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As researchers begin to use Growth Mixture Models (GMM) with data 

from nationally representative samples, it becomes increasingly critical for 

researchers to understand the difficulties associated with modeling data that come 

from complex sample designs. If researchers naively apply GMM to nationally 

representative data sets without adjusting for the way in which the sample was 

selected, the resulting parameter estimates, standard errors and tests of significant 

may not be trustworthy.  

Therefore, the objective of the current study was to quantify the accuracy 

of parameter estimates and class assignment when subjects are sampled with 

unequal probabilities of selection. To this end, a series of Monte Carlo 

simulations empirically investigated the ability of GMM to recover known growth 

parameters of distinct populations when various adjustments are applied to the 

statistical model. Specifically, the current research compared the performance of 

GMM that 1) ignores the sample design; 2) accounts for the sample design via 

weighting; 3) accounts for the sample design via explicitly modeling the 



  

 

stratification variable; and 4) accounts for the sample design by using weights and 

modeling the stratification variable.  

Results suggested that a model-based approach does not improve the 

accuracy of parameter estimates when individuals are sampled with 

disproportionate sampling probabilities. Not only does this method often fail to 

converge, when it did converge the parameter estimates exhibited an unacceptable 

amount of bias. The weighted model performed the best out of all of the models 

tested, but still resulted in parameter estimates with unacceptably high 

percentages of bias. It is possible that the distributions of the manifest variables 

overlap too much, and the aggregate distribution may be unimodal, making it 

potentially difficult to distinguish among the latent classes and thus affecting the 

accuracy of parameter estimates.  In sum, the current research indicates that 

GMM should not be used when data are sampled with disproportionate 

probabilities. Researchers should therefore attend to the study design and data 

collection strategies when considering the use of a Growth Mixture Model in the 

analysis phase. 
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CHAPTER 1: PURPOSE AND RATIONALE 

 

1.1 BACKGROUND 

Researchers and practitioners from many disciplines have long been 

interested in understanding how certain variables change and develop over time. 

Over the past 15 years several new statistical methods for analyzing longitudinal 

data have been developed.  Latent Growth-curve Modeling (LGM) has emerged 

from the area of structural equation modeling as a popular and relatively simple 

technique for modeling change at both the individual and group level. LGM 

identifies an average trajectory for the sample and estimates variability around 

this average trajectory.  However, an important limitation of LGM is that it 

assumes that all individuals are drawn from an observed population. In many 

applied research settings, multiple unobserved populations may exist. 

Therefore, researchers have recently expanded LGM to include a 

categorical latent class variable (Muthén, 2001a, b; Muthén & Shedden, 1999; 

Nagin, 1999). In contrast to LGM, this new technique, called Growth Mixture 

Modeling, is designed to identify the growth trajectories of two or more 

unobserved subpopulations, and to estimate the probability of membership into 

each trajectory. For example, the application of a Growth Mixture Model to 

college drinking data identified 5 drinking trajectories (Greenbaum, Del Boca, 

Darkes, Wang, & Goldmen, 2005). Further, this article identified which drinking 
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trajectories were more likely to later develop into problematic drinking patterns.  

These five trajectory types were modeled as latent classes because population 

membership was not directly observed.  

Raudenbush (2001) observed that LGM and Growth Mixture Modeling 

answer different types of research questions. Referring to LGM he stated, ―In 

many studies it is reasonable to assume that all participants are growing according 

to some common function, but the growth parameters vary in magnitude‖ (p. 30). 

LGM thus answers research questions such as, ―What is the typical pattern of 

growth and how does it vary across subjects?‖  However, if trajectories do not 

vary around a single mean trajectory, the use of Growth Mixture Models (GMM) 

are recommended because it identifies multiple distinctive population trajectories 

and estimates the proportion of cases sharing each trajectory type.  GMM thus 

answer a different kind of research question: ―What are the characteristics of 

multiple unobserved populations, and how does each population change over 

time?‖ (Raudenbush, 2001; p.30).  For example, using GMM, researchers can 

examine the impact of a new educational program on students in one latent 

population compared to its impact on students belonging to a second population 

(e.g., Kreisman, 2003; Muthén, Khoo, & Francis, 1998). GMM are less frequently 

used to assign subjects to their most likely latent class, such as assigning students 

into latent classes in order to provide a specific treatment to members of a high 

risk group (e.g., Boscardin, 2001; Greenbaum et al., 2005; Neuman et al., 1999; 

Rasmussen et al., 2002). 
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Although it is still a fairly new analytical technique, research on GMM has 

already ―left the initial phase of method illustrations and has entered the phase of 

serious substantive applications‖ (Muthén, 2003, p. 3). However, as applied 

researchers begin to use GMM to analyze large, nationally-representative data 

sets, it is important to note that these data are far more complex than those 

collected via simple random sampling (SRS).  In fact, SRS is rarely used in 

practice for large-scale surveys (Kalton, 1983).  Comprehensive reviews of the 

special characteristics of typical complex sample designs are provided by 

Longford (1995) and Lee, Forthofer, and Lorimore (1989). Their treatments cover 

the topics of clustering, stratification, unequal probabilities of selections, and 

nonresponse and post stratification adjustments. Much of the data collected and 

distributed by the federal government, such as the Early Childhood Longitudinal 

Study and the High School and Beyond Longitudinal Study, use such complex 

sampling designs. 

These large scale data collection efforts typically result in data that are 

clustered at different levels. Because traditional estimation of standard errors 

assume the correlation of errors across individuals is zero, a researcher using 

clustered data may underestimate the standard errors. Such underestimation would 

subsequently result in inflated Type I error rates (Kish & Frankel, 1974). In recent 

years there has been numerous research studies documenting the effects of such 

clustering on parameter estimates (e.g., Allua, Stapleton, & Beretvas, 2008; 

Muthén, 1994; Muthén & Satorra, 1995; Raudenbush & Bryk, 2002; Snijders & 

Bosker, 1999; Stapleton, 2002, 2006a, b; Yuan & Bentler, 2006). Most applied 
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researchers are now aware that clustered data require special attention during 

analysis, such as the use of multilevel techniques. Therefore, non-independence of 

samples due to clustering will not be explored in this research.   

One of the sampling design issues that has received less attention in the 

methodological research of Structural Equation Modeling (SEM) is stratification 

and unequal probabilities of selection.  When sampling designs include 

stratification with unequal probabilities of selection, the goal is usually to ensure 

sufficient sample sizes for subgroup analysis.  

There is documented evidence of the effects of ignoring unequal selection 

probabilities with statistical techniques such as regression (e.g., DuMouchel & 

Duncan, 1983; Nathan & Holt, 1980), ANOVA (e.g., Potthoff, Woodbury, & 

Manton, 1992; Wedel, Hofstede, & Steenkamp, 1977), single-level (e.g., Hahs, 

2003; Kaplan & Ferguson, 1999; Stapleton, 2006a) and multilevel SEM (e.g., 

Lohr, 1999; Stapleton, 2002), growth models (Asparouhov, 2005), and latent class 

analysis (e.g., Patterson, Dayton, & Graubard, 2002). This research has 

determined that if unequal selection probabilities are not accounted for, resulting 

population estimates may exhibit substantial bias (Bentler & Chou, 1987; Lee et 

al., 1989; Skinner, Holt, & Smith, 1989).  However, no research has yet 

documented the effects of sampling with unequal selection probabilities on 

GMM. 
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1.2 SIGNIFICANCE 

Although Latent Growth Modeling has been used with considerable 

success in a wide variety of research settings, Growth Mixture Modeling is an 

important new development for applied researchers. A limitation of Latent 

Growth Models is their assumption that all individuals are drawn from a single 

observed population with common growth parameters (e.g., slopes and 

intercepts). However, in many applied situations, unobserved subpopulations may 

exist and their trajectories may be used to test a wide variety of theories and could 

also resolve inconsistent findings from prior research.  

In fact, as researchers begin to use GMM with data from nationally 

representative samples, it becomes increasingly critical for researchers to 

understand the difficulties associated with modeling data that come from complex 

sample designs. Unfortunately, the sampling process is often ignored when it 

comes time for large scale data sets, and ignoring the dependencies in complex 

data may result in estimates that are not robust.  This tendency to naively model 

complex data as if it were from a simple random sample (SRS) may be due to 

unfamiliarity with the effects of complex sample designs on subsequent parameter 

estimates and their associated standard errors.  As long ago as 1974, Kish and 

Frankel stated that ―in most cases the kind of education that aspiring statisticians 

are given at university does not prepare them for the complexity of the data that 

they are going to handle‖ (p. 29). Fifteen years later, Skinner et al., (1989) 

described the importance of such training: ―analytic procedures which take into 

account the population structure and the sample selection mechanism can change 
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the objectives of the analysis and can have a substantial impact on the subsequent 

interpretation of results‖ (p. 285).   

If researchers naively apply GMM to nationally representative data sets 

without adjusting for the way in which the sample was selected, the resulting 

parameter estimates, standard errors and tests of significant may not be 

trustworthy. This research study will therefore provide applied researchers with 

practical guidance on appropriate methods for accounting for these violations of 

statistical assumptions.   

 

1.3 ORGANIZATION OF CHAPTERS 

The remainder of this document is organized as follows. Chapter 2 

provides a review of the literature on unequal sampling probabilities and GMM. 

Chapter 3 describes the design of the proposed research.  Chapter 4 provides the 

results, while Chapter 5 discusses the results and provides recommendations.  
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CHAPTER 2: REVIEW OF THE LITERATURE 

 

Available research on the characteristics of samples that utilize unequal 

sampling probabilities, and the research documenting their effects on Growth 

Mixture Modeling are reviewed in this chapter. Section 2.1 reviews the literature 

on disproportionate sampling and traditional approaches used to analyze such 

data. Section 2.2 presents the relevant literature on Growth Mixture Models.  

 

2.1 UNEQUAL SAMPLING PROBABILITIES 

For the first 30 years of the twentieth century, the major issue in survey 

research was designing sampling schemes that would accurately represent the 

population.  In 1934 Jerzy Neyman created such a design (Neyman, 1934); he 

established the use of probability samples, randomization, and introduced the 

concepts of stratification and unequal probabilities of selection. Because the 

selection probabilities of all subjects in the population are known, Neyman‘s ideas 

allow researchers to make statistical inferences from a sample to the population, 

and furthermore allow for the calculation of standard errors. These days, most 

large-scale surveys employ sampling designs based on Neyman‘s ideas.  The 

result is a ―complex sample design‖ if it has at least one of the following 

attributes: ―unequal probabilities of selection for different units; stratification; ….. 

or clustering‖ (Mislevy, 1991, p. 178). Complex sample designs differ from 
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survey to survey, but all generally contain unequal selection probabilities. 

Unequal probabilities of selection result when subjects in the population are 

sampled at different rates (Kish, 1995), which often (but not always) occur as a 

result of stratification. 

2.1.1 Stratification   

In broad terms, stratified sampling consists of dividing the target 

population into S non-overlapping groups, called strata (s=1,2,…,S). Separate 

samples are then selected from within each stratum. Stratification thus separates 

the population into a number of observed groups from which independent samples 

are drawn (Kish, 1995).  Strata are defined using supplementary information, such 

as regional, demographic, or socioeconomic variables, that are available for all 

members of the population.  

Nationally representative samples usually employ stratification in the 

selection of subjects because it ensures that all important domains are included in 

the sample. Furthermore, stratification can be more efficient than simple random 

sampling because subjects with similar characteristics are collected together 

within a stratum, resulting in a small within-strata variance relative to between-

strata variance (Lehtonen & Pahkinen, 1994). Stratification can produce more 

precise estimates of population characteristics if the stratification variable is 

correlated with the outcome variable (Heeringa & Liu, 1997; Kalton, 1983). This 

is because subjects within strata tend to be more homogenous than subjects in the 
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population as a whole. This reduction in variance in individual stratum often lead 

to a reduced variance for the estimate of the total population. 

2.1.1.1 Equal Probabilities of Selection 

If sampling within each stratum is proportional to the size of the stratum, it 

is called ―proportionate stratification‖ or a ―self weighting sample‖ because the 

selection probability (ps = ns/Ns), is constant for each stratum s, and is also a 

constant for any population member. That is, p1=p2=p3=ps=P, which is the overall 

inclusion probability. The population mean can thus be estimated by the simple 

mean of the sample cases (subjects must be sorted into separate strata for 

computing the variance properly, but this sorting is not necessary for the 

computation of the mean).  Here, the variances of the sample estimates obtained 

via proportionate stratification are always smaller than an SRS sample of the same 

size (Kish, 1995).  The variance is decreased to the extent that there is 

homogeneity within strata and that stratum means diverge. Because proportionate 

stratification does not sample with unequal sampling probabilities, it will not be 

considered further in this study. Instead the study will focus on disproportionate 

stratified sampling. 

2.1.1.2 Unequal Probabilities of Selection 

Unequal probabilities of selection usually result from stratification when 

the goal is to ensure a sufficient sample size for subgroup reporting (Lohr, 1999).  

For example, with the Early Childhood Longitudinal Study (ECLS), there was 

special interest in reporting accurate estimates for Asian/Pacific Islander students. 
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Those students were therefore sampled at a rate three times higher than the rate 

for other students (U.S. Department of Education, 2003). When subjects in a 

stratum are sampled with higher probabilities than other strata, those subjects are 

said to be ―over-sampled‖ because they have greater representation than would 

occur in SRS. When all subjects in a stratum are included in the sample they are 

―sampled with certainty.‖  Disproportionate stratified sampling can also be used 

to lower the cost of sampling by increasing the selection probability in strata with 

lower costs.   

Many government agencies sponsor large-scale studies that utilize 

disproportionate stratification and are longitudinal in nature, such as the Early 

Childhood Longitudinal Study (ECLS), the National Educational Longitudinal 

Study (NELS), the National Longitudinal Study of the High School Class of 1972 

(NLS), and the High School and Beyond Longitudinal Study (HS&B). All of 

these studies employ some form of stratification in their sample design (U.S. 

Department of Education, 2003). For these studies, the portions of the sample 

design that result in unequal selection probabilities are presented in Table 1. 

Table 1:  Features of stratification designs that result in unequal probabilities of 

selection in 4 national studies 

 ECLS NELS NLS HS&B 

Stratification 2 variables 3 variables 2 variables 2 variables 

Oversampling 
API* & private 

schools 

API, Hispanic & 

private schools 

Low income 

& minority 

High % minority 

& Catholic 

schools  

Sampling w. 

certainty 

24 largest 

counties 

Students within 

smallest schools 
-- 

Students within 

smallest schools 

*API=Asian and Pacific Islanders 
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When analyzing the data from studies such as those presented in Table 1, 

it is important to remember a fundamental assumption under which nearly all 

statistical models operate: that each subject in the population has an equal 

probability of being selected into the sample. This assumption is very important 

because when a simple random sample is used, descriptive statistics reflect the 

population from which the sample was drawn. However, when some subjects are 

sampled at different rates than others, the resulting estimates reflect the sample 

and not the population.  In fact, the estimates for the sample can be very different 

from the population (Bentler & Chou, 1987; Hahs, 2003; Pfeffermann, 1993).  

This difference between sample and population is commonly known as ‗selection 

bias.‘ 

Researchers have demonstrated that if the outcome variable is related to 

the variables used to stratify the sample, it is likely that the parameter estimates 

will be biased unless the disproportionate stratification is accounted for in the 

latent growth model (Kaplan & Ferguson, 1999; Korn & Graubard, 1995a, b; Lee 

et al., 1989). Growth Mixture Modeling will be described in more detail in 

Section 2.2, but it is first useful to review the statistical techniques that have 

traditionally been used to analyze data from samples collected with unequal 

probabilities of selection. 

2.1.2 Traditional Analysis of Data from Stratified Samples  

Data from stratified samples have traditionally been used for descriptive 

purposes (such as summary estimates of the population), and estimation 
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procedures that account for unequal selection probabilities are well established for 

these purposes (Kish, 1995).  Inferential statistics, in contrast, attempt to explain 

the processes that underlie these descriptive estimates (Skinner et al., 1989). 

Estimation methods for inferential purposes that take stratification into account 

have not been fully explored, but two methods have been suggested in the 

literature. One is weighting observations (long used in descriptive statistics) and 

the other is modeling the sample design by adding covariates to the model.  

An analysis that adjusts estimates but does not explicitly model the 

sampling design is referred to as a ‗design-based‘ method (Kalton, 1983).  

Design-based methods are primarily concerned with accurately estimating 

population characteristics (Skinner et al., 1989). Accounting for the sample design 

in this way is frequently used in descriptive statistics, since the quality of the 

population estimates depends heavily on how randomization is applied in 

selecting the sample. Design-based methods make inferences to a known and 

finite population--the sampling distribution of repeated samples generated by the 

sampling design (Lee et al., 1989; Pfeffermann, 1993). Thus, the finite population 

is of primary interest, and the analysis aims at finding estimates that are design-

unbiased in repeated sampling.   

Model-based approaches, in contrast, condition on sampling variables 

(such as the variables used to stratify the sample) to adjust for the effects of the 

sample design (Skinner et al., 1989). Traditionally, model-based researchers draw 

inferences to populations that are more general than the fixed finite population 

that gave rise to the sample.  Model-based inference thus assumes that a sample is 



 13 

 

 

a convenience set of observations from a conceptual super-population. In the 

context of sample surveys, Deming and Stephan (1941) considered a super-

population to be a hypothetical infinite population from which the finite 

population is itself a sample. The population parameters under the specified 

model are of primary interest, and the sample selection scheme is considered 

secondary to the inference. Consequently, the role of the sample design is de-

emphasized, and statistical estimation uses the prediction approach under the 

specified model (Lee et al., 1989).  This perspective holds that it is not necessary 

to adjust for the sampling design because the results are not being generalized to 

the finite population (Pfeffermann, 1993).   

If the population is infinite, every individual has a selection probability of 

zero, with a resulting weight of infinity (Asparouhov, 2005). It is important to 

remember that for large finite populations, the difference between a finite 

population parameter and the corresponding super-population parameter is small, 

and thus inference on the finite population parameter also constitutes inference on 

the super-population parameter (Lehtonen & Pahkinen, 1994). In the following 

sections, design- and model-based approaches are discussed in more detail. 

2.1.2.1 Design-Based Approaches 

To date, most statistical developments for complex samples have focused 

on univariate, design-based methods, with an emphasis on using sampling weights 

to estimate population parameters and standard errors. The use of weights in 

sample estimates traces back more than 50 years to the work of Horvitz and 

Thompson (1952), who found that unbiased estimates of population totals can be 
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obtained by using sample weights, when sampling probabilities are known. When 

estimates of population quantities (such as means) are weighted, they will be 

unbiased when the sample size is large.  

In applied situations, weights are the cumulative result of a comparison 

between the population structure and the sample structure, including nonresponse 

adjustments, stratification, post-stratification, and sampling design considerations. 

The generation of sampling weights can therefore be very complex. The goal of 

this dissertation is not to imitate such complex processes, but to demonstrate the 

fundamental principles underlying the analysis of data obtained with unequal 

selection probabilities. In fact, weights are usually adjusted upward to compensate 

for nonresponse and post-stratification to match known census figures, so the base 

weights used in the current research should be able to be generalized to more 

complex, final weights. 

As described in Kish (1995), disproportionate sampling within strata 

necessitates the computation of weights for each subject, giving each stratum the 

same relative importance that it has in the population. Each sampled subject 

(i=1,2,...,n) is assigned a raw weight that is the inverse of the subject‘s selection 

probability, pi, within their stratum, s. The selection probability is given as: 

s

s
i

N

n
p         (1) 
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where Ns is the population size of stratum s, and ns is the corresponding sample 

size.  Thus, if subject i has probability pi of being included in a sample, then the 

raw weight wi is given as: 

i

i
p

w
1

 .       (2) 

The main purpose of weighting is to reduce bias in population estimates 

by up-weighting subgroups that are under-represented in the sample, and down-

weighting subgroups that are over-represented in the sample. The raw weight for 

each subject can therefore be interpreted as the number of population members 

represented by that subject. 

If yi are scores on a measure with n subjects, under SRS an unbiased 

estimate of the population mean is defined as: 

n

y
n

i

i

1ˆ  .       (3) 

And if the sample design includes unequal selection probability, the population 

mean is estimated by the weighted mean: 

i

ii

w
w

yw
ˆ  .       (4) 

For a sample with equal probabilities of selection, the sampling variance of the 

estimator (Equation 3 or 4) is estimated by: 
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and the weighted sample element variance is calculated as: 

2

1
2 1

1 1

ˆ( )

ˆ

( 1)

n

i w

i
w n n

i i

i i

w y

w w

 .      (6) 

Note that, while equation 4 is invariant with respect to constant 

multiplicative factors of weights, the weighted estimate of the sampling variance 

(equation 6) is not.  It is therefore essential to scale the raw weights (Longford, 

1995; Stapleton, 2002).   Two methods of scaling exist, relative weighting and 

effective weighting.  Relative weighting scales the raw weights so that they sum 

to the sample size:  

N

n
ww ir   .      (7) 

Effective weighting scales the weights so that their total is equal to the 

effective sample size (the sample size that would have been required to obtain the 

same level of precision as a simple random sample): 

n

i

i
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Here, the raw weights are scaled by multiplying them by the sum of the raw 

weights divided by the sum of the raw squared weights (Potthoff et al., 1992; 

Stapleton, 2002).   For example, a population of 100,000 individuals is grouped 

into two strata (males and females) of 50,000 each, and each stratum is sampled at 

different rates. Eighty percent of the total sample of 500 will come from the first 

stratum and twenty percent will come from the second stratum. This sample 

design results in the following weights, as shown in Table 2. 

Table 2: Example of relative and effective weights 

Strata Ns ns pi wi wr we 

1 50,000 400 .008 125 0.625 0.40 

2 50,000 100 .002 500 2.500 1.60 

Sum N=100,000 n=500  n=100,000 n=500 n=320 

 

2.1.2.2 Design-Based vs. Model-Based Approaches 

Estimation of population means from data sampled with unequal 

probabilities of inclusion was studied by Little (1983), and in regression modeling 

by Holt, Smith, and Winter (1980), and Nathan and Holt (1980). For regression 

models, these researchers compared the results from a model-based design and 

results from a design-based approach to a baseline model that did not attempt to 

adjust for unequal probabilities of selection.  They determined that without any 

adjustment, the resulting parameter estimates were biased.  Both the model- and 

design-based estimates yielded more accurate estimates but the researchers 

preferred the model-based method because it tended to yield smaller variance 

estimates. However, if the model is incorrectly specified or the sampling design is 
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too complex to model, this advantage is lost (Muthén & Satorra, 1995). It is 

important to note, furthermore, that both studies used raw weights in their design-

based analysis, rather than scaled weights (i.e., relative or effective weights).  The 

choice of approach thus comes down to ―a tradeoff between the potentially larger 

bias of unweighted estimators and the potential larger variability of weighted 

estimates‖ (Korn & Graubard, 1995b, p. 295). Many researchers (e.g., 

Pfeffermann, 1993; Sturgis, 2004; Sugden & Smith, 1984) have determined that 

more accurate parameter estimates are preferred to an increase in precision. 

Some advocates of the model-based approach criticize the use of design-

based analysis because it ignores the fact that estimating a population total, Y, is 

equivalent to predicting the total of Y for the individuals who have not been 

selected into the sample. Hence, it is asserted, assumptions must be made that 

relate those individuals in the sample to those who are not in the sample, so that 

any inference about those not in the sample will be meaningful. If such relations 

exist, and are known, they assert that incorporating adjustments for the probability 

of selection is not necessary (Hansen, Madow, & Tepping, 1983).  This criticism 

is related to another that asserts that when the sample is selected, all the 

researcher has is a unique sample, and that the selection process should therefore 

be ignored.  In this view there is no model that provides the relationship between 

the sample and the balance of the population, and how that sample was selected 

cannot create the relationship. That is, inferences should not depend on the sample 

design, and that the design of the sample in such instances should be ignored.  
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The analysis is done as if the only source of variation were random sampling from 

a hypothetical super-population.  

However, there are practical problems with including all of the necessary 

design variables into the model; often researchers do not have information on all 

of the relevant design variables for a particular sample (due to confidentiality 

concerns), or there may be too many variables to be incorporated into the model 

(Potthoff et al., 1992). ―No model will include all of the relevant variables and 

few analysts will wish to include in the model all the geographic and operational 

variables which determine sampling rates. The theoretical and empirical tasks of 

deriving, fitting, and validating such models seem formidable for many complex 

national demographic surveys‖ (Pfeffermann, 1993 p. 326).  

2.1.2.3 Approaches for Latent Variable Models 

Despite a long tradition of use with multiple regression (e.g., DuMouchel 

& Duncan, 1983) and ANOVA (e.g., Muthén & Satorra, 1995; Potthoff et al., 

1992), methods that incorporate adjustments for disproportionate sampling in 

latent variable models are limited. None could be found that deal specifically with 

Growth Mixture Models.  

Muthén and Satorra (1995) were the first to address complex sample 

issues within a latent variable framework. They investigated both model- and 

design-based methods in a factor analytic model. They described the model-based 

approach as an efficient way to disentangle population heterogeneity.  The main 

drawback to the approach, however, was that it provided accurate estimates only 
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when the variables were normally distributed and the factor model was correctly 

specified: ―While model-based disaggregated modeling has much to offer in terms 

of efficient estimation, it also suffers from a lack of robustness to 

misspecification….It is unlikely that exactly the same covariance structure model 

holds within different strata‖ (Muthén & Satorra, 1995, p. 295). 

Kaplan and Ferguson (1999) explored using raw and relative sample 

weights on a single-level structural equation model. They found that when 

unequal probabilities of selection were ignored, it resulted in serious bias of the 

parameter estimates, with the most serious biases occurring in the factor variance 

and error variances. The use of raw and relative weights lessened the bias in these 

estimates, and bias diminished even more as strata sample size increased.  Kaplan 

and Ferguson also found that raw and relative weighting systematically 

underestimated the standard errors relative to the standard deviation of the 

estimates. For the no weight condition, the biases tended to be positive, but 

uniformly smaller. The bias values for the raw weight conditions were much 

larger compared to the relative weighting condition because the raw weights sum 

to the population size.   

Hahs (2003), in her use of sampling weights in a single level structural 

equation model, also found that ignoring weights resulted in parameter estimates 

that were significantly different from those obtained from the weighted sample, 

with the structural parameters evidencing the greatest bias. Unlike Kaplan and 

Ferguson (1999), however, she found that the weighted model standard errors 

were higher than the non-weighted estimates. However, Hahs used effective 
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weights, whereas Kaplan and Ferguson used raw and relative weights. 

Furthermore, Hahs‘ investigation did not use a Monte Carlo methodology, but 

instead used existing data. 

In multilevel modeling, which uses a model-based procedure to account 

for the effects of clustering, sample weights are sometimes used to account for 

unequal probabilities of selection.  Stapleton (2002) found that when weights are 

not used in the calculation of the input covariance matrices, parameter point 

estimates were biased. However, even when raw weights are used, Pfeffermann, 

Skinner, Holmes, Goldstein, and Rasbash (1998), and Stapleton (2002) found that 

parameter estimates could still be biased.  Stapleton (2002) determined that 

relative weights can result in ―drastically underestimated sampling variances of 

parameters‖ (p. 497); up to 40% in some cases.  Both Pfeffermann et al. (1998) 

and Stapleton (2002) found that greater bias occurred when the sampling weights 

were more unequal. When effective weights were used to calculate covariance 

matrices, however, they generated accurate parameter estimates and robust 

standard errors (Stapleton, 2002).   

Patterson (1998) examined the importance of accounting for complex 

sample designs in latent class modeling (LCM).  She found that when weights 

were not used, point estimates were underestimated by 10 to 30%. Patterson et al. 

(2002) also found that ignoring sample weights resulted in biased parameter 

estimates.  They found that weighting can affect the estimation of the item-

conditional probabilities and the latent class proportions when sampling weights 

differ across subgroups.  
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Furthermore, Asparouhov (2005) found that if unequal probabilities of 

selection were not adjusted for in a two class model, almost all parameter 

estimates contained substantial bias.  ―It is clear from our simulations that 

omitting the weights can produce severely biased estimates for any latent variable 

model. No parameter appears to be immune from selection bias‖ (p. 20).  

In summary, when weights are not used to adjust for disproportionate 

sampling, the resulting parameter estimates are likely to be biased.  Regardless of 

the philosophical approach (design- or model-based) taken, when a researcher 

attempts to connect the sample to the population, the literature suggests that it is 

necessary to account for how the sample is selected.   

 

2.2 GROWTH MIXTURE MODELING 

Some authors have described Growth Mixture Models (GMM) as a hybrid 

model that may be viewed as an extension of traditional continuous and discrete 

latent variable models (Bauer & Curran, 2004; Arminger & Stein, 1997; Muthén, 

2002). GMM can thus be seen as simultaneously estimating two submodels, one 

with continuous latent variables (Latent Growth Model), and one with a 

categorical latent variable. GMM thus have their basis in both the common factor 

model of Thurstone (1947) and in the latent class model of Gibson (1959).  It is 

useful to consider both of these ‗first generation‘ submodels in turn before 

exploring GMM in more detail.  
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2.2.1 Submodel 1: Continuous Latent Variables 

The correlation coefficient has long been interpreted as a potential 

indicator of the degree to which two variables share a common cause (e.g., 

Galton, 1888; Stigler, 1986). Factor analysis was developed as a tool for 

identifying these unobserved common causes (Spearman, 1904; Thurstone, 1935, 

1947). The factor analytic model usually assumes that all of the shared variance 

among a set of variables are a result of the influence of one or more continuously 

distributed latent factors. After the effect of these common latent factors are 

accounted for, it is assumed that any residual relationship among the observed 

variables approaches zero (within sampling error).  This is the assumption of 

conditional independence. Another assumption of factor analysis is that the 

observed variables can be expressed as a linear combination of the latent factors 

plus the residuals, and that the latent factors and the residuals are multivariate 

normally distributed. 

2.2.1.1 Latent Growth Modeling 

Growth models were initially developed by showing how factor analysis 

provided a framework for representing inter-individual differences over time 

(McArdle & Epstein, 1987; Meredith & Tisak, 1990; Muthén, 1991; Willett & 

Sayer, 1994).  Latent Growth Models (LGM) are therefore a special type of 

confirmatory factor model, sometimes with a mean structure, where the latent 

factors represent the components of individual change over time (the intercept and 

slope).  LGM allow the parameter values of these growth factors to vary for each 

individual, but assumes that the trajectories of all subjects follow the same 
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functional form (e.g., linear, quadratic).  Muthén and colleagues extended this 

basis to incorporate dichotomous variables and missing data (Muthén, 1992, 

2001a, 2002; Muthén & Satorra, 1995).   

The measurement portion of a latent growth curve model, with n subjects 

(i=1,2,…,n) measured on the continuous y (y=1,2,…,p) observed variables and 

with m latent growth factors (m=1,2,…M) can be expressed as: 

y         (9) 

where y is a p × 1 vector of repeated measures and  η is an M × 1 vector of latent 

growth factors, and ε is a p × 1 vector of residual errors. Λ is a p × M parameter 

matrix of factor loadings. By constraining the loadings in Λ to known constants, 

the latent intercept and slope factors are defined. The loadings from the intercept 

factor to each of the measured time points are set to 1. The paths from the latent 

slope factor to each of the time points are generally set to numbers representing an 

assumed linear or curvilinear trajectory. For example, for a linear assumption with 

four equally spaced time points, the slope loadings would be set to 0, 1, 2, 3. The 

measure of time is thus entered into the model via the factor loading matrix. 

The latent portion of a latent growth curve model (without covariates) can 

be written as:  

        (10) 

where κ is an M × 1 vector of latent variable means and ζ is the M × 1 vector of 

individual deviations from these means. Φ is the M × M covariance matrix of the 
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latent factors, which allows the intercept and slope to be related to one another. 

When exogenous predictors (x=1,2,…X) are added, the model is rewritten: 

x        (11) 

where  is a M × X matrix of regression parameters between the M latent growth 

factors and the exogenous predictors.  Given the regression of  on x via ,  

now contains the intercepts of the latent growth factors when x=0.  contains the 

individually varying residuals. 

Conventional LGM may be estimated by maximum likelihood under 

normality assumptions using standard structural equation modeling software.  A 

path diagram with equally spaced time points and linear growth is provided in 

Figure 1. 
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Figure 1: Conventional latent growth model with linear trajectory and mean factor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unfortunately, LGM require an assumption that may restrict its 

applicability. LGM assume that all individuals in the sample come from a single 

population, with individual variation around a mean growth curve captured by the 

growth factor variances (Muthén & Muthén, 2000). Conventional LGM, 

therefore, cannot capture heterogeneity that corresponds to different 

subpopulations characterized by distinct growth trajectories. When a sample 

contains two or more qualitatively distinct, but latent, populations, important 

differences between the subpopulations are subsequently lost when their 

distributions are aggregated. This restriction is not present in GMM because they 
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contain a second submodel which allows a categorical latent variable to be 

included in the model.  

2.2.2 Submodel 2: Categorical Latent Variables 

When the latent factor is categorical, Latent Profile Analysis (LPA) is 

used for continuous outcome variables, while Latent Class Analysis (LCA) is 

used when the outcome variables are categorical.  The objective of LCA is to 

categorize individuals into latent classes and to identify items that best distinguish 

between classes. Both LPA and LCA are based on a different interpretation of the 

correlation coefficient than latent variable modeling with continuous latent 

variables. This alternative interpretation assumes that the correlation reflects the 

presence of discrete groups in the population, each characterized by either (a) 

different mean levels on the observed variables for LPA (Bauer & Curran, 2004), 

or (b) different probabilities of the categorical outcome variables for LCA 

(Lazarsfeld & Henry, 1968).   

LPA was developed by Gibson (1959) as a way to identify these latent 

groups, and was presented as an alternative explanation to Thurstone‘s (1947) 

factor model. Although the interpretation of the correlation coefficient is different 

(with Thurstone‘s interpretation being that the correlation represents the degree to 

which two variables share a common cause, and Gibson stating that correlation 

indicates the presence of discrete groups in the populations), both factor analysis 

and LPA share the assumption of local independence. Gibson stated that, 

conditional on class membership, the residual association between the observed 
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variables would be zero, within sampling variability. In LCA, local independence 

means that the mean of each latent class represents the true score of all individuals 

in that class. Within each class, any deviation from this mean should therefore be 

random and independent (Goodman, 1974; Lazarsfeld & Henry, 1968).  

The total variance of the observed variables can be decomposed into 

between-class and within-class components used in conventional analysis of 

variance models, as shown in equation 12, below. The difference is that group 

membership is unobserved and must be estimated. 

2
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1
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kyyk

K

k

ky      (12) 

where y is an observed variable and k designates a specific latent class 

(k=1,2,3,…K), so μyk is the mean and σ
2

yk is the variance for variable y in class k.  

πk indicates the proportion of cases belonging to class k. The covariance between 

two observed variables (y1 and y2) is: 
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Note that there is no within class component to equation 13 (in contrast to 

equation 12).  This means that any association between variables y1 and y2 must 

be accounted for by the between class component (the mean differences between 

the classes). Whereas the factor analytic model discussed previously decomposed 

the covariance matrix into continuous factors and residual variances, the latent 



 29 

 

 

class model decomposes the same covariance matrix into mean differences 

between latent classes and within class residual variances. 

In fact, under certain conditions, the factor analytic model and the latent 

class model are equivalent. A factor analytic model with M factors is equivalent to 

a K = M + 1 class model (see Bartholomew, 1987; Gibson, 1959). Because of this, 

it has been suggested that factor analysis decomposes the covariance matrix to 

highlight the relationship among the variables, whereas models with categorical 

latent variables highlight the relationship among individuals (Bauer & Curran, 

2004). 

2.2.3 Growth Mixture Models 

Although the conventional Latent Growth Model presented in section 

2.2.1.1 allows for individual differences by estimating both a mean trajectory and 

the variation around this trajectory, its main drawback is that it assumes that all 

individuals come from a single population and share the same growth pattern. 

GMM relax the single population assumption to allow for differences across 

unobserved subgroups.  This is accomplished by using a categorical latent 

variable to represent two or more distinct trajectory classes. The combined use of 

continuous and categorical latent variables allows individuals to vary around the 

mean growth curve for their particular subgroup (Bauer & Curran, 2004; Muthén, 

2001a, b; Muthén & Shedden, 1999; Nagin, 1999).   

Growth Mixture Models were introduced in the late 1990s by Muthén and 

Nagin (Muthén, Brown, Khoo, Yang, & Jo, 1998; Muthén & Shedden, 1999; 
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Nagin, 1999), and extensions to the framework were made by Muthén (2001a, 

2003). Growth Mixture Modeling is a technique that is often used to test theories 

that subgroups with qualitatively distinct trajectories exist within a population. 

Examples include identifying different types of alcohol users (Muthén & Muthén, 

2000), physical aggression (Nagin & Tremblay, 1999) and reading skills (Muthén, 

Khoo, Francis, & Boscardin, 2003).  

In Growth Mixture Modeling, the data are assumed to come from K 

populations (k=1,2,…,K), with a categorical latent variable indicating the 

membership of each individual into one of the population groups, where k 

designates group and indicates that parameters may differ over groups. 

Conditional on class k, the measurement portion of the model can be expressed as: 

kkkky        (14) 

The specification of equation 14 is similar to that given for conventional 

LGM specified in equation 9.  The equation for the growth parameter portion of 

the model across K classes is as follows:  

kkk         (15) 

The unconditional model in equations 14 and 15 simply extend the 

conventional Latent Growth Model expressed in equations 9 and 10 by having a 

separate equation model for each latent class, k, thus allowing for heterogeneity 

within the population. This Growth Mixture Modeling framework is also flexible 

enough to allow differences in measurement error variances across classes as 

well.  Latent class membership may be related to other observed variables, so 

when covariates are added to the model, equation 15 becomes: 
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which, conditional on class membership, is equivalent to equation 11 of the 

conventional Latent Growth Model.  An unconditional linear Growth Mixture 

Model with 4 equally spaced time points, a linear trajectory and two latent classes 

is displayed graphically in Figure 2.  

Figure 2: Growth Mixture Model with 2 latent classes 
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Unlike the Latent Growth Model shown in Figure 1, the Growth Mixture 

Model in Figure 2 includes a categorical latent class factor where parameters 

associated with the growth factors vary across the different subgroups.  The 

resulting trajectories from the 2-class Growth Mixture Model shown in Figure 2 

could look similar to Figure 3 where class 1 has a relatively steep and compact 
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trajectory with a high initial value, while class 2 has a flatter and more variable 

trajectory, with a lower value at the initial time point. Please note that in Figure 3, 

the scale of the y axes differ from class 1 to class 2. 

Figure 3: Simulated trajectories of 2 latent classes 

 

 

 

 

 

 

The Growth Mixture Model in Figure 2 contains the same 14 pieces of 

information (4 variances, 6 covariances and 4 means) as the conventional Latent 

Growth Model in Figure 1. However, the issue of model identification in Growth 

Mixture Modeling is more complex than in conventional Latent Growth Model 

(Li, Duncan, Duncan, & Acock, 2001) because a set of parameters are estimated 

for each class, resulting in many more estimated parameters than Latent Growth 

Modeling.  In fact, Muthén and Shedden (1999) stated that ―it is difficult to give 

rules for the identification of the (GMM) model.‖ However, as a well known 

example drawing on factor analysis demonstrates (Lawley & Maxwell, 1971), at 

least m
2
 restrictions need to be imposed on the parameters and/or covariance 

matrix, when m is the number of latent continuous variables. As a result, GMM 

are generally not identified without implementing some parameter restrictions 

Class 1 Class 2 
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(Muthèn & Shedden, 1999), such as constraining all of the error variances to be 

equal across classes. 

Because class membership is unobserved, the proportion of individuals in 

each latent class is unknown and has to be estimated along with the other model 

parameters. Probabilities of group membership (posterior probabilities) are 

therefore estimated for each individual. These probabilities are used to weight 

each individual‘s contribution to the estimation of the model parameters for each 

class. Each individual‘s data thus contribute to the parameter estimates for each 

latent class commensurate with his/her probability of membership in that class 

(Muthén & Shedden, 1999).  

While class probabilities are estimated, the number of latent classes must 

be specified by the researcher and are not estimated. Given that the groupings are 

latent, and therefore not known by the researcher, it is common to fit several 

models with different numbers of classes.  For example, Boscardin‘s (2001) 

investigation into children‘s growth in pre-literacy skills fit six different Growth 

Mixture Models to the data, each containing a different number of latent classes, 

before determining that five distinct trajectory classes were present. To determine 

which model (and thus the correct number of classes) is appropriate; the models 

must be evaluated and compared in some way. Unfortunately, there is not one 

commonly accepted statistical indicator for deciding on the number of classes in a 

study population. In fact, a large body of research has focused on developing 

indices that may serve to compare alternate models (e.g., Bamber & Santer, 2000; 

Everitt & Hand, 1981; Lo et al., 2001; McLachlan & Peel, 2000; Nagin, 1999; 
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Nylund, Asparouhov, & Muthén, 2007; Tofighi & Enders, 2008). These are 

discussed in following section. 

2.2.3.1 Model Assessment 

Model assessment is more complex in Growth Mixture Modeling than in 

conventional Latent Growth Modeling. For mixture modeling, the usual chi-

square-based fit indices (e.g. CFI, RMSEA) cannot be used because there is not a 

single covariance matrix to which to fit the data—the saturated model cannot be 

estimated (McLachlan & Peel, 2000).  Therefore, several other strategies have 

been proposed to evaluate model fit—namely: information criteria, number of 

classes, and the degree to which individuals are reliably classified into classes.  

However, there is not a commonly accepted criterion for determining model fit. 

Information criteria (e.g., BIC) are frequently used for comparing models 

with different numbers of classes.  Information criteria can be used as a basis for 

selecting the optimal model (and thus the correct number of classes). Usually, the 

smaller the information criteria, the better fit the model has to the data. However, 

Wedel et al. (1997) demonstrated that, if disproportionate sampling probabilities 

are not taken into account in the formulation of the likelihood, the selection of the 

appropriate number of classes will be affected. 

As an alternative, Lo et al. (2001) proposed an empirical adjustment to the 

likelihood ratio statistic to test whether a particular sample is drawn from a 

mixture of K latent classes or from a mixture distribution of K-1 classes. This Lo-

Mendall-Rubin (LMR) test compares the improvement in fit between neighboring 
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class models (i.e., comparing K and K+1 class models) and provides a p value that 

can be used to determine if there is a significant improvement in fit when one 

more class is added.  The more restrictive model is obtained from the less 

restrictive by a parameter assuming a value on the border of the admissible 

parameter space.  Their technique derives the correct distribution as a weighted 

sum of independent chi-squared random variables with one degree of freedom 

(assuming within-class normality). Low p indicates that the K-1 class model 

should be rejected in favor of the K class model. This method has been described 

as a ―breakthrough for helping to select the best-fitting number of classes‖ 

(Muthén, 2003, p. 7).  However, an important criticism by Jeffries (2003) 

followed. Jeffries claimed that there is a flaw in the mathematical proof of the 

LMR test for nonnormal outcomes. He contended that this test requires conditions 

that are generally not met when the null hypothesis holds, and demonstrated that 

the log-likelihood ratios generated under the null hypothesis do not follow an 

approximately normal distribution.  

Another way to gauge the fit of a Growth Mixture Model is assessing the 

ability of the model to assign individuals to their correct latent class.  Entropy is a 

summary measure of classification accuracy that is provided as part of the Mplus 

output for mixture models (Muthén & Muthén, 2005). The formula for this 

entropy measure is:  

Kn

pp
E i k ikik

K
ln

)ˆlnˆ(
1       (17) 
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where ikp̂  denotes the estimated conditional probability for individual i in class k. 

Entropy values range from 0 to 1 where values close to 1 indicate clear 

classifications (Muthén et al., 2002). In previous research, entropy values higher 

than .80 have been viewed as suggesting good classification (Greenbaum et al., 

2005; Muthén, 2004; Wang & Bodner, 2007). In fact, the research of Lubke and 

Muthén (2007) indicates that entropy values below .60 are generally related to 

misclassifying approximately 20% or more of the sample. Entropy values around 

.80 and above are related to 90% correct assignment. 

2.2.3.2 Distributional Assumptions 

In Growth Mixture Modeling, latent classes are defined at the distribution 

level.  Each population is composed of a collection of individuals who differ in 

their individual scores, but who are homogenous with respect to the population 

distribution from which they were sampled. Specifically, their observed scores are 

drawn from a common multivariate normal distribution, such that the same 

structural relationships hold for all individuals in the population.  Population 

heterogeneity is therefore indicated by the presence of two or more latent groups 

in the population categorized by different distributions (Bauer & Curran, 2004). 

Bauer and Curran (2003) demonstrated that a non-normal distribution is 

necessary for estimating the parameters of GMM.   If the distribution of the 

sample is normal, then only one latent class is necessary, and there is no 

remaining information from which to identify a second class.  That is, if the 

distribution of the repeated measure is multivariate normal, it should not be 
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possible to obtain a multiclass solution when fitting a correctly specified growth 

model.  With the correct model, the implied means and covariances of a single 

class should fully reproduce the observed distribution and additional classes 

should not be necessary. Non-normal sample distributions do not necessarily 

mean that multiple classes are present, however. The non-normality may be a 

symptom of either 1) the aggregation of distributions from several 

subpopulations, or 2) a non-normal distribution from one population. These two 

options are presented in Figures 4 and 5.  Latent classes extracted via Growth 

Mixture Modeling may thus represent either the true latent subgroups in the 

population or may approximate a single homogenous, but non-normal, population 

distribution.  

Figure 4:  Non-normal distribution due to presence of two populations 
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Figure 5:  Nonnormal distribution of one population 

 

Bauer and Curran in their simulation study (2004) found that the non-

normality of the repeated measures was critical factor influencing both the 

estimation of a Growth Mixture Model and its fit relative to the correct (single) 

class model. Overall, their results supported their hypotheses that multiple latent 

trajectory classes would appear optimal for non-normality distributed data, even if 

these data were generated from a single homogenous population.  In other words, 

a misspecified Growth Mixture Model would fit the data just as well as the 

correctly specified single class Latent Growth Model. However, the issue of 

equally well-fitting models is not new in Structural Equation Modeling—anytime 

a Structural Equation Model is fitted, it is well known that several other models 

will represent the sample data equally well. However, this problem of equivalent 

alternate models is confounded with the limitations of model assessment in 

Growth Mixture Modeling. While Bauer and Curran used BIC to determine model 

fit in their simulations, Muthén (2003) found that other fit indices would have 

better discriminated between a single population with a non-normal distribution 

and one that is due to the aggregation of multiple subpopulations. 
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2.2.4 Latent Classes and Stratification 

At this point it is useful to compare the latent classes in Growth Mixture 

Modeling with the grouping of subjects created during stratification.  As stated 

previously, latent classes in GMM are assumed to have been sampled from 

different (but unobserved) subpopulations. Stratification, in contrast, categorizes 

subjects by some observable trait or characteristic, such as region, employment 

status, or gender. Each subject in the sample thus belongs to two groups – the 

stratum from which they were sampled and their latent class, characterized by 

unobserved growth factors that describe their trajectory shape.   

As an example, a researcher may be interested in how optimistic people 

are about the economy (and how this belief changes over time). The researcher 

will then identify an observable population of interest, such as all non-

institutionalized adults in the state of Maryland. This researcher may then decide 

to segment this population into different strata based on an observed variable 

(such as employment status, educational attainment, or household income) before 

selecting her sample. Without knowing their latent subpopulation membership, 

the researcher independently selects a sample from each stratum.  At this point, 

the researcher does not know how many unobserved subpopulations (latent 

classes) exist, and therefore does not know if class membership is related to the 

stratification variable.  In this example, there could be a 2 latent classes present in 

the sample; individuals who are clinically depressed and those who are not. 
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If class membership is related to the stratification variable, one stratum 

would contain a higher proportion of a certain class than the others—for example, 

within the unemployed stratum there could be a significantly higher percentage of 

a depressed persons than in the corresponding employed stratum. Selecting 

subjects from one stratum at a higher rate would also therefore mean that subjects 

are also selected from one latent class at a higher rate – the extent depends on the 

degree of correlation.  

When latent class membership is not related to the stratification variable, 

the subjects in each class would be randomly distributed among the strata.  

Therefore, with a large enough sample size, the expectation would be that each 

stratum would contain approximately equal proportions of each latent class. 

Unequal probabilities of selection that vary by strata should not affect the 

formation of latent classes.  

 

2.3 RESEARCH GOALS 

Most adjustments for data from complex samples have focused on 

univariate statistics and emphasize weighting the parameter estimates to correct 

for unequal sampling probabilities (Rust, 1985). In contrast, this study will instead 

focus on confirmatory latent growth models that include both continuous and 

categorical latent variables. The objective is to quantify the accuracy of parameter 

estimates and class assignment when subjects are sampled with unequal 

probabilities of selection. Specifically, this study: 
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1. Determines if, and under what circumstances, ignoring unequal sampling 

probabilities will result in biased parameter estimates and class 

assignments; 

2. Develops and test methods for incorporating unequal sampling 

probabilities into GMM; and 

3. Recommends the most practical and efficient procedure given the 

constraints of the field and available software. 

 

To accomplish these goals, a series of Monte Carlo simulations 

empirically investigates the ability of GMM to recover known growth parameters 

of distinct populations when various adjustments are applied to the statistical 

model. Specifically, the study compares the performance of 1) GMM that ignore 

the sample design; 2) GMM that account for the sample design via weighting; 3) 

GMM that account for the sample design by explicitly modeling the stratification 

variable; and 4) GMM that account for the sample design by using weights and 

modeling the stratification variable. These models are compared across a variety 

of conditions which will allow the following research questions to be answered:  

1. Can any of the GMM tested provide accurate parameter estimates when 

data are sampled with unequal selection probabilities from 2 latent 

populations? 

2. Can any of the GMM tested reliably classify subjects into their latent class 

when data are sampled with unequal selection probabilities from 2 latent 

populations? 

To answer these research questions, the following conditions are manipulated: 

 Type of adjustment to GMM that accounts for unequal probability of 

selection: (4 conditions), 

 Population characteristics (2 class proportion and 3 factor mean 

conditions), and 

 Sample design (3 sample size and 3 probability of selection conditions). 
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These manipulated conditions (4×2×3×3×3) result in a Monte Carlo 

simulation with 216 cells. Detailed information on the research methodology, 

manipulated conditions, and descriptions of the latent variable models are 

provided in Chapter 3. 
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CHAPTER 3: STUDY METHODS 

 

3.1 RESEARCH DESIGN 

To investigate the performance of Growth Mixture Models when sample 

data are selected with unequal probabilities, a Monte Carlo simulation approach 

was used.  Results from three Growth Mixture Models that use different methods 

to adjust for unequal probabilities of selection were compared to a standard 

Growth Mixture Model in which selection probabilities are ignored. To determine 

the extent to which the performance of these latent variable models is influenced 

by different population characteristics and sampling designs, these two conditions 

were manipulated.  Parameter estimates were compared with their true values, and 

the percentage of properly converged replications and the precision of 

classification of class membership were calculated. 

The remainder of this chapter describes the research design, including 

details on the fixed and manipulated conditions and the performance criteria used 

to evaluate the experimental models.   

 

3.2 SIMULATION DESIGN 

Conducting the simulations was a four-phase process. Phase 1 generated 

the mixed sample in SAS 9.1.3 (SAS Institute, 2004) using its Interactive Matrix 

Language (IML). This simulation assumed that the latent variable models 

describe a super-population, and that the finite population behaves like a sample 
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from this infinite population.  The model parameters thus define the super-

population and are the target of inference (Nathan & Holt, 1980). As described in 

section 2.1.2, a super-population is a hypothetical infinite population from which 

the finite population is itself a sample. According to Skinner et al. (1989), ―super-

population parameters may often be preferred to finite population parameters as 

targets of inference in analytic surveys. However, if n is large, there will often be 

little numerical difference between the two.‖ (p. 14). Hence, in the remainder of 

this document, the distinction between finite and super-population parameters will 

not be emphasized.  

For each cell in the study design, different seed values were specified to 

generate data. Seeds were used without replacement and were selected to be an 

odd nonnegative integer with a value less than 2
31

-1 (or 2,147,483,647) (SAS 

Institute, 2004).  Two multivariate normally distributed populations were 

generated in accordance with the manipulated conditions for each cell. These data 

were then combined into a single sample and exported out of SAS into Mplus 

3.12 (Muthén & Muthén, 2005).   

Phase 2 was the mixture analysis. The latent variable models were 

correctly specified and parameters estimated using Mplus. The default estimator 

for mixture analysis using Mplus is maximum likelihood with robust standard 

errors (Muthén & Muthén, 2005).  Parameter values for the models are provided 

in Table 6.  As this research was not intended to focus on convergence issues, true 

population parameters were used as the starting values in Mplus (Paxton, Curran, 

Bollen, Kirby, & Chen, 2001). Muthén and Muthén (2000) suggested that 
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researchers provide starting values reflecting their beliefs about the population, as 

non-differentiated starting values may cause the modeling algorithm to fail. 

Furthermore, to investigate the differences between using the population values as 

starting values and using the Mplus default, five simulations were run both ways.  

These simulations indicated that there was no difference in parameter estimates 

between these two approaches. 

 In applied settings the population values are not known, and the default 

starting values in Mplus are often used (10 random sets of start values with two of 

the solutions with the highest log-likelihood from the EM algorithm chosen to be 

iterated until convergence). However, another useful way to minimize 

convergence problems is to use previous research to estimate appropriate starting 

values and to build up a model by estimating the model parts separately to obtain 

appropriate starting values for the full model.  

For each of the experimental conditions, 1,000 properly converged 

replications (a replication for which the solution converges with no parameter 

estimates outside the possible range for the parameter) were generated. There was 

an upper limit of 20,000 on the number of attempted replications. In addition, a 

stop criterion was used such that after every 2,000 replications, if the percentage 

of properly converged solutions is less than one percent, the simulation ended for 

that cell. Cells that failed to achieve 1,000 properly converged replications were 

not considered for additional investigation (parameter estimates were not 

computed for these replications).  Convergence for the remaining cells was 

measured by the number of replications needed to acquire 1,000 properly 
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converged replications.  A properly converged replication is one that converged to 

a solution according to the Mplus‘ default convergence criterion and had 

parameter estimates that were within the range of possible values (no negative 

variances). The default converge criterion for the Quasi-Newton algorithm in 

Mplus is .000001 (Muthèn & Muthèn, 2005).  

In phase 3, SAS was again used, this time to import the parameters of 

interest from the Mplus output. In the fourth phase, SAS was used to compute the 

averages and variances across the successful replications in each cell and then this 

information was exported into excel files for table generation. In addition to a 

descriptive analysis, a decomposition of variance procedure was applied to the 

data to determine the proportion of variability explained by the manipulated 

conditions. To focus on the strongest relations, an effect had to explain at least 

10% of the variability to be reported.  

Some conditions were fixed throughout all simulations, while other 

conditions were manipulated. The fixed and manipulated conditions are described 

in the following sections. 

3.2.1 Fixed Conditions 

Conditions that were fixed across all simulations can be categorized into 

those pertaining to the latent variable model and those pertaining to population 

characteristics. These fixed conditions are described in more detail in the 

following sections. 
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3.2.1.1 Latent Variable Models 

It has been demonstrated that the complexity of the model with respect to 

the factor structure, or the number of observed variables within class, do not 

influence model performance (Lubke & Muthén, 2007).  However, mixture 

models in general are prone to local maxima of the likelihood (Bauer & Curran, 

2003; Lubke, Muthén, & Larsen, 2002; Muthén, 2001a), which makes model 

convergence a potential issue for this study. The degree to which convergence is 

likely to be a problem is related to the information about the latent classes 

available in the data, and the complexity of the model. As this research is not 

intended to focus on convergence issues, the probability of encountering non-

converging replications was minimized to the extent possible.  

Because of the problems with model convergence, experts have 

recommended that that researchers build GMM iteratively, starting with the 

simplest model and adding parameters stepwise (Muthén, 2001a).  Each of the 

five latent variable models tested will be correctly specified, single-level models, 

with linear growth trajectories. The models proposed for this study are relatively 

straightforward in this regard, and can be thought of as examples of the starting 

point of this iterative model-building procedure.   

Furthermore, population parameters were used as the starting values in 

Mplus. The variances of the observed variable error terms were constrained to be 

equal across classes, the intercept and slope factors were uncorrelated, and their 
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variances were constrained to be equal across classes. Constrained parameter 

values are provided in Table 3. 

Table 3:  Constrained parameter values  

Growth Factor Variances 

Intercept 5 

Slope 1 

Growth Factor Covariance 

Intercept and 

slope 
0 

Manifest Variables 

Error variances 5,6,9,14 

These constraints were implemented because, according to research, 

mixture models with large differences in the factor variances and covariances 

between classes are particularly sensitive to local maxima (Muthén, 2001a).  

Furthermore, in their simulations, Bauer and Curran (2003) found that allowing 

factor variances to vary did not predict class membership any more accurately 

than when factor variances were constrained across classes.  Constraining factor 

variances to be equal across classes is furthermore common in the applied 

literature, such as in the study by DeFraine, VanDamme and Onghena (2004).   

Observations at four equally spaced time points were generated. Applied 

studies that use four repeated observations include Kreisman (2003), Li, Barerra, 

Hops and Fisher (2002), and Muthén (2001b).  Furthermore, according to research 

conducted by Lubke and Muthén (2007), additional time points do not influence 

model performance or class assignment.  

As previously stated, the models under investigation were designed to be 

first-stage models in the iterative model-building process. Therefore an 

assumption of linear growth was implemented, with the assumption that 
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additional polynomials would be added to the model at a later stage (if necessary). 

In the social sciences, the growth trajectory of first choice is frequently a simple 

linear function of time (Willett, 1988).  

In many settings, theory has guided the determination of trajectory shape, 

with researchers choosing to model a linear trajectory. These studies include 

investigations of adolescent alcohol use (Duncan, Duncan, Strycker, Okut, & Li, 

2002), and those investigating academic achievement (Kreisman, 2003). In fact, 

the mechanisms driving change over time are often unknown and therefore an 

empirical model-selection strategy usually leads to the adoption of a lower order 

polynomial to represent growth.  Second, as pointed out by Willett and Sayer 

(1994) and Willett (1988), only a restricted portion of the growth is observed in 

most research, with a minimal number of waves of data collected. Therefore, only 

a growth function with a small number of parameters can be fitted.  Moreover, 

even though growth may be curvilinear in the long run, it may be locally linear, 

which is another reason for a linear trajectory to be modeled.    

3.2.1.2 Population Characteristics 

The population always contained two latent classes. In the applied 

literature it is often determined that a 2-class solution provides the best fit to the 

data (e.g., DeFraine et al., 2004; Kreisman, 2003; Li et al., 2002; Muthén, 2001b). 

For simulation purposes, using only two classes kept the scope of the study 

manageable, but results should generalize to larger numbers of latent classes. 
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3.2.2 Manipulated Conditions 

Manipulated conditions can be classified into three groups; those 

pertaining to 1) the latent variable model, 2) the characteristics of the populations 

from which the samples are drawn, and 3) the design used to sample the 

observations. The manipulated conditions are summarized in Table 4 before being 

described more fully in the following sections. 

Table 4:  Manipulated Conditions 

Category Number Conditions 

Latent variable 

models 
4 

 Baseline Model 

 Experimental Model I 

 Experimental Model II 

 Experimental Model III 

Population 

characteristics 

2 

Class proportions 

 50-50 

 70-30 

3 

Mean separation 

 Intercept and slope 

 Intercept only 

 Slope only 

Sample design 

3 

Sample size 

 5,000 

 10,000 

 15,000 

3 

Sample selection 

 SRS (no stratification) 

 Small differences in probability  

 Large differences in probability  

The combination of manipulated factors results in 216 cells (4×2×3×3×3). 

These conditions are discussed in more detail in the following sections. 

3.2.2.1 Latent Variable Models 

Four latent variable models were tested in this investigation.  They are: 
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1. Baseline Model, which ignores sample design; 

2. Experimental Model I (Design-based), which uses an effective 

weighting strategy;  

3. Experimental Model II (Model-based), where the stratification variable 

is modeled; 

4. Experimental Model III, which combines Models I and II. 

 

The Baseline Model assumes a simple random sample and does not 

incorporate strategies to account for unequal selection probabilities. This Baseline 

Model is widely used in practice, and corresponds to the default option in 

standard statistical packages.  

In contrast, experimental Models I, II, and III attempt to compensate for 

the sample design in different ways.  In Model I, weights were applied to the 

dataset (see Section 3.2.2.3 for more information on the weights used).  Model II 

used the stratification variable as a covariate in the analysis, and weighting was 

not used. Model III incorporated both weights (as in Model I) and covariates (as 

in Model II). Model I thus corresponds to a design-based analysis; Model II to a 

model-based analysis; and Model III can be considered a combination of the 

design- and model-based approaches.  In fact Skinner et al. (1989) stated that it is 

―sensible in practical applications to combine ideas and methods (of model- and 

design-based approaches)‖ (p. 10). 

There is an ongoing debate in the literature as to whether it is appropriate 

for model-based methods to use weights in addition to covariates in their analysis 

(Longford, 1995; Nylund et al., 2007; Potthoff et al., 1992). According to Sugden 
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and Smith (1984), if design variables have been incorporated into the model to 

reflect the stratification, and the model is correctly specified, then it is not 

necessary to weight.  However, it is important to remember that, in applied 

situations, researchers don‘t know whether their model is correctly specified, and 

so weighting could be used as a hedge against model misspecification.  

3.2.2.2 Population Characteristics 

The proportion of individuals in each latent class, and the difference in the 

growth factor means between the two classes were manipulated in this 

experiment.   First, two class populations were generated. The first condition set 

the proportion of subjects in both classes to be the same, so that the mixture in the 

aggregated population was 50:50. The other condition set one population to be 

larger than the other, with a 70:30 ratio in the aggregate population. This mixing 

proportion of 70:30 is seen in the applied literature (Zheng & Frey, 2004). 

Mean separation (the standardized difference in latent means between the 

two classes) was also manipulated. These three manipulated conditions are 

provided in Table 5. 

Table 5:  Mean separation – standardized differences in latent means 

Condition Means differ 

Standardized mean 

difference  

Intercept Slope 

1 Intercept & slope  2 2 

2 Intercept only  2 0 

3 Slope only 0 2 

The mean separation of factors from the first class to the second is 2 

standard deviations, a value that is thought to provide well separated classes 
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(Nylund et al., 2007; Lubke & Muthén, 2007), and is similar to what is found in 

the applied literature (Greenbaum et al., 2005; van Lier et al., 2004). It is 

somewhat intuitive that when the means of the growth factors differ between 

classes, class assignment will be improved. However it is not known whether both 

growth factors have to differ, or if a mean difference in just one of the factors will 

suffice.  

3.2.2.3 Sample Design 

Two facets of the sample design were manipulated, the size of the sample 

and how the sample was selected from the population.  Each of these condition 

types are discussed in more detail, below. 

Simulation studies have shown that parameter recovery in structural 

equation models is affected by sample size (e.g., Gagné & Hancock, 2006), and it 

is reasonable to expect that Growth Mixture Models would be similarly affected.  

Therefore, three sample sizes were used to investigate their effect on the 

extraction of the true population values.  The three sample sizes tested were 

5,000, 10,000 and 15,000. This is larger than the sample sizes found in the applied 

literature; in 41 applied studies using mixture models the average sample was 909 

subjects. However, the goal of the current research is to allow researchers to use 

GMM with nationally representative data sets, whose sample sizes tend to be 

considerably larger. 

In terms of the sample selection procedures tested, the first sample drawn 

was a simple random sample to provide a baseline for the other two selection 

procedures. The remaining two sample conditions were drawn from a population 
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that had been grouped into two strata. All individuals were categorized by a 

dichotomous observed variable (such as gender).  This observed variable was 

used to stratify the population for sample selection, with the rates of selection 

from each of the two strata differing. 

Brogan (1998) and Stapleton (2002) both found that greater bias in 

parameter estimates occurred in models where the sampling weights were more 

unequal.  Therefore, the second condition employed a large difference in selection 

probability: with 80% of subjects from the first stratum selected, and 20% of 

subjects in the second stratum selected (4:1 ratio). The third condition used a 

small difference in selection probability, with 60% from the first stratum and 40% 

from the second stratum (1.5:1 ratio).  

For each of the sample selection conditions, the probability of selection 

(pi) is provided in Table 6, below. 

Table 6:  Manipulated conditions – Sample selection 

Selection Probability Condition n* pi 

SRS condition   

Total (no strata) 5,000 .10 

80-20 condition (large difference)   

 Stratum 1 (80%) 4,000 .08 

 Stratum 2 (20%) 1,000 .02 

60-40 condition (small difference)   

 Stratum 1 (60%) 3,000 .06 

 Stratum 2 (40%) 2,000 .04 

* for sample size condition n=5,000 

 

3.2.2.4 Simulation Parameter Values 

As stated previously, the factor variances and covariances were 

constrained to be equal across classes.  In the population, each growth factor 
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variance and their covariance had the same value in each class.  In the Mplus 

code, these class 2 variance and covariance estimates were constrained to be 

equivalent to the class 1 estimates, and the single value was estimated.  The 

intercept factor variance was set to 5, while the slope factor variance was set to 1.  

This variance ratio of 5 to 1 is commonly found in the literature (Muthèn & 

Muthèn, 2002).  The covariance between the intercept and slope was set to 0, 

which is also a common condition in the applied literature (e.g., DeFraine et al., 

2004; Kaplan, 2002). 

The total variance of each of the four repeated measures was partitioned 

equally between the underlying growth factors and the time specific residuals. 

This methodology for determining the error variances was used by Bauer and 

Curran (2002). All parameter values specified in the simulation are provided in 

Table 7, below.  

Table 7:  Manipulated and fixed parameter values  

  CLASS 1 CLASS 2 

F
ix

ed
 

C
o

n
d
it

io
n
s 

Growth Factor Variances   

Intercept 5 5 

Slope 1 1 

Growth Factor Covariance   

Intercept and slope 0 0 

Manifest Variables   

Error variances 5,6,9,14 5,6,9,14 

M
an

ip
u

la
te

d
 c

o
n
d

it
io

n
s Class separation   

I & S both differ   

Intercept 2.24 6.72 

Slope 1 3 

Only I differs   

Intercept 2.24 6.72 

Slope 1 1 

Only S differs   

Intercept 2.24 2.24 

Slope 1 3 
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Many applied research studies that utilize GMM start with a constrained 

model where error variances and factor variances are constrained across classes.  

As the model building process progresses, these constraints are relaxed in an 

iterative process. As described previously, the models used in this study reflect 

the initial models used by researchers in the field (e.g., van Lier, Muthèn, van der 

Sar, & Crijnen, 2004; Weisner & Capaldi, 2003). 

 

3.3 PERFORMANCE CRITERIA 

Before performance criteria were calculated, data were checked to see if 

label switching occurred. Over the course of multiple iterations, the algorithm 

used by Mplus does not always assign ‗Class 1‘ to the same group in the sample. 

If ignored, the estimated parameters for a given class will not to be meaningful. 

Although there is no established way to prevent label switching in Mplus, it is 

possible to tell if label switching has occurred. If the data obtained from the 

multiple iterations are sorted in descending order by a one of the estimated 

parameters, the mean will jump at a certain point and then continue roughly at the 

new level for the rest of the iterations. With label switching thus identified, these 

iterations were manually switched back to the appropriate class grouping. 

In order to evaluate the performance of the models being tested, the 

following criteria were used: convergence rate, parameter bias, standard errors, 

and correct class assignment. The parameter estimates and class assignment were 

compared to known population values. However, population standard errors 
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cannot be computed, so a comparison of the relative size of the estimated standard 

errors across conditions (within a given sample size) was made. 

The convergence rate was examined to see if it appeared to be a function 

of the manipulated conditions. As stated previously, convergence was measured 

by the number of replications needed to acquire 1,000 properly converged 

replications. There was an upper limit of 20,000 on the number of attempted 

replications, as exceeding that limit would indicate that less than 5% of the 

replications were converging properly. Furthermore, a stop criterion was used 

such that after every 2,000 replications, if the percentage of properly converged 

solutions was less than 1%, then the simulation ended for that cell.  Cells that 

failed to achieve 1,000 properly converged replications were not considered for 

additional investigation.  Convergence for the rest of the cells was measured by 

the number of replications needed to acquire 1,000 properly converged 

replications. 

A properly converged replication is one that converged to a solution 

according to the Mplus‘ default convergence criterion and had parameter 

estimates that were within the range of possible values (no negative variances). 

The default converge criterion for the Quasi-Newton algorithm in Mplus is 

.000001 (Muthèn & Muthèn, 2005).  

As this research was not intended to focus on convergence issues, the true 

population parameters were used as the starting values in Mplus (Paxton, Curran, 

Bollen, Kirby, & Chen, 2001). 



 58 

 

 

The accuracy of the parameter estimates was assessed by computing their 

proportional bias. The proportion of bias in the following parameter estimates was 

calculated; growth factor means, growth factor variances, and the mixing 

proportion.  To do this, the population parameter value was subtracted from the 

average of the parameter estimates. This number was then be divided by the 

population value and multiplied by 100.  

100
ˆ

)(
p

pp

pB


      (18) 

where p  is the population value for the pth parameter 0p , and p


 is the 

mean of the estimates for the pth parameter across replications (Hoogland & 

Boomsma, 1998).  Positive values for proportional bias indicate that the estimate 

is above the true value by the percent magnitude listed, whereas negative values 

indicate that the average estimate is below the true value by the percent 

magnitude. Hoogland and Boomsma (1998) indicated that this bias measure can 

be used to provide an indication of whether estimates are acceptable.  They 

proposed that, for parameter estimates, bias measures within 5% of the population 

value could be considered acceptable. 

Lastly, the extent to which subjects are accurately classified was assessed 

using the entropy measure described in Section 2.2.3. Entropy values range from 

0 to 1 where values close to 1 indicate clear classifications; but values equal to or 

greater than .8 are considered acceptable (Muthén et al., 2002).  
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CHAPTER 4: RESULTS 

 

Each of the 4 different approaches to adjusting for sample selection (The 

Baseline Model and the three Experimental Models) were simulated and the 

results are provided in this chapter. First, the Baseline Model results are described 

in terms of convergence, proportional bias, standard errors, and entropy.  Next, 

the three experimental models (Models I, II and III) are compared to the Baseline 

Model in turn. These comparisons provide information on the performance of the 

three different methods being tested as adjustments for complex sampling designs 

(weighting, use of covariates, and both weighting and the use of covariates), 

compared to no adjustments at all. 

Because true models were fitted to the data, the results provided in the 

following sections represent an upper bound of what be expected in an empirical 

study. 

 

4.1 Baseline Model 

The Baseline Model represents the status quo of Growth Mixture 

Modeling; it does not account for complex sampling designs. This section will 

first examine the results when simple random sampling (SRS) was used to 

generate the data. In this situation, the Baseline Model is used appropriately, as no 

adjustments for sample design are necessary. Next, the Baseline Model is applied 

to data that are generated from a complex sample. Here, the Baseline Model may 

be inappropriate, as stratification results in unequal probabilities of selection. 
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These two sets of results will be compared to estimate the impact of ignoring a 

complex sample design. 

 

4.1.1 Model Convergence  

When the sample selection process employed SRS, the Baseline Model 

attained a 100% convergence rate. However, when only one factor mean differed 

between classes, additional replications were sometimes needed to attain 1,000 

converged replications. The number of additional replications needed is provided 

in Table 8. (All converged solutions were admissible with no negative estimates 

of variance.) 

Table 8:  Baseline Model - Number of additional replications needed when 

sample is SRS 

Sample 

selection 

Mean 

separation 

Class 

proportion 

Sample 

size 

Additional iterations 

needed 

SRS Slope only 50-50 5,000 239 

SRS Slope only 70-30 5,000 191 

SRS Slope only 50-50 10,000 68 

SRS Slope only 70-30 10,000 63 

SRS Slope only 50-50 15,000 26 

SRS Slope only 70-30 15,000 18 

SRS Intercept only 50-50 5,000 11 

SRS Intercept only 70-30 5,000 3 

 

When the sample procedure used was more complex, model convergence 

for the Baseline Model was also 100%. Moreover, when only one factor mean 

differed between classes, additional replications were again necessary. When the 

difference in the probability of selection was small (the 60-40 condition), four 

cells required additional replications. When the difference in the probability of 

selection was larger (the 80-20 condition), only two cells required additional 

replications, as shown in Table 9.  
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Table 9:  Baseline Model - Number of additional replications needed when data 

are sampled disproportionally 

Sample 

selection 

Mean 

separation 

Class 

proportion 

Sample 

size 

Additional 

iterations needed 

60-40 Slope only 50-50 5,000 13 

60-40 Slope only 70-30 5,000 44 

60-40 Slope only 70-30 10,000 5 

60-40 Slope only 70-30 15,000 1 

80-20 Intercept only 50-50 5,000 14 

80-20 Intercept only 70-30 5,000 3 

 

All converged solutions were admissible with no negative estimates of 

variance. 

4.1.2 Parameter Bias  

The SRS condition for the Baseline Model illustrates a very simple 

scenario; the sample was chosen by simple random sampling, and an appropriate 

2 class Growth Mixture Model was fitted. Table 10 provides the proportion of 

parameter bias for this initial scenario. 

The first three columns of the table provide the experimental conditions. 

Column 1 gives the class size; whether the class sizes were equal (where each 

class contains 50% of cases), or unequal (where the first class contains 70% of 

cases and the second class contains the remaining 30%). The second column 

provides the mean separation condition. Here, ‗is‘ indicates that both the intercept 

and slope factors in class 2 are different from those in class 1. Similarly, ‗i‘ 

indicates that only the intercept factor mean differs, and ‗s‘ indicates that only the 

slop mean differs. The third column provides the sample size conditions. The next 

7 columns present the proportional bias found in the estimated parameters for 

each of the cells, given the experimental conditions. Lastly, the average 

proportion of bias across the estimated parameters is given, followed by the 
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absolute value of the proportional bias. The difference between the average and 

the absolute value can be used as an indication of the variability in bias. Because 

the average bias uses negative values in its computation, the negative bias can 

cancel out the positive bias. Therefore, if the difference between the average and 

the absolute value average is small, most estimates of proportional bias were of 

the same sign. If the difference is large, however, the proportional bias estimates 

bounced around on both sides of zero. 
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Table 10:  Baseline Model – Proportional bias by cell when sampling is SRS 

Class 

proportion 

Mean 

separatio

n 

Sample 

size 

Proportional bias in estimated parameters 
Ave. 

prop 

bias 

|Ave 

prop 

bias| 

Difference 
Intercept 

mean 

(class 1) 

Slope 

mean 

(class 1) 

Intercept 

variance 

Slope 

variance 

Mixing 

proportion 

Intercept 

mean 

(class 2) 

Slope 

mean 

(class 2) 

equal is 5,000 -0.089 0.066 0.149 0.242 0.050 0.064 -0.092 0.056 0.107 -0.052 

equal is 10,000 -0.011 0.112 0.051 0.190 0.011 0.023 -0.056 0.046 0.065 -0.019 

equal is 15,000 0.080 0.046 0.052 0.341 0.028 -0.007 0.045 0.083 0.085 -0.002 

unequal is 5,000 0.050 -0.093 3.853 4.739 0.010 0.033 -0.010 1.226 1.255 -0.029 

unequal is 10,000 0.030 -0.147 3.396 4.353 -0.002 0.025 -0.060 1.085 1.145 -0.060 

unequal is 15,000 -0.007 -0.060 2.877 3.197 -0.004 -0.036 -0.002 0.852 0.883 -0.031 

equal i  5,000 1.937 0.360 5.965 1.153 7.360 -0.259 -0.234 2.326 2.467 -0.141 

equal i  10,000 1.147 0.104 1.250 0.317 1.693 -0.092 -0.043 0.625 0.664 -0.039 

equal i  15,000 -0.019 0.052 -0.194 0.255 -0.028 -0.288 -0.118 -0.049 0.136 -0.185 

unequal i  5,000 2.637 0.536 11.016 0.855 8.308 0.879 -0.086 3.449 3.474 -0.024 

unequal i  10,000 3.223 0.186 6.030 -0.083 -2.001 1.663 0.017 1.291 1.886 -0.595 

unequal i  15,000 1.166 0.042 1.475 0.608 -1.302 0.408 -0.016 0.340 0.717 -0.377 

equal s 5,000 0.432 7.110 1.035 4.490 2.587 -0.093 0.021 2.226 2.253 -0.027 

equal s 10,000 0.052 3.581 0.221 1.258 0.330 0.258 -1.055 0.663 0.965 -0.301 

equal s 15,000 0.159 3.241 0.246 1.458 0.642 -0.027 -0.512 0.744 0.898 -0.154 

unequal s 5,000 0.985 9.012 1.394 6.615 -4.710 -0.227 5.822 2.699 4.109 -1.410 

unequal s 10,000 0.250 5.936 0.792 5.659 -5.163 -0.262 1.354 1.224 2.774 -1.550 

unequal s 15,000 0.322 4.899 0.375 4.644 -4.254 -0.360 1.261 0.984 2.302 -1.318 
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Table 10 shows that, with SRS, the percentage of bias in the parameter 

estimates is modest. Hoogland and Boomsma (1998) proposed that parameter 

estimates within 5% of the population value could be considered acceptable. 

Using this criterion, only 12 cells (9.5%) fell into the unacceptable range.  The 

variance of the intercept and slope factors had the most bias, followed by the 

mixing parameter.   

Looking at Table 10, the mean separation condition seems to affect the 

accuracy of parameter estimates. The parameters were estimated most accurately 

when both the intercept and slope factor means differed between classes.  

The addition of a complex sampling structure (adding strata with different 

probabilities of selection) had an adverse affect on the accuracy of the Baseline 

Model. When the probability of selection varied only slightly between strata 

(individuals in strata one were sampled with a .06 probability, and strata two was 

sampled with a .04 probability: the 60-40 condition) the proportional bias was 

higher than when the sample was selected completely at random.  While 9.5% of 

cells from the SRS condition fell into the unacceptable range (Hoogland & 

Boomsma, 1998), 50% of cells (63) were unacceptable when the sample selection 

probabilities varied in the 60-40 condition.  When the probability of selection was 

manipulated to be more unequal (the 80-20 condition), the proportional bias 

increased, with 72% of cells (91) falling in the unacceptable range.   

Tables 11 and 12 provide the proportional bias found in the parameters 

when the sample was stratified disproportionally.  Table 11 shows the 
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proportional bias when stratification resulted in a small difference in probability.  

Table 12 shows the same results for the large difference in probability condition.   
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Table 11:  Baseline Model – Proportional bias when sample is stratified with small differences in the probability of 

selection 

Class 

proportion 

Mean 

separation 

Sample 

size 

Proportional bias in estimated parameters 
Ave. 

prop 

bias 

|Ave 

prop 

bias| 

Difference 
Intercept 

mean 

(class 1) 

Slope 

mean 

(class 1) 

Intercept 

variance 

Slope 

variance 

Mixing 

proportion 

Intercept 

mean 

(class 2) 

Slope 

mean 

(class 2) 

equal is 5,000 -81.115 -20.819 -124.035 -121.402 -56.610 11.008 -64.881 -65.408 68.553 -133.961 

equal is 10,000 -80.719 -19.807 -141.228 -90.719 -56.026 10.767 -62.281 -62.859 65.935 -128.794 

equal is 15,000 -80.785 -19.720 -145.124 -83.782 -56.021 10.766 -62.024 -62.384 65.460 -127.845 

unequal is 5,000 -1.415 12.223 -28.120 -61.164 5.628 9.313 -1.811 -9.335 17.096 -26.432 

unequal is 10,000 0.117 12.754 -27.415 -53.028 6.614 9.102 0.360 -7.357 15.627 -22.984 

unequal is 15,000 0.228 12.743 -27.552 -51.677 6.690 9.035 0.665 -7.124 15.513 -22.637 

equal i  5,000 0.619 0.212 3.155 0.835 -1.585 -1.380 -0.381 0.211 1.167 -0.956 

equal i  10,000 1.489 0.114 -1.531 -0.364 0.033 -0.506 -0.130 -0.128 0.595 -0.723 

equal i  15,000 -0.334 -0.078 -3.951 -0.063 -1.526 -0.914 0.122 -0.964 0.998 -1.962 

unequal i  5,000 7.145 0.114 9.138 0.964 9.470 2.984 -0.241 4.225 4.294 -0.069 

unequal i  10,000 3.812 0.164 3.438 0.192 4.840 1.151 -0.222 1.911 1.974 -0.063 

unequal i  15,000 3.472 -0.035 -0.964 0.214 3.769 1.149 0.159 1.109 1.394 -0.286 

equal s 5,000 -0.040 -43.992 0.096 -80.516 -72.194 0.202 -132.074 -46.931 46.931 93.863 

equal s 10,000 0.077 -45.715 0.078 -79.923 -79.269 0.166 -131.588 -48.025 48.025 96.050 

equal s 15,000 0.017 -44.074 0.077 -79.861 -79.716 -0.010 -132.034 -47.943 47.943 95.886 

unequal s 5,000 0.054 -19.015 0.074 -81.074 -63.713 -0.245 -114.553 -39.782 39.782 79.563 

unequal s 10,000 0.042 -19.071 0.005 -78.567 -75.119 0.116 -114.635 -41.033 41.033 82.066 

unequal s 15,000 0.005 -19.195 -0.040 -77.018 -80.136 0.107 -115.412 -41.670 41.670 83.340 
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Table 12:  Baseline Model – Proportional bias when sample is stratified with large differences in the probability of 

selection 

Class 

proportion 

Mean 

separation 

Sample 

size 

Proportional bias in estimated parameters 
Ave. 

prop 

bias 

|Ave 

prop 

bias| 

Difference 
Intercept 

mean 

(class 1) 

Slope 

mean 

(class 1) 

Intercept 

variance 

Slope 

variance 

Mixing 

proportion 

Intercept 

mean 

(class 2) 

Slope 

mean 

(class 2) 

equal is 5,000 -43.563 -35.077 -47.850 -61.085 -57.159 -35.685 -46.233 -46.664 46.664 -93.329 

equal is 10,000 -43.719 -35.075 -45.564 -57.949 -57.266 -35.775 -46.357 -45.958 45.958 -91.916 

equal is 15,000 -43.662 -34.987 -41.140 -52.909 -57.221 -35.598 -46.384 -44.557 44.557 -89.115 

unequal is 5,000 -22.435 -17.929 -45.944 -65.796 -23.792 -34.907 -44.669 -36.496 36.496 -72.992 

unequal is 10,000 -22.535 -17.923 -42.747 -61.917 -23.872 -35.015 -44.680 -35.527 35.527 -71.054 

unequal is 15,000 -22.510 -17.987 -42.354 -61.132 -23.855 -34.927 -44.699 -35.352 35.352 -70.704 

equal i  5,000 -39.641 0.179 -5.626 0.329 -50.858 -32.199 -0.571 -18.341 18.486 -36.827 

equal i  10,000 -41.340 -0.148 -8.747 -0.446 -53.892 -33.355 0.002 -19.704 19.704 -39.408 

equal i  15,000 -42.159 0.019 -9.687 0.249 -54.797 -33.670 -0.266 -20.044 20.121 -40.165 

unequal i  5,000 -17.077 0.026 -10.018 0.336 -16.907 -26.968 -0.130 -10.105 10.209 -20.314 

unequal i  10,000 -18.420 0.100 -13.726 0.120 -19.659 -28.866 -0.210 -11.523 11.586 -23.109 

unequal i  15,000 -19.325 -0.042 -13.315 -0.279 -20.896 -30.408 0.081 -12.026 12.050 -24.076 

equal s 5,000 0.093 -41.115 0.090 -59.174 -58.219 -0.018 -50.415 -29.822 29.875 -59.697 

equal s 10,000 -0.022 -46.479 0.124 -65.827 -65.420 -0.119 -55.113 -33.265 33.301 -66.566 

equal s 15,000 -0.068 -46.246 0.081 -65.308 -65.681 -0.122 -54.853 -33.171 33.194 -66.365 

unequal s 5,000 0.126 -19.286 0.049 -48.513 -67.987 -0.192 -44.961 -25.823 25.873 -51.697 

unequal s 10,000 -0.100 -21.665 0.170 -52.600 -74.131 -0.172 -48.977 -28.211 28.259 -56.470 

unequal s 15,000 -0.580 -25.700 0.220 -58.800 -79.924 12.634 -57.433 -29.941 33.613 -63.554 

 

 

 

 

 



 68 

 

Based on the simulation results shown in Tables 10-12, the difference 

between the average bias and the absolute value of this value was much greater 

when the sample was disproportionately sampled, compared to a SRS sample.  

This indicates that there was much greater variability in parameter estimates. This 

variability, combined with the greater proportion of bias suggests that modeling 

adjustments may be necessary to accommodate data that are collected using 

complex sampling strategies. The results from three alternate modeling techniques 

(Experimental Models I, II, and III) are presented in Sections 4.2 - 4.4. 

 

4.1.3 Standard Errors  

Table 13 provides the standard errors for the Baseline Model, when simple 

random sampling was used to select cases. As expected, the standard errors get 

smaller as sample size increases. Furthermore, the standard error for the intercept 

variance parameter has the largest standard error, while the mean of the slope is 

the smallest standard error across all sample sizes. 

Table 13:  Baseline Model with SRS - standard errors of parameters, by sample 

size 

Parameter n=5,000 n=10,000 n=15,000 

Mean Intercept 0.391 0.221 0.180 

Mean Slope 0.194 0.153 0.133 

Variance Intercept 0.766 0.509 0.381 

Variance Slope 0.231 0.166 0.139 

 

Next, Table 14 provides the standard errors for the Baseline Model when 

the sample selection process is more complex. With values similar to Table 13, 

the standard errors again decrease as the sample size increases. Here we can see 
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that there is no clear difference between when the probabilities of selection are 

similar for each stratum (the 60-40 condition) and when the probabilities of 

selection vary greatly (the 80-20 condition).  

Table 14:  Baseline Model with complex sampling - standard errors of 

parameters, by sample size and probability of selection 

Parameter 

n=5,000 n=10,000 n=15,000 

Strata  

60-40 

Strata  

80-20 

Strata  

60-40 

Strata 

80-20 

Strata  

60-40 

Strata 

80-20 

Mean Intercept 0.309 0.160 0.215 0.103 0.169 0.082 

Mean Slope 0.070 0.087 0.081 0.054 0.028 0.043 

Variance Intercept 1.192 0.961 0.735 0.805 0.499 0.743 

Variance Slope 0.363 0.229 0.191 0.178 0.104 0.158 

 

4.1.4 Entropy  

Looking at the entropy results for the Baseline Model in Table 15, we see 

that individuals are categorized into latent classes with different levels of 

precision, depending on the method used to select the sample.  

Table 15:  Baseline Model – entropy by sample selection condition 

Sample selection process Entropy 

SRS 0.485 

Strata 60-40 0.619 

Strata 80-20 0.701 

 

Table 15 indicates that the SRS condition results in a very low proportion 

of individuals correctly categorized into the correct class. This entropy value is 

similar to that found in the literature; Lubke and Muthén, (2007) found entropy 

values ranging from .33 to .82 in their simulations of correctly specified mixture 

models.  
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Looking at entropy by the class proportion condition, the Baseline Model 

does only a slightly better job when the classes are of different sizes, as shown in 

Table 16. 

Table 16:  Baseline Model – entropy by class proportion condition 

Class proportion Entropy 

Class 50-50 0.587 

Class 70-30 0.617 

 

Furthermore, when we look at entropy results by the class separation 

condition, we see that when both the intercept and slope means differ, the entropy 

values are higher than when only one factor mean differs. This is shown in Table 

17. 

Table 17:  Baseline Model – entropy by mean separation condition 

Mean separation Entropy 

Only I differs 0.482 

Only S differs 0.647 

Both I & S differ 0.676 

 

Lastly, sample size did not seem to affect entropy, as shown in Table 18. 

Table 18:  Baseline Model – entropy by sample size condition 

Sample size Entropy 

n=5,000 0.604 

n=10,000 0.601 

n=15,000 0.601 

 
 

4.2 Experimental Model I  

Experimental Model I represents the addition of weights to the Baseline 

Model. This section compares the results of this model to that of the Baseline 

Model to see if it performs better in terms of convergence, parameter bias, 

standard errors and entropy. 
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4.2.1 Model Convergence  

While the Baseline Model had perfect convergence, one cell in Model I 

failed to reach the minimum number of replications needed to converge. This cell 

represented the smallest sample sizes tested within a single condition. This 

condition was where the probability of selection was 80-20, only the mean of the 

slope differed from class 1 to class 2, and the class proportions were 70-30. 

Additionally, two cells required additional replications, as shown in Table 19. 

Table 19:  The number of additional replications needed in Model I  

Probability 

of selection 

Mean 

separation 

Class 

proportion 

Sample 

size 

Additional 

iterations needed 

60-40 Slope only 70-30 5,000 8 

60-40 Slope only 70-30 10,000 1 

 

All converged solutions were admissible, with no negative estimates of 

variances. 

4.2.2 Parameter Bias  

The parameter bias estimates from Model I are presented in Tables 20 and 

21. These tables are analogous to Tables 11 and 12 of the Baseline Model. Here, 

instead of an inappropriate application of the Baseline Model to data that have 

unequal probabilities of selection, a model that attempts to adjust for 

disproportionate sampling is used.
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Table 20:  Model I – Proportional bias when sample is stratified with small differences in the probability of selection 

Class 

proportion 

Mean 

separation 

Sample 

size 

Proportional bias in estimated parameters 
Ave. 

prop 

bias 

|Ave 

prop 

bias| 

Difference 
Intercept 

mean 

(class 1) 

Slope 

mean 

(class 1) 

Intercept 

variance 

Slope 

variance 

Mixing 

proportion 

Intercept 

mean 

(class 2) 

Slope 

mean 

(class 2) 

equal is 5,000 -34.642 -45.009 -16.622 -28.931 44.610 -29.548 -19.347 -18.498 31.244 -49.743 

equal is 10,000 -34.702 -45.108 -16.355 -28.106 44.893 -29.732 -19.182 -18.327 31.154 -49.481 

equal is 15,000 -34.766 -45.068 -16.115 -28.366 44.930 -29.797 -19.199 -18.340 31.177 -49.517 

unequal is 5,000 -34.760 -44.862 -18.228 -31.471 2.813 -29.627 -19.448 -25.083 25.887 -50.970 

unequal is 10,000 -34.963 -45.310 -15.601 -27.894 8.178 -29.823 -19.730 -23.592 25.929 -49.521 

unequal is 15,000 -34.725 -45.090 -16.446 -27.704 8.173 -29.742 -19.256 -23.542 25.877 -49.418 

equal i  5,000 -25.382 -0.040 -9.883 0.043 13.925 -32.111 0.221 -7.604 11.658 -19.262 

equal i  10,000 -25.081 0.260 -16.414 0.362 7.734 -31.773 -0.381 -9.328 11.715 -21.043 

equal i  15,000 -25.974 -0.048 -16.750 0.350 9.797 -32.493 0.027 -9.299 12.206 -21.504 

unequal i  5,000 -28.292 0.117 -3.842 0.002 -2.149 -34.456 0.151 -9.781 9.858 -19.640 

unequal i  10,000 -26.007 0.089 -14.060 0.058 -0.791 -32.463 -0.231 -10.486 10.529 -21.015 

unequal i  15,000 -26.960 0.048 -14.978 0.166 -1.510 -33.031 -0.040 -10.901 10.962 -21.863 

equal s 5,000 -0.260 -25.417 0.062 -61.574 -5.900 0.532 -48.891 -20.207 20.377 -40.583 

equal s 10,000 0.057 -27.288 -0.179 -62.855 -7.295 -0.348 -49.435 -21.049 21.065 -42.114 

equal s 15,000 0.044 -27.775 -0.121 -63.145 -7.751 0.050 -49.782 -21.211 21.238 -42.450 

unequal s 5,000 -0.260 -25.417 0.062 -61.574 -5.900 0.532 -48.891 -20.207 20.377 -40.583 

unequal s 10,000 0.057 -27.288 -0.179 -62.855 -7.295 -0.348 -49.435 -21.049 21.065 -42.114 

unequal s 15,000 0.045 -27.765 -0.120 -63.137 -7.747 0.054 -49.782 -21.207 21.236 -42.443 
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Table 21:  Model I – Proportional bias when sample is stratified with large differences in the probability of selection 

Class 

proportion 

Mean 

separation 

Sample 

size 

Proportional bias in estimated parameters 
Ave. 

prop 

bias 

|Ave 

prop 

bias| 

Difference 
Intercept 

mean 

(class 1) 

Slope 

mean 

(class 1) 

Intercept 

variance 

Slope 

variance 

Mixing 

proportion 

Intercept 

mean 

(class 2) 

Slope 

mean 

(class 2) 

equal is 5,000 6.595 22.654 -36.512 -50.393 -2.760 -34.687 -45.144 -20.035 28.392 -48.427 

equal is 10,000 6.631 22.724 -35.739 -50.514 -1.485 -34.685 -45.172 -19.748 28.136 -47.884 

equal is 15,000 6.782 22.501 -36.335 -51.151 -1.955 -34.621 -45.134 -19.988 28.354 -48.342 

unequal is 5,000 -35.272 -15.063 -75.706 -97.421 -16.018 -12.276 -16.901 -38.380 38.380 -76.759 

unequal is 10,000 -35.875 -15.379 -76.287 -98.556 -16.513 -11.738 -16.503 -38.693 38.693 -77.386 

unequal is 15,000 -36.278 -16.149 -76.560 -100.847 -17.049 -11.947 -16.922 -39.393 39.393 -78.787 

equal i  5,000 -1.722 0.189 -20.189 0.743 -13.383 -27.948 -0.149 -8.923 9.189 -18.112 

equal i  10,000 4.896 -0.297 -22.993 -0.300 -15.748 -30.924 -0.052 -9.345 10.744 -20.090 

equal i  15,000 9.387 0.042 -24.134 -0.392 -16.952 -32.828 0.255 -9.232 11.999 -21.230 

unequal i  5,000 -36.864 0.101 -58.287 0.323 -61.519 -7.246 -0.140 -23.376 23.497 -46.873 

unequal i  10,000 -37.867 0.060 -59.032 0.228 -62.743 -7.349 -0.236 -23.848 23.931 -47.779 

unequal i  15,000 -37.419 -0.008 -59.062 -0.217 -61.890 -6.669 0.080 -23.598 23.621 -47.219 

equal s 5,000 -0.314 23.152 0.284 -38.528 -20.254 -0.018 -45.792 -11.639 18.335 -29.973 

equal s 10,000 0.008 22.888 0.235 -38.349 -20.195 0.018 -45.641 -11.577 18.191 -29.767 

equal s 15,000 -0.062 23.742 0.002 -36.464 -19.716 -0.029 -45.179 -11.101 17.885 -28.986 

unequal s 5,000 nc  nc  nc  nc  nc  nc  nc  nc  nc  nc  

unequal s 10,000 -0.069 -29.722 0.145 -68.804 -27.151 0.227 -29.407 -22.112 22.218 -44.330 

unequal s 15,000 0.041 -30.314 0.211 -69.737 -27.444 -0.092 -29.392 -22.390 22.461 -44.851 

nc=non-converging cell 
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Tables 20 and 21 provide the proportional bias found in the parameters 

when the sample was selected with differing probabilities of selection.  Table 20 

shows the proportional bias when stratification resulted in a small difference in 

probability.  Table 21 shows the same results for the large difference in 

probability condition.  Unlike the Baseline model, the probability of selection did 

not seem to impact the number of cells with more than 5% bias for Model I. This 

is shown in Table 22, below. 

Table 22:  Model I compared to Baseline Model – Percentage of cells with more 

than 5% bias 

Probability of selection Baseline Model Model I 

Small difference (60-40) 50% 67% 

Larger difference (80-20) 72% 68% 
 

Furthermore, Table 23 displays the overall bias for Model I for each 

estimated parameter, compared to the Baseline Model.  It provides a summary of 

the proportion of bias estimated for each of the parameters by type of sample 

selection process. Each cell in the table is an average across the sample size, 

factor means, and class proportion conditions. In contrast, Table 24 provides the 

same information by the mean separation condition (averaging across the sample 

size, sample selection process, and class proportion conditions).  
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Table 23:  Model I compared to Baseline Model - Percent bias of model parameters by probability of selection 

Parameter 

Strata 60-40 Strata 80-20 

Baseline* Model I Baseline* Model I 

Ave |Ave.| Ave |Ave.| Ave |Ave.| Ave |Ave.| 

Mean Intercept 

(class 1) 
-12.630 14.527 -11.024 15.064 -20.941 20.965 -20.365 20.388 

Mean Intercept 

(class 2) 
3.489 3.829 -14.871 14.900 -21.409 22.813 -20.785 20.915 

Mean Slope  

(class 1) 
-11.844 16.103 1.831 14.411 -19.963 19.999 -23.943 24.000 

Mean Slope  

(class 2) 
-51.720 51.865 -22.437 22.476 -32.548 32.557 -22.924 22.968 

Mixing Proportion -32.493 36.609 -23.693 23.693 -48.419 48.419 7.706 12.855 

Variance Intercept -26.883 28.668 -34.115 34.218 -18.110 18.192 -9.765 9.779 

Variance Slope -52.053 52.298 -41.199 41.351 -39.483 39.598 -30.368 30.477 

* SRS condition excluded 

Table 24:  Model I compared to Baseline Model - Percent bias of model parameters by mean separation condition 

Parameter 

Means of I & S both differ Only mean of I differs Only mean of S differs 

Baseline* Model I Baseline* Model I Baseline* Model I 

Ave |Ave.| Ave |Ave.| Ave |Ave.| Ave |Ave.| Ave |Ave.| Ave |Ave.| 

Mean Intercept 

(class 1) 
-36.843 36.900 -24.665 27.999 -13.480 16.236 -21.441 23.821 -0.033 0.102 -0.065 0.111 

Mean Intercept 

(class 2) 
-12.660 22.658 -26.519 26.519 -15.249 16.129 -25.774 25.774 1.029 1.175 0.053 0.204 

Mean Slope 

 (class 1) 
-15.134 21.420 -20.763 32.077 0.052 0.103 0.043 0.108 -32.629 32.629 -13.746 26.434 

Mean Slope 

(class 2) 
-38.583 38.754 -25.162 25.162 -0.149 0.210 -0.041 0.164 -87.671 87.671 -44.693 44.693 

Mixing 

Proportion 
-32.741 35.896 8.151 17.448 -16.834 19.853 -17.103 22.345 -71.792 71.792 -14.241 14.241 

Variance Intercept -63.256 63.256 -36.376 36.376 -4.319 6.941 -26.635 26.635 0.085 0.092 0.037 0.145 

Variance Slope -68.547 68.547 -51.779 51.779 0.174 0.366 0.114 0.265 -68.932 68.932 -57.002 57.002 

* SRS condition excluded 
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As can be seen from Table 23, Model I outperformed the Baseline Model 

on many of the estimated parameters, especially the mixing proportion parameter.  

However, there was no discernable pattern based on the probability of selection. 

Looking at Table 24, Model I tends to exhibit less bias in the variances of 

the factors and the mixing parameter than the Baseline Model. In terms of the 

factor means, Model I offers some improvement over the Baseline Model when 

both the mean and the slope factor means differ, or when just the slope mean 

differs from class 1 to class 2. 

 

4.2.3 Standard Errors  

Table 25 shows that, for the variance parameters, there tends to be less 

variability in the estimated parameters when weights are added to the model, 

compared to the Baseline Model. However, for the intercept parameters, the 

estimates from the Baseline Model exhibit less variability. In all cases, the 

standard errors get smaller as sample size increases. Furthermore, the standard 

error for the intercept variance parameter is again the largest, while the variance 

of the slope is the smallest across all sample sizes. 

Table 25:  Model I compared to Baseline Model - Standard errors of parameters, 

by sample size condition 

Parameter 
n=5,000 n=10,000 n=15,000 

Baseline* Model I Baseline* Model I Baseline* Model I 

Mean Intercept 0.234 0.301 0.159 0.203 0.126 0.137 

Mean Slope 0.078 0.095 0.067 0.065 0.035 0.051 

Variance Intercept 1.076 0.694 0.770 0.516 0.621 0.455 

Variance Slope 0.296 0.194 0.185 0.141 0.049 0.118 
* SRS condition excluded  
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4.2.4 Entropy  

Entropy values for experimental Model I are provided in Table 26. The 

entropy results for the weighted model indicate that this model does not classify 

individuals any more accurately than the Baseline Model. Moreover, the 

probabilities of selection do not seem to affect classification. 

Table 26:  Model I compared to Baseline Model – entropy by sample selection 

condition 

Probability of selection Baseline Model I 

Strata 60-40 0.619 0.638 

Strata 80-20 0.701 0.630 

 

When investigating entropy findings more closely, we also find that when 

the class proportions are manipulated to be equal, the weighted model classifies 

individuals more accurately than the Baseline Model.  However, when class 

proportions are not equal, the opposite is true. This is shown in Table 27. 

Table 27:  Model I compared to Baseline Model – entropy by class proportion 

condition 

Class proportion Baseline* Model I 

Class 50-50 0.649 0.659 

Class 70-30 0.672 0.608 
* SRS condition excluded 

 

Similarly, when we look at entropy results by mean separation, we see that 

when both factor means are different, the entropy values are higher than when 

only one factor mean differs. This is shown in Table 28. 

Table 28:  Model I compared to Baseline Model – entropy by mean separation 

condition 

Mean separation Baseline* Model I 

Only I differs in means 0.513 0.546 

Only S differs in means 0.777 0.569 

Both I & S differ in means 0.691 0.751 
* SRS condition excluded 
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Again, sample size did not seem to affect entropy values, as shown in 

Table 29. 

 

Table 29:  Model I compared to Baseline Model – entropy by sample size 

Sample size Baseline* Model I 

n=5,000 0.657 0.635 

n=10,000 0.660 0.634 

n=15,000 0.664 0.634 
* SRS condition excluded 

 

 

4.3 Experimental Model II  

Experimental Model II represents the addition of a stratification covariate 

to the Baseline Model. This covariate models the sampling scheme. This section 

compares the performance of the model to that of the Baseline Model to see if the 

addition of a covariate adequately adjusts for a complex sample design. 

 

4.3.1 Model Convergence  

Although the Baseline Model did not have any problems, convergence 

was an issue for Model II. In fact, Model II had the worst convergence out of all 

of the models tested; 14 of the 36 cells did not attain 1,000 successful replications 

(a convergence rate of 61.1%). The non-converging cells are shown in Table 30. 



 79 

Table 30:  Model II: Non-converging cells 

Probability of 

selection 

Mean 

separation 

Class 

proportion Sample size 

60-40 Slope only 70-30 5,000 

60-40 Slope only 70-30 10,000 

60-40 Slope only 70-30 15,000 

60-40 Slope only 50-50 5,000 

60-40 Slope only 50-50 10,000 

60-40 Slope only 50-50 15,000 

80-20 Intercept only 70-30 5,000 

80-20 Intercept only 70-30 10,000 

80-20 Intercept only 70-30 15,000 

80-20 Intercept only 50-50 5,000 

80-20 Intercept only 50-50 10,000 

80-20 Intercept only 50-50 15,000 

80-20 Slope only 70-30 5,000 

80-20 Slope only 70-30 10,000 

 

This convergence problem was also found by Lubke and Muthén (2007), 

in their study of mixture models.  They found that mixture models with a 

dichotomous covariate (as in Model II) and with small mean separation, had 

lower convergence rates than the other models tested (72-84% converged). 

However, for the remainder of the cells that did converge, no additional 

replications beyond the initial 1,000 were necessary. Furthermore, all converged 

solutions were admissible, with no negative estimates of variance. 

 

4.3.2 Parameter Bias  

The parameter bias estimates from Model II are presented in Tables 31 

and 32. These tables are analogous to Tables 11 and 12 of the Baseline Model. 

Here, instead of an inappropriate application of the Baseline Model to data that 

have unequal probabilities of selection, Model II uses a stratification covariate to 

adjust for unequal sampling probabilities.  However, it is important to note that 
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the results are not representative of all manipulated conditions. This is because 

38.9% of cells did not converge (as discussed in section 4.3.1), and as a result, 

parameter estimates were not obtained for these cells. 
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Table 31:  Model II – Proportional bias when sample is stratified with small differences in the probability of selection 

Class 

proportion 

Mean 

separation 

Sample 

size 

Proportional bias in estimated parameters 
Ave. 

prop 

bias 

|Ave 

prop 

bias| 

Difference 
Intercept 

mean 

(class 1) 

Slope 

mean 

(class 1) 

Intercept 

variance 

Slope 

variance 

Mixing 

proportion 

Intercept 

mean 

(class 2) 

Slope 

mean 

(class 2) 

equal is 5,000 -35.721 -9.970 -57.283 -69.884 -29.802 -6.371 -22.162 -33.028 33.028 -66.055 

equal is 10,000 -35.644 -10.260 -57.383 -69.838 -29.934 -6.321 -22.238 -33.088 33.088 -66.176 

equal is 15,000 -35.520 -10.170 -57.134 -70.456 -29.704 -6.359 -21.995 -33.048 33.048 -66.097 

unequal is 5,000 -18.792 -4.697 -52.972 -62.324 -13.313 -5.930 -24.369 -26.057 26.057 -52.113 

unequal is 10,000 -18.966 -4.595 -52.929 -61.702 -13.382 -6.009 -24.458 -26.006 26.006 -52.012 

unequal is 15,000 -18.862 -4.745 -52.916 -61.670 -13.440 -6.053 -24.599 -26.041 26.041 -52.081 

equal i  5,000 -0.731 0.064 -19.408 0.208 0.112 0.638 0.143 -2.711 3.043 -5.754 

equal i  10,000 -0.383 -0.048 -18.877 0.054 0.287 0.807 0.048 -2.588 2.929 -5.517 

equal i  15,000 -0.439 -0.143 -19.047 0.105 0.350 0.822 -0.016 -2.624 2.989 -5.613 

unequal i  5,000 -0.662 0.468 -19.539 0.672 -39.686 0.969 -1.308 -8.441 9.044 -17.484 

unequal i  10,000 -0.378 -0.049 -18.935 -0.003 -39.580 0.738 0.031 -8.311 8.530 -16.841 

unequal i  15,000 -0.258 0.058 -18.529 0.075 -39.450 0.825 -0.125 -8.201 8.474 -16.675 

equal s 5,000 nc nc nc nc nc nc nc nc nc nc 

equal s 10,000 nc nc nc nc nc nc nc nc nc nc 

equal s 15,000 nc nc nc nc nc nc nc nc nc nc 

unequal s 5,000 nc nc nc nc nc nc nc nc nc nc 

unequal s 10,000 nc nc nc nc nc nc nc nc nc nc 

unequal s 15,000 nc nc nc nc nc nc nc nc nc nc 

nc= non-converging cells 
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Table 32:  Model II – Proportional bias when sample is stratified with large differences in the probability of selection 

Class 

proportion 

Mean 

separation 

Sample 

size 

Proportional bias in estimated parameters 
Ave. 

prop 

bias 

|Ave 

prop 

bias| 

Difference 
Intercept 

mean 

(class 1) 

Slope 

mean 

(class 1) 

Intercept 

variance 

Slope 

variance 

Mixing 

proportion 

Intercept 

mean 

(class 2) 

Slope 

mean 

(class 2) 

equal is 5,000 -75.107 -43.457 -71.496 -43.485 -61.799 -2.780 -25.436 -46.223 46.223 -92.446 

equal is 10,000 -74.982 -43.707 -71.402 -43.740 -62.065 -2.882 -25.221 -46.286 46.286 -92.571 

equal is 15,000 -75.433 -43.905 -71.635 -44.040 -62.305 -2.813 -25.377 -46.501 46.501 -93.002 

unequal is 5,000 -47.378 -34.835 -56.265 -45.445 -76.226 -4.579 -23.147 -41.125 41.125 -82.250 

unequal is 10,000 -47.672 -35.093 -57.097 -45.454 -76.630 -4.585 -23.724 -41.465 41.465 -82.930 

unequal is 15,000 -47.569 -35.091 -56.801 -45.268 -76.527 -4.499 -23.284 -41.291 41.291 -82.583 

equal i  5,000 nc nc nc nc nc nc nc nc nc nc 

equal i  10,000 nc nc nc nc nc nc nc nc nc nc 

equal i  15,000 nc nc nc nc nc nc nc nc nc nc 

unequal i  5,000 nc nc nc nc nc nc nc nc nc nc 

unequal i  10,000 nc nc nc nc nc nc nc nc nc nc 

unequal i  15,000 nc nc nc nc nc nc nc nc nc nc 

equal s 5,000 -0.036 -60.239 0.101 -35.209 -79.801 0.807 -45.042 -31.345 31.605 -62.950 

equal s 10,000 0.021 -60.249 0.123 -35.148 -79.925 0.430 -44.367 -31.302 31.466 -62.768 

equal s 15,000 -0.056 -60.596 0.114 -35.475 -80.169 -0.417 -44.547 -31.592 31.625 -63.217 

unequal s 5,000 nc nc nc nc nc nc nc nc nc nc 

unequal s 10,000 nc nc nc nc nc nc nc nc nc nc 

unequal s 15,000 -0.001 -46.091 0.087 -35.943 -34.708 0.141 -45.285 -23.114 23.179 -46.294 

nc= non-converging cells 

 

 

 

 



 83 

 

Tables 31 and 32 provide the proportional bias found in the parameters 

when the sample was stratified disproportionally.  Table 31 shows the 

proportional bias when stratification resulted in a small difference in probability.  

Table 32 shows the same results for the large difference in probability condition.  

Compared to the Baseline Model, Model II has fewer cells with unacceptable 

levels of bias, when there are smaller differences in the probabilities of selection. 

However, when the differences in the probability of selection are small, the 

Baseline Model outperforms both experimental models. This is shown in Table 

33, below. 

Table 33:  Model II compared to Baseline Model – Percentage of cells with more 

than 5% bias 

Probability of selection Baseline Model Model I Model II 

Small difference (60-40) 50% 67% 57% 

Larger difference (80-20) 72% 68% 74% 

 

Furthermore, Table 34 displays the overall bias for Model II for each 

estimated parameter, compared to the Baseline Model discussed previously.  It 

provides a summary of the proportion of bias estimated for each of the parameters 

by type of sample selection process. Each cell in the table is an average across the 

sample size, factor means, and class proportion conditions. In contrast, Table 35 

provides the same information by the mean separation condition (averaging across 

the sample size, sample selection process, and class proportion conditions).  
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Table 34:  Model II compared to Baseline Model - percent bias in model parameters by sample selection condition 

Parameter 

Strata 60-40 Strata 80-20 

Baseline* Model II Baseline* Model II 

Ave |Ave.| Ave |Ave.| Ave |Ave.| Ave |Ave.| 

Mean Intercept 

(class 1) -12.630 14.527 -36.821 36.826 -20.941 20.965 -13.863 13.863 

Mean Intercept 

(class 2) 3.489 3.829 -2.118 2.393 -21.409 22.813 -2.687 3.487 

Mean Slope  

(class 1) -11.844 16.103 -46.326 46.326 -19.963 19.999 -3.674 3.772 

Mean Slope  

(class 2) -51.720 51.865 -32.543 32.543 -32.548 32.557 -11.754 11.791 

Mixing 

Proportion -32.493 36.609 -38.427 38.512 -48.419 48.419 -37.079 37.079 

Variance Intercept -26.883 28.668 -40.921 40.921 -18.110 18.192 -32.897 33.082 

Variance Slope -52.053 52.298 -69.015 69.015 -39.483 39.598 -20.629 20.753 

* SRS condition excluded 

 

Table 35:  Model II compared to Baseline Model - percent bias in model parameters by mean separation condition 

Parameter 

Means of I & S both differ Only mean of I differs Only mean of S differs 

Baseline Model II Baseline Model II Baseline Model II 

Ave |Ave.| Ave |Ave.| Ave |Ave.| Ave |Ave.| Ave |Ave.| Ave |Ave.| 

Mean Intercept 

(class 1) 
-36.843 36.900 -44.304 44.304 -13.480 16.236 -0.475 0.475 -0.033 0.102 -0.018 0.029 

Mean Intercept 

(class 2) 
-12.660 22.658 -4.932 4.932 -15.249 16.129 0.800 0.800 1.029 1.175 0.240 0.449 

Mean Slope 

(class 1) 
-15.134 21.420 -23.377 23.377 0.052 0.103 0.058 0.138 -32.629 32.629 -56.794 56.794 

Mean Slope 

(class 2) 
-38.583 38.754 -23.834 23.834 -0.149 0.210 -0.205 0.278 -87.671 87.671 -44.810 44.810 

Mixing 

Proportion 
-32.741 35.896 -59.610 59.610 -16.834 19.853 -19.056 19.056 -71.792 71.792 0.106 0.106 

Variance Intercept -63.256 63.256 -55.275 55.275 -4.319 6.941 0.185 0.186 0.085 0.092 -35.444 35.444 

Variance Slope -68.547 68.547 -45.427 45.427 0.174 0.366 -19.661 19.911 -68.932 68.932 -68.651 68.651 

* SRS condition excluded 
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As can be seen from Table 34, Model II tends to outperform the Baseline 

Model when the there were small differences in the probabilities of selection. 

However, when the probability of selection varied greatly between individuals 

(the 80-20 condition), we see that the Baseline Model tends to provide more 

accurate parameter estimates than Model II. 

In Table 35, we see that Model II sometimes outperforms the Baseline 

model when looking at the mean separation condition.  However, it should be 

noted that for the ‗slope only‘ condition, only 4 cells out of 12 converged. 

Similarly, for the ‗intercept only‘ condition, only 6 cells converged. 

4.3.3 Standard Errors  

Table 36 shows that Model II generally has smaller standard errors than 

the Baseline Model. 

Table 36:  Model II compared to Baseline Model - Standard errors of 

parameters, by sample size and model 

Parameter 
n=5,000 n=10,000 n=15,000 

Baseline* Model II Baseline* Model II Baseline* Model II 

Mean Intercept 0.234 0.114 0.159 0.080 0.126 0.060 

Mean Slope 0.078 0.043 0.067 0.030 0.035 0.024 

Variance Intercept 1.076 0.376 0.770 0.267 0.621 0.199 

Variance Slope 0.296 0.086 0.185 0.060 0.049 0.050 
* SRS condition excluded 

4.3.4 Entropy  

Entropy values for the Baseline Model as compared to Model II are 

provided in Table 37. The covariate model does not assign individuals as 

accurately as the other models when there is a small difference in the probability 

of selection. However, with a larger difference in the probability of selection, 

Model II outperforms both. 
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Table 37:  Model II compared to Baseline Model – entropy by probability of 

selection 

Probability of selection Baseline* Model I Model II 

Strata 60-40 0.619 0.638 0.512 

Strata 80-20 0.701 0.630 0.677 
SRS condition excluded 

 

Table 38 shows that when the class proportion condition is examined, 

Model II performs rather poorly compared to the previous two models.  

Table 38:  Model II compared to Baseline Model – entropy by class proportion 

condition 

Class proportion Baseline* Model I Model II 

Class 50-50 0.649 0.659 0.560 

Class 70-30 0.672 0.608 0.569 
* SRS condition excluded 

 

When we look at entropy results by mean separation, we see that the 

results for Model II are similar to the Baseline Model. This is illustrated in Table 

39.  We also see that classification is particularly poor for Model II when only the 

intercept of the mean differs from one class to the next. However, it should again 

be noted that 6 cells did not converge for this condition, and for the slope 

condition, only 8 of the 12 cells converged. 

Table 39:  Model II compared to Baseline Model – entropy by class separation 

condition 

Mean separation Baseline* Model I Model II 

Only I differs  0.513 0.546 0.398 

Only S differs  0.777 0.569 0.714 

Both I & S differ 0.691 0.751 0.639 
* SRS condition excluded 

 

Again, sample size did not seem to greatly affect entropy values, as shown 

in Table 40. 
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Table 40:  Model II compared to Baseline Model – entropy by sample size 

Sample size Baseline* Model I Model II 

n=5,000 0.657 0.635 0.556 

n=10,000 0.660 0.634 0.555 

n=15,000 0.664 0.634 0.581 
* SRS condition excluded 

 

 

4.4 Experimental Model III  

Experimental Model III represents the addition of both weights and a 

covariate to the Baseline Model. This section compares the results of this model 

to the Baseline Model to see if it appropriately adjusts for a complex sample 

design. 

4.4.1 Model Convergence  

While the Baseline Model had 100% convergence, Model III experienced 

significant problems with convergence. Out of a total of 36 cells, 11 (31%) did 

not converge.  The non-converging cells (cells that failed to attain 1,000 properly 

converged solutions) are shown in Table 41.   

Table 41:  Model III: Non-converging cells 

Probability of 

selection 

Mean 

separation 

Class 

proportion Sample size 

60-40 Intercept only 70-30 5,000 

60-40 Intercept only 70-30 10,000 

60-40 Slope only 70-30 5,000 

60-40 Slope only 70-30 10,000 

60-40 Slope only 70-30 15,000 

80-20 Slope only 50-50 5,000 

80-20 Slope only 50-50 10,000 

80-20 Slope only 50-50 15,000 

80-20 Slope only 70-30 5,000 

80-20 Slope only 70-30 10,000 

80-20 Slope only 70-30 15,000 
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However, for the remainder of the cells that did converge, no additional 

replications beyond the initial 1,000 were necessary. All converged solutions were 

admissible, with no negative estimates of variances. 

4.4.2 Parameter Bias 

The parameter bias estimates from Model III are presented in Tables 42 

and 43. These tables are analogous to Tables 11 and 12 of the Baseline Model. 

Here, instead of an inappropriate application of the Baseline Model to data that 

have unequal probabilities of selection, Model III tests the use of both weighting 

and a stratification covariate to adjust for unequal sampling probabilities.  

However, it is important to note that the results presented in Tables 42 and 43 are 

not representative of all manipulated conditions. This is because 31% of cells did 

not converge (as discussed in section 4.4.1), and therefore parameter estimates 

were not obtained for these cells. 
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Table 42:  Model III– Proportional bias when sample is stratified with small differences in the probability of selection 

Class 

proportion 

Mean 

separation 

Sample 

size 

Proportional bias in estimated parameters 
Ave. 

prop 

bias 

|Ave 

prop 

bias| 

Difference 
Intercept 

mean 

(class 1) 

Slope 

mean 

(class 1) 

Intercept 

variance 

Slope 

variance 

Mixing 

proportion 

Intercept 

mean 

(class 2) 

Slope 

mean 

(class 2) 

equal is 5,000 -29.893 -34.800 -19.486 -45.026 0.341 -43.390 -58.495 -32.964 33.062 -66.026 

equal is 10,000 -29.821 -34.753 -19.252 -44.972 -1.025 -43.155 -57.429 -32.915 32.915 -65.830 

equal is 15,000 -29.818 -34.650 -19.112 -44.957 -0.025 -42.961 -56.295 -32.546 32.546 -65.091 

unequal is 5,000 -10.147 -33.923 -2.879 -43.536 -18.481 -40.200 -59.152 -29.760 29.760 -59.519 

unequal is 10,000 -10.104 -33.921 -2.934 -43.625 -18.501 -38.177 -58.285 -29.364 29.364 -58.727 

unequal is 15,000 -10.064 -33.788 -2.838 -43.579 -18.459 -38.000 -57.012 -29.106 29.106 -58.212 

equal i  5,000 -25.185 -32.147 0.233 -0.070 -7.079 -23.380 1.165 -12.352 12.751 -25.103 

equal i  10,000 -25.861 -32.427 -0.061 -0.259 -10.370 -27.397 -0.262 -13.805 13.805 -27.610 

equal i  15,000 -25.829 -32.371 -0.038 -0.179 -10.031 -26.787 0.494 -13.535 13.676 -27.210 

unequal i  5,000 nc nc nc nc nc nc nc nc nc nc 

unequal i  10,000 nc nc nc nc nc nc nc nc nc nc 

unequal i  15,000 -6.488 -30.205 0.115 -0.441 -15.788 -17.129 0.795 -9.877 10.137 -20.015 

equal s 5,000 0.132 0.199 -25.068 -48.144 -47.702 -0.143 -60.540 -25.895 25.990 -51.885 

equal s 10,000 -0.009 0.090 -26.465 -48.856 -49.608 0.172 -61.875 -26.650 26.725 -53.375 

equal s 15,000 -0.073 0.142 -26.381 -48.745 -49.685 -0.024 -61.404 -26.596 26.636 -53.232 

unequal s 5,000 nc nc nc nc nc nc nc nc nc nc 

unequal s 10,000 nc nc nc nc nc nc nc nc nc nc 

unequal s 15,000 nc nc nc nc nc nc nc nc nc nc 

nc=non-converging cells 

 

 

 

 

 

 

 



 90 

Table 43:  Model III – Proportional bias when sample is stratified with large differences in the probability of selection 

Class 

proportion 

Mean 

separation 

Sample 

size 

Proportional bias in estimated parameters 
Ave. 

prop 

bias 

|Ave 

prop 

bias| 

Difference 
Intercept 

mean 

(class 1) 

Slope 

mean 

(class 1) 

Intercept 

variance 

Slope 

variance 

Mixing 

proportion 

Intercept 

mean 

(class 2) 

Slope 

mean 

(class 2) 

equal is 5,000 -58.399 -37.617 -51.679 -48.961 -40.075 -51.804 -56.938 -49.353 49.353 -98.707 

equal is 10,000 -58.367 -37.469 -51.691 -48.719 -42.206 -51.578 -57.986 -49.716 49.716 -99.433 

equal is 15,000 -58.320 -37.448 -51.671 -48.848 -36.755 -49.576 -55.581 -48.314 48.314 -96.628 

unequal is 5,000 -36.670 -37.088 -35.405 -47.028 -30.605 -46.103 -59.842 -41.820 41.820 -83.640 

unequal is 10,000 -36.800 -36.924 -35.477 -46.900 -30.590 -48.178 -62.160 -42.433 42.433 -84.865 

unequal is 15,000 -36.652 -36.927 -35.457 -46.723 -30.584 -46.836 -60.417 -41.942 41.942 -83.884 

equal i  5,000 -49.555 -37.740 0.108 -0.075 -1.001 -21.622 -0.452 -15.762 15.793 -31.555 

equal i  10,000 -49.457 -37.777 0.145 0.172 -2.113 -22.268 -0.408 -15.958 16.049 -32.007 

equal i  15,000 -50.348 -37.883 0.102 -0.066 -2.984 -24.060 0.123 -16.445 16.509 -32.955 

unequal i  5,000 -28.837 -36.668 -0.175 0.419 -1.412 -12.617 -0.235 -11.361 11.481 -22.841 

unequal i  10,000 -29.987 -37.415 0.038 -0.145 -2.315 -14.227 0.282 -11.967 12.059 -24.026 

unequal i  15,000 -30.131 -37.237 0.144 -0.197 -2.252 -15.016 -0.170 -12.123 12.164 -24.287 

equal s 5,000 nc nc nc nc nc nc nc nc nc nc 

equal s 10,000 nc nc nc nc nc nc nc nc nc nc 

equal s 15,000 nc nc nc nc nc nc nc nc nc nc 

unequal s 5,000 nc nc nc nc nc nc nc nc nc nc 

unequal s 10,000 nc nc nc nc nc nc nc nc nc nc 

unequal s 15,000 nc nc nc nc nc nc nc nc nc nc 

nc=non-converging cells 
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Tables 42 and 43 provide the proportional bias found in the parameters 

when the sample was selected with different probabilities of selection.  Table 42 

shows the proportional bias when stratification resulted in a small difference in 

probability.  Table 43 shows the same results for the large difference in 

probability condition.  Compared to the Baseline model, Model III does not 

provide a substantial improvement in the number of cells with more than 5% bias. 

This is shown in Table 44, below. 

Table 44:  Model II compared to Baseline Model – Percentage of cells with more 

than 5% bias 

Probability of selection Baseline Model Model I Model II Model III 

Small difference (60-40) 50% 67% 57% 70% 

Larger difference (80-20) 72% 68% 74% 71% 

 

Furthermore, Table 45 displays the overall bias for Model III for each 

estimated parameter, compared to the Baseline Model.  It provides a summary of 

the proportion of bias estimated for each of the parameters by type of sample 

selection process. Each cell in the table is an average across the sample size, 

factor means, and class proportion conditions. In contrast, Table 46 provides the 

same information by the mean separation condition (averaging across the sample 

size, sample selection process, and class proportion conditions). 



 92 

Table 45:  Model III compared to Baseline Model - percent bias in model parameters by probability of selection 

Parameter 

Strata 60-40 Strata 80-20 

Baseline* Model III Baseline* Model III 

Ave |Ave.| Ave |Ave.| Ave |Ave.| Ave |Ave.| 

Mean Intercept 

(class 1) 
-12.630 14.527 -43.627 43.627 -20.941 20.965 -15.628 15.648 

Mean Intercept 

(class 2) 
3.489 3.829 -37.349 37.349 -21.409 22.813 -25.581 25.647 

Mean Slope  

(class 1) 
-11.844 16.103 -21.752 21.841 -19.963 19.999 -11.090 11.143 

Mean Slope  

(class 2) 
-51.720 51.865 -23.922 24.021 -32.548 32.557 -31.722 31.722 

Mixing 

Proportion 
-32.493 36.609 -33.657 33.657 -48.419 48.419 -26.198 26.224 

Variance Intercept -26.883 28.668 -29.482 29.550 -18.110 18.192 -40.638 41.016 

Variance Slope -52.053 52.298 -18.574 18.574 -39.483 39.598 -18.955 19.007 

* SRS condition excluded 

 

Table 46:  Model III compared to Baseline Model - percent bias in model parameters by mean separation condition 

Parameter 

Means of I & S both differ Only mean of I differs Only mean of S differs 

Baseline* Model III Baseline* Model III Baseline* Model III 

Ave |Ave.| Ave |Ave.| Ave |Ave.| Ave |Ave.| Ave |Ave.| Ave |Ave.| 

Mean Intercept 

(class 1) 
-36.843 36.900 -33.755 33.755 -13.480 16.236 -32.168 32.168 -0.033 0.102 0.017 0.071 

Mean Intercept 

(class 2) 
-12.660 22.658 -35.776 35.776 -15.249 16.129 -35.187 35.187 1.029 1.175 0.144 0.144 

Mean Slope  

(class 1) 
-15.134 21.420 -27.323 27.323 0.052 0.103 0.061 0.116 -32.629 32.629 -25.971 25.971 

Mean Slope  

(class 2) 
-38.583 38.754 -46.073 46.073 -0.149 0.210 -0.084 0.202 -87.671 87.671 -48.582 48.582 

Mixing 

Proportion 
-32.741 35.896 -44.996 44.996 -16.834 19.853 -20.450 20.450 -71.792 71.792 0.002 0.113 

Variance 

Intercept 
-63.256 63.256 -58.299 58.299 -4.319 6.941 0.133 0.439 0.085 0.092 -61.273 61.273 

Variance 

Slope 
-68.547 68.547 -22.247 22.304 0.174 0.366 -5.535 5.535 -68.932 68.932 -48.999 48.999 

* SRS condition excluded 



Like Model II, Model III tends to outperform the Baseline Model when 

the there were small differences in the probabilities of selection. However, when 

the probability of selection varied greatly between strata (the 80-20 condition), we 

see the Baseline Model tends to provide more accurate parameter estimates than 

Model III. 

Table 46 shows that when only the slope mean differs between classes, 

Model III tends to outperform the Baseline Model.  However, when only the 

mean of the intercept factor differs or when both the intercept and slope means 

differ, the results are less predictable.  

4.4.3 Standard Errors  

Table 47 shows that the model using both covariates and weighting 

generally has less variability in estimating parameters than the Baseline Model.  

Table 47:  Model III compared to Baseline Model - standard errors of 

parameters, by sample size and model 

Parameter 
n=5,000 n=10,000 n=15,000 

Baseline* Model III Baseline* Model III Baseline* Model III 

Mean Intercept 0.234 0.160 0.159 0.117 0.126 0.092 

Mean Slope 0.078 0.054 0.067 0.038 0.035 0.029 

Variance Intercept 1.076 1.009 0.770 0.902 0.621 0.860 

Variance Slope 0.296 0.198 0.185 0.158 0.049 0.142 

* SRS condition excluded 

 

4.4.4 Entropy  

Entropy values for the Model III as compared to the other experimental 

models and the Baseline Model are provided in Table 48. While entropy values 

are low across the board, we see that overall, Model III is the most accurate in 

classifying individuals into their latent classes. It is the most accurate when the 

probabilities of selection vary the most (the 80-20 condition).   
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Table 48:  Model III compared to Baseline Model – entropy by probability of 

selection 

Sample selection  Baseline* Model I Model II Model III 

Strata 60-40 0.619 0.638 0.512 0.688 

Strata 80-20 0.701 0.630 0.677 0.706 

* SRS condition excluded 

 

Entropy values for Model III are higher when the class proportions are 

manipulated to be unequal, as shown in Table 49.   

Table 49:  Model III compared to Baseline Model – entropy by class proportion 

Class proportion Baseline* Model I Model II Model III 

Class 50-50 0.649 0.659 0.560 0.648 

Class 70-30 0.672 0.608 0.569 0.769 

* SRS condition excluded 

 

When we look at entropy results by mean separation, we see that when 

both the intercept mean and slope mean are different in each class, the entropy 

values tend to be  higher than when only one factor mean differs, as shown in 

Table 50. This is similar to Model I and the Baseline Model. 

Table 50:  Model III compared to Baseline Model – entropy by mean separation 

condition 

Mean separation Baseline* Model I Model II Model III 

I only 0.513 0.546 0.398 0.560 

S only 0.691 0.569 0.714 0.560 

I and S 0.777 0.751 0.639 0.844 

* SRS condition excluded 

 

Again, sample size did not seem to affect entropy values, as shown in 

Table 51. 

Table 51:  Model III compared to Baseline Model – entropy by sample size 

condition 

Sample size Baseline* Model I Model II Model III 

n=5,000 0.657 0.635 0.556 0.699 

n=10,000 0.660 0.634 0.555 0.699 

n=15,000 0.664 0.634 0.581 0.693 

* SRS condition excluded 
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4.5 Decomposition of Results  

Additional explorations of the data were conducted to decompose the 

across-cell variability in the performance criteria. This was conducted in SPSS 

using the GLM univariate analysis procedure.  Since the data contain empty cells, 

the test hypothesis for Type III sums of squares was not suitable (SPSS, 1999). 

Instead, Type IV sums of squares was used. 

The effect of the experimental conditions on each of the performance 

criteria (model convergence, parameter bias, standard errors, and entropy) was 

tested. That is, whether the means of the groups formed by crossing each 

experimental condition have performance criteria that are different enough to 

have formed by chance. As all of the conditions were included in the analysis as 

separate factors, significance tests could not be calculated due to the lack of 

within group variation.  Instead, the proportion of variation accounted for was 

reviewed, and any factor that accounted for 10% of more of the variance is 

reported.  

4.5.1 Iterations  

In decomposing model convergence, the number of additional replications 

over the initial 1,000 necessary for the model to converge was explored. While no 

main effect accounted for more than 10% of variance, one interaction effect 

reached this threshold. This was a three-way interaction of sample size, sample 

selection, and class separation, and it accounted for 12.5% of the variance. 

However, a three-way interaction can be difficult to interpret. It basically deals 

with the question: Are two-way interaction differences between the population 
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means of 2 explanatory variables different for the various levels of the 3
rd

 

explanatory variable? In this instance, the effects of sample size and mean 

separation on the number of replications differed across levels of probability of 

selection. This 3-way interaction appears to be driven by the cells where the mean 

separation of the slope is combined with small differences in the probability of 

selection, which is then modified by the 3 levels of sample size. 

 

4.5.2 Parameter bias  

Table 52 shows that when estimating model parameters, the sample size, 

the sample selection process, and the latent class proportion do not substantially 

explain the variability in the parameter estimates (that is, they did not account for 

10% or more of the variance).  Instead, mean separation is an important predictor 

of bias for most of the parameters. The model used in the analysis (i.e. Baseline 

Model and Experimental Models I – III) also plays an important role in 

accounting for the variance in three of the parameters. 

Table 52:  Main effects –Proportion of variance explained in the bias of 

estimated parameters 

Parameter 

Manipulated Conditions 

Sample 

size Model 

Sample 

selection 

Mean 

separation 

Class 

proportion 

Mean Intercept (C1)    33.7%  

Mean Slope (C1)  14.6%    

Mean Intercept (C2)  28.1%  14.1%  

Mean Slope (C2)    54.9%  

Variance Intercept     42.3%  

Variance Slope     77.1%  

Mixing Proportion  24.0%    

 

In terms of the interactions among the tested conditions, those that account 

for 10% or more of the variance in proportional bias are shown in Table 53. 
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Table 53:  Interaction effects – Proportion of variance explained in the bias of 

estimated parameters 

Parameter 

Manipulated Conditions 

Model x Sample 

selection 

Model*Mean 

separation 

Model x Class 

proportion 

Mean Intercept (C1) 12.4%  11.2% 

Mean Slope (C1) 20.1% 13.3%  

Mean Intercept (C2)  33.9%  

Mean Slope (C2)    

Variance Intercept   10.1%  

Variance Slope     

Mixing Proportion 12.9% 15.7%  

 

Of the 26 possible interactions, only three accounted for more than 10% of 

the variance in the parameter bias, as shown in Table 53. All of these interactions 

involve the type of model. The main effect of model is modified by how the 

sample is selected, by mean separation, and by class proportion.  

4.5.3 Standard errors  

Neither sample size, the sample selection procedure, nor the class 

proportion condition has a substantial effect on the standard errors associated with 

the estimated parameters. However, mean separation explained 10% or more of 

the variance in all but one case.  Furthermore, the model used to estimate 

parameters explained the standard errors of the variance parameters and the 

mixing parameter, as shown in Table 54. 



 98 

Table 54:  Main effects – Standard errors of estimated parameters 

Parameter 

Manipulated Conditions 

Sample 

size Model 

Sample 

selection 

Mean 

separation 

Class 

proportion 

Mean Intercept (C1)    35.1%  

Mean Slope (C1)    35.7%  

Mean Intercept (C2)    49.5%  

Mean Slope (C2)    40.6%  

Variance Intercept   28.3%  37.6%  

Variance Slope   18.9%  21.7%  

Mixing Proportion  16.3%    

 

 

As might be expected after looking at the main effects, the interaction 

among the model and separation conditions explained more than 10% of the 

variance for three of the parameters.   

Table 55:  Interaction effects – Standard errors of estimated parameters 

Parameter 

Manipulated Conditions 

Sample selection*Mean 

separation 

Model*Mean 

separation 

Model*Class 

proportion 

Mean Intercept (C1)    

Mean Slope (C1)    

Mean Intercept (C2)  11.1%  

Mean Slope (C2) 15.3%   

Variance Intercept     

Variance Slope   10.2%  

Mixing Proportion  15.7% 22.8% 

 

 

4.5.4 Entropy  

Entropy is a summary measure that gauges to accuracy of classification of 

individuals to their correct latent class, as discussed in Section 2.2.3.1. The 

variability of this measure can largely be explained by the model used and mean 

separation, as shown in Table 56. None of the other manipulated conditions 

accounted for more than 10% of the variability of the entropy parameter.  
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Table 56:  Main effects – entropy 

Parameter 

Manipulated Conditions 

Sample 

size Model 

Sample 

selection 

Mean 

separation 

Class 

proportion 

Entropy  13.9%  39.1%  

 

Furthermore, the interaction effect between mean separation and sample 

selection criteria accounted for 11.3% of variance. That is, the effect of the degree 

of mean separation is modified by the procedure used to select the sample.  No 

other interaction effect reached the 10% threshold.  

4.6 Summary of Results  

At this point it may be necessary to summarize the main effects presented 

in the previous sections. Table 57 provides this summary in table form.  

Table 57:  Performance criteria – Summary of main effects 

 

Manipulated Conditions 

Sample 

size Model 

Sample 

selection 

Mean 

separation 

Class 

proportion 

Iterations 
Not 

affected 
Not affected 

Not 

affected 
Not affected 

Not 

affected 

Parameter 

bias 

Not 

affected 
Some parameters 

affected (3 out of 7) 

Not 

affected 

Most parameters 

affected (5 out of 7) 

Not 

affected 

Standard 

errors 

Not 

affected 
Some parameters 

affected (3 out of 7) 

Not 

affected 

Most parameters 

affected (6 out of 7) 

Not 

affected 

Class 

assignment 

Not 

affected 
Affected 

Not 

affected 
Affected Not affected 

 

As part of the decompositions analysis, the number of additional iterations 

needed to obtain 1,000 properly converged solutions were analyzed (non-

converging cells were excluded from this analysis.) None of the manipulated 

conditions played an important role in the number of additional iterations.  

However, the interaction of sample size, mean separation, and the probability of 

selection was important. Thus, if convergence is a concern, a combination of 
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larger sample size, mean separation of both factors, and a smaller difference in the 

probability of selection would all help.   

In estimating model parameters, mean separation and model play 

important roles. The same is true for the estimation of standard errors and the 

assignment of individuals into their correct latent class. The bottom line is that 

when looking at these four performance criteria (iterations, parameter bias, 

standard errors, and class assignment) mean separation is the most important 

aspect in GMM, followed by the type of model modification used (Baseline, and 

Experimental Models I-III).  

 

4.7 Limitations  

As with all simulation studies, a number of limitations apply to this 

research. Relatively few comprehensive GMM simulations have been conducted 

to date. Therefore, every effort was made to formulate a population model that 

was reasonably representative of first-stage GMM applications that appear in the 

literature. Nonetheless, as with any study with simulated data, there are almost an 

infinite number of conditions that could have been tested. For example, not all 

methods of adjusting for unequal probabilities of selection were tested in this 

research study. It is hoped that future research in this area will explore the use of a 

weighted covariance matrix (using other software than Mplus, as Mplus does not 

allow the use of correlation matrices when the MIXED command is employed).  

Furthermore, the current research was limited to one statistic to gauge the 

accuracy of classifications to latent classes. While the entropy measure is 
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provided as standard output in the Mplus software, there are significant concerns 

about its accuracy (discussed further in Section 5.1). Also, this research did not 

utilize observed variables with non-normal distributions. Such variables are 

common in survey data as survey research often measures behaviors in which 

only a minority of the population is engaged.  Therefore, it is hoped that future 

research will include non-normally distributed variables. In addition, only unequal 

probabilities resulting from stratification in the sample design were explored in 

this research. In most nationally representative data sets both stratification and 

clustering are employed in the sample design.  Therefore, it will likely be 

necessary not only to account for unequal probabilities of selection, but also for 

clustering via multilevel modeling or adjustments to the standard errors using 

Jacknife or Bootstrapping methodology. 

This research also assumed that the true number of latent classes was 

known. While this is a common assumption in simulation studies (e.g. Gagné, 

2004; Mann, 2009; Lubke & Muthén, 2007) it ignores model selection decisions 

that have to be made by applied researchers. Therefore, the current research 

ignores the possibility of extracting spurious latent classes. 

Lastly, high rates of non-convergence for certain models may have 

impacted the generalizability of these findings. Using only the replications that 

resulted in proper solutions means that the results should be considered the upper 

bounds. In applied settings, steps may be taken after a model fails to converge, 

and these steps were not taken in this current research. 
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CHAPTER 5: DISCUSSION 

 

The purpose of this research is to determine if complex sampling 

procedures affect the results of standard growth mixture models, and if they do, 

how these mixture models could be improved to better accommodate such 

sampling. Specifically, there are three main research goals of this research--they 

are to: 

1. Determine if, and under what circumstances, ignoring unequal sampling 

probabilities would result in biased parameter estimates and poor class 

assignments; 

2. Develop and test methods for incorporating unequal sampling probabilities 

into GMM; and 

3. Recommend the most practical and efficient procedure given the 

constraints of the field and available software. 

 

This discussion chapter will attempt to address each of these research goals in 

turn, using the results of the Monte Carlo simulation presented in the previous 

section. 

 

5.1 Consequences of Ignoring Unequal Sampling Probabilities 

 

To determine the consequences of ignoring unequal sampling 

probabilities, it is first necessary to examine the performance of the Baseline 

Model when the sample is collected via SRS. This represents an appropriate 

application of standard GMM. The next step is to compare these data to when the 
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data are collected with varying probabilities of selection. This comparison should 

provide the consequences (if any) of ignoring sample design when using a 

standard GMM.  

In terms of model convergence, there was not a substantial difference in 

the Baseline Model when data were from a SRS or sampled with different 

probabilities; both had convergence rates of 100%. Additionally, the SRS run 

resulted in 8 cells that required additional replications (over the initial 1,000), 

whereas the runs using differing probabilities of selection resulted in 6 cells 

requiring additional replications. These convergence results are not too surprising. 

Although mixture models in general are prone to local maxima of the likelihood 

(Bauer & Curran, 2003; Lubke et al. 2002; Muthén, 2001a), the degree to which 

convergence is likely to be a problem is related to the complexity of the model. 

As this research focused on very simple models, high convergence rates were 

expected. 

 In terms of biased parameters, the Baseline Model provides parameters 

estimates with only 1.45% bias when the sample is selected via SRS.  When a 

more complex sampling scheme is introduced (either when the sample is stratified 

with small or large differences in the probability of selection), the overall 

proportional bias increases to nearly 30%, as shown in Table 58.  
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Table 58:  Baseline Model - Proportional bias* across 3 sampling conditions.  

Parameters SRS 60-40 80-20 

Intercept mean (class 1) 0.70 14.53 20.97 

Slope mean (class 1) 1.98 16.10 20.00 

Intercept variance 2.24 28.67 18.19 

Slope variance 2.25 52.30 39.60 

Mixing proportion 2.14 36.61 48.42 

Intercept mean (class 2) 0.28 3.83 22.81 

Slope mean (class 2) 0.60 51.87 32.56 

Average over all parameters 1.45 29.13 28.93 
* Absolute values 

Here, we can see that when GMM is applied to SRS data, the resulting 

parameter estimates are reasonably accurate. However, once the sampling strategy 

becomes even slightly more complex (when the probabilities of selection are 

similar across strata) parameter estimates are no longer reliable. These results are 

similar to those found by DuMouchel and Duncan (1983) and Nathan and Holt 

(1980) in their investigation of regression models. They found that, without any 

adjustment for unequal probabilities of selection, parameter estimates were 

biased.  These findings are also similar to others examining statistical techniques 

such as ANOVA (e.g., Potthoff et al., 1992; Wedel et al., 1977), single-level (e.g., 

Hahs, 2003; Kaplan & Ferguson, 1999; Stapleton, 2006a; Stapleton, 2006b) and 

multilevel SEM (e.g., Lohr, 1999; Stapleton, 2002), growth models (Asparouhov, 

2005), and latent class analysis (e.g., Patterson et al., 2002). This body of research 

has determined that if unequal selection probabilities are not accounted for, the 

resulting population estimates may exhibit substantial bias.   

In terms of standard errors, there was not much change moving from SRS 

to a sampling design with unequal probabilities of selection, as shown in Table 

59.  This finding is also consistent with much of the previous research in this area. 
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While clustering of data tend to result in accurate parameter estimates, but 

inflated standard errors, having unequal probabilities of selection tends to have 

the opposite effect—biased parameter estimates but accurate standard errors 

(Skinner et al., 1989).  

Table 59:  Baseline Model – Standard errors across 3 different sampling 

conditions.  

Parameters SRS 60-40 80-20 

Intercept mean (class 1) 0.18 0.23 0.11 

Slope mean (class 1) 0.13 0.06 0.06 

Intercept variance 0.38 0.81 0.84 

Slope variance 0.14 0.22 0.19 

Mixing proportion 0.08 0.10 0.06 

Intercept mean (class 2) 0.26 0.34 0.38 

Slope mean (class 2) 0.20 0.20 0.24 

Average over all parameters 0.20 0.28 0.27 

 

Lastly, the classification of individuals to their correct latent class was 

examined. Lubke and Muthén (2007) in their research on mixture models 

determined that entropy values below .60 are generally related to misclassifying 

approximately 20% or more of subjects. Entropy values around .80 or above are 

related to 90% correct class assignment. However, Mann (2009), in her simulation 

study of one and two factor mixture models, used the entropy measure to predict 

correct class assignment in a simple linear regression. She found that for over 

80% of her cells, the regression coefficients were negative, indicating an inverse 

relationship between correct class assignment and entropy. 

Table 60 shows that individuals were classified more accurately when the 

sampling design was ignored. This finding runs counter to expectations, although 

Lubke and Muthén (2007) also found that classification error rates in assigning 

subjects to their correct class were generally quite high and variable.  
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Table 60:  Baseline Model – entropy values across 3 different sampling 

conditions.  

 SRS 60-40 80-20 

Entropy .48 .62 .70 
 

The estimation of GMM under the SRS condition, compared to the 

differential probability condition, yielded some expected results. Namely, 

convergence is high in both cases and standard errors were also consistent across 

both cases.  Furthermore, parameters in the SRS condition were estimated with 

minimal bias, whereas when subjects have different probabilities of selection, bias 

in the parameter estimates rose to unacceptable levels; close to 30%.  Some of the 

results were more unexpected. The Baseline Model simulations indicate that 

GMM do not classify individuals accurately, even when data are collected with 

equal probabilities of selection (SRS). Entropy does not meet the .80 threshold 

discussed previously, and improves as the probabilities of selection are more 

unequal. 

 

5.2 Incorporating Unequal Sampling Probabilities into GMM 

 

When the Baseline Model with data collected via SRS was compared to 

the Baseline Model where the data are collected with unequal probabilities of 

selection, it was demonstrated that the addition of a complex sampling structure 

did not substantially affect convergence rates, or standard errors.  However, the 

application of an unadjusted GMM to data with unequal probabilities of selection 

resulted in substantial bias in parameter estimates. Therefore, it is important to 
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identify methods that would allow GMM to estimate parameters more accurately 

under these conditions.  

To identify these methods, it is useful to return to the results of the 

decomposition analysis presented in Section 4.5. Here, we found that two of the 

manipulated conditions accounted for substantial amounts of variability in 

parameter estimates: mean separation and experimental model used. When the 

mean of one factor differed between classes, the parameter estimates associated 

with the opposite mean were estimated more accurately. For example, when the 

mean of the intercept factor differs from class 1 to class 2, the mean slope and 

slope variance parameters tend to be estimated with more accuracy. This finding 

is generally consistent with previous research which has found that class 

separation is a major factor influencing the performance of mixture models.  

Lubke and Muthén (2007), found that in general, classes have to be separated at 

least by a multivariate Mahalanobis distance of 1.5 or greater to successfully 

estimate parameters (proportions of recovered parameters above .90).  However, 

in an empirical study, mean separation is not usually under the control of the 

researcher.   

More importantly, from a practical perspective, the decomposition 

analysis also found that the type of model used explained substantial amounts of 

variance in the parameter estimates. Of the experimental models, Model I 

produces the best results, although the percentage of parameter bias is still 

substantially more than when the Baseline Model is correctly applied to data 

sampled via SRS, as shown in Table 61. This implies that, while adding weights 
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to the Baseline Model may decrease the amount of bias slightly, the parameter 

estimates still cannot be trusted.  

Table 61:  Average proportional parameter bias* across all tested models.  

Parameters 
Baseline Model 

Model I Model II Model III 
SRS Sample 

Intercept mean (class 1) 0.70 17.75 17.80 24.30 29.08 

Slope mean (class 1) 1.98 18.05 19.34 23.12 16.28 

Intercept variance 2.24 23.43 21.65 37.73 29.79 

Slope variance 2.25 45.95 35.76 36.65 35.51 

Mixing proportion 2.14 42.51 18.12 42.69 18.80 

Intercept mean (class 2) 0.28 13.28 17.99 2.99 31.26 

Slope mean (class 2) 0.60 42.21 22.73 21.24 28.03 

Average over all parameters 1.45 29.03 21.91 26.96 26.96 
*Absolute values 

It is unclear whether these finding are specific to the population model 

tested. It seems reasonable to expect that the pattern of bias observed in any given 

situation might be somewhat idiosyncratic and related to the exact characteristics 

of the population model. Regardless, these results clearly demonstrate that all 

GMM adjustments tested (Experimental Models I – III) suffer from a substantial 

amount of parameter bias under the conditions set forth in this study.  Of the 

Experimental Models, Models II and III performed the worst.  However, even for 

Model I, the percentage of bias in parameter estimates is still unacceptably high. 

It was hypothesized that, even though the sample sizes tested were 

considerably larger than presently found in the applied literature, they may still be 

too small to accurately estimate parameters. Five additional runs were conducted 

at a sample size of 500,000 to test this hypothesis. These additional runs resulted 

in parameter estimates that were similar to the original estimates presented earlier.  

Therefore, it is unlikely under these conditions, that an increase in sample size 

above those already tested will improve GMM parameter estimates. 
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These results are disappointing. It was hoped that a simple strategy to 

adjust GMM for disproportionate sampling could be developed to reduce bias in 

parameter estimates to acceptable levels. This was clearly not the case. 

In terms of convergence, the Baseline Model and Model I both had 

excellent rates of convergence (100% and 91.7% respectively).  However, Models 

II and III had very poor rates of convergence (61.1% and 69.4% respectively).  In 

mixture models, convergence is determined not only by the derivatives of the log-

likelihood but also by the absolute and relative changes in the log-likelihood and 

the changes in class counts. Thus, the computational load of GMM estimation is 

extremely heavy. As models become more complex, they become more difficult 

to estimate as evidenced by failed M step iterations, a nonpositive Fisher 

information matrix, or other computational problems (Wang & Bodner, 2007).  

Although the decomposition analysis did not indicate that sample size 

accounted for a substantial amount of variability in the number of iterations 

needed to attain 1,000 properly converged replications, it was hypothesized that a 

dramatic five-fold increase in sample size might improve the convergence rates of 

Models II and III. Therefore, five additional runs of these two experimental 

models were conducted at a sample size of 500,000. All of these previously non-

converging cells converged at this sample size. Despite the fact that these 

additional runs indicate that a much larger sample size will improve convergence, 

it is important to note that the resulting parameter estimates still evidenced a 

substantial degree of bias.  
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In an applied setting, a useful way to avoid convergence problems due to 

poor starting values is to build up a model by estimating the model parts 

separately to obtain appropriate starting values for the full model. Furthermore, 

some researchers (e.g., Greenbaum et al., 2005; Muthén, 2004) have 

recommended specifying the growth shape in each latent class according to a 

priori theoretical hypotheses to reduce the computational load. 

Entropy values from this study were generally poor, with an average of .65 

(ranging from .38 - .90). This range is similar to that of Mann (2009), whose 

entropy values ranged from .33 to .70.  Model II performed very poorly in terms 

of entropy, with no cell reaching the .80 threshold. However, Models I and III 

performed better, with 8 and 10 cells (respectively) making the cutoff. In general, 

Models I and III obtained satisfactory results if both the intercept and slope means 

differed from class 1 to class 2.  The Baseline Model also resulted in 12 cells with 

entropy values of .80 or more. In this case, the highest values were found when 

the stratification resulted in a large difference in probability and only the slope 

mean differed between classes. 

It is possible that Entropy may not be an adequate measure of correct class 

assignment. Mann (2009), in her simulation study of one and two factor mixture 

models, used the entropy measure to predict correct class assignment in a simple 

linear regression. She found that for over 80% of her cells, the regression 

coefficients were negative, indicating an inverse relationship between correct 

class assignment and entropy. For the remaining cells with positive regression 
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coefficients ―little of the variation in correct class assignment could be explained 

by entropy‖ (p. 99).   

 

5.3 Recommendations 

 

This research has found that a model-based approach (Experimental 

Models II and III) does not improve the accuracy of parameter estimates when 

individuals are sampled with disproportionate sampling probabilities. Therefore, 

the use of the stratification option in Mplus to adjust for a stratified sample is not 

recommended. Not only does this method often fail to converge, when it did 

converge the parameter estimates had unacceptable levels of bias.  In fact, for 

Models II and III, simply ignoring the sampling structure of the data and using the 

Baseline Model sometimes provides slightly better parameter estimates, without 

the convergence problems. Even if the parameter estimates were accurate, sample 

designs for large, nationally representative data sets are often too complex to 

model through the use of covariates. 

The weighted model (Model I) performs the best out of all of the models 

tested, but still results in parameter estimates with unacceptably high percentages 

of bias. The estimated parameters were not that much more accurate than the 

unadjusted Baseline Model. In fact, Stapleton (2006) found similar results using 

effective weights in a more general SEM framework and subsequently advised 

against their use in SEM. It is important to note that, although Mplus was 

provided with effective weights in Models I and III, the program rescales all 
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weights to relative weights, which sum to the sample size. For a detailed 

explanation of this, the reader is directed to Asparouhov (2005). 

Although it is possible that this rescaling of the weights may have 

impacted the accuracy of parameter estimates in Models I and III, it seems 

unlikely, as Model II did not use weights, and also exhibited considerable bias. It 

is more likely that the mean separation and variance of the manifest variables are 

to blame. If the distributions of the manifest variables from one class overlap too 

much with the variables in the second class, the aggregate distribution becomes 

unimodal, making it difficult for the algorithm to distinguish among the latent 

classes and thus affecting the accuracy of parameter estimates.  That is, if 

individuals are assigned to the wrong latent class, then class specific parameters 

will not be estimated accurately. Figures 6 and 7 below provide the histograms of 

one manifest variable used in this research.  Figure 6 illustrates the distribution of 

this variable, conditional on class, while Figure 7 shows that when these data are 

combined the resulting distribution looks disturbingly normal.  

Figure 6. Distribution of class 1 (top) and class 2 (bottom) manifest variable 
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Figure 7. Combined distribution of manifest variable 

 

One way to minimize the problem of overlapping distributions is to ensure that 

there is more separation between the means.  However, the degree of variability 

around the means also play a factor.  If this variability is reduced, less of the 

distributions would overlap. Unfortunately, neither of these two factors are likely 

to be within the control of the applied researcher. 

A potential way for empirical researchers to improve class assignment is 

to add class-predicting covariates to the model (Lubke & Muthén, 2007). 

However, these predictors would make the model more complex, and so 
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convergence problems may result. Although the results reported here only include 

a handful of approaches to modeling sample data with disproportionate 

probabilities of selection, the results from this research are not encouraging.  In 

sum, the research reported here seem to indicate that GMM should not be used 

when data are sampled with disproportionate probabilities. Researchers should 

therefore attend to the study design and data collection strategies when 

considering the use of a Growth Mixture Model in the analysis phase. Especially 

in secondary analyses of nationally representative data sets, it is important to 

carefully review the documentation pertaining to data collection, especially the 

use of stratification.  

If GMM are used with data sampled with differing probabilities of 

selection, there are two potential ‗work around‘ solutions. One would be to 

analyze each stratum in a separate Growth Mixture Model, and then weight and 

combine these separate parameter estimates. The second would be to randomly 

delete cases from the larger strata until the sample resembles one collected via 

SRS. These data could then be analyzed with a conventional Growth Mixture 

Model. 
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