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 Viscoelastic layers have long been recognized as an effective means of 

reducing the structural vibrations that can generate undesirably high pressure 

levels in a coupled acoustic cavity.  Constraining the viscoelastic layer increases 

the effectiveness of the viscoelastic layer by adding transverse shear as a 

dissipation mechanism in the system.  It is proposed in this dissertation to replace 

the traditionally homogeneous core of a constrained damping layer treatment by a 

non-homogeneous viscoelastic material in order to further improve the 

effectiveness of the treatment. 

 A finite element model is developed to simulate the vibrations of plates 

treated with a non-homogeneous constrained layer treatment using Reissner-

Mindlin plate theory.  The predictions of the model are validated against the 

predictions of a commercially available finite element package (NASTRAN).  

The model of the plate/constraining layer treatment is then coupled with a finite 

element model of a coupled acoustic cavity.  The integrated model is exercised to 

consider different material combinations and geometric layouts of the non-

homogeneous damping treatment in order to determine general guidelines for 



  

producing the largest reduction in sound pressure levels inside an acoustic cavity 

that is being driven by a flexible boundary. 

 The predictions of the integrated finite element model are validated 

through experimental and numerical work.  Close agreements are found between 

theoretical predictions and experimental results.  Generally, it is found that 

damping treatments with stiffer outer perimeters and softer cores are more 

effective in attenuating the sound pressure levels in the acoustic cavity than other 

configurations of the non-homogeneous treatment. 

 The theoretical and experimental techniques developed in this dissertation 

present invaluable tools for the design and performance predictions of plates 

treated with spatially varying damping treatments and coupled with acoustic 

cavities.  These tools can be extended to include more complex structural/cavity 

systems such as automobile, aircraft, and helicopter cabins as well as ship interior 

spaces. 



  

NOISE CONTROL OF AN ACOUSTIC CAVITY COUPLED WITH 
A VIBRATING PLATE TREATED WITH A SPATIALLY 

VARYING CONSTRAINED VISCOELASTIC LAYER 
 
 
 
 

By 

 

 

Mary F. Leibolt 

 
 
 

Dissertation submitted to the Faculty of the Graduate School of the 

University of Maryland, College Park in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 

2009 

 
 

Advisory Committee: 

 

 Professor A. Baz, Chair/Advisor 
 Professor B. Balachandran 
 Professor D. DeVoe 

Professor A. Flatau 
Professor E. Smela 



 ii 

ACKNOWLEDGEMENTS 
 
 

Thank you to the many people who supported me in this work:  my advisor, Dr. 

Amr  Baz whose patience and advice throughout the extended period of 

completion is much appreciated, many colleagues at work including Dr. Paul 

Shang who provided the initial push and Dr. Bill Martin who provided the final 

"shove" to get this work finished,  as well as Dr. Y.N. Liu and Dr. Ranganathan 

Vasudevan from whom I learned so much.  Thanks to Ms. Deborah Nalchajian of 

ONR for providing the funding which resulted in the completion of this study.  

Finally, thanks to my family for their love and support, especially my wonderful 

husband Ed. 

 

 

 

 

 

 

 

 

 

 

 

 



 iii 

TABLE OF CONTENTS 
 
 
 
List of Tables…………………………………………………………… v 
 
List of Figures….………..….………..….………..….………..….……. vi 
 
List of Abbreviations….………..….………..….………..….………..... x 
 
Chapter 1: Introduction……………………………………………..  1 
 1.1 Background………………………………………………  1 
 1.2 Scope of Dissertation………………….…………………  7 
 
Chapter 2: Variational Modeling for Plates with Spatially  
  Varying Moduli  ……………………………………    9 
 2.1 Plate Theory………………………………………………  9 
 2.2 Reissner-Mindlin Plate Theory Assuming E=E(x,y).……. 10 
 2.3 Kirchoff (Thin) Plate Theory Assuming E=E(x,y).…….... 19 
 2.4 Summary…………………………………………………. 25 
 
Chapter 3: Preliminary Experimental Work……………………… 26 
 3.1 Experimental Setup………………………………………. 26 
 3.2 Configurations for Preliminary Experiment……………... 30 
 3.3 Results ……………………………………………………. 31 
 3.4 Summary…………………………………………………. 42 
 
Chapter 4: Generation of Dataset for Validation of Finite Element 

 Model …………………………………………………………… 43 
 4.1 Plate Model………………………………………………. 43 
 4.2 Cavity Model…………………...………………………… 46 
 4.3 Loading ……..……………………………………………. 48 
 4.4 Viscoelastic and Constraining Layer Models…………..… 50 
 4.5 Summary………………………………………………….. 53 
 
Chapter 5: Finite Element Model of Viscoelastically  Damped 

PlatesCoupled with an Acoustic Cavity………………….……. 54 
 5.1 Finite Element Model for Untreated Plate – Strain Energy 54 
 5.2 Discretization…………………………………………….. 56 
 5.3 Finite Element Model for Untreated Plate – Kinetic Energy 63 
 5.4 Finite Element Model– Load Vector……………………... 64 
 5.5 Finite Element Model for Acoustic Cavity………………. 65 
 5.6 Acoustic Cavity Discretization…………………………… 67 
 5.7 Fluid Structure Coupling…………………………………. 68 
 5.8 Finite Element Model for Viscoelastic Three Layer Plate 

  Element……………….…………………………………... 68 
 5.9 Kinematics for Three Layer Plate…………….…………… 69 



 iv 

 
 5.10 Finite Element Model for Three Layer Plate – Strain  
  Energy…………………………………………………… 74 
 5.11 Discretization for Three Layer Plate……………….……. 77 
 5.12 Finite Element Model for Three Layer Plate – Kinetic 
  Energy..…………………………………………………. 78 
 5.13 Summary………………………………………………… 80 
 
Chapter 6: Validation of Finite Element Model of Plate/Cavity 
  System………………………………………………………….. 82 
 6.1 Introduction…………………………………………….… 82 
 6.2 Base Plate Element………………...…………………….. 83 
 6.3 Acoustic Element………………...……………………….. 84 
 6.4 Coupled Plate and Cavity ………...………………………. 85 
 6.5 Three Layer Plate Element ……………………………….. 87 
 6.6 Summary …………………………………………………. 96 
 
Chapter 7: Comparison of Geometrical Layouts for Constrained 
  Layer Treatments………………………………………………. 97 
 7.1 Introduction……………………………………………… 97 
 7.2 Single Material Property Variation ……………………… 97 
 7.3 Geometric Layouts………………………………………. 105 
 7.4 Mixed Material Parametric Study Results……………..… 107 
 7.5 Displacements, Pressure Contours and Strains………….. 111 
 7.6 Summary………………………………………………… 118 
 
Chapter 8: More Experimental Validation of Finite Element  

 Model of Plate/Cavity System ………………………… 119 
 8.1 Experimental Setup……………………………………… 119 
 8.2 Experimental Results……………………..……………… 122 
 8.3 Summary…………………………………..…………….. 125 
 
Chapter 9: Conclusions and Recommendations…………...……… 126 
 9.1 Conclusions………………………………………….…… 126 
 9.2       Recommendations……………………………………….. 127 



 v 

LIST OF TABLES 
 
 

 
Table 3.1: Area under pressure spectra for each configuration ………….… 38 
 
Table 4. 1: A comparison of the eigenvalues calculated for some 
   different mesh sizes and element types………………………… 46 
 
Table 6.1: Comparison of analytical solution, NASTRAN and  
  MFLFE eigen values for an untreated plate………………..…… 84 
 
Table 6.2: Comparison of analytical solution, NASTRAN and  
  MFLFE eigen values for an acoustic cavity……………….....…. 85 
 
Table 6.3: Comparison of NASTRAN and MFLFE eigenvalues for  
  a coupled plate and acoustic cavity…………………………….. 86 



 vi 

LIST OF FIGURES 
 
 
Figure 1.1: Frequency response of beam treated with multi-viscoelatic 
   material ………………………………………………….………. 6 
 
Figure 2.1 Coordinate system for plate….………..….………..….…….……. 10 
 
Figure 3.1: Sketch of experimental setup for preliminary experiment….……. 26 
 
Figure 3.2: Connections diagram for preliminary experiment….……………. 27 
 
Figure 3.3: Sketch of the four viscoelastic layer configurations….…………. 28 
 
Figure 3.4:  Shear modulus G’ and loss factor for viscoelastic materials….…. 29 
 
Figure 3.5: Comparison of pressure levels for the four constrained  
  viscoelastic layers.……………………….…………… ……….… 32 
 
Figure 3.6: Comparison of constrained layer pressure levels with those of an 
   untreated plate.……………………………………..…… ……... 35 
 
Figure 3.7: Ambient data for inside and outside microphones……………… 37 
 
Figure 3.8: The frequency response of the untreated plate ………………….. 39 
 
Figure 3.9: LDV displacement measurement for untreated plate at first five 
  resonance peaks…………..…………………………………….. 41 
 
Figure 3.10: Displacement patterns at the first resonance for the four  
  constrained viscoelastic layers………………………………….. 42 
 
Figure 4.1: A comparison of wavelengths for different wave types.…. …... 44 
 
Figure 4.2:  Comparison of NASTRAN results with experimental data  
  for the untreated plate/cavity system….………………………... 49 
 
Figure 4.3: Comparison of NASTRAN model and experimental pressure  
   data for unconstrained viscoelastic configurations….…….……... 51 
 
Figure 4.4: Comparison of experimental pressure data and NASTRAN  
  model for constrained configurations….…..….…….…................ 52 
 
Figure 5.1: Geometry for plain plate kinematics……………………..…..…. 54 
 
Figure 5.2: Four node quadrilateral element……………………………..…. 57 



 vii 

 
Figure 5.3: Geometry for kinematics of three layer plate ………………..…. 69 
 
Figure 5.4: Angles for extensions in viscoelastic and constraining layers….. 70 
 
Figure 5.5: Model for the extensional displacements in the viscoelastic and  
  constraining layers – exact expression and approximation …….….. 72 
 
Figure 6. 1: Comparison between MFLFE numerical pressure data and  
  preliminary experiment pressure data for an untreated plate…….… 86 
 
Figure 6. 2: Three possible configurations of three layer element…...……… 88 
 
Figure 6. 3: Comparison between MFLFE numerical pressure data and  
  preliminary experiment pressure data for a plate with an  
  unconstrained viscoelastic layer ……………………………..…... 89 
 
Figure 6. 4: Comparison between MFLFE numerical pressure data and  
   preliminary experiment pressure data for a plate with a  
  constrained single material viscoelastic layer …………………… 91 
  
Figure 6. 5: Comparison between MFLFE numerical pressure data and  
  preliminary experiment pressure data for a plate with an  
  unconstrained single material viscoelastic layer. Bolted  
  boundary conditions ………………………………………..……. 93 
 
Figure 6. 6: Comparison between MFLFE numerical pressure data and  
  preliminary experiment pressure data for a plate with a  
  constrained single material viscoelastic layer.  Bolted  
  boundary conditions ……………………………………………… 94 
 
Figure 6. 7 Comparison between MFLFE numerical pressure data and  
  preliminary experiment pressure data for a plate with a  
  multiple material constrained viscoelastic layer ………….…… 95 
 
Figure 7. 1a Pressures predicted in the acoustic cavity using MFLFE and  
  parametric variation of Young's modulus in the viscoelastic  
  layer for SC 601………….……………………………………...…  98 
 
Figure 7. 1b: Pressures predicted in the acoustic cavity using MFLFE and  
  parametric variation of the density in the viscoelastic layer for  
  SC 601 (full frequency range) ………………………………..… 99 
 
 
 
 



 viii 

Figure 7. 1c: Pressures predicted in the acoustic cavity using MFLFE and  
  parametric variation of the loss factor in the viscoelastic  
  layer for SC 601(zoom)…………………………………………. 99 
 
Figure 7. 2a: Pressures predicted in the acoustic cavity using MFLFE and  
  parametric variation of the density in the viscoelastic layer for  
  SC 609 (Full frequency range)………………………………….… 101 
 
Figure 7. 2b: Pressures predicted in the acoustic cavity using MFLFE and  
  parametric variation of Young's modulus in the viscoelastic  
  layer for SC 609.….…………………………………….…………. 101 
 
Figure 7. 2c: Pressures predicted in the acoustic cavity using MFLFE and  
  parametric variation of loss factor in the viscoelastic layer for  
  SC 609 (zoom).…………….…………………………………...… 102 
 
Figure 7. 3a: Sketch of the nomograph for SC 609.  .……………………..…… 103 
 
Figure 7. 3b: Sketch of the nomograph for SC 601.  .…………………….……… 104 
 
Figure 7. 4: Geometric layouts of the multi-viscoelastic material treatments…. 106 
 
Figure 7. 5a Mixed material coinfiguration calculated pressure spectra  
  (full frequency range).……..….……………………….…….…… 107 
 
Figure 7. 5b Mixed material coinfiguration calculated pressure spectra  
  (zoom)……………………………………………………………. 108 
 
Figure 7.6a: Sorted mixed material configuration calculated pressure  
  spectra-less  effective configurations(zoom)..………………... 109 
 
Figure 7.6b: Sorted mixed material configuration calculated pressure 
  spectra- more  effective configurations(zoom)..………….…...… 110 
 
Figure 7.7:  Out of plane displacements predicted by MFLFE in the 
   treated region for various geometric layouts..………….………... 111 
 
Figure 7.8: Pressure contour plots in the yz direction calculated by MFLFE..... 113 
 
Figure 7.9: Pressure contour plots in the xy plane at the microphone  
  position………………………………………….……………….. 115 
. 
Figure 7.10: Strain energy calculated on the plate for various  
  configurations.…………………………………………….…….… 117 
 
 



 ix 

Figure 8.1: Experimental apparatus.  Internal microphone, external  
  microphone, flexible plate.……..……………………………….… 120 
 
Figure 8.2 Mixed material configurations used in final experiment.…..…… 122 
 
Figure 8.3a: Comparison of the experimental pressure spectra for  
  constrained layer treatments, for both single material and  
  mixed material viscoelastic cores.……….………….…..……...… 123 
 
Figure 8.3b: Comparison of the predicted (MFLFE)  pressure spectra  
  for constrained layer treatments, for both single material and 
  mixed material viscoelastic cores……………………………….… 123 
 
Figure 8.3c: Comparison of the predicted (MFLFE)  and experimental  
  pressure spectra for constrained layer treatments, for both  
  single material and mixed material viscoelastic cores ……….…… 124 

 



 x 

LIST OF ABBREVIATIONS 

 

Symbols 
                     - Cartesian coordinate system 

                   - element coordinate system 

                - actual displacements 

       - displacements as modeled 

                   - plate thickness 

                - Young’s modulus 

                - diffusion length 

                - shear modulus 

                - density 

                - Poisson’s ratio 

                - strain (potential) energy (PE) 

                - kinetic energy (KE) 

                - system energy potential 

                - boundary 

                - interior domain  

                - time 

                - direction cosines 

    - bending moments 

                - normal forces 

                - shear forces 

                - normal strain 

                - shear strain 

                       - work energy 

                 - distributed load 

                      - shape function 

                - stress 

                    - bending stiffness 



 xi 

    - stiffness matrix 

                   - mass matrix 

                     - fluid/structure coupling  

                     - gradient operator 

                      - velocity potential 

    - length along boundary 

    - pressure  

                    - fluid particle displacement 

    - displacement normal to fluid boundary 

                      - speed of sound 

                      - displacement vector 

                      - Jacobian 

 

Superscripts, Subscripts 
           - bending 

           - longitudinal shear 

           - transverse shear 

           - transpose of matrix 

                   - Cartesian coordinate system 

                       - element coordinate system 

           - base plate 

           - viscoelastic layer 

           - constraining layer 

 

Acronyms 

MFLFE  Name of program developed in this study (MFL -author’s initials - Finite 

Element) 

NASTRAN Name of commercial code used in this study (NAsa STRuctural ANalysis) 



 1 

Chapter 1 

Introduction 

1.1 Background 

It is of interest to those who are concerned with the design and use of vehicles, to 

be able to lower sound pressure levels within enclosed spaces.  Frequently, the primary 

cause of high sound pressure levels within a cavity is the vibration of part of the structure 

that forms the boundaries of the cavity.  Such structural vibrations cause the fluid within 

the cavity to move and pressure waves to be generated.  In general, decreasing the 

amount of vibration experienced by the structural members lessens the amount of kinetic 

energy in the system and decreases the magnitude of the sound pressure inside the cavity. 

 The use of viscoelastic layers has long been recognized as an effective means of 

dissipating structural energy into heat.  Typically, a thin layer of viscoelastic material is 

bonded to the structural member that has been identified as a source for the cavity 

pressure field.   As discussed by Kerwin in 1959, dissipation occurs when there are 

extensional displacement and/or transverse shear deformation in the viscoelastic material.  

Additionally, application of a thin constraining layer to the outside surface of the 

viscoelastic layer increases the amount of transverse shear deformation present, and 

thereby increases the amount of structural energy dissipated by the layer.   

In 1959, Kerwin developed an expression to describe the distance away from the 

point where a load is applied that a “localized shear deformation will make itself felt.”  

This quantity Ld, which is called “the diffusion length”, is expressed as 

 



 2 

where hv and hcl are the thicknesses of the viscoelastic layer and constraining layer 

respectively, Ecl is the Young’s Modulus of the constraining layer and G is the magnitude 

of the complex shear modulus of the viscoelastic layer.  Shear is greatest at the point of 

load application and decreases to a very small value at Ld. 

In 1962, Parfitt exploited this idea and introduced the concept of cutting the 

constraining layers at intervals to increase the regions of high transverse shear in the 

viscoelastic layer.  He discusses the frequency dependency of the effectiveness of this 

technique.   

Plunkett and Lee presented an analysis in 1970 that sought to optimize the length 

between cuts in the constraining layer with respect to maximizing the layer’s ability to 

dissipate structural energy.  They developed an expression for a system loss factor and 

extended their analysis to multiple layers through the thickness.  Plunkett and Lee also 

presented plots of the transverse shear versus distance with the ratio of beam length to Ld 

as a parameter in their paper. 

  In many situations, for example in underwater vehicle applications, the cuts in a 

constraining layer render it more susceptible to damage while the vehicle is moving.  

With the goal of increasing the amount of transverse shear deformation in the viscoelastic 

material while leaving the constraining layer intact, it is proposed in this dissertation, that 

a viscoelastic layer formed of multiple materials with unlike material moduli be 

constructed and tested.  Since the strain energy is the integrated product of the shear 

modulus and the shear strain squared, having material with a high shear modulus in the 

region of high shear strain will increase the amount of strain energy dissipated by the 

treatment.  The variation of the viscoelastic material properties is limited in this 
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dissertation to variation in the in-plane direction.  But, for the entire damping treatment 

including the constraining layer, the material properties vary also in the transverse 

direction. 

 Many investigations pertaining to the effects of material variation through the 

thickness direction have been performed.   Reissner authored the classic paper “On the 

Bending of Elastic Plates” (1947) in which he presented his new plate theory and a 

system of equations for a sandwich plate. Such a topic was of great interest in the late 

1940s and early 1950s as reported, for example, by Hoff and Mautner (1948).  This work 

was extended by others to include multiple layer sandwich structures in the late 1960s 

(e.g. Kao (1966), Liaw and Little (1967)).  The general approach in these studies was to 

generate a total energy expression for the multi-layered system that combined appropriate 

contributions for each layer.  For example, it may be assumed that the constraining 

(facing) layers have no significant shearing energy while the energy summation in the 

core is dominated by shear energy.  Typically these papers deal with materials suitable 

for an airframe structure, for example, aluminum facings and balsa cores.  The dissipation 

of structural energy by the core was not the primary focus.  Later, this analytical work 

was used as a basis for developing finite element models of multilayer structures (e.g., 

Khatua and Cheung (1970)). 

Constrained layers are another special case of material nonhomegeneity in the 

thickness direction.  Kerwin (1962), Lazan (1965), Plunkett and Lee (1970), and others 

studied configurations of multiple layers of constrained viscoelastic materials.  Here, the 

studies worked with cores made of viscoelastic materials whose energy dissipation 

properties needed to be included in any modeling. The primary focus of these studies was 
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the generation of an accurate prediction of the energy dissipated by the multilayer plate 

system. 

As the tools of finite element analysis became more powerful they were employed in 

the task of analyzing structures with viscoelastic and constrained layer damping.   

Johnson and Kienholz (1981) introduced various approaches including modeling the 

viscoelastic material as having a frequency dependent complex material modulus, 

calculating the response in the frequency domain, and calculating the undamped normal 

modes then applying a frequency dependent loss factor to the fraction of the strain energy 

for each mode from the viscoelastic core. Such approaches form the basis of the Modal 

Strain Energy (MSE) method.  In the 1990s, methods that used internal degrees of 

freedom to capture the viscoelastic layer’s dissipation of energy were developed (e.g. Yiu 

1993, McTavish and Hughes 1993, Lesieutre and Bianchini 1989).  

 Eventually,  Reissner’s concept of summing the strain energy of the three layers 

was used in finite element modeling so that a single element could be used to model the 

three layers of a constrained viscoelastic layer.   This technique was combined with the 

various approaches to viscoelastic modeling.  In a 1995 paper, Baz and Ro used a three 

layer finite element model with the complex modulus approach to model the viscoelastic 

layer.  A Kirchhoff model that included bending and extensional displacements was used 

for the base plate and constraining layer while the viscoelastic layer was modeled to 

include transverse shear displacement also.  In 1996, Lesieutre and Lee used a similar 

approach on a beam configuration but modeled the viscoelastic layer with their 

“Anelastic Displacement Field (ADF)” technique, a method using internal degrees of 

freedom to model the viscoelastic dissipation. 
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  As mentioned above, modeling the variation of material properties in the transverse 

(out-of-plane) direction has been studied by many, including those researchers interested 

in airframe structures and those interested in damping layers.  Through the early 1990s, 

these studies usually handled the variation of material by treating the layers as discrete 

quantities and summing the contribution of each layer to the total system energy.  

Starting in the late 1980s another engineering area of research developed which 

studied the variation of material properties within a material.  These investigations 

examined materials that came to be called functionally graded materials.  Since the 

impetus behind these investigations was the desire to develop materials that could 

perform well with very different boundary conditions on the inside and outside surfaces, 

a large majority of the papers that deal with functionally graded materials study 

configurations that vary in the transverse direction (e.g., Sutradhar et al. 2002, 

Venkataraman and Sankar 2001) although there has been some development of three 

dimensional modeling of material variation (e.g. Aboudi et al. 1999).  These studies did 

not deal with coupling structural motion to an internal pressure field. 

Less work has been presented regarding material variation in the in-plane 

direction.  However, in 2002 Kim and Paulino presented a development of plate elements 

that have material properties that have in-plane gradation.  The finite element model that 

was developed allowed both linear and exponential spatial variation of material 

properties.  However, dissipation of structural energy by lossy materials is not included in 

the development. 

In 2003, Bigili presented his three dimensional analysis of large deformations in 

an elastomeric material. However, he modeled the elastomeric material using 
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hyperelasticity concepts, so structural dissipation of energy by the elastomer is not 

modeled. 

In 2003, Baz et al.  studied the frequency response of beams treated with multi-

material constrained layers.  In their study, aluminum beams were treated with a full 

length layer of a relatively soft material (Dyad 601 from Soundcoat, Deer Park, New 

York, www.soundcoat.com), a partial treatment of Dyad 601 and a partial treatment of a 

combination of Dyad 601 and a somewhat stiffer material (Dyad 606). 

 

 

Figure 1.1: Frequency response of beam treated with multi-viscoelastic material 
(Baz et al. , 2003) 
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As illustrated in Figure 1.1, it is confirmed that the concept hold promise.  It is 

observed that for frequencies up to 350 Hz, the mixed material partial treatment 

performed better than the partial single material treatment.  This indicated benefit in 

further investigation of the concept. 

 

1.2 Scope of Dissertation 

This dissertation will explore experimentally the use of a constrained viscoelastic 

layer whose core has material properties that vary in-plane in a two-dimensional 

geometry to lower sound pressure levels inside a coupled acoustic cavity.  After testing 

the concept experimentally, a finite element model is developed to allow parametric 

studies of different material combinations and geometric layouts.  The finite element 

model simulates the vibration of plates treated with three-layer damping treatment.  The 

viscoelastic layer has material properties that vary in the in-plane direction, and 

dissipation by the viscoelastic layer is modeled using the complex material modulus 

approach.  Results from the parametric study are verified numerically and 

experimentally. 

 In this chapter, a review of pertinent literature was presented.  Chapter 2 will 

explore the appropriateness of various plate theory formulations and determine how 

spatially varying moduli affect the formulation of the equations that are the basis of finite 

element formulation.  In Chapter 3, the development of finite elements necessary to 

model the plate-cavity system is discussed.  The information regarding the initial 

experiment performed for this work is introduced in Chapter 4, while Chapter 5 presents 
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details regarding numerical validation purposes.  Chapter 6 discusses the validation 

process used in the development of the finite element model, and Chapter 7 presents the 

parametric study performed for this investigation.  Finally, the experimental validation is 

presented in Chapter 8.  Chapter 9 summarizes the conclusions and recommendations that 

are arrived at in this dissertation 
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Chapter 2 
 

Variational  Modeling Of Plates With Spatially Varying 
Moduli 

 
2.1 Plate Theory 

 Plate theory is an approximation in structural mechanics that assumes that 

knowledge of motion at the mid-plane of the plate is adequate to describe the motion of 

the plate.   In this dissertation, “Reissner-Mindlin plate theory” will be used to refer to 

plate theory that includes the effects of transverse shear deformation through the plate’s 

thickness while the term “Kirchoff plate theory” will refer to plate theory that does not. 

Typically, the assumptions in plate theory are stated to be: 

1) Particles along a straight line perpendicular to the undeformed mid-plane remain 

in a straight line when the plate is deformed.  In Kirchoff plate theory, it is further 

assumed that the straight line remains perpendicular to the mid-plane after 

deformation (rigid body rotation). 

2) Strain in the z direction (perpendicular to the plane of the plate) is negligible. 

 

The particulars of this study justify the further assumption that displacements are 

small and that Hooke’s Law: 

 

 

 

 may be used to describe the constitutive relationship between stress and strain.  We 

assume in this study that the material is isotropic (no preferred direction in material) but 

not homogeneous since the moduli are dependent on spatial location 
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2.2 Reissner-Mindlin Plate Theory Assuming E=E(x,y) 

Taking the mid-plane of the plate to be z = 0 for a plate with a coordinate system 

as shown in Figure 2.1, we can write the following expressions for the displacement, 

strain and stress in Reissner-Mindlin theory. 

 

                                         z 

                                                     y 

                                                                   x 

Figure 2. 1: Coordinate system of the plate 

 

Displacements: 

 

Strains: 
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Stresses: 

 

In these expressions  and  are the x, y and z displacements and and are 

independent functions of x and y.  The angle θ (which has specific instances as θx and θy) 

is the sum of a shear angle α and a bending angle β  (θ=α+β).  E is Young’s modulus, ν 

is Poisson’s ratio, and G=E/2(1+ν) is the shear modulus.  E and G are functions of x and 

y in this study. 

 To generate equations of motion for a Reissner-Mindlin plate with spatially 

variable material properties we will develop expressions for kinetic energy, strain energy 

and work.  Then using Hamilton’s Principle we will generate equilibrium equations. 

 

Strain energy: 
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Here Ω is the domain of interest.  When expressions for stress and strain are substituted 

into the expression for strain energy, and z is integrated over the thickness of the plate, 

the result is 

 

where  

 

and h is the thickness of the plate. 

 To generate an expression for kinetic energy in terms of u, v, w, θx and θy, the 

expressions for displacement are substituted into the expression for kinetic energy: 

Kinetic energy: 

        (2.6) 
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The final expression contains terms due to both translation and rotation.  We will 

consider first the energy terms associated with out-of-plane motion.  Hamilton’s Principle 

for these terms may be written as 

 

where δW is the contribution of the energy in the system due to surface and body forces 

represented by q.  Carrying out the variation of  and  according to the rule 

 and performing integration by parts as necessary allows us to generate 

equilibrium equations.  Note that since the moduli are functions of spatial variables, 

integration by parts now generates terms with odd order derivatives of the independent 

functions.  To demonstrate this, look at the variation and integration by parts for one term 

in : 
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Here, nx and ny  are the direction cosines between the normal to the boundary Γ and the x 

or y axis  (dx = nx dΓ).  Carrying through the variation and integration by parts for all 

terms in  and  yields the following equilibrium equations for a plate with spatially 

variable material properties: 

 



 15 

 

with boundary conditions (one from each group): 

 

We can go back to a symmetric formulation that is useful for generating stiffness and 

mass matrices by applying the principle of virtual work to the equations.  The equilibrium 

equations are multiplied by an appropriate virtual displacement and then integrated over 

the surface Ω. Integration by parts is performed and the variables in the resulting 

equation are discretized to generate the matrices used in finite element formulations.  For 

example, virtual work for the  equilibrium equation is: 

 

Performing integration by parts on the first term gives 

 

Notice that the asymmetric term (i.e. asymmetric in terms of derivatives of  ) generated 

by the integration by parts cancels the first asymmetric term in the  strong equilibrium 

equation.  This cancellation occurs for all the other asymmetric terms in the  
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equilibrium equation also, so the final “weak” form of the  equilibrium equation 

becomes 

 

which is the same as the weak  equilibrium equation for a Reissner-Mindlin plate with 

constant material properties.  This is also true for the weak form of the  and w 

equilibrium equations.   The final set of weak equilibrium equations for out of plane 

motion that can be discretized for finite element formulation is: 
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Now consider the energy terms associated with in-plane motion which model 

shear deformation in the Reissner-Mindlin plate.  Hamilton’s Principle for these terms 

may be written as 
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After taking the variation and using integration by parts as before, we generate the 

following equilibrium equations for u and v: 

 

with boundary conditions (one from each group): 

 

Again, these equations can be put into a form useful to finite element development by 

multiplying them by an arbitrary displacement function, integrating over the surface, and 

then performing integration by parts as necessary.  For the in plane displacements u and 

v, the asymmetric terms cancel out as they did for the weak forms of the  and  

equilibrium equations.   Thus, the following weak forms of the equilibrium (virtual work) 

equations for u and v result.    
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2.3 Kirchoff (Thin) Plate Theory Assuming E=E(x,y) 

When we make the further assumption that a transverse cross section that is 

normal to the undeformed mid plane of the plate configuration remains normal to the mid 

plane surface after the plate is deformed, then θ=dw/dx for small deformations and the 

following expressions describe classic (Kirchoff) plate theory. Taking the mid-plane of 

the plate to be z=0 for a plate with a coordinate system as shown in Figure 2.1, we can 

write the following expressions for the displacement, strain and stress in Kirchoff theory. 

 

Displacements: 
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Strains: 

 

Stresses: 

 

In these expressions  and  are the x, y and z displacements and w is the independent 

function of x and y. 

 To generate equations of motion in Kirchoff plate theory with spatially variable 

material properties we will develop expressions for kinetic energy, strain energy and 

work.   We will not write out the terms involving extensional displacement here as these 

are the same as in the Reissner-Mindlin formulation.  Then, using Hamilton’s Principle, 

we will generate equilibrium equations. 

 

Strain energy: 

 

When expressions for stress and strain are substituted into the expression for U, and z is 

integrated over the thickness of the plate, the result is 
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where  

 

and h is the thickness of the plate.   

 

Kinetic energy: 

 

We will look at energy terms associated with out of plane motion.  Hamilton’s Principle 

for these terms may be written  
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where δW is the contribution of the energy in the system due to surface and body forces 

represented by q.  Carrying out the variation of  and  according to the rule 

 and performing integration by parts as necessary allows us to generate 

equilibrium equations.  As before, since the moduli are functions of spatial variables, 

integration by parts generates terms with derivatives of the independent functions.  Below 

is the variation and integration by parts for one term in U for the Kirchoff formulation: 
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Carrying through the variation and integration by parts for all terms in  and  yields 

the following equilibrium equation for the bending motion of a plate with spatially 

variable material properties: 

 

with boundary conditions 

 

 

We can go back to the symmetric formulation that is useful for generating stiffness and 

mass matrices by applying the principle of virtual work to the equations.  The equilibrium 
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equation is multiplied by a virtual displacement and then is integrated over the surface Ω. 

Integration by parts is performed and the variables in the resulting equation are 

discretized to generate the matrices used in finite element formulations. Virtual work for 

the w equilibrium equation is: 

 

 

After appropriate integration by parts, the weak form of the equilibrium equation takes 

the form: 
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2.4 Summary 

 In this chapter, we have developed strong (Eqs. 2.8 and 2.11) and weak forms 

(Eqs. 2.9 and 2.12) of the equilibrium equations for plates that have material properties 

varying in-plane using both the Reissner-Mindlin assumptions and Kirchoff assumptions.  

The following observations and comments may be made regarding the results. The weak 

form of the equilibrium equations is the same for a plate with material properties that 

vary in-plane as a plate with constant variable properties.  Derivatives of the material 

properties arise in the variation of the strain energy expression only after integration by 

parts.  This is a result of mathematical manipulation rather than of modeling some 

physical phenomenon.   Thus, the differences in the stiffness matrices of homogeneous 

plates and spatially varying plates will occur only because the bending stiffness D is now 

function of x and y, i.e. D(x,y), and therefore must be included inside the integration of 

the energy functional. 

 In this investigation, the transverse shear is an important mechanism through 

which kinetic energy is transformed to heat and dissipated.  Since the Kirchoff plate 

formulation does not explicitly model the effect of transverse shear and the Reissner-

Mindlin formulation does, the Reissner-Mindlin plate theory will be used in developing a 

finite element model that can model a spatially varying viscoelastic layer. 
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Chapter 3 

 
Preliminary Experimental Work 

 
 To test the hypothesis that a viscoelastic layer with non-homogeneous material 

properties in-plane would more effectively reduce pressures within a cavity than its 

homogeneous counterpart, a preliminary experiment was performed.  This experiment 

was principally undertaken for the purposes of looking at the validity of the concept. 

    

 

 

 

 

 

 

 

 

 

Figure 3. 1: Sketch of experimental setup for preliminary experiment 

3.1 Experimental Setup 

Figure 3.1 shows a sketch of the experimental setup and Figure 3.2 a connections 

diagram. 

Flexible Plate 

Speaker 

Microphone 

LDV system 
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The experiment was conducted in an acoustic cavity that had 5 walls made of 0.5 

inch Plexiglas.   The interior dimensions of the box were 12” x 12” x 30.”  The sixth wall 

of the enclosure was formed of an aluminum plate that was 0.016” thick.  This flexible 

plate was bolted onto the Plexiglas enclosure with 16 bolts. 

 

 

 

 

 

 

 

 

 

Figure 3. 2: Connections diagram for preliminary experiment 

  

The plate was excited with an external speaker (Techni Coustic Model 616RS; 

6.5” woofer, 35 W rms) placed 1 3/8 inches away from the flexible plate.  The speaker 

was driven with low pass filtered white noise (0-200 Hz, 1V p-p) for pressure 

measurements. 

 The interior pressure field was monitored at a single point using a Larson-Davis 

microphone (PRM902).  A threaded rod suspended the microphone 6 inches down from 

the top of the Plexiglas cavity, 5 inches behind the flexible plate, and 3 inches from the 

side wall.  A second microphone was positioned outside the cavity to measure the 
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ambient noise.  The outputs of the inside and outside microphones were monitored using 

an Ono Sokki CF350 signal analyzer.  Spectra were generated using 128 averages and a 

frequency resolution bandwidth of 0.5 Hz. 

 A sketch of the four viscoelastic layer configurations is shown in Figure 3.3 

 

 

Figure 3. 3: Sketch of the four viscoelastic layer configurations  White circles 
indicate approximate bolt locations 

 
The regular viscoelastic layers were fabricated from 6” x  6” x  0.05” squares of 

the Soundcoat Company’s Dyad damping material.  Layers of Dyad 601, Dyad 606 and 

Dyad 609 were bonded to aluminum plates with epoxy.  At 77 degrees F, the three 

materials have the loss factor  and shear modulus G presented in Figure 3.4.   These 

curves of the shear modulus and loss factor were derived from the Soundcoat 

nomographs . 
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(a) 

 

 

 

 

 

 

 

 

 

(b) 
 

Figure 3. 4:  Shear modulus G' (a) and loss factor η  (b) for viscoelastic materials 
 

 The spatially varying layer was fabricated using patches of the 601 and 609 

materials as shown in Figure 3.3. Dyad 601 and Dyad 609 were chosen for the spatially 

varying configuration in this initial experiment as they had the most dissimilar loss 

factors and shear moduli. 
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 For the constrained layer configurations of the four viscoelastic layers, a sheet of 

0.005 in aluminum was bonded on top of the viscoelastic layer  

 

Measurements were also made of the plate’s displacement at resonant frequencies 

using a PSV200 laser vibrometer system.  During the vibrometer measurements, the 

flexible plate was excited with a tone at a resonance frequency of the plate.   The signal 

fed to speaker was used as an outside reference signal to vibrometer software to 

determine phase information in the measurement.  PSV’s Fast Scan option was used to 

generate the plate’s mode shapes, and the measurement was made using 25x25 point grid 

with a 5 Hz bandwidth around the center frequency (the excitation frequency). 

 

3.2 Configurations for preliminary experiment 

  Measurements were made for the following configurations: 

1. Plain Plate:  An aluminum plate with no viscoelastic layer was bolted on the 

Plexiglas box. One run made for each plate used for before the viscoelastic layer 

was attached. 

2. 601 uc: Aluminum plate with a layer of Dyad 601 was bolted on the Plexiglas 

box. 

3. 606 uc: Aluminum plate with a layer of Dyad 606 was bolted on the Plexiglas 

box. 

4. 609 uc: Aluminum plate with a layer of Dyad 609 was bolted on the Plexiglas 

box. 
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5. 601/609 uc:  Aluminum plate with an spatially varying layer made of Dyad 

601and Dyad 609 was bolted on the Plexiglas box. Two runs made with two 

different plates. 

6. 601c:   An aluminum plate with a constrained layer of Dyad 601 was bolted on 

the Plexiglas box. 

7. 606c:   An aluminum plate with a constrained layer of Dyad 606 was bolted on 

the Plexiglas box. 

8. 6091c:   An aluminum plate with a constrained layer of Dyad 609 was bolted on 

the Plexiglas box. 

9. 601/609c:  Aluminum plate with a constrained spatially varying layer made of 

Dyad 601and Dyad 609 was bolted on the Plexiglas box.  Two runs made. 

 

3.3 Results  

 The configurations of interest to this investigation from the preliminary 

experiment were the constrained layer runs and the untreated plate runs.  The data 

pertaining to these runs will be discussed in this section. 

 Figure 3.5 presents the pressure levels inside the enclosure for the four plates with 

a constrained viscoelastic layer.  On the left hand side are the pressure levels for the 

entire frequency range of interest to this investigation (0-200Hz), and on the right hand 

side the same data is but is focused on the frequency range close to the first resonance 

peak (20-80 Hz). 
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 (a) – Full range 

 

(b) –zoom on range between 20-80 Hz 

 

Figure 3. 5: Comparison of pressure levels for the four constrained viscoelastic 
layers.   
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It can be seen that when the plate with the constrained spatially varying 

viscoelastic layer is excited by white noise from the speaker, the levels in the enclosure 

are lower than the levels that occur inside the enclosure when any of the other three 

treated plates, which have homogeneous constrained layers, are insonified.  At the first 

resonance the pressure levels for the plate with a spatially varying layer are 36% lower 

than the level for the plate with a Dyad 601 layer, are 44% lower than the levels for the 

Dyad 606 plate and 60% less than the levels for the plate with a Dyad 609 layer.  Note 

that 60 cycle harmonics at 120 Hz and 180 Hz appear in some of the runs. 

 In Figure 3.6,  the pressure levels in the  enclosure when  white noise  is broadcast  

towards a plate with a  constrained  viscoelastic  layer is  compared to the  pressure levels  

that occur within  the enclosure when the plate is untreated i.e. has  no constrained visco- 

elastic layer
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In Figure 3.6,  the pressure levels in the  enclosure when  white noise  is broadcast  

towards a plate with a  constrained  viscoelastic  layer is  compared to the  pressure levels  

that occur within  the enclosure when the plate is untreated, i.e. has  no constrained visco- 

elastic layer. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 3. 6: Comparison of constrained layer pressure levels with those of the 
untreated plate. 

 
In each of these plots, the black line represents the data for the inside pressure levels 

with an untreated plate, and the colored line depicts the pressure levels for the same plate 

treated with a viscoelastic layer.  The plot for the spatially varying plate has data 



 36 

averaged over the two runs performed for this configuration.  It can be seen that all the 

viscoelastic layers produce pressure level reductions that are broadband in frequency, but 

the spatially varying layer produces the greatest reduction in the lowest resonance peak 

for the plate/cavity system. The spatially varying constrained layer resulted in a 10 dB 

decrease from the plain plate configuration. 

Above a frequency of about 20 Hz there is a broadband decrease in the measured 

pressure levels of about 6 – 10 dB (except at resonances) for all the viscoelastic layers 

applied to the plates.  Also, it appears that all four viscoelastic layers change the system 

impedance from that of the plain plate (see Figure 3.6) so that the quality factor increases 

and the higher modes of the plate are no longer apparent. 

 For completeness Figure 3.7 presents data from measurements of the ambient 

pressure levels inside and outside of the enclosure.  Also included in this plot are pressure 

data from the inside and outside microphone spectra for a typical white noise run.  The 

following observations may be made with respect to the data: 1) There are 60 cycle 

harmonics present in many of the spectra at 120 Hz and 180 Hz.  This occasionally is 

strong enough to be present in data runs.  2) From 0 to about 12 Hz there is a strong band 

of energy present in all the spectra.   
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Figure 3. 7  Ambient data for inside and outside microphones.  Curves with black symbols are data 
from a typical white noise run. Star- inside microphone  Triangle - outside microphone. 

 

Since this energy is present in the ambient data both inside the cavity and outside the 

cavity, it is not related to the system dynamics.  Its cause was not investigated in this 

preliminary experiment.  3) The pressure levels measured in the data runs are well above 

the ambient levels indicating good signal to noise levels. 

The twelve spectra of this initial experiment (four plain plate, four unconstrained 

layers and four constrained layers) were integrated across frequency range and the results 

may be seen in Table 3.1   Since the area under the spectra is proportional to the power 

measured by the microphone, integration of the curve gives a broadband indication of the 

relative effectiveness of the four layers in decreasing the amount of vibratory energy 

converted to acoustic energy.   
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Layer material 601 606 609 601/609 

plain 0.0932 0.0914 0.1007 0.0772 

constrained 0.0491 0.0498 0.0547 0.0385 

% constrained 47.3% 45.5% 45.7% 50.1% 

Table 3. 1 Area under pressure spectra for each configuration 

To account for differences in the four untreated base plates, a percent decrease in 

area of the curve is calculated (i.e. 100 * (p2
plain - p2

treated)/p2
plain).  As can be seen in the 

table, for this experiment the constrained spatially varying configuration showed the 

greatest decrease in measured acoustic power. 

Measurements were also made of the plate’s displacement at resonant frequencies 

using a PSV200 laser vibrometer system.  These measurements were performed 

asynchronously from the pressure measurements.  During the vibrometer measurements, 

the flexible plate was excited with a tone at a resonance frequency of the plate.   The 

signal fed to speaker was used as an outside reference signal to PSV software to 

determine phase information in the measurement.  PSV’s “Fast Scan” option was used to 

perform the measurements. 

Figure 3.8 displays the frequency response of the untreated plate as measured by 

the scanning vibrometer indicating the resonant frequencies. 
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Figure  3. 8: The frequency response of the untreated plate  
 

 

In Figure 3.9 contour plots of the displacements of the plate at the first 5 

resonances are presented.  The resemblance to the first 5 mode shapes is clearly seen. 

Figure 3. 9: LDV displacement of untreated plate at first five resonant peaks. 
 

 

(a) 

58 Hz 

72 Hz 
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119 Hz  

137 Hz 

58 Hz 
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(b) 

 

(c) 

 

(d) 

70 Hz 

84 Hz 

119 Hz 
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(d) 

(e) 
Figure 3. 9: LDV displacement of untreated plate at first five resonant peaks. 

 

Figure 3.10 displays the displacement pattern for the first resonances of the four 

plates with constrained viscoelastic layers as measured by the LDV system.   On each of 

the contour plots for the plates with constrained viscoelastic layers, the name of the 

viscoelastic layer, the frequency of the first resonance and the maximum displacement of 

the measurement are labeled. 

Figure 3. 10  Displacement pattern at the first resonance for the four constrained viscoelastic layers.  
Material, resonance frequency and maximum displacement is labeled 

 

 

138 Hz 

Dyad 601 
53 Hz 
.0012 in. 

Dyad 606 
54 Hz 
.0051 in. 
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Figure 3. 10  Displacement pattern at the first resonance for the four constrained viscoelastic layers.  
Material, resonance frequency and maximum displacement is labeled 

 
 Here as expected given the pressure level results, the plate with the spatially 

varying viscoelastic layer has the smallest displacement 

 

3.4 Summary 
 
 The overall conclusion from this brief preliminary experiment is that it is worth 

investigating parametrically the use of a spatially varying viscoelastic layer for reducing 

the pressure field within and enclosed cavity.  After guidelines have been numerically 

developed to steer choices of material and geometry of the constrained spatially varying 

viscoelastic layer, further experiments will be performed to verify the conclusions drawn. 

Dyad 609 
58 Hz 
.0035 in. 

601/609 
56 Hz 
.0009 in. 
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Chapter 4 
 
 

Generation of Dataset  
for Validation of  Finite Element Model 

 
 
 
 The commercially available finite element (FE) computer code NASTRAN was 

used to create an initial model of the plate/cavity system that is under study.   This was 

done to gain some experience in modeling the system before creating the new finite 

element code with the capability of modeling a spatially varying viscoelastic layer.  The 

plate/cavity system will be described in detail in upcoming chapters. 

 

4.1 Plate Model 

 The aluminum base plate was modeled in NASTRAN using plate elements.  

Contributions from bending and extension displacements (uncoupled) were included in 

the stiffness matrix.  The base plate was modeled with a thickness of 0.016 inches, and an 

overall length of 12 inches.  The material properties of aluminum used in the model were 

Young’s modulus of 10.3 x 106 psi, mass density of 2.5244x 10-4 lb-sec2/in4, and 

Poisson’s Ratio of 0.33. 

 

 As discussed in Cramer et al. (1988), in the plate, the highest frequency bending 

waves will have the shortest wavelength.  This point is illustrated in Figure 3.1.   
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Figure 4. 1: A comparison of wavelengths for different wave types. 
 

Here the wavelengths of different types of waves have been plotted against frequency for 

a 0.016 inch thick aluminum plate using the analytical expressions discussed in Cramer et 

al. (1988).  It can be seen that especially at low frequency, the bending wavelength is 

much shorter than the wavelengths of the other wave types in the system.  Thus a 

controlling factor in determining a grid resolution that will lead to a converged finite 

element solution is the bending wavelength of the highest frequency of interest.  For a 

maximum frequency range of 200 Hz, the bending wavelength of the plate modeled is λ 

= 5.57 inches, for a maximum frequency range of 500 Hz the bending wavelength is 3.52 

inches.  NASTRAN recommends having between 5 and 10 grid points per half 

wavelength to achieve a resolved FE solution.  With these guidelines and the overall 

length of the plate an appropriately sized element can be chosen. 
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From Flugge (1962), the frequencies for bending modes in a thin square plate may 

be calculated from the equation 

 

 

where L is the length of the plate’s side and χi is a parameter for mode i which depends 

on the boundary conditions and is tabulated in Flugge.  Clamped boundary conditions 

were used on all four sides.  Using Equation 4.1, the first four eigen-frequencies of the 

plate were calculated to be 39.3 Hz, 79.40 Hz, 79.4 Hz, and 117.15 Hz.  The eigen-

frequencies output from the finite element program will be compared to these values.  

Note that since Flugge's expression was developed from Kirchoff theory without 

extensional displacements, while the NASTRAN elements do include extension, the 

converged numerical results may not exactly match the results from the analytical 

expression above.  

  

 Two plate elements developed for NASTRAN are the QUAD4 element, a four-

node element, and the QUAD8 element that has an additional mid node on each side.  

Models of the plate were created using these two elements in meshes of varying 

resolution.  Table 4.1 shows typical results. 
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Number of 
elements 

Element 
Type 

Number of 
Grid 

Points 

First Eigen-
frequency 

Second/Third 
Eigen-

frequency 

Fourth Eigen-
frequency 

6 x 6 QUAD4 7 x 7 38.39 78.75 112.46 

3 x 3 QUAD8 7 x 7 41.25 83.33 145.30 

24 x 24 QUAD4 25 x 25 39.22 79.90 117.00 

12 x 12 QUAD8 25 x 25 39.38 80.03 118.47 

12 x 12 QUAD4 13 x 13 38.87 79.16 114.96 

6 x 6 QUAD8 13 x 13 39.47 80.69 120.56 

24 x 24 QUAD8 49 x 49 39.38 80.31 118.42 

Thin plate 
(Kirchoff) 

theory 

  38.94 79.82 117.77 

Table 4. 1: A comparison of the eigenvalues calculated for some different mesh 
sizes and element types of the C-C-C-C plate 

 
 Using the results of these and other trials it was decide to use a 12 x 12 element 

grid of QUAD8 elements for the base plate. 

 

4.2 Cavity Model 

 Kinsler et al. (1999) give the following analytical expression for the eigen-

frequencies a fluid-filled rectangular box with rigid walls: 
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For a 12 x 12 x 30 inch box filled with air, the first 4 frequencies are calculated to be 0 

Hz, 225.06 Hz, 450.12 Hz, and 562.65 Hz.   

 

 The mesh of a fluid cavity can be coarser than that used for a structural analysis 

since the wavelength of the fluid’s longitudinal wave will generally be longer than the 

wavelength of the structural element’s bending wave.  NASTRAN recommends 3 to 6 

elements per wavelength.  NASTRAN has an eight-node solid-fluid element and a 20- 

node solid-fluid element.  After performing convergence studies like those mentioned 

above, it was decided to use 20-node solid elements in a 12 x 12 x12 element mesh.  The 

8 node element was less accurate and although a coarser mesh of 20-node elements gave 

reasonable results, it was decided that since there was little computational time increase 

for a 12 x 12 x 12 mesh compared to a 6 x 6 x 6 mesh, the simplification of joining the air 

model to the plate model warranted the extra elements in the air model.  The finer grid 

also would allow the location of the microphone in the experimental apparatus to be 

modeled more directly.  The eigenvalues calculated by NASTRAN for the 12 x12 x 12 

mesh of 20 node elements were 8.96 x 10 –6 Hz, 225.07 Hz, 450.16 Hz, and 562.67 Hz. 

The eigenvalues calculated by NASTRAN for the 12 x12 x 12 mesh of 8 node elements 

were 4.06 x 10 –5 Hz, 225.70 Hz, 455.29 Hz, and 564.27 Hz.     

 Once the models for the plate and cavity gave good eigenvalues, NASTRAN’s 

coupled fluid/structure analysis was used to calculate eigenvalues for the coupled system.  

This analysis gave the following eigenvalues below 200 Hz for the coupled system:  0 

Hz, 55.67 Hz, 77.8 Hz, 77.8 Hz, 115. 8 Hz, 140.7 Hz, 141.2 Hz, and 177. 5 Hz. 
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4.3   Loading 

 To model the loading of the speaker broadcasting white noise towards the plate, 

the spectra from a microphone monitoring the pressures outside the enclosure during the 

experiment was used.  The magnitude only was used in the loading for the NASTRAN 

model.  Using no phase information in the loading assumes constant phase across 

frequency.  This is a reasonable assumption since the wavelength in air at the highest 

frequency of interest (200 Hz) is 67 inches and the speaker is 1 to 4 inches away from the 

plate.  

 A table of pressure vs. frequency was entered using values of pressure taken from 

the external microphone.  For frequencies between entries on the table, the pressure was 

interpolated using a log scale.  These values of pressure are then used to define a dynamic 

excitation for each loaded grid point 

 

 

 

Here B( f ) is the table of pressure magnitudes mentioned above.   φ ( f ) is the table of 

phase values, which is in this case not used.  The frequency range for this analysis 

extended from 0.5 Hz to 200 Hz in increments of 0.5 Hz.  The structural response is 

calculated using a direct frequency response scheme that solves the system of equations 

 

 

 

for each frequency ω. 
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 Figure 4.2 presents the result of the NASTRAN model of the plain plate/cavity in 

comparison with the experimental data. 

 

Figure 4.2: Comparison of NASTRAN results with experimental data for the untreated 
plate/cavity system 

 
 

Overall the results are good.   As discussed in the chapter pertaining to the preliminary 

experiment, there is a band of very low frequency energy that is not related to the plate 

cavity system (it is apparent in the ambient data when there is no excitation) that does not 

appear in the NASTRAN model but the frequencies and magnitudes of the resonances at 

55 Hz and 150 Hz show good agreement. 
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4.4 Viscoelastic and Constraining Layer Models 

 A single layer of 20-node solid elements was used to model the viscoelastic layer 

in NASTRAN.  NASTRAN has the capability to represent one frequency dependent 

complex modulus in a model of the form 

 

 

where  is the storage modulus and  is the loss modulus.  Using the material 

properties plotted in Figure 4.4, suitable tables of modulus vs. frequency were created 

and used in the NASTRAN model.  Figure 3.3 presents the comparison of NASTRAN 

results with experimental data for an unconstrained viscoelastic layer.  A NASTRAN run 

was made for each of the three viscoelastic materials used in the preliminary experiment. 

Once the NASTRAN models of the unconstrained configurations ran 

successfully, an additional layer of thin 8-node plate elements was added on top of the 

viscoelastic layer to model the constraining layer in the experiment.  The results are 

presented in Figure 4.3 
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(a) – Dyad 601 

 

(b) – Dyad 606 

 
(c) - Dyad 609 

 
Figure 4.3: Comparison of NASTRAN model and experimental pressure data for 

unconstrained viscoelastic configurations 
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(a) Dyad 601 

 
(b) Dyad 606 

 
(c) Dyad 609 

Figure 4.4: Comparison of experimental pressure data and NASTRAN model for 
constrained configurations
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4.5  Summary 

 
 For the most part, the agreement of the NASTRAN model and the experimental 

data was very good especially at the first resonance in the system.  However, for the 

stiffest (DYAD 609) unconstrained configuration and the softest (DYAD 601) 

constrained configuration NASTRAN’s performance degraded to some extent.  Since 

NASTRAN was primarily being used to bound modeling parameters and to gain 

modeling experience for the system, this phenomenon was noted but not further 

investigated.  The version of NASTRAN used for this study was not able to model multi 

material configurations because the complex modulus feature allows only one frequency 

dependent material.  As mentioned above, the constrained layer configuration could only 

be modeled in NASTRAN using a combination of shell elements for the base plate, solid 

elements for the viscoelastic layer and shell elements for the constraining layer. 
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Chapter 5 
 
 

Finite Element Model of Viscoelastically Damped Plates 
Coupled with an Acoustic Cavity 

 
5.1   Finite Element Model for Untreated Plate – Strain Energy 

Having developed weak forms of the equilibrium model for a Reissner-Mindlin plate 

in Chapter 2, this chapter traces the development of the finite element model to be 

used for this study. 

 

 

Figure 5. 1:  Geometry for plain plate kinematics 
 

 The displacements strains and stresses to be used are expressed in Eqs. 2.1-3 of 

Chapter 2.  Note that because of the 3-D to 2-D simplifications resulting from plate 

theory, the out-of-plane strains each can be thought of as having two parts: 
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where the superscript LS refers to longitudinal shear and the superscript B refers to 

bending.  The strain energy is  

 

 

 

Here and elsewhere in this document, LS denotes longitudinal shear, B denotes bending 

and TS denotes transverse shear.  Note that in the above equation, cross terms like σxxLS, 

and εxxB are not present.  This is because these terms when expanded, are multiplied by z 

and so when they are integrated through the thickness of the plate (-t/2 to t/2) tend to 

zero.  Thus, for an untreated plate, the longitudinal and bending components can be 

calculated independently, i.e. the longitudinal and bending strain energy are uncoupled.  

This can be advantageous computationally since the smaller matrices are easier to invert.   

However, the kinematic model developed for the treated plate causes the longitudinal 

strain and stress (εxxLS and σxxLS) to be functions of both the extensions and the rotations, so 

the final FE model developed calculates strain and kinetic energy with all degrees of 

freedom coupled for both a plain plate element and a treated plate element.   

 As described earlier, the virtual work equations (Eqs. 2.9a-c and Eqs. 2.12a-b) can 

be developed using expressions for strain and stress in the strain and potential energy 



 56 

equations.  Looking at the terms in the virtual work equations, one can see that for the 

untreated plate, terms involving strains that occur because of plate bending 

( ) are only functions of the rotations θx and θy, terms involving strains that 

occur because of plate longitudinal shear ( ) are only functions of u and v, 

and terms involving strains that occur because of plate transverse shear ( ) 

are functions of w, θx and θy.  Thus, the five virtual work equations can be separated into 

parts that contribute to bending, longitudinal shear and transverse shear and then 

organized in matrix form.  The matrix form of the virtual work equations can then be 

written: 

 

 

5.2 Discretization 

 Now that we have an expression for virtual work in matrix form, the next step is 

to discretize the independent variables.  Following the ideas presented by Hughes and 

Tezduyar (1981) and also by Bathe and Dvorkin (1985), a four-node quadrilateral plate 

element is used in this study.  Four-noded elements with the associated simple shape 

functions are used to compensate for the additional algebraic complexity introduced by 
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the kinematic model of the three layer viscoelastic element that was created for this work.  

Also, it was decided to use direct rather than numerical integration for the calculation of 

strain energy in the finite element program and this was facilitated by the use of the 

simple shape functions.  Future work could increase the order of the shape functions if 

accuracy appears to be adversely affected by the bilinear shape functions employed 

currently. 

 For a plain plate element, each node is assumed to have seven degrees of freedom, 

w, αx, αy, βx, βy, u, and v.  Here, the rotational angle θ has been broken into two parts, a 

shear angle α and a bending angle β (which for small displacements can be taken to be 

the spatial derivative dw/dx as is done in Kirchoff plate theory).  The sum of α and β is θ 

(θ=α+β).  The reasons for why this expression of the rotational angle was chosen will be 

discussed in the section on the development of the three layer element later in this 

chapter.  The element coordinate system whose origin is taken to be the center of the 

element is shown in Figure 5.2  

 

 
 

Figure 5. 2: Four-node quadrilateral element 
 
 
Given the shape functions and their derivatives with respect to r and s as follows: 

(-1,-1) 

s 

r 

(-1,1) (1,1) 

(1,-1) 
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      (5.2) 

 

 

We will express the displacements and, since the formulation is isoparametric, global 

coordinates as 

 

  

where i is the index on the node numbers.  Since the displacements at the nodes are 

constants, the derivatives for u are expressed as 

 

 

 
 
and derivatives with respect to r and s for the other independent variables and global 

coordinates may be written similarly.  The local derivatives are related to the global 

coordinate system via the Jacobian matrix: 
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    When equations 5.2 through 5.4 are substituted into equation 2.3, discretized forms of 

the strain are generated.  For convenience in computing, the strains are broken into 

contributions from bending, longitudinal shear (extension) and transverse shear.  These 

are defined as 

 

 

 
 We define the vectors containing the displacements of a 4-node plain plate as 

follows: 
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Then, using the derivatives from 5.4 and a discretized expression of the independent 

variables and global coordinates from equation 5.3 in the strain expressions of 5.5, the 

discretized forms of the strains (and virtual strains) can be written in matrix form as 

 

 
where [B] is the matrix of appropriate derivatives with respect to s and r. 

The transverse shear strain combines a first order spatial derivative of the 

transverse displacement with a zeroth order derivative of the rotation.   Since the same 

shape functions are being used to interpolate w and θ, the order of the polynomial 

approximating the part of transverse shear due to the derivative of the transverse 

displacement is one degree lower than the polynomial approximating the part of 

transverse shear due to the rotation.  The ultimate result of this mismatch is that when full 

integration is used for transverse shear in a thin element (where the transverse shear 

approaches zero), the element tends to be too stiff.  If however, the interpolation 

polynomials are evaluated at points in the element where the extra higher order terms in 

the rotation polynomial become zero, balance is restored and the transverse shear can 

tend to zero as it should for the thin plate case.  This was pointed out by MacNeal (1978) 

and further developed by Hughes and Tezduyar (1981).   
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Hughes (1980) describes a method of incorporating the effective reduced 

integration of the transverse shear.  Basically, the transverse shear is evaluated at the 

midpoints of the sides where θx and θy, which are, in general, linear functions of r and s 

respectively, retain only the constant term in the interpolation polynomial.  Then once 

this is done, the transverse shears in the x and y direction are interpolated to the center 

point of the element.  Displacements from all four nodes of the element contribute to the 

transverse shear of the element in an interpolated sense. 

For implementation purposes this means that the transverse shear element matrix 

is modeled as 

 

 

Once the strains have been expressed in matrix form expressions for stresses are 

generated.  Because very small displacements are the reality in this investigation, 

Hooke’s Law is an appropriate constitutive model.  The constitutive matrices for the plain 

plate are defined as 

 

where E is the Young’s Modulus and ν is the Poisson’s Ratio.  Now the stresses may be 

written in matrix form as 
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When equations 5.6 and 5.7a-b are substituted into 5.1 and the resulting expression is 

integrated over the thickness h (z direction), we have the following 

 

where 

 

Writing all the degrees of freedom together in a single vector {a} of element 

displacements and creating the sparse matrices KLS, KB, and KTS from their hatted 

counterparts (  etc.) above, we can rewrite equation 5.1 as 

 

 

where  
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and Kel is the element stiffness matrix. 

 

5.3 Finite Element Model for Untreated Plate – Kinetic Energy 

After integration over the thickness, the kinetic energy for the plain plate may be 

expressed as 

 

Note that after integration over the thickness, no coupling remains between the transverse 

and rotational displacement for the untreated plate.  Coupling between rotational degrees 

of freedom is still present, however.  Using the variation of this expression in the virtual 

work equation above we have 

 

 

Now we use the shape functions in equation 5.2 to write the various terms in the variation 

of the kinetic energy equation in matrix form.  For example, the term involving αx 

becomes 
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Then, rewriting the above in matrix form 

 

To combine this with the final form of 5.9 the element displacement vector is used and 

the sub matrices  and  are combined appropriately in a sparse matrix.  Since δa 

is an arbitrary function this gives the final result for the structure: 

 

          

 

5.4 Finite Element Model – Load Vector 

 The loading for this investigation was generated by a loudspeaker which was 

facing the plate and broadcasting a white noise acoustic signal.  The details of the data is 

discussed more thoroughly in Chapters 4 and 5.   The signal level was on the order of 

p(ω)=1x10-6 psi.  This is modeled in the finite element model as a plane wave 

(F(ω)=p(ω)eiωt).   The load vector was developed by identifying the grid points that 
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would be within a 6.5" square at the center of the plate (based on the arrangement of the 

experimental apparatus) and applying F(ω) .  

 

5.5 Finite Element Model for Acoustic Cavity 

 As developed in many texts that discuss the topic of acoustics (e.g. Kinsler et al. 

(1999)) the following three linearized equations 

 

may be combined to form a single equation known as the linearized lossless wave 

equation: 

                     

with boundary conditions 

 

 Here p is the pressure, r0 is the density of the fluid, c is the sound speed in the 

fluid and  is the condensation.  In the boundary conditions Sn is the part of the 

boundary to which the known normal velocity  is applied and Sp is the part of the 

boundary to which the known pressure  is applied.  This equation models a physical 

environment accurately when the following assumptions are true: 
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1)  Density  varies only by a small amount throughout the volume of interest. 

2)  Velocities are small enough that viscous effects may be omitted. 

3)  Viscous effects that give rise to deviatoric stress can be neglected. 
 

 

To develop the stiffness matrices for the air in the cavity, rather than develop 

expressions analogous to the strain and kinetic energies as we did for the structural part 

of the problem, we will apply the principle of virtual work to the equilibrium equation.  

Equation 5.13 is multiplied by an arbitrary virtual pressure δp and then integrated over 

the volume of interest: 

 

Noting that 

 

 

and also recalling the divergence theorem  

 

we can write  

 

 

When we incorporate the velocity boundary condition from 5.13a we have the final 

integral formulation of the equilibrium equation 
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In this investigation the transverse velocity of the plate is the velocity normal to the fluid 

volume.  That is,  . 

 

5.6 Acoustic Cavity Discretization 

 Recognizing p as a scalar entity, and defining the Laplacian, fluid displacement, 

and fluid shape function vectors as 

 

for an eight-node solid element, we can approximate the scalar field p(x, y, z, t) and its 

virtual counterpart δp as 

 

Then we can rewrite the terms in equation 5.15 as 

 

 

so the discretized form of equation 5.15 is 

 

 

and finally, since δp is an arbitrary function, we have 
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5.7 Fluid -Structure Coupling 

 Coupling between the fluid and the plate occurs through the boundary conditions 

in equations 5.11 and 5.16.  From the structural equation, coupling terms are added to the 

global stiffness matrix at the interface pressure degrees of freedom and from the fluid 

equation coupling terms are added to the global mass matrix at the degrees of freedom for 

acceleration normal to the plate fluid interface.   This can be expressed in a matrix 

equation as 

 

 
5.8 Finite Element Model for Combined Three Layer Plate Element 

 To develop a single element that will model the behavior of the base plate, 

viscoelastic layer and constraining layer together, we will combine the strain energies 

from each layer together in a single expression.  To do this we must first develop 

expressions for the displacements in each layer. 
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5.9 Kinematics for Three Layer Plate 

 The kinematics of this model are developed using the assumptions of the 

Reissner-Mindlin plate theory.  Specifically of use are the assumptions that 1) only small 

displacements occur within the plate and 2) plane sections in the undeformed plate 

remain plane upon deformation. 

 

 

 

 

 

 

 

 

 

 

Figure 5. 3: Geometry for kinematics of three layer plate 
 

Figure 5.3 depicts the geometry involved in developing expressions for the 

kinematics of the three layer plate.  The overall thickness of the three layers is small 

(0.071 in.) compared to the three layer plate length (6 in.) so the transverse displacement 

w is taken to be uniform throughout the three layers.   As the base plate and constraining 

layers are both formed of the same material and are thin, the rotation of the constraining 

layer is taken to be the same as that in the base plate (θcl= θb).  The viscoelastic layer is 

taken to have an independent rotation θv.   These assumptions are used with the Reissner-

Mindlin assumptions and trigonometric identities to generate expressions for the 

uc
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extensional displacement in the viscoelastic layer and the constraining layer.  Figure 5.4 

illustrates the pertinent angles in the viscoelastic layer. 

 

 

 

Figure 5. 4:  Angles for extensions in viscoelastic and constraining layers 
 

Also, α is the angle between the cross section normal to the mid-plane of the 

deformed plate and the deformed cross section using Reissner-Mindlin assumptions.  It is 

the transverse shear angle.  β is the angle between the cross section that is normal to the 

undeformed mid-plane and the cross section that is normal to the deformed mid-plane - 

this is the bending angle and is the rotation used in Kirchoff models.  For small 

deformations β=dw/dx  The last angle, which is the rotation used in the Reissner-Mindlin 

models, is θ, the angle between the undeformed cross section and the deformed cross 

section.  θ is the sum of α and β.  Breaking the rotation angle into two parts makes it 

possible to differentiate between the case where the three layer element is made up of a 

base layer with hc= tb, a viscoelastic layer with hv= tv, and a constraining layer with hc= tc, 

and the case where the three layer element is made up of a base layer with hc= tc +tb, a 

viscoelastic layer with hv= tv, and a constraining layer with hc= 0.  The bending angle β is 

α 
β 

θxv=γ+β 
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assumed constant through the three layers of the element layers, and the movement of the 

three layers is coupled. 

With these angular definitions we can develop the following expressions for the 

extensional displacements uv and ucl at the midplanes of the viscoelastic and constraining 

layers. 

 

  

 These expressions may be used directly in the strains and strain energy and then 

integrated to generate the stiffness matrix, however the resulting expression is quite 

complicated and it was decided to search for a simplified version of the expressions.  

After some experimentation it was determined that the following approximation gave 

good results; 

 

 

Figure 5.4 shows plots comparing the exact and approximate expressions for 

some of the different combinations of bending, transverse shear and total shear angles 

tested.  The vertical axis is the extensional displacement in either the viscoelastic layer or 

the constraining layer, while the horizontal axis is the total shear angle in the viscoelastic 

layer. 
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         Viscoelastic Layer Displacement               Constraining Layer Displacement 

 
Figure 5.5: Model for the extensional displacements in the viscoelastic and  

constraining layers – exact expression and approximation 
 
For these plots, the thicknesses of the materials used in the preliminary experiment were 

used in the calculation 

As can be seen in the top two plots of Figure 5.4 the approximation performs well 

up to a shear angle in the viscoelastic layer of about 30 degrees when the bending angle is 

5 degrees and the base plate shear angle is 1 degree.  The second row of plots shows the 

results when the bending angle is increased to 10 degrees.  Again the agreement is very 



 73 

good up to a shear angle of about 30 degrees.  In the third row of plots, the base shear 

angle was increased to an unrealistically high value of 10 degrees.  Although the 

agreement between the exact expression and the approximation has degraded somewhat, 

the approximation is still fairly close to the exact expression and appears to be adequate 

for modeling the extensional displacements of the viscoelastic and constraining layer for 

this experiment. 

 Given these expressions for the mid-plane extensions, the displacements for the 

three layer element are written: 

 

 
Similarly, for the y direction we have 

 
and finally, in the z direction 
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5.10 Finite Element Model for Three Layer Plate – Strain Energy 

The corresponding strains for the displacements developed in the last section are 

given as 
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The stresses are still assumed to be Hookean functions of the strains, so an 

elasticity matrix D 

 
 

that delineates the stress strain relationship can be used with equations 5.21 to express the 

stress in the three layer element.  Note, however, that the moduli in the viscoelastic layer 

will be dependent on the spatial variables.  Furthermore, the Young's modulus, shear 

modulus and loss factor are frequency dependent for the viscoelastic layer. 

Energy dissipation is incorporated in the finite element model by noting that when 

a cyclic load is applied to a viscoelastic material, there is a time lag (phase difference) 
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between the stress and the resulting strain.  Thus, the elastic moduli may be expressed in 

complex notation.  For example, Young's modulus is written in complex form as 

 
 

Here E' is the elastic or storage modulus and is the component of stress that is in 

phase with the strain and is a measure of the energy that cycles between being stored and 

then regained in the system.  E" is the loss modulus and is a measure of the energy that is 

dissipated in heat from the system.  Fully elastic systems have a loss modulus of zero. 

The strain energy is, as usual, the integrated sum of the product of the stress and 

strains 

 

 

However, now the stresses and strains are sums of the contributions from the three 

layers 

 

 

 

 

The virtual work equation for the element can be expressed in matrix form as 
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5.11 Discretization for Three Layer Element 

 We define the vectors containing the displacements of a 4 node, three layer plate 

element as follows: 

 

The coupling introduced by the kinematic model is evident in the large number of DOF 

now required for the longitudinal strain. 

 Then, as was done for the plain plate element, we use the derivatives from 5.4 and 

discretized expression of the independent variables and global coordinates from equation 

5.3 in the strain expressions of 5.21 (along with the additional discretized variable γ).  

The strains (and virtual strains) can be written in matrix form as was done in equation 

5.6, the appropriate stresses generated and then these expressions are substituted into the 

virtual work equation 5.22. 
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 Writing all the degrees of freedom together in a single vector {a} of element 

displacements we can rewrite equation 5.22 as 

 

 

where  

 

and Kel_3 is the element stiffness matrix for the three layer element. 

 

5.12 Finite Element Model for Three Layer Plate – Kinetic Energy 

For the three layer element, the kinetic energy may be expressed as the sum of the 

kinetic energy in the base plate (discussed above), the kinetic energy in the viscoelastic 

layer and the kinetic energy in the constraining layer.  Using the kinematic definitions for 

the viscoelastic and constraining layer variables discussed above, the kinetic energy in 

the viscoelastic layer is  

 
 

After Equation 5.24 is integrated over the thickness and simplified, it is 

substituted into Lagrange's equation to be used in developing an expression of virtual 

work.  
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 This can be written as 

 

 

where 

 

 

The analogous expression for the constraining layer can be obtained through the same 

process: 
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Where 

 

 

As was done in the case of a plain plate element, a matrix form of 5.26 is 

generated analogous to Equation 5.10 and an appropriate mass matrix is formed that 

models the effects of the viscoelastic and constraining layer mass on the system energy.  

This mass matrix takes into account the coupling between the displacements, both 

bending and extensional, in the three layers. 

 

5.13 Summary 

This chapter presents the development for the different elements in the finite 

element model of the viscoelastically damped plate/cavity system.  Reissner-Mindlin 

theory is used to express displacements in terms of extensions and rotations.  The 

rotational angle is broken into the shear and bending angles to facilitate the 

discrimination between a base plate with a viscoelastic layer of thickness hv that is 

constrained and a thicker base plate with an unconstrained viscoelastic layer of thickness 
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hv.  Fluid-structural coupling is achieved by applying boundary conditions at the wetted 

nodes.  Frequency dependent energy dissipation is modeled in the viscoelastic layer by 

applying complex moduli theory.  Bilinear shape functions are used in all elements and 

direct integration is used to construct the stiffness and mass matrices.  The mass matrix is 

consistent and all coupling between degrees of freedom is taken into account.
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Chapter 6 
 
 

Validation of Finite Element of Plate/Cavity Model 
 

6.1  Introduction 

In the interest of brevity and clarity, the finite element program developed for this study 

will be referred to as Mary F. Leibolt Finite Element (MFLFE).  This distinguishes it 

from the commercial finite element code NASTRAN used in the setup stages of this 

investigation. 

 

Development of the code was incremental in nature, that is, each element type was 

developed and validated before the development of the next element type took place.  In 

cases where the configuration was simple enough, the correctness of the element was 

tested by comparing an analytical computation of eigenvalues to the eigenvalues 

generated by MFLFE.   Otherwise, the element was validated either by comparing results 

to a commercially available finite element code or by comparing the experimental output 

pressure spectra at the location of the internal microphone (see Figure 4.1) to MFLFE's 

numerically generated pressure spectra for the same location.  For validation by 

comparison with experiment, a number of experimental configurations were used to 

confirm that MFLFE could correctly predict the sound pressure spectra for a wide variety 

of material configurations.  Experimental configuration variation included the use of 



 

 

83 

viscoelastic materials with different material properties, constrained and unconstrained 

viscoelastic layers, and multiple materials in the viscoelastic treatment. 

 

6.2    Base Plate Element 

The basic untreated plate element was simple enough that analytical eigen-frequencies 

could be computed to validate the correctness of the element operation.  As presented in 

Flugge (1962) the eigen-frequencies for a clamped thin square plate can be predicted 

(using Kirchoff assumptions) by the equation  

 

where w is the eigenfrequency, K is the bending stiffness, ρ is the plate's mass density, L 

is the length of the plate's sides and λi is a parameter listed in Flugge's Handbook of 

Engineering Mechanics (1962) that is dependent on mode number and boundary 

conditions.  The program MFLFE solves the standard FE eigenvalue problem 

 

where [M] is the mass matrix, [K] is the stiffness matrix and the ω are the natural 

frequencies of the system.  The comparison of the results is shown in the table below: 
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METHOD MESH 1ST 
EIGEN 
FREQ 
(HZ) 

2ND 
EIGEN 
FREQ 
(HZ) 

3RD 
EIGEN 
FREQ 
(HZ) 

Thin plate theory  38.94 79.82 117.77 

NASTRAN 12x12 38.87 79.16 114.96 

MFLFE 12x12 38.40 80.03 119.19 

 

Table 6.1: Comparison of analytical solution, NASTRAN and MFLFE 
eigenvalues for an untreated plate 

 
The agreement is good.  It appears that as NASTRAN goes up in frequency it tends to be 

slightly softer than the Kirchoff prediction, while MFLFE tends to be slightly stiffer than 

Kirchoff theory predictions. 

 

6.3 Acoustic Element 

As discussed in section 3.2, the eigenvalues of an acoustic cavity with rigid walls can be 

predicted using Equation 3.2 

 

Again using the standard finite element eigenvalue solution approach, MFLFE calculated 

the eigenvalues for the acoustic cavity and the results for a 12x12x12 mesh of 8-noded 

elements (excluding the eigenvalue at zero) are listed in Table 6.2 along with the theory 

and the NASTRAN results for an 8 noded solid element.   To increase the agreement 
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between the 2nd and 3rd modes of the analytical solution and MFLFE, the longitudinal 

mesh size was refined to be 12x12x24.  These results also appear in the table. 

METHOD MESH 1ST 

EIGEN 

FREQ 

(HZ) 

2ND 

EIGEN 

FREQ 

(HZ) 

3RD 

EIGEN 

FREQ 

(HZ) 

4TH 

EIGEN 

FREQ 

(HZ) 

Analytical  225.06 450.12 562.65 605.99 

NASTRAN 12x12x12 225.70 455.29 564.27 607.35 

MFLFE 12x12x12 225.71 455.29 564.27 607.74 

MFLFE 12x12x24 225.23 451.42 564.27 607.56 

 
Table 6.2: Comparison of analytical solution, NASTRAN and MFLFE 

eigenvalues for an acoustic cavity 

 

6.4   Coupled Plate and Cavity 

 The final configuration for which eigenvalues can be calculated in MFLFE is the 

plain, untreated plate coupled with the acoustic cavity.  An analytical prediction of 

eigenfrequencies for the coupled plate and cavity was not attempted.  Instead, the 

eigenfrequencies calculated by MFLFE's were compared to those calculated for this 

configuration by NASTRAN.   A12x12x12 element mesh was used for the 

calculations.  Note that the runs in NASTRAN were done using 8 noded plate 

elements and 20 noded acoustic elements, while MFLFE uses 4 noded plate elements 

and 8 noded acoustic elements.  The results are presented in Table 6.3. 
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METHOD 

1ST 

EIGEN 

FREQ 

(HZ) 

2ND 

EIGEN 

FREQ 

(HZ) 

3RD 

EIGEN 

FREQ 

(HZ) 

4TH 

EIGEN 

FREQ 

(HZ) 

5TH 

EIGEN 

FREQY 

(HZ) 

6TH 

EIGEN 

FREQ 

(HZ) 

NASTRAN 55.7 77.1 115.8 140.7 141.2 177.5 

MFLFE 55.5 77.7 115.9 148.1 149.4 184.6 

 
Table 6.3: Comparison of NASTRAN and MFLFE eigenvalues for a coupled 

plate and acoustic cavity 
 

 Sound pressure spectra were also generated for this configuration using MFLFE 

and compared to the experimental pressure spectra.  This comparison is shown below in 

Figure 6.1.  The agreement between the two curves is very good.  

 

 

Figure 6. 1: Comparison between MFLFE numerical pressure data and 
preliminary experiment pressure data for an untreated plate 
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6.5 Three Layer Plate Element 

 Once correct operation of the plain plate, acoustic and coupling elements was 

verified, program development proceeded with the design of the treated plate 

element.  As mentioned earlier, the rotational degrees of freedom were split into the 

rotation due to bending and the rotation due to shear within the material.  Thin plate 

theory assumes that the bending angle can be considered constant through the three 

layers of the plate.  Design of the three layer element allows the shear angle rotation 

to vary with material differences.  Thus in the constrained layer case there is a shear 

angle α for the aluminum base and the aluminum constraining layer, and a second 

shear angle γ for the viscoelastic layer.  The unconstrained case is modeled in the 

three layer element by allowing the thickness of the constraining layer to go to zero.  

Since the contributions to the mass and stiffness matrices from each layer are added 

in the element matrices, and since the plain plate layer is always present, this 

approach does not lead to singularity in the element matrices.  Note that setting both 

the constraining layer thickness and the viscoelastic layer thickness to zero gives the 

same result as a plain plate element.   Figure 6.2 shows a sketch of a cross section of 

the three cases possible in the three layer element. 
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Figure 6. 2: Three possible configurations of three layer element 
 

  This element's correct operation was verified by comparing pressure data from the 

preliminary experiment described in Chapter 4 to the output of MFLFE for the same 

configuration.  The comparison for the unconstrained case is shown in Figure 6.3.  

There are three graphs, one for each of the three different viscoelastic materials used 

in the preliminary experiment.   The three materials have different Young's modulus 

and loss factors as a function of frequency (see Figure 4.4).  Soundcoat 601 is the 

softest material, Soundcoat 609 is the stiffest material and Soundcoat 606 is between 

the two others as regards stiffness. 
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(a) 

 
(b) 

 
(c) 

Figure 6. 3: Comparison between MFLFE numerical pressure data and preliminary experiment 
pressure data for a plate with an unconstrained viscoelastic layer 
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The MFLFE code performed reasonably well for the unconstrained case, though 

the comparison with experiment differed in some instances.  MFLFE predicts that the 

frequency of the first resonance will increase with increasing stiffness as should be the 

case, however experimental data  shows a somewhat greater shift in frequency than 

MFLFE  predicted.  The null that occurs between 100 Hz and 130 Hz which is controlled 

by the acoustic elements also shifts up in frequency as the stiffness of the material 

increases and although MFLE captures this physical phenomenon, again the agreement 

between frequencies of the null was slightly different.  Also, MFLFE tends to 

underpredict the amplitude of the curve for the unconstrained configuration by 2-3 dB in 

much of the frequency region.   Overall, the agreement between the experimental and 

numerical sets of data is acceptable and MFLFE captures the correct trends for the 

physical phenomena affecting the acoustic cavity system.   

  Agreement between experiment and prediction improved for the 

constrained case.  Figure 6.4 shows the comparison between experiment and numerical 

data for the constrained layer single material configuration. 
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(a) 

 
(b) 

 
(c) 

Figure 6. 4:  Comparison between MFLFE numerical pressure data and preliminary experiment 
pressure data for a plate with a constrained single material viscoelastic layer 
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 Although MFLFE predicted somewhat less of a frequency shift for the first 

resonance than that which was observed in the preliminary experiment, the amplitude of 

the predicted pressures matched that of the experiment well as did the frequency of the 

first null.  Overall, the agreement between the experimental and numerical sets of data is 

good for the constrained layer configuration.   

 It was noted that the experimental configuration was slightly different than the 

numerical model in that the numerical model assumed that all points on the plate 

boundary were clamped to the Plexiglas cavity, that is that all degrees of freedom for the 

plain plate elements had a value of zero at the flexible plate's edge. In fact, in the 

experiment, the plate is attached to the Plexiglass cavity by 16 bolts (4 per side).  To 

replicate this, it was decided to run the numerical model with the boundary conditions 

such that only the points at the bolt locations were fully clamped.   The results on the 

pressure field in the acoustic cavity as predicted by MFLFE are illustrated in Figures 6.5 

and 6.6 below.  It can be seen that there is there is some improvement in the overall 

amplitude agreement between experiment and MFLFE for the unconstrained SC 606 case 

(Figure 6.5 upper right).  Also, it appears that there is some improvement in the 

agreement between the frequency of the second resonance peak. Overall the comparison 

is not dramatically changed by bolted boundary conditions for the unconstrained 

configuration. 
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(a) 

 
(b) 

 
(c) 

 
Figure 6. 5: Comparison between MFLFE numerical pressure data and preliminary experiment 
pressure data for a plate with an unconstrained single material viscoelastic layer. Bolted boundary 

conditions 
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(a) 

 
(b) 

 
(c) 

 

Figure 6. 6: Comparison between MFLFE numerical pressure data and preliminary experiment 
pressure data for a plate with a constrained single material viscoelastic layer.  Bolted boundary 

conditions 
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However, the bolted boundary conditions do provide better frequency agreement for the 

constrained case as can be seen in Figures 6.6.  It was decided to use the bolted boundary 

conditions as the basis for modeling the experimental acoustic cavity system. 

 A final comparison was made between MFLFE output and experimental data for 

the spatially varying (mixed material) constrained layer configuration.  The mixed 

material layout was a combination of the stiffest and softest materials laid out as shown 

in the bottom left hand corner of Figure 4.3.  The comparison between experimental and 

numerical data is shown in Figure 6.5. The agreement between the two curves for the 

mixed material configuration is very good. 

 

 
Figure 6. 7: Comparison between MFLFE numerical pressure data and 
preliminary experiment pressure data for a plate with a multiple material 

constrained viscoelastic layer 
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6.6   Summary 

 The finite element code MFLFE was validated using analytical expressions, 

experimental data and comparison with a commercial code.  MFLFE performed well, 

predicting pressure data that matched the validation data well overall.  The overall 

agreement indicates that the code is capable of modeling the underlying physical 

phenomena that govern the response of the acoustic cavity. 
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Chapter 7 
 
 

Comparison of Geometric Layouts for Constrained Layer 
Multi-Material Treatments 

 
 
7.1  Introduction 

Once reasonable confidence was established that the MFLFE code was capable of 

modeling the experimental acoustic cavity system, a parametric study was undertaken 

to identify effective geometric layouts.  Current features in the MFLFE program 

design constrain the choice of geometric layout to those that can be made of a 

combination of rectangular elements.  It was decided to use a combination of the 

softest viscoelastic material (Soundcoat 601 or SC 601) and the stiffest viscoelastic 

material (Soundcoat 609 or SC 609) to maximize the amount of energy absorbed by 

shear displacement in the treatment. 

 

7.2   Single Material Property Variation 

 To gain some knowledge of the magnitude of the effect that varying material 

properties had on the acoustic cavity system, the viscoelastic Young's Modulus, 

viscoelastic density and the viscoelastic loss factor were varied for single material 

constrained layer treatments.  Presented in Figures 7.1 a-c are parametric plots for the 

pressures in the acoustic cavity for a plate treated with a constrained square of SC 
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601.  Figures 7.2 a-c present the parametric plots for a plate treated with a constrained 

square of SC 609.  In the interest of expediency, a slightly coarser grid was used in 

the fluid for this parametric study although the resolution for the plate elements 

remained the same.  Because the intent in this case was to examine trends rather than 

absolute magnitude this strategy was acceptable.  

 

 

Figure 7. 1a:  Pressures predicted in the acoustic cavity using MFLFE and 
parametric variation of Young's modulus in the viscoelastic layer for SC 601 
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Figure 7. 1b:  Pressures predicted in the acoustic cavity using MFLFE and 
parametric variation of the density in the viscoelastic layer for SC 601 

 

 

Figure 7. 1c:  Pressures predicted in the acoustic cavity using MFLFE and 
parametric variation of the loss factor in the viscoelastic layer for SC 601 
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 In the graphs, the prediction of pressure using the original value of the material 

property that was collected from manufacturer's data is shown as the heaviest line in 

the set of curves and the parametric variations are plotted with lighter weight lines.  

As can be seen in the legend of the graphs, for Young's modulus parametric variation, 

the value was increased in 10% increments until the value was double the original 

value given in the manufacturer's data sheet.  The viscoelastic density was changed in 

increments of 20% until the value was doubled and finally, the loss factor was 

changed to have five orders of magnitude lower than the original value.  Both 

Young's modulus and loss factor are functions of frequency for the viscoelastic 

materials. 

 

 Figure 7.1a shows the expected rise in frequency of the first resonance peak for 

increasing Young's modulus.  It appears that for SC 601, variation in this material 

property has a significant effect on the acoustic cavity system.  Density variation also 

affects the system noticeably for SC 601, driving the first resonance peak down in 

frequency as expected.  Finally, it can be seen in Figure 7.1c that varying the loss 

factor affects the amplitude, not the frequency of the first resonance peak.   

  

 Considering Figure 7.2a, it can be seen that doubling the Young's modulus for SC 

609 had very little effect on the acoustic cavity system.  Further experimentation with 

varying the Young's modulus for SC 609 revealed that even changing Young's 

modulus by a factor of 9 only shifted the resonance from 63 Hz to 65 Hz for the 

constrained case.  For the unconstrained case increasing the value of Young's 

modulus by a factor of 9 caused the first resonance from 46 Hz to 60 Hz, so it seems 



 

 

101 

likely that in the constrained case, the stiffness of the viscoelastic material is close 

enough to that of the constraining layer that it has reached a liming value. 

 

Figure 7. 2a:  Pressures predicted in the acoustic cavity using MFLFE and 
parametric variation of the density in the viscoelastic layer for SC 609 

 

 

Figure 7. 2b:  Pressures predicted in the acoustic cavity using MFLFE and 
parametric variation of Young's modulus in the viscoelastic layer  for SC 609 
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Figure 7. 2c:  Pressures predicted in the acoustic cavity using MFLFE and 
parametric variation of loss factor in the viscoelastic layer  for SC 609 

 

 As in the case of SC 601, increasing the value of viscoelastic density for SC 609 

causes the frequency of the first resonant peak to decrease, while decreasing the value 

of the loss factor causes the amplitude of the first resonant peak to increase though 

the frequency remains constant. 

 The significant difference in the sensitivity to variation in the material properties 

for SC 609 compared to SC 601 can be understood by looking at the nomographs for 

the two materials.  Nomographs plot a family of curves for various temperature and 

frequency ranges in a single curve, providing a concise data set that is useful for a 

wide range of temperature and frequencies. Viscoelastic materials typically exhibit 

three distinctly different behaviors depending on the temperature of the material.  At 

the lowest temperatures the material is quite stiff.  This is referred to as the "glassy 



 

 

103 

region."  At the highest temperatures, the material is very flexible and soft.  This 

region is the "rubbery region."  The temperature range between the highest 

temperatures and the lowest temperatures is called the "transition region" and it is 

here that the loss factor takes its highest value.  In Figures 7.3a and 7.3b the 

temperature -frequency region applicable to the experimental conditions is shown in a 

red box for SC 609 (Figure 7.3a) and  in a blue box for SC 601 (Figure 7.3b).  It can 

be seen that while the environmental conditions are in the transition region for SC 

601,  SC 609 is in it's glassy region for the environmental conditions.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 7. 3a: Sketch of the nomograph for SC 609.  Working region for 

experimental frequency range and temperature shown in red box 
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Figure 7. 3b: Sketch of the nomograph for SC 601.  Working region for 
experimental frequency range and temperature shown in blue box 

 

 The data from the parametric study of material property variation for single 

material constrained layer treatment suggest that stiffness variation in the system can 

potentially have significant effect on the pressure field in the acoustic cavity. This 

implication adds impetus to the investigation of how changing the overall stiffness of 

the system by using a multiple material constrained layer treatment affects the 

pressure field in the acoustic cavity. 
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7.3  Geometric Layouts 

In all cases, the flexible plate was treated by applying a 6 inch square patch that 

was applied to the center of the plate.  Comparison was made between the sound 

pressures measured inside the cavity behind a plate treated by a square single material 

patch and those behind a plate treated with a square multi material patch.   

The layouts were designed to place material with a high shear modulus in the 

region of highest shear displacement, on the edge of the treatment.  Also, the question 

of whether there was any degradation or improvement in performance when the 

layout was asymmetrical along one of the axes was addressed by developing 

appropriate geometric combinations.  As mentioned above, the range of geometric 

layouts possible to model with MFLFE is constrained to those that can be built using 

rectangles. 

Figure 7.4 presents the geometric layouts investigated in this study.  In each 

configuration, the red area denotes the stiffer material and the blue area indicates use 

of the softer material.  Though by no means an exhaustive collection of all possible 

geometric permutations, the layouts represent a selection to possibilities that give an 

indication of which layouts are likely to be effective. 
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Figure 7. 4  Geometric layouts of the multi-viscoelastic material treatments (red = 

stiff material, blue = soft material) 
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7.4   Mixed Material Parametric Study Results 

The program MFLFE was used to calculate the pressure field in the acoustic cavity for 

the above collection of mixed material layouts.  Figure 7.5 shows pressure field data for 

the full frequency spectrum and a zoom in the frequency range of the first resonant peak.   

 

 

 
Figure 7. 5a:  Mixed material configuration calculated pressure spectra (full 

frequency range) 
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Figure 7. 5b: Mixed material configuration calculated pressure spectra (zoom) 

 
 

The plots in Figure 7.5 compare the pressure data of an untreated plate (black curve) 

to those of the single material treatment (Configuration A 601 and Configuration A 

609 - dashed curves) and the multiple material treatments (Configurations B-P - solid 

color curves).  In Figure 7.6, the zoomed curves have been divided among two plots 

(a) and (b) according to their effectiveness in lowering the pressure in the acoustic 

field. (Configuration H has been included on both graphs to facilitate comparison). 



 

 

109 

 

 
 

Figure 7. 6a: Sorted mixed material configuration calculated pressure spectra 
(zoom)
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Figure 7. 6b: Sorted mixed material configuration calculated pressure spectra 
(zoom) 
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7.5  Displacements,  Pressure Contours, and Strains 

 The program MFLFE was used to produce contour plots of the out of plane 

displacements at the frequency of the first resonance in the treated region for the 

geometric layouts shown in Figure 7.4.  These plots are displayed in Figure 7.7. 

 

 
Figure 7. 7:  Out of plane displacements predicted by MFLFE in the treated region 

for various geometric layouts 
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It can be seen in Figure 7.7 that for the configurations which were more effective 

in lowering the first resonance peak, the spatial pattern of the displacements is moving 

away from the first mode (the "drum" mode), which, since it effectively acts as a 

monopole, is a highly effective acoustic radiator. The spatial distributions of out-of-plane 

displacements for the effective configurations are more like the second mode shape 

which is closer in character to a dipole distribution of sources.  This would account for 

their success in lowering the first resonance peak as dipole sources radiate sound much 

less efficiently than monopole sources.  Note that the single material SC 601 patch 

(labeled A1 in Figure 7.7), which was more effective at reducing the first resonant peak  

than the single material  SC 609 patch, displays the dipole character in its spatial 

displacement contour plot while the SC609 patch (labeled A9 in Figure 7.7) displays a 

monopole-like character. 

 To enable visualization of the modes in the longitudinal direction the pressure 

distribution along the length of the acoustic cavity is presented in Figure 7.8 for four 

frequencies between 0 and 200 including the frequency at which the first resonant peak 

appears in the frequency spectrum (57 Hz).   Below each plot, a cut along the z direction 

is given for y= 6 to illustrate the amount of variation of pressure (P) that occurs along the 

length of the box.  It can be seen that for most of the acoustic cavity the pressure is 

almost constant in the y direction, although close to the plate in the nearfield  there is 

some variation along the y axis.   For low frequencies, the increase in z is monotonic with 

the maximum pressure at the end of the cavity opposite the flexible plate because of the 

rigid    boundary   condition  there.   As   the   frequency   increases,  the     next      mode  
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Figure 7. 8:  Pressure contour plots in the yz direction calculated by MFLFE.   
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appears and its null moves up the z axis as the frequency increases.  These plots were 

made for the single material SC 609 configuration but the same general spatial 

characterstics appear in the yz plane for yz contour plots of all of the single and 

multimaterial configurations. 

 Pressure contour plots made for the xy plane of the microphone location are 

presented in Figure 7.9 for the two single material configurations (A1 and A9), a less 

effective configuration (C) and for three of the most effective multimaterial 

configurations (H, P and I).    A white circle on each of the contour plots gives an 

approximate location of the microphone in the plane.    A number of observations 

may be made after inspection of these plots.  First, in accordance with Bernoulli's 

principle, we can see that the magnitude of the pressure is lowest in the center where 

the velocity of the air moved by the plate is greatest.    

Next, it is noticeable that the pressure field is not constant in the xy plane .  Thus 

some of the variation in the magnitude of the first resonant peak is attributable to the 

spatial variation of the pressure within the xy plane.  For example, although the P and 

I configurations are rotated versions of one another, the microphone, which is located 

off center, will register higher levels in one case than in the other.   Note however, 

that although there is spatial variation in pressure level, it is not large - ranging 

between 0.8 and 1.6 percent (difference between min and max over max) for the xy 

planes of each configuration 
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Figure 7. 9:  Pressure contour plots in the xy plane at the microphone position.  

White circle indicates microphone location. 
 

. 
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 To rank the configurations as to their effectiveness, all the pressures in the 

acoustic cavity were summed.   Since all configurations had the same number of 

pressure points,  this is equivalent to calculating a spatial average of pressure for the 

cavity.   The configuration was considered more effective if the sum of the pressures 

was lower than that of another configuration.    From least to greatest, the 

configuration pressure sum order was :  H-P-I-M-A1-N-G-O-K-D-B-E-F-A9-C. 

This ranking order is similar but not exactly the same as that developed by looking at 

the pressure frequency spectra for the microphone.  The variation between the two 

rankings can be attributed to spatial differences in the yz plane as discussed above. 

 To investigate the hypothesis that higher strain was occurring in the region with 

the stiffer material, the strain eneregy  

 

was calculated for each point in the viscoelastic layer.  Contour plots of the results are 

shown in Figure 7.10. 
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Figure 7. 10:  Strain energy calculated on the plate for various configurations  
 

The plots confirm that indeed the strain energy is higher in the region of the stiffer 

material in the viscoelastic layer as predicted,  
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7.6  Summary 

The program MFLFE was used to calculate the pressure field for single and 

multiple material constrained layer treatments.  Single material parametric variation 

highlighted the sensitivity of the system to the stiffness value of the softer material.  A 

number of different geometric layouts for the multiple material constrained layer 

treatment generated encouraging results for using this technique to decrease the 

magnitude of the acoustic pressure field for this system. 

It can be seen that many of the mixed material configuration hold promise of 

improved performance in decreasing the magnitude of the pressure field for the system 

when compared to the single material pressure spectra.  It appears that in general there is 

an optimal limit to the width of the stiff material and that layouts which are not fully 

symmetrical about the center are usually more effective in reducing the pressure within 

the acoustic cavity.  This is correlated with the fact that the treatments that are not 

symmetric about the center develop displacement patterns that will not radiate as a 

monopole. It would prove useful in future work to investigate the development of optimal 

expressions for geometric layouts of multiple material constrained layers and extend the 

observations that can be arrived at from the collection of layouts used in this study 
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Chapter 8 
 
 

More Experimental Validation of Finite Element Model of  
Plate/Cavity System 

 
 

8.1  Experimental Setup 

 The final experimental data was gathered using the system that was used for the 

preliminary experiment.  It is fully described in Chapter 4 but basically consists of a 5 

sided Plexiglas cavity that is closed on one end with a flexible aluminum plate which is 

bolted to the Plexiglas cavity (Figure 4.1).  A microphone inside the cavity monitors the 

internal pressure, an external microphone tracks the ambient noise environment and a 

laser doppler velicometry (LDV) apparatus enables the collection of plate displacement 

data.  

 The two photographs shown in Figure 8.1 depict the experimental setup.  The 

LDV system is not shown here, but when it is being used it is positioned behind the 

Plexiglas cavity, on the end of the cavity that is opposite the flexible plate and speaker. 

 To ameliorate the problem, a heat gun was turned on the material as it was being 

cut so that the material became slightly softer.  On the other hand, the soft Soundcoat 601 

material tended to stretch as it was cut at room temperature.  To cut it as precisely as 

possible, the material was pinned beneath a metal straight edge as it was being cut.  The 

cut edges were filed and sanded to make as tight a fit as possible.  The viscoelastic 
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materials were then bonded to the flexible plate using a two-part epoxy which is sold for 

use with the Soundcoat materials.   

 

 

 

(a) 

 
 

(b) 
 

Figure 8.1:  Experimental apparatus includes internal microphone, external 
microphone, flexible plate, Plexiglas cavity, and source speaker  

 

External 
Microphone 

Speaker 

Acoustic 
Cavity 

Internal 
Microphone 

Flat Plate 

Flat Plate 



 

 

121 

 

 Creating multi-material constrained layers posed several challenges.  Cutting the 

stiff Soundcoat 609 material was difficult because the material was quite stiff at room 

temperature.  According to manufacturer's guidelines, the epoxy takes 24 hours to set up.  

In practice, the material did not fully cure for at least 48 hours.  Sound pressure spectra 

for plates with a bonded treatment that were measured before 48 hours had passed 

showed considerable variation.  After 48 hours had passed since the application of the 

epoxy, measurements of the pressure spectra remained consistent.  Bonding the 

viscoelastic pieces to the plate and to each other for each configuration required careful 

attention to the removal of air bubbles that can become trapped inside the bonding layer. 

The last step in creating the constrained layer multi-material treatment involved bonding 

the constraining layer to the viscoelastic material after the first epoxy application had 

cured.  Since the constraining layer is opaque, air bubble removal was even more difficult 

than it was when applying the viscoelastic layer to the plate. 

 Because of the difficulty in manufacturing constrained multi-material viscoelastic 

layers in the laboratory that had small tolerance fit between pieces and no trapped air 

bubbles, only two of the most effective geometric layouts were tested. These 

configurations were: Configuration I and Configuration G which are shown in Figures 

7.3 and 8.2.  Note that Configuration G is the two dimension analog of the configuration 

used by Baz et al.'s (2003) beam experiment with mixed materials which is shown in 

Figure 1.1. 

 Sound pressure spectra were collected for the untreated plated and then for the 

constrained layer configurations. 
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  Configuration G                Configuration I 
 

Figure 8. 2:  Mixed material configurations used in final experiment 
 

 

 

8.2  Experimental Results 

 The results for the final experimental data are shown in Figures 8.3 a-c.  Figure 

8.3a shows a comparison of the experimental constrained layer pressure spectra for the 

stiffer single material SC 609, the softer single material SC 601, the mixed material 

configuration G and the mixed material configuration I.   
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Figure 8. 3a:  Comparison of the experimental sound pressure spectra for 
constrained layer treatments, for both single material and mixed material 

viscoelastic cores. 
 

 
 

Figure 8.3b:  Comparison of the predicted (MFLFE) sound pressure spectra for 
constrained layer treatments, for both single material and mixed material 

viscoelastic cores 
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Figure 8.3c: Comparison of the predicted (MFLFE) and experimental sound 

pressure spectra for constrained layer treatments, for both single material and 
mixed material viscoelastic cores 

 

 Figure 8.3b shows a comparison of the constrained layer pressure spectra 

predicted by MFLFE for the stiffer single material SC 609, the softer single material SC 

601, the mixed material configuration G and the mixed material configuration I.   

 For the sake of completeness both the experimental and predicted sets of curves 

are displayed in Figure 8.3c.  It can be seen that as predicted by MFLFE, a decrease in 

the pressure spectrum occurred at the first resonant peak when a multi-material treatment 

was used.  MFLFE predicted that the mixed configuration peak would occur close to the 

same frequency as the SC 609 resonant peak.  The experiment showed a shift in the 

mixed material peak, but the SC 609 peak remained at the same frequency as the SC601 

peak.  The experiment also showed a mid frequency range (70 to 120 Hz) increase in 
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amplitude of 3 to 5 dB that was not predicted by MFLFE for the multi-material 

configurations. Finally the amplitude of the SC 609 single material treatment was greater 

in amplitude in the prediction than in the experiment.  The differences are likely the result 

of a number of factors.  First, the validation experiment was done in a different location 

than the preliminary experiments.  The current location has a centrally controlled air 

conditioning system with a noisy blower which cannot be turned off during data 

collection. The air conditioning system also dropped the room temperature 10 or more 

degrees below the temperature specified for viscoelastic material properties provided by 

the manufacturers.  Finally, the difficulties discussed above in creating a multi material 

layer may have contributed to differences between predicted and measured spectra.  

Overall, however, the experiment verifies the prediction of MFLFE that the mixed 

material configurations would produce a decrease in the first resonant peak of the 

pressure spectrum. 

 

8.3.. Summary 

 The chapter has presented an experimental validation of the effectiveness of the 

multi-viscoelastic material configurations in attenuating the sound pressures generated by 

the coupling of a vibrating flexible plate and an acoustic cavity.  Furthermore, 

comparisons have also been presented between the experimental results and the 

theoretical predictions using the developed finite element model (MFLFE).  Close 

agreements are evident between theory and experiments. 
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Chapter 9 
 
 

Conclusions and Recommendations 
 
 

9.1..Conclusions 

 A multi-material constrained viscoelastic layer is shown to be more effective in 

decreasing the low frequency sound pressure field than a single-material constrained 

layer.  This improved performance can be leveraged into weight savings for noise 

treatments of enclosed cavities.   

 

 A new Reisner-Mindlin plate type finite element has been developed.  This 

element, which enables the modeling of multi-material constrained viscoelastic layers.  

The element combines the contributions from the three layers of a constrained layer 

damping treatment to the strain energy to give accurate predictions of a system treated 

with a multi- material constrained layer.  The element incorporates extensional, bending 

and transverse shear energy for each of the three layers into the stiffness matrix.  The 

element has also a fully consistent mass matrix which has been designed to account for 

coupling between the extensional and bending displacements.  

 

 A finite element program that uses the new three layer element along with 

untreated Reissner-Mindlin plate elements, coupling elements and solid-fluid elements 

was developed and used to model the fluid-structure interactions between a flexible plate 
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coupled with an acoustic cavity.  Sound pressure spectra were predicted by this program 

for systems with an untreated plate, with a plate treated with a single-material constrained 

layer, and with a plate treated with a multi-material constrained layer.  Agreement 

between a preliminary experimental data set and the predicted data set was good. 

 

 A parametric study was performed using the developed finite element code 

MFLFE.  The obtained results indicated that a multi-material constrained layer had the 

potential to outperform the single-material constrained layer treatment in attenuating 

sound radiation into acoustic cavities.  An experiment validated the trend indicated by the 

parametric study.  The imperfect agreement in amplitude between experimental and 

predicted results is attributed to lower ambient temperatures which affected the 

treatment's material properties and difficulty in manufacturing the multi-material 

treatment in the laboratory. 

  

 
9.2  Recommendations 

 This dissertation has presented invaluable theoretical and experimental tools for 

the design and predictions of sound radiation by plates treated with spatially varying 

damping treatments into coupled acoustic cavities.  However, the developed tools can be 

easily extended to more complex structural/cavity systems such as automobile, aircraft, 

and helicopter cabins as well as ship hulls.  

 Although the emphasis in this dissertation has been on the use of damping 

treatments made of bi-viscoelastic materials, the presented theory can be directly applied 
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to viscoelastic cores consisting of multi-viscoelastic materials.  Such an extension is a 

natural extension to the examples presented in this dissertation. 

 Also, this work has targeted mainly the first modes of vibration of the flexible 

plates and the placement of the multi-viscoelastic material core has been limited 

accordingly to the center of the plate.  Further work is needed to optimize the location of 

the multi-viscoelastic material core to target multi-modes of vibrations.  Such an 

extension should also be validated experimentally. 

 

 The use of multi-material constrained layers in structural acoustic noise abatement 

would have most success if an improved method of construction of the multi-material 

viscoelastic core were developed.  Also, better performance would have been obtained if 

the tests were carried out inside tightly temperature-controlled environment. 

 

 This dissertation has also opened the door for more extensive studies on the use of 

viscoelastic cores with functionally graded properties both in-the-plane and across the 

thickness. 
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