Katerina et al., investigated the inception and deformation of single bubble placed in 

the filament through a finite element calculation. Both Newtonian and viscoelastic fluid 

were applied as material property for the filament (Katerina et al., 2004). Creton et al., 

correlated the occurrence of cavitation to the deformation of adhesive based on the 

degree of hydrostatic stress in the adhesive layer (Creton et al., 2000). Their study 

demonstrated that if the tensile test is under displacement control, cavitation occurs 

when the hydrostatic stress reaches a critical value. Yamaguchi et al., combined the 

different mechanism that affect the mechanical response of the PSA bonded assemblies 

and developed a ‘block’ model for simulating the stress-strain response of a PSA 

bonded assemblies (Yamaguchi et al. 2006). In order to distinguish the ‘block’ model 

proposed by Yamaguchi and the enhanced ‘block’ model in this dissertation, the 

Yamaguchi’s model is named as classic ‘block’ model thereafter. In the classic model, 

the adhesive layer has been divided into several smaller blocks. Each block represents 

a small portion of the bulk PSA. The gap between two neighboring blocks represents a 

cavity. During the debonding process, each block experiences the tensile stress caused 

by uniaxial load and transverse stress caused by the Poisson’s effect. To simplify the 
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modeling process, Yamaguchi assumed that each block has the geometric freedom to 

deform individually. The shape of each block is discriminated by a parabolic parameter, 

which is related to the stretch ratios and the spatial coordinate of each block. Their 

simulation results show that the classic ‘block’ model can effectively capture the 

transitions followed by the plateau region and also able to see the effects of aspect ratio 

of adhesive, substrate surface properties, adhesive material properties and loading 

conditions on the stress-strain behavior, but the limits of these models are also obvious, 

such as lack of cavitation criterion, oversimplified model configuration, insufficient 

control over the interfacial friction and improper constitutive model for bulk adhesive. 

Moreover, In the classic ‘block’ model, the cavities are assumed to pre-exist in the 

model, so cavitation initiation mechanics is not included. As a result, there is 

inadequate control over the threshold stress value for cavitation to occur. Thus, the 

primary transition in the classic ‘block’ model occurs prematurely and independent to 

the substrate surface properties and loading rate. Lately, Yamaguchi et al., proposed 

another simple model that can describe the debonding process of soft adhesive in probe-

tack test. The theoretical results, such as cavity diameter, peak stress, strain at peak 

stress, maximum strain and adhesive energy are in quantitative agreement with the 

experiments, but the full stress-strain curves generated by the model only agreed with 

limited empirical results (Yamaguchi et al., 2018) 

1.4 Research gaps and Objectivities 

Past studies focused more on the mechanical performance of single-layered PSA 

systems. However, resources on the configuration of double-layered PSA system and 

the uniaxial creep behavior are limited. Additionally, the complex stress-strain and 
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creep response of single and double-layered PSA bonded assemblies cannot be 

adequately described by the conventional constitutive models. Therefore, the research 

gaps for this topic are summarized as: 

Research gaps in experimental investigations: 

i) Stress strain behavior: lack of empirical investigations on the uniaxial tensile 

performance of PSA bonded assembly with long-term post-bonding aging; 

ii) Creep behavior: lack of literatures on the uniaxial tensile creep performance of 

PSA systems; 

iii) Effects of macro-void (air trapped) at the bonding interface on the stress-strain 

and creep performance of PSA bonded assemblys are not fully understood; 

iv) Effects of carrier layer in the double-layered PSA system on the stress-strain and 

creep behavior are not fully understood. 

Research gaps in mechanistic modeling of PSA bonded assembly: 

i) The classic stress-strain ‘block’ model has no control over the nucleation of bulk 

and interfacial cavities.  

ii) The classic stress-strain ‘block’ model has insufficient control over the 

interfacial interaction, e.g. interfacial cavity growth and interfacial slippage 

between the adhesive and substrate.   

iii) There is no mechanistic model for uniaxial creep behavior of single-layered PSA 

bonded assembly.  

iv) There is no mechanistic model available for uniaxial stress-strain and creep 

behavior of double-layered PSA bonded assembly.  

The objective of this dissertation study consists of two parts and listed as below: 
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Experimental investigations to understand influence of key fabrication and loading 

conditions on the unique response of rigid to rigid substrate bonded by PSA: 

i) tensile stress-strain test on single and double-layered PSA bonded assemblies 

with extended post bonding aging time 

ii) creep test on single and double-layered PSA bonded assemblies with extended 

post-bonding aging time 

iii) effect of substrate surface properties (surface free energy and surface 

roughness) on stress-strain and creep behavior of PSA bonded assemblies 

iv) effects of carrier layer (double-layered PSA) on the stress-strain and creep 

response of  PSA bonded assemblies 

v) relationship between the size of initial interfacial macro-voids (due to air 

trapped) and bond strength 

vi) relationship between the size of micro (due to surface roughness) defects and 

the bond strength 

Predictive mechanistic model for virtual testing and prognostic health management of 

PSA bonded assemblies: 

i) proper constitutive model for bulk PSA 

ii) cavitation criterion of bulk and interfacial cavity 

iii) cavity growth criterion of interfacial cavity 

iv) non-monotonic dependent on the bonding substrate surface properties 

v) develop mechanistic model to capture the uniaxial creep deformation of 

single-layered PSA bonded assemblies 
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vi) develop new model configuration for capturing the additional transition and 

phases in the stress-strain and creep responses of double-layered PSA bonded 

assemblies  

vii) develop new model algorithm for capturing the effects of carrier layer on the 

stress-strain and creep response of double-layered PSA bonded assembly 
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Chapter 2. Approaches of Dissertation 

 

Fig. 9. Approaches for mechanical characterization of PSA bonded assembly   

Fig. 9 shows the approaches for this dissertation study that consist of two phases. 

Phase I focuses on the empirical investigation on different kinds of PSA systems. Study 

focuses include effect of loading conditions (loading stress, strain and temperature), 

effects of PSA material, effects of substrate surface properties (surface free energy and 

surface roughness), and effects of PSA configuration (aspect ratio of adhesive layer 

and flexural rigidity of carrier layer) Phase II focuses on developing a predictive 

mechanistic model to evaluate the mechanical behavior of PSAs/substrate at different 

operating conditions. This model can perform virtual tests on the PSA, which can 

generate stress-strain and creep constitutive model for single and double-layered PSA 

systems. The empirical results generated from Phase I are used as fundamental basics 

for developing and calibrating the mechanistic model in Phase II. 
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Three kinds of PSA systems with different configurations and three kinds of bonding 

substrates will be investigated in this dissertation study: 

PSA configuration 1: single-layered PSA with adhesive layer only (two adhesive 

thickness), Fig. 10 (a). 

PSA configuration 2: double-layered PSA (three carrier layer thickness), Fig. 10 (b).  

Carrier materials: polyolefin foam and PET film. 

Bonding substrates: Aluminum, glass and glass coated with black mask. 

 

(a) Schematic of single-layered PSA (with release liner) 

 

(b) Schematic of double-layered PSA (without release liner) 

Fig. 10. Schematic of selected PSA systems 

2.1 Mechanical testing on PSA bonded assemblies 

The task in this phase includes: tensile stress-strain and creep tests with different 

selected loading conditions, real time in-situ observation of the bonding interface 
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during the debonding process, post-test analysis of the failure modes, and statistically 

significant analysis of the tests’ data. 

2.1.1 Design of test setup: 

The configuration of the test coupon is shown as Fig. 11. It is PSA bonded with two 

rigid flat substrates (simply called as PSA bonded assembly in the rest of this 

dissertation). T-shape tabs are designed for fitting the DMA grip. Also, the bonding 

substrates are changed based on the purpose of study in different phase. For example, 

in order to obtain the optical access onto bonding interface, the T-tab aluminum 

substrate will be replaced by a flat transparent substrate for the optical observation, as 

shown in Fig. 12. All test coupon prepared by following the protocol developed earlier 

in this dissertation study (detailed bonding parameters selection and bonding processes 

are discussed in Appendix I). Different substrate materials and surface preparation are 

used to investigate the effects of surface energy and surface roughness on the 

mechanical behaviors of PSA bonded assemblies. 

 

Fig. 11. Specimen configuration for uniaxial stress-strain and creep testing 
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Fig. 12. Specimen architecture for in-situ observation 

As shown in Fig. 13 and Fig. 14, there are two different test setups for this study. 

The one shown in Fig. 13 is for uniaxial stress-strain and creep tests; the other one is 

for the optical real time in-situ observation. The test setup for tensile stress-strain and 

creep test is very straight forward. Test coupon mentioned above is directly mounted 

on the DMA by gripping its two ends. The deformation process of the PSA system is 

also recorded by a video camera from the side.  

 

Fig. 13. Test setup for stress-strain tensile and creep test 

Fig. 14 is the test setup for optical observation; the white block with open square 

window on the top and extended arm on the bottom is designed to work as an 

observation station. Similar to T-tab aluminum substrate, when testing, the extended 

arm of the block setup is gripped by the DMA lower arm. The configuration of test 
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coupon for real time observation is different from those for uniaxial tensile tests. In 

order to obtain the optical access to the bonding interface, one side of the PSA is bonded 

with a thin flat transparent glass substrate, as shown in Fig. 12. Area of the glass 

substrate is larger than the area of open window on the top of the block setup. Therefore, 

when the sample being pulled from the side bonded with the aluminum T-tab, the 

transparent glass substrate on the other side is mechanically locked by the open window 

due to the difference in area. During the real time observation, a 45-degree mirror 

system is secured inside the block setup for providing a horizontal view of the bonding 

interface. To better compare the real time morphological evolution of the bonding 

interface and the stress-strain behavior, a microscopic video camera system is used for 

recording the debonding process through the 45-degree mirror system. 

 

Fig. 14. Optical setup for real time in-situ real-time observation 

2.1.2 Stress-strain behavior of single-layered PSA: 

In this part, the stress-strain behaviors of single-layered PSA systems are 

investigated. PSA bonded assembly parameters include the thickness of adhesive layer, 
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substrate surface roughness and substrate surface free energy (substrate material). 

Tensile testing parameters including the separation rate and loading temperature. 

Supplementary tests are required to measure the surface free energy of selected 

substrates.  

2.1.3 Creep response of single-layered PSA: 

In this part, the uniaxial creep performances of single-layered PSA systems are 

investigated. The PSA bonded assembly parameters including the thickness of adhesive 

layer, substrate surface roughness and surface free energy. The testing parameters 

including the loading stress and loading temperature. 

2.1.4 Stress-strain and creep response of double-layered PSA: 

In this part, the stress-strain and creep performances of double-layered PSA system 

are evaluated. The double-layered PSA bonded assembly parameters including the 

thickness of carrier layer, surface free energy, and surface substrate roughness. The 

testing parameters including the loading stress level, rate and temperature. 

2.1.5 Optical In-situ observation of the bonding interface during debonding process: 

For single-layered PSA system, a real time In-situ optical observation on the 

bonding interface during the debonding process is conducted for understanding the 

deformation in the bulk of the adhesive layer and at the interface between the adhesive 

and substrate.  

For double-layered PSA system, a real time In-situ optical observation on the side 

of the PSA bonded assemblies during the debonding process is conducted for 

understanding the deformation of the adhesive layer and flex of the carrier layer. 
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2.1.6 Failure analysis in PSA bonding interface after debonding process: 

In this part, the bonding interface of the delamination (fail) sample is investigated 

to understand the effects of combinations of PSA/substrate, substrate surface 

properties, and loading conditions on the failure mode of PSA bonded assemblies. 

Therefore, to correlate the bonding performance to the failure mode.  

2.2 Modeling the debonding process of PSA bonded assemblies 

Predictive mechanical model for the stress-strain and creep behaviors of PSA 

bonding assemblies are carried out in this part of study. The model based on the classic 

‘block’ model. Modeling approach is a simplified 2D approximation, as shown in Fig. 

15. In the classic ‘block” model, each block represents the bulk adhesive and the gap 

between two neighboring blocks represent the cavity (Yamaguchi et al. (2006)). The 

substrate is treated as rigid body, since its modulus is much larger that the PSA’s 

modulus. In the model representation, the blocks are visually separated by dummy 

cavity (gap between two neighboring blocks). However, they initially connect closely 

with each other by the internal pressure terms. The discrete ‘block’ model configuration 

provides the geometric freedom for the cavitation and fibrillation during the debonding 

process of PSA bonded assembly. The predictive mechanistic model is based on the 

mechanisms of cavitation, fibrillation and interfacial slippage. The classic ‘block’ 

model has some intrinsic limitations that are discussed in this paper and improvements 

are proposed to overcome these limitations.  
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Fig. 15. Deformation of adhesive layer during the debonding process (top); schematic 

of 2D block model (bottom) 

Fig. 16 shows the numbering of each adhesive block and the cavity. Number of 

blocks and cavities are pre-set in the classic ‘block’ model.  Pi represents the pressure 

in the region between block i and i-1, Pcav,i is the pressure of cavity between block i and 

i-1, Ri is the characteristic size of cavity between block i and i-1. It is important to note 

that in the model representation, two neighboring blocks are always separated by a 

cavity. However, this is just the simplified schematic to represent the actual initial 

debonding status shown in Fig. 17. The discrete model configuration can provide 

geometric freedom for modeling the debonding process.  
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Fig. 16  Block numbering and model components. Pi is the pressure in the region 

between the block i-1 and i. Pcav,i is the internal pressure of the cavity. Ri is the 

character size of the cavity. 

 

Fig. 17. Realistic schematic of cavity in the ‘block’ model 

The coordinate system to describe the block motion and deformation is shown in 

Fig. 18 and the relation between material coordinate and spatial coordinate is describing 

in Equations (1) and (2).  
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Fig. 18. Material and spatial coordinate system to describe the block motion and 

deformation. A point at the internal coordinate (𝜉,) is transformed in the point (x, z) in 

the block. 𝜆 is the elongation ratio, (X, Z) are the coordinates of the center of gravity, 

and 𝑋𝑠 is the coordinate of the central position of the surface. C is the parameter 

characterizing the parabola (Yamaguchi et al., 2006). 

𝑥 = 𝑋𝑖 +
𝑊0𝜉

𝜆
+

𝐶𝑖

3
(1 − 12𝜁2)   (1)          

𝑧 = 𝐻0𝜆 (𝜁 +
1

2
)   (2) 

where 𝐶𝑖 is the parameter characterizing the parabola.  

Based on Eqs. (1) and (2)  and by expressing (𝜉, 𝜁) with (𝑥, 𝑦) the velocity at the 

material point is given by  

𝑣𝑥 = 𝑋̇𝑖 −
𝜆̇

𝜆2
(𝑥 − 𝑋𝑖) +

𝐶̇𝑖

3
(

𝜆̇

𝜆
−

𝐶̇𝑖

𝐶𝑖
) [1 − 12 (

𝑧

𝜆𝐻0
−

1

2
)]  

(3) 

𝑣𝑧 =
𝜆̇

𝜆
𝑧 

(4) 

The velocity gradient tensor for the thin film adhesive is calculated as: 

𝜕𝑣𝑥

𝜕𝑥
= −

2𝜆̇

𝜆
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𝜕𝑣𝑥

𝜕𝑧
= −

8𝜉𝐶̇

𝜆(𝑡)
 

 

𝜕𝑣𝑧

𝜕𝑥
= −

8𝜉𝐶̇

𝜆(𝑡)
 

 

𝜕𝑣𝑧

𝜕𝑧
=

2𝜆̇

𝜆
 

(5) 

 

where 𝐶̇𝑖/𝐶𝑖 ≈ (𝜆̇/𝜆)(𝐿/𝐻) ≫ 𝜆̇/𝜆 

Given the velocity gradient, for Newton fluids, the stress is given by 

𝜎𝑡𝑜𝑡 = 𝜂𝐷 − 𝑝𝐼 (6) 

where 𝜂 is the viscosity, 𝐷 = ∇𝑣 + (∇𝑣)𝑇  

In the current problem (tensile model), the relevant stress components are 𝜎𝑥𝑧 and 𝜎𝑧𝑧 

that are defined in the following equations 

𝜎𝑧𝑧 + 𝜏𝜎̇𝑧𝑧 − 𝜏𝜎𝑧𝑧 (
2𝜆̇

𝜆
) = 𝐺𝜏 (

2𝜆̇

𝜆
) 

(7) 

𝜎𝑠𝑖 + 𝜏𝜎̇𝑠𝑖 − 𝜏𝜎𝑧𝑧 (
4𝐶̇

𝐻0𝜆
) =  𝐺𝜏 (

4𝐶̇

𝐻0𝜆
) 

(8) 

Fig. 19 shows the force balance of block i and the corresponding equation is written 

as 

(𝑃𝑖+1 − 𝑃𝑖)𝐻0𝜆 = −2𝜎𝑠𝑖

𝑊0

𝜆
 (9) 

The block slips at the interface if the shear force 𝜎𝑠𝑖 is large enough. Let 𝑋𝑠𝑖 be the x-

coordinate of the middle point of the interface between ith block and of the adherend.  

𝑋𝑠𝑖 = 𝑋𝑖 −
2

3
𝐶𝑖 (10) 

The slip velocity is proportional to the stress at the inter face  



40 

 

𝜇𝑋̇𝑠𝑖 = 𝜎𝑠𝑖  (11) 

where 𝜇 is the friction coefficient at the bonding interface. 

 

Fig. 19. Force balance acting on the block i. Xi is the mass center of the block and Xsi 

is the x-coordinate of the center point of the interface of PSA and bonding substrate 

In the classic ‘block’ model, the size of the cavity is defined by the difference between 

the distance of material point 𝑋𝑖 and 𝑋𝑖−1 and the current width of the block.  

𝜋𝑅𝑖
2 = 𝐻0𝜆 (𝑋𝑖 − 𝑋𝑖−1 −

𝑊0

𝜆
) 

(12) 

Considering the effect of surface tension, hyper-elasticity, and viscosity the cavity 

expansion is written as 

𝑅̇ =
𝑅

4𝜂
(−𝑃𝑖 −

2𝛾

𝑅𝑖
−

𝐺

2
{5 − (

𝑅0𝑖

𝑅𝑖
)

4

− 4
𝑅0𝑖

𝑅𝑖
}) 

(13) 

where 𝜂 is the viscosity of adhesive, 𝛾 is the surface tension, 𝑅0
𝑖  is the initial size for 

the ith cavity and G is the modulus of the bulk adhesive.  

Therefore, the time evolution of the system can be determined by the equation 

given above. The z-component deviatoric stress is determined by 

𝜎𝑧𝑧 + 𝜏𝜎̇𝑧𝑧 − 𝜏𝜎𝑧𝑧 (
2𝜆̇

𝜆
) = 𝐺𝜏 (

2𝜆̇

𝜆
) 

(14) 
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Given 𝜎𝑧𝑧 , the interfacial shear stress 𝜎𝑠𝑖  can be obtained by the following set of 

equations: 

(1) The force balance equation Eq. (9) 

(2) The cavity expansion equation Eq. (13) 

(3) The rheological constitutive equation Eq. (8) 

(4) The interfacial slippage equation Eq. (11) 

The numerical algorithms for the classic ‘block’ model as shown blow:  

 

Fig. 20. Numerical algorithm of classic ‘block’ model (Yamaguchi et al., 2006) 

Considering the atmosphere pressure, z-component of deviatoric stress and the 

hydrostatic stress inside each block, the total debonding stress is calculated by  

𝜎𝑡𝑜𝑡,𝑧 = 𝜎𝑧𝑧 + (𝑃0 − 𝑃̅) (15) 

where …̅ stands for the average over all blocks.  



42 

 

It is important to note that the ‘classic’ model does differentiate the effective 

loading surface area between block stress component and the atmosphere pressure. 

2.2.1 Stress-strain mechanistic model:  

The classic ‘block’ model (as discussed before) is improved in this part of study by 

adding cavitation criterion (for bulk and interfacial cavity), adding interfacial cavity 

growth criterion, and applying proper material constitutive for bulk adhesive. 

 

Fig. 21. Approaches of enhanced the classic single-layered ‘block’ model 

Constitutive model for bulk PSA 

Stress-strain behaviors of PSA systems are highly nonlinearly dependent (strain 

level does not linearly increase as the strain rate increases). Proper constitutive model 

needs to be selected for the bulk adhesive of the mechanistic model. 

Cavitation criterion 

In this part, a criterion of onset of the cavitation is chosen and applied to control the 

initiation of cavitation in the classic ‘block’ model. Cavities are still pre-seeded in the 
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adhesive layer. However, a critical stress value is used to control when these cavities 

start to deform.  

Interfacial cavity growth criterion 

The growth of interfacial cavity consists by lateral and vertical growth in the bulk 

adhesive and lateral growth at the bonding interface. Growth in the bulk is simply 

governed by Eq. (13). In here, the shape of the cavity is ignored. The lateral expansion 

at the bonding interface will expose new surface, both for adhesive and substrate. The 

receding of contact front is controlled by the fibril detachment criterion proposed by 

Glassmaker (Glassmaker et al., 2007). As shown in Fig. 22, the horizontal force to 

shorten the fibril foot can be related to the vertical force in the fibril body by the 

conservation of energy in the debonding system.  

 

Fig. 22. 2D schematic of PSA fibril during debonding. 𝜎𝑣𝑒𝑟𝑡 is the deviatoric stress 

along vertical (loading) direction in the fibril, σ is the converted stress along the fibril 

foot in horizontal direction (Glassmaker et al., 2007) 

2.2.2 Creep behavior of single-layered PSA bonded assembly: 

A creep model is developed by modified the enhanced ‘block’ model. The 

debonding mechanisms of the creep model are that same as the mechanisms of the 
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stress-strain model that are cavitation, fibrillation, and interfacial slippage.  However, 

some modifications, as listed in Fig. 21, need to be addressed. 

 

Fig. 23. Approaches of develop a predictive model for creep response of single-

layered PSA bonded assembly 

Stress component in creep model 

During the creep test, the total applied force is controlled. But the deviatoric and 

volumetric stress change over time. Creep deformation is mainly driven by the 

deviatoric stress. Hence, as the stress change over time due to the competition of 

cavitation and fibrillation, the creep rate also changed.  

Constitutive model for bulk PSA 

In order to extend the model capacity for capturing the creep response of PSA 

bonded assemblies, some modifications need to be implemented due to the different 

loading histories of stress-strain and creep tests. The evolution of a creep model is 

highly dependent on the history of the stress components. Therefore, to obtain the full 

history of the deformation process, the initial stress ramp-up process must be included 
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in the creep model. Based on the different loading history, the algorithm of the creep 

model is also different to the stress-strain model.  The algorithm of the creep model 

consists of displacement-controlled part (stress ramp-up) and force-controlled part 

(creep). 

Cavitation criterion 

The stress level in creep deformation is lower than in stress-strain testing under 

specific range of strain rate. However, plenty of cavities are still observed during the 

long-term creep deformation process. Therefore, in the creep model, the critical stress 

criterion is no longer suitable for cavity initiation. In the current stage, a strain criterion 

is assigned for the creep model to control when the cavity starts initiate or when the 

initial defects start growth. The value of the strain for creep cavitation criterion is 

observed from the experimental results. 

Cavity growth criterion 

In creep deformation, due to the huge differences in the deformation rate of the 

adhesive, there are two deformation regions. One is the slow deformation region, which 

in the bulk adhesive in the far-field from of cavities, and the other is the quick 

deformation region, which in the near-field of the cavities, especially when the cavity 

is in the early growth stage. When the cavity size is large enough, the deformation rate 

is similar for these two fields. Therefore, rate dependent material properties are 

required to assign for the adhesive in the different fields. In the current study, different 

relaxation times are assigned for the close field and the far field adhesive. 
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2.2.3 Stress-strain and creep behaviors of double-layered PSA bonded assembly: 

The mechanistic models for stress-strain and creep response of double-layered PSA 

bonded assembly are developed by modified single-layered stress-strain and creep 

model. The debonding mechanisms of the creep model are that same as the mechanisms 

of the stress-strain model that are cavitation, fibrillation, and interfacial slippage.  

However, some modifications listed in Fig. 24 need to be addressed. 

 

Fig. 24. Approaches of develop a predictive model for stress-strain and creep 

response of double-layered PSA bonded assembly 

Model configuration 

In order to modeling the double-layered PSA system. Two ‘block’ models are stack 

together, each ‘block’ model represent one layer of the adhesive. This allows 

independent cavitation and fibrillation in each of block system. For simplification, the 

carrier layer is treated as a flexural rigid element. The geometric constraints provided 

by the carrier layer are presented by some simple structural connector such as spring 

system. Schematic of double-layered model configuration is shown in Fig. 25. 
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Fig. 25. Schematic of double-layered model configuration 

Sequential cavitation and fibrillation  

In order to obtain sequential cavitation process, two different defect density are 

assigned for each ‘block” layer. Therefore, under the same loading condition, one 

region can cavitate faster than the other region and the spring connecter, as shown in 

Fig. 25 allows different degree of deformation of local adhesive. So, the model enables 

to capture the additional transition in the stress-strain and creep curve.   

Additional boundary conditions 

Presence of carrier layer introduce additional boundary conditions to the adhesive 

layers. Since the carrier layer can flex during the deformation process, the deformation 

of the adhesive layer on both sides of the carrier layer must follow the local flex of the 

carrier layer.   
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Chapter 3. Stress-Strain Response of Assemblies Bonded with Single-

Layered PSA 

3.1 Abstract 

The challenges of modeling the deformation of structures containing pressure 

sensitive adhesive (PSA) bonded assemblys includes the dependence of the PSA 

deformation mechanism on (a) PSA adhesive properties and (b) the bonding substrate’s 

surface properties, such as surface energy and surface roughness. These parameters 

have significant and unique effects on the mechanical response of the bonded assembly.  

This chapter is part I of two-part series on the mechanical response of single-layered 

pressure sensitive adhesive (PSA) bonded assemblys, where a mechanism-based 

predictive model, supported by empirical observation, is presented for modeling the 

uniaxial tensile stress-strain behavior of a single-layered PSA bonded assembly. The 

underlying model is based on multiple mechanisms: (i) cavity nucleation and growth 

in bulk adhesive material of the PSA system, as well as at the interfaces between the 

PSA and the substrate; (ii) fibrillation of the adhesive layer and (iii) interfacial slippage 

between the adhesive and the bonding substrate. This study is motivated by the fact 

that the resulting nonlinear stress-strain response is quite complex and unlike the 

conventional polymer constitutive models currently available in commercial FEA 

tools. Additionally, the current mechanistic models in the literature are insufficient to 

make reasonable predictions of the stress-strain responses of PSA bonded assemblys 

because: (i) they fail to correctly model the combinations of bulk and interfacial 

cavitation; and (ii) fail to correctly model the nonlinear viscoelastic strain hardening 

due to fibrillation. The proposed model is an improvement over the classic ‘block’ 
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model that has been proposed by Yamaguchi and co-workers for single-layered PSA 

(Yamaguchi et al., 2006). This proposed model can be used as a virtual testing tool to 

generate stress-strain curved for constitutive models of PSA bonded assemblys when 

using commercial Finite Element Analysis (FEA) tools, such as ABAQUS or ANSYS, 

for assessing the deformation of structures containing single-layered PSA bonded 

assemblys under different loading conditions.  

3.2 Introduction 

Single-layered PSA system has the simplest configuration amount all PSA systems. 

They only have one layer of adhesive, no carrier layer, and no additional interfaces. 

The adhesive layer only interacts with the bonding substrates during the debonding 

process. Gay and Leibler investigated the uniaxial debonding of single-layered PSA 

and proposed that the stress maximum of elastic PSA depends on its elasticity and size 

of initial defects between adhesive and bonding substrate (Gay and Leibler, 1999). 

Creton investigated the individual contributions from bulk and bonding interface to the 

debonding stress (Creton et al., 2001). The critical energy release rate has significant 

effects on whether the adhesive properties are controlled by bulk or by the interface 

between PSA and substrate. Sosson investigated the shear failure mechanism of PSA 

and found that interfacial slippage can play a significant role in viscoelastic adhesion 

under both tensile and shear loading (Sosson et al., 2005).  Mohammed used a FEA 

model to numerically predict peel force and the result showed good agreement with the 

experimentally measured peel force over the range of the peel angles considered 

(Mohammed et al., 2016).  Kowalski and Czech measured the peel performance of PSA 

bonded with different materials and reported that the tack performance increases as the 



50 

 

surface energy of polymeric substrates increase from 20.5 to 42.9 mJ/m2 (Kowalski and 

Czech, 2015). Glassmaker investigated the elongation of soft viscoelastic fibril and 

proposed a mechanical model that can estimate the actual contacting footprint of the 

viscoelastic fibril on the bonding substrate. Evolution of the footprint is sensitive to the 

interfacial shear stress and fails via a sliding mechanism (Glassmaker et al., 2008). 

Yamaguchi and his coworkers used a 3D imaging process to investigate the cavity 

expansion in the bulk and bonding interface of a PSA bonded assembly and proposed 

a block model that can capture some characteristic features in the stress-strain curve of 

single-layered PSA bonded assembly based on the mechanisms of cavity initiation, 

cavity growth, fibrillation, and interfacial slippage. The ‘block’ model is a simple 

mechanical model that can capture the primary transition followed by a plateau region 

in the force-displacement curve of tack test. However, due to the simplification of the 

geometric representation of bulk cavities and interfacial cavities in the modeling 

methodology, this model has insufficient control over transition initiation, 

delamination, and shows almost no strain hardening past the transition in its stress-

strain prediction, which are not consistent with experimental results. The limitations of 

the model prediction are due to: (i) no proper cavitation criterion in the model – pre-

existing cavities start evolving at the first step of iteration; (ii) inaccurate material 

model for bulk PSA – strain hardening cannot be captured properly; and (iii) 

insufficient control over the interfacial interaction and interfacial cavitation between 

bulk PSA and substrate. 

The common adhesion experiments such as peel, shear, and tack have been widely 

studied on PSA film. However, the literature regarding the stress-strain performance of 
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PSA bonded assemblys after shelf storage is limited. Moderate post bonding aging at 

room temperature can improve the adhesion between the adhesive and bonding 

substrate (better wetting). And therefore, can change the stress-strain behavior, such as 

strain hardening before delamination, which is not common in the results from tack 

tests. 

This chapter consists of empirical and modeling sections. In the experimental 

section, the effects of bonding and loading conditions on the mechanical behavior of 

PSA bonded assemblies are studied. Then parametric experiments are conducted, to 

understand the effects of substrate surface condition (roughness and material) on the 

stress-strain response of such adhesive bonded sample. The purpose of the empirical 

study is to explore the importance of different material and geometric properties on the 

mechanical response.  This helps identify which parameters need to be included in the 

mechanistic model. In the modeling part, a generalized predictive mechanistic model 

is presented for a single-layered PSA.  This model predicts the characteristic features 

of the stress strain curves due to effects of PSA and substrate properties. Subsequently, 

parametric model predictions are presented, describing the effects of surface conditions 

on the stress-strain response. The creep response of single-layered PSA bonded 

assemblys is presented in the Chapter 2. 

3.3 Uniaxial tensile experiment  

Tensile stress-strain test is performed at room temperature on a commercial PSA. 

The test sample is shown in Fig. 26. The adhesive tape (7mm x 7 mm) is placed in 

between two T-shaped tabs as a bonding media. The surface condition of the tab 

(material and roughness) and the thickness of PSA tape are varied, to examine the 
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effects of each parameter. The PSA bonded assembly is loaded in tension using the 

Dynamic Mechanical Analyzer (DMA). The displacement rate for tensile test is 2μm/s. 

This analyzer gives access to the relationship between pulling force F (g) and 

displacement D (m), from which we can estimate the average stress, σ, and the 

engineering strain, ε, associated with the deformation of the adhesive. For 

simplification, engineering stress and engineering strain are used in this dissertation.  

The true stress and true strain are significantly different, since excessive cavitation and 

fibrillation results in large changes in the true cross-section and large nonlinear axial 

deformation. Each result presented in this study is the average value of five replicates. 

 

Fig. 26. Schematic of test sample:  single-layered PSA bonded between two rigid 

substrates. 

In order to verify the occurrence of cavitation and fibrillation in this selected PSA, 

a real time in-situ observation is conducted on the interface of PSA bonded with glass 

substrate by the use of a customized 45° mirror setup, as shown early in Fig. 12. When 

using the mirror setup, one side of the bonded assembly is replaced by a transparent 

glass slide.  
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3.3.1 Cavitation and fibrillation: 

Cavitation and growth of cavities has been observed during the test and is believed 

to occur due to excessive stresses near the bonding surface. This is crucial to the 

mechanical performance of the PSA. In-situ observation of the debonding process, 

reveals some differences in the PSA surface before and after debonding, and provides 

some evidence for those processes in this PSA. Fig. 27 is the bonding surface of a new 

sample. In order to ensure there is not any damage on the bonding surface, this picture 

is taken right after the protective cover has been removed. Fig. 28 is the bonding surface 

of the sample after delamination. By comparing these two pictures, the delamination 

process can be seen to increase the roughness of the bonding surface and result in pit-

like defects, which is suspected cause by the expansion of cavities, on the bonding 

surface. During the tensile test, the volume of the PSA layer is preserved. Therefore, 

there is excessive elongation of the adhesive layer, with more than 1500% strain to 

failure, resulting in large permanent deformation inside the bulk of the adhesive. 

Although the adhesive is stress free after delamination, the permanent deformation 

cannot be fully recovered and is manifested as pit-like defects.  
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Fig. 27. Surface of new PSA 

 

Fig. 28. Surface of PSA delaminated from bonding substrate 

Noticeable change in instantaneous stiffness of the adhesive material system is 

detected under suitable loading rate. This phenomenon is attributed to the 

microstructural change in the adhesive layer during the debonding process. As shown 

in a side view in Fig. 29, a fibrillar structure, consisting of fibrils separated by prolate 

spheroidal cavities, is typically found during excessive deformation in the adhesive 
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layer. The material has lost its stability soon after the initiation of cavitation and 

therefore lost its ability to sustain such level of force. The dropping in the stress value 

means that the stress is relaxing, and it relaxes faster than the stress accumulated from 

the loading process. This results in non-convex relaxation behavior, evidenced as a 

drop in the stress strain curve.  This drop in the engineering stress implies that the 

softening relaxation mechanism (cavitation) is outpacing the combined effects of the 

loading rate and the hardening rate (fibrillation).  

 

Fig. 29. highly cavitated and fibrillated adhesive layer during uniaxial deformation 

process. 

3.3.2 Effects of loading rate: 

The stress-strain curve is found to be strongly non-monotonic at the loading rate 

(displacement rate) used in this study.  As shown in Fig. 30, the strength of the non-

monotonicity is loading rate dependent.  The underlying cause for this non-monotonic 

rate-dependent deformation behavior of the PSA bonded assembly is a constant 

interplay between softening due to cavitation and hardening due to fibrillation. At a 

certain point the stress level resumes its rise, implying that the combination of the 
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loading rate and the hardening rate due to increasing rates of fibrillation is now 

outpacing the continuing softening (cavitation) rate. This hardening during fibrillation 

occurs because polymer chains in the PSA fibrils reorient and stretch along the loading 

direction. When the backbone of the polymer chain becomes parallel to the loading 

direction, the polymer molecule is pulled taut, thus resulting in strain hardening. Such 

distinct behavior is only for adhesives that are capable of cavitation and fibrillation 

when proper loading conditions are applied.  

 

Fig. 30. Loading rate dependent stress-strain behavior of PSA bonded assemblys 

(missing part of yellow plot is due to the limitation of tester frame). 

3.3.3 Effect of bonding conditions: 

Because the bond characteristics change with every adhesive and substrate 

combination, we need a repeatable baseline specimen to compare results in this study.  

The bonding conditions of the baseline specimen were parametrically studied to 

establish a bonding process that results in a robust specimen in a reasonable period of 

bonding time. Fig. 31 shows that post-bonding thermal aging only shows noticeable 
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effects when proper pressure is applied. This particular PSA and substrate combination 

are found to achieve its full bonding strength when bonded for 10 s at room temperature 

under pressure.  Higher bonding time or bonding temperature are not found to increase 

the bonding strength any further, as shown in Fig. 32 and Fig. 33. Bonding contact time 

and bonding temperature are selected based on guidance from the manufacturer.  

 

Fig. 31. Effects of bonding pressure and post bonding aging time on the bond strength 

of PSA bonded assemblys. 
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Fig. 32. Effects of bonding time (10s and 30s) on the bond-strength of PSA bonded 

assemblys (30 psi bonding pressure and 24hrs post bonding age). 

 

Fig. 33. Effects of bonding temperature (RT and 50°C) on the bond strength of PSA 

bonded assemblys (30 psi bonding pressure and 24 hrs post bonding age). 

The presented results are only valid for this PSA and substrate combination. The 

bonding and preparation processes described here become the protocol used for the rest 
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of the study. More details about the optimal bonding conditions are presented in 

Appendix A1.  

3.3.4 Effect of surface roughness: 

The surface roughness of the substrate shows complex non-monotonic effects on the 

stress-strain behavior of PSA bonded assemblies. Fig. 34 shows the test result of PSA 

bonded to substrates of three different surface roughness values (Ra=20Å, 400Å, and 

3300Å). The peak strength for the primary transition does not show any degradation as 

Ra increases from 20Å to 400Å, but then drops 25% as Ra increases to 3300Å; 

suggesting that size distributions of initial interfacial micro-voids (and resulting cavity 

nucleation rates) are not strongly affected until the Ra becomes significantly large. The 

strength values beyond the primary transition show strong non-monotonic behavior, 

strongly increasing as Ra increases from 20Å to 400Å, but then dropping back to the 

original values as Ra increases to 3300Å.  This non-monotonic behavior suggests that 

there are competing mechanisms: (i) strengthening due to higher effective bonding 

surface area as surface roughness increases; and (ii) softening due to higher defect size 

as surface roughness increases.  The strengthening effect appears to dominate for 20Å 

< Ra < 400Å, while the softening appears to dominate for 400Å < Ra < 3300Å.   
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Fig. 34. Stress-strain response of smooth glass (blue, Ra=20Å), matt glass (red, 

Ra=310Å), and rough glass (orange, Ra=3300Å)   

Fig. 35 (a) and (b) shows the surface topography of smooth and matt glass obtained 

through atomic force microscopy (AFM). Surface topography of very rough glass is 

not obtained due to the limited range of the AFM approach. As the surface roughness 

increases, the effective geometric bonding area increases. However, if the substrate is 

too rough, the pits on the surface can result in initial voids between the adhesive and 

the substrate as the adhesive is not able to fully penetrate the valleys. The size of the 

initial defects depends on the surface profile of the bonding substrate, such as 

wavelength of the roughness and the average height of the profile. These initial defects 

will decrease the bond-strength, as they require less stress to initiate their growth 

process (Gay and Leibler, 1999). As discussed above, this conclusion is supported by 

the non-monotonic test results in Fig. 34. Based on the AFM measurement, Schematic 

idealization of interfacial bonding condition between PSA and substrate is shown in 

Fig. 36. The meaning of each symbol will be discussed in the simulation section.  
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(a) (b) 

Fig. 35 Surface topography of (a) smooth glass (Ra=20Å); (b) matt glass (Ra=400Å);  

 

Fig. 36. schematic idealization of interfacial bonding condition between PSA and 

substrate.  

The same test has been repeated with an aluminum substrate but with only three 

different roughness levels, to understand the negative effects of surface roughness.  As 

shown in Fig. 37, as the average roughness of the bonding substrate increases from 215 

Å to 715Å to 3100Å, the stress during the deformation process and the degree of strain 

hardening both decrease dramatically. The initial defects at the bonding interface 

produced by the rougher substrate are larger than those produced by the smoother 

substrate. This is verified by the additional graphic evidences of delamination interface 

(PSA side) shown in Fig. 38. The smoother surface produces smaller and denser initial 

interfacial defects, while the rougher surface produces larger and sparser initial 
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interfacial defects. However, under same loading conditions, the number of cavitatable 

defects in the PSA bonded assembly bonded with smoother substrate are less than those 

in the bonded assembly bonded with rougher substrate, due to the higher stress barrier 

requires for the smaller defect size. Therefore, on the final delamination interface, the 

smoother surface produces larger but sparser voids because each cavitatable defect in 

this bonding system has larger mean free path than the system with rougher surface.  

 

Fig. 37. Effect of roughness on stress-strain behavior of aluminum substrate with 

three different roughness (blue line, Ra=270Å; red line, Ra=715Å; orange line, 

Ra=3100Å) 



63 

 

 

Fig. 38. Delamination interface of PSA bonded (a) with median rough substrate (large 

mean free path), (b) with rough substrate (small mean free path) 

Both tests indicate that surface topography of the substrate plays an important role 

in the formation and growth of cavities in the PSA bonded assembly during the 

debonding process. It determines the density, size, and distribution of the initial 

interfacial defects.  It is important to note that Ra is not sufficient for characterizing the 

effect of surface topography on the adhesion strength. The same average roughness 

associated with different Ry and characteristic wavelength may give different results 

due to different pre-existing defect size, as schematically shown in Fig. 39 (a) and (b) 

(Donoso et al., 2007). The depth of adhesive can penetrate the groove highly depends 

on the shape of the lump, as pointed by the arrow in Fig. 39, due to the surface tension 

of the adhesive. When the wavelength is too small, the adhesive material is hard to fully 

penetrate the groove and results in a larger cavity at the bonding interface and smaller 

effective bonding area. Therefore, the roughness can have both positive and negative 

effects on the bond strength. There are currently no empirical results can verify this 

hypothesis yet, but the simulation comparisons are presented in the simulation section.  
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(a) 

 
(b) 

Fig. 39. schematic of effects of wavelength on the size of initial defect 

3.3.5 Effect of substrate surface free energy: 

In this phase, PSA bonded with different substrate materials are tested. Selected 

substrates include clear glass, aluminum (with and without adhesion promoting 

coatings), and coated glass. To isolate the effect of substrate material, the aluminum 

and coated glass substrates were ground to the same roughness. The clear glass 

substrate surface was unmodified and remained smooth (Ra≅20 Å). Fig. 40 clearly 

shows that even though the roughness of aluminum tab (Ra≅3000 Å) is much larger 

than that of the glass tab (Ra≅20 Å), the debonding stress of PSA-on-aluminum bonded 

assembly is still higher than that of a PSA-on-glass bonded assembly. Comparing the 

result of the aluminum tab to the coated glass tab, which have the same roughness, the 

peak stress differs by about 35%, the final stress differs by about 100%, and the 

ductility differs by about 35%. Quantitative dependence of PSA bonded assembly 



65 

 

performance on the substrate surface energy is not clearly understood yet, but a 

comparative study on the roles of surface energy on the tack performance of PSA is 

reported in literature (Kowalski et al., 2013). According to literature and empirical 

studies, the effects of substrate surface energy are significant and necessary to be 

considered in the predictive model. 

 

Fig. 40. Effect of bonding substrate material 

3.4 Predictive mechanistic model  

A 2D coordinate system to describe the main unit block deformation and 

translational motion is shown in Fig. 41. The deformed geometry of the block during 

the loading process is assumed to be parabolic, such that the material point (ξ, ζ) moves 

to the spatial position (x, z) after deformation, as described by the flowing equations 

𝑥 = 𝑋𝑖 +
𝑊0𝜉

𝜆
+

𝐶𝑖

3
(1 − 12ζ2) 

(16) 

𝑧 = 𝐻0𝜆 (𝜁 +
1

2
) 

(17) 
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where 𝑋𝑖 is the location of center of mass of block i, Ci is the maximum deformation of 

block i at the center of the bonded assembly (ζ=0), W0 and H0 are the initial width and 

height of block and 𝜆 is the stretch ratio. 

 

Fig. 41. Coordinate description of block motion and deformation. Coordinate (ξ, ζ) is 

the material coordinate and coordinate (x, z) is the spatial coordinate 

Most of the PSAs that are capable of cavitation and fibrillation can deform more 

than 1000% of their original shape. Therefore, Green strain is used to account for the 

large strains. The Green strain tensor for this 2D problem is defined as:  

𝐸 = [

1

2𝜆2
−

1

2
−

4𝐶

𝐻2𝜆
𝑍

−
4𝐶

𝐻2𝜆
𝑍

32𝐶2

𝐻4
𝑍2 + 𝜆2 − 1

] 

(18) 

where 𝑍 = 𝐻0𝜁 is the vertical axis in the block. Different Z values are selected for the 

stress components. 𝜁 = −0.5 or 𝜁 = 0.5  is used for both 𝜎𝑧𝑧 (deviatoric stress in Z 

direction) and 𝜎𝑠𝑖 (shear stress), since the interest region is at the interface between 

PSA block and substrate shown in Fig. 42. The velocity gradient, which was defined 

by Eq. (17) in the classic ‘block’ model, is now defined as: 
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𝜕𝑣𝑥

𝜕𝑥
= −

2𝜆̇

𝜆
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= −
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𝜕𝑣𝑧

𝜕𝑧
=

2𝜆̇

𝜆
 

(19) 

The force balance of the i-th block in the x direction is shown in Fig. 42 and can be 

written as:  

(𝑃𝑖+1 − 𝑃𝑖)𝐻0𝜆 = 2𝜎𝑠𝑖𝑊𝑜𝑏 (20) 

where b is the ratio of current contact length to the initial contact length. Details of 

parameter b are discussed in the section of interfacial cavity growth criterion in this 

paper. 

We assume a constitutive relation for the shear stress, in terms of the sliding distance 

of block i: 

𝜎𝑠𝑖 = 𝜇𝑋̇𝑠𝑖 (21) 

where, 𝜇 is the friction coefficient at the interface. According to literature (Kowalski et 

al., 2013) and experimental results, the friction coefficient depends is the function of 

differences between the substrate surface free energy 𝛾𝑆𝑢𝑏 and adhesive surface free 

energy 𝛾𝑃𝑆𝐴. The interfacial friction coefficient reaches maximum value when 𝛾𝑠𝑢𝑏 −

𝛾𝑃𝑆𝐴 ≅ 10 mj/m2 

𝜇 ≅ 𝑓(|𝛾𝑃𝑆𝐴 − 𝛾𝑠𝑢𝑏|)  (22) 
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The initial voids in the bulk of the PSA (approximately represented in the ‘block’ 

model by the gaps between the blocks) are assumed to grow in accordance with the 

growth equation as Eq. (23). Details for this equation was discussed in Chapter 2.  

𝑅̇ =
𝑅

4𝜂
(−𝑃𝑖 −

2𝛾

𝑅𝑖
−

𝐺

2
{5 − (

𝑅0𝑖

𝑅𝑖
)

4

− 4
𝑅0𝑖

𝑅𝑖
}) 

(23) 

For interfacial cavities, there are two expansion modes. One is expansion into the 

bulk adhesive; this process is simply described by Equation (23). The other produces 

new surface in the bonded assembly system due to the partial interfacial delamination. 

Growth of interfacial cavity decreases the actual contact area (or contact length in the 

2D model). The latter mode describes the receding of contact area between PSA and 

substrate. Compared to growth of the bulk cavity, the growth of the interfacial cavity 

consumes more energy. Dimensionless ratio b is the parameter to identify the actual 

contact length between the block and substrate. This dimensionless ratio directly relates 

to the growth rate of interfacial cavities. 

 

Fig. 42. Force balance of i-th block. 𝑃𝑖 is the pressure in the cavity region between 

block i-1 and i.  
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In this study, this classical ‘block model’ is further enhanced by including: strain 

hardening of bulk PSA material, cavitation initiation criterion in the bulk of the PSA, 

effects of substrate surface energy on the initiation and growth of interfacial cavities, 

and effects of surface roughness on pre-existing distributed interfacial micro-voids.  

3.4.1 Constitutive equation for bulk PSA: 

There is no noticeable strain hardening observed in the stress-strain curves of most 

tack tests (Tordjeman et al., 2000; Brown et al., 2002; Mohammed et al., 2016; 

Takahashi et al., 2016) However, significant strain hardening is common in the tensile 

tests of the PSA bonded assembly. This difference in strain hardening between these 

two test types depends not only on the adhesive material, but also on the post-bonding 

aging time and on the selection of bonding substrate surface properties, as shown in 

Fig. 34 and Fig. 40. The additional aging time in the tensile test (compared to the tack 

test) seems to help build a better bonding interface between PSA and substrate by 

allowing additional adhesive flow into the micro-scale pits and valleys on the substrate 

surface. This increases the effective bonding area and improved interfacial mechanical 

locking. The stronger bonding interface allows larger stretch in the body of the adhesive 

fibril before initiating delamination in the foot of the fibril. Large deformation and 

strong interfacial bonding enable significant strain hardening of the PSA fibril before 

softening occurs due to the adhesive delaminating from the substrate.  

In Yamaguchi’s ‘block’ model (Yamaguchi et al. 2006), linear Maxwell viscoelastic 

model and hyper-elastic model are applied to the bulk adhesive in the classic ‘block’ 

model, respectively. This model predicts insignificant hardening after the first 

transition in the stress-strain curve and is in direct contradiction of the strain-hardening 
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observed in physical tests. Considering the rate dependent stress-strain response and 

considerable residual stress after long term relaxation test, a standard linear model, as 

shown in Fig. 43, with a small elastic element is used as the material constitutive law 

for the bulk adhesive in the current model.  

 

Fig. 43. Schematic of standard linear model 

In such a case, now the relevant stress components, 𝜎𝑧𝑧 and 𝜎𝑠𝑖, are obtained by the 

following equations: 

(𝐺1 + 𝐺2)𝜎𝑧𝑧 + 𝜂𝜎̇𝑧𝑧 − 𝜂𝜎𝑧𝑧 (
2𝜆̇

𝜆
) = 𝐺1𝜂 (

2𝜆̇

𝜆
) +

1

2
𝐺1𝐺2(𝜆2 − 1)  (24) 

(𝐺1 + 𝐺2)𝜎𝑠𝑖 + 𝜂𝜎̇𝑠𝑖 − 𝜂𝜎𝑧𝑧 (
4𝐶̇

𝐻0𝜆
) = 𝐺1𝜂 (

4𝐶̇

𝐻0𝜆
) − 𝐺1𝐺2

4𝐶

𝐻2𝜆
  (25) 

where 𝐺1 is the shear modulus of the individual spring,  𝐺2 is the shear modulus of the 

spring and 𝜂 is the viscosity of the dashpot in the Maxwell element in the standard 

linear model, 𝜆̇ is the loading strain rate (engineering strain rate) of the PSA block, and 

𝐶̇ is the rate of change of the paroblic measurement of each adhesive block. Viscosity 

𝜂  is related to shear modulus 𝐺2  by 𝜂 = 𝐺2𝜏 , where 𝜏  is the relaxation time. Both 

modulus 𝐺1 and 𝐺2 are strain dependent, as shown in Eq. (26) (Maeda et al., 2011). 

𝐺𝑡 = 𝐺0 exp(ℎ𝜖𝑡) (26) 

where 𝐺0 is the initial modulus, 𝐺𝑡 is the modulus in the current time step, h is the strain 

hardening coefficient, and 𝜖𝑡 is the true strain of PSA fibril. 
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3.4.2 Cavitation criterion: 

As shown in Fig. 34, Fig. 37, and Fig. 40, strain values of the primary peak are not 

identical. Prior studies agreed that the primary instability in stress-strain curve is due 

to the rapid releasement of hydrostatic stress caused by the cavity initiation and 

expansion processes, which are directly related to the surface condition (interfacial 

energy and surface roughness) of the bonding substrate. The critical stress to initiate 

the growth of an existing defect has been proposed by Gay (Gay et al., 1999). A 

simplified version of their critical stress cavitation criterion, Eq. (13), is used for the 

predictive model proposed in this study.  

𝜎𝑐 = 𝑃𝑜 [1 + (
𝐸

𝑃𝑜
)

1 2⁄

(
𝒢𝑐

3 2⁄

𝑃𝑜
3 2⁄

ζ
1
2ξ

)

1 2⁄

]  
(27) 

As shown in the Eq. (27), the critical energy release rate, initial cavity width, and 

initial cavity depth play important roles in the critical cavitation stress. In order to 

quantitatively capture the effect of substrate surface roughness, we reduced the 

complexity of the substrate surface topography by assuming the shape of grooves are 

uniform on the substrate surface as shown in the schematic in Fig. 35 (c). Now the 

equation for initial cavity size, 𝑅𝑜, is defined by: 

𝑅𝑜 = 𝑋𝑠

√𝑋𝑠
2

4 + 𝑅𝑦
2 − 𝑙𝑖

√𝑋𝑠
2

4
+ 𝑅𝑦

2

 

(28) 

Where, as shown in Fig. 44, Ry is the mean roughness depth, XS is the characteristic 

wavelength, and li - which is a function of RZ and XS - is the characteristic depth of the 

PSA that penetrates into the groove under the given bonding condition. The depth, 𝑙𝑖,  

that the PSA can penetrate the groove under applied bonding pressure is a function of 
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peak to peak value 𝑅𝑦  and the wavelength 𝑋𝑠. In this study, for simplification, 𝑙𝑖  is 

linearly dependent on arctangent 𝛼, as shown in Eq. (29). When the estimated 𝑙𝑖  is 

larger than half of the wavelength XS, 𝑙𝑖 is equal to half of XS. A detailed study on the 

dependence of 𝑙𝑖 on the topology of the substrate surface will be discussed in a separate 

paper.  

𝑙𝑖 ≅
L

𝑚
arctan(α) 

(29) 

where m is a constant model parameter. When the calculated interfacial cavitation stress 

is higher than the bulk cavitation stress, then the cavitation initiates in the bulk 

adhesive. In that case, the initial cavity size, 𝑅𝑜, is simply the initial bulk defect size 

used in the predictive model. 

 

Fig. 44. Schematic idealization of interfacial bonding condition between PSA and 

substrate.  

In Yamaguchi’s conventional ‘block’ model, there is no provision for an energy 

barrier for the cavity to grow when a displacement load is applied (Yamaguchi et al., 

2006). In other words, the cavity starts growing the moment any displacement is 

applied, regardless of the magnitude of the displacement.  Therefore, there is no 

parameter in the model to control the strain value at which the primary peak occurs.  

This is an inadequacy of the model since experimental results do show differences in 

the strain at the primary peak, depending on bonded assembly architecture and bonding 
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conditions.  In the current proposed predictive model, this limitation is mitigated by the 

use of a threshold stress limit to initiate the growth of preexisting micro-voids at the 

interface or in the bulk.  The instantaneous stress level around each cavity is evaluated 

at each iteration, and the voids in each block are allowed to grow when the 

instantaneous stress exceeds the critical stress. 

3.4.3 Interfacial cavity growth criterion: 

Another limitation of the traditional ‘block’ model is that it does not have adequate 

direct control over the growth of cavities at bonding interface between PSA and 

substrate.  The only relevant parameter in the ‘block’ model is the interfacial frictional 

coefficient μ of Eq. (21), which provides indirect and approximate control over this 

interfacial cavity growth mechanism.  While the literature provides some guidance over 

how this surrogate parameter should explicitly depend on the substrate surface energy 

,as shown in Eq. (22) (Kowalski et al., 2013), its dependence on other important surface 

parameters, such as surface roughness, remains unaddressed.  Furthermore, parametric 

exploration reveals that this friction parameter has very limited tuning range over the 

stress-strain response of PSA bonded assembly. As shown in Fig. 45, even when µ is 

varied by two orders of magnitude, there is a small inadequate effect on the predicted 

stress-strain curve. This does not agree with the experiments, shown in Fig. 40, in terms 

of either the position, magnitude and span of primary transition; or the strain hardening 

observed after the primary transition. 
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Fig. 45. Effects of interfacial friction coefficient μ on the stress-strain prediction of 

Yamaguchi’s ‘block’ model  

The reason, in part, is because the traditional ‘block’ model oversimplifies the 

deformation of each block, as given in Eqs. (16) and (17) (and repeated below in Eqs 

(30) and (31)). Due to volume conservation, the width W and the height H of the PSA 

block are defined as: 

𝑊 =
𝑊0

𝜆⁄  (30) 

𝐻 = 𝐻0λ  (31) 

where 𝑊0 and 𝐻0 are the initial width and height of the adhesive block. This simplified 

deformation field fails to capture the hour-glassing of the fibrils that is usually observed 

during fibrillation in experiments.  

In the proposed improvement to the ‘block’ model, the non-uniform cross-section 

of the block is captured by letting the width of the fibril foot vary independently from 

the width of the fibril neck at the center, as shown in Fig. 42. A similar technique has 

been reported in the literature before (Toyama et al., 1973).  As the fibril deforms, 
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width W still follows the rule of volume conservation, but the fibril foot length evolves 

separately due to the interfacial constraint from the bonding substrate. The status of 

fibril foot length directly affects the stress status in the bulk PSA and the ductility of 

the PSA bonded assembly. Compared to the traditional ‘block’ model, the current 

model allows much lower interfacial frictional stress at comparable stretch, because of 

smaller interfacial delamination at the bonding interface.  This can be seen by 

comparing the governing equations of the classic ‘block’ model, Eq. (32) with that of 

the current proposed model, Eq. (20).  

(𝑃𝑖+1 − 𝑃𝑖)𝐻0𝜆 = −2𝜎𝑠𝑖

𝑊0

𝜆
 

(32) 

 

Fig. 46. Footprint of PSA fibril on glass substrate 

Evolution of the fibril foot length follows the detachment criterion proposed by 

Glassmaker and his coworkers. As shown in Fig. 47, the horizontal force to shorten the 

fibril foot can be related to the vertical force in the fibril body by the conservation of 

energy in the debonding system (Glassmaker et al., 2008). 
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(a) (b) 

Fig. 47. 2D schematic of PSA fibril during debonding. 𝜎𝑣𝑒𝑟𝑡 is the deviatoric stress 

along vertical (loading) direction in the fibril, σ is the converted stress along the fibril 

foot in horizontal direction.  

Parameter b is the ratio of current contact length to the initial contact length and can 

be estimated by applying finite-difference method in the fibril foot, as shown in Eq. 

(33) (Tayama et al., 1973). 

𝑏 =
(𝑊0 − 2𝑢)

𝑊0
 

(33) 

where u is the displacement of the edge of fibril foot, and can be calculated by 

𝑢𝑗,𝑛+1 = 𝑢𝑗,𝑛 +  
∆𝑡

𝑑𝑢2
(

2𝐸𝜆

𝛼𝜇𝑊𝑜
) (𝑢𝑗−1,𝑛 − 2𝑢𝑗,𝑛 + 𝑢𝑗+1,𝑛) 

(34) 

where E is the modulus of bulk PSA, 𝑢(𝑗,𝑛) is the displacement of the fibril foot in node 

j in the nth step, 𝛼 is the ratio of original fibril height to fibril width,  𝑑𝑢 is  the length 

of each element in fibril foot, E is the modulus of bulk adhesive, μ is the interfacial 

friction coefficient, and ∆𝑡 is the time increment for each step. This equation is under 

the assumption of rigid body motion of the fibril foot, which means that the 

displacement of the fibril foot is independent of the position along the horizontal axis. 

If the bonding interface is in perfect condition, then b=1; if the adhesive is fully 
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delaminated then the width of fibril foot is equal to that of the fibril body (Glassmaker 

et al., 2008). The initial value of parameter b can be slightly larger than 1 if the substrate 

has a slightly rough surface.  

The parameter b provides an additional degree of freedom to improve the interfacial 

interaction between PSA and substrate. Deformation is now mainly reflected in the 

elongation of the fibril and the shrinkage of the fibril foot length (contact length), which 

is controlled by the applied stress and apparent substrate surface free energy. The 

apparent surface free energy is the measured surface energy, which already includes 

the effects of surface roughness and is written as:  

𝛾𝑠𝑣 = 𝛾𝑠𝑙 + 𝛾𝑙𝑣𝑐𝑜𝑠𝜃𝑚 (35) 

where 𝛾𝑠𝑣, 𝛾𝑠𝑙 and 𝛾𝑙𝑣 are interfacial tension in well-known Yong equation. 𝜃𝑚 is the 

apparent contact angle described by 𝑐𝑜𝑠𝜃𝑚 = 𝑏𝑐𝑜𝑠𝜃𝑌  (𝜃𝑌  is the Young’s contact 

angle).  

3.4.4 Total debonding force: 

Because the actual contact area between the PSA fibril and substrate is now 

identified by dimensionless ratio b, the debonding force, Fz can be calculated by 

𝐹𝑧 − 𝑃0𝑆 =
𝑏𝑆

𝑁
∑ (𝜎𝑧𝑧 −

𝑃𝑖 + 𝑃𝑖+1

2
)

𝑁

𝑖=1

= 𝑏𝑆(𝜎𝑧𝑧 − 𝑃̅) 
(36) 

where b is the actual contact ratio, S is the nominal area, and …̅ stands for the average 

value of all blocks. The debonding stress is then calculated by 

𝜎𝑡𝑜𝑡,𝑧 =
𝐹𝑧

𝑆
= 𝑏(𝜎𝑧𝑧 − 𝑃̅) + 𝑃𝑜 

(37) 
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The total stress (along loading direction) and its corresponding deviatoric component 

and hydrostatic component are shown in the stress-strain curve in Fig. 48. 

3.4.5 Simulation results: 

Fig. 48 shows the stress-strain curve predicted for the parameter set from Table 1. 

Parameters with subscript * are used as reference metric for the rest of parametric 

studies. As seen, the initial state of the debonding stress is dominated by its hydrostatic 

part (internal pressure in the adhesive before cavitation). As the cavitation initiates, the 

hydrostatic stress is released due to the loss of geometric confinement, while the 

deviatoric stress increases due to the strain hardening caused by the fibrillation process. 

The total debonding stress in the final debonding state is dominated by the deviatoric 

part (accumulated by elongation of fibril). The decrement of total stress in the final 

stage is due to the foot delamination of PSA fibril foot. MATLAB code for single-

layered PSA bonded assembly is presented in Appendix A5. 

 

Fig. 48. Simulation result of total debonding stress and its deviatoric (loading direction) 

and hydrostatic stress component. 
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Table 1: Simulation parameters for single-layered PSA model 

Parameter (unit) Value 

PSA thickness 𝐻0 (m) 1.3 × 10−4 

PSA width 𝑊0 (m) 7 × 10−3 

Separation strain rate  0.02 

Relaxation time (s) 3500 

Elastic modulus 𝐺1, 𝐺2 (Pa) 40, 200 

Strain hardening coefficient  2.2 

PSA surface energy 𝛾𝑝 (mJ/m2) 30 

Substrate surface energy  𝛾𝑝 ∗ (mJ/m2) 80 

Initial cavity 𝑅𝑧
∗ (m) 5 × 10−8 

Roughness wave length 𝑋𝑠 (m) 3 × 10−7 

PSA penetration parameter m 60 

Number of blocks 30 

Time step (s) 1 × 10−1 

Fig. 49. indicates that the current model has much more versatile control over the 

initiation of the primary transition. The non-monotonic effects of substrate surface 

roughness on the stress-strain response is also captured in the current predictive model.  
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Fig. 49. Effect of substrate surface roughness, red line is the reference modeling 

prediction, Rz of blue line is 0.5Rz
*; Rz of blue line is Rz; Rz of orange line is 2Rz

*. 

Fig. 50 shows the sensitivity of current model to the substrate surface free energy. 

Increasing the surface energy of substrate leads to an increase in (a) the peak stress, (b) 

ultimate tensile strength and (c) ductility. The current model predictions are much more 

sensitive than the existing ‘block’ model (Yamaguchi et al., 2006) to the surface free 

energy of bonding substrate.  
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Fig. 50. Effects surface free energy (SFE) on the stress strain curve. SFE of red line is 

2𝛾∗; SFE of blue line is 2𝛾∗; SFE of orange line is  0.5𝛾∗.   

3.5 Conclusion 

In this first chapter of the two-part series, the physics behind the unique multi-phase 

stress-strain response of PSA bonded assemblies have been presented.  The mechanical 

behavior of PSA bonded assemblys always depends on the combination of the PSA 

material and the bonding substrate. Substrate surface properties, such as surface 

roughness and surface energy have significant effects on the mechanisms of interfacial 

cavitation and interfacial slippage of PSA bonded assembly, and therefore, on the 

apparent stress-strain curve. Up to certain roughness, bond-strength increases due to 

increase of effective bonding area and interfacial mechanical locking.  Beyond this 

threshold roughness, the bonding performance reduces because of large initial defects 

and smaller effective projected bonding area produced by the rough profile of the 

substrate surface. The bond-strength and ductility of a PSA bonded assembly show 

strong dependence on the substrate surface free energy.  

A predictive mechanistic model is presented to capture the stress-strain responses of 

single-layered PSA bonded assemblies. The predictive model is based on the ‘block’ 

model and has been improved by: (i) adding cavitation and cavity growth criterions for 

interfacial defects; (ii) applying suitable constitutive law for bulk PSA; and (iii) 

modifying the adhesive fibril foot configuration for interfacial cavity growth. The 

current model includes the effects of substrate surface roughness, effects of substrate 

surface energy, and effects of PSA configuration (aspect ratio of adhesive layer). A 

parametric exploration of the predictive model indicates that it can be tuned to fit 
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different stress-strain responses, especially the strain and stress value of the primary 

peak, caused by varied combinations of single-layered PSA and bonding substrate. The 

model results can be used as stress-strain constitutive model for single-layered PSA 

bonded assembly for commercial FEA tools (detailed approaches dicussed in Appendix 

A8) 
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Chapter 4. Creep Response of Assemblies Bonded with Single-Layered 

PSA  

4.1 Abstract 

This is Part II of a two-part series on the mechanical response of single-layered 

pressure sensitive adhesive (PSA) bonded assemblys.  Part I had presented the uniaxial 

tensile stress-strain response while this chapter explores the uniaxial tensile creep 

response of a single-layered pressure sensitive adhesive (PSA) bonded assembly. This 

material system exhibits a unique multi-phase creep response that does not have the 

classical steady-state region due to its multiple transitions caused by the competition of 

several mechanisms:  (i) cavity nucleation and growth in bulk adhesive material of the 

PSA system as well as at the interfaces between the PSA and the substrate; (ii) 

fibrillation of the bulk adhesive and (iii) interfacial mechanical locking between the 

adhesive and the bonding substrate. The result is multiple strain hardening and 

softening regions evidenced by multiple regions of steady-state creep, separated by 

strong transitions in the creep rates, this complex, multi-phase, nonlinear creep 

response cannot be described by conventional creep constitutive models commonly 

used for polymers in commercial finite element codes. 

First, empirical uniaxial tensile creep response curves of single-layered PSA bonded 

assemblies on different substrates are presented under different stress levels and 

different temperatures. Investigations in this section focus on the effects of loading 

stress and substrate surface properties (roughness and material), at different 

temperatures. Mechanisms behind the multi-phase creep response (cavitation, 
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fibrillation, and mechanical locking between adhesive and bonding substrate) are also 

discussed at the end of this section. In the second part of this chapter, a mechanistic 

model, which is based on the mechanisms listed above for creep response, is presented. 

This model is capable of capturing the characteristic features of the multiphase creep 

response of single-layered PSA bonds and produces a quantitative estimate of the creep 

response of such PSA bonded assemblies, as a function of adhesive material 

viscoelastic properties, free surface energy in the adhesive material, interfacial surface 

energy between the adhesive and substrate, and substrate surface roughness. 

4.2 Introduction 

PSA bonding layer shows superior resistance to loading in shear direction (loading 

on the xy-plane as shown in Fig. 51. This adhesive system has been widely used in 

different applications due to their: ease of design; clean and environmentally friendly 

bonding and rework procedures; as well as uniform thickness and gap filling properties. 

Many scholars have studied the tack, peel, shear, and shear creep properties of PSA 

bonded assemblies for the past decades. Fujita et al. studied the effects of miscibility 

and viscosity on the shear creep resistance of natural-rubber-based PSA. They 

concluded that the holding time, which is the required time for the PSA tape under 

shear load to completely debond from the adherend, tended to decrease as the tackifier 

content increased (Fujita et al., 2000). Sosson et al. investigated the shear failure 

mechanisms of PSA and found that for a weak cross-linked adhesive, failure occurs by 

creep rupture while for a highly cross-linked adhesive, failure is caused by fracture 

(Sosson et al., 2005). Kim et al. tested hot melt PSAs with different viscosities and 

found that the shear creep resistance increased as the PSA viscosity increased (Kim et 
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al., 2006). Hait and Barthel proposed a model for evaluating the effect of surface 

roughness on adhesive bonding. Their model provides approximate analytical 

expressions for the asperity response and exhibits the full viscoelastic adhesive contact 

phenomenology such as stress relaxation inside the contact zone and creep at the 

contact edge (Hait et al., 2007). Poh and Kwo investigated the effects of adhesive 

(coating) thickness on shear performance of Standard Malaysian Rubber (SMR)-based 

PSA. They concluded that the shear strength increased as the adhesive thickness 

increased (Poh et al., 2007). Zosel studied the correlation between the shear strength 

and the mechanical properties of PSA by measuring the deformation behavior in a static 

and dynamic shear test. He concluded that the static shear strength and holding time 

(time to failure) of the sample can be calculated from the master curve of dynamic shear 

test, but the method cannot be applied to highly viscous polymer (Zosel, 1994). 

Yamaguchi proposed a simple ‘block’ model that can capture the major characteristic 

feature of a tack test curve (Yamaguchi et al., 2006). However, their model does not 

have enough control over the cavitation or interfacial cavity growth and can only be 

applied for the stress-strain response. The literature focuses mostly on the 

understanding of shear creep performance.  In contrast, the creep resistance to loading 

in the out of plane loading direction (peel or z direction), as shown in Fig. 51, does not 

get enough attention. Compared to the in-plane direction, xx, yy, and xy, loading along 

the peel direction (zz) shows the most damage for this kind of adhesive bonded 

assembly structure. In application, this kind of loading can be caused by external 

multiaxial loading and initial curvature mismatch of bonding substrate. Even the 

residual stress from a small geometric mismatch can pose a hazard for the performance 
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of the PSA layer in a long-term application. In summary, highly ductile lightly-

crosslinked PSAs show unique multi-phase tensile creep response, which is uncommon 

in other polymeric (Zheng et al., 2002, Colak et al., 2005) and metallic materials 

(Mukherjee et al., 2011, Mukherjee et al., 2016, Mukherjee et al. 2016). However, the 

literature on the long-term tensile (peel) creep performance of PSA bonded assembly 

is limited.  

The primary motive of this chapter of study is to develop a virtual testing capability 

for the creep response of the PSA bonded assembly. More importantly, this virtual 

testing model has the potential to be for real-time prognostic health management 

(PHM). By continuously re-calibrate this model by using the real time in-situ data, such 

as strain, loading stress and temperature, the tune ‘digital twin’ can provide updated of 

the residual life of such adhesive bonded assembly in real time. In current phase, we 

have empirically investigated the uniaxial creep performance of PSA bonded assembly 

consisting of two rigid substrates bonded with a single-layered PSA material, under 

different loading conditions. The bonded assembly variables include the substrate 

surface material and surface roughness. Based on the empirical observations and 

measurements, we then propose a mechanistic model that can not only capture the 

unique multi-phase tensile creep curve but can also predict the change in creep response 

due to changes in adhesive properties, such as modulus and viscosity; as well as 

changes in the substrate properties, such as surface free energy and surface roughness.  
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Fig. 51. Schematic of single-layered PSA and loading direction 

4.3 Uniaxial creep experiment 

The test sample for this study is a uniaxial tensile test coupon to permit loading in 

the peel (zz direction in Fig. 51).  This specimen consists of two rigid T-shaped 

substrates bonded with a single-layered PSA, as shown in Fig. 13. Both substrates are 

mounted between tensile loading grips of a Dynamic Mechanical Analysis (DMA) 

machine for constant stress uniaxial creep test. The size of the PSA bond line is 7×7 

mm^2 with a thickness of 0.05 mm and 0.1 mm. To understand the effect of the loading 

condition, different stress level, 50 and 70 KPa, are used, and the testing temperature 

is 70 °C. For simplification, engineering stress and engineering strain are used for the 

creep plots. 

4.3.1 Unique creep response: 

A creep result, which consists of a short primary creep region, final tertiary creep 

region, and long intervening region, under test condition of 50 KPa and 70 °C is shown 

in Fig. 52. Unlike in metals and traditional polymers, this creep response does not 

demonstrate a single steady state (secondary) region.  Instead, there appear to be 
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multiple steady-state (secondary creep) regions, separated by sharp peaks and 

transitions in the creep rates. Over 80% of the observed creep is dominated by the 

intervening multi-phase secondary creep region. The peak rates during the transitions 

in this multi-phase secondary region may have more than 6000% change.  At the 

applied loading condition, the transitions lasted for less than 1-hour duration (~10% of 

total creep time) and accounted for more than 600% strain (about 70% of total creep 

strain) accumulation in the creep curve. Because the creep test results are sensitive to 

the interfacial bonding quality and the hard-to-control volumes of air pockets trapped 

at the bonding interface, the test results presented in this paper are the median values 

of three replicates.  

 

Fig. 52. Creep test result of single-layered PSA under 50 kPa and 70 °C 

These transitions in the creep curve are believed to be a result of the same underlying 

physics that produced the transitions reported elsewhere in the tensile stress-strain tests 

in Chapter 3, but under different loading conditions. The multiple phases are the result 
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of competition between the mechanisms of cavitation and fibrillation of the bulk 

adhesive. The significant difference between the stress-strain test and the creep test is 

the critical stress needed for initiating the transition. Usually, the initiation of cavity 

growth in stress-strain tests are associated with high stress level, which is much higher 

than the creep stress used in this study. The apparent stress level in a creep test can 

usually not be as high as the required threshold critical stress predicted by Gay and 

Leibler’s model for cavity nucleation (Gay and Leibler’s, 1999). Cavity initiation under 

such low stress level during creep tests is speculated to be due to stress-assisted 

acceleration of the diffusion process. The initial cavity growth is slow at the initial 

stages of creep. As the size of initial defects reaches a threshold value, the force balance 

around the cavity exceeds the threshold levels and the system becomes instable. Then 

the cavity starts growing rapidly, resulting in the rapid increase in creep rates seen 

during the sharp transitions. 

Fig. 53 shows the top view of the bonding interface between PSA and the transparent 

substrate, illustrating the cavitation and fibrillation. In later stages of the debonding 

process, a majority of the interface is filled by the interfacial cavities (air voids), which 

are separated by thin webs (adhesive walls which are the ends of the fibrils). The 

cavitation and cavity growth process lead to a decrease in the geometric confinement 

of the adhesive layer and therefore decreases the stiffness of the PSA layer.  In contrast, 

the fibrillation process, as shown in Fig. 54, leads to increase the stiffness of the PSA 

layer because of nonlinear viscoelastic hardening of the fibril material along the loading 

direction, because of the re-orientation of long-chain molecules along the loading 

direction. Filaments around the foot of the circular boundary indicates that the cross-
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section of the adhesive wall near the bonding interface is larger than the cross-section 

of the wall in the body of the fibril. The microstructural evolution in the adhesive layer 

(material softening and stiffening) results in complicated constitutive models for such 

structural interconnection. 

 

Fig. 53. Top view of the PSA/glass substrate bonding interface (from the real time 

observation of stress-strain test). Filaments in the fibril foot area are highlighted by 

circle. 

 

Fig. 54. highly fibrillated adhesive layer during debonding process (from the real time 

observation of stress-strain test). 
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Cavitation as well as growth of bulk and interfacial cavities results in thin fibrils that 

can decrease the confinement, leading to a release of hydrostatic stress stored in the 

adhesive layer. Since the creep deformation is a stress-controlled process and the total 

stress is equal to the summation of deviatoric stress and hydrostatic stress, decreasing 

hydrostatic stress leads to an increase in the deviatoric stress inside the bulk PSA, as 

shown in Fig. 55. This results in a change in the creep rate during the creep debonding 

process. The higher the relative growth rate of the cavities, the faster the loss of 

geometric confinement, the quicker the release of hydrostatic stress and the more 

dramatic the change in the creep rate. 

 

Fig. 55. Schematic of change in hydrostatic σH and deviatoric σ' stress due to the 

mechanism of cavitation, cavity growth and fibrillation. Cavity initiation and growth 

decreases the geometric confinement of the adhesive layer, thus decreasing σH and 

increasing σ'. 

4.3.2 Effect of loading stress level: 

Fig. 57 shows the effect of loading stress level on the creep response of single-

layered PSA. The higher stress level (blue line, 70 KPa) reduces the time for cavitation 

but decreases the significance of the transition, as shown in Fig. 57. The drop in the 
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severity of the transition is speculated to be because of quicker release of hydrostatic 

stress after cavitation (higher hydrostatic stress, higher cavity growth rate). Therefore, 

the average creep rate in high-stress condition is twice as much as the low-stress 

condition. Higher stress around the cavities increases the expansion rate of the cavity 

but decreases the duration of the transition process.  

 

Fig. 56. Effects of stress-level on creep response of single-layered PSA bonded 

assembly at 70 °C 
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Fig. 57. Creep test result of single-layered PSA under 70 KPa and 70 °C 

4.3.3 Effect of bonded assembly geometry: 

The creep performance is not only influenced by the loading conditions but also 

affected by the geometry of the bonded assembly. For example, the creep resistance of 

the bonded assembly increases as the PSA layer thickness decreases (PSA footprint is 

controlled). Blue line Fig. 58 is the creep curve of 50 µm thick PSA, which is about 

40% of the thickness of the specimen shown in the red line. Compared to the thick 

sample, it takes much less time (about 30%) to initiate the cavitation in a thinner 

sample. Under the same footprint, confinement of thinner PSA is higher than thicker 

PSA. Therefore, the accumulation of hydrostatic stress is much easier in a thin sample 

than in a thick sample due to the Poisson’s contraction (same amount of hydrostatic 

stress level requires less deformation due to the higher aspect ratio). The higher 

hydrostatic stress causes earlier cavitation in thin PSA than in the thick PSA. After 

cavitation, the higher hydrostatic stress can drive the cavities expand faster. Hence, the 

time span for the transition in the creep curve of thin PSA is shorter than the thick one. 
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Fig. 58. Creep response of Thin PSA (50 µm) vs. Thick PSA (130 µm) PSA under 

loading conditions of 50 KPa and 70 °C 

4.3.4 Effect of substrate surface condition: 

The choice of substrate affects the cavitation process and hence affects the creep 

response.  The key features of the substrate are the interfacial wetting (characterized by 

the interfacial surface energy); and surface roughness.  As an example, Fig. 59 shows 

the effects of surface roughness on the creep of PSA bonded assemblies. In this result, 

the overall creep resistance decreases by about 65% as the surface roughness increases. 

The PSA bonded with a higher surface roughness substrate reaches the primary 

transition in a very short time. This is due to the highly rough surface resulting in more 

initial defects and less effective bonding area. Surface roughness shown non-

monotonic effect on the stress-strain behavior in the Part I of this series study. The 

results present in the current study are not enough to support the same surface 

roughness effects on the creep behavior as it on the stress-strain behavior. However, 

our predictive model, presents in the next section, still indicates the creep response has 

non-monotonic dependent on the surface roughness of bonding substrate. A more 

detailed empirical investigation on the relation between the substrate surface roughness 

and creep response of PSA bonded assembly will be conducted in the future work. 
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Fig. 59. Effect of surface roughness on the creep responses of PSA bonded with 

Aluminum substrate with different roughness (blue line, Ra=715Å; red line, 

Ra=3100Å) 

Compared to stress-strain response (Huang et al., 2015; Huang et al., 2016; Huang 

et al., 2017 and Chapter 3), the creep test is more sensitive to the interfacial bonding 

quality. When PSA is bonded with two rigid substrates, a random amount of air pockets 

can be trapped at the bonding interface. The trapped air at the bonding interface reduces 

the effective bonding area, as shown in Fig. 60, and therefore can affects the bonding 

quality. The actual local stress acting at the interface depends both on the load level 

and the effective bonding area. Such air pockets can lead to up to 30% variance in the 

actual stress level acting at the interface of the adhesive bonded assembly. 
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Fig. 60. Marco-voids (air trapped) at the bonding interface during the bonding 

process when PSA bonded with glass substrates. The dark region is the good bonding 

region, where adhesive wets well to the substrate; the grey region is the poor bonding 

region, where the adhesive does not wet the substrate, potentially due to trapped air. 

4.4 Creep predictive mechanistic model 

Creep deformation can be based on the ‘block’ model with the similar debonding 

mechanisms, which are cavitation, cavity growth, fibrillation, and interfacial slippage 

between adhesive and substrate. Competition between these mechanisms results in 

different rates of released hydrostatic stress stored in the bulk PSA and change of 

bonded assembly structural stiffness, therefore resulting in a change in creep resistance.  

The results of the creep tests will be simulated here, using this virtual testing model, to 

verify the ability of this model to reproduce the test results observed behavior.   

The model deformation is adopted from Yamaguchi’s ‘block’ model (Yamaguchi et 

al., 2006). Yamaguchi presented his ‘block’ model for stress-strain behavior of single-
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layered PSA, and we have further developed their model in the Part I of this series 

study and will modify it in this chapter for creep response. 

The elongation deformation is defined by the stretch ratio λ  and the global 

transverse deformation caused by Poisson’s effect is described by parameter C, as 

shown in Fig. 61. Some of the details of this modeling approach are presented in 

Chapter 2 and Chapter 3 of this study and are repeated here for completeness.  

Deformation of the block during the loading process is assumed to be parabolic.  The 

material point (ξ, ζ) moves to the spatial position (x, z), as described by the equations 

below. 

𝑥 = 𝑋𝑖 +
𝑊0𝜉

𝜆
+

𝐶𝑖

3
(1 − 12ζ2) 

(38) 

𝑧 = 𝐻0𝜆 (𝜁 +
1

2
) 

(39) 

where 𝑋𝑖 is the location of center of mass of block i, Ci is the parabolic value of block 

i, W0 and H0 are the initial width and height of block and λ is the stretch ratio. 

 

Fig. 61. Material coordinate and spatial coordination to describe the block motion and 

deformation 
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Most of the PSAs of interest in this study are highly ductile and capable of cavitation 

and fibrillation and can deform by more than 1000% of their original shape. Therefore, 

Green’s strain is used to describe the stretched PSA as it is accurate over large strains. 

The Green strain tensor for the 2D problem is defined as:  

𝐸 = [

1

2𝜆2
−

1

2
−

4𝐶

𝐻2𝜆
𝑍

−
4𝐶

𝐻2𝜆
𝑍

32𝐶2

𝐻4
𝑍2 + 𝜆2 − 1

] 

(40) 

where Z is the vertical axis in the block. Since we focus on the stress status near the 

bonding interface. 𝜁 = 0.5 or 𝜁 = −0.5  is used for evaluating both 𝜎𝑧𝑧 (zz-component 

of deviatoric stress) and 𝜎𝑠𝑖  (shear stress) at the interface between PSA block and 

substrate, as shown in Fig. 62. The velocity gradient under thin film assumption is now 

defined as: 

𝜕𝑣𝑥

𝜕𝑥
= −

2𝜆̇

𝜆
 

 

𝜕𝑣𝑥

𝜕𝑧
= −

8𝜉𝐶̇

𝜆(𝑡)
 

 

𝜕𝑣𝑧

𝜕𝑥
= −

8𝜉𝐶̇

𝜆(𝑡)
 

 

𝜕𝑣𝑧

𝜕𝑧
=

2𝜆̇

𝜆
 

(41) 

In the current model (as in the literature (Huang et al., 2015; Huang et al., 2016; 

Huang et al., 2017; Huang et al., 2018)), the width of the fibril is no longer the same as 

the width of the fibril foot, due to the interfacial mechanical locking. The width of the 

fibril body follows the volume conservation of an incompressible material (the bulk 
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PSA is modeled as an incompressible material) while the evolution of the contact length 

between the fibril foot and substrate follows the detachment model for stretched 

viscoelastic fibril proposed by Glassmaker (Glassmaker et al., 2008). Details of 

Glassmaker model were discussed in Chapter 3.  

 

Fig. 62. Force balance of i-th block. 𝑃𝑖 is the pressure in the region between block i-1 

and i. b is the parameter to identify the actual contact length between the fibril foot 

and bonding substrate 

4.4.1 PSA material constitutive model for creep: 

The PSA is light cross-linked and can be model by stand linear model. By combining 

the standard linear model and Green Strain. The constitutive law for bulk PSA is written 

as:  

(𝐺1 + 𝐺2)𝜎𝑧𝑧 + 𝜂𝜎̇𝑧𝑧 − 𝜂𝜎𝑧𝑧 (
2𝜆̇

𝜆
) = 𝐺1𝜂 (

2𝜆̇

𝜆
) +

1

2
𝐺1𝐺2(𝜆2 − 1)  (42) 

(𝐺1 + 𝐺2)𝜎𝑠𝑖 + 𝜂𝜎̇𝑠𝑖 − 𝜂𝜎𝑧𝑧 (
4𝐶̇

𝐻0𝜆
) = 𝐺1𝜂 (

4𝐶̇

𝐻0𝜆
) − 𝐺1𝐺2

4𝐶

𝐻2𝜆
  (43) 

Since the classic ‘block’ model was originally proposed for modeling stress-strain 

behavior of PSA bonded assemblies, the formulation needs some modification for 

capturing the creep response, due to the different loading histories of stress-strain and 
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creep tests. The evolution of creep deformation is highly dependent on the history of 

the stress components. Therefore, to obtain the full history of the deformation process, 

the initial stress ramp-up process, shown in Fig. 63, must be included in the creep 

model. In Phase I, the total stress of the entire PSA bonded assembly is ramped-up to 

the desired stress level for creep testing. The stress ramp-up phase is a strain-controlled 

process and is finished within a very short time. Then, in Phase II (constant-stress creep 

phase), the total stress accumulated at the last step of Phase I is maintained constant. 

Unlike the stress-strain process, creep deformation is a stress-controlled process. The 

numerical algorithm of the creep model is shown in Fig. 64.  

The same standard linear constitutive model is used for the bulk PSA, both during 

the initial ramp-up phase and also during the subsequent constant stress creep phase. 

The constitutive equations for each phase (displacement-controlled and stress-

controlled processes) are shown in Eqs. (44) and (33), respectively. Equations of stress 

and strain components along zz direction are shown. 
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Fig. 63. Initial stress ramp-up in creep test under different preset loading stress level. 

Targeted stress level is expected to apply on the test coupon within the first 3 seconds 

of the test. 

 

Fig. 64. Modeling algorithm of single-layered creep model 

𝜎̇𝑧𝑧 =
1

𝜂
(

1

2
𝐺1𝐺2(𝜆2 − 1) + (𝐺1 + 𝐺2)𝜂 (

2𝜆̇

𝜆
) + 𝜂𝜎𝑧𝑧 (

2𝜆̇

𝜆
) − 𝐺1𝜎𝑧𝑧)  (44) 

𝜆̇ =
𝜆

2𝜂(𝐺1+𝐺2+𝜎𝑧𝑧)
[𝐺1𝜎𝑧𝑧 + 𝜂𝜎̇𝑧𝑧 −

1

2
𝐺1𝐺2(𝜆2 − 1)]  (45) 

Cavitation criterion 

The stress level in creep testing is lower than in stress-strain testing under specific 

range of strain rate. However, plenty of cavities are still observed during the long-term 

creep deformation process. Therefore, in the creep model, the critical stress criterion is 
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no longer suitable for cavity initiation, because of the dominance of diffusion-induced 

cavitation. To account for this difference in Chapter 3, a strain-based cavitation 

criterion is used for the creep model. The threshold value of the strain for creep 

cavitation is deduced from the experimental results. 

Cavity growth criterion 

In creep deformation, there are two deformation regions. One is the far-field slow 

deformation region, which is in the bulk adhesive, far from the cavity, and the other is 

the near-field rapid deformation region, which is in the region near the cavity, 

especially when the cavity is in the initial rapid growth stage. Therefore, we assign 

different relaxation time, 𝜏0  and 𝜏∞, for these two fields where superscript 0 represents 

relaxation time under low strain rate and superscript ∞ represents relaxation time in 

the rapid deformation region. Therefore, when the deformation rate of bulk adhesive in 

the near-filed of the expanding cavities is larger than deformation rate of the bulk 

adhesive in the far-field of the cavities, the expansion of cavities in a standard linear 

viscoelastic medium is modified from the original form Eq. (13) and written by: 

𝑅̇ =
𝑅

4𝜂∞
(−𝑃𝑖 −

2𝛾

𝑅𝑖
−

𝐺

2
{5 − (

𝑅0𝑖

𝑅𝑖
)

4

− 4
𝑅0𝑖

𝑅𝑖
}) (46) 

where 𝛾 is the surface tension of the adhesive, 𝑅0𝑖 and 𝑅𝑖 are the initial and the current 

cavity radius, respectively, and 𝐺 is the modulus of the standard linear solid.  

When the cavity size is large enough, the growth rate of the cavity decreases. The 

deformation rate of the bulk adhesive in the near-field of the cavities become similar 

to bulk adhesive in the far-field, the expansion of cavities is defined by: 
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𝑅̇ =
𝑅

4𝜂0
(−𝑃𝑖 −

2𝛾

𝑅𝑖
−

𝐺

2
{5 − (

𝑅0𝑖

𝑅𝑖
)

4

− 4
𝑅0𝑖

𝑅𝑖
}), (47) 

Stress component in creep model 

The total stress during the stress ramping up process is  

𝜎𝑡𝑜𝑡,𝑧
𝑖 = 𝑃0 + (𝜎𝑧𝑧

𝑖 − 𝑃̅𝑖)𝑏𝑖 (48) 

where …̅ stands for the average over all blocks, 𝑏 represents the ratio of actual bonding 

area to the area of a substrate. 

In the constant stress creep process. The total stress is held constant from the last 

step of stress ramp up. The deviatoric stress component 𝜎𝑧𝑧 at the bonding interface 

evolves as follows:  

𝜎𝑧𝑧
𝑖 =

(𝜎𝑡𝑜𝑡,𝑧
𝑚 − 𝑃0)

𝑏𝑖
+ 𝑃̅𝑖 

(49) 

where superscript m represents the last step of initial stress ramps up. Total stress 

remains constant during the creep process. However, the partitioning between the 

hydrostatic stress and the deviatoric stress continuously evolves, leading to the change 

in the creep rate.  

4.4.2 Creep response of single-layered PSA bonded assembly: 

Fig. 65 shows the creep curve predicted by this model, for the parameter set from 

Table 1 with the constant loading stress of 50 KPa. Parameters with subscript * are 

used as reference metrics for the rest of the parametric studies. As seen, during the 

initial stages of deformation, there is a steady creep rate. As the cavitation initiates 

(approximately at a strain of 180%), we see a transient phase where the creep strain 

rate increases dramatically and reaches its peak within a very short period and then 
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decreases significantly and quickly stabilizes at a lower value close to that in the initial 

stage. The duration for this transient phase is about 10% of the total creep debonding 

process, while the corresponding creep strain accumulation during this transient phase 

is more than 70% of the total creep deformation. These values are consistent with the 

empirical results used for model calibration. MATLAB code for the single-layered 

creep model presents on Appendix A6. 

Table 2: Simulation parameters 

Parameter (unit) Value 

PSA thickness 𝐻0 (m) 1.3 × 10−4 

PSA width 𝑊0 (m) 7 × 10−3 

Stress level (Pa) 50000 

Relaxation time (s) 3000 

Elastic modulus 𝐺1, 𝐺2 (Pa) 35, 250 

Strain hardening coefficient  1.2 

PSA surface energy 𝛾𝑝 (mJ/m2) 0.03 

Substrate surface energy  𝛾𝑝 (mJ/m2) 0.06 

Initial cavity 𝑅𝑧
∗ (m) 4.3 × 10−7 

Roughness wavelength 𝑋𝑠 (m) 5 × 10−6 

PSA penetration parameter m 80 

Number of blocks 30 

Time step (s) 0.1 

Fig. 65 shows the prediction of creep response of single-layered PSA bonded 

assembly under a loading stress of 50 KPa. In this model, due to the use of rate-
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dependent viscosity, the viscosity around the cavities is 100 times lower than the 

viscosity in the rest of the bulk area. 

 

Fig. 65. Model prediction of creep response of PSA bonded assembly based on the 

parameter on Table 2 

4.4.3 Deformation and history of stress component: 

The corresponding history of relevant stress components is shown in Fig. 66. The 

loading force is the average far-field force applied on the bonding substrate and is 

maintained constant during the entire creep deformation. The hydrostatic part of the 

stress field dominates over the deviatoric part during the initial stage of the creep 

deformation due to the high geometric confinement. However, it starts decreasing as 

the stresses start relaxing due to cavitation initiation. By the end of the transition phase, 

more than 90% of the hydrostatic stress has been released. In contrast, the z-component 

of deviatoric stress starts to increase as the cavitation initiates and the rate of increase 

slows down towards the end of the transition phase (shown by the shaded region in Fig. 
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66). There is a noticeable increase in the z-component of deviatoric stress in the final 

stage of the creep response. The increment in the z-component of deviatoric part is due 

to the initiation of partial delamination between PSA fibril and bonding substrate. The 

delamination process decreases the actual length of the PSA fibril foot, thus increasing 

the actual stress acting in the adhesive fibril.  

 

Fig. 66. History plot of z-component of the deviatoric stress tensor and hydrostatic 

stress in the foot area of PSA fibril 

4.4.4 Effects of loading stress level: 

The creep stress is introduced by the rate-controlled stress-strain process. The stress 

ramp-up process is automatically terminated by the algorithm as the total force reaches 

the preset level for each creep test. This process is shown in Fig. 65, and affects the 

methods that are used to apply the external load or boundary condition. Fig. 67 shows 

the effects of loading stress level on creep model prediction. The transition under the 

high-stress level shifts to the end of the creep deformation. Which means that the 
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plateau region between the primary transition and the tertiary creep reduces as the stress 

level increases.  

 

Fig. 67. Effects of loading stress level on creep model prediction 

4.4.5 Effect of adhesive modulus and viscosity: 

Different PSA materials have different modulus and viscosities. The mechanistic 

model is sensitive to both sets of adhesive material properties. Fig. 68 clearly indicates 

that the creep curves for different viscosities of the adhesive exhibit different degrees 

of transition and different total creep strain histories for a given stress. Increases in the 

shear modulus of the adhesive leads to decreases the deformation during the transition 

process in the creep response. The lower the modulus, the softer the material, the more 

significant the strain you are expecting within the transition.  
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Fig. 68. Effects of adhesive modulus on creep model prediction 

Fig. 69 shows how the creep curve depends on the stress relaxation time τ (or 

viscosity, η) of the adhesive material. The time span for the primary transition 

decreases and the peak value of the creep rate during the primary transition increases 

with the increase of τ (or increase of η, when modulus E is controlled). The decrease in 

the time span is because the cavities in media with low relaxation time (low viscosity) 

expands faster than the cavities in media with high relaxation time (high viscosity). 

Thus, the transition can finish within a shorter period. 
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Fig. 69. Effects of PSA stress relaxation time on creep model prediction 

4.4.6 Effect of substrate surface roughness: 

In Chapter 3, non-monotonic dependent of stress-strain response on the bonding 

substrate surface roughness is discussed and included in the mechanistic model with 

simplified model for capturing the effects of surface topology on the effective bonding 

area and initial defect size. Up to a moderate level of roughness, surface roughness 

helps to increase the effective bonding area. Beyond a critical level of roughness, 

surface roughness can affect the size of initial interfacial defects (micro-voids) (Huang 

et al. 2018). Simulation results, Fig. 70, show that creep resistance of PSA bonded 

assemblies has a non-monotonic effect on the substrate surface roughness. Up to a 

moderate level of roughness, surface roughness helps to increase the creep resistance. 

The non-monotonic effect is due to larger effective bonding area and better interfacial 

mechanical locking. However, beyond a critical value, interfacial roughness can reduce 

the creep resistance by affecting the size of initial micro-voids at the bonding interface.  
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Fig. 70. Effect of substrate surface roughness on creep model prediction 

4.4.7 Effect of substrate surface free energy: 

Simulation results, as shown in Fig. 71, indicate that substrate surface free energy 

shows positive effects on the creep resistance. The adhesive wets better on the surface 

of substrates with higher surface energy, therefore increasing the adhesion strength and 

interfacial mechanical locking and decreasing the chance of premature fibril foot 

delamination during the deformation process.   
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Fig. 71. Effect of substrate surface free energy on creep model prediction  

4.5 Conclusion 

Multiphase creep response is observed when rigid substrates are bonded with highly 

ductile single-layered PSA. The transitions in the creep curve are the result of 

competition between mechanisms of softening due to cavitation and stiffening due to 

fibrillation during the debonding process. The interplay of these mechanisms is highly 

dependent on the adhesive properties and surface properties of the bonding substrate.  

A predictive mechanistic model, which is based on mechanisms of cavitation, the 

growth of cavities, fibrillation and interfacial mechanical locking, is presented to 

capture the tensile creep response of single-layered PSA/substrate bonded assemblies. 

The predictive model shares a similar modeling technique with the stress-strain model 

presented in Chapter 3 but uses a different algorithm due to the differences in the 

loading history. The proposed creep model is capable of reproducing the unique 

response of uniaxial creep of single-layered PSA bonded with rigid substrates. 
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Moreover, it is able to provide insights about the effects of PSA properties (modulus 

and viscosity) and substrate surface properties (surface free energy and roughness), on 

the creep response of PSA/substrate bonded assembly. Parametric studies using the 

predictive model are carried out to demonstrate the tunability and sensitivity of the 

creep model to different material and model parameters and the loading stress level as 

well. The model results can be used as creep constitutive model for single-layered PSA 

bonded assembly for commercial FEA tools (detailed approaches dicussed in Appendix 

A8) 
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Chapter 5. Stress-Strain and Creep Response of Assemblies Bonded with 

Double-Layered PSA 

5.1 Abstract 

The mechanical behavior, i.e. stress-strain and creep response, of adhesive bonded 

assemblies containing double-layered pressure sensitive adhesive (PSA) is investigated 

in this chapter, using a combination of experiments and mechanistic modeling. PSAs 

usually come in two laminated configurations: single-layered PSA (only a layer of 

adhesive) and double-layered (two adhesive layers on both sides of a thin carrier layer). 

Both configurations are widely used for packaging consumer electronic products 

because permanent bonds can be easily formed at room temperature, thereby avoiding 

thermal damage to the electronics during assembly. These devices are expected to 

experience complex hygro-thermo-mechanical loading conditions during their life 

cycle, so a thorough understanding of the mechanical behavior of PSA is necessary.  In 

this study we focus on the response to external mechanical loading only.  Mechanical 

behavior of single-layered PSA bonded assemblies has been presented by the Chapter 

3 and Chapter 4 and authors elsewhere in the literature (presents in in Chapter 1). This 

chapter focuses on the mechanical behavior of adhesive bonded assemblies using 

double-layered PSA. 

Compared to the single-layered PSA bonded assembly, double-layered PSA bonded 

assemblies show more complex mechanical behavior, such as multiple transitions in 

their stress-strain and creep curves. The severity of the secondary transition can 

increase with the thickness of the carrier layer. The reason for these secondary 

transitions is hypothesized to be due to nonuniform sequential cavitation of the 
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adhesive at each interface (interfaces with substrates and with carrier layer).  This 

nonuniformity may be influenced by (i) anomalies in the local surface wettability of 

the bonding substrate and carrier layer; (ii) variations in the flexural rigidity of the 

carrier layer due to variations in the thickness; and (iii) variations in the transverse 

constraint on the adhesive layer caused by variations in the in-plane stiffness of the 

carrier layer. The effect of flexural rigidity of the carrier layer is experimentally 

investigated, and a simplified mechanistic model based on the out-of-plane constraint 

from the carrier layer is developed.  The resulting displacement histories exhibited 

multiple transitions, which resulted in the transitions in the stress-strain and creep 

behavior. 

5.2 Introduction 

Double-layered PSA systems, as shown in Fig. 72, are used as widely as single-

layered PSA systems. In particular, the consumer micro-electronics industry uses a 

large number of PSA bonded assemblies for the construction of components. due to the 

ease of design, affordability, low processing temperature, and additional structural 

support from carrier layer. The presence of carrier layers can provide additional 

structural support or can act as a cushion for the assembly depending on what kind of 

carrier layer is used. 

PSAs are usually very soft, compliant, highly dissipative polymers, such as acrylics, 

butyl rubber, natural rubber, nitriles, etc. The carrier layer usually consists of a 

relatively stiff polyethylene terephthalate (PET) sheet or a relatively compliant 

polyurethane (PU) foam. Normally the PSA bonded assemblies show superior strength 

in shear direction but are more vulnerable to loading along the tensile (peel) direction. 
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In field applications, multiaxial stress states in the adhesive layer due to mechanical 

and thermal loading can result in critical deformation along its tensile direction. This 

study focuses on the mechanical response (short term stress-strain response and long-

term creep response) to uniaxial tensile stresses along the peel direction.  

Experiments (uniaxial tensile tests) of PSA bonded assemblies show significant 

differences in the stress-strain and creep behaviors between single-layered and double-

layered PSA systems. The main difference is that additional transitions in the stress-

strain and creep response are observed in double-layered PSA bonded assemblies. The 

additional transitions are believed to be due to staggered bimodal interfacial cavitation 

of the PSA adhesive at different interfaces (interfaces with the substrate layers and 

interfaces with the carrier layer). However, there is very limited literature on this unique 

multi-phase mechanical response of double-layered PSA bonded assemblies, i.e. 

multiple transitions in stress-strain and creep curves. Yamaguchi et al. indicated that 

the additional transition in the force-displacement curve during a tack test is caused by 

the bimodal force-displacement curves of the two adhesive layers and the bending of 

the inner film (Yamaguchi et al., 2008). They reported that this multi-modal force-

displacement behavior segments the PSA system into multiple asymmetric domains 

and that this phenomenon is very sensitive to the flexural rigidity of the carrier layer. 

Yamaguchi et al. have also proposed a simple ‘block’ model for single-layered PSA 

system, but do not attempt the modeling of double layered PSA bonded assemblies.  

Furthermore, their single-layered PSA model lacks some of the detailed physics needed 

to explain the full non-linear force-displacement curve of a PSA bonded assembly, as 

we have discussed elsewhere in Chapter 3.  
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Fig. 72. Schematic of double-layered PSA system and interested loading direction  

The previous chapters present how the bonding conditions, substrate surface 

properties, and adhesive material properties can affect the stress-strain and creep 

behaviors of single-layered PSA bonded assemblies. We also presented an advanced 

version of the single-layered ‘block’ model that is able to capture the unique 

characteristic features in the corresponding PSA/substrate assemblies.  

The purpose of this paper is first to extend the study to double-layered PSA bonded 

assemblies, by investigating the underlying physics of the debonding process of 

double-layered PSA bonded assemblies. We experimentally investigate the effects of 

carrier layer thickness and discuss the different failure sites. Then, the underlying 

physics is incorporated into the advanced ‘block’ model (proposed by us for the single-

layered PSA system) such that it captures the empirically observed additional 

transitions in the stress-strain and creep response of double-layered PSA bonded 

assemblies. As discussed above, this unique multi-phase stress-strain behavior is 

hypothesized to be due to nonuniform sequential cavitation in the bulk adhesive and at 

each interface (with substrates or with carrier layer).  This nonuniformity may be 

influenced by: (i) anomalies in the local surface wettability of the bonding substrate 

and carrier layer; (ii) variations in the flexural rigidity of the carrier layer due to 
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different thickness of carrier layer; and (iii) variations in the lateral constraint on the 

adhesive layer caused by the different in-plane stiffness of the carrier layer. The 

proposed double-layered ‘block’ model is able to mechanistically capture some 

characteristic features of the stress-strain and creep curves of double-layered PSA 

bonded assemblies, including a primary transition, a secondary transition, and strain 

hardening before and after the secondary transition. The modeled PSA behavior is 

based on the out-of-plane constraint provided by the carrier layer and nonuniform 

interfacial bonding strength at the interfaces with the carrier layer and substrate. The 

effect of the in-plane constraints (caused by the carrier layer) on the PSA stress field 

and on the resulting cavitation is deferred to future work. 

5.3 Experiment 

In this study, the configuration of the tensile test coupon is two aluminum substrates 

bonded together with a double-layered PSA system, as shown in Fig. 73. Three 

different carrier layer thicknesses are tested, 30, 80 and 130 µm, with a constant PSA 

thickness of 50 µm on both sides of carrier layer. Therefore, the total thickness of the 

double-layered PSA systems used in this study are 130, 180 and 230 μm, respectively. 

The bonded assembly has a square footprint of 7 mm x 7 mm. The adhesive material 

and substrate material are controlled parameters in this chapter of study. 

Uniaxial tensile tests are conducted on a commercial Dynamic Mechanical Analyzer 

(DMA). The loading rate in the displacement-controlled stress-strain test is 0.02 mm/s 

at room temperature. The loading condition of the stress-controlled creep test is 50 KPa 

at 70 ºC.  Such debonding conditions were proved to show the most pronounced effects 

of cavitation and fibrillation on the stress-strain and creep responses of selected single-
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layered PSA systems with the same adhesive material in the investigations in Chapter 

3 and Chapter 4. The controlled lamination conditions for preparing the test samples is 

room temperature, 45 psi bonding pressure, 45 s bonding time, and 72 hrs post-bonding 

aging at room temperature. The bonding conditions are determined by followed the 

protocol proposed in Appendix A1. A commercial adhesion promoter is used to 

improve the wettability of the bonding surfaces of the aluminum substrates. For the 

stress-strain test, five replicates are used; for creep test, three replicates are used.  

 

 

Fig. 73. Double-layered PSA system bonded with aluminum tabs  

Previous studies in this dissertation and literature (discussed in literature review in 

Chapter 2) indicated that there are more transitions in the stress-strain curves of double-

layered PSA bonded assemblies than of single-layered PSA bonded assemblies. 

Preliminary experiments in the present study also indicated the same for creep 

response.  The additional transition (sequential cavitation and fibrillation) is due to the 

additional bonding interface and mechanical constraints introduced by the carrier layer. 
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In this study, we focus on varying the flexural rigidity of carrier layer and thickness of 

the PSA layers to understand the effect on the stress-strain and creep response of PSA 

bonded assemblies. The flexural rigidity of the carrier layer increases nonlinearly with 

its thickness when the material properties are held constant. The effects of carrier layer 

surface properties, e.g. surface free energy and surface roughness will be addressed in 

the future work.  

5.3.1 Stress-strain behavior of double-layered PSA: 

Fig. 74 shows an average stress-strain curve with standard deviation, for the peak 

stresses during the primary and secondary transitions. The blue line is for PSA system 

with 130 μm carrier layer and the amber line is for PSA system with 30 μm carrier 

layer. The engineering strain value is estimated based on the PSA thickness, excluding 

carrier layer thickness. In other words, the assumption here is that the extension of the 

carrier layer in the loading direction is insignificant, compared to that in the PSA layers. 

As the carrier layer’s thickness increases, the variation of the stress-strain response 

increases, which is clearly shown by the standard deviation.  

Fig. 75 shows the variability of the secondary transition of the PSA bonded assembly 

with the thick carrier layer (130 µm). At the loading rate investigated here, the stress 

drops during the transition ranges from a nearly unobservable drop (red line) to about 

a 40% drop (green line). In contrast, the variability of the secondary transition of the 

PSA with the thin carrier layer (30 µm) is much smaller. This difference is caused by 

the lower flexural rigidity of the thinner carrier layer, which helps the carrier layer to 

deform and buckle locally, this reducing the effect of the global asymmetric 

deformation field seen for the thick carrier layer due to both the non-uniform initial 
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defects (micro-void) distribution and the non-uniform non-wetted area (macro-void) 

distribution at the bonding interface between PSA and substrate, as shown in Fig. 76, 

when PSA bonded to transparent glass substrate. In practice, macro-voids are formed 

during the bonding process due to random amounts of air trapped at the interface. This 

is very common when a thin layer of PSA is bonded with two rigid substrates. Besides 

that, the roughness pattern (which influences the initial defect distribution) of the two 

bonding substrates will not be identical and the adhesion strength of PSA/carrier 

interface could be different as well. Thus, the stress distribution in the two adhesive 

layers will not be the same and also the stress distribution will be non-uniform even 

within each adhesive layer. 

 

 

Fig. 74. Effect of carrier layer thicknesses on the stress-strain performance of PSA 

bonded assembly (carrier thickness: 30 vs.130 µm) 
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Fig. 75. Different response of secondary transition when PSA on thick carrier layer 

 

(a) 
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(b) 

Fig. 76. Initial macro void at the bonding interface between PSA and glass substrate: 

(a) at the corner region; (b) at the center region 

A thick carrier layer is not be able to flex sufficiently to accommodate the 

nonuniform stress distribution caused by the nonuniform cavitation rates in the two 

adhesive layers on either side of the carrier layer. When testing double-layered PSA 

with different carrier layer thickness, three cases are observed.  

Case I: When the carrier layer is thick and the initial voids are uniformly distributed 

over the bonded assembly footprint, cavitation occurs simultaneously over the entire 

footprint sequentially on both sides of the carrier layer, as shown in Fig. 77.  

Case II: When the carrier layer is thick, but the initial void distributions are nonuniform 

(for example, with macro-void at one side of the bonding interface, as shown in Fig. 76 

(a)) the resulting nonuniformity in the stress and deformation distribution could tilt the 

thick carrier layer, as shown in Fig. 78. In this example, the cavitation process initiates 

at one end of the bonding interface and propagates to the other. 
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Case III:  When the carrier layer is thin, it can flex enough to wrinkle due to transverse 

Poisson shrinkage of the PSA.  This generates local variations in the stress field that 

dilutes the effect of any global asymmetries in the stress fields, that may be caused by 

nonuniform cavitation rates.  As shown in Fig. 79, significant wrinkling of carrier layer, 

highlighted by dotted line, is caused by the non-identical stress in the upper and bottom 

layer of PSA.  These local variations in the stress field obscure the effects of global 

asymmetry, if any.  

The first case results in the most severe secondary transition in the stress-strain curve 

(green line in Fig. 75) because each layer of adhesive cavitates sequentially; the second 

case results in a less noticeable or non-noticeable secondary transition (red line in Fig. 

75). The third case generates more consistent stress-strain curve with mild secondary 

transition, as shown in orange line in Fig. 74, because the thinner carrier layer shows 

weaker effects on the stress-strain response of double-layered PSA bonded assembly. 

Besides, the initial defect distribution is hard to control, since it can be caused by both 

the roughness pattern of the bonding substrate and the size and location of the macro-

void at the interface between PSA and rigid substrate produced during the lamination 

process. Therefore, the magnitude of the secondary transition in stress-strain curves is 

influenced by both the initial defect distribution and the flexural rigidity of the carrier 

layer. 

The first case results in the most severe secondary transition in the stress-strain curve 

(green line in Fig. 75) because each layer of adhesive cavitates sequentially; the second 

case results in a less noticeable secondary transition (red line in Fig. 75). The third case 

generates more consistent stress-strain curve with mild secondary transition, as shown 
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in amber line in Fig. 74, because the thinner carrier layer shows weaker secondary 

transition on the stress-strain response of double-layered PSA bonded assembly. 

Besides, the initial defect distribution is hard to control, since it can be caused by both 

the roughness pattern (micro-void) of the bonding substrate and the size and location 

of the macro-void at the interface between PSA and rigid substrate produced during the 

lamination process. Therefore, the magnitude of the secondary transition in stress-strain 

curves is influenced by both the initial defect distribution and the flexural rigidity of 

the carrier layer. 

 

Fig. 77. Flat of thick carrier layer due to force balance by high flexible rigidity of 

thick carrier layer 

 

Fig. 78. Global tilted of thick carrier layer due to asymmetric stress distribution 
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Fig. 79. Wrinkling of thin carrier layered due to transverse Poisson contraction 

5.3.2 Creep of double-layered PSA: 

Fig. 80 shows the creep response of a select double-layered PSA system. Multiple 

transitions have divided the creep curve into several phases (as shown in the colored 

regions). The presence of carrier layer allows the subsequent hydrostatic stress release 

in the different adhesive layer. Therefore, compared to the creep curve of single-layered 

PSA, as shown in Fig. 81, additional transitions are shown in the creep curve of double-

layered PSA bonded assemblies. Similar to the stress-strain curve, the first transition, 

region II, in the creep curve is more pronounced with a more significant change in the 

slope, and the second transition, Region IV, is shallower. The creep rates in the 

different constant creep phase, Region I and III are also different. In Region V, the 

fibril foot starts to delaminate from the bonding substrate and loss adhesion. The 

adhesive bonded assembly will fail when the effective fibril foot area cannot sustain 

the pulling stress. 

Fig. 80 shows the creep response of a select double-layered PSA system. Multiple 

transitions have divided the creep curve into several phases (as shown in the colored 

regions). The amber regions are the transitions, the green regions are the intervening 
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steady-state regions.  The presence of the carrier layer allows the sequential cavitation 

and fibrillation the different adhesive layer on either side of carrier layer. Therefore, 

compared to the creep curve of a single-layered PSA bonded assembly, as shown in 

Fig. 81, additional transitions are shown in the creep curve of double-layered PSA 

bonded assemblies. As seen before in the stress-strain curve, the primary transition in 

the creep curve (Region II in Fig. 80) is more pronounced than the secondary transition 

(Region IV in Fig. 80), with a more significant change in the slope, and a more 

significant peak. The creep rates in the different constant creep phases (Regions I and 

III in Fig. 80) are also different. In region V, the fibril foot starts to delaminate from 

the bonding substrate and lose adhesion. The adhesive bonded assembly will fail when 

the effective fibril foot area cannot sustain the pulling stress. 

 

Fig. 80 Creep response of double-layered PSA bonded assembly 
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Fig. 81. Creep response of single-layered PSA bonded assembly 

Fig. 82 shows the effects of carrier layer thickness on the creep response of double-

layered PSA bonded assemblies. The overall creep resistance of the PSA system 

decreases as the carrier layer thickness increases. The reasons behind that are suspected 

to be due to the higher cavitation rate due to higher hydrostatic stress in the PSA system 

with the thicker carrier layer, caused by higher transverse resistance to Poisson 

deformation. The most significant feature of the better performance of PSA with the 

thin carrier is the extended Phase I, which lasts about twice as long as the PSA with the 

thick carrier layer, for the tested configuration. The higher hydrostatic stress causes 

earlier cavitation in PSA with thick carrier layer than in the PSA with the thin carrier 

layer. After cavitation, the rest of the phases in these two curves look similar. 
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Fig. 82. Effects of carrier layer thickness on creep response of double-layered PSA 

bonded assembly 

5.3.3 Delamination of PSA bonded assembly: 

Theoretically, there are three potential failure modes for adhesive bonding system: 

adhesive, cohesive, and mixed-mode. For this double-layered PSA system, the 

adhesive failure mode can be found both at the interface of PSA/substrate and the 

interface of PSA/carrier. Different failure modes are shown in Fig. 83, and all three 

potential failure modes are captured in such bonded assembly design. These failure 

modes indicate that the adhesive strength (for both PSA/substrate and PSA/carrier 

interfaces) and cohesive strength of the bonding system are comparable. Therefore, the 

final failure mode is hypothesized to be determined by the initial defect distribution at 

each bonding interface. For substrates with poorer surface conditions, adhesive failure 

at PSA/substrate interface is more prevalent due to the weaker adhesion strength.  

Studies of the failure mode of the double-layered PSA bonded assemblies indicate that 
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both interfacial (PSA/substrate and PSA/carrier) and bulk properties play a significant 

role throughout the debonding process of double-layered PSA bonded assemblies. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 83. Different failure modes of double-layered PSA bonded with aluminum 

substrate due to the variation of adhesion strength: (a) adhesive failure at PSA/carrier 

interface; (b) adhesive failure at PSA/substrate interface; (c) mixed mode failure; (d) 

cohesive failure 

5.4 Mechanistic model 

For single-layered PSA, the total elongation of the bonded assembly under tensile 

loading is almost the same as the elongation of the adhesive layer (stiffness of substrate 

is much larger than the stiffness of PSA). For double-layered PSAs, the total elongation 

of the bonded assembly is equal to the summation of the deformation in the two 

adhesive layers. The corresponding elongation of the substrate and carrier layer are 

negligible in comparison.  If the elongation of the adhesive layer has local 

nonuniformities (accommodate and enabled by wrinkling, flexure and  tilting of the 

carrier layer), the deformation field, initiation of cavitation and fibrillation in the two 

adhesive layers are different. The elongation of the adhesive layer can, therefore, 

become non-uniform if the carrier layer is able to accommodate and compensate for 

this non-uniformity, as shown in Fig. 79. The light amber dotted line in Fig. 79 is the 

carrier layer.  
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5.4.1 Stress-strain response of double-layered PSA bonded assembly: 

To model the additional physics introduced by the carrier layer, the earlier ‘block’ 

model proposed by Yamaguchi (Yamaguchi et al., 2006) and then improved by Chapter 

3 and Chapter 4 of this dissertation is further modified. The carrier layer and two 

adhesive layers are considerd with a segmental model configuration as shown in Fig. 

84. Each segment in this partitioned ‘block’ model uses a combination of bulk 

cavitation and interfacial cavitation.  In order to be consistent with the single-layered 

‘block’ model formulation, any nonuniform movement of the carrier layer along the 

loading direction has been simplified into piece-wise uniform movement of connected 

segments that are each capable of different movement in the loading (out-of-plane) 

direction. This model approximately captures (in a piece-wise linear sense) the 

deformation field in the loading direction due to global tilt (Case I) or global flexing 

(Case II) of the carrier layer caused by asymmeric cavitation rates discussed earlier.  

However, in thin carrier layers we also reported wrinking deformation (Case III) caused 

by compressive Poisson stresses in the transvers (in-plane) direction.  This transverse 

Possion compression mode is not included in the current version of the segmental block 

model,  Thus this model is more accurate for thick carrier layers and gradually loses 

accuracy as the carrier layer becomes thinner and more flexurally compliant. 

The constraint provided by the flexural rigidity of the carrier layer, for Cases I and 

II listed above is approximated with a piece-wise rigid carrier layer where, neighboring 

segments are now interconnected with out-of-plane linear springs of stiffness K, as 

shown in Fig. 84.  The stiffness K is estimated from the flexural rigidity of the carrier 

layer.  The displacement field of the spring (including the relative displacement of the 
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carrier segments) is now controlled both by the instantaneous force Fs and Fc of the 

adhesive layers and the stiffness K. In the schematic, subscript s stands for stiff 

segments of the adhesive that have not yet cavitated, while subscript c stands for the 

compliant segments of the adhesive after it has cavitated. The carrier layer is treated as 

a piecewise  rigid sheet in the current simplified segmented model because the modulus 

of the PET carrier layer is much larger than the modulus of the adhesive layer. 

 

 

Fig. 84. Schematic of model configuration for double-layered PSA showing 

segmented carrier layer 

The ‘compliant’ segments are the ones that cavitate first.  Hence these segments 

have larger initial interfacial defects with higher inter-defect spacing, at the bonding 

interface between PSA and substrate (lower cavitation energy used in the cavitation 

criterion). Conversely, the ‘stiff’ region (before cavitation) has a smaller but denser 

distribution of initial interfacial defects (higher cavitation energy used in the cavitation 

criterion and better geometric constraint). Thus, during the debonding process, the 

compliant regions cavitate first, resulting in a lowering of the stiffness of this region 

(between primary and secondary transition). This sequential (as opposed to 
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simultaneous) cavitation in the different segments of the adhesive layers is the key 

reason for the multiple transitions. The current double-layered model cannot handle the 

effects of interfacial conditions between the adheisve layer and the carrier layer, such 

as surface roughness and surface free energy of carrier layer. This limitations will be 

addressed in the future work.  To satisfy displacement continuity, the deformation of 

the linear spring K is equal to the displacement difference between the stiff and 

compliant adhesive layers. Therefore, the parameters required for this simplified 

double-layered model are listed in Table 3. Similar to the interface between the 

adhesive layer and the substrate (in the single-layered model), the interaction at the 

interface between PSA and carrier layer is controlled by the detachment of viscoelastic 

fibrils proposed by Glassmaker and his coworkers (Glassmaker et al., 2008). To verify 

the feasibility of this simplified approach, a coarse model, using only two segments, as 

shown in Fig. 84, is used to model the carrier layer in this paper. A generalized version 

with finer modeling methodology (using more segments for the carrier layer and 

control on the width of the segment due to the transvers Poisson’s shrinkage) would be 

able to improve the model accuracy by capturing more effects of the waviness of the 

carrier layer on the double-layered PSA bonded assembly. This will be discussed in 

future publications.  

Table 3: Simulation parameters for simplified double-layered model 

Parameters Unit 

PSA thickness m 

PSA width m 

Separation speed (stress-strain) m/s 
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Preset stress level (creep) Pa 

Relaxation time s 

Elastic modulus Pa 

PSA surface free energy mJ/m2 

Friction coefficient Pa s/m 

Initial cavity size (segment I) m 

Initial cavity size (segment II) m 

Initial length (segment I) m 

Initial length (segment II) m 

Block density (segment I) number/m 

Block density (segment II) number/m 

Stiffness of linear spring N/m 

Time step s 

The stress-strain and creep model for each adhesive region are presented in Chapter 

3 and Chapter 4. Geometric and meachnically constraints for double-layered model is 

defined by the equations as followed: 

𝛿̇𝑐 + 𝛿̇𝑠 = 𝛿̇𝑡𝑜𝑡 Eq. (50) 

𝛿𝑐 − 𝛿𝑠 = 𝛿 Eq. (51) 

𝐹𝑠 = 𝐹𝑐 + 𝐾𝛿 Eq. (52) 

𝐹𝑡𝑜𝑡 = 𝐹𝑠 + 𝐹𝑐 Eq. (53) 

The summation of the deformation of each adhesive layer should be the same as the 

total deformation of the entire PSA system, as indicated by Eq. (50). The length of the 

connected spring (to mimic the flexural rigidity of carrier layer) is governed by the 

difference in elongation between the ‘compliant’ region and the ‘stiff’ region, as 
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indicated by Eq. (51). The ‘compliant’ region and the ‘stiff’ region differed by the 

initial defect density at each bonding interface. Eq. (52) indicates the equilibrium force 

status of the two individual segments: the force in ‘stiff’ region is equal to the 

summation of the force in ‘compliant’ region and the linear spring. Also, the total force 

applied on the PSA system is equal to the total force of the ‘stiff’ region and ‘compliant’ 

region. For modeling algorithm of the stress-strain model, the displacement rate is the 

input and total deformation of the adhesive system will be updated in the first step of 

each iteration. Based on the Eq. (50), the model will assigned a different value for 𝛿̇𝑐 

and 𝛿̇𝑠 for the compliant and stiff region respectively. Each region iterates separately 

(iteration for each segment will follow the single-layered model) and generate the stress 

output 𝐹𝑐 and 𝐹𝑠 for the corresponding displacement input. Then the stress equilibrium 

in the system is evaluated. If the value 𝐹𝑠 in the current step is the same or very close 

to the value 𝐹𝑐 + 𝐾𝛿, then the current iteration is determined to have converged and the 

model advances to the next iteration step. However, if the difference between  𝐹𝑠 and 

𝐹𝑐 + 𝐾𝛿 is more than 0.2%, then the model has not yet converged and a new set of 𝛿𝑐 

and 𝛿𝑠  is assigned for the next trial. If 𝐹𝑠 > 𝐹𝑐 + 𝐾𝛿 , 𝛿̇𝑐
𝑖+1 = 𝛿𝑐

𝑖 + 0.5𝑖𝛿̇𝑡𝑜𝑡 ; 

converrsely if 𝐹𝑠 < 𝐹𝑐 + 𝐾𝛿, 𝛿̇𝑐
𝑖+1 = 𝛿𝑐

𝑖 − 0.5𝑖𝛿̇𝑡𝑜𝑡 , where i representd the ith trial in 

current iteration step. The detailed algorithm for the double-layered model is shown in 

Fig. 85. This section only talks about the mechnics introducted be the spring. The basic 

‘block’ model mechanics and equations are discussed in approaches in the Chapter 2. 
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Fig. 85. Modeling algorithm of double-layered stress-strain model 

Fig. 86 shows the model prediction of the simplified double-layered PSA bonded 

assembly stress-strain model. Multiple transitions are predicted in the stress-strain 

model throughout the entire debonding process, which corresponds to the empirical 

observation in Fig. 74. The stress increases rapidly in the initial stages due to the 

hydrostatic stress accumulated in the highly confined geometry due to the high aspect 

ratio (thickness versus length/width) of the PSA layer. The first drop of the stress value 

is due to the release of hydrostatic stress caused by cavitation initiation in the 

‘compliant’ region, which requires lower energy to initiate the cavitation process. After 

the primary transition, the stress starts to increase again due to the hardening from 

fibrillation and due to the vertical constraint provided by the spring connector. As the 

hydrostatic stress accumulates and exceeds the cavitation criterion in the ‘stiff’ region, 
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the cavitation process initiates in the ‘stiff’(noncavitated) region and results in the 

secondary transition of the stress-strain curve. Fibrillation process in the adhesive layer 

on both sides of the carrier layer results in the strain hardening in the late debonding 

region of the stress strain curve. 

 

Fig. 86. Sample of model prediction of the simplified double-layered stress-strain 

model  

The stress-strain response of each segment is shown in Fig. 87. At the initial 

debonding stage, stress in all adhesive regions increases monotonically as the strain 

increases. Deformation of the PSA system is schematically shown in Fig. 88 (a). The 

‘compliant’ region will first reach the cavitation criterion and release stress due to 

larger initial defects. This also decreases the stiffness of the entire double-layered PSA 

system and results in the primary transition in the stress-strain curve, as shown in Fig. 

86. After the primary transition, the displacement difference between the ‘stiff’ and 

‘compliant’ regions starts increasing, which is embodied by the stretch of the spring in 

Fig. 88 (b). Then due to the fibrillation process and out-of-plane constraint provided by 
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the spring, the PSA system starts gaining stiffness again and picks up stress in both 

adhesive layers as the deformation continues. The stretch of the spring reaches the 

maximum in this phase and it is shown in Fig. 88 (c). Then, the ‘stiff’ region reaches 

its cavitation stress and starts to cavitate and releases stress. This stress release causes 

the secondary transition in the stress-strain curve. After the secondary transition, the 

stiffness of the ‘stiff’ region decreases and the displacement difference between the 

‘stiff’ and ‘compliant’ regions starts decreasing, as shown in Fig. 88 (d). In the late 

debonding phase, both adhesive layers experience fibrillation process and result in 

strain hardening in the entire system. In this phase, the displacement difference between 

the ‘stiff’ and ‘compliant’ regions is back to a closed level, as shown in Fig. 88 (e). 

 

Fig. 87. Stress-strain response of ‘compliant’ region (amber line) and ‘stiff’ region 

(red line) during the debonding process of double-layered PSA systems 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 88. Schematic of simulation result of five deformation stages of double-layered 

PSA bonded assembly (for stress-strain deformation the dark blue represents the 

‘compliant’ region and the light blue represents the ‘stiff’ region; for creep 

deformation dark blue represents the ‘stiff’ region and the light blue represents the 

‘compliant’ region) at (a) small deformation ɛ=0.2 (Region I in Fig. 80); (b) during 

primary transition ɛ=2 (cavitation in ‘compliant’ region); (c) spring reaches 
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maximum deformation; (d) during secondary transition (cavitation in ‘stiff’ region 

and fibrillation in ‘compliant’ region); (e) ɛ=8 (fibrillation in both regions) 

5.4.2 Creep response of double-layered PSA bonded assembly:   

The detailed algorithm for creep deformation under constant stress for a double-

layered PSA bonded assembly is shown in Fig. 89. It is similar to the algorithm for the 

stress-strain behavior but with different loading history. The creep model includes the 

loading history from stress ramp-up (displacement-controlled) to creep (stress-

controlled). Since the creep phase is controlled by stress and the stress level for the 

entire system is constant, based on Eq. (53), the model assigns different stress values 

to the ‘stiff’ and the ‘compliant’ regions, and then check if the assigned values fulfill 

the relationship of Eq. (51). This results in the values of 𝐹𝑠 and 𝐹𝑐 being controlled by 

the elongation of the linear spring. For each step, there is one specific deflection of the 

spring, 𝛿, between zero and the total displacement of the PSA system of the current 

step, that ensures the system satisfies all four equations. The strain equilibrium status 

in the system is evaluated. If the difference between 𝛿𝑐 and 𝛿𝑠 + 𝛿 in the current step 

is less than 1%, then the current step is determined to have converged and the model 

advances to the next iteration. However, if the difference between 𝛿𝑐  and 𝛿𝑠 + 𝛿 is 

greater than 0.2%, the model is determined as failed to converge.  Then a new value is 

assigned to 𝛿 for the next trial. The detailed algorithm for the double-layered PSA 

bonded assembly creep model is shown in Fig. 89. 
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Fig. 89. Modeling algorithm of double-layered creep model 

Fig. 90 shows the model prediction of creep response of double-layered PSA system 

and corresponding creep rate. The double-layered model can reproduce the multiphase 

creep response that has been observed in the empirical measurement, as shown in Fig. 

80. The first increase of the creep rate is due to the stress migration from the hydrostatic 

part to the deviatoric part casused by cavity initiation and growth in the ‘compliant’ 

region. The second increase of the creep rate is due to the stress migration in the ‘stiff’ 

region. Due to the reduced portion of ‘stiff’, non-cavitated regions, the secondary 

transition is not as significant as the primary transition.  
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Fig. 90. Predictive model prediction of double-layered PSA bonded assembly creep 

response 

The corresponding history of deviatoric stress in the ‘stiff’ and ‘compliant’ segments 

is shown in Fig. 91. Before primary transition (cavitation), deviatoric stresses in all 

adhesive regions increase monotonically as the creep strain increases, shown in stage 

(a) in Fig. 88. However, after the primary transition (early cavitation in the ‘stiff” region 

due to higher hydrostatic stress), the deviatoric stress in the ‘stiff’ region increases 

dramatically due to the constant force loading condition and the release of hydrostatic 

stress caused by the cavitation process. The instantaneous stiffness of the ‘stiff’ region 

decreases and thus accumulates more creep deformation than the ‘compliant’ (non-

cavitated) region, shown as Fig. 88(b). Therefore, the deviatoric stress increases 

dramatically in this phase, as shown in the red block in Fig. 91. Meanwhile, the strain 

of ‘compliant’ region decreases slightly due to the imbalance of stiffness of the two 

regions in caused by the softening of the ‘stiff’ region after cavitation. The unbalanced 

stiffness in two regions leads to an increasing displacement difference between the 
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‘stiff’ and ‘compliant’ regions. As the fibrillation process in the ‘stiff’ region begins, 

the ‘stiff’ region starts gaining stiffness again (strain hardening). Then the deviatoric 

stress of the ‘compliant’ region slowly increases due to the fibrillation process in the 

‘stiff’ region and out-of-plane constraint provided by the spring connector. The 

difference in the creep deformation between the two segments reaches the maximum 

in this phase, as shown in Fig. 88(c). When the ‘compliant’ region reaches the 

cavitation criterion, the same procedure that happened in ‘stiff’ region now happens in 

the ‘compliant’ region. The displacement difference between the ‘stiff’ and ‘compliant’ 

regions, Fig. 88(d), starts decreasing as the stiffness of ‘compliant’ region decreases 

due to the cavitation process. Then, in Fig. 88(e), the difference in deformation between 

the two segments decreases to a minimum, and the increment of deviatoric stress in the 

late debonding stage is due to fibrillation in both adhesive layers.   

 

Fig. 91. History of zz-component deviatoric stress (true stress) in bulk adhesive of 

‘stiff’ and ‘compliant’ regions during debonding process.  
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5.5 Conclusion 

This chapter has focused on the complex stress-strain and creep response of multi-

layered sandwich systems, specifically double-layered PSA systems bonded with two 

rigid substrates (substrate/PSA/carrier/PSA/substrate). During experiments, we have 

observed multiple transitions in both stress-strain and creep curves. These transitions 

are due to the competition between the mechanisms of cavitation, fibrillation, and 

interfacial mechanical locking in the PSAs on both sides of the carrier layer. 

Experimental results indicate that the thickness of carrier layer has a significant effect 

on both stress-strain and creep responses by affecting the geometric confinement of the 

adhesive system. The PSA system with a thin carrier layer has enough flexibility to 

accommodate the stress distribution in the adhesive due to uneven defects at the 

bonding interface. However, the PSA system with thick carrier layer has less flexibility 

and can better retain the geometric confinement during the debonding process. 

Therefore, a more wavy pattern is observed in the PSA system with the thin carrier 

layer, but the local pattern disappears as the thickness of carrier layer is increased. A 

predictive mechanistic model, based on simplified debonding mecahnisms of double-

layered PSA bonded assembly, is developed. The modeling algorithm assumes the 

geometric constraint provided by the carrier layer can balance the stress difference 

between the regions with different initial defect distributions. The model is able to 

capture the secondary transition in the stress-strain and creep curve by balancing the 

force between the ‘stiff’ and ‘compliant’ segments of PSA bonded assembly through a 

linear spring connector, which represents the out-of-plane, flexural rigidity of the 

carrier layer. 
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Chapter 6. Discussion and Summary 

The major objective of this dissertation study was to gain insights into the 

mechanical behavior of pressure sensitive adhesives (PSAs), using a combination of 

parametric experimentation and mechanistic modeling.  The first step was to develop a 

methodology for identifying preferred bonding conditions for selected combinations of 

PSA/substrate, which could then be used as a guideline to prepare the samples for 

experimentation. Tensile tests were conducted on selected PSA bonded assemblies to 

gain in-depth understanding of the physics of the complex multi-phase mechanical 

behavior of PSA materials with and without carrier layers. A predictive mechanistic 

model (enhanced ‘block’ model) was developed, based on the observed physics, to 

enable mechanistic prediction of the stress-strain and creep behaviors of PSA bonded 

assemblies. This model proved to be capable of providing reasonable predictions of the 

tensile stress-strain behavior and creep behavior of bonded assemblies consisting of 

substrates bonded with single-layered PSA materials. An overall discussion about the 

conclusions and outcomes of this dissertation is provided in Section 6.1. In Section 6.2, 

the contributions of the dissertation are highlighted. Finally, the limitations of the 

current study and recommendation for future work are discussed in Section 6.3.  
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6.1 Conclusions 

Empirical investigations of the tensile mechanical behavior of selected single and 

double-layered bonded assembly reveal that: 

1. Different PSA/substrate combinations require different bonding combinations 

(bonding stress, bonding time, bonding temperature and post bonding aging time) 

to obtain desired bonded assembly performance. 

2. As the operating temperature increases, the bonding strength, creep resistance, 

and delamination strain decrease, and the variability of the stress-strain and creep 

performance of PSA bonded assembly increases. 

3. Debonding mechanisms of stress-strain and creep behavior of single and double-

layered PSA bonded assemblies: 

3.1. Primary transitions in stress-strain and creep responses are due to cavitation 

and fibrillation.  

3.2. Secondary transition due to sequential cavitation and fibrillation in double-

layered PSA bonded assembly; degree of secondary transition is dependent 

on the global and local flex of carrier layer. 

3.3. Interfacial delamination due to receding of fibril foot; receding rate is 

dependent on the surface properties of bonding substrate. 

4. Effects of PSA configuration on mechanical performance of PSA bonded 

assembly:  

4.1. Presence of carrier layer results in additional transitions in the stress-strain 

and creep curve of PSA bonded assemblies, resulting in a primary 

transition and a secondary transition. 
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4.2. An increase in PSA thickness leads to increase in primary peak and ultimate 

bond strength but decreases in ductility. 

4.3. A double-layered PSA bonded assembly shows lower ductility than single-

layered PSA bonded assemblies. 

4.4. Buckling of thin carrier layers due to transverse Poisson’s shrinkage results 

in non-identical stress distribution in the adhesive layers on both sides of the 

carrier layer. 

4.5. An increase in thickness of PSA carrier layer leads to a decrease in severity 

of the secondary transitions in the stress-strain curve. 

4.6. An increase in thickness of PSA carrier layer leads to a decrease in creep 

resistance. 

5. Effects of surface condition (surface roughness and surface free energy) of the 

substrate on mechanical tensile performance of PSA bonded assembly:  

5.1. Increase in surface roughness results in a decrease in the peak strength, 

plateau strength, ultimate ngth, and therefore decreased work of adhesion, in 

tensile stress-strain tests 

5.2. Tensile stress-strain response shows non-monotonic dependence on the 

surface roughness of bonding substrate. The bonding strength, peak strength 

and ultimate strength, has a non-monotonic dependence on the surface 

roughness of the substrate, slowly increasing to a maximum value at a critical 

roughness and dropping again as the surface roughness is further increased. 

The critical roughness value and the maximum bonding strength both depend 

on the combination of PSA and substrate. 
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5.3. Tensile stress-strain response shows non-monotonic dependence on the 

surface free energy of the bonding substrate. PSA bonded assembly 

achieves optimal interfacial bonding energy and bonding performance when 

substrate surface free energy is slightly higher than the adhesive surface free 

energy. 

The mechanistic modeling approaches developed for the mechanical tensile response 

(stress-strain behavior and creep behavior) of a single-layered PSA-bonded assembly 

are now able to:  

1. Capture the major characteristic features including the primary transition and 

strain hardening in the stress-strain and creep behavior of single-layered PSA 

bonded assembly 

2. Quantitatively evaluate the non-monotonic dependence of tensile stress-strain 

and creep response of PSA bonded assemblies on the substrate surface roughness 

3. Quantitatively evaluate the non-monotonic dependence of tensile stress-strain 

and creep response of PSA bonded assemblies on the substrate surface free energy 

4. Predict the delamination strength and strain observed in tensile stress-strain tests  

5. Predict the delamination rupture strain and rupture time observed in tensile creep 

tests 

The mechanistic modeling approach developed for the tensile mechanical response of 

double-layered PSA-bonded assemblies is now able to:  

1. Capture the primary and secondary transitions, and strain hardening in the stress-

strain and creep behavior of double-layered PSA bonded assemblies 
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2. Partially capture the effect of carrier layer flexural rigidity (out-of-plane 

constraint) on the stress-strain and creep response of double-layered PSA bonded 

assemblies 

3. Evaluate the effects of loading rate and temperature on the stress-strain curves of 

double-layered PSA bonded assemblies 

4. Evaluate the effects of loading stress level and temperature on the creep curves 

of double-layered PSA bonded assemblies 
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6.2 Contributions 

1. A comprehensive study has been conducted to understand the uniaxial stress-strain 

behavior of single and double-layered PSA bonded assemblies with extended post-

bonding aging time 

1.1. Comprehensive understanding on the effects of post-bonding aging time on the 

interfacial adhesion of PSA bonded assemblies. 

1.2. Optical observation to understand the effects of post-bonding aging time on 

the size of macro-voids. 

1.3. Numerical method to investigate the effects of macro-voids on the bonding 

strength of adhesive bonded assemblies. 

1.4. Method to rank the stress-strain performance of PSA bonded assembly with 

extended post-bonding aging time based on the peak strength, ultimate strength, 

toughness, and creep resistance.  

1.5. First study to investigate the potential failure modes of double-layered PSA 

bonded assemblies. 

2. First detailed study to provide a fundamental understanding of uniaxial creep 

response of single and double-layered PSA bonded flat rigid substrates  

2.1. Most comprehensive experimental results to date, on the unique multi-phase 

creep response of single and double-layered PSA bonding assemblies under 

various conditions 

 Effects of loading stress level and temperature 

 Effects of PSA system’s configuration 

 Effects of bonding substrate surface roughness and surface free energy 
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2.2. Explicit demonstration and understanding of the mechanism of sequential 

cavitation and fibrillation behind the multi-phase and multi-transition creep 

curve, that was not available in the literature before this study. 

3. Comprehensive experimental and numerical studies to investigate the role of 

carrier layer on the stress-strain and creep behavior of double-layered PSA bonded 

assembly. 

3.1. Influence of carrier layer flexural rigidity on the stress-strain and creep 

response of double-layered PSA bonded assembly 

3.1.1. Primary and secondary transition in the stress-strain and creep curve 

3.1.2. Overall creep resistance  

3.2. In-situ real-time observation discloses the combine of local and global flex of 

carrier layer in the debonding process of a double-layered PSA bonded 

assembly. 

4. Improved tensile stress-strain model of single-layered PSA bonded assembly  

4.1. Quantitatively estimates the effect of substrate surface roughness and surface 

free energy on the stress-strain response in single-layered PSA bonded 

assembly.  

4.2. Includes cavitation criterion to control the initiation/nucleation and growth of 

interfacial defects and initiation/nucleation of bulk cavities. 

4.3. Provides quantitative estimate of the delamination strain and strength. 

5. First mechanism-based modeling approach for tensile creep response of single-

layered PSA bonded assemblies 

5.1. Quantitatively captures the transition caused by the cavitation and fibrillation. 
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5.2. Quantitatively estimates the creep rupture time. 

5.3. Quantitatively evaluates the effect of substrate surface free energy and 

substrate surface roughness on the creep response of single-layered PSA 

bonded assembly. 

6. First mechanism-based modeling approach for tensile stress-strain and tensile 

creep response of double-layered PSA bonded assemblies 

6.1. Major characteristic features show reasonable agreement to the empirical 

observation. 

6.2. Qualitatively reproduces the additional phases and transition in the stress-strain 

and creep curve. 

6.3. Approximately captures the dependence of tensile mechanical response on the 

flexural rigidity of the carrier layer.  

In summary, the contributions of this dissertation are new and more comprehensive 

understanding of the mechanical stress-strain and creep response of single and double-

layered PSA bonding assemblies, based on experimental observations and mechanistic 

modeling. The model has the benefits of providing: (i) parametric insights into the 

mechanical behavior of PSA-bonded assemblies as a function of various bonded 

assembly features and loading conditions; (ii) a virtual testing capability to supplement 

expensive and time-consuming physical testing; and (iii)  the potential to be utilized 

for real-time prognostics and health management, based on continuous real-time 

calibration and updates in functional joins, to estimate the residual life of mechanically 

loaded bonded assemblies that are bonded with PSA material systems.   
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6.3 Limitations & future work 

Experimental limitations and future work 

1. Macro-voids at the bonding interface: macro-voids in the current study are only 

considered as a factor that causes variation in the stress-strain and creep response.  

1.1. Empirical investigation will help to reveal the effects of Marco-voids (size 

and location) on the geometric confinement of single and double-layered 

PSA bonded assembly 

1.2. Finite element method to understand the effects of location and size of 

macro-voids on the hydrostatic stress status in the adhesive layer 

2. Effects of loading conditions on the stress-strain and creep performance of PSA 

bonded assemblies are not fully understood. 

2.1. Additional mechanical test under different temperature to understand the 

temperature dependent material property and debonding mechanism. 

2.2. Additional mechanical test under different loading rate to understand the 

loading rate dependent material property and debonding mechanism. 

3. Effects of carrier layer on stress-strain and creep performance of PSA bonded 

assemblies: Empirical investigation focus only on the out-of-plane constraint 

provided by the carrier layer along the loading direction 

3.1. Different in-plane constraint due to the flexural rigidity of carrier layer 

3.2. Interfacial interaction between PSA and carrier layer 

Modeling limitations and future work 

1. Material property: some model parameters used in the simulation are assumed to 

be linearly rate-dependent and temperature-dependent; they should be modeled in 
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stress-strain and creep simulation with more accurate nonlinear temperature and 

rate dependence instead of linearized dependence.  

2. Control of the number of cavities: a cavity starts forming within the adhesive layer 

or the interface between adhesive and substrate when the hydrostatic stress 

exceeds the threshold value. In this dissertation study, the number of cavities is 

pre-set. 

2.1. Detailed study of the influence of the density of blocks on model outputs will 

improve the completeness of the stress-strain and creep models. 

2.2. Defining the number of cavities by the current stress state and defect 

distribution will help in forming a more comprehensive mechanistic model. 

3. Degradation of PSA material properties: products which contain PSA bonded 

assemblies in field applications are expected to have a long-life cycle. Including 

the degradation history of material properties, such as modulus and viscosity, will 

help the mechanistic model in estimating the residual life of the PSA bonded 

assemblies. 

4. Cavitation and cavity growth criteria can be enhanced in the mechanistic creep 

model 

4.1. A stress-dependent, diffusion-driven cavitation criterion will improve the 

accuracy of the creep model 

4.2. Rate dependent material properties of adhesive in the near-field of the cavity 

will help to better capture the cavity growth during the creep deformation 

process. 
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5. Application of the stress-strain and creep mechanistic model is limited to the 

tensile loading not for shear loading.  

6. Interfacial friction between the adhesive and the substrate is suggested to be 

improved by 

6.1. non-linear dependence on the substrate surface free energy  

6.2. non-linear dependence on the substrate roughness  

7. Effects of carrier layer properties: the double-layered model focuses only on the 

out-of-plane constraint provided by the carrier layer along the loading direction.  

7.1. Including the in-plane constraint of the carrier layer in the simulation will 

help better estimate the transverse Poisson deformation in the PSA materials 

and also the degree of flexural deformation of the carrier layer due to 

buckling effects. 

7.2. Including the in-plane constraint of the carrier layer in the simulation would 

help better estimate the accumulation of hydrostatic stress in the adhesive 

layer, thus improving the evaluation of the cavitation initiation of double-

layered PSA bonded assembly. 

7.3. Detailed empirical study of the interfacial slippage between PSA and carrier 

layer will further improve the understanding on the effects of carrier layer 

on the mechanical performance of the double-layered PSA bonded 

assemblies. 
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Appendices 

A1: Identification of Preferred Bonding Conditions 

PSA bonded assembly performance is affected by how it has been fabricated. The 

objective of this step is to understand the effects of different bonding conditions on the 

selected PSA system and determining a set of acceptable bonding parameters for 

fabricating PSA bonding assemblies for mechanical characterization. The acceptable 

bonding combination is not the optimal bonding combination for the PSA material. It 

is a set of selected bonding parameters after balancing the sample fabrication duration 

and cost for this study.  This exclusive fabrication combination will be applied to bond 

PSA bonded assemblies through this study. 

Effects of bonding parameters 

The mechanical performance of PSA bonded assemblies highly depends on their 

fabrication conditions, including bonding temperature, bonding time, bonding pressure, 

and post bonding aging time. The purpose of this phrase study is to carry out a 

methodology for identifying the desired fabrication conditions. 

As shown in the Fig. 92, two aluminum T-shape tab are gripped in the upper and 

lower arm of DMA. The PSA sheet will first be mounted on one side of tab. Then DMA 

will apply the preset bonding condition, known as bonding time, pressure and 

temperature, to form a permanent bond between PSA and two aluminum tab. The after-

bonding specimens will be aged at room temperature for selected duration, known as 

post bonding aging time, before the sample is ready for the tensile test. In this study, 

five samples are tested for each combination of bonding parameters. The tensile test 
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for studying the effects of fabrication conditions are also conducted by DMA with 

constant loading rate 2 µm/s at room temperature. An acceptable combination of 

bonding parameters will be screened out based on the tensile test result. The acceptable 

bonding combination should able to fabricate the specimen with maximum tensile 

strength and toughness within acceptable operational time. The acceptable bonding 

combination will be used to bond all the samples with this specific PSA system through 

this dissertation study. Test matrix for this study is shown in Table 4. The combination 

of bonding parameters will be chosen from this table. For example, one candidate 

bonding combination is bonding pressure 15 Psi, bonding duration 10 second, post 

bonding aging time 0 hours, at room temperature. Theoretically, to find out the 

acceptable bonding parameter within those combinations, there are total 36 different 

combinations will be evaluated. To reduce the amount of test, an arrangement of 

parametric study was being used. Details will be discussed in next. 

In this phrase, a methodology of determining the desirable fabrication conditions for 

the PSA bonded assemblies is developed based on the parametric studies of the effects 

of different bonding conditions on the PSA bonded assemblies’ mechanical 

performance, particularly refers to the stress-strain behavior in this part’s study. 
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Fig. 92 Schematic of PSA bonded assembly in tester  

Table 4: Test matrix for desired fabrication conditions identification 

Bonding Pressure 

15 Psi 30 Psi 45 Psi 

Bonding Time 

10 second 30 second 60 second 

Post Bonding Aging Time 

0 hours 24 hours 

Bonding Temperature 

Room Temperature 50 °C 

Effects of bonding pressure and post bonding aging time 

There are many different bonding conditions that can affect the mechanical 

performance of PSA bonded assemblies. In this phase of study, the effects of the 

bonding pressure and post bonding aging time will first be investigated. There are two 

reasons for selecting these two parameters to study firstly. First, as the way that PSA 
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been named, it is very sensitive to the applied pressure. Thus, study the effects bonding 

pressure will become a priority for any kinds of PSA system; second, in order to 

distinguish with the probe tack test, a very popular standard test method for analyzing 

the tack performance of the PSA bonded assemblies, the effects of the post-bonding 

aging time have been proposed. Because the longer the post-bonding aging time, the 

better adhesive can wet on the bonding substrate, and therefore, to form a stronger 

bond. The result of the parametric studies of different combinations of bonding pressure 

and aging time on strength and ductility is shown in Fig. 93 (a) and (b). In general, 

increasing the aging time is found to increases the strength and ductility. However, the 

ultimate tensile strength and ductility seem to be saturated after the aging time excess 

24 hours. Generally, the PSA bonded assemblies that have longer post bonding aging 

time has the better mechanical performance than those do not have. However, to keep 

the aging time within practical limit, all the test specimens are selected to be aged for 

24 hours. At this aging period, the ultimate strength and ductility reached a saturation 

limit at about 30 Psi and further increase in the bonding pressure provided negligible 

effects on the sample’s strength and ductility. Based on these parametric insights, the 

bonding pressure was selected to be 30 psi. The bonding pressure and post-bonding 

aging time determined in this section are used for fabricating all PSA bonded 

assemblies with this selected PSA. 
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(a) 

 

(b) 

Fig. 93 Effect of bonding pressure and post aging time on PSA bonded assemblies: 

(a) ultimate tensile stress (b) ductility 

Effects of bonding temperature 

Effects of bonding temperature has been studied after the bonding pressure and post 

bonding aging time were determined. The selected bonding temperatures are room 
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temperature (25 °C) and 50 °C. The test results are shown as Fig. 94. A statistically 

significant test has been conducted based on the experimental data to evaluate the 

significant of difference between two test groups. It shows that the significant of the 

difference of the ultimate tensile stress due to the different bonding temperature is less 

than 95% (detail for determining the significance see Appendix II). Therefore, the 

ultimate tensile stress is considered as not sensitive to the bonding temperature. 

However, the significant of difference of ductility between two bonding temperature is 

over 95%, but the value of difference is very small. Therefore, the ductility is 

considered slightly dependent on the bonding temperature. 

 

Fig. 94 Effects of bonding temperature on the PSA bonded assembly strength and 

ductility 

Effects of contact duration 

Similar to the bonding time investigation. The effects of bonding temperature has 

also been studied with the pre-determined bonding pressure and post-bonding aging 
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time. The candidate bonding time are 10 s and 30 s. According to the experimental 

result, shown in Fig. 95, and statistical significance test (details in Appendix II) 

indicates that the , the selected bonding time has insignificant effects on the 

performance of PSA bonded assemblies when the sample bonded at 30 Psi and aged 

for 24 hours. Therefore, in interests of reliability, 30 s bonding time is selected as an 

acceptable bonding time for this kind of PSA. 

 

Fig. 95 Effects of contact time on the PSA bonded assembly strength and ductility 

Based on the methodology discussed above, the acceptable fabrication conditions 

for this specific PSA system are: bonding pressure: 30 Psi, bonding time: 30 s, bonding 

temperature: room temperature (~25 °C) and post-bonding aging time: 24 hours. The 

acceptable fabrication conditions determined in this phase is only applicable for the 

selected PSA systems used for the experiment. For other kinds of PSA materials or 

PSA systems, the desired fabrication conditions maybe vary, but can also be 

determined by follow the same routine. 



163 

 

A2: Finite Element Modeling the Effect of Carrier Layer Thickness on Deformation of 

Double-Layered PSA Bonded Assemblies 

The variations of the stress-strain response between PSA systems show noticeable 

dependence on the thickness of carrier layer. Deformation of carrier layer during the 

debonding process will give important information about the physics behind the 

difference in the stress-strain response. Figure 5 and 6 are the real time side view of the 

PSA with thin carrier layer and thick carrier layer under tension and before secondary 

drop in their stress-strain curves. Clearly, through the comparison between the thin and 

the thick layer sample, the thinner one has more server deformation of the carrier layer 

and formed waviness pattern while the thicker one remains flat. The waviness of the 

thin carrier layer enables local flex to accommodate the non-uniform stress distribution 

in top and bottom adhesive layers caused by non-identical initial interfacial defeats 

distribution. Thus, allowing the cavitation initial non-simultaneously at different region 

of the interface. Therefore, minimize the release rate of the hydrostatic stress in unit 

area and decrease the severity of secondary transition in stress-strain response.  

 

Fig. 96 Wavy carrier layer during debonding process (thin carrier) 
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Higher stiffness of the thicker carrier layer decreases its deformity and remains the 

carrier layer in flat during the debonding process. The flatness of carrier layer can 

average the stress distribution in the adhesive layer (not able to accommodate the non-

uniform distribution) and offer higher in-plane constraint on the adhesive layer (no 

wrinkled carrier observed). Therefore, it allows the cavitation occurs over the entire 

footprint on both side of adhesive layer. However, if the roughness distribution in 

substrate is much higher on one side than the other side. The stress distribution could 

tilt the carrier layer, as shown in Fig. 98, and result in the least sever secondary 

transition. In this particular sample, the cavitation initiated at one end of the bonding 

interface and propagated to the other end.  

 

Fig. 97 Flat carrier layer during debonding (thick carrier) 
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Fig. 98 Tilted carrier layer during debonding (thick carrier) 

Empirical results show that the stress-strain responses are highly depends on the 

thickness of carrier layer. In order to understand the role of carrier on the PSA system, 

we developed a FEA model based on the configuration of our test samples to 

understand the influence different amount of constraint offered by carrier layer. As 

shown in Figure 8, we made a half model for PSA bonded assembly, since it is a 

symmetric system. Material property of adhesive layer is the empirical stress-strain test 

result of single-layered PSA system. Different properties assign in the partition depends 

on the interest of study. PET’s properties are used for the carrier layer. Interaction 

between PSA/substrate and PSA/carrier layer are ignored in the current model. The 

bottom boundary of the PSA system is encastred and the top boundary PSA only allows 

to move in vertical direction. Displacement boundary condition with strain rate of 0.02 

is applied on the top boundary of upper adhesive layer. Parametric study on the 

thickness of the carrier layer to evaluate the effects of carrier layer flexural rigidity on 

the deformation and stress distribution of PSA system during debonding.   

 

Fig. 99 Schematic of carrier layer pattern: (A) tilted (flat) carrier layer; (B) wavy 

carrier layer 

Modeling results of PSA with thin (thick ratio of carrier to adhesive layer is 3:10) 

and thick (thick ratio of carrier to adhesive layer is 13:10) carrier layer are shown in 

Fig. 100 (a) and (b). The ratio of carrier to adhesive layer are consistent to the test 
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samples. What is the most noticeable that is the waviness of the carrier layer between 

the thin and thick model. In the thin model, the carrier layer shows short wave length, 

high amplitude wavy pattern at the stretched ratio of 2 (the stretched ratio of the PSA 

system is equal to the ratio of total displacement to the thickness of adhesive layer, 

since the thickness change in the stiff carrier can be ignored when compare to the 

thickness change in very soft adhesive at the same deformation). The modeling results 

match the empirical results that show in Figure 5 and 6. The range of stress contour has 

been narrowed for better showing the distribution of hydrostatic stress (negative of 

pressure) after wrinkling initiation. 

 

(a) 

 

(b) 

Fig. 100 FEA result of PSA system with (a) pressure status of adhesive on thin carrier 

layer; (b) pressure status of adhesive on thick carrier layer 

In order to verify the tilt of thick carrier layer as shown in Fig. 98, we assigned 

different constitutive properties from tests of single-layered PSA bonded with substrate 

with different roughness pattern for the partition part of adhesive and made the model 
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configuration antisymmetric. Although some wavy patterns are noticeable in the 

deformed carrier, the carrier layer is dominated by tilted pattern in the FEM results in 

Fig. 101. This matches the empirical observation in Fig. 98. 

 

Fig. 101 FEA result of tilted carrier layer 

Waviness of carrier layer, if presents, plays very important role in the stress 

distribution in the adhesive layer. Fig. 102 shows the history plot of hydrostatic stress 

of two elements on middle plane of top and bottom adhesive with thin (a) and thick (b) 

carrier layer, which corresponding to the modeling results in Fig. 100. In thin carrier 

model, stress history of two selected elements are identical until wrinkling of carrier 

initiates. After wrinkling initiation, hydrostatic stress in concave side is appearing to 

be lower than the stress in the convex side, which can also be found in the stress contour 

in Fig. 100 (a), and the discrepancy of hydrostatic stress between two layers is 

increased as the stretch ratio of the PSA system increased. Compare to thin carrier 

layer, the hydrostatic stress history of two selected elements are identical through the 

entire modeling period. This explains: a) the cavities are mostly initiating in the convex 

region in the PSA with thin carrier layer; b) more sever secondary drop can be observed 

in the stress-strain response of PSA with thick carrier layer.  Mechanisms of cavitation 

and cavity growth are driven by the surrounding hydrostatic stress. Therefore, the 

flexural rigidity of carrier layer is influencing the cavitation and cavity growth process 

by affecting the hydrostatic stress distribution in the adhesive layer. 
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Fig. 102 Hydrostatic stress history of elements on two side of carrier layer (thin and 

thick carrier) 

A3: Statistical Significance  

Statistical check conducts on the test results when the differences between two or 

more groups are not significant.  

Test statistic:                                            

𝑡 =
𝑌2̅ − 𝑌̅1

𝜎̂𝑌̅2−𝑌̅1

     (54) 

To compare the significance of the two tests group on section 6.1.3, we can evaluate t 

from the known data: 

𝑡 =
(𝑌̅1 − 𝑌̅2) − (𝜇1 − 𝜇2)

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

 (55) 
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where (𝑌̅1 − 𝑌̅2) is the difference of mean value of two test group, (𝜇1 − 𝜇2) is the null 

hypothesis, S1 and S2 are the mean value of each test group, and n is the number of test 

data in each group 

Let’s set the null hypothesis is 𝐻0: 𝜇1 − 𝜇2 = 0  (not difference between two test 

groups). 

For effects of bonding temperature on PSA bonded assembly strength shown in Fig. 

94. 

The t value for the ultimate tensile stress is 𝑡=0.46 with 𝑑.𝑓. = 8 

The t value for the ductility result is t=0.045 with 𝑑.𝑓. = 8 

According to the t-student distribution table with d. f. =8, t must be at least 2.145 to 

reach 𝑝 < .05. Therefore, the difference of ultimate tensile stress and ductility caused 

by different bonding temperature is not statistically significant. 

For effects of bonding time on PSA bonded assembly strength shown in Fig. 95. 

The t value for the ultimate tensile stress is 𝑡=1.08 with 𝑑.𝑓. = 8 

The t value for the ductility result is t=3.38 with 𝑑.𝑓. = 8 

According to the t-student distribution table with d. f. =8, t must be at least 2.145 to 

reach 𝑝 < .05, so the difference of ultimate tensile stress caused by different bonding 

temperature is not statistically significant, but the difference of ductility caused by the 

different bonding temperature is statistically significant. But the value is very small. 

A4: Effects of Macro-Void (Air Trapped) on the Mechanical Response of PSA Bonded 

assembly 

The stress-strain behavior and creep curve of the testing PSA bonded assemblies 

show relatively large sample to sample variability. Through the study of failure mode 
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of the debonded samples and the direct observation of the bonding interface between 

PSA and transparent substrates, a considerable size of non-wetted regions has been 

found on the interface of the PSA and bonding substrate. As shown in Fig. 103, two 

different regions can be easily classified on the bonding interface. The darker region is 

the well bonded region and the light grey region is the non-wetted region. The transition 

from the well bonded and non-wetting region has less adhesion strength than the well 

bonded region. This transition region is included in the well bonded region, but it is too 

weak to maintain two substrate surfaces bonded together during the entire debonding 

process. The formation of the non-wetted region is due to the air trapped between the 

PSA and rigid substrate (it is hard to avoid air trapped on both interface when rigid to 

rigid connection with adhesive). Therefore, random amounts of air might be trapped in 

the bonding interface between PSA and rigid substrate and result in the non-uniform 

non-wetted regions. The amount of non-wetted and weak wetted area is hard to control 

during the bonding process, especially when PSA bonded with two rigid substrates. 

Therefore, the bond strength is varied between samples. A 2-D simple model is carried 

out to study the correlation between the bonding strength and the size of non-wetted 

weak bonding area. 
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Fig. 103 Bonding interface of PSA and glass substrate 

The difference between non-wetted and strong bonding region in the PSA surface 

delaminated from substrate is shown in Fig. 104. Two different regions are clearly 

shown at the surface of adhesive after delamination from bonding substrate. The 

relative flat shining region on the upper half of figure is non-wetted or weak bonding 

area which is caused by the macro-voids at the bonding interface. Size of the macro-

voids is related to the flatness of substrate and adhesive and depends on the alignment 

of bonding fixture. There is no or very low adhesion between the adhesive and substrate 

in this area. Therefore, the adhesive delaminate from the substrate before the stress is 

high enough to initial a cavitation process in the adhesive layer. Thus, no cavity 

(permanent deformation) shows in this area. The bottom part of the picture is strong 

bonding area. Compare it to the weak bonding area, dense cavity shows in this area. 

This indicates that the adhesion strength in this area is large enough to allow the 

initiation of cavitation.   
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Fig. 104. non-wetted and good wetted area of PSA-substrate interface 

According to Fig. 105, the bonding interface can be divided into three regions, the 

well bonded region, the non-wetted area, and the weakly bonded region, which is the 

interim region between the well bonding and non-wetting region. In Figure 42, the dark 

region is the well bonded region, where the PSA is perfectly bonded with the substrate. 

The white region is the non-wetting region, which is due to an air pocket trapped in the 

bonding interface during the bonding process. The dark gray region is the weakly 

bonded region, where the PSA is wetted to the substrate, but unlike the well bonded 

region, the interfacial bonding strength is too weak to maintain the contact between 

bulk PSA and the bonding substrate. This results in a premature detachment of the bulk 

PSA from the substrate. The presence of the non-wetted region leads to an 

underestimation of the actual stress status of the adhesive layer. The variation of the 

non-wetted region causes scatters in the stress-strain and creep curves. To reduce the 

errors caused by the non-wetted regions, a stress adjustment Eq. (56) is proposed. 
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Where σm is the modified stress, σt is the stress from test data, and 
Sn

S
 is the ratio of 

non-wetted regions to total bonding area. For simplification, the interim region from 

well bonding region to non-wetted area is ignored. Therefore, the simple 2D model 

only includes the well bonded region and non-wetted region. In this model, the non-

wetted region is defined by pre-seeded initial cracks in the bonding interface of the 

adhesive and bonding substrate, as shown in Fig. 106 (b). Therefore, the size of the 

non-wetted region can be adjusted by controlling the size of the cracks. The crack 

propagation (partial detachment of PSA) is not considered, since it out of scope of this 

part. A parametric study of PSA bonded samples with 0 (perfect bonding), 5, 10 15, 

and 20 percent non-wetted regions has been evaluated. The model geometry and mesh 

are shown in Fig. 106. The parametric study result is reported in Fig. 107. As expected, 

the FEA model predictions fits the theoretical result very well.  

𝜎𝑚 =
𝜎𝑡

1 − (
𝑆𝑛

𝑆 )
                    (56) 

In the current stage, the effects of the non-wetted region will not be included in the 

predictive model. The purpose of this sub-section is to demonstrate that the non-wetted 

regions is one of the major reasons for the large piece to piece variability seen in the 

stress-strain and creep curves. Therefore, it is reasonable that the scatters of stress-

strain and creep curves for PSAs are larger than other materials. Since the size of the 

non-wetted region is dependent on the amount of air trapped at the interface of 

PSA/substrate, quantitative effects of the non-wetted region on the bonding 

performance needs more detailed investigations. If the average value of weakly bonded 

and non-wetting regions can be quantitated from empirical investigation, this value will 
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be very useful in evaluating the differences between model estimations and empirical 

measurements. 

 

Fig. 105. Schematic of macro-voids at the bonding interface 

 

Fig. 106. (a) Perfect bonding model; (b) Bonding interface with macro-voids 
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Fig. 107. FEA results with 0, 5, 10, 15, and 20 % non-wetted region and the 

theoretical prediction 

A5: MATLAB Code: Stress-Strain Response of Single-Layered PSA  

z=10001; 

k=20 

for a=2:2 

    Lam=zeros(1,z); 

    DC=zeros(k,z);  

    R=zeros(k,z); 

    Ry=zeros(k,1); 

    DR=zeros(k,z); 

    li=zeros(k,1); 

    Alpha=zeros(k,1); 

    zeta=zeros(k,1); 

    xi=zeros(k,1); 

    DR1=zeros(k,z); 

    C=zeros(k,z); 

    Pcav=zeros(k,z); 

    P=zeros(k+1,z); 

    Pn=zeros(1,z); 

    Sigzz=zeros(1,z); 

    Sigs=zeros(k,z); 

    DSigs=zeros(k,z); 

    x1=zeros(k,z); 
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    x2=zeros(k,z); 

    x3=zeros(k,z); 

    x4=zeros(k,z); 

    x5=zeros(k,z); 

    x6=zeros(k,z); 

    epsilon=zeros(1,z); 

    Tepsilon=zeros(1,z); 

    eta1=zeros(1,z); 

    eta2=zeros(1,z); 

    b=zeros(1,z); 

    bc=zeros(1,z); 

    TOT=zeros(1,z); 

    Dlam=zeros(1,z); 

    DSigzz=zeros(1,z); 

    G1=zeros(1,z); 

    G2=zeros(1,z); 

    t=zeros(1,z); 

    th=zeros(1,z); 

    Dt1=zeros(1,z); 

    P1=zeros(k+1,z); 

    A11=zeros(k-1,k-1); 

    B11=zeros(k-1,1); 

     

    for i= 1:k-2 

        A11(i,i+1)=1; 

        A11(i+1,i)=1; 

    end 

    Temp =60; 

    ct = 95250*Temp^(-2.8); 

    E1=70*(2^(-2+2))*ct; E2=340*(2^(-2+2))*ct; 

    h=0.80*(2^(-2+2)); 

    Gc=0.5;   

    tau=6000*(1.6^(-2+2))*ct; 

    gamma=0.02*ct; 

    gammaS = 60*(2^(-2+3))*ct; 

    mu1=(7*10^(8)*gammaS^2.5+1.3*10^(10))*(0.5^(-2+2)); 

    mu2=(1.1*10^(2)*gammaS^2.5+5*10^(5))*(0.5^(-2+2));   

    Po=00000; 

    Arat = 20; 

    Ho=0.00006; 

    Lo=0.07; 

    cb = 1.8e3*(2^(-2+2)); 

    cc = 40;  

    Dlam(1:600) = 0.10;   

    Dt1 = 0.02; 

    Dt2 = 20;  
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    Wo=Lo/k;  

    P(:,z)=Po; 

    P1(:,1)=Po; 

    G1(1)= E1; 

    G2(1)= E2; 

    Pn(1,:)=Po; 

    Pcav(:,1)=100000; 

    xp = 21+(1-1)*10; 

    dx = zeros (1,10); dt = zeros (1,10); 

    x = zeros (xp,10); 

    utemp = zeros(xp,z); 

    u = zeros (xp,z);     

    gridL = [1, 0.6, 0.36, 0.216, 0.1296, 0.07776, 0.046656, 0.0279936, 0.01679676, 

0.010077696]; 

     

    for g = 1:10 

        dx(1,g)=gridL(1,g)/(xp-1); 

        dt(1,g) = 0.9*dx(1,g)^2/2; 

        for j = 1:21 

            x(j,g)=1-gridL(g)+(j-1)* dx(1,g); 

        end 

    end 

    g = 1; 

    eta1(1)=tau*G2(1); 

         

    for i=1:k 

        Ry(i)=(0.00000044*(5^(a-2))); 

        WL=0.000005; 

        Alpha(i)=atand(WL/(2*Ry(i))); 

        L(i) = (WL^2/4+Ry(i)^2)^0.5; 

        li(i) = L(i)*(Alpha(i)/80)^1.5; 

        if li(i)>L(i) 

            li(i)=L(i); 

        else li(i)=li(i); 

        end 

         

        Ro(i) = (L(i)-li(i)); 

        if Ro(i) < 0.0000003 

            R(i,:) = 0.0000003; 

        else R(i,:) = Ro(i); 

        end 

        zeta(i)=WL*(L(i)-li(i))/(L(i)); 

        xi(i)=((L(i)-li(i))^2-(zeta(i)/2)^2)^0.5; 

                 

    end 
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        b(:)= sum(2*li(:)/WL)/k; 

      

    for m= 1:1000; 

        Lam(1)=1; 

        m 

        t(m+1)=t(m)+Dt1; 

        th(m+1)=t(m+1)/3600; 

        Lam(m+1)=Lam(m)+Dlam(m)*Dt1;  

        sh = exp(h*log(Lam(m))); 

        G1(m+1)=sh*E1; 

        G2(m+1)=sh*E2;         

        epsilon(m+1)=Lam(m+1)-1; 

        eta1(m+1)=tau*G2(m+1); 

         

        DSigzz(m)=(0.5*G1(m)*G2(m)*(Lam(m+1)^2-

1)+(G1(m)+G2(m)+Sigzz(m))*eta1(m+1)*2*Dlam(m)/Lam(m)-

G2(m)*Sigzz(m))/eta1(m+1); 

        Sigzz(m+1) = Sigzz(m)+DSigzz(m)*Dt1; 

        Pcav(:,m+1)=(Pcav(:,1).*((R(:,1)./R(:,m+1)).^2)); 

  

        for i=2:k 

            x2(i,m+1) = 2*(Wo*b(m)/(Ho*Lam(m+1)))*(1-Dt1*(G1(m+1))/eta1(m+1)-

6*Dt1*(Sigzz(m+1)+G1(m+1)+G2(m+1))/(mu1*Ho*Lam(m+1)))*(Sigs(i-1,m)-

Sigs(i,m)); 

            x6(i,m+1) = -8*(Wo*b(m)/(Ho*Lam(m+1)))*G1(m+1)*G2(m+1)*(C(i,m)-

C(i-1,m))*Dt1/Lam(m+1)/Ho/eta1(m+1); 

        end 

        x1(:,m+1) = 

2*(1+6*pi*Wo*b(m)*Dt1*(Sigzz(m+1)+G1(m+1)+G2(m+1))*(R(:,m+1).^2)/(eta1(

m+1)*(Ho^3)*(Lam(m+1)^3))); 

        x3(:,m+1) = 

Pcav(:,m+1).*(12*pi*b(m)*Wo*Dt1*(Sigzz(m+1)+G1(m+1)+G2(m+1))*(R(:,m+1).^

2))/(eta1(m+1)*(Ho^3)*(Lam(m+1)^3)); 

        x4(:,m+1) = -

12*pi*Wo*b(m)*gamma*Dt1*(Sigzz(m+1)+G1(m+1)+G2(m+1))*R(:,m+1)/(eta1(m

+1)*(Ho^3)*(Lam(m+1)^3)); 

        x5(:,m+1) = -

12*(Wo^2)*b(m)*Dlam(m)*Dt1*(Sigzz(m+1)+G1(m+1)+G2(m+1))*(1+pi*(R(:,m+

1).^2)/(Ho*Wo))/((Ho^2)*(Lam(m+1)^4)); 

         

        for i=1:k-1 

            A11(i,i) = -x1(i+1,m+1); 

            B11(i)   =  x2(i+1,m+1)+x3(i+1,m+1)-x4(i+1,m+1)-x5(i+1,m+1)-

x6(i+1,m+1); 

        end 

        B11(1)=B11(1)-Po; 
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        B11(k-1)=B11(k-1)-Po; 

        P = A11\B11; 

         

        P1(1,m+1)=Po; 

        P1(k+1,m+1)=Po; 

         

        for i=2:k 

            P1(i,m+1)=P(i-1); 

        end 

         

        Pn(m+1)=mean(P1(1:k+1,m+1)); 

        for i=1:k; 

            Sigs(i,m+1)=(-Ho*(Lam(m+1)^1)/(2*Wo*b(m)))*(P1(i+1,m+1)-P1(i,m+1));                  

        end 

        DSigs(:,m)=(Sigs(:,m+1)-Sigs(:,m))/Dt1; 

                        

DC(:,m)=Ho*Lam(m+1)*(DSigs(:,m)*eta1(m)+(G1(m+1)+G2(m+1))*Sigs(:,m+1)+

G1(m+1)*G2(m+1)*2*C(:,m)/Ho^2/Lam(m+1))/(Sigzz(m+1)*eta1(m+1)+G1(m+1)*

eta1(m+1))/4; 

        C(:,m+1)=C(:,m)+DC(:,m)*Dt1;         

        TOT(m+1)=Po+(Sigzz(m+1)-Pn(m+1))*b(m); 

        if TOT(m+1)> (69000/1)*(1.5^(-2+2))  

            break 

        end 

    end  

    eta1(m+1)=tau*G2(m+1)*cb; 

    Dlam(m+1:z)=0; 

     

    for n=m+1:z-1 

        n 

        t(n+1)=t(n)+Dt2; 

        th(n+1)=t(n+1)/3600; 

        sh= exp(h*log(Lam(n))); 

        G1(n+1)=sh*E1; 

        G2(n+1)=sh*E2;    

        eta2(n)=tau*G2(n+1)*cb; 

        for i=2:k 

            x2(i,n+1) = 2*(Wo*b(n-1)/(Ho*Lam(n)))*(1-Dt2*(G1(n))/eta2(n)-

6*Dt2*(Sigzz(n)+G1(n)+G2(n))/(mu1*Ho*Lam(n)))*(Sigs(i-1,n)-Sigs(i,n)); 

            x6(i,n+1) = -8*(Wo*b(n-1)/(Ho*Lam(n)))*G1(n)*G2(n)*(C(i,n)-C(i-

1,n))*Dt2/Lam(n)/Ho/eta2(n); 

        end 

        x1(:,n+1) = 2*(1+6*pi*Wo*b(n-

1)*Dt2*(Sigzz(n)+G1(n)+G2(n))*(R(:,n).^2)/(eta1(n)*(Ho^3)*(Lam(n)^3))); 

        x3(:,n+1) = Pcav(:,n+1).*(12*pi*b(n-

1)*Wo*Dt2*(Sigzz(n)+G1(n)+G2(n))*(R(:,n).^2))/(eta1(n)*(Ho^3)*(Lam(n)^3)); 
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        x4(:,n+1) = -12*pi*Wo*b(n-

1)*gamma*Dt2*(Sigzz(n)+G1(n)+G2(n))*R(:,n)/(eta1(n)*(Ho^3)*(Lam(n)^3)); 

        x5(:,n+1) = -12*(Wo^2)*b(n-

1)*Dlam(n)*Dt2*(Sigzz(n)+G1(n)+G2(n))*(1+pi*(R(:,n).^2)/(Ho*Wo))/((Ho^2)*(La

m(n)^4)); 

         

        for i=1:k-1 

            A11(i,i) = -x1(i+1,n+1); 

            B11(i)   =  x2(i+1,n+1)+x3(i+1,n+1)-x4(i+1,n+1)-x5(i+1,n+1)-x6(i+1,n+1); 

        end 

        B11(1)=B11(1)-Po; 

        B11(k-1)=B11(k-1)-Po; 

        P = A11\B11; 

        P1(1,n+1)=Po; 

        P1(k+1,n+1)=Po; 

         

        for i=2:k 

            P1(i,n+1)=P(i-1); 

        end 

        Pn(n+1)=mean(P1(1:k+1,n+1)); 

        Sigzz(n+1) = (TOT(m+1)-Po)/b(n-1)+Pn(n+1);  

        DSigzz(n) = (Sigzz(n+1)-Sigzz(n))/Dt2; 

        Dlam(n) = 

(Lam(n)/2/eta2(n)/(G1(n)+G2(n)+Sigzz(n)))*(G2(n)*Sigzz(n)+DSigzz(n)*eta2(n)-

G1(n)*G2(n)*(Lam(n)^2-1)/2); 

        Lam(n+1)=Lam(n)+Dlam(n)*Dt2; 

        epsilon(n+1)=Lam(n+1)-1; 

         

        E=sh*(E1); 

        for j=2:xp-1 

            u(j,n) = u(j,n-1)+(u(j-1,n-1)-2*u(j,n-1)+u(j+1,n-

1))*(Dt2*(E/mu2)/(Arat*Lam(n+1)))/(dx(1,g)^2); 

        end 

        bc(n) = E*Sigzz(n+1)*(Arat*Lam(n+1)); 

        u(1,n) = u(3,n)-bc(n)*2*dx(1,g);  

        u(xp,n) = u(xp-2,n);  

        b(1,n) = b(1) - abs(u(xp,n)); 

         

        if Lam(n+1) > 1.3 

            for j=2:k 

                if Pcav(j,n)-P1(j,n)-gamma/R(j,n) > 0 

                    eta1(n+1)=tau*G2(n+1)*cc; 

                    DR(j,n+1)=(R(j,n)/(2*eta1(n+1)))*(Pcav(j,n)-P1(j,n)-gamma/R(j,n));              

                    R(j,n+1)=R(j,n)+DR(j,n+1)*Dt2; 

                else if DR(j,n) ~= 0 

                        eta1(n+1)=tau*G2(n+1)*cb; 
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                        DR(j,n+1)=(R(j,n)/(2*eta1(n+1)))*(Pcav(j,n)-P1(j,n)-gamma/R(j,n)); 

                    else DR(j,n+1) = 0; 

                    end 

                end 

            end 

            eta1(n+1)=tau*G2(n+1)*cb; 

        else 

            for j=2:k 

                eta1(n+1)=tau*G2(n+1)*cb; 

                R(j,n+1)=R(j,n)+DR(j,n+1)*Dt2; 

            end 

        end 

        for i=1:20; 

            Sigs(i,n+1)=-Ho*(Lam(n+1))/(2*Wo*b(n))*(P1(i+1,n+1)-P1(i,n+1));              

        end 

        DSigs(:,n)=(Sigs(:,n+1)-Sigs(:,n))/Dt2; 

DC(:,n)=Ho*Lam(n)*(DSigs(:,n)*eta2(n)+(G1(n)+G2(n))*Sigs(:,n)+G1(n)*G2(n)*2*

C(:,n)/Ho^2/Lam(n+1))/(Sigzz(n)+G1(n))/4/eta2(n);    

        C(:,n+1)=C(:,n)+DC(:,n)*Dt2; 

         

        for j=2:k 

            Pcav(j,n+1)=Pcav(j,1)*((R(j,1)/R(j,n+1))^2); 

        end 

    if Lam(n+1)>13  

            break 

        end 

    end 

     

    cb=a; 

    S(1:n-1,cb)=epsilon(1:n-1); 

    O(1:n-1,cb)=Pn(1:n-1); 

    T(1:n-1,cb)=th(1:n-1); 

    filename = [ 'a' num2str(a), '.mat' ] 

    save(filename); 

end 

  

plot(T(:,:),S(:,:)); 

hold on 

A6: MATLAB Code: Creep Model of Single-Layered PSA 

z=7001; 

k=20 

for a=2:2 

    % variables 

    Lam=zeros(1,z); 
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    DC=zeros(k,z); %time increment of C 

    R=zeros(k,z); 

    Ry=zeros(k,1); 

    DR=zeros(k,z); 

    li=zeros(k,1); 

    Alpha=zeros(k,1); 

    zeta=zeros(k,1); 

    xi=zeros(k,1); 

    DR1=zeros(k,z); 

    C=zeros(k,z); 

    Pcav=zeros(k,z); 

    P=zeros(k+1,z); 

    Pn=zeros(1,z); 

    Sigzz=zeros(1,z); 

    Sigs=zeros(k,z); 

    DSigs=zeros(k,z); 

    x1=zeros(k,z); 

    x2=zeros(k,z); 

    x3=zeros(k,z); 

    x4=zeros(k,z); 

    x5=zeros(k,z); 

    x6=zeros(k,z); 

    epsilon=zeros(1,z); 

    Tepsilon=zeros(1,z); 

    eta1=zeros(1,z); 

    eta2=zeros(1,z); 

    b=zeros(1,z); 

    bc=zeros(1,z); 

    TOT=zeros(1,z); 

    Dlam=zeros(1,z); 

    G=zeros(1,z); 

    DSigzz=zeros(1,z); 

    G1=zeros(1,z); 

    G2=zeros(1,z); 

    t=zeros(1,z); 

    th=zeros(1,z); 

    Dt1=zeros(1,z); 

    P1=zeros(k+1,z); 

    A11=zeros(k-1,k-1); 

    B11=zeros(k-1,1); 

     

    for i= 1:k-2 

        A11(i,i+1)=1; 

        A11(i+1,i)=1; 

    end 

     



183 

 

    ct = 1; 

     

    %initial value 

    E1=70*(2^(-2+2))*ct; E2=340*(2^(-2+2))*ct; 

    %strain hardening coefficient 

    h=0.80*(2^(-2+2)); 

    %critical energy release rate 

    Gc=0.5;   

    %relaxation time  

    tau=6000*(1.6^(-2+2))*ct; 

    %PSA surface free energy 

    gamma=0.02*ct; 

    %Substrate surface free energy 

    gammaS = 40*(2^(-2+3))*ct;%40*(2^(-2+2)); 

    %friction coefficient for fibril movement    

    mu1=(gammaS*8*10^(11)+1.3*10^(10))*(0.5^(-2+2)); 

    mu2=(gammaS*5*10^(5)+5*10^(5))*(0.5^(-2+2));   

    %relative pressure 

    Po=00000; 

    %initial ratio of foot to fibril 

    Arat = 20*(2^(-2+2)); 

    %thickness of PSA 

    Ho=0.00012; 

    %length of PSA 

    Lo=0.007; 

    %viscosity parameter for bulk PSA 

    cb = 1.8e3*(2^(-2+2))*ct; 

    %viscosity parameter for cavity  

    cc = 60*ct;  

    %loading strain rate 

    Dlam(1:600) = 0.10;   

    %step time 

    Dt1 = 0.02; %ramp up  

    Dt2 = 20; %creep  

     

    Wo=Lo/k; %Block length 

%     Ro=0.0000003; 

%     R(:,:)=Ro; %Initial value of R 

    P(:,z)=Po; 

    P1(:,1)=Po; 

    G1(1)= E1; 

    G2(1)= E2; 

    G(1) = G1(1)+G2(1); 

    Pn(1,:)=Po; 

    Pcav(:,1)=0000000; 

    xp = 21+(1-1)*10; 
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    dx = zeros (1,10); dt = zeros (1,10); 

    x = zeros (xp,10); 

    utemp = zeros(xp,z); 

    u = zeros (xp,z);     

    gridL = [1, 0.6, 0.36, 0.216, 0.1296, 0.07776, 0.046656, 0.0279936, 0.01679676, 

0.010077696]; 

     

    for g = 1:10 

        dx(1,g)=gridL(1,g)/(xp-1); 

        dt(1,g) = 0.9*dx(1,g)^2/2; 

        for j = 1:21 

            x(j,g)=1-gridL(g)+(j-1)* dx(1,g); 

        end 

    end 

    g = 1; 

    eta1(1)=tau*G2(1); 

         

    for i=1:k 

        Ry(i)=(0.00000044*(5^(a-2))); 

        WL=0.000005; 

        Alpha(i)=atand(WL/(2*Ry(i))); 

        L(i) = (WL^2/4+Ry(i)^2)^0.5; 

        li(i) = L(i)*(Alpha(i)/80)^1.5; 

        if li(i)>L(i) 

            li(i)=L(i); 

        else li(i)=li(i); 

        end 

         

        Ro(i) = (L(i)-li(i));%WL*(L(i)-li(i))/(L(i)); 

        if Ro(i) < 0.0000003 

            R(i,:) = 0.0000003; 

        else R(i,:) = Ro(i); 

        end 

        zeta(i)=WL*(L(i)-li(i))/(L(i)); 

        xi(i)=((L(i)-li(i))^2-(zeta(i)/2)^2)^0.5; 

         

%         if L(i)-li(i)== 0 

%             cavP2(i)= -500000; 

%         else cavP2(i)= -min(Po*(1+(20000/Po)^0.5*((Gc*(1+0.2*(m-

2)))^(3/2)./(Po^(3/2)*(zeta(i)^0.5).*xi(i))).^0.5),500000); 

%         end 

         

    end 

        b(:)= sum(2*li(:)/WL)/k; 

     

    for m= 1:1000; 
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        Lam(1)=1; 

        m 

        t(m+1)=t(m)+Dt1; 

        th(m+1)=t(m+1)/3600; 

        Lam(m+1)=Lam(m)+Dlam(m)*Dt1; %time evolution of Lam 

        sh = exp(h*log(Lam(m))); 

        G1(m+1)=sh*E1; 

        G2(m+1)=sh*E2; 

        G(m+1) = G1(m+1)+G2(m+1); 

        epsilon(m+1)=Lam(m+1)-1; 

        eta1(m+1)=tau*G2(m+1); 

         

        %DSigzz(n)=(tau*(G1(n)+G2(n))*2*Dlam(n)/Lam(n)+(G1(n)*epsilon(n+1)-

Sigzz(n)))/(tau+Dt); 

        DSigzz(m)=(0.5*G1(m)*G2(m)*(Lam(m+1)^2-

1)+(G1(m)+G2(m)+Sigzz(m))*eta1(m+1)*2*Dlam(m)/Lam(m)-

G2(m)*Sigzz(m))/eta1(m+1); 

        Sigzz(m+1) = Sigzz(m)+DSigzz(m)*Dt1; 

         

        %time evolution of Pcav 

        Pcav(:,m+1)=(Pcav(:,1).*((R(:,1)./R(:,m+1)).^2)); 

         

        for i=2:k 

            x2(i,m+1) = 2*(Wo*b(m)/(Ho*Lam(m+1)))*(1-Dt1*(G1(m+1))/eta1(m+1)-

6*Dt1*(Sigzz(m+1)+G1(m+1)+G2(m+1))/(mu1*Ho*Lam(m+1)))*(Sigs(i-1,m)-

Sigs(i,m)); 

            x6(i,m+1) = -8*(Wo*b(m)/(Ho*Lam(m+1)))*G1(m+1)*G2(m+1)*(C(i,m)-

C(i-1,m))*Dt1/Lam(m+1)/Ho/eta1(m+1); 

        end 

        x1(:,m+1) = 

2*(1+6*pi*Wo*b(m)*Dt1*(Sigzz(m+1)+G1(m+1)+G2(m+1))*(R(:,m+1).^2)/(eta1(

m+1)*(Ho^3)*(Lam(m+1)^3))); 

        x3(:,m+1) = 

Pcav(:,m+1).*(12*pi*b(m)*Wo*Dt1*(Sigzz(m+1)+G1(m+1)+G2(m+1))*(R(:,m+1).^

2))/(eta1(m+1)*(Ho^3)*(Lam(m+1)^3)); 

        x4(:,m+1) = -

12*pi*Wo*b(m)*gamma*Dt1*(Sigzz(m+1)+G1(m+1)+G2(m+1))*R(:,m+1)/(eta1(m

+1)*(Ho^3)*(Lam(m+1)^3)); 

        x5(:,m+1) = -

12*(Wo^2)*b(m)*Dlam(m)*Dt1*(Sigzz(m+1)+G1(m+1)+G2(m+1))*(1+pi*(R(:,m+

1).^2)/(Ho*Wo))/((Ho^2)*(Lam(m+1)^4)); 

         

        for i=1:k-1 

            A11(i,i) = -x1(i+1,m+1); 

            B11(i)   =  x2(i+1,m+1)+x3(i+1,m+1)-x4(i+1,m+1)-x5(i+1,m+1)-

x6(i+1,m+1); 
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        end 

        B11(1)=B11(1)-Po; 

        B11(k-1)=B11(k-1)-Po; 

        P = A11\B11; 

         

        P1(1,m+1)=Po; 

        P1(k+1,m+1)=Po; 

         

        for i=2:k 

            P1(i,m+1)=P(i-1); 

        end 

         

        Pn(m+1)=mean(P1(1:k+1,m+1)); 

        %time evolution of Sigs 

        for i=1:k; 

            Sigs(i,m+1)=(-Ho*(Lam(m+1)^1)/(2*Wo*b(m)))*(P1(i+1,m+1)-P1(i,m+1));                 

%(16) 

        end 

        DSigs(:,m)=(Sigs(:,m+1)-Sigs(:,m))/Dt1; 

         

        %time evolution of DC 

         

        

DC(:,m)=Ho*Lam(m+1)*(DSigs(:,m)*eta1(m)+(G1(m+1)+G2(m+1))*Sigs(:,m+1)+

G1(m+1)*G2(m+1)*2*C(:,m)/Ho^2/Lam(m+1))/(Sigzz(m+1)*eta1(m+1)+G1(m+1)*

eta1(m+1))/4; 

        C(:,m+1)=C(:,m)+DC(:,m)*Dt1; 

         

        TOT(m+1)=Po+(Sigzz(m+1)-Pn(m+1))*b(m); 

        if TOT(m+1)> (50000/1)*(1.5^(-2+2)) %expected creep stress 

            break 

        end 

    end 

     

    eta1(m+1)=tau*G2(m+1)*cb; 

    Dlam(m+1:z)=0; 

     

    for n=m+1:z-1 

        n 

        t(n+1)=t(n)+Dt2; 

        th(n+1)=t(n+1)/3600; 

        sh= exp(h*log(Lam(n))); 

        G1(n+1)=sh*E1; 

        G2(n+1)=sh*E2; 

         

        eta2(n)=tau*G2(n+1)*cb; 
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        for i=2:k 

            x2(i,n+1) = 2*(Wo*b(n-1)/(Ho*Lam(n)))*(1-Dt2*(G1(n))/eta2(n)-

6*Dt2*(Sigzz(n)+G1(n)+G2(n))/(mu1*Ho*Lam(n)))*(Sigs(i-1,n)-Sigs(i,n)); 

            x6(i,n+1) = -8*(Wo*b(n-1)/(Ho*Lam(n)))*G1(n)*G2(n)*(C(i,n)-C(i-

1,n))*Dt2/Lam(n)/Ho/eta2(n); 

        end 

        x1(:,n+1) = 2*(1+6*pi*Wo*b(n-

1)*Dt2*(Sigzz(n)+G1(n)+G2(n))*(R(:,n).^2)/(eta1(n)*(Ho^3)*(Lam(n)^3))); 

        x3(:,n+1) = Pcav(:,n+1).*(12*pi*b(n-

1)*Wo*Dt2*(Sigzz(n)+G1(n)+G2(n))*(R(:,n).^2))/(eta1(n)*(Ho^3)*(Lam(n)^3)); 

        x4(:,n+1) = -12*pi*Wo*b(n-

1)*gamma*Dt2*(Sigzz(n)+G1(n)+G2(n))*R(:,n)/(eta1(n)*(Ho^3)*(Lam(n)^3)); 

        x5(:,n+1) = -12*(Wo^2)*b(n-

1)*Dlam(n)*Dt2*(Sigzz(n)+G1(n)+G2(n))*(1+pi*(R(:,n).^2)/(Ho*Wo))/((Ho^2)*(La

m(n)^4)); 

         

        for i=1:k-1 

            A11(i,i) = -x1(i+1,n+1); 

            B11(i)   =  x2(i+1,n+1)+x3(i+1,n+1)-x4(i+1,n+1)-x5(i+1,n+1)-x6(i+1,n+1); 

        end 

        B11(1)=B11(1)-Po; 

        B11(k-1)=B11(k-1)-Po; 

        P = A11\B11; 

        P1(1,n+1)=Po; 

        P1(k+1,n+1)=Po; 

         

        for i=2:k 

            P1(i,n+1)=P(i-1); 

        end 

        %time evolution of total stress 

        Pn(n+1)=mean(P1(1:k+1,n+1)); 

        Sigzz(n+1) = (TOT(m+1)-Po)/b(n-1)+Pn(n+1); %TOT(m+1)=Po+(Sigzz(m+1)-

Pn(m+1))*b(m)-(100000*(1/Lam1(n+1)^2)-100000)*(1-b1(m)); 

        DSigzz(n) = (Sigzz(n+1)-Sigzz(n))/Dt2; 

        %Dlam(n) = (Sigzz(n)+DSigzz(n)*tau-G1(n)*epsilon(n))/((G1(n)+G2(n))*tau); 

        Dlam(n) = 

(Lam(n)/2/eta2(n)/(G1(n)+G2(n)+Sigzz(n)))*(G2(n)*Sigzz(n)+DSigzz(n)*eta2(n)-

G1(n)*G2(n)*(Lam(n)^2-1)/2); 

        Lam(n+1)=Lam(n)+Dlam(n)*Dt2; 

        G(n+1) = G1(n+1)+G2(n+1); 

        epsilon(n+1)=Lam(n+1)-1; 

         

        E=sh*(E1); 

        for j=2:xp-1 
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            u(j,n) = u(j,n-1)+(u(j-1,n-1)-2*u(j,n-1)+u(j+1,n-

1))*(Dt2*(E/mu2)/(Arat*Lam(n+1)))/(dx(1,g)^2); 

        end 

        %boundary condition 

        bc(n) = E*Sigzz(n+1)*(Arat*Lam(n+1)); 

        u(1,n) = u(3,n)-bc(n)*2*dx(1,g); % left B.C. 

        u(xp,n) = u(xp-2,n); % left B.C. 

        b(1,n) = b(1) - abs(u(xp,n)); 

         

        if Lam(n+1) > 1.3 

            for j=2:k 

                if Pcav(j,n)-P1(j,n)-gamma/R(j,n) > 0 

                    eta1(n+1)=tau*G2(n+1)*cc; 

                    DR(j,n+1)=(R(j,n)/(2*eta1(n+1)))*(Pcav(j,n)-P1(j,n)-gamma/R(j,n));                

%(20) 

                    R(j,n+1)=R(j,n)+DR(j,n+1)*Dt2; 

                else if DR(j,n) ~= 0 

                        eta1(n+1)=tau*G2(n+1)*cb; 

                        DR(j,n+1)=(R(j,n)/(2*eta1(n+1)))*(Pcav(j,n)-P1(j,n)-gamma/R(j,n)); 

                    else DR(j,n+1) = 0; 

                    end 

                end 

            end 

            eta1(n+1)=tau*G2(n+1)*cb; 

        else 

            for j=2:k 

                eta1(n+1)=tau*G2(n+1)*cb; 

                R(j,n+1)=R(j,n)+DR(j,n+1)*Dt2; 

            end 

        end 

         

        %time evolution of Sigs 

        for i=1:20; 

            Sigs(i,n+1)=-Ho*(Lam(n+1))/(2*Wo*b(n))*(P1(i+1,n+1)-P1(i,n+1));                 

%(16) 

        end 

        DSigs(:,n)=(Sigs(:,n+1)-Sigs(:,n))/Dt2; 

         

        %time evolution of DC 

        

DC(:,n)=Ho*Lam(n)*(DSigs(:,n)*eta2(n)+(G1(n)+G2(n))*Sigs(:,n)+G1(n)*G2(n)*2*

C(:,n)/Ho^2/Lam(n+1))/(Sigzz(n)+G1(n))/4/eta2(n);    %(24) 

        C(:,n+1)=C(:,n)+DC(:,n)*Dt2; 

         

        %time evolution of Pcav 

        for j=2:k 
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            Pcav(j,n+1)=Pcav(j,1)*((R(j,1)/R(j,n+1))^2); 

        end 

         

%         if b(n) < 9/Lam(n) && Lam(n) > 10 

%             break 

%         end 

        if Lam(n+1)>9 %&& Dlam(n)>0.0003 

            break 

        end 

%         if b(n+1)<1 && b(n+1) < (7)/Lam(n+1)  

%             break 

%         end 

    end 

     

    cb=a; 

    S(1:n-1,cb)=epsilon(1:n-1); 

    O(1:n-1,cb)=Pn(1:n-1); 

    T(1:n-1,cb)=th(1:n-1); 

    filename = [ 'a' num2str(a), '.mat' ] 

    save(filename); 

end 

 

% for i=1:2 

%     plot(T(:,i),L(:,i)); 

%     hold on 

% end 

%plot(th(1:n-1),L(1:n-1)); 

%     % c=m; 

%     % T(:,c)=Lam; 

%     % DT(:,c)=Dlam; 

%     % filename = [ 'mu2' num2str(m), '.mat' ] 

%     % save(filename); 

 

plot(T(:,:),S(:,:)); 

hold on 

%plot(T(:,2),L(:,2),'b'); 

 

 

A7: MATLAB code: Stress-Strain and Creep Model of Double-Layered PSA 

z = 23000; 

k= 21; 

  

for m=2:2 

K3 =3000000*(1.3-0.2*m)^3; 
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TOT=zeros(1,z-1); 

Lam1=zeros(1,z); 

LS=zeros(1,z); 

Dlam1=zeros(1,z); 

C1=zeros(k,z); 

DC1=zeros(k,z);  

Ry1=zeros(k,1); 

Ro1=zeros(k,1); 

R1=zeros(k,z); 

L1=zeros(k,1); 

li1=zeros(k,1); 

Alpha1=zeros(k,1); 

zeta1=zeros(k,1); 

xi1=zeros(k,1); 

DR1=zeros(k,z); 

Pcav1=zeros(k,z); 

P1=zeros(k+1,z); 

Pn1=zeros(1,z); 

TOT1=zeros(1,z); 

Sigzz1=zeros(1,z); 

Sigs1=zeros(k,z); 

DSigs1=zeros(k,z); 

X1=zeros(k,z); 

Xs1=zeros(k,z); 

DX1=zeros(k,z); 

x11=zeros(k,z); 

x12=zeros(k,z); 

x13=zeros(k,z); 

x14=zeros(k,z); 

x15=zeros(k,z); 

x16=zeros(k,z); 

bc1=zeros(1,z); 

b1=zeros(1,z); 

eta1=zeros(1,z); 

e1=zeros(1,z); 

e2=zeros(1,z); 

tau=zeros(1,z); 

G1=zeros(1,z); 

G2=zeros(1,z); 

A11=zeros(k-1,k-1); 

B11=zeros(k-1,1); 

for i= 1:k-2 

    A11(i,i+1)=1; 

    A11(i+1,i)=1; 

end 

h=1.4; 
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gammaS = 160 + 60*(3-3); 

a=60; 

Gc = 0.3; 

E1=50; E2=4*E1; 

G1(1)=E1; 

G2(1)=E2; 

Ho = 0.00006*(0.9+0.1*2);  

RHo= 0.00006;  

Lo=0.007;  

Wo1=Lo*b1(1)/k; 

nu=0.49; 

mu=1*10^(12);  

mu2=1.5*10^(8); 

gammaP=0.04;  

Po=100000; 

 

for i=1:k 

    Ry1(i)=(0.00000014+0.00000003*(1-1))*(1+randn/300); 

    WL1=0.0000003; 

    Alpha1(i)=atand(WL1/(2*Ry1(i))); 

    L1(i) = (WL1^2/4+Ry1(i)^2)^0.5; 

    li1(i) = L1(i)*(Alpha1(i)/a)^1.5; 

    if li1(i)>L1(i) 

        li1(i)=L1(i); 

    else li1(i)=li1(i); 

    end 

     

    Ro1(i) = (L1(i)-li1(i)); 

    if Ro1(i) < 0.00000005 

        R1(i,1) = 0.00000005; 

    else R1(i,1) = Ro1(i); 

    end 

    zeta1(i)=WL1*(L1(i)-li1(i))/(L1(i)); 

    xi1(i)=((L1(i)-li1(i))^2-(zeta1(i)/2)^2)^0.5; 

     

 if L1(i)-li1(i)== 0 

        cavP1(i)= -gammaP/0.00000005; 

    else cavP1(i)= -

min(100000*(1+(20000/100000)^0.5*(Gc^(3/2)./(100000^(3/2)*(zeta1(i)^0.5).*xi1(i

))).^0.5),gammaP/0.00000005); 

    end 

end 

b1(1)= sum(2*li1(:)/WL1)/k; 

Wo1=Lo*b1(1)/k;  

  

tau=3500; 
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eta1(1)=tau*G1(1); 

P1(:,1)=Po; 

Lam1(1)=1; 

Pcav1(:,1)=0; 

Pn1(:,1)=Po; 

Dlam1(:) = 0.02; 

Dlam1(:) = 0.02; 

A12=zeros(k-1,k-1); 

B12=zeros(k-1,1);  

for i= 1:k-2 

    A12(i,i+1)=1; 

    A12(i+1,i)=1; 

end 

xp = 21; 

dx = zeros (1,10); dt = zeros (1,10); 

x = zeros (xp,10); 

u1 = zeros (xp,z); 

u2 = zeros (xp,z);  

Arat = 3;   

gridL = [1, 0.6, 0.36, 0.216, 0.1296, 0.07776, 0.046656, 0.0279936, 0.01679676, 

0.010077696]; 

for g = 1:10 

    dx(1,g)=gridL(1,g)/(xp-1); 

    dt(1,g) = 0.9*dx(1,g)^2/2; 

    for j = 1:21 

        x(j,g)=1-gridL(g)+(j-1)* dx(1,g); 

    end 

end 

g = 1 

Lam2=zeros(1,z); 

Dlam2=zeros(1,z); 

C2=zeros(k,z); 

DC2=zeros(k,z);  

R2=zeros(k,z); 

Ry2=zeros(k,1); 

Ro2=zeros(k,1); 

L2=zeros(k,1); 

li2=zeros(k,1); 

Alpha2=zeros(k,1); 

zeta2=zeros(k,1); 

xi2=zeros(k,1); 

DR2=zeros(k,z); 

Pcav2=zeros(k,z); 

P2=zeros(k+1,z); 

Pn2=zeros(1,z); 

TOT2=zeros(1,z); 
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Sigzz2=zeros(1,z); 

Sigs2=zeros(k,z); 

DSigs2=zeros(k,z); 

X2=zeros(k,z); 

Xs2=zeros(k,z); 

DX2=zeros(k,z); 

x21=zeros(k,z); 

x22=zeros(k,z); 

x23=zeros(k,z); 

x24=zeros(k,z); 

x25=zeros(k,z); 

x26=zeros(k,z); 

bc2=zeros(1,z); 

b2=zeros(1,z); 

eta2=zeros(1,z); 

TOT1(:)=1; 

Wo2=Lo*b2(1)/k;  

 

for i=1:k 

    Ry2(i)=(0.00000028)*(1+randn/300); 

    WL2=0.0000003; 

    Alpha2(i)=atand(WL2/(2*Ry2(i))); 

    L2(i) = (WL2^2/4+Ry2(i)^2)^0.5; 

    li2(i) = L2(i)*(Alpha2(i)/a)^1.5; 

    if li2(i)>L2(i) 

        li2(i)=L2(i); 

    else li2(i)=li2(i); 

end 

 

    Ro2(i) = (L2(i)-li2(i)); 

    if Ro2(i) < 0.00000005 

        R2(i,1) = 0.00000005; 

    else R2(i,1) = Ro2(i); 

    end 

    zeta2(i)=WL2*(L2(i)-li2(i))/(L2(i)); 

    xi2(i)=((L2(i)-li2(i))^2-(zeta2(i)/2)^2)^0.5; 

  

    if L2(i)-li2(i)== 0 

        cavP2(i)= -gammaP/0.00000005; 

    else cavP2(i)= -

min(100000*(1+(20000/100000)^0.5*(Gc^(3/2)./(100000^(3/2)*(zeta2(i)^0.5).*xi2(i

))).^0.5),gammaP/0.00000005); 

    end 

  

end 

b2(1)= sum(2*li2(:)/WL2)/k; 
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Wo2=Lo*b2(1)/k;  

  

  

eta2(1)=tau*G2(1);  

P2(:,1)=Po; 

Lam2(1)=1; 

Pcav2(:,1)=0; 

Pn2(:,1)=Po; 

Dlam2(:) = 0.02; 

Dlam2(:) = 0.02; 

g=1; 

Dt = 0.03; 

for n= 1:z-1 

    n 

    N = 0; 

    e1(n) = abs(TOT1(n+1)*Lo/2 - TOT2(n+1)*Lo/2-K3*LS(n+1)); 

    e2(n) = 0.005*abs(TOT1(n+1)*Lo/2); 

     

    while e1(n) > e2(n) && N < 2000 

         

        Lam1(n+1)=Lam1(n)+Dlam1(n)*Dt; 

        sh1=exp(h*log(Lam1(1,n+1))); 

        G1(n+1)=sh1*E1; 

        G2(n+1)=sh1*E2; 

        eta1(n+1)=tau*G2(n+1); 

        DSigzz1(n)=(0.5*G1(n)*G2(n)*(Lam1(n+1)^2-

1)+2*(G1(n)+G2(n)+Sigzz1(n))*eta1(n+1)*Dlam1(n)/Lam1(n)-

G1(n)*Sigzz1(n))/eta1(n+1); 

        Sigzz1(n+1) = Sigzz1(n)+DSigzz1(n)*Dt; 

         

        for j = 2:k 

            if P1(j,n) > cavP1(j) && R1(j,n)== R1(j,1) && DR1(j,n) == 0; 

                DR1(j,n+1)=0; 

                R1(j,n+1) = R1(j,n); 

            else 

                DR1(j,n+1)=(R1(j,n)/(2*eta1(n+1)))*(Pcav1(j,n)-P1(j,n)-

2*gammaP/R1(j,n));                                

                R1(j,n+1)=R1(j,n)+DR1(j,n+1)*Dt;                 

            end 

            Pcav1(j,n+1)=Pcav1(j,1)*((R1(j,1)/R1(j,n+1))^2); 

        end 

    

for i=2:k 

            x12(i,n+1) = 2*(Wo1*b1(n)/(RHo*Lam1(n+1)))*(1-Dt*(G1(n+1))/eta1(n+1)-

6*Dt*(Sigzz1(n+1)+G1(n+1)+G2(n+1))/(mu*Ho*Lam1(n+1)))*(Sigs1(i-1,n)-

Sigs1(i,n)); 
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            x16(i,n+1) = -

8*(Wo1*b1(n)/(RHo*Lam1(n+1)))*G1(n+1)*G2(n+1)*(C1(i,n)-C1(i-

1,n))*Dt/Lam1(n+1)/RHo/eta1(n+1); 

end 

        x11(:,n+1) = 

2*(1+6*pi*Wo1*b1(n)*Dt*(Sigzz1(n+1)+G1(n+1)+G2(n+1))*(R1(:,n+1).^2)/(eta1(n

+1)*(RHo^2*Ho)*(Lam1(n+1)^3))); 

        x13(:,n+1) = 

Pcav1(:,n+1).*(12*pi*b1(n)*Wo1*Dt*(Sigzz1(n+1)+G1(n+1)+G2(n+1)).*(R1(:,n+1)

.^2))/(eta1(n+1)*(RHo^2*Ho)*(Lam1(n+1)^3)); 

        x14(:,n+1) = -

12*pi*Wo1*b1(n)*gammaP*Dt*(Sigzz1(n+1)+G1(n+1)+G2(n+1))*R1(:,n+1)/(eta1(

n+1)*(RHo^2*Ho)*(Lam1(n+1)^3)); 

        x15(:,n+1) = -

12*(Wo1^2)*b1(n)*Dlam1(n)*Dt*(Sigzz1(n+1)+G1(n+1)+G2(n+1))*(1+pi*(R1(:,n+

1).^2)/(RHo*Wo1))/((RHo^1*Ho)*(Lam1(n+1)^4));         

         

        for i=1:k-1 

            A11(i,i) = -x11(i+1,n+1); 

            B11(i)   =  x12(i+1,n+1)+x13(i+1,n+1)-x14(i+1,n+1)-x15(i+1,n+1)-

x16(i,n+1); 

        end 

        B11(1)=B11(1)-Po; 

        B11(k-1)=B11(k-1)-Po*((1/Lam1(n+1))^2); 

        P = inv(A11)*B11; 

         

        P1(1,n+1)=Po; 

        P1(k+1,n+1)=Po*((1/Lam1(n+1))^2); 

        for i=2:k 

            P1(i,n+1)=P(i-1); 

        end 

         

        for i=1:k; 

            Sigs1(i,n+1)=(-RHo*(Lam1(n+1))/(2*Wo1*b1(1,n)))*(P1(i+1,n+1)-

P1(i,n+1));                  

            DSigs1(i,n+1)=(Sigs1(i,n+1)-Sigs1(i,n))/Dt; 

        end 

         

        for i=1:k 

            

DC1(i,n+1)=Ho*Lam1(n+1)*(DSigs1(i,n+1)*eta1(n+1)+Sigs1(i,n+1)*(G1(n+1)+G2(

n+1))+G1(n+1)*G2(n+1)*4*C1(i,n)/RHo/Lam1(n+1))/(4*(Sigzz1(n+1)*eta1(n+1)+G

1(n+1)));   

            C1(i,n+1)=C1(i,n)+DC1(i,n+1)*Dt; 

        end 
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        for i=1:k 

            DX1(i,n+1)=Sigs1(i,n+1)/mu+2*DC1(i,n+1)/3;       

            X1(i,n+1)=X1(i,n)+DX1(i,n+1)*Dt; 

            Xs1(i,n+1)=X1(i,n+1)-(2/3)*C1(i,n+1); 

        end 

         

        Pn1(n+1)=mean(P1(1:k+1,n+1)); 

        TOT1(n+1)=Po+(Sigzz1(n+1)-Pn1(n+1))*b1(n); 

         

        for j= 2:20 

            u1(j,n+1) = u1(j,n)+(u1(j-1,n)-     

2*u1(j,n)+u1(j+1,n))*(Dt*(10/Lam1(n))*G1(n)/mu2)/(dx(1,g)^2); 

        end 

         

        bc1(n) = Sigzz1(1,n+1)*Arat/(3*G1(n)); 

        u1(1,n+1) = u1(3,n+1)-bc1(n)*2*dx(1,g);  

        u1(xp,n+1) = u1(xp-3,n+1); 

         

        b1(1,n+1) = b1(1) - abs(u1(xp,n+1)); 

 

        if b1(1,n+1) < 0.1 

            break 

        end 

        if (Dt*3*G1(n)/mu2) >= dt(1,g) 

            break 

        end 

         

                 

        Lam2(n+1)=Lam2(n)+Dlam2(n)*Dt;         

        LS(n+1)= (-Lam1(n+1)+Lam2(n+1))*RHo; 

        sh2=exp(h*log(Lam2(1,n+1))); 

        G1(n+1)=sh2*E1; 

        G2(n+1)=sh2*E2; 

        eta2(n+1)=tau*G2(n+1); 

        DSigzz2(n)=(0.5*G1(n)*G2(n)*(Lam2(n+1)^2-

1)+2*(G1(n)+G2(n)+Sigzz2(n))*eta2(n+1)*Dlam2(n)/Lam2(n)-

G1(n)*Sigzz2(n))/eta2(n+1); 

        Sigzz2(n+1) = Sigzz2(n)+DSigzz2(n)*Dt; 

         

        for j=2:k 

            if P2(j,n) > cavP2(j) && R2(j,n)== R2(j,1) && DR2(j,n) == 0; 

                DR2(j,n+1)=0; 

                R2(j,n+1) = R2(j,n); 

            else 

                DR2(j,n+1)=(R2(j,n)/(2*eta2(n+1)))*(Pcav2(j,n)-P2(j,n)-

2*gammaP/R2(j,n));                               
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                R2(j,n+1)=R2(j,n)+DR2(j,n+1)*Dt; 

                 

            end 

        end 

        for j=2:k 

            Pcav2(j,n+1)=Pcav2(j,1)*((R2(j,1)/R2(j,n+1))^2); 

        end 

         

         

        for i=2:k 

            x22(i,n+1) = 2*(Wo2*b2(n)/(RHo*Lam2(n+1)))*(1-Dt*(G1(n+1))/eta2(n+1)-

6*Dt*(Sigzz2(n+1)+G1(n+1)+G2(n+1))/(mu*Ho*Lam2(n+1)))*(Sigs2(i-1,n)-

Sigs2(i,n)); 

            x26(i,n+1) = -

8*(Wo2*b2(n)/(RHo*Lam2(n+1)))*G1(n+1)*G2(n+1)*(C2(i,n)-C2(i-

1,n))*Dt/Lam2(n+1)/RHo/eta2(n+1); 

        end 

        x21(:,n+1) = 

2*(1+6*pi*Wo2*b2(n)*Dt*(Sigzz2(n+1)+G1(n+1)+G2(n+1))*(R2(:,n+1).^2)/(eta2(n

+1)*(RHo^2*Ho)*(Lam2(n+1)^3))); 

        x23(:,n+1) = 

Pcav2(:,n+1).*(12*pi*b2(n)*Wo2*Dt*(Sigzz2(n+1)+G1(n+1)+G2(n+1))*(R2(:,n+1).

^2))/(eta2(n+1)*(RHo^2*Ho)*(Lam2(n+1)^3)); 

        x24(:,n+1) = -

12*pi*Wo2*b2(n)*gammaP*Dt*(Sigzz2(n+1)+G1(n+1)+G2(n+1))*R2(:,n+1)/(eta2(

n+1)*(RHo^2*Ho)*(Lam2(n+1)^3)); 

        x25(:,n+1) = -

12*(Wo2^2)*b2(n)*Dlam2(n)*Dt*(Sigzz2(n+1)+G1(n+1)+G2(n+1))*(1+pi*(R2(:,n+

1).^2)/(RHo*Wo2))/((RHo^1*Ho)*(Lam2(n+1)^4)); 

         

        for i=1:k-1 

            A12(i,i) = -x21(i+1,n+1); 

            B12(i)   =  x22(i+1,n+1)+x23(i+1,n+1)-x24(i+1,n+1)-x25(i+1,n+1)-

x26(i,n+1); 

        end 

        B12(1)=B12(1)-Po*((1/Lam2(n+1))^2); 

        B12(k-1)=B12(k-1)-Po; 

        P = inv(A12)*B12; 

         

        P2(1,n+1)=Po*((1/Lam2(n+1))^2); 

        P2(k+1,n+1)=Po; 

        for i=2:k 

            P2(i,n+1)=P(i-1); 

        end 

         

        for i=1:k; 
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            Sigs2(i,n+1)=(-RHo*(Lam2(n+1))/(2*Wo2*b2(1,n)))*(P2(i+1,n+1)-

P2(i,n+1));                 

            DSigs2(i,n+1)=(Sigs2(i,n+1)-Sigs2(i,n))/Dt; 

        end 

         

        for i=1:k 

            

DC2(i,n+1)=Ho*Lam2(n+1)*(DSigs2(i,n+1)*eta2(n+1)+Sigs2(i,n+1)*(G1(n+1)+G2(

n+1))+G1(n+1)*G2(n+1)*4*C2(i,n)/RHo/Lam2(n+1))/(4*(Sigzz2(n+1)*eta2(n+1)+G

2(n+1)));   

            C2(i,n+1)=C2(i,n)+DC2(i,n+1)*Dt; 

        end 

         

        for i=1:k 

            DX2(i,n+1)=Sigs2(i,n+1)/mu+2*DC2(i,n+1)/3;   

            X2(i,n+1)=X2(i,n)+DX2(i,n+1)*Dt; 

            Xs2(i,n+1)=X2(i,n+1)-(2/3)*C2(i,n+1); 

        end 

         

        Pn2(n+1)=mean(P2(1:k+1,n+1)); 

        TOT2(n+1)=Po+(Sigzz2(n+1)-Pn2(n+1))*b2(n) 

        for j= 2:20 

            u2(j,n+1) = u2(j,n)+(u2(j-1,n)-

2*u2(j,n)+u2(j+1,n))*(Dt*(10/Lam2(n))*G2(n)/mu2)/(dx(1,g)^2); 

        end        

        bc2(n) = Sigzz2(1,n+1)*Arat/(3*G2(n)); 

        u2(1,n+1) = u2(3,n+1)-bc2(n)*2*dx(1,g);  

        u2(xp,n+1) = u2(xp-2,n+1);    

        b2(1,n+1) = b2(1) - abs(u2(xp,n+1));        

        if b2(1,n+1) < 0.1 

            break 

        end 

        if (Dt*3*G2(n)/mu2) >= dt(1,g) 

            break 

        end 

         

        if  TOT1(n+1)*Lo/2 > TOT2(n+1)*Lo/2+K3*LS(n+1) 

            Dlam1(n)= Dlam1(n)-0.03*(0.9)^(N); Dlam2(n)=Dlam2(n)+0.03*(0.9)^(N); 

        else 

            Dlam1(n)= Dlam1(n)+0.03*(0.9)^(N); Dlam2(n)=Dlam2(n)-0.03*(0.9)^(N); 

        end 

        e1(n) = abs(TOT1(n+1)*Lo/2 - TOT2(n+1)*Lo/2-K3*LS(n+1)); 

        e2(n) = 0.03*abs(TOT1(n+1)*Lo/2); 

        N = N+1; 

        if N == 1999 

            N 
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        end 

    end 

    TOT(n)=(TOT1(n)+TOT2(n))/2; 

    Lam(n,m)=0.5*(Lam1(n)+Lam2(n)); 

    epsilon(n,m)=Lam(n,m)-1; 

end 

    c=m; 

    T(:,c)=TOT; 

    filename = [ 'a' num2str(m), '.mat' ] 

    save(filename); 

end 

plot(epsilon(:,:),T(:,:)) 

hold on 

A8: Phenomenological Series Model for Creep Deformation of PSA Bonded with PSA 

Systems 

PSAs with carrier layers have unique nonlinear and non-monotonic mechanical 

behavior, as shown in Fig. 108. These unique behaviors cannot be adequately described 

by conventional constitutive models (eg. Norton Law) currently available in 

commercial FEA tools. Therefore, if engineers want to do a computational estimation 

(compared to physical testing methods) on a product that contain PSA bonded 

assemblies by some commercial FEA tools, a suitable constitutive model is required to 

describe the unique mechanical performances of PSA bonded assemblies. Based on the 

trend of the creep curve, a piece-wise visco-plastic model incorporating strain 

hardening (red solid lines) is fitted to the creep curve. Since these models do not exist 

in the commonly used commercial FEA tools, a user-defined subroutine is required and 

used in order to implement these material models into the FEA tools as constitutive 

equations for the PSA bonded assembly.  
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Fig. 108 segmental model for creep deformation 

The multi-stage creep curves of PSAs with carrier layers, as shown in Fig. 109, 

require new multi-stage models. In the current stage, the methodologies used to define 

the model constants and FEA implementation have been generated for the 1st and 2nd 

stages of the secondary creep curve. 

 

Fig. 109 Multi-stage creep curves at different stress level 
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Fig. 110 (a) shows a symmetric half of the test coupon configuration. It is two T-

shaped aluminum tabs with the PSA bond line in between. Fig. 110 (b) is the zoom-in 

of the finite element model that models this configuration. In the FEA model, the bond 

line is modeled with one continuous finite element layer of equivalent homogeneous 

material. In reality, the PSA system has double sided PSA on the either side of the 

carrier layer, but the system is not broken down into separate carrier and adhesive layers 

in the FEA model. The model treats that region as an equivalent homogeneous material 

with material properties equivalent to reference material that captures the overall 

deformation of the entire PSA system (the entire system consisting of all the adhesive 

and carrier layers for double sided PSAs). In other words, this equivalent homogenous 

material will match the physically measured experimental results.  

 

(a) (b) 

Fig. 110 (a) Schematic of symmetric half of test coupon; (b) FEA model and mesh 

Compared to the secondary creep, the primary creep of PSA is very short and 

contributes little strain to the overall creep strain. Therefore, the FEA model is based 
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on steady-state creep (primary creep is ignored). The piece-wise creep constitutive 

model is: 

𝜖𝑐̇𝑟𝑖
= 𝐴𝑖𝜎𝑛 𝑒𝑥𝑝 (−

𝑄

𝑅𝑇
)   Eq. (57) 

where A is the proportionality constant, n is the stress exponent constant, Q is activation 

energy, R is gas constant, T is temperature, and i is the step identify.  

As discussed before, the transition of the creep rate relates to the degree of PSA 

deformation, which is a function of stretch ratio. Therefore, the equivalent creep strain 

is selected as the parameter to control when to change the constants. For simplification, 

in the preliminary study, the difference between strain rate of each stage is described 

by the difference of the proportionality constant A. This piece-wise model is not 

available in commercial FEA tools, such as ABAQUS and ANSYS. In order to apply 

the model into the commercial FEA tools as a creep constitutive equation for PSA 

materials, a special user-defined subroutine is required. In this study, a user defined 

subroutine, attached in Appendix III, is developed for defining the creep constitutive 

law of PSAs in ABAQUS. As an example, the FEA model fit to one PSA/substrate 

combination is shown in Fig. 111 (a) (creep at different stress level) and Fig. 111 (b) 

(creep at different temperature) with the model constants listed in Table 5. Considering 

the reality of applications and complexity of the mechanical modeling, in this stage, 

the total creep deformation is designed to capture the creep behavior of PSA bonded 

assemblies up to 50% engineering creep tensile strain (approx. 80 to 100% total 

engineering tensile strain, depending on stress level). 

Table 5: Sample model constant of double-stage model 
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(a) 

 

(b) 
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Fig. 111 FEA model fit to creep curves at (a) different stress levels; (b) different 

loading temperature 

The Fortran code below shows the user defined subroutine for define the PSA 

constitutive model for the example above.  

0      SUBROUTINE CREEP(DECRA,DESWA,STATEV,SERD,EC,ESW,P,QTILD, 

     +TEMP,DTEMP,PREDEF,DPRED,TIME,DTIME,CMNAME,LEXIMP,LEND, 

     +COORDS,NSTATV,NOEL,NPT,LAYER,KSPT,KSTEP,KINC,NTENS) 

      INCLUDE 'ABA_PARAM.INC' 

      CHARACTER*80 CMNAME 

      DIMENSION DECRA(5),DESWA(5),STATEV(*),PREDEF(*),DPRED(*), 

     +TIME(3),COORDS(*),EC(2),ESW(2) 

 

C     ***Piece-wise linear strain softening/hardening creep model*** 

C     QTILD: Equivalent stress 

C     EC(1) : Creep at the start of increment  

C     DECRA(1) : Equivalent Creep strain increment 

C     DECRA(5) : Partial derivative of DECRA(1) respect to change  

C                           of equivalent stress 

C     LEXIMP : Explicit/implicit flag 

C 

C     ***DEFINE CONSTANTS***               

C     CSi: Creep strain at the beginning of ith transition  

C     sm: Stress hardening exponent for ith segment of creep law  

C     Ai: Proportionality constant for ith segment of creep law 

C     Q: Activation energy of creep law 

C     R: Gas constant  

C 

C    *** APPLIED CONSTANTS*** 

      REAL A1 A2 sm CS1 Q R T 

      A1 = 2.03E+15 

      A2 = 3.E+16 

      sm = 0.45 

      CS1 = case dependent 

      Q = 140000 

      R =8.31446 

      T = case dependent  

C 

C     ***DEFINE STRAIN RATE FOR EACH PHASE*** 

      IF(EC(1) .LT. CS1) THEN 

      DECRA(1) = A1*(QTILD**(sm))*EXP(-Q/(R*TEMP))*DTIME 

      ELSE 

      DECRA(1) = A2*(QTILD**(sm))*EXP(-Q/(R*TEMP))*DTIME 
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      END IF 

C 

      IF(LEXIMP .EQ. 1) THEN 

      DECRA(5) = sm1*(QTILD**(sm-1))*EXP(-Q/(R*T))*DTIME 

      END IF 

C 

      RETURN 

      END 
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