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This thesis focuses on tracking and mensuration in surveillance videos. The

first part of the thesis discusses several object tracking approaches based on the

different properties of tracking targets. For airborne videos, where the targets are

usually small and with low resolutions, an approach of building motion models for

foreground/background proposed in which the foreground target is simplified as a

rigid object. For relatively high resolution targets, the non-rigid models are applied.

An active contour-based algorithm has been introduced. The algorithm is based on

decomposing the tracking into three parts: estimate the affine transform parameters

between successive frames using particle filters; detect the contour deformation using

a probabilistic deformation map, and regulate the deformation by projecting the

updated model onto a trained shape subspace. The active appearance Markov chain

(AAMC). It integrates a statistical model of shape, appearance and motion. In the

AAMC model, a Markov chain represents the switching of motion phases (poses),

and several pairwise active appearance model (P-AAM) components characterize the

shape, appearance and motion information for different motion phases. The second



part of the thesis covers video mensuration, in which we have proposed a height-

measuring algorithm with less human supervision, more flexibility and improved

robustness. From videos acquired by an uncalibrated stationary camera, we first

recover the vanishing line and the vertical point of the scene. We then apply a single

view mensuration algorithm to each of the frames to obtain height measurements.

Finally, using the LMedS as the cost function and the Robbins-Monro stochastic

approximation (RMSA) technique to obtain the optimal estimate.
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Chapter 1

Introduction

1.1 Video Tracking and Mensuration

Video-based object tracking and recognition is an active research topic in com-

puter vision. It concerns the location of a particular object at a given time and the

recognition of the object. Conventional methods have considered the problem as

a frame-to-frame operation [1] [2]. Various features, such as contours, corners [3],

shape, and color [4] have been used. Features detected in one image are matched

to corresponding features in the previous image. The shortcoming of feature-based

methods results from the unreliability of feature detection due to noise and occlu-

sion. An alternative approach was introduced in [5], which watches for activity in

an environment and detects regions of change that might represent objects added

to or removed from the scene after the activity has ceased locally. This approach

views the problem as a discrete process, integrating all the disappearances and reap-

pearances into one object location/history model. Probabilistic analysis has gained

significant attention after the Kalman filter approach was proposed in [6], which

works by predicting the location of the features being tracked in the next image,

then using the error between the predicted and measured location to update the

predictive model. The seminal work of Isard and Blake [7] extended the Kalman

filter to more general problems. Their contribution introduced a time series state
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space model parameterized by a tracking motion vector, which may represent trans-

formation parameters. The CONDENSATION algorithm, originally proposed in [8]

in the signal processing literature, also known as the particle filter (PF), provides a

numerical approximation to the posterior distribution of the motion vector at time

t given the observations up to t. The algorithm has been used to solve many vision

tasks as reported in [9], [10], [11].

The basic idea of this algorithm is: Given the state transition model char-

acterized by the state transition probability p(θt|θt−1) and the observation model

characterized by the likelihood function p(Yt|θt), the PF is used to approximate the

posterior distribution p(θt|Y1:t) by a set of weighted particles St = {θ(j)t , ω
(j)
t }Jj=1

with ΣJ
j=1ω

(j)
t = 1.

A new framework was proposed in [10], which can not only simultaneously

perform tracking and recognition, but also improve the recognition rate compared

to the conventional methods without any reduction in tracking accuracy. To make

this algorithm more reliable, an adaptive approach uses the following strategies: (1)

employing an adaptive appearance model and an adaptive velocity motion model

[12] for representing inter-frame appearance changes. (2) constructing intra- and

extra-personal spaces to model the appearance changes between video frames and

gallery images. (3) exploiting the fact that the gallery images appear as frontal

views. By embedding these abilities in a PF, enhancements in both stability and

accuracy are achieved when confronted by pose and illumination variations.
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1.1.1 Video Surveillance

Our tracking system applies to detecting, tracking and recognizing objects in

surveillance video sequences. Therefore, a short review of relevant work from video

surveillance literature is presented.

Automated video surveillance addresses the observation of people and vehicles

in a busy environment, hopefully leading to an understanding of their actions and

interactions. The technical issues involve moving target detection, tracking, classifi-

cation, motion analysis, and activity understanding. In addition to obvious security

applications, video surveillance techniques have been employed to measure traffic

flow, detect accidents on highways, monitor pedestrian congestion in public spaces,

and compile consumer demographics in shopping malls and amusement parks etc

[13]. Typically, the basic techniques required for video surveillance are extraction

of moving objects, continuous tracking of objects over time, and classification of

objects of interest. MIT’s PFinder system tracks a human’s head, hands, torso, and

feet. [4]. In [14], motion, color and stereo triangulation are used to detect humans

in front of a smart kiosk. In [15], the VSAM project addressed the task of tracking

multiple targets (people and vehicles) in cluttered scenes using multiple cameras.

Simple classification into human, vehicle or clutter categories is performed. Other

systems that can detect simple activities involving interactions with tracked objects,

such as the one reported by Morris and Hogg [16], statistically model the interactions

between people and cars. The W 4 system [17] detects and tracks multiple people,

carried objects and exchanges. Irani and Anandan [18] describe a mosaic-based ap-

3



proach for representing a tracked object in a scene, while another work from the MIT

AI lab uses an adaptive background model to track and classify moving objects [5].

Another task in a surveillance system is classifying human movement patterns into

finer categories. Davis and Bobick use a view-based “temporal template” approach

for classification [19]. [20] uses coupled Hidden Markov Models (HMM) to represent

gestures involving both arms. The same framework is used in [21] to model human

interactions.

1.1.2 Research Motivation

Generally, surveillance sequences have some special characteristics. A large

portion of these videos suffer from poor resolutions. Most of the objects being

tracked change directions. The objects are usually small, with low-contrast from the

surroundings. Sometimes, it is even difficult to locate the target using human eyes.

Furthermore, cameras capturing videos are not always fixed. Therefore, failures

often occur when applying the traditional state-of-the-art methods because they

have some limitations. This motivates us to find alternative approaches to overcome

these limitations.

One of the limitations is introduced by the assumption of an affine transform

model in algorithms. In our applications, the affine transform is not sufficient to

describe the appearance changes in a 3D scene. Therefore, an extension of the algo-

rithm suited to more general situations is initiated by representing the object motion

using a 3D transformation. By doing this, the model assumption is generalized from

4



an affine transformation to a perspective transformation. The core of the algorithm

is a trilinear tensor operator that links point correspondences across three images to

represent the 3D transformation among the different views [22]. We first employ the

affine model to obtain sets of corresponding points, which then are used to estimate

a trilinear tensor. By synthesizing a novel view from the derived tensor, we refine

our motion prediction. Meanwhile, the desired virtual view is also used to update

the appearance model. By repeatedly applying the tensor operations in a sequence

of reference images in an estimate-refine cycle, we extend the previous tracking and

recognition algorithm to a more general model. In the most significant aspect of our

approach, we obtain our 3D transformation model without invoking the burdensome

processes of explicitly recovering a depth map or camera parameters. This makes

the entire system more robust and efficient.

Poor video quality and the dimness of the object cause other difficulties. Ex-

periments show that the algorithms work well on large objects, but less so for small

objects, especially in surveillance applications, in which a target may have only

tens of pixels. Typically, tracking is done so that pixels belonging to the moving

objects are different in intensity, chromaticity values and motion when compared

to the background pixels. Therefore, background substraction is a much studied

technique for object tracking. Typical background subtraction algorithms assume a

static background and some prior knowledge of the background. These requirements

limit the applications of the background-subtraction algorithm for object tracking.

Such considerations lead us toward a new statistical method for tracking objects

in a low-resolution surveillance video, which uses a time series state space model

5



parameterized by a tracking motion vector, denoted by θ. In order to overcome the

challenges from the differences between the intensities of background and foreground

object not being significant or an insufficient number of target pixels, we integrate

intensity and motion information. Motion information helps to discriminate the

moving objects from the relatively still background. In the proposed algorithm, the

difference images are used as measurements of observation to estimate the motion

state of the model.

Typical classification systems for video surveillance perform either object de-

tection without prior segmentation or object classification after detection. Systems

of the latter type are part of larger systems which first perform tracking, and we fo-

cus on such systems in our research. After tracking the moving objects, features are

extracted for classifications. These features include raw appearance, color, texture,

shape, and motion. One critical step in all classification methods includes selecting

suitable features from the whole feature set. In our study, we have explored several

classification methods from different features. Our goal is to build an object clas-

sification system to distinguish vehicles and pedestrians based on tracked data and

extracted features.

Popular video camera surveillance systems require us to gain an understanding

of the event or identify a particular target. One factor for identification is the size of

the target, for instance, a human’s height or a vehicle’s length. Several techniques

have been developed for obtaining size information from video. Our goal is to

measure an object in a video sequence, more particularly, in an airborne surveillance

video sequence. We can extract several types of measurements. We will concentrate
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on measurements of: 1) object height; 2) relative size ratio between objects; and 3)

the camera’s position. Generally, the difficulties of measuring from video sequences

result from: (1) low image quality, (2) little to no information concerning the camera

parameters; and (3) the absence of stereo-view. Therefore, classic stereo algorithms

do not really suit the task. Our research aims to develop a measurement system

based on monocular videos and uncalibrated video cameras, in the sense that camera

constant (focal length), principal point location and the image affinity parameters

are irrelevant (radial lens distortion is not taken into account). The system employs

a two phase approach. In the first phase, object tracking is performed using the

active contour approach, which has the advantage that it can provide tighter object

boundaries. This phase is used to segment the object from its surroundings. The

second phase implements mensuration algorithms using a single view metrology

approach based on 1) a reference height; 2) some vanishing points estimated from

object motion to determine the horizon line of a reference plane; and 3) a vertical

vanishing point.
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Chapter 2

Rigid Object Tracking: Using Foreground and Background Modelling

2.1 Introduction

VISUAL TRACKING is an essential component of many applications such as

intelligent robotics, ground and airborne video surveillance, diagnosis and monitor-

ing of movements disorders, etc. While success has been attained when the video

quality and content are good for tracking purpose, challenges exist when dealing

with surveillance videos, in which targets are of low contrast with respect to the

background or extremely small because the camera is too far away. In addition,

motion blur, camera motion, non-stationary background, poor illumination, and

non-uniform object motion compound the problem. Developing a visual tracking

algorithm that achieves both robustness and accuracy under operational conditions

remains an open problem.

Various approaches have been proposed to solve surveillance tracking prob-

lems. They can be roughly classified into four broad categories. Algorithms in each

category perform well in solving specific tracking problems.

• Foreground Tracking [23, 4] These methods directly track the objects us-

ing either global transform estimation or feature correspondences. Such ap-

proaches work well when the object feature points are easy to detect and

track from frame to frame. But when the object itself is dim, finding point
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correspondences across frames becomes difficult.

• Background Subtraction [17, 24] Algorithms in this category detect fore-

ground objects using the difference between the current frame and an image of

the scene’s static background. When the camera is stationary, this approach

usually provides good tracking results. When the camera is moving, the back-

ground estimation itself is difficult. Therefore, we seldom see this approach

applied to moving-camera scenarios.

• Motion-based Tracking Approaches in this category [25, 26, 12] use motion

information as a dominant cue. It groups consistent visual motions over time.

This approach certainly performs well with a moving target, which provides

adequate motion information for the system to detect or locate the target.

However, when the target is in very slow motion or still, the approach fails

because sufficient motion information is not available.

• Appearance-based Tracking These approaches [27, 28] construct 2D image-

based templates to model changes explicitly in target regions. For example,

the mean-shift algorithm [29] uses viewpoint-insensitive appearance models

to track an object without any prior knowledge of camera motion or scene

structure. For targets with high resolution or high contrast, appearance-based

approaches can achieve precise results. Unfortunately, when the target only

occupies 20-40 pixels in the image, the appearance-based approaches usually

fail.

Therefore, the behaviors of tracking algorithms differ when the operate un-
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der different settings. Generally, most of these algorithms perform well for large

objects, but less so for small objects, especially in surveillance applications with

a small amount of pixels per target. In this chapter, we will concentrate on the

moving-camera small-object tracking problem and improve two metrics that char-

acterize the system performance: robustness and accuracy. The general questions

that we address are: How to represent the small object? How to incorporate both

object motion and camera motion in the tracking system? How to define a robust

observation model? For example, both intensity-based and edge-based trackers are

often distracted by other objects or low-contrast background clutter, which means

that no single cue can perform efficiently in all kinds of situations. In the case of

a moving camera, two different motions are caused by different sources, i.e., cam-

era motion and object motion. We represent background and foreground motion

parameters using two different sets of parameters.

Based on the above considerations, we present a robust method for tracking

objects in surveillance videos characterized by a dynamic motion model. It consists

of both background and foreground motions in the system state vector and the

measurement model that fuses motion and appearance cues. The first feature aims

to improve the tracking accuracy of the system, while the second one enhances the

system robustness.

The dynamic model in the system is a time series state space model param-

eterized by a tracking motion vector, denoted as θ. To describe the two types of

motions, the motion vector θ for the entire system consists of two subsets of param-

eters for background and foreground motions, respectively. The advantage of such a
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decomposition is that we can compensate for the camera motion by first stabilizing

the image using the subset of the background motion parameters.

θ = (θF , θB), (2.1)

where θB represents the background parameter set, θF represents the foreground

parameter set.

The measurement model fuses motion and appearance cues so that the ap-

pearance cue can distinguish objects from the background due to different intensity

values, while the motion cue helps to discriminate moving objects from relatively

still backgrounds. When used separately, neither is sufficiently robust to deal with

all video sequences. So in the proposed algorithm, we integrate the two cues in the

measurement model.

With the dynamic model and measurement model defined, we use a particle

filter as our basic tracking algorithm. The algorithm provides a numerical approxi-

mation to the posterior distribution of the motion vector at time t, given the observa-

tion up to t, i.e., p(θt|Y1:t), where Y1:t is the observations of video frames up to time t.

Since the system simultaneously estimates both background and foreground motion

parameters in a single dynamic model, the efficiency of the algorithm is increased

for: 1) segmenting background and foreground objects; 2) obtaining both motion

and intensity information from background motion vector θB; and 3) tracking the

foreground target based on the estimated foreground motion vector θF .
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2.2 Related Literature

The foreground-based tracking method focuses on analyzing the foreground

correspondence using specific object information over time, such as edges, or at a

high level, object parts. Hogg [30] implemented a low level foreground tracking

algorithm in the “Walker” system by extracting and matching object edges. The

“Pfinder” system proposed by Wren et al. [4] is an example of high level approach,

where the human body is represented by blobs and tracked from frame to frame.

The correspondence analysis is often supported by prediction of object movements

or regions-of-interest. An evolving model can accomplish prediction [31]. An al-

ternative statistical approach involves learning probabilistic motion models prior to

operation [32], using, say, a Kalman filter [33] or the CONDENSATION algorithm

[23]. The latter extends the former and enables tracking in the presence of occlu-

sion, non-Gaussian noise and cluttered backgrounds. It uses complex dynamics by

sampling the posterior distribution estimated in the previous frame and propagates

those samples to estimate the posterior for the current frame.

The background-based tracking approach relies on background estimation to

detect and track the foreground objects. The objects are obtained by change detec-

tion using adaptive background subtraction, yielding a bounding box surrounding

the target. Most of the methods in this category employ a single Gaussian [4]

or a mixture of Gaussian background models [34]. The W4-system developed by

Haritaoglu et al. [17] operates on monocular gray scale images and infrared im-

ages, detecting and tracking body parts. Other approaches include the three-stage
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(pixel/region/frame) Wallflower approach [35] and a two-stage color and gradient

technique [24]. Further improvement is needed when handling dynamic backgrounds

and non-trivial movement patterns.

A wide variety of tracking methods support the hypothesis that the perfor-

mance of a tracker primarily depends on how distinguishable the object is from its

surroundings. Several approaches can discriminate the object from the background.

Collins and Liu [36] proposed an algorithm for on-line selection of discriminative fea-

tures during tracking. The algorithm focuses on adaptively selecting the top-ranked

discriminative appearance features in the entire feature space for tracking.

Other than the appearance cue, cues can also be derived from motion, color

distribution, etc. Several real-time tracking algorithms reported in the literature

fuse these cues. Viola et al. [37] proposed a pedestrian detection system that inte-

grates intensity and motion information. The detector is trained (using AdaBoost)

to take advantage of both motion and appearance information. Some approaches

select the “optimal” cue for the entire sequence with other less reliable cues as sup-

porting cues. A good example of cue selection is found in the layered hierarchy

extraction algorithm proposed by Toyama and Hager [38]. ICONDENSATION, as

an extension of CONDENSATION with importance sampling, proposed by Isard

and Blake [9] also employed a multi-cue scheme by complementing the original in-

tensity gradient cue with a supportive color cue. Sidenbladh et al. [39] incorporated

motion measurements in the particle filter framework. Odobez et al. [40] improved

the particle filter by using transition prior as the proposal distribution. Some ap-

proaches assume that each cue has the same reliability in all frames. For example,
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Birchfield [41] used intensity and color distribution of the target with equal con-

fidences for robust head tracking. Democratic integration, proposed by Triesch et

al. [42], introduced an adaptive multi-cue integration so the contribution of each

cue varies according to its reliability in each frame. Such a strategy improves the

robustness of the system in different visual situations. Vermaak et al. extended the

idea for adaptation of multiple cues in the particle filter framework [43].

We present a comprehensive method that builds upon the reviewed methods.

Utilizing the particle filter as a basic framework, the proposed approach combines

both background and foreground motion parameters in a single state vector to take

advantages of both background and foreground tracking. Two statistical features,

motion and appearance information, are used to construct the observation model in

an adaptive manner.

2.3 Models

Given the observations Y1:t, with the first-order Markovian assumption p(θt|θ1:t−1) =

p(θt|θt−1), the problem of tracking can be formulated as a Bayesian filtering problem

for estimating θt that maximizes

p(θt|Y1:t) ∝ L(Yt|θt)
∫
p(θt|θt−1)p(θt−1|Y1:t−1)dθt−1 (2.2)

The motion transition probability p(θt|θt−1) predicts θt given the previous state θt−1.

The likelihood function L(Yt|θt) computed using themeasurement model, reflects the

probability of observing the measurement given the state θt. This section presents

the dynamic motion model and motion transition. The measurement model is di-
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cussed in Section 2.5.

2.3.1 State Vector of The Model

How to find what has changed between two successive frames? The most direct

way is to check the absolute differences, based on the assumptions of a stationary

camera and a noise-free image. Such assumptions are rarely valid in practice. We

stabilize the image by compensating for the inter-frame differences caused by the

camera motion, including the stabilization parameters as the background motion

vector in the system state vector. The position of the target can be derived based

on the foreground motion parameters. We use the 2D affine transform to represent

the foreground motion. Therefore, we define the state vector of our tracking system

as:

θ = (θF , θB); θF = (αF , dxF , dyF , sF ); θB = (αB, dxB, dyB, sB), (2.3)

where the image rotation angle αB, displacement (dxB, dyB) and scale sB are four

parameters in θB describing the background change caused by the moving cam-

era. The pixel movement belonging to the background between two successive time

instants t and t− 1 is related by

xt = sBt

 cos(αB
t ) sin(αB

t )

− sin(αB
t ) cos(αB

t )

xt−1 + dxB
t = T {xt−1; θ

B
t }, (2.4)

where xt = (xt, yt)
T is the pixel coordinate at time t, and dxB

t = (dxBt , dy
B
t )

T . The

interpretation of the components in θF bears similarities to that of θB. Specifically,

we concentrate on the problem of surveillance tracking, where the object usually oc-
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cupies a small number of pixels and find that the translation of the object (dxF , dyF )

is sufficient to describe the movements of the object. So, we simplify the foreground

state vector as

θF = (dxF , dyF ). (2.5)

2.3.2 Background Motion Model

The state transition is approximated by using a first-order Markov chain and

a Gaussian noise model. One component of noise, denoted by µt, is modeled using

the zero-mean Gaussian distribution accounting for sensor noise, digitization noise,

etc; the other, denoted by νt, is modeled as a non-zero-mean Gaussian distribution

caused by the camera motion. The background motion equation is written as:

θBt = θ̂Bt−1 + νBt + µB
t (2.6)

The estimation of νt is predicted from the previous particles and the assump-

tion of brightness invariance [27], which means that there exists a θBt such that

Y B
t ≃ T {Y B

t−1; θ
B
t }, where Y B

t is the image of the background with foreground

patches cropped according to the estimated foreground parameters. Approximating

T {Y B
t−1; θ

B
t } via a first-order Taylor series expansion around θ̂Bt−1 yields:

T {Y B
t−1; θ

B
t } ≃ T {Y B

t−1; θ̂
B
t−1}+ Ct(θBt − θ̂Bt−1) = T {Y B

t−1; θ̂
B
t−1}+ Ctνt (2.7)

where Ct is the Jacobian matrix. After substituting Y B
t into (2.7), we obtain:

Y B
t ≃ T {Y B

t−1; θ̂
B
t−1}+ Ctνt

νt ≃ −Bt(T {Y B
t−1; θ̂

B
t−1} − Y B

t ) (2.8)
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where Bt is the pseudo-inverse of the Ct. The estimation of Bt is performed based

on the available data ΘB
t−1, denoting the particle sample set of {θB(j)

t−1 }Jj=1, and YBδ
t−1,

denoting the difference between the set of all background samples and the image of

the background at previous time, i.e., {Y B(j)
t−1 − Y B

t−1}Jj=1.

Using the differences in motion vectors and the observation matrix as inputs,

we obtain a least square (LS) solution to Bt as:

ΘBδ
t−1 = [θ

B(1)
t−1 − θ̂Bt−1, . . . , θ

B(J)
t−1 − θ̂Bt−1]

Bt = (ΘBδ
t−1YBδ

t−1)(YBδ
t−1(YBδ

t−1)
T )−1 (2.9)

In practice, the matrix YBδ
t−1(YBδ

t−1)
T is often rank-deficient due to the large number of

the particles being used. We perform a singular value decomposition (SVD) of YBδ
t−1,

i.e., YBδ
t−1 as USVT . Then Bt = ΘBδ

t−1VS−1UT or by retaining the top q components,

we have Bt = ΘBδ
t−1VqS

−1
q UT

q . νt can be computed using Eq.(2.8).

2.3.3 Foreground Motion Model

Based on the definition in Eq.(2.5), the foreground motion can be modeled

as the speed of the object in x and y direction. We simply formulate the motion

transition equation as:

θF = θ̂Ft−1 + µF
t (2.10)

where the random variable µF
t represents the changes in motion, represented as

a zero-mean Gaussian distribution. When the complex foreground motion model

with affine parameters is applied, the prediction process is similar to that of the

background motion model illustrated in Section 2.3.2.
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2.4 Algorithms

2.4.1 The Particle Filter

The optimal posterior density distribution of the Bayesian filtering problem in

Eq.(2.2) can be analytically computed only in a restrictive set of cases. In general, an

expression for the optimal density function cannot be determined analytically. The

particle filter algorithm offers a numerical tool to approximate the optimal Bayesian

solution. The particle filter was originally proposed as a probability propagation

model in [8] in the signal processing literature and has been used to solve many

tasks [23, 9] in computer vision. It approximates the current posterior distribution

p(θt|Y1:t) by a set of weighted particles St = {θ(j)t , ω
(j)
t }Jj=1 with ΣJ

j=1ω
(j)
t = 1, where

J is the number of particles. To avoid sample impoverishment [44, 45], variations of

particle filter, such as Bayesian bootstrap filters, control the distribution of particles

by weights. The weights ω
(j)
t are updated recursively as follows [46]:

ω
(j)
t ∝

L(Yt|θ(j)t )p(θ
(j)
t |θ

(j)
t−1)

π(θ
(j)
t |θ

(j)
t−1, Y1:t)

(2.11)

where π(θ
(j)
t |θ

(j)
t−1, Y1:t) is the particle sampling proposal. Then, a resampling step

is added to eliminate particles with lower weights and avoid the potential of the

particle set collapsing into a single particle of higher weight. Selection of π is usually

dependent on the application. In our approach, the proposal π is equal to the

transition probability p(θt|θt−1), indicating that the new weights are updated as:

ω
(j)
t ∝ L(Yt|θ

(j)
t ) (2.12)
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Accordingly, the propagation is employed as follows: Given St−1 = {θ(j)t−1, ω
(j)
t−1}Jj=1,

which is weighted according to L(θt−1|Y1:t−1), we first resample St−1 to obtain a new

set with equal weights {θ
′(j)
t−1, 1}Jj=1, then propagate θ

′(j)
t−1 to θ

(j)
t using a prediction

scheme discussed in Section 2.3. It is worth noting that although multiple cues are

used later in measurement models, only the appearance cue is involved in predicting

the motion models.

2.4.2 Iterative Optimization for Motion Estimation

According to the definition of the state vector in Eq.(2.3), the posterior distri-

bution becomes a joint distribution of background and foreground motion parame-

ters, which is p(θFt , θ
B
t |Y1:t). Our goal is to seek the optimal θ that maximizes the

posterior probability, which requires solving θBt and θFt simultaneously.

(θ̂Ft , θ̂
B
t ) = arg max

(θFt ,θBt )
p(θFt , θ

B
t |Y1:t). (2.13)

Because of the independence between the camera motion θBt and the target motion

θFt , i.e.,

p(θFt , θ
B
t |θFt−1, θ

B
t−1) = p(θFt |θFt−1)p(θ

B
t |θBt−1), (2.14)

Eq.(2.2) can be expressed as

p(θFt , θ
B
t |Y1:t) ∝ L(Yt|θFt , θBt )

∫
θFt−1

∫
θBt−1

p(θFt |θFt−1)p(θ
B
t |θBt−1)p(θ

F
t−1, θ

B
t−1|Y1:t−1) dθ

F
t−1dθ

B
t−1,

(2.15)

Given the high-dimensionality of the state vector θ, direct implementation of

the particle filter is inefficient. To this end, we follow a divide-and-conquer strategy
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(a) (b)

Figure 2.1: (a) The graphic model for iteratively determining θB and θF

at time t; (b) Progressively propagate the posteriors. The dashed lines
represent the importance sampling to propagate the probabilities from the
left side of the arrow to the right; the solid lines represent estimating the
posteriors in Eqs.(2.18) and (2.19); the dotted lines refer to the optimal
values of θBt or θFt determined by maximizing the posteriors in Eqs.(2.18)
and (2.19).

and develop an iterative algorithm similar to the expectation maximization (EM)

[47] method to find a local solution by iteratively improving θBt and θFt . Let τ denote

the index of iteration. With initial assumption of θFt,0 = θ̂Ft−1 and θBt,0 = θ̂Bt−1, we

iteratively fix θFt,τ as θ̂Ft,τ−1 and θBt,τ as θ̂Bt,τ and maximize the posteriors as follows

when τ ≥ 1:

θ̂Bt,τ = argmax
θBt,τ

p(θ̂Ft,τ−1, θ
B
t,τ |Y1:t). (2.16)

θ̂Ft,τ = argmax
θFt,τ

p(θFt,τ , θ̂
B
t,τ |Y1:t), (2.17)

The strategy can be illustrated using a graphic model in Fig.2.1 (a). For each frame,

multiple iterations are performed. However, based on experimental results, we have

found that 3-6 iterations suffice.

At time t and iteration τ , we have acquired the optimal estimate θ̂Bt,τ and θ̂Ft,τ .

The τ + 1th iteration is performed as follows:
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• As an intermediate step, we first substitute θFt in Eq.(2.15) by θ̂Ft,τ , leading to:

p(θ̂Ft,τ , θ
B
t,τ+1|Y1:t) ∝ L(Yt|θ̂Ft,τ , θBt,τ+1)

∫
θFt,τ

∫
θBt,τ

p(θ̂Ft,τ |θFt,τ )p(θBt,τ+1|θBt,τ )p(θFt,τ , θBt,τ |Y1:t−1)dθ
F
t,τ dθ

B
t,τ

= L(Yt|θ̂Ft,τ , θBt,τ+1)

∫
θBt,τ

p(θBt,τ+1|θBt,τ )p(θ̂Ft,τ , θBt,τ |Y1:t−1)dθ
B
t,τ . (2.18)

Eq.(2.18) has the same form as in (2.2), thereby indicating that the particle

filter algorithm can be applied to simulate p(θFt,τ , θ
B
t,τ+1|Y1:t) and obtain optimal

estimate θ̂Bt,τ+1.

• Similarly, we have

p(θFt,τ+1, θ̂
B
t,τ+1|Y1:t) ∝ L(Yt|θFt,τ+1, θ̂

B
t,τ+1)

∫
θFt,τ

p(θFt,τ+1|θFt,τ )p(θFt,τ , θ̂Bt,τ+1|Y1:t−1)dθ
F
t,τ .

(2.19)

We obtain the optimal estimate θ̂Ft,τ+1.

After a finite number (Nτ ) of iterations, we estimate the optimal state vector

θ̂t = θ̂t,Nτ at time t. Some issues need to be discussed further.

• Eqs.(2.18) and (2.19) show that two sets particles propagate in a progressively

coupled manner. Accordingly, we have two separate weight sets throughout

the iteration. We denote the weighted sample sets as {θF (j)
t−1 , ω

F (j)
t−1 }

JF
j=1 and

{θB(j)
t−1 , ω

B(j)
t−1 }

JB
j=1, with JB and JF denoting the numbers of particles for back-

ground and foreground respectively.

• To compute the iterations, we need to know the proposal densities p(θ̂Ft,τ , θ
B
t,τ |Y1:t−1)

and p(θFt,τ , θ̂
B
t,τ+1|Y1:t−1) in RHS of Eqs.(2.18) and (2.19). Invoking the impor-

tance sampling, the two proposal densities can be deducted from the posteri-

ors at iteration τ , p(θ̂Ft,τ−1, θ
B
t,τ |Y1:t) and p(θFt,τ , θ̂

B
t,τ |Y1:t) in LHS of Eqs.(2.18) and
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(2.19). For example, we have the weighted background sample set {θB(j)
t,τ , ω

B(j)
t,τ }JBj=1,.

We update the weighted sample as

ω
′B(j)
t,τ = ω

B(j)
t,τ

p(θ̂Ft,τ , θ
B(j)
t,τ |Y1:t−1)

p(θ̂Ft,τ−1, θ
B(j)
t,τ |Y1:t−1)

(2.20)

= ω
B(j)
t,τ

p(Yt−1|θ̂Ft,τ , θ
B(j)
t,τ )p(θ̂Ft,τ |θ̂Ft,τ−2)

p(Yt−1|θ̂Ft,τ−1, θ
B(j)
t,τ )p(θ̂Ft,τ−1|θ̂Ft,τ−2)

(2.21)

The updated sample set yields the posterior probability p(θ̂Ft,τ , θ
B(j)
t,τ |Y1:t−1) .

Similar updating rule can be applied to obtain p(θ
F (j)
t,τ , θ̂Bt,τ+1|Y1:t−1) . Fig.2.1

(b) illustrates the progressive deduction for the proposals.

• The propagation probabilities differ for τ = 1 and τ > 1. When τ = 1,

the particles are drawn following the prediction rule for the transition motion

model, discussed in Section 2.3, as well as the particle resampling and weight

updating. For τ > 1, both the old and new particles belong to the same time

instant. Therefore, no prediction is involved.

In summary, we have decomposed one significant optimization problem that

prohibits the direct use of the particle filter algorithm in the original state space into

two small optimization problems operating iteratively, each of which can be solved

using the particle filter algorithm. For brevity, in the following sections, we will

continue to use notations θBt and θFt rather than θBt,τ and θFt,τ to derive the likelihood

functions in Eqs.(2.18) and (2.19).

2.4.3 Algorithm Implementation

The tracking algorithm using the particle filter is briefly summarized as follows:
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S.1 Initialization: assume that the system starts at time 0, with initial location of

the target as x0 = (x0, y0)
T , and the initial sample set as {θB(j)

0 , ω
(j)
0,B}

JB
j=1 and

{θF (j)
0 , ω

(j)
0,F }

JF
j=1. Set t = 1. At time t ≥ 1,

S.2 Propagation: set {θB(j)
t,0 = θ

B(j)
t−1 , ω

B(j)
t,0 = ω

B(j)
t−1 }

JB
j=1 and {θF (j)

t,0 = θ
F (j)
t−1 , ω

F (j)
t,0 =

ω
F (j)
t−1 }

JF
j=1.

For τ = 1 : Nτ :

S.2.1 ∀j∈1:JB , resample {θB(j)
t,τ−1, ω

B(j)
t,τ−1} to {θ

′B(j)
t,τ−1, 1}, draw particles, form the back-

ground motion sample θ
B(j)
t,τ using (2.18), update the weights, compute the

likelihood function L(Yt|θ̂Ft,τ−1, θ
B(j)
t,τ ) and the posterior p(θ̂Ft,τ , θ

B(j)
t,τ |Y1:t);

S.2.2 Select θ̂Bt,τ = argmax
θ
B(j)
t,τ

p(θ̂Ft,τ−1, θ
B(j)
t,τ |Y1:t);

S.2.3 ∀j∈1:JF , resample {θF (j)
t,τ−1, ω

F (j)
t,τ−1} to {θ

′F (j)
t,τ−1, 1}, draw samples and form the

new foreground motion samples in Eq.(2.19), compute the likelihood function

L(Yt|θF (j)
t,τ , θ̂Bt,τ ) and the posterior p(θ

F (j)
t,τ , θ̂Bt,τ |Y1:t);

S.2.4 Select θ̂Ft,τ = argmax
θ
F (j)
t,τ

p(θ
F (j)
t,τ , θ̂Bt,τ |Y1:t);

S.3 Set θ̂Bt = θ̂Bt,τNτ
and θ̂Ft = θ̂Ft,τNτ

. Update particle weights ω(j). Update the current

target location:

x̂t = x̂t−1 + d̂x
F

t + d̂x
B

t = (xt−1, yt−1)
T + (dxFt , dy

F
t )

T + (dxBt , dy
B
t )

T

S.4 Set t→ t+ 1 and goto S.2 .

2.5 Measurements

The posteriors defined in Eqs.(2.18) and (2.19) involve the computation of the

foreground observation likelihood L(Yt|θFt , θ̂Bt ) and the background observation like-
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lihood L(Yt|θ̂Ft , θBt ), which characterize the measurement model of our system. This

section presents the measurement model and the computation of the observation

likelihoods.

2.5.1 Foreground Observation Likelihood

To further improve the robustness of the tracking system in dynamically chang-

ing environments, we fuse multiple cues when measuring foreground observations.

In our system, all visual cues contribute simultaneously to the overall observation

model, and the relative relevances of cues are determined by the frame currently

being processed, reflected by adaptive weights associated with the cues. This means

no cue is ordained as “optimal”, but the system itself weighs the contributions of

different cues according to existing conditions. We design a measurement model

that incorporates two principle cues, appearance and motion. Each cue generates

a likelihood function. These functions are not entirely independent but are indi-

rectly coupled by the result on which they agree [48]. We further assume that the

measurements are also conditionally independent given the state, so that the entire

likelihood can be factorized as

L(Yt|θFt , θ̂Bt ) =
∏

i∈{A,M}

L(Y (i)
t |θFt , θ̂Bt ), (2.22)

where Y
(A)
t and Y

(M)
t are the appearance and motion observations at t.

[49] reports an alternative integration technique, known as the “weighted vot-

ing” scheme that integrates the likelihoods derived for different cues as a weighted

sum. This scheme and ours differ in that each cue makes an independent decision
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before all the decisions are combined using a weighted sum. Such a strategy falls

short because sometimes unreliable cues may still significantly influence the result.

2.5.1.1 Motion-Cue Based Foreground Measurement Model

The motion cue is acquired using the temporal difference image, denoted by

∆t. It is estimated as:

∆t = Yt − T {Yt−1; θ̂
B
t }, (2.23)

where Yt and Yt−1 are the original frames, and T {•, θ̂Bt } is the stabilizing function

determined by parameter θ̂Bt . The advantage of using ∆t is as follows: with respect

to the background, most of objects of interests in surveillance videos are moving. In

such cases, motion information appears to be a decisive measurement to separate

the foreground object from the relatively static background, especially when the

intensities of background and foreground do not differ greatly. Two extreme exam-

ples are shown in Fig.2.2, where it is difficult to separate visually the foreground

from the background in the original data. But, if we use the difference images ∆t

shown in the second row, the targets are easily distinguished from the background.

In the third row, we show the edge maps of ∆t, in which the targets can be detected

directly.

To extract the motion information of a foreground object, the edge gradient

information of the ∆t is used. The edge image Et is generated as

Et = ∆t ⊗DoG, (2.24)

where ⊗ is a convolution operator and DoG is a 2D derivative of Gaussian (DoG)
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Figure 2.2: Examples of humans in low contrast imagery passing through
an open field. (upper) original images; (middle) part of ∆ images con-
taining the targets; (lower) part of the edge maps containing the targets.

26



filter. Without loss of generality, we assume that the motions of all pixels belonging

to the object are identical, because most objects in surveillance videos are small,

and the local motion variances of the same object can be ignored. Therefore, we can

use any feature pixels of the object, detected in Et, to represent the entire object.

Generally, a particular pixel in ∆t−1 image translates by dx = (dx, dy) in ∆t

image due to motion continuity, which is defined as θFt . The likelihood function of θFt

is estimated by introducing a cost function D(x;dx) that evaluates the discrepancy

of two corresponding regions from two successive edge images, Et−1 and Et. To

minimize the risk of drifting, we add a static component inspection by matching

a region between ∆t and ∆s. The latter is a static template obtained from the

first two frames in the sequence and remains constant during tracking. Therefore,

the cost function and the likelihood function both consist of two components, one

dynamic and one static, defined as (θFt ≡ dx):

DMD
t (x; θFt ) =

∑
y∈Wx

|Et(y − dx)− Et−1(y)|2

|Wx|
(2.25)

L(Y MD
t |θFt , θ̂Bt ) ∝ exp (−D

MD
t (x; θFt )

2σ2
MD

) (2.26)

DMS
t (x; θFt ) =

∑
y∈Wx

|Et(y − dx)−∆s ⊗DoG|2

|Wx|
(2.27)

L(Y MS
t |θFt , θ̂Bt ) ∝ exp (−D

MS
t (x; θFt )

2σ2
MS

) (2.28)

where Wx is a support rectangle region with x as its center, |Wx| is the number

of pixels in Wx, MD and MS represent the dynamic and static components of the

motion cue, respectively.
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2.5.1.2 Appearance-Cue Based Foreground Measurement Model

Another important cue is related to local appearance. A reference template is

generated for the object of interest. Candidate regions extracted from the current

frame are compared to this reference template, and the smaller the discrepancy

between the candidate and reference, the higher the probability that the object is

located in the corresponding region. The localization performance hinges on the

reference template selection. Similar to the motion cue, the appearance template

also contains two components [27], one stable and one dynamic, which enhances

the robustness of the system. The stable component is the object model manually

cropped in the initializing stage, denoted by Ts. The dynamic one is the tracked

object in time instant t−1, tuned to the same size of the stable template using scale

transform. It is updated at each time instant. Accordingly, the cost functions and

the likelihood functions are defined as:

DAD
t (x; θFt ) =

∑
y∈Wx

|Tt(y)− Yt(y − dx)|2

|Wx|
(2.29)

L(Y AD
t |θFt , θ̂Bt ) ∝ exp (−D

AD
t (x; θFt )

2σ2
AD

) (2.30)

DAS
t (x; θFt ) =

∑
y∈Wx

(|Ts(y)− Yt(y − dx)|2

|Wx|
(2.31)

L(Y AS
t |θFt , θ̂Bt ) ∝ exp (−D

AS
t (x; θFt )

2σ2
AS

) (2.32)

where AS and AD represent the static and dynamic components of the appearance

cue, Yt is the original image at time t, Tt and Ts are the dynamic and static templates.
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2.5.1.3 Adaptive Fusion Weights

One important factor that affects the effectiveness of multi-cue integration is

the fusion weight set containing weights assigned to all cues. The values of weights

reflect the contributions of the corresponding cues to the overall tracking system.

Since each cue contains two components, we have four associated weights, denoted

as {βc,t; c ∈ C = {AS,AD,MS,MD}}. They are determined by the information

reliability, which can be quantified based on the corresponding likelihoods. Hence,

multi-cue integration can be implemented using a weighted product of the likelihood

functions. The basic rule is that each cue associates with a score based on the error

between the saliency of the individual’s and the average’s.

In each frame, we adjust the fusion weights according to the current visual

context, allowing them to react to changing situation, and propagate them to the

next frame as updated fusion weights. Thus, the cues with less reliable information

are suppressed and those with reliable information contribute more to the fusion

process. So Eq.(2.22) is reformulated as:

L(Yt|θFt , θ̂Bt ) =
∏
c∈C

[L(Y c
t |θFt , θ̂Bt )]βc,t

∝ exp (−
∑
c∈C

βc,tDc
t (x; θ

F
t )

2σ2
c

) (2.33)

The adaptive weights βc,t are determined using a mechanism similar to democratic

integration [42]. Firstly, we measure the reliability in the form of the error associated

with each cue at t− 1:

Ēc,t−1 =
Dc

t−1(xt−1; θ̂
F
t−1)

2σc
(2.34)
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where xt−1 is the previous estimate of the object position, and θ̂Ft−1 is the foreground

displacement estimated in previous frame. Then, a score γc,t is approximated in

Eq.(2.35) and normalized to a reliability measurement qc in Eq.(2.36):

γc,t = exp(−aĒc,t−1) (2.35)

qc,t =
γc,t∑
i∈C γi,t

(2.36)

where a is a constant in the radial function. Finally, the weight βc,t is obtained as:

βc,t =
ξ

ξ + 1
βc,t−1 +

1

ξ + 1
qc,t (2.37)

where ξ is a constant to control the adjusting speed of the system to the weight βc,

and qc is a reliability measurement of cue c. The entire dynamics can be character-

ized by one equation:

ξβ̇c,t = qc,t − βc,t (2.38)

In Fig.2.3 we illustrate how the adaptive weights change under different sce-

narios. Sequence (a) shows a slow-moving pedestrian in a high contrast video, there-

fore, the intensity information is dominant. On the contrary, sequence (b) shows a

fast-moving pedestrian in a low-contrast video, and as a result, the weights for the

motion information are greater than those of intensity information. We also notice

that the dynamic components usually receive higher weights, because tracking re-

sults in previous frames help to generate reliable dynamic templates for likelihood

evaluation.
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(a)

(b)

Figure 2.3: Adaptive weights plot for different information cues. Plot (a)
shows a sequence containing slow-moving objects, where the weight plot
shows that intensity cue (both dynamic and static components) is dom-
inant in the observation model; Plot (b) shows a sequence containing
a fast-moving object, where the weight plot shows that motion cue (both
dynamic and static components) affects the observation model more than
the intensity cue does. “Dynamic” means the likelihood function is es-
timated with respect to a dynamic template, while “static” means the
likelihood function is estimated with respect to a static template.
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2.5.2 Background Observation Model

The likelihood function of the background observation model is much simpler:

only the appearance cue is considered. This is reasonable because the background

is large and usually contains more salient features. We define it as:

L(Yt|θ̂Ft , θBt ) ∝ exp (−
∥Y B

t − T {Y B
t−1; θ

B
t }∥

2σ2
B

), (2.39)

where Y B
t represents the background of the video frame Yt, with the foreground

region specified by θ̂Ft excluded.

2.6 Experiments

2.6.1 Experiment results

We applied our algorithm to different sets of outdoor surveillance video se-

quences containing moving people. Most are captured by moving cameras. Gener-

ally, the pedestrians, occupy only 20-40 pixels, which is small. Some of the targets

have weak intensity contrast with respect to the environment, on which the tradi-

tional trackers fail. In such cases, the weights of motion cues are expected to be

higher than those of appearance cues. On the other hand, when the targets move

slowly with a relatively stronger intensity contrast, the weights for appearance cues

tend to be higher.

Fig.2.4 demonstrates an airborne sequence with a stationary background. We

track two individuals separately. Their movements are slow, while the intensity con-

trasts are large. During tracking, the appearance information tends to be dominant.
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Figure 2.4: Tracking of pedestrians running on the ground. The bounding
box indicates the location of the targets.

Fig.2.5 shows a ground-based sequence with a pedestrian crossing a road. The

background is not static, requiring stabilization. From the frames, we find that the

intensity difference between the target and the background is low. However, the

pedestrian is moving prominently. Therefore, motion information becomes more

dominant.

Fig.2.6 is an airborne sequence with multiple targets being tracked simul-

taneously, and the background is moving. Different targets also present different

intensity contrasts with respect to the background. Consequently, the cue weights
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Figure 2.5: Pedestrian tracking in a ground based video sequence. The
bounding box indicates the location of the target.

of different objects show different distributions. The tracking result is robust.

Figure 2.6: Multiple-target tracking in an airport. In this sequence, as
the intensities of the targets are different from the background, the ap-
pearance cues become dominant in the observation model.

Fig.2.7 presents a fairly challenging airborne sequence with minimal visibility

and a dynamic background. The two pedestrians in the sequence appear very small,

and both have intensities similar to their surroundings in some frames. In these

frames, motion information appears more reliable then intensity information, while

in some other frames where motions of the targets are small, intensity information
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contributes more to the entire observation model.

(a)

(b)

Figure 2.7: Tracking of different persons running in the field . The white
box indicates the location of the target, (a) and (b) show two persons’
moving, respectively. In this sequence, we can see that the objects are in
a low-contrast background, therefore, the weights assigned to the motion
cue are relatively higher than these assigned to the appearance cue.

From the experimental results, we find that the proposed tracker performs

well in most of the cases. We summarize the statistical characteristics of the above

four sequences in Table 2.1. The background motion particles has 150 pixels with

a Gaussian distribution used for µB. The foreground motion particles has 50 pixels

with disturbance µF represented using a Gaussian distribution. The size of the DoG

filter is 10× 10, and the support region Wx is 5× 5. The practical values of all the

variances σc involved in computation are set to the statistical values acquired from

10-20 training frames of corresponding sequences. Most values are between 1 and
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image size target size background contrast motion target #

fig.2.4 320×240 5×12 stable high slow 1

fig.2.5 360×240 11×25 moving low fast 1

fig.2.6 640×480 8×20 moving low fast 3

fig.2.7 640×245 3×7 moving very low inconstant 2

Table 2.1: Characteristic summary for experimental sequences

3.5.

2.6.2 Comparison and Discussions

To provide some comparisons, we applied some standard tracking algorithms

on the sequence shown in Fig.2.7. We used the algorithms provided from the VIVID

Tracking Evaluation Web Site [50], which include: “Template Match” (TM) repre-

senting the normalized correlation template matching; “Basic Mean Shift” (MS)

being the algorithm from [29]; “Variance Ratio” (VR) referring to the algorithm

from [36]; “Fg/Bg Histogram Shift” (HIST) using two histogram models of the fore-

ground and background to estimate the shift of the object; “Peak Difference” (PD)

seeking the maximum peak difference to localize the object. To make the compari-

son fair, we start tracking from the same frame (frame 52) in each experiment and

use the same initial bounding box. Fig.2.8 demonstrates the tracking results from

these algorithms. All the algorithms tend to fail when applied to the low-resolution

sequence in our experiments. We record the numbers of successfully tracked frames

of all tested algorithms in Table 2.2. It is evident that the tracker introduced in this
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Algorithm HIST MS TM VR PD BF-PF

Number of Frames 83 7 78 51 44 817

Table 2.2: Number of successfully tracked frames using different tracking algorithms.

BF-PF is our proposed algorithm.

chapter tracks over a longer sequence (817 frames).

The success of our algorithm is due to the following reasons: 1) We use an

adaptive multi-cue measurement model, which increases the reliability of the sys-

tem. The foreground motion estimation is derived from both motion and appearance

cues, thus overcoming the limitation of estimating using a single cue, which applies

well to surveillance needs; 2) Cues are integrated using an adaptive mechanism that

assigns weights to the cues in the current context, such that those with higher reli-

ability receive larger weights and those with lower reliability have lower weights; 3)

The edge information obtained from the derivative of Gaussian filter improves ro-

bustness. Otherwise, when the target enters the shadow area, tracking may fail due

to environmental disturbance and image noise; 4) We simultaneously track both

background and foreground motions. The background motion naturally provides

parameters for camera stabilization, while the foreground information excludes the

foreground pixels from the observation used for measuring the likelihoods of the

background motions. Thus, the estimation error of the background motion parame-

ters is reduced; 5) Stabilization is concerned with compensating for the errors caused

by the moving camera; and 6) The cost function we used to estimate displacements

is efficient for both non-rigid and rigid objects. We also discussed why the com-
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(a) frame 128 (a) frame 132 (a) frame 135

(b) frame 54 (b) frame 56 (b) frame 59

(c) frame 126 (c) frame 128 (c) frame 130

(d) frame 56 (d) frame 86 (d) frame 103

(e) frame 90 (e) frame 93 (e) frame 96

Figure 2.8: Tracking results from different tracking algorithms. Each
row represents a certain tracking algorithm we have used. Frames in the
third column are snapshots of how the deviation occurs in each process.
Trackers lost the target after these frames in our experiments. The al-
gorithms we tested are: (a) HIST; (b) MS; (c) TM; (d) VR; and (e)
PD.
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pared algorithms fail. Mainly, most algorithms use the appearance measurement to

discriminate the foreground from the background. Therefore, if appearance features

are not salient, the trackers perform poorly. Furthermore, these algorithms lack the

ability to recover from tracker drift.

2.7 Conclusion

We have presented a surveillance tracking algorithm based on the particle fil-

ter framework. The approach builds a robust motion model over a state-space of

multiple-hypotheses for the object. The algorithm can simultaneously track both

background motion and foreground motion, which great ly improves the accuracy

of the tracking result, especially for moving camera sequences; It also constructs a

multi-cue observation model to enhance the robustness of the system. We applied

our algorithm to several surveillance sequences with different visual conditions. The

experimental results demonstrate that the tracker reliably tracks multiple hypothe-

ses, even under challenging conditions due to low-contrast and fewer object pix-

els. The comparative experiments further validate that our algorithm significantly

improves tracking performance. We are now investigating applications to several

problems such as vehicle tracking and object classification.
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Chapter 3

Non-Rigid Object Tracking: Motion and Deformation

3.1 Introduction

Visual tracking is an essential component of many applications from intelligent

robotics to video surveillance. Basically, there are three groups of tracking methods:

correspondence-based, transformation-based, and contour-based. The first group

of methods is based on establishing correspondences between feature points. The

second group tracks by estimating object motion, in which the objects are usually

assumed to be made of planar shapes. The last group achieves tracking by finding

the object contour in successive frames. It applies to cases when not only the location

but also the deformation of a target is desired during tracking. These applications

include surveillance tracking for recognition purpose and echocardiography tracking

for computer aided diagnosis (CAD). The tracking approach proposed in this chapter

belongs to the group of contour-based tracking methods.

3.1.1 Related Work

In this section we briefly introduce some existing work related to the contour

tracking. A number of contour-based tracking methods have been proposed in the

literature. As a milestone in contour-based tracking research, CONDENSATION,

a parameterized B-spline contour tracking algorithm, was proposed by Isard and
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Blake [9]. It uses a particle filter as the basic framework to track the global mo-

tion and deformation. The algorithm yields robust results when applied to rigid

objects. However, it has no explicit criterion for extracting the exact boundary of

a non-rigid object during tracking. In [51], Li et al. presented a particle filter for

non-rigid object contour tracking. However the algorithm lacks the ability to dis-

criminate a real boundary from all the detected edge points. Snake-based algorithms

[52, 53] evolve an object boundary such that a weighted sum of external and inter-

nal energy terms is minimized. However, the methods are restricted to a relatively

small range of scenarios because they assume the intensities inside objects to be

fairly uniform. Besides, their computational complexity makes them less suitable

for real-time applications. The level set approach, a powerful method that deals

with topological changes of the moving level set function, uses partial differential

equations (PDE) that describe the object motion, boundary and region-based in-

formation [54, 55, 56, 57]. They also prefer uniform intensity distributions inside

objects.

Some other approaches closely related to non-rigid contour tracking include

[58, 59, 60]. The concepts of motion and deformation were defined in [60]. Motion

is parameterized by a finite dimensional group action, and deformation is the to-

tal deformation of the object contour (infinite dimensional group) modulo the finite

dimensional motion group. By incorporating the prior information of the system

dynamics in the deformation framework, [58] proposed a nonlinear dynamic model

for tracking a slowly deforming and moving contour, with the contour represented

implicitly as the infinite-dimensional locus of zeros of a given function. The algo-
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rithm suffers from expensive computational needs due to the joint minimization for

the group action and the deformation. The work in [59] extended the ideas in [58].

It uses a particle filter to estimate the conditional probability distribution of motion

and shape of the contour, which formalizes the incorporation of a prior system model

along with an observation model. However, the algorithm also has limitations as

it only relies on appearance cue in the observation model and lacks the ability to

handle moving background cases.

Our approach shares some similarities with [59]. We claim that tracking non-

rigid objects can be accomplished by estimating both translational (finite dimen-

sional, Motion) and non-translational movements (infinite dimensional, deforma-

tion) of objects. Instead of estimating both motion and deformation in one step,

we use a cascading framework. We propose to first estimate the motion, then the

deformation. The estimation of deformation fulfills the operation of discriminating

the real boundary from all edge points, the majority of which may be from the

background. Robustness can be improved by constraining the deformation using a

prior shape model. Therefore, we decompose the task of tracking non-rigid object

contour into three components:

• 2D Motion estimation It estimates the object-wise spatial rigid-body mo-

tion, including translation and rotation parameters. Since the motion param-

eters are finite dimensional, we use a particle filter to estimate them.

• 2D Shape deformation It captures the pose changes of non-rigid objects.

Each pixel on the boundary may have different but correlated deformations.
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Figure 3.1: Illustration of the proposed tracking system.

We construct a deformation probability map using statistical analysis of dif-

ferent cues in each frame. The deformation occurs on the boundary pixels

with higher deformation probabilities.

• Shape regulation It uses a trained shape subspace to restrict shape defor-

mations. Regulation also reconstructs the occluded parts of the contours. Our

method adaptively integrates the off-line trained, prior shape model with the

object in the current video sequence.

Figure 3.1 presents a schematic illustration of the proposed system.

3.2 Preliminaries

3.2.1 B-spline Parametric Curves

In our contour tracking system, the tracking target is represented by a para-

metric B-spline curve. The visual 2D curves outlining the objects are represented

in terms of parametric B-spline curves r(s) = [x(s), y(s)]T [61]. The coordinates

[x(s), y(s)] are both spline functions of the curve parameter s. Furthermore, we use

a set of control points Q = {q1, q2, . . . , qL} to represent the B-spline curve, where
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each control point is defined as ql = (qxl , q
y
l )

T , and L is the number of control points.

One important reason for using the control point representation is because a set

of Q can uniquely determine one B-spline curve. If we define the dynamic model

that describes the contour motion as an affine transform, it is sufficient to apply the

transform to the control points. Once the control points are transformed, the B-

spline curve is transformed in the same manner. The property not only significantly

improves the computational efficiency, but also helps to approximate the infinite

deformation parameters using finite deformation parameters, i.e., the deformation

of the curve is represented by the deformations of control points.

3.2.2 Particle Filter

The objective of tracking is to estimate the state of the dynamic model recur-

sively, given some noisy visual observations, which allows us to formulate a Bayesian

model:

p(θt|Y1:t) ∝ p(Yt|θt)
∫
p(θt|θt−1)p(θt−1|Y1:t−1)dθt−1, (3.1)

where θ denotes the state vector, Y the observation, p(Yt|θt) the likelihood function

at time instant t. Observation Y is referred as images, or, visual cues in images.

All inferences to the unknown state vector are based on the posterior probability

in (3.1). The basic criterion is to find the vector with the maximum posterior

probability. Many techniques can be used to achieve the goal, such as the Kalman

filter [62] and the particle filter [46]. The Kalman filter can be used when the data are

modeled by a linear Gaussian model. The latter one, also known as the sequential
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Monte Carlo algorithm, presents a set of simulation-based methods proposed to

handle more complex non-linear, high-dimensional data of probably non-Gaussian

distribution. Many contour tracking algorithms use the particle filter algorithm

given its flexibility, ease of implementation, parallelize and apply to general settings.

We also use the particle filter to estimate the state vector of the dynamic model.

In the particle filter algorithm, the prediction step samples new particles based

on the state transition probability p(θt|θt−1), and the previous posterior distribution

p(θt−1|Y1:t−1), while the update step is controlled by particle weights, characterized

by the likelihood function p(Yt|θt):

ω
(j)
t ∝ p(Yt|θ(j)t ), (3.2)

The algorithm approximates the current posterior distribution p(θt|Y1:t) by a set

of weighted particles St = {θ(j)t , ω
(j)
t }Jj=1 with J representing the number of par-

ticles. To avoid the potential of the particles collapsing into a few particles with

high weights, Sequential Importance Sampling (SIS) [63, 8] draws particles from a

proposal distribution g(θ
(j)
t |θ

(j)
t−1, Y1:t) and eliminates particles with lower weights.

The weights are assigned as:

ω
(j)
t ∝

p(Yt|θ(j)t )p(θjt |θ
(j)
t−1)

g(θ
(j)
t |θ

(j)
t−1, Y1:t)

. (3.3)

The selection of proposal distribution depends on the properties of different appli-

cations.
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3.3 Motion Estimation

3.3.1 Dynamic Motion Model

We use the parameters of 2D affine transform to represent the finite dimen-

sional motion of the object. The contour transform is given in terms of the homo-

geneous coordinates of the control points

 ql,t−1

1

 = T ·

 ql,t

1

 =


T11 T12 T13

T21 T22 T23

0 0 1

 ·
 ql,t

1

 , (3.4)

where T ∈ R3×3 represents an affine transform matrix with independent scale factors

along both x and y axes. Accordingly, the state vector of the dynamic model is

defined as

θt = (T11 T12 T21 T22 T13 T23)
T . (3.5)

3.3.2 Estimate State Vector by Particle Filter

We use the particle filter to obtain the MAP (maximum a posterior) estimator

of the state vector θ.

3.3.2.1 Prediction Step

Rather than use a proposal distribution for prediction, we predict the config-

uration of particles based on the following state transition model:

θt = θ̂t−1 + νt + Ut (3.6)
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with θ̂t−1 is the previous state estimate, νt as the predicted adaptive velocity in the

motion vector, and Ut as the driving noise, assumed to be zero-mean Gaussian noise.

The computation of νt entails the incorporation of the previous particle configuration

in the prediction. Therefore, the diversity of particles is not compromised.

The prediction of νt is based on the assumption of brightness invariance [27],

which means that there exists a θt such that the warping patch is similar to the pre-

vious image patch. We claim if Z(Qt) is the intensities (colors) of the control point

set Qt (for robustness purpose, we use the corresponding intensities of Gaussian

smoothed image frames), there exists θt that satisfies

Zt−1(T (θt) ·Qt) = Zt−1(Q̂t−1)
1. (3.7)

where Q̂t−1 denotes the control point set estimated at t − 1. We simplify (3.7) by

T {Zt, θt} = Ẑt−1, where Ẑt−1 is the corresponding intensities of Q̂t−1. Approximat-

ing T {Zt; θt} via a first-order Taylor series expansion around θ̂t−1 yields:

T {Zt; θt} ≃ T {Zt; θ̂t−1}+ Ct(θt − θ̂t−1) = T {Zt; θ̂t−1}+ Ctνt, (3.8)

where Ct = ∂T /∂θ is the Jacobian matrix. Substituting Ẑt−1 into (3.8), we obtain:

Ẑt−1 ≃ T {Zt; θ̂t−1}+ Ctνt (3.9)

νt ≃ −Bt(T {Zt; θ̂t−1} − Ẑt−1) (3.10)

where Bt is the pseudo-inverse of Ct. Using the differences in motion vectors and

1More strictly, the affine transform on the LHS of (3.7) should be formulated as T (θt) ·[
Qt 1

]T
.
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the observation matrix as inputs, we obtain a least square (LS) solution to Bt as:

Θδ
t−1 = [θ

(1)
t−1 − θ̂t−1, . . . , θ

(J)
t−1 − θ̂t−1] (3.11)

Zδ
t−1 = [Z

(1)
t−1 − Ẑt−1, . . . , Z

(J)
t−1 − Ẑt−1] (3.12)

Bt = (Θδ
t−1ZδT

t−1)(Zδ
t−1ZδT

t−1)
−1 (3.13)

where Θδ
t−1 is the set of differences between all particle samples of {θ(j)t−1}Jj=1, and the

optimal estimate θ̂t−1, Z
(j)
t−1 is the jth patch sample with state vector sample θ

(j)
t−1,

and Zδ
t−1 is the set of all intensity differences between samples of {Z(j)

t−1}Jj=1 and

Ẑt−1. Obviously, we incorporate the particle configuration at t−1 for prediction.

3.3.2.2 Updating Step

The weight updates are based on the likelihood function p(Yt|θt). We follow

the definition of observation model in [9]. We search the normal line nl on each

control point ql, which is determined by corresponding θ, and detect feature points

{z(l)j }
Nl
j=1, where Nl is the number of features detected along the normal. Multiple

feature points appear due to the background clutter. Assuming that {z(l)j } can

be modeled as a spatial Poisson distribution along the normal lines and the true

control point is a Gaussian distribution, the 1-D measurement density along nl can

be determined by the distances between the feature points to the corresponding

control point, formulated as

pl(z|ql) ∝ 1 +
1√

2πσψλ

Nl∑
j=1

exp (−
(z

(l)
j − ql)2

2σ2
), (3.14)

where ψ is the probability of non-detection, λ is the density of clutter in the Poisson

distribution, σ is the standard deviation of the Gaussian distribution. Figure 3.2
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gives an intuitive illustration of evaluating the likelihood function for one control

point. With the assumption that feature outputs on distinct control points are

statistically independent, the overall likelihood becomes:

p(Y |θ) =
L∏
l=1

pl(z|ql). (3.15)

Figure 3.2: (a) The red line is the contour determined by the control
points. Light lines are the normal lines on the control points. The solid
dots are feature points detected by the normal lines; (b) 1-Dimensional
measurement density along the line normal on one control point qj. d1,j,
d2,j and d3,j are three distances between the feature points to the corre-
sponding control point. The vertical axis GEDGE represents the gradient
magnitude along the normal line nj.

3.4 Deformation Estimation

After the MAP estimator θ̂ is obtained and the transformed control points Q̂

are acquired based on θ̂, the transformed curve r̃ is determined. The next step is to

enforce local deformation, i.e., find the real boundary points. [9] employed a simple

strategy where the exact contour is determined by selecting feature points with max-

imum gradient magnitudes detected on corresponding normal lines. In other words,

the contour estimation counts only on the gradient magnitudes. Unfortunately, this
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strategy does not always work, especially when the background is heavily cluttered

or the object undergoes shape deformations between frames.

In our algorithm, we identify the correct feature points by detecting the defor-

mation along the normal lines on transformed control points Q̂. Two elements are

involved. One relates to the assumption that real boundary points of an object are

detected along the orthogonal directions of the contour. It implies that the scanning

range of normal lines influences the probability of the real boundary being detected.

The other is that the gradient magnitudes are not sufficiently robust for exact con-

tour delineation, especially when contaminated by background clutters and object

textures. Accordingly, our strategy for deformation estimation contains two new

features: (1) set normal lines adaptive; and (2) integrate several statistical cues into

a deformation confidence map.

3.4.1 Set Normal Lines Adaptive

The scanning range of normal lines is determined by both searching lengths

and centers. Earlier algorithms [9, 51, 64, 65, 57] set the search lengths and centers

of normal lines identical and fixed, which may result in false detections due to

inadequate modeling of shape variations. We enforce adaptability of the normal

lines to reduce the probability of false detections.
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3.4.1.1 Lengths of normal lines

Intuitively, a short normal line may miss the true boundary pixel, while a

long one may intersect with edge points from background clutter. To reduce the

possibility of a normal line intersecting with background clutter without sacrificing

the chance of finding the actual boundary pixel, the lengths of normal lines are

altered according to the pose variations of the corresponding contour control points

in training sequences. For example, in sequences of walking humans, the relative

positions of the head and trunk change slightly from frame to frame; while the sides,

especially the legs and arms, change their relative positions more. Therefore, we

should set the normal lines with large pose variations longer than those of small pose

variations. The pose variations of pixels can be learned off-line (for example, walking

pedestrian samples from USF dataset [66], consisting of one thousand 120×80 binary

images with aligned pedestrian silhouettes.) as:

ξ(l) = E∥qkl − E(qkl )∥2 (3.16)

u(l) ∝ Lmin log
ξ(l)

min(ξ(l))
(3.17)

Lmin is a constant representing the minimum length, and k denotes the index of

training samples.

3.4.1.2 Centers of normal lines

Earlier algorithms set the centers of scanning normal lines as the control points

on the estimated contour. This is not optimal. It is possible that the normal lines

might intersect and therefor the estimated contour might be looped. Making the line
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centers adaptive by applying a distance transform (DT) [67] significantly reduces

the probability of normal line intersections inside the object. The detailed steps are

listed in Table 3.1. It is worth noting that we only concern closed contours in the

algorithm. For open contours, we will force them to close by linking the first point

and the last point. Figure 3.3 demonstrates the procedure for sketching adaptive

normal lines along the estimated contour, with which we are able to search for the

real contour pixels with more flexibility.

Table 3.1: Algorithm 1: set center of the normal line adaptive

1. Based on the transformed control points set Q̂t (the result from global motion

estimation), construct a binary image BI, set the region Ω circled by the contour r̃t

to 1;

2. Apply DT to BI to obtain a distance map DI, which is defined as:

DI(x) =


miny∈r̃ dist(x,y), x ∈ Ω;

0, otherwise.

(3.18)

3. On each control point q̂l, draw a normal line nl, find the maximum distance value

satisfying DI l = maxx∈nl
DI(x). The lengths of the normal line on two sides of the

control point are set as follows:

u(l)in = min(u(l)/2,DI l − d0) (3.19)

u(l)out = max(u(l)/2, u(l)− [DI l − d0]) (3.20)

where d0 represents a minimum safe distance to avoid contour loops. Here d0 = 2.
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Figure 3.3: An example of how to make a normal line scanning adap-
tive. (a) cropped original object; (b) estimated contour; (c) distance
transformed object; (d) normal lines on control points.

3.4.2 Multi-cue Deformation Probability Map

To extract the real contour, we define a posterior deformation probability map

as Pt(Y |Q̂), based on the transformed control point set obtained by global motion

estimation with Y representing related visual cues. In the map, a high probability

implies that the corresponding pixel is more likely to rest on the real contour, and

a low value implies a lower likelihood. Instead of using edge magnitudes as the only

visual cue, we integrate several cues to evaluate the deformation probability.

3.4.2.1 Multi-cue Fusion

Fusion with respect to different cues can be interpreted as using multiple mea-

surement sources. Assuming that we have M cues, the observation can be repre-

sented by Y = (Y1, . . . , YM). We further assume that the observations are condi-
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tionally independent [68]. The deformation probability is therefore factorized as:

Pt(Y |Q̂) =
M∏
i=1

Pt(Yi|Q̂) (3.21)

Scanning for pixels with maximum probability values (ML estimator) on adaptive

normal lines, we obtain the refined contour pixels, denoted as r̂. As an example,

Fig.3.4 shows some probability maps from different cues on one processed frame,

together with the fusion map Pt(Y |Q̂). Apparently, the fusion result suppresses

noise from the gradient magnitude cues inside the contour, which is caused by

object textures. We introduce the computation of probability maps from different

cues in the rest of this section. It is worth noting that the scanning range for each

pixel is one dimensional, so the two dimensional deformation probability map P

can be further simplified to several one dimensional probability vectors associated

with each control point. Therefore, the calculation of the deformation probabilities

is limited to normal lines. This improves the computational efficiency.

3.4.2.2 Gradient Magnitude Cues

As shown in Figure 3.4.(a), gradient magnitude is an important feature for

representing an object boundary. However, when the object is not homogenous in

color or intensity, many edges are generated inside the object. We want to minimize

the effect of inside edges. Anisotropic diffusion offers one possible approach to

allow the entire image to be more uniform in color or texture, while still preserving

the object boundaries [69]. It is highly possible that points with high gradient

magnitudes after diffusion belong to the boundary of the target.
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Figure 3.4: An illustration of fusion from different visual sources, including
the probability maps of (a)gradient Magnitude; (b) gradient Orientation; (c)
shape Template; (d) foreground; (e) fusion.
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(1) Using the regular edge map (2) Using the feature maps FI

Figure 3.5: Performance comparisons on a cluttered scene. A stabilization
step is applied to obtain the second set of results to obtain FI because the
sequence was acquired by a moving camera.

After the diffused feature map EI is extracted from the original image, a

motion mask △I, indicating the possible area where motion could occur, is applied

to EI to further suppress the background clutter. The masked map is then filtered

by G, a smoothing Gaussian filter. Eventually, we normalize the filtered map to a

magnitude probability map P by:

Pt(Ym|Q̂) = αm(EI • △I) ∗G (3.22)

where αm is a normalizing coefficient, and ∗ denotes convolution. Figure 3.5 demon-

strates performance improvement when we use the diffusion edge map convolved

with the motion mask. Since the background and the tracking object move, a

background stabilizing step [70] is applied to estimate the motion mask △I. The

stabilization is based on the idea that the background movement can be modeled as

a planar affine transform.
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3.4.2.3 Gradient Orientation Cues

A gradient orientation map OI provides the orientations of edges. The gradi-

ent orientation presents a useful feature to discriminate the real object boundaries

from all the detected edges, especially when the background clutter is present. If we

denote the orientation of the normal on the true boundary as ϕ, we expect the local

normal orientation to yield a Gaussian distribution with mean equal to ϕ [71]. At

the meantime, the normal orientation distributions for pixels not on the boundary

tend to have a uniform distribution between [0, 2π). Figure 3.4.(b) illustrates the

different distributions presented by the pixels on the contour and not on the contour.

This leads to the definition of the orientation probability map as:

Pt(Yo|Q̂) ∝ exp(−(OIt(x)− ϕ̂t−1(l))
2

σ2
o

) ∀x ∈ R(nl), (3.23)

where R(nl) defines a proximity region to nl:

R(nl) , {y ∈ R(nl) : dist(y,nl) ≤ dist(y,nk), k ̸= l} (3.24)

3.4.2.4 Shape Template Cues

The shape of a tracking object has its specific pattern. Therefore, the shape

template could be used as one cue, indicating the probability that each image pixel

belongs to the real object contour. Our shape template differs from the static

shape energy proposed by Cremers et al. [72], which is pretrained and remains

unchanged during tracking. We use an online model that incorporates a dynamic

part that varies according to the observations (transformed contour by global motion
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estimation). Let Ys denote the shape template observation; it contains the shape

prior model AS and the dynamic template AQ̂. The former is a static template

generated from the training data, and the latter yields a Gaussian distribution, the

mean of which is set to the transformed contour Q̂. The probability is given by:

Pt(Ys|Q̂) = atAS + (1− at)AQ̂ (3.25)

where 0 < at < 1 is the weight that controls the integration of AS and AQ̂. The

construction of AS is straightforward based on how frequently it appears as 1 in the

training data. Figure 3.4.(c) provides an example of the probability map from the

shape template cue. We show more examples of probability templates in Figure 3.6.

Figure 3.6: Illustrations of adaptive probability shape templates for
pedestrians. (1),(2): shape training samples; (3): shape prior model;
(4),(5),(6): examples of probability shape templates in different frames.

3.4.2.5 Foreground Cues

To suppress the contamination from the background clutter, we use a fore-

ground probability map Pt(Yf |Q̂) that estimates the likelihood of a pixel belonging

to the tracked object. This map is calculated by comparing the current frame to a

set of background models representing the static parts of the scene. The pixel-wise

background models are adapted directly by the previous values for static camera
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setups. For moving cameras, these models can be fit after consecutive frames are

aligned on a mosaic using globally estimated motion parameters. We define the

background as layers of multivariate Gaussian functions {(µi
t,Σ

i
t, κ

i
t, υ

i
t)}i=1..K where

µi
t is the posterior mean, Σi

t is the marginal posterior covariance, υit is the degrees

of freedom, κit is the number of prior measurements of the ith layer, and K is the

number of layers in 3D color space. At each frame, we update the layer parameters

using an online Bayesian estimation method as described in [73]. We order the layers

according to confidence scores. Our confidence measure is inversely proportional to

the determinant of the covariance. Then, we filter the layers with confidence values

less than a specific threshold. For the remaining layers, we measure the Mahalanobis

distance of observed color I(x)

di(x) = (I(x)− µi
t−1)

T (Σi
t−1)

−1(I(x)− µi
t−1) (3.26)

and, update the parameters of the confident layers. Pixels outside of 99% confidence

interval of all confident layers of the background are considered as foreground pixels.

After the update, the foreground probability map at a pixel is determined as

Pt(Yf |Q̂) = α exp(−
K

min
i=1

di(x)) (3.27)

where α is a normalizing constant. Figure 3.4.(d) show an example of the probability

map based on the foreground cue.

3.5 Regulation on Shape Deformation

Based on the estimated global motion and local deformation, we could track

the contour from frame to frame. However, what if the deformation estimate is
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severely corrupted by noise? For example, the exact contour points may not always

coincide with maximum probability pixels, but may appear at the second maximum

pixel. In such cases, shape regulation serves as an important constraint to recover

from detection errors. Intuitively, learning the prior shape knowledge of the object

from the training set could help in delineation. The training samples should ideally

cover all deformation variations. If an object in one frame exhibits a particular

type of deformation not present in the training set, the system searches for the

deformation in the subspace that is closest to the target, i.e. the system projects an

arbitrary deformation onto the subspace, then achieving regulation.

3.5.1 Generic Shape Model

Several approaches exist for subspace construction. One of them was intro-

duced by Cootes et al., the active shape model (ASM) [74] with the points distribu-

tion model (PDM) described in [75], for obtaining the shape subspace. Our training

method is based on the idea of PDM. A shape model is defined in terms of x and

y coordinates of every “landmark” point lying on the outline of the target. The

number of “landmark” points is fixed at equal intervals along the contours. The

control points of B-splines are regarded as the “landmark” points. Table 3.2 gives

the steps for training a prior model from a set of N samples, each represented by a

set of columnized L control points Qs
i = {q(i,j)s |1 ≤ i ≤ N, 1 ≤ j ≤ L}.
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Table 3.2: Algorithm 2: Construction of Prior Shape Model

(a) Align the set of examples to a common frame of reference, xi=aligned(Qs
i) [75];

(b) Calculate the mean of the aligned examples x̄, and the deviations δxi = xi − x̄;

(c) Calculate the eigensystem of the covariance matrix of the deviations, C =

1
L

∑M
i=1(δx

i)(δxi)T .

(d) The first t principal eigenvectors of the eigensystem are used to generate x =

x̄+Pb, where b is a t-element vector of shape variation parameters and P is a 2L×t

matrix of t eigenvectors, which composes the estimated shape subspace. We denote

the eigenvalue diagonal matrix as Λt, which is a t× t matrix.

3.5.2 Adaptive Shape Model

The constructed shape model is a generic model that can apply to all cases,

as long as a target belongs to the corresponding object category. However, what

we need is a deformation model that can represent more accurate shape variations.

One solution is to update the existing PCA model with the initial contour of the

current sequence (either manually marked or automatically detected) [76]. Denote

x0 as the aligned initial contour, vector bs = PT (x0− x̄) as the subspace component,

the projection residue is obtained as:

xr = x0 − x̄−Pbs. (3.28)

The residue part represents the shape variation not being covered in the prior model,

so the generic subspace (x̄,P,Λt) is updated corresponding to the residue by the
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following equations:

x̄∗ = βx̄+ (1− β)xr (3.29)

er =
xTr
∥xr∥

(x0 − x̄) (3.30)

C∗ = β

 Λt 0

0T 0

+ β(1− β)

 bsb
T
s erbs

erb
T
s e2r

 (3.31)

where β is the update weight. By applying SVD to (3.31), we obtain (P∗,Λ∗
t+1)

satisfying P∗Λ∗
t+1(P

∗)T = C∗. For brevity, we still use (x̄,P,Λt) to denote the

updated shape subspace in the rest of the chapter.

3.5.3 Subspace Projection

The projection of deformation can be described as representing the deformed

contour by a linear combination of basis in the shape subspace. We first align the

deformed contour point vector set r̂t to xt, and then apply

xp,t = PPT (xt − x̄) + x̄, (3.32)

where xp,t is a linear combination of subspace basis. It is possible that some control

points on r⃗ may be occluded, or not detected along the normal lines. Let us denote

the index set of detected points as Id = {i1, i2, . . .}. We can recover a complete

projected contour as follows:

xp,t = PP†
Id
(xId,t − x̄Id) + x̄ (3.33)

P†
Id

= (PT
Id
PId)

−1PT
Id

(3.34)
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A projection example is demonstrated in Figure 3.7, with a comparison between

tracking results with and without shape regulation. Evidently, using the subspace

can preclude the contour from deforming to an irregular shape.

3.5.4 Alignment

Alignment is needed to normalize the contour, because the shape subspace is

constructed from normalized training samples. We use the method for rigid shape

matching proposed by Cootes et al. [74]. The basic idea is to find a transform matrix

(containing rotation, translation and scale coefficients) and match the given contour

to the mean of the shape model. An example is shown in Figure 3.8. The sequence

is collected by magnetic resonance imaging (MRI) of human knees. Our primary

interest lies in the articular cartilage layer. Fig.3.8.(1) depicts the detected contour

pixels, where some pixels are too obscure to be detected. Fig.3.8.(2) shows the

projected contour using the shape subspace without alignment. Fig.3.8.(3) depicts

the contour pixels after alignment, and Fig.3.8.(4) gives the final result.

Figure 3.7: Comparisons between tracking results with and without sub-
space regulation. (a) and (c) are without regulation, (b) and (d) are with
regulation.
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(1) (2) (3) (4)

Figure 3.8: One frame from an MRI sequence. The target of interest is
the articular cartilage layer. (1) depicts the detected contour pixels. (2)
shows the recovered contour pixels using the shape subspace projection.
(3) depicts the contour pixels after alignment. (4) the final result.

3.6 Implementation and Experiments

3.6.1 Algorithmic Implementation

A summary of the complete contour tracking algorithm is given in Table 3.3.

We want to further discuss the initialization. The easiest way to acquire the ini-

tial contour in the beginning frame is to outline manually the object of interest

in the first frame. The pixels along the contour are sorted in the clockwise order.

The control points are then selected based on the uniform arc length rule. We can

also apply automatic shape detection methods, such as the direct use of probability

shape template to detect pedestrians [77]. Our tracking algorithm has the excellent

quality of a high tolerance to localization errors in the initial contours. In our exper-

iments, we observed that based on an approximate but reasonable initial guess, the

tracking results of the object after three to six frames appear to be fairly accurate,
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frame 1 frame 2 frame 3

frame 4 frame 5 frame 6

Figure 3.9: An example of starting tracking using a very rough initial
contour. After tracking for six frames, we find that the contour has been
attached to the object fairly precisely.

as demonstrated in Figure 3.9.

3.6.2 Experimental Results

We have applied the cascading contour tracker to different sets of outdoor

surveillance video sequences, containing moving people and vehicles. All the ob-

jects of interests are assumed to be objects moving in non-rigid forms. In most

cases, the backgrounds contain clutter that significantly affect the tracker’s per-

formance. Among them, four sets of sequences were captured by moving cameras,
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Table 3.3: Algorithm 3: Active Contour Tracking

Step1. Initialization: Draw a set of particles from the prior p(θ0) to obtain

{θ(j)0 , ω
(j)
0 }, j = 1, . . . , J , where J is the number of the particles. Obtain the initial

control point set {Q(j)
0 } from θ0. Set t = 1.

Step2. Global motion estimation:

Step2.1 Prediction: Estimate the state vector shift νt, draw particles {θ(j)t } and

accordingly the control point set samples {Q(j)
t }, j = 1, . . . , J .

Step2.2 Update: Calculate the likelihood function L(Yt|θ(j)t ) and the posterior

π
(j)
t = p(θ

(j)
t |Y1:t) for each sample, then normalize {π(j)

t } and update

{θ(j)t , ω
(j)
t }, j = 1, . . . , J . Find the MAP estimator of the global motion

θ̂t = θ
argmaxj∈{1,...,J} π

(j)
t

t and the corresponding Q̂t.

Step3. Local Deformation Estimation: Based on the estimated Q̂t, gen-

erate the deformation probability map Pt. The deformed contour r̂t can be

determined by scanning the adaptive normal lines nl,t for pixels with maximum

deformation probabilities.

Step4. Regulation: Project r̂t onto the shape subspace to acquire the final

estimated contour.

Step5. t→ t+ 1, go to step.2.
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which means that the foreground cue is not involved when computing the probability

maps. The other two sets of sequences were captured using static cameras, therefore

the foreground cue is involved when generating the deformation probability map.

The processing speed of the algorithm implemented in c++ is 6-10 fps (frames per

second) on a 1.5GHz windows PC. In our experiments, most comparisons are made

between our method and the traditional method described in [9].

3.6.2.1 Experiment on Stationary Camera Data

Figure 3.10 shows a sequence (the frame size is 437×90×3) acquired by a

stationary camera. It contains a pedestrian walking in the scene. The traditional

active contour tracker works poorly due to two possible reasons: (1) the normal lines

on some of the control points do not detect the edge points; and (2) in some frames,

the contour becomes intertwined. Our proposed method takes advantage of the

adaptive normal-line strategy to avoid intertwined contour, and subspace projection

to recover missing edge points. The proposed method achieves satisfactory result

throughout 159 frames in which the object is presented.

3.6.2.2 Experiments on Moving Camera Data

Figures 3.11, 3.12, 3.13, and 3.14 demonstrate some typical results for moving

camera sequences. Figure 3.11 shows a sequence (the frame size is 543×814×3)

capturing a moving SUV by a camera from following vehicle. Although the rear

view of the vehicle is a rigid object, the surrounding disturbances and small view
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Figure 3.10: Pedestrian tracking performance with a stationary camera.
The thick yellow lines represent the final tracked contours.

changes throughout the video lead to failures when using the traditional rigid-object

trackers. Two major distractions derive from plain road marks and the sudden

appearance of another vehicle in front of our target. Still, we obtain good results

due to the use of a deformation map based on several statistical cues.

Figure 3.11: The results of tracking a vehicle from the rear view. The
comparison result is given in Figure 3.5.

Figures 3.12 and 3.13 illustrate two challenging sequences with pedestrians

crossing the road. The frame size in both sequences is 541×818×3. Tracking diffi-

culties arise from the following facts: 1) the camera is moving forward rapidly and,

therefore, the global motion of the pedestrian not only includes translation and ro-

tation, but zoom as well; 2) the background is full of road marks and shadows. The
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traditional contour trackers become distracted by these background disturbances;

3) the pedestrian in Figure 3.12 is seen wearing a white shirt and black pants. The

strong contrast between two parts usually leads to the tracking result shrinking to

either the upper part or the lower part of the body; and (4) the object has simi-

lar coloring, with respect to the background (woods) in Figure 3.13. Our tracker

produces satisfactory results. We notice that the poses of the pedestrians vary sig-

nificantly from frame to frame in both sequences. However, the tracking remains

robust.

Figure 3.12: A sequence with both background and object moving. The
challenges of processing this sequence are due to: 1) camera motion; 2)
background clutter; 3) the pedestrian is wearing a shirt and pants that
vary strongly in color.

Figure 3.14 provides an example with a sequence containing a moving truck

(the frame size is 480×720×3). Although usually a truck cannot be treated as

a non-rigid object, we still observe 2D shape deformation on the truck because

of its 3D rotation. This sequence demonstrates the advantage of using contour-
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(1) Results from the traditional algorithm

(2) Results from the proposed algorithm

Figure 3.13: A sequence with both background and object moving. The
background is heavily cluttered, and the intensity of the tracking pedes-
trian is very similar to the background color.

based tracking. The truck in the sequence changes views from the back to the side,

which means that some of the object’s corresponding points will disappear. Such

a view change will significantly undermine the result of a regular 2D appearance-

based tracker. As mentioned in section 3.1, contour-based tracking can still produce

robust results without using 3D models. The results appear promising even with

the presence of obscure boundaries, low color contrast, nonstationary camera, and

background clutter.
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Figure 3.14: An airborne sequence with a white truck moving on the
ground. The truck shows a back view in frames (1) and (2), then shows
the back-right view in frame (3), a side view in (4) and (5) and a front-
right view in frame (6). This experiment demonstrates that the contour-
based tracker can provide satisfactory results on sequences containing 3D
object rotations.

3.6.2.3 Experiments on Occlusion Data

We exploit the application of shape regulation to recover occluded contours,

the results of which are shown in Figure 3.15. This sequence (the frame size is

576×768×3) contains walking people acquired by a stationary camera. In the last

several frames, the pedestrian is partially occluded by trees. With subspace projec-

tion, we see that the occluded parts have been reconstructed. In this sequence, the

clutter is heavy given the presence of parked cars and trees in the scene.

3.6.2.4 Experiments on medical sequence

The MRI sequence in our experiment consists of 2D image slices that form a 3D

image cube for subsequent 3D visualization, in which we are particularly interested
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Figure 3.15: An example of an occluded contour being recovered by shape
subspace projection. In the last three frames, the pedestrian is partially
occluded by surrounding trees. Our tracking result recovers the partially
occluded contour. Red arrows indicate the occluded parts. We also note
that parked cars contribute to background clutter.

in the articular cartilage layer (a thin, white, crescent-like layer). The difficulties of

tracking these layers are due to the following facts: the surrounding tissues often

have similar intensity values, which leads to some boundary points becoming nearly

undetectable; and the sequence is of low resolution because of the preprocessing

step that enlarges the original image. The traditional active contour method is not

effective in this case, because it lacks the means to handle edge point occlusion. The

“snake” method also has difficulty in finding the correct boundary due to similar

intensity values between the cartilage layer and the surrounding tissues. Our method

works well in this scenario. Figure 3.16 demonstrates the tracking results of applying

the proposed algorithm to the MRI sequence, in which the frame size is 584×584. As

a comparison, we also provide a set of tracking results using the traditional contour
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tracker.

3.6.2.5 Performance Evaluation

We use the Mean Sum of Squared Distance (MSSD) [78] measure to evaluate

the tracking performance of different algorithms. For a sequence with K frames,

where contour rk in each frame has L control points, {(xk,1, yk,1), . . . , (xk,m, yk,m)},

we define:

MSSD =
1

K

K∑
k=1

1

L

L∑
j=1

(xk,j − x0k,j)2 + (yk,j − y0k,j)2 (3.35)

where [x0, y0] represents the corresponding ground truth. We compare the proposed

algorithm with the active contour tracking method for two cases: sequences with

heavily-cluttered backgrounds and sequences with strong non-rigid movements. Ta-

ble 3.4 shows the values of MSSD and variance of squared distance in these two

cases, respectively. From all the experimental results and the comparison table, we

conclude that the cascading tracker performs well in most cases.

3.7 Discussion

The cascading contour tracker we have presented is motivated by the fact that

the non-rigid movement can be decomposed as global motion and local deformation.

The algorithm contains three major steps: motion estimation, deformation estima-

tion and shape regulation. The following discussion covers the major aspects of the

algorithm.

Multi-step vs. Single-step Compared with most methods that use single-
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(1) Results from the traditional algorithm

(2) Results from the proposed algorithm

Figure 3.16: Magnetic resonance imaging scans of human knees. The
area of interest is the articular cartilage in each image. The upper row
demonstrates the results by applying the traditional algorithm. The mid-
dle and bottom rows show the results by applying our proposed method.

step estimation [9, 51, 59] to obtain the non-rigid contour movement with motion and

deformation simultaneously, we choose a cascading framework to estimate motion

and deformation separately. One-step estimation presents more systematic formulas,

but it suffers from high dimensional computation and poor efficiency. Fortunately,

the multi-step approach provides an efficient solution. This can be explained as

follows: we use an affine transform to model the global motion. Therefore, the
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Table 3.4: Comparison of tracking results in heavy-cluttered background sequences

and non-rigid object sequences. MSSD is the Mean Sum of Squared Distance; VAR

is the variance of the distances; ACT is the traditional active contour tracking

algorithm.

ACT Cascading Tracker

MSSD VAR MSSD VAR

heavy-cluttered background 14.7584 74.4052 7.9129 12.5602

non-rigid object 9.9741 24.6597 6.0571 8.5222

motion state vector is only six-dimensional, which eases the burden on the particle

filter. We interpret shape deformation by the deformations that occurred on control

points, which approximates the infinite dimensional space by a finite dimensional

one. Since the processing occurs in a successive manner and a rough contour is

obtained by motion estimation, the deformation is searched only in the region of

the rough contour and does not involve numerical simulations. Thus, the entire

computation complexity is reduced.

Multi-cue vs. Single-cue Although gradient magnitude provides a strong

cue to estimate the boundary pixels, sometimes it is not robust. In our method,

estimating deformation counts on more visual cues, with the aim to realize more ro-

bust contour detection. We could further improve the fusion method by associating

adaptive fusion weights with different cues [48].

Adaptive vs. Non-adaptive Normal Line We adaptively set the scan-
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ning normal lines according to the prior shape pose variations and previous shape

estimate. The advantages of adaptability are: (1) it reduces the probability of loop

occurrence; and (2) setting appropriate lengths of normal lines increases the pos-

sibility of correct detection for real boundary pixels, while reducing the chance of

false detection.

Regulation vs. Non-regulation Regulation is important for non-rigid

contour tracking. It not only constrains shape deformation and corrects estimating

errors, but recovers the occluding contour pixels as well. Therefore, the method

applies more to scenarios with non-rigid object movements and heavily-cluttered

backgrounds.

Our method can successfully track non-rigid objects and provide tight con-

tours enclosing the changing shapes of the targets throughout the sequences. We

are currently working on extensions of the algorithm to the multi-target tracking

problem. Model regulation is also worth further exploration. We only use shape

prior knowledge as a constraint in this chapter. However, training samples contain

not only shape, but appearance and motion information as well. It is expected that

constructing a prior model based on all information should improve the robustness

of trackers, which is discussed in the next session.
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Chapter 4

Regulation in Object Tracking: Active Appearance Markov Chain

(AAMC) Model

4.1 Introduction

As discussed in the previous chapter, visual tracking is an essential component

in many computer vision fields. Among them, many require accurate delineation of

moving objects, such as in surveillance and medical sequence tracking. Therefore,

contour tracking, i.e., localizing contours or boundaries of objects during tracking,

has attracted significant interest. The main challenges in contour tracking can be

attributed to handling all types of variations of a target object, which highly influ-

ences the system performance. As a solution, constraints represented by subspaces

are usually applied for robustness. Most of the typical contour tracking algorithms

[79, 80, 81, 82, 83, 76] consist of two parts: an observation process for estimation and

a fusion process (regularization) for ensuring robustness. The observation process

estimates the kinematic motion for individual landmark points and the fusion pro-

cess regularizes the estimated contour using the observation process under certain

constraints. Fig. 4.1(a) presents a schematic illustration of such a system.

Many efforts relate to regularization in tracking, using shape or appearance

constraints, or a combination of both. However, few exist where the regularization
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method has integrated shape, appearance and motion knowledge. In this chapter, we

introduce the active appearance Markov chain (AAMC) model to capture statistical

regularities in shape, appearance and motion. The model has two-parts: the shape

and appearance knowledge is learned from training samples using the technique

inherited from the widely applied active appearance model (AAM); and the motion

information between frames is modeled using a discrete Markov chain. The model

is illustrated in 4.1 (b). The necessary terminology is given below:

Shape. The shape (or contour) of the object is parameterized by a set of MS

landmark points. We denote the shape by the vector S = [x1, x2, . . . , xMS ]
T,

where xm = (xm, ym) is the m
th landmark point. The shape is aligned to the

mean shape using a similarity transformation to reduce variations caused by

translation, rotation and scaling.

Appearance. For a video frame with shape S, we generate a shape-free global

appearance patch vector G by warping the video frame to a canonical template

where the landmarks are located at fixed positions, such as in the mean shape.

Motion. There are two kinds of motions. The first is the motion of a moving

platform. The second is the motion of the landmark points. The model is

concerned with the latter motion.

4.1.1 Previous Work

Model constraints have been exploited as the prior knowledge in many contour-

based tracking approaches. The active shape models (ASM) [84] have been used by
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Figure 4.1: (a) Illustration of a tracking system. (b) Illustration of AAMC model.

Blake and Isard in [80] as shape subspace constraints in their particle filter algorithm

to improve the robustness of the tracker. The ASM was used by Zhou et al. [76]

in a fusion framework, enhanced by an online adaptation step to adapt the shape

model offline trained to the current observation. As an extension of ASM, the AAM

was introduced by Cootes et al. in [85]. It covers the variabilities in both image

appearance and object shape exemplified by a set of training samples. AAM was

further extended to 2D+3D models for non-rigid face tracking in [86]. Provided that

the training data represents the variability in the population, AAM can generate

any statistical intermediates that may occur during tracking, thus improving its

robustness. An adaptive view-based appearance model was proposed by Morency

et al. [87] for rigid object tracking. The view-based model is adjusted online by

registering each frame against the views of appearance models. The performance of

the algorithm on non-rigid object tracking is limited. All these approaches lack the

ability to describe dynamic motion throughout the video sequences. When dealing

with structured movements, such as the pedestrian and cardiac motion, it is crucial
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to characterize the inter-phase motion information.

The active appearance motion model (AAMM) [88] was proposed by Bosch et

al. to characterize shape, appearance and motion for echocardiography segmenta-

tion, where a subspace model for an entire movement cycle (a full cardiac cycle) is

learned. However, the AAMM suffers from three problems. First, it is suitable to

segment a spatiotemporal target, but it is not amenable for online tracking tasks.

Second, the AAMM cannot handle global movement between frames. Third, it lacks

adaptability to different cases since it falls in the “observation explains model” cat-

egory. Finally, the AAMM is in high-dimensional space. Consequently, it is difficult

to collect sufficient data to cover desired variations, resulting in ineffective model-

ing. More expensive computation is inevitable in both training and testing. A more

efficient P-AAM model, integrating shape, appearance and motion, was proposed in

[89], targeting echocardiography tracking based on the periodicity of heart motions.

4.2 Active Appearance Markov Chain Model

Contour tracking algorithms locate object contours in video sequences. For

certain type of objects, their shape, appearance and movement pattern bear some

similarities. Clearly, a statistical model that captures the typical variations in shape,

appearance and inter-frame motion from sample dataset helps increase the robust-

ness of the tracking system. The AAMC model is generated for this purpose.

Definition 1. Any movement can be divided into several stages. We define

these stages as motion phases. If movements of similar objects share similar mo-
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tion patterns, the shape and appearance of these objects from same motion phases

and the inter-phase motions between motion phases bear some similarities.

Given a set of sample sequences, we divide all sample frames into P motion

phases, each of which is represented by shape and appearance models. A Markov

chain model represents the dynamic transitions between these motion phases. Hence,

any pair of motion phases has a transition probability in the Markov chain.

Definition 2. If the transition probability between two motion phases is non-

zero, we call the pair of motion phases a connected pair. Otherwise, we call the

pair a non-connected pair.

We then construct the joint shape and appearance models for all connected

pairs. The joint model not only covers the shape and appearance variations, but

also the inter-phase motion.

Definition 3. The joint model for shape, appearance and inter-phase motion

variations is called the pairwise AAM (P-AAM) component.

Therefore, the AAMC model includes two parts: (1) the switching of mo-

tion phases is represented by a Markov chain; and (2) the shape and appearance

information and the inter-phase motion are represented by subspaces of several

P-AAM components. Some necessary notations include: zt, denoting the index

of one motion phase; xt, denoting the final estimate of shape and appearance at

time t, xt = [xT
t,S ,x

T
t,G]

T; and yt, denoting the output from the observation process,

yt = [yTt,S , y
T
t,G]

T.
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4.2.1 Markov chain: model switching

The dynamic motion between motion phases is modeled as a discrete Markov

chain [90]. A discrete Markov chain is a probabilistic model of a random process with

discrete states. In a first order Markov model, the state of the system at time t can

be predicted knowing only the state at time t−1. We assume that the Markov chain

is time-homogeneous, i.e., the transition probability P (zt = j|zt−1 = i) = Pij does

not depend on time and can be learned off-line from training samples. The phase

switching probability is defined as PrMC(zt) = P (zt|yt, zt−1,xt−1), which measures

the probability of one AAM model being associated with the current frame. We

assume the following:

P (zt|yt,xt−1, zt−1) = P (zt|zt−1), (4.1)

which implies that the current observation yt and the previous shape and appearance

state xt−1 do not influence the transition probability.

4.2.2 P-AAM components

The P-AAM component is a joint model describing the shape, appearance and

motion variations between two connected motion phases. For each connected pair of

motion phases, we extract all pairwise samples from training datasets that consist

of two consecutive frames, each belonging to one of motion phases in the connected

pair, respectively. We then generate two sets of data for shape and appearance,

respectively. All the shapes are represented by MS landmark points, forming a

2MS-dimensional vector S. The appearance is represented by an MG-dimensional

82



vector G. We concatenate the shape and appearance vectors from two consecutive

motion phases to form a paired data:

Sij = [ST
i | ST

j ]
T, Gij = [GTi | GTj ]T, (4.2)

where i, j ∈ {1, 2, . . . , P} is the phase index.

Then the joint model is constructed using the standard approach for AAMs

[85]:

(i) Construct the shape subspace based on sij using the principal component

analysis (PCA). The subspace can be represented by:

Sij ≈ S̄ij +PS
ijb

S
ij, (4.3)

where PS is a subspace matrix (eigenvectors) describing a sufficient fraction of the

total shape variation, and bS is a vector containing the combination coefficients for

each of the eigenvectors. (ii) In a similar way, construct the appearance subspace

based on Gij using the PCA. The appearance patches are cropped from sample

frames according to the corresponding shapes and aligned to a mean shape using the

thin-plate splines warping algorithm [91]. This process is necessary to compensate

for inter-frame translations, because it guarantees that the created model contains no

motion introduced by external factors, such as translations and rotations of objects

or movements of sensors.

Gij ≈ Ḡij +PG
ijb

G
ij. (4.4)

(iii) Apply a third PCA to the combination of the shape and appearance:

bij =

 bS
ij

wG
ijb

G
ij

 ≈ Qijcij =

 QS
ij

QG
ij

 cij, (4.5)
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where wG
ij is a diagonal matrix that balances the energy discrepancy between the

shape and appearance models, Q is the eigenvector matrix, and c is a latent vector

that controls both shape and appearance models. Substituting Eq. (4.5) into Eqs.

(4.3) and (4.4) yields

Sij ≈ S̄ij +PS
ijQ

S
ijc, (4.6)

Gij ≈ Ḡij +PG
ij(w

G
ij)

−1QG
ijc. (4.7)

The number of P-AAM components is identical to the number of connected pairs

in the Markov chain model.

4.3 Fusion Process Using AAMC Model

The system of contour tracking can be interpreted statistical by: the state

vectors of the system include the shape and appearance estimates x = [xT
S ,x

T
G ]

T and

the Markov chain index in the AAMC model z. At time instant t, we want to find

the current estimate that maximizes:

P (xt, zt|xt−1, zt−1) = P (xt,S ,xt,G , zt|xt−1,S ,xt−1,G , zt−1) (4.8)

The fusion process has a goal of combining observation (output from the ob-

servation process) and prior knowledge (the trained AAMC model) to obtain an

optimal estimate. Therefore, we have one additional condition to our formula, the

observation yt. Accordingly, Eq. (4.8) can be reformulated as:

P (xt, zt|yt,xt−1, zt−1)

= P (xt|yt, zt,xt−1, zt−1)P (zt|yt,xt−1, zt−1) (4.9)
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Eq.(4.9) implies that the fusion process actually includes two steps: (1) select the

optimal Markov chain index z in the AAMC model; and (2) estimate the optimal

x based on the observation and the AAMC model. The optimization problem is

reduce to

[x∗
t , z

∗
t ] = argmax

x,z
P (xt, zt|yt,xt−1, zt−1)

= argmax
x,z

logP (xt|yt, zt,xt−1, zt−1) + logPrMC(zt) (4.10)

The second item in Eq. (4.9) is the model switching probability in the Markov

chain model, as discussed in Sec.4.2.1. The first item in Eq.(4.10 ) is measured

following the work by Zhou et al. [76]. A fusion cost is introduced for estimating

the probability, which is composed as the sum of two Mahalanobis distance squares

from the observation and prior model:

d2t|yt,zt,xt−1,zt−1
= d2t|yt,xt−1

+ d2t|zt,xt−1,zt−1
(4.11)

where

d2t|• = (xt − xt|•)
TC−1

t|• (xt − xt|•) (4.12)

Using this mechanism has the advantage that the best estimate is generated from

the uncertainties of the two sources (the observation and prior model), which are

incorporated into the system in the form of their covariances.

P (xt|yt, zt,xt−1, zt−1) can then be evaluated depending on the fusion cost func-

tion defined in Eqs.(4.11) and (4.12) in an inverse proportional form. Eq.(4.10)

becomes:

[x∗
t , z

∗
t ] = argmax

x,z
logPrMC(zt)− d2t|yt,zt,xt−1,zt−1

= argmin
x,z

d2t|yt,zt,xt−1,zt−1
− logPrMC(zt) (4.13)
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We note that zt is a discrete random variable with limited states. Therefore, we can

achieve the minimum of Eq. (4.13) in two steps: (1) with each fixed zt, estimate the

minimum values of the objective functions and the corresponding x∗
t (zt); (2) select

the global optimal estimate x∗
t and z∗t with the global minimum value. The entire

model can be illustrated as a graphic model in Fig.4.2 (a).

4.3.1 Component d2
t|yt,xt−1

The first distance arises from the observation source. The mean vector xt|yt,xt−1 =

[yt,S , yt,G] is directly derived from the observation process at the current frame. The

covariance matrix Ct|yt,xt−1 , which reflects the uncertainty of the observation, is given

as:

Ct|yt,xt−1
=

 RS 0

0 RG

 (4.14)

RS = η


C1

...

CMS

 RG =


B1

...

BMG


where η balances the energy between the shape and appearance parts in the obser-

vation process, and the 2× 2 matrix Ci is the covariance matrix associated with the

corresponding landmark point xi:

Ci = σ2

 ∑
(xm,yn)∈W (xi,yi)

 ∂2I(xm,yn)

∂2x

∂2I(xm,yn)
∂x∂y

∂2I(xm,yn)
∂x∂y

∂2I(xm,yn)

∂2y




−1

. (4.15)

I is the image intensity function, and W (xi, yi) represents a local area centered on

W (xi, yi). The variance for the appearance observation RG, is a diagonal matrix

with the diagonal entries set to be the square of the appearance difference between
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the current observation and the previous one, we have

Bi = F ⊗ ∥yit,G − xi
t−1,G∥2 (4.16)

where F is a smoothing filter for robustness.

4.3.2 Component d2
t|zt,xt−1,zt−1

The second distance relates to the P-AAM components in the AAMCmodel, in

the sense that the mean vector xt|zt,xt−1,zt−1 and the covariance matrix Ct|zt,xt−1,zt−1

are derived from the P-AAM component. For a P-AAM component of motion phases

i and j, its joint distribution p(Si,Sj,Gi,Gj) is Gaussian, whose mean and covariance

matrix are listed as:

µij =

[
µT
Si

µT
Sj

µT
Gi

µT
Gj

]T
,

Φij =



Φ<Si,Si> Φ<Si,Sj> Φ<Si,Gi> Φ<Si,Gj>

Φ<Sj ,Si> Φ<Sj ,Sj> Φ<Sj ,Gi> Φ<Sj ,Gj>

Φ<Gi,Si> Φ<Gi,Sj> Φ<Gi,Gj> Φ<Gi,Gj>

Φ<Gj ,Si> Φ<Gj ,Sj> Φ<Gj ,Gi> Φ<Gj ,Gj>


. (4.17)

Two different cases should be considered: (1) for i ̸= j: p(Si,Gi|Sj,Gj) is the

conditional probability and yields a Gaussian distribution, since the joint distribu-

tion is Gaussian. We derive the mean vector and covariance matrix as:

xt|zt,xt−1,zt−1
= µzt|zt−1,xt−1

= µi|j

= µi +ΣijΣ
−1
jj (xt−1 − µj) (4.18)

Ct|zt,xt−1,zt−1
= Σzt|zt−1

= Σi|j = Σii − ΣijΣ
−1
jj Σ

T
ji (4.19)

87



where

Σij =

 Φ<Si,Sj> Φ<Si,Gj>

Φ<Gi,Sj> Φ<Gi,Gj>

 , µi =

 µSi

µGi

 . (4.20)

(2) for i = j: the model updating is similar to the prediction step of the Kalman

filter. Denoting δi,xt−1 = xt−1 − µi, we have

Σi|i,xt−1
= Σii − ΣiiΣ

−1
xt−1|iΣii (4.21)

µi|i,xt−1
= µi +ΣiiΣ

−1
xt−1|i(δi,xt−1) (4.22)

where Σxt−1|i can be written as [87]:

Σxt−1|i =
1

ϵ(δi,xt−1)

∂2ϵ(δi,xt−1)

∂2δi,xt−1

(4.23)

ϵ(δi,xt−1) = ||xt−1 − µi||2 (4.24)

From Eqs.(4.18) and (4.22), we observe that using the conditional probability p(Si,Gi|Sj,Gj)

is beneficial because xt|zt,xt−1,zt−1 always updates during the iterations, so is adap-

tive to previous observation xt−1. Meanwhile, Eqs. (4.19) and (4.21) show that

the updated model subspaces lower the uncertainty in estimates with respect to the

original model subspaces. The proof is straightforward: The elements along the

variance matrix Σ are the marginal variances for the shape and appearance of one

motion phase and their uncertainties. Because Σii, ΣijΣ
−1
jj Σ

T
ji and ΣiiΣ

−1
xt−1|iΣii are

both positive definite matrices, the diagonal entries of Σzt|zt−1 are no larger than

those of Σii under both circumstances. Therefore, the uncertainty is non-decreasing

and bounded during tracking.
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4.3.3 The best estimate of xt with fixed zt

With each fixed zt, the minimization of d2t|yt,zt,xt−1,zt−1
can be solved by the

best linear unbiased estimator (BLUE). We notice that in most of cases, Ct|zt,xt−1,zt−1

tends to be singular due to the high dimensionality of the shape and appearance

vectors. Suppose the rank of the covariance matrix is q and its rank-q SVD is

UqΛqU
T
q , the original BLUE equation is altered to:

x∗(zt) = Uq(U
T
qC

−1
1 Uq + Λ−1

q )−1(UTqC
−1
1 x1 + Λ−1

q UTq x2). (4.25)

where x1 denotes x(t|yt,xt−1), and x2 denotes x(t|zt,xt−1, zt−1). In fact, the equa-

tion represents a BLUE fusion operation of two subspaces, one being N (UT
q x2,Λq),

and the other being the nonorthogonal projection of N (x1,C1) in the subspace,

which is N ((UTqC−1
1 Uq)

−1UTqC−1
1 x1, (U

T
qC−1

1 Uq)
−1).

4.4 Evaluation Methods

To evaluate tracking performance, we need to measure the proximity between

two contours. We propose a segmental Hausdorff distance (segHD) that allows a

certain degree of non-rigidity. As illustrated in Fig.4.2 (b), the segHD between two

corresponding landmark points x and x′ on the two curves C and C ′, respectively,

is defined as the Hausdorff distance (HD) between two segments ω(x) and ω(x′),

where ω(x) defines a segment around x on the curve C.

segHD(x, x′) = HD(ω(x), ω(x′)); (4.26)

dsegHD(C, C′) =

∫
x
segHD(x, x′)dC∫

x
dC

. (4.27)

We further take the mean of the segHD of all landmarks as the distance between C

and C ′, denoted by dsegHD(C, C ′).
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Figure 4.2: (a) The observations (yt) are jointly produced by the motion
phases (zt) and the vectors of shape and appearance (xt), xt and zt are
determined by selecting the optimal estimate on all possible values of zt.
(b) Segmental Hausdorff distance, and (c) Surprisal vector distance.

The segHD measures only the ‘physical distance’ between two contours, ignor-

ing their curvedness. The psychological term introduced by Feldman and Singh [92],

the surprisal vector −→sv, which quantifies how the curve is perceived, is favored to

reflect the similarity on curvedness. Fig.4.2 (c) illustrates the surprisal vector. The

direction of −→sv is the same as the outward normal direction, and the magnitude |−→sv|

is a function of curvature. At a highly-curved portion of the contour, |−→sv| is large;

at the flat portion, it is small. Using the surprisal vector, we compute a surprisal

vector distance dsurp(C, C ′) given below to characterize the proximity of two contours

in their curvedness.

surp(x, x′) = ||−→sv(x)−−→sv(x′)||2; (4.28)

dsurp(C, C′) =

∫
x
surp(x, x′)dC∫

x
dC

. (4.29)
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4.5 Experiments

4.5.1 Echocardiography tracking

Ultrasound sensing is a popular imaging modality due to its non-invasiveness,

low cost, and that it has little or no side effects. One of the main applications of

ultrasound imaging occurs in 2D cardiac ultrasonography (or echocardiography),

which images the heart and surrounding structures. An echocardiography tracking

system provides an automatic tool to delineate accurately the border of left ventricle

(LV). The observation process computes optical flow for individual control points

[93], and the fusion process regularizes the whole contour. Training data includes

1̃1000 frames for A4C (apical four-chamber) view and 9̃200 frames for A2C (apical

two-chamber) view. Each frame needs to be aligned using the thin-plate splines

warping algorithm and cropped to a 50× 40 patch. Because echocardiograms have

highly non-Gaussian intensity histograms, we use a nonlinear ultrasound-specific

normalization method [88] to transform the non-Gaussian intensity histogram to

have a Gaussian distribution.

Rhythmic heart movements have the special properties of periodicity and in-

variant occurrence orders for motion phases in cardiac cycles. Consequently, as long

as we have prior knowledge of heart rate of an echocardiography sequence and time

for end of diastole (ED) and end of systole (ES), the motion phase zt of the current

frame can be directly determined by the following equation:

zt =

[
t− tEDP

T

]
(4.30)

where T is the heart cycle, tED is the time of the end of diastole, and P is the total
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Figure 4.3: Example of shape and appearance subspaces of the trained
P-AAM. In our experiments, we use an N-cluster model (N = 3). c:
cluster index, p: phase index. Rows in the figure correspond to clusters;
columns correspond to phases. In the shape model, the red dotted lines
represent the means of the subspaces, while the three blue solid lines
in each plot represent three eigenvectors associated with the top three
eigenvalues in the corresponding subspaces.

number of motion phases. In our case, P = 9. The AAMC model is now specialized

as a model with several P-AAM components [89]. Accordingly, given zt = p, the

posterior function becomes p(xp|xp−1). The problem in Eq. (4.13) degenerates to:

x∗
t = argmin

x
d2p|yt,p−1,xp−1

(4.31)

and it can be directly solved with the BLUE method. In practice, for each motion

phase, since the joint shape and appearance space is hardly linear, we group the

data into several clusters and learn one P-AAM for each cluster to handle the data.

For testing, we used 400 A4C sequences and 320 A2C sequences, whose ground

truth contours were generated by experts. Fig. 4.4 shows the tracking contours on
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(a)

(b)

Figure 4.4: The snapshots of the tracking results of (a) an A4C sequence
and (b) an A2C sequence.
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sample frames of an A4C sequence and an A2C sequence. Several methods have

been compared. The results, reported in Table 4.1 (1), use the median and standard

deviation of the two distances introduced in sec.4.4. The “SSD” means the general

optical flow method using the SSD similarity function [94]. The “CD2” represents

the optical flow method using the similarity function in [95], which considers a sim-

plified ultrasound image formation. The “NPAM” refers to the optical flow method

proposed in [89]. The “P-AAM” means regularizing the NPAM results using the

P-AAM. From Table 4.1(1)(a), we observe that NPAM improves the tracking results

significantly in terms of segHD, compared to “SSD” and “CD2”. Further, using the

P-AAM decreases segHD. The advantage of using P-AAM is further highlighted

when the surprisal vector distance is used, as shown in Table 4.1(1)(c). The effec-

tiveness of shape, appearance and motion information when used as prior knowledge

is shown in Table 4.1(1)(b), in which four kinds of prior knowledge are compared.

The “ASM” shows results obtained using the phase-separate ASM only, without in-

volving the pairwise model. No motion and appearance information is integrated in

the model. The “AAM” model uses the phase-separate AAM only, which takes into

account shape and appearance. The third model uses the P-ASM (pairwise ASM)

model, with shape and motion but does not use appearance information. The last

model is the P-AAM model that jointly considers shape, appearance and motion.

Table 4.1(1)(b) suggests that using more prior information decreases tracking error.

It also indicates the order of importance of the three elements: shape, appearance

and motion. For example, the fact that the AAM provides better performance than

the P-ASM suggests that the appearance information contributes more to the entire
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(a) sequences
Segmental Hausdorff distance dsegHD (pixels)

SSD CD2 NPAM P-AAM

A2C 10.8612± 2.2621 7.9392± 1.5645 2.7042± 0.6732 2.6275± 0.6623

A4C 11.0310± 2.5927 7.3640± 2.3561 2.5291± 0.6076 2.4588± 0.5550

(b) sequences
Segmental Hausdorff distance dsegHD (pixels)

ASM AAM P-ASM P-AAM

A2C 2.6901± 0.6611 2.6844± 0.6881 2.6849± 0.6951 2.6275± 0.6623

A4C 2.5191± 0.5915 2.4776± 0.5614 2.5059± 0.5930 2.4588± 0.5550

(c) sequences
Surprisal vector distance dsurp

SSD CD2 NPAM P-AAM

A2C 0.3204± 0.1256 0.0957± 0.1197 0.0352± 0.0514 0.0098± 0.0110

A4C 0.3024± 0.1147 0.0995± 0.1006 0.0345± 0.0586 0.0096± 0.0097

(1) Echocardiography tracking

OF ASM AAM ASMC AAMC

Segmental Hausdorff distance 8.2345±13.3848 5.0825± 9.0518 4.8817± 9.1915 4.3162±8.1642 4.0686±7.4780

Surprisal vector distance 0.3167±0.0539 0.0692±0.0417 0.0693±0.0403 0.0648±0.0258 0.0611±0.0294

(2) Face tracking

Table 4.1: Comparison of tracking performances based on the segmental Hausdorff

distance and the surprisal vector distance: (1) Echocardiograph tracking results; (2)

Face tracking results. “OF” is the original result from optical flow estimation.

system than the motion information.

4.5.2 Pedestrian Tracking

Contour-based pedestrian tracking is an important topic in surveillance sys-

tems. Our approach is based on the active contour tracking algorithm [80], to which

the particle filter [8] is applied. During walking, a human body undergoes both rigid

and non-rigid movements. Accordingly, the observation process is decomposed into

95



two steps: (1) 2D motion estimation that yields object-wise spatial rigid-body

motion, including translation and rotation parameters. We use a particle filter based

on an affine model to estimate all the parameters; and (2) 2D shape deformation

that captures the pose changes of non-rigid objects by using a posterior deformation

probability map based on statistical analysis of the corresponding frame.

In the fusion process, we observe that appearances of pedestrians vary largely

due to different textures and colors of clothes people wear, which makes model-

ing an appearance subspace highly unreliable. Therefore, we apply a special case

of the AAMC model, the ASMC (active shape Markov chain) model in the fu-

sion process, i.e., we use only the prior shape and motion knowledge. Accordingly,

the subspace of one P-AAM component includes only the shape subspace. The

state vector in this system includes only [xt,G, zt]. The training data for the ASMC

model on walking pedestrians consists of approximately 2000 80×120 binary frames

with aligned pedestrian silhouettes (from the USF dataset) from 23 sequences. The

shape vector has 120 dimensional (60 control points). We divided one complete

movement cycle of people walking into five motion phases. The elements of the

trained transition matrix T ∈ R5×R5 are all non-zero. Therefore, we have 20 pairs

of P-AAM components. Fig.4.6 (a) shows the trained ASMC model. We tested

our AAMC model on several sequences captured by moving cameras. Fig.4.5 shows

results on two sequences. We compare three algorithms in Table 4.2 with scenar-

ios of heavily-cluttered backgrounds and non-rigid targets. The ground truth was

generated manually. We evaluate the tracking results by the segmental Hausdorff

distance. The “ACT” refers the traditional active contour tracking method pro-
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ACT ASM ASMC

heavy-cluttered
14.7584 ± 74.4052 7.9129 ± 12.5602 6.5297 ± 10.3378

background

non-rigid object 9.9741 ±24.6597 6.0571 ± 8.5222 5.2188 ± 6.2265

Table 4.2: Comparison of tracking results on heavily-cluttered background sequences

and non-rigid object sequences in terms of segmental Hausdorff distance.

posed in [80]. The “ASM” refers the contour tracking using the ASM constraints.

The “ASMC” is our proposed algorithm. Both “ASM” and “ASMC” algorithms

use the two-step approach in the observation process. We observe that: (1) using

a two-step operation in the observation process significantly improves the perfor-

mance because the operation concerns both rigid and non-rigid movements; and (2)

use of “ASMC” further improves the robustness of the tracking system because it

integrates shape, and motion prior knowledge, and makes the regularizing model

adaptive during tracking, while the “ASM” model does not.

4.5.3 Face tracking

Linear subspace methods have been widely used in several face tracking sys-

tems. We also evaluate the use of the AAMC model in face tracking scenarios.

To illustrate the contribution of the regularization part clearly, we use a simple

non-parametric optical flow approach in the observation process to estimate the

dynamic motion [94]; the fusion process includes the regularization by the AAMC

model. The model is generated based on the IMM face database [96] with 240 still

grayscale images of 40 different people. Some interior parameters are: the number
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(a)

(b)

Figure 4.5: Two sequences in which both background and object move.

of motion phases is 4 (two frontal views with different poses and two side views);

the shape of the facial structure was manually annotated using 58 landmark points,

i.e., the dimension of the shape subspace is 116 (the landmark points are distributed

around eyebrows, eyes, nose, mouth, and jaw). The appearance subspace of the face

is trained from aligning the original region of interest to 30× 20 patch. Therefore,

the dimension of appearance subspace is 600. The testing sequence was captured
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Figure 4.6: (a) The graphic illustration of the ASMC model for pedes-
trian tracking. The contours with heaviest weights are mean shapes of
motion phases. The thinner contours in each shape model component
represent the three eigenvectors associated with the top three eigenvalues
in the corresponding subspace; and (b) The graphic illustration of the
AAMC model for face tracking. The red solid lines are the means of
shape subspaces, the patches are the means of appearance subspaces. In
both plots, the arrowed lines between two ASM (AAM) models represent
the Markov chain connections.

by a moving camera in a subway, with resolution of 180 × 240. Fig.4.6(b) shows

the trained AAMC model for face tracking. Fig.4.7 compares several tracking re-

sults on one frame in the testing clip when using different approaches, including

the original optical flow estimate and the fusing estimates after applying the ASM,

AAM, ASMC, and AAMC models. The AAMC model detects that a motion phase

switch (from side-view to frontal) occurs in this frame, while the ASMC model does

not detect it. Fig.4.8 shows some tracking results on the testing sequence. We no-

tice that the original optical flow estimation tends to drift, and which the AAMC

model significantly reduces. Table 4.1(2) reports the results using different models

in terms of segHD and surprisal distance. The AAMC model always gives the best
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Figure 4.7: Comparison of different tracking results on one frame
(frame220), where a switching of motion phases occurs. The red dots
represent the original location of landmark points. (a) the original esti-
mate from observation process; (b) fused with ASM model; (c) fused with
ASMC model; (d) fused with AAM model; (e) fused with AAMC model.

performance among all the models we have tried in our experiments.

4.6 Conclusions

We have proposed a general model to represent shape, appearance, and motion

information. The proposed AAMC model has two parts: the Markov chain model

controls the transition between motion phases; the P-AAM component models the

shape and appearance information using subspaces and the inter-phase motion by

paired data in each component. The model is used for contour tracking as a prior

model to fuse with the observation and generate an optimal estimate. The nature of
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Figure 4.8: The snapshots of tracking results from the testing face se-
quence. The red lines denote the original observation output by optical
flow method, and the yellow lines represent the optimal estimates after
fusing with the AAMC model.

the AAMC model also enables its adaptability throughout tracking. We tested the

algorithm on several applications, including echocardiography tracking, pedestrian

and face tracking. The tracking results evaluated by the segmental Hausdorff dis-

tance and surprisal vector distance demonstrate improved robustness and accuracy.

101



Chapter 5

Video Mensuration Using Stationary Cameras

5.1 Introduction

In photogrammetry applications, it is required to make measurements on dig-

ital images. A major difficulty happens with the distortion of geometric scene prop-

erties due to imaging transformation in a perspective camera. The most influenced

properties include the size of an object, the length ratio and parallelism between

line segments, all of which are not preserved in a projected image. An ideal way to

handle all the uncertainties is by recovering the real 3D world from a 2D projected

image, which, in most cases, needs significantly more information than a single

image can provide with unknown camera calibration. A semi-automatic measuring

method using image data from a single camera has been proposed in [97], which uses

minimal calibration information and the perspective geometry approach for mensu-

ration. Motivated by the wide availability of video surveillance systems, we propose

to extend single image metrology techniques to video data acquired by stationary

cameras, which is referred to as video metrology.

Video metrology enables improved automation, flexibility and accuracy. (i)

Achieving automation is critical for handling the large volume of video data. Tra-

ditional photogrammetric systems involve some human interactions, which are un-

pleasantly burdensome and often unreliable. Geometric features, such as orthogonal
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lines, parallel lines and vanishing points are usually manually labeled, and even ob-

jects need to be manually selected from surroundings. Video sequences enable an

automatic solution: Objects can be first segmented using tracking or segmentation

algorithms, then motion information can estimate the minimal calibration of scenes.

The need for human interactions is reduced greatly. (ii) Exploitation of motion in-

formation offers more flexibility. Photogrammetry relies on man-made environments

characterized by plenty of solid parallel and orthogonal lines to infer the vanishing

line/point. These strong cues are not always present. However, the tracked moving

objects in video sequences provide a way to estimating the vanishing line of ground

planes and the vertical vanishing point. In some cases, mensuration from a single

image is not reliable, especially when occlusions or instant disturbances occur. (iii)

Since video sequences provide additional temporal information, fusing multi-frame

measurements smoothes the measuring errors of individual frames, improving the

accuracy of final estimate of the measurement.

In this chapter, we develop a minimal supervised algorithm based on monoc-

ular videos and uncalibrated stationary cameras, which is of increasing interest in

many applications. “Uncalibrated” means that the camera focal length, principal

point location and image affinity parameters are not assumed to be available. Since

object motion is a highly critical factor in our algorithm, when there are no moving

objects appear in a scene, the problem degenerates to one of single view metrology

problems. The proposed algorithm has the following key steps:

- By tracking the motion of objects in an uncalibrated video sequence, we au-
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tomatically recover useful geometric properties of the scene. These geometric

properties include the vanishing line of the ground plane and the vertical van-

ishing point.

- We apply the Expectation Maximization (EM) algorithm to cluster tracked

trajectories of feature points simultaneously into groups and estimate the cor-

responding vanishing points belonging to each group. Outliers of trajectories

are also detected.

- With estimated minimal calibration information, we apply a single-view metrol-

ogy algorithm [97] to estimate the height of a target object in each frame. We

also derive an uncertainty analysis for the height measurement.

- Finally, we fuse all the measurements for frames using a well-known stochastic

approximation technique for an optimal estimate.

5.1.1 Related work

Several techniques have been developed for metrology. The vanishing point of

parallel lines has been proven useful in recovering 3D scenes for decades [98, 99].

Criminisi et al., [97] outline a method for recovering an affine scene structure from a

single perspective view using vanishing lines and points. Without the knowledge of

a camera’s internal calibration, they can compute the area and length ratios of any

planes parallel to the reference plane. Gurdjos et al., [100] show how to estimate the

heights of soccer players from videos given vanishing points/lines. These approaches

are limited in the dependence on manual supervision. As an extension, Liang et al.,
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[101] introduce two view metrology which estimate affine height measurements by

recovering planar homography of the reference plane between two views separated

by a (near) pure translation.

By taking advantage of tracking results from video sequences, several au-

tomatic mensuration algorithms have been developed. The calibration technique

proposed by Lv et al., [102] uses certain constraints, that walking pedestrians are

essentially perpendicular to the ground plane and their heights remain constant, to

determine the vanishing line. Renno et al., [103] use projected sizes of pedestrians

to estimate the vanishing line of a ground plane. Stauffer etc. propose [104] a

self-calibration method by linearly approximating measurable projected properties.

Bose and Crimson [105] propose a method using constant velocity trajectories of ob-

jects to derive vanishing lines for recovering reference plane and rectification. Their

algorithm uses an additional constraint brought by the constant-velocity assump-

tion, which is not always available in surveillance sequences. Guo and Chellappa

[106] present an algorithm that detects and tracks wheels of an automobile for wheel

base mensuration, with sufficient results to determine the vehicle classes. We also

leverage object motion in videos to acquire calibration information for measurement.

Furthermore, the proposed algorithm incorporates all the measurements from indi-

vidual video frames to improve the accuracy of the final measurement.
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5.2 Single view measurement from minimal calibration

Perspective projection introduces challenges in video mensuration applica-

tions. One can easily conduct mensuration on images of objects, but little can

be inferred from the mensuration without understanding how the objects have been

mapped from world coordinates to image coordinates. Given a typical pinhole cam-

era, Criminisi et al. [97] illustrate the following geometric fact: Given the vanishing

line of a reference plane (in our case we refer to the ground plane), a vanishing point

for another reference direction (not parallel to the plane, in our case the vertical

direction) and a reference height, we can estimate any object’s height if the object

and the reference object are both on the reference plane. We call this a minimal

calibration condition.

Denote the vanishing line of a reference plane (ground plane) as l , the vertical

vanishing point as p and the length of a reference line segment trbr as hr. We want

to measure the height h of segment tb. Intersection v can be obtained by v = brb× l;

intersection i is determined by i = tv× pbr. The four points p, i, tr, br define a cross

ratio [107]. bri is the projected segment of the segment tb onto trbr. Therefore,

the world height ratio h/hr can be derived using the cross ratio invariance and 1D

homography [97] as:

h

hr
=
d(p, i)d(tr, br)

d(i, br)d(tr, p)
(5.1)

where i = (p× br)× (t× (l× (br × b))). The height of any object can be estimated

in a similar manner. Figure 5.1 illustrates the computation of the height ratio using

the above geometric method. A real image application is also demonstrated.
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(a) (b)

Figure 5.1: (a) The basic geometry of the scene. l is the vanishing

line of the reference plane, line brtr and bt are two parallel lines on the

reference plane. p is the vanishing point on direction of brtr and bt.

(b) An example of applying the algorithm to a real image, the red lines

represent the reference height and the target height respectively, ”i” is

the same position illustrated in (a).

107



5.3 Self minimal calibration from moving objects

5.3.1 The geometric properties of moving objects

The minimal calibration condition includes three parts, the vanishing line of a

ground plane, the vertical point and the reference height(s). Traditional approaches

rely on manually labeled parallel lines to obtain vanishing points, which are based

on the following well-known geometric properties: (i) The vanishing line (the line at

infinity), l∞ = (l1, l2, l3)
T , of a ground plane has two degrees of freedom and can be

determined as the line through two or more vanishing points of the plane. (ii) In a

perspective view, a set of parallel lines pass through a common point in the image

plane, which is called their vanishing point. The vertical point is the vanishing point

of all the vertical world lines on the image plane. Therefore, two sets of parallel lines

(non-parallel to each other) on the ground plane and one set of vertical lines are the

minimum requirements to determine the minimal calibration.

Instead of detecting parallel line sets from man-made structures [108, 109,

110], our approach focuses on automatically extracting parallel lines through motion

information obtained from video. This is feasible because when an object is moving

in a scene, it holds some properties:

1. Most of the moving objects are on the ground plane. For a rigid object, the

trajectory of each point on the object over time is parallel to the ground

plane. For a non-rigid object, like a human, some points on the object have

their trajectories parallel to the ground plane, while the others have theirs not
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parallel to the ground plane due to deformation.

2. Since the vanishing line can also be defined as the line of intersection between

the image plane and the plane passing through the projection center that is

parallel to the ground plane, an object’s projected size should be zero at the

vanishing line of the ground plane, where the object is at infinite distance

from the camera. Consequently, when an object moves in a direction with

decreasing projected size in an image plane, all the points on the same object

finally converge into one point, which belongs to the vanishing line of the

ground plane.

3. In short term, the most common moving pattern of objects is a straight line.

Therefore, it is not difficult to collect at least two sets of trajectory segments in

straight lines, each set containing the trajectories of feature points belonging

to the same moving object. We denote each trajectory by li, a homogeneous

three-dimensional vector associated with feature point i. These sets of trajec-

tory segments need not be from different moving objects; they can be collected

from the same object during different time intervals. The only requirement is

that these sets should be of different world orientations. Each set can deter-

mine one vanishing point on the ground plane, which satisfies:

li · vj = 0 ∀i ∈ Uj (5.2)

where vj is the 2D homogeneous coordinate of the vanishing point, (vxj , v
y
j , 1)

T ,

associated with trajectory set Uj. With at least two vanishing points, we can

estimate the vanishing line of the ground plane.
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In an ideal situation of no-tracking-error and rigid-motion, by using the above

properties, one can accurately recover the vanishing line and the vertical point.

Unfortunately, such conditions do not apply to most surveillance applications. It

is often the case that tracking trajectories are contaminated by errors, and a set of

trajectories from one object do not intersect at one common point. Therefore, robust

techniques for selecting good trajectories (inliers) for vanishing point estimation are

needed.

5.3.2 Recovering vanishing line and vertical vanishing point

Our tracking method is based mainly on feature points obtained through the

optical flow method [111], under the assumption that objects are moving on the

ground plane and each world trajectory of tracked feature point is parallel to the

ground plane. The error in estimating vanishing points results from two factors:

the correspondence error from tracking data and the effect of non-rigid motion

on straightness and parallelism of trajectories. Both result in a set of supposedly

parallel lines that do not intersect precisely in one point. As a solution, mutual

trajectory similarities are evaluated with an auxiliary blob tracking module, which

significantly suppresses these errors. With the trajectories from both feature points

and motion blobs available, the next steps consist of refining trajectories with the

constraint that the corresponding motion spaces to be one dimensional, applying

the EM algorithm to cluster the trajectories into different groups, excluding outlier

trajectories, and estimating the vanishing points and hence the vanishing line, and
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estimating the vertical vanishing point.

5.3.2.1 Trajectory refinement

Since lines parallel to the ground plane project to the image plane under a

projective transformation, we collect all trajectory segments (a trajectory contains

a sequence of image coordinates of one feature point in successive frames) that can

be fit by straight lines. We parameterize a piece of trajectory segment by an angle θ

(between the line and the x axis) and the perpendicular distance ρ from the origin

to the line using equation:

x sin θ − y cos θ + ρ = 0 (5.3)

The parameters can be directly determined by the eigenvalues λ1, λ2 and eigenvec-

tor v (associated with the largest eigenvalue) of the matrix D associated with the

normalized trajectory support region:

D =


∑

j(xj − x̄)2
∑

j(xj − x̄)(yj − ȳ)∑
j(xj − x̄)(yj − ȳ)

∑
j(yj − ȳ)2

 (5.4)

where x̄ and ȳ are the means of x and y coordinates. Therefore, θ = arctan(−v(1), v(2))

and ρ = ȳ cos θ − x̄ sin θ. We can thereby define li in equation (5.2) as li =

(sin θ,− cos θ, ρ)T . Such a notation allows the perpendicular distance from any point

x = (x, y, 1)T to the line to be calculated simply as d(li,x) = |li · x|.

Fitting a straight line to any trajectory acts as a constraint to limit the feature

point motion space to be one dimensional [112]. It can efficiently reduce the vibration

of feature point movement, while retaining its parallelism to the ground. Figure 5.2

111



shows an example on trajectory refinement.

(a) (b)

Figure 5.2: An example of refining trajectories by line fitting. The left

image depicts the trajectories from tracking data, and the right image

shows the refined trajectories.

5.3.2.2 Simultaneous trajectory grouping and vanishing point esti-

mation

The problem now can be addressed as: given a set of trajectory segments L =

{li, i = 1, . . . , N}, we want to find a set of vanishing points, V = vk, k = 1, . . . , K,

which minimizes the following objective function:

J(V ) =
∑
k

∑
i∈Uk

|li · vk| s.t. ∀m ̸= n, Um ∩Un = ϕ (5.5)

where Uk denotes the trajectory index subset associated with a particular vanishing

point vk. The objective function implies two operations: grouping observed trajecto-

ries and estimating corresponding vanishing points. We formulate it as a problem of
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finding the most likely estimates of vanishing points, as well as probabilities of each

trajectory belonging to a particular vanishing direction, as suggested in [113]. We

use the EM to estimate iteratively the vanishing points and cluster the trajectories.

In the EM algorithm, the objective function is derived from the expected log

likelihood with respect to each of unknown parameters vk:

J(vk) =
∑
i

wi,k log p(li|vk) (5.6)

where wi,k is a membership function that measures the posterior probability of a

vanishing point vk that a trajectory segment li belongs to wi,k = p(vk|li).

The moving objects not only provide the trajectories of all feature points be-

longing to the objects, but also the trajectories of blob centroids [5, 27]. We denote

the trajectories of the blob centroids as Oj, j = 1, . . . ,M , with same parameteriza-

tions as li. Using the Bayesian rule, we have:

p(vk|li) =
∑
j

p(vk, Oj|li) =
∑
j

p(vk|Oj, li)p(Oj|li)

=
∑
j

p(vk|Oj, li)
p(li|Oj)p(Oj)∑
m p(li|Om)p(Om)

=

∑
j p(vk|Oj, li)p(li|Oj)∑

m p(li|Om)
(5.7)

where we assume that the probability of any Oj appearing is equal, i.e. p(Oj) is

equal.

The term p(li|Oj) determines the likelihood of li belonging to the object Oj.

Denote by Rt
Oj

the support region of jth blob at t frame and X t
li
the position of ith

feature point at t frame . We have:

p(li|Oj) =


exp(−d(Oj ,li)

2

2σ2 ),
∑tTi

t=t0i
I(X t

li
) > T thresh

i ;

0, otherwise.

(5.8)
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where t0i and tTi are the starting time and disappearing time of ith trajectory, and

T thresh
i is equal to (0.8 0.9) of the existing time of ith trajectory. I is an indicator

function:

I(X t
li
∈ Rt

Oj
) =


1, X t

li
∈ Rt

Oj
;

0, otherwise.

(5.9)

d(Oj, li) measures the distance between the trajectory li and the blob distance Oj.

Instead of using the standard angle difference between two lines to measure the

distance, we introduce the Kullback-Leibler (KL) distance [114]. We want to se-

lect “good” feature point trajectories, which means we count the trajectories with

higher probabilities to be world-parallel, while dropping outliers resulting from ei-

ther tracking failure or non-rigid object motion. The KL distance has the advantage

of being able to evaluate the relative similarities between two trajectories and select

preferred trajectories. Therefore, d(Oj, li) is computed as:

d(Oj, li) =
P∑

p=1

fp
li
log(

fp
li

fp
Oj

),
∑
p

fp
li
=

∑
p

fp
Oj

= 1.0 (5.10)

where f is computed using the normalized Fourier descriptors over points of each

trajectory (before refinement). For one series of Fourier descriptors from the corre-

sponding trajectory, neglecting the first coefficients (DC component) of the Fourier

descriptors, we smooth the magnitudes fmag and phases fpha of the Fourier descrip-

tors, then normalize them to achieve a probability distribution. So f = fmag · fpha.

Figure 5.3 illustrates how the KL distance removes outliers from the observation

data.

The term p(vk|Oj, li) evaluates the likelihood of vanishing point vk belonging

to both trajectories Oj and li. The likelihood values are determined by the distance
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between points and lines. We assume that it takes the following form:

p(vk|Oj, li) ∝ exp(−|Oj · vk|2

2σ2
1

) · exp(−|li · vk|
2

2σ2
2

) (5.11)

(a) (b)

(c)

Figure 5.3: Using the Fourier Descriptor to find outliers. (a) shows the

magnitude of the Fourier descriptors (excluding DC component), with

each line representing a piece of observed trajectory. (b) the mutual KL

distance between trajectories. The lighter color indicates larger distance.

Obviously the last trajectory appears farther from other data, which im-

plies that it is a possible outlier. (c) The red lines are the related feature

point trajectories; and the yellow arrow points to the outlier trajectory.

The initialization of the EM algorithm is based on the observation that one ob-

ject moving along one direction can determine one vanishing point. Therefore, using

LMS, each initial vanishing point is computed with all the feature point trajectories

related to the corresponding moving object. In the E-step, we update the current
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membership function defined by (5.7) with the vanishing point estimate from the

last iteration, wi,k = p(vk−1|li). The M-step involves maximization of the objective

function in (5.6). We have:

J(vk) = max
vk

∑
i

wi,k log p(li|vk) = min
vk

∑
i

wi,k|li · vk|2 (5.12)

which can be solved by the LMS method using a linear approximation. Iteratively

alternating the E and M steps, we finally achieve an optimal estimate of the position

of vanishing points. Figure 5.4 shows an example of applying the EM algorithm for

estimating vanishing line. The vanishing line is obtained as the LMS solution of

L ·V = 0, where V = [v1, v2, ..., vK ].

Figure 5.4: Using the EM algorithm to estimate the vanishing point. The

”+” depicts the iteration of the algorithm, ”o” is the final value. The

green line is the initial vanishing line, and the red is the final vanishing

line of the ground.
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5.3.2.3 Vertical point estimation

The vertical vanishing point can be estimated by the aid of a geometric prop-

erty that the orthocenter of three orthogonal vanishing points (x, y and z axis) as

vertices is the principal point P [98]. We further assume that P in the image plane

is close enough to the image center. Therefore, when we find the vanishing line of

the ground plane L, the vertical point p satisfies: L · (p × P ) = 0, which can be

further formulated as

p · L⊥ = 0, L⊥ = (
L(2)

L(1)
,−1, L

(2)

L(1)
P (1) + P (2))T . (5.13)

where L(i) represents the ith element of L. Another constraint results from the

principal axis of motion blob in each frames, which is defined as the eigenvector with

smaller angle to y image axis. (We did not define the principal axis as the eigenvector

associated with the larger eigenvalue because when the object is a vehicle, then the

largest eigenvalue of the motion blob is related to the width of the vehicle instead

of the height.) Those principal axes, denoted by E = [e1, e2, ...eM ], satisfy:

pTE = 0M . (5.14)

The RANSAC method is applied to estimate the vertical point p with the above

two constraints.

5.4 Multi-frame measurement fusion using stochastic approximation

One advantage of video metrology is that the result does not count on any

single frame in the video. That means, the incorrectness measurement derived
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from one frame due to bad tracking locations, occlusions or pose variations can be

compensated by fusing multiple-frame measurements. Therefore, after we obtain

the minimal calibration, we apply measurement in each frame of the sequence and

fuse them to achieve an optimal estimation.

5.4.1 Single frame measurement

Given a stationary reference height hr, two image points br and tr identified

to represent the reference object, combined with the estimated vertical point p̂ and

the estimated vanishing line L̂, we apply the following operations in each frame k:

• Step 1. Locate two image points tk and bk determined by the principal axis

of the motion blob derived from tracking data, which form a line segment

representing the object height hk;

• Step 2. Locally tune tk and bk subject to the collinear constraint with two

end points and the estimated vertical point p̂. The two tuned end points are

denoted by t′k and b′k;

• Step 3. Compute the projected point t′k⊥ from t′k to line segment (br, tr) by

t′k⊥ = (p̂× br)× (t′k × (L̂ × (b′k × br)));

• Step 4. Compute the object height as:

hk = hr ·
d(tr, p̂)d(t

′k
⊥, br)

d(p̂, t′k⊥)d(tr, br)
. (5.15)

In step 2, we apply the constraint that two end points and the vertical point

are collinear. This helps to correct inaccurate tracking data and principal axis
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estimation by pose variance, improving the precision of the measurement. The step

can be formulated to estimate the maximum likelihood estimates (MLE) t′k and b′k

of tk and bk, by minimizing the sum of Mahalanobis distance between tk, bk and

their MLE estimates t′k, b
′
k:

min
t′,b′

(t′k − tk)TΛt(t
′
k − tk) + (b′k − bk)TΛb(b

′
k − bk)

s.t. (t′k × b′k) · p̂ = 0, (5.16)

where the covariance of image points t, b is given by:

Λκ =

 ∂2I(κx,κy)

∂x2

∂2I(κx,κy)

∂x∂y

∂2I(κx,κy)

∂x∂y

∂2I(κx,κy)

∂y2


−1

, κ = {t, b}, (5.17)

and I(κx, κy) is the intensity at the point (κx, κy). The solution to the above opti-

mization is first derived in [97] and is included in Appendix A. The entire procedure

is illustrated by an example of walking pedestrians in Figure 5.5, in which the ver-

tical point is invisible in the view due to the limit in image size.

5.4.2 Multi-frame fusion using least median estimator and Robbins-

Monro stochastic approximation

The measurements from multiple frames include outlier observations due to

bad tracking errors, articulated motion, and occlusions. It makes the process of

using mean of the multi-frame estimates not robust. The least median of squares

estimation (LMedS) [115] has the well-known property of being less sensitive to

outliers. In the LMedS method, the cost function is defined as:

θ∗ = argmin
θ
mediank w

−1
k (hk − θ)2. (5.18)
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(a) (b)

(c)

(d) (e)

Figure 5.5: The procedure for measuring objects heights from one frame.

(a) The original image. (b) The obtained motion blobs indicating the

moving objects in (a). (c) The estimated principal axes in yellow of the

moving objects (step 1). (d) The principal axes in red after local tuning

(step 2). (e) The thick red line depicts the vanishing line of the ground

plane, the thin green line is the line segment of t×(l×(b×br)) in equation

(5.1), the yellow segment is the reference object with a tiny black circle

on it depicting the projected position of the object.
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where wk represents the covariance of hk, computed by using the implicit function

theorem. We will discuss the computation of wk in section 5.5.

Since the cost function is a non-linear estimator without a closed form solution

and the distribution of the noise is unknown because of the complexity of the error

sources, the Robbins-Monro stochastic approximation (RMSA) [116, 117] algorithm

provides an elegant tool to solve the optimization problem. We outline the specific

LMedS problem using the standard RMSA notations: Let H be set of observations

of size K,W be set of corresponding covariances, and A(θ) = {f(θ, h, w), h ∈ H, w ∈

W} be the ordered set of the values of f at a fixed point θ. If f(θ, h(med), w(med)) is

the median value, equation (5.18) becomes:

θ∗ = argmin
θ
f(θ, h(med), w(med)) = argmin

θ
F (θ) (5.19)

where F (θ) is differentiable w.r.t. θ. Initializing θ = θ0, we calculate the gra-

dient grad(F (θ)) at the point. The recursion in the step i is given by θi+1 =

θi − ai ∗ grad(F (θi)), where ai is the gain sequence defined by ai = 0.1/(i+ 1)0.501,

f(θ, h, w) = w−1(h− θ)2.

The iterative optimization algorithm is implemented using a fixed number of

iterations. In the ith step, it computes the following:

- Randomly chooses a subset Hs ∈ H with S observations (L < 0.5 ·K) and the

corresponding subset Ws ∈ W , and calculates the value set of f(θi,Hs,Ws)

and sorts the values.

- Chooses the value corresponding to the median and the corresponding ob-

servation h(med) and covariance w(med), and calculates the gradient D(f) at

121



(θi, h(med), w(med));

- Updates θi+1 = θi − ai · D(f). Sets i← i+ 1.

5.5 Uncertainty analysis of measurement

Any metrology algorithm, whether manual or automatic, can achieve only a

certain finite accuracy. In this section we will study how errors propagate through

the measuring procedure. We focus on the uncertainty of the height measurement hk,

which is modeled by its covariance w. Two methods for estimating the uncertainty

are exploited: an analytical method and a Monte Carlo method.

5.5.1 Analytical estimation of uncertainty on height measurement

The height measurement hk derived from Eq. (5.15) depends directly on two

MLE end points t′k and b′k, one vertical vanishing point p̂ and one vanishing line

L̂. Further, as illustrated in section 5.4 (e.g. step 2.), the two MLE end points are

obtained through optimization approachs based on the tracking points tk, bk and

the vanishing point p̂. Therefore, hk is dependent on {tk, bk, p̂, L̂} through {t′k, b′k}.

In other words, the uncertainty propagates from {tk, bk, p̂, L̂} to {t′k, b′k}, and finally

to hk.

The computation of the covariance of hk, denoted by w, involves two folds.

The first fold is to derive the covariance of {t′k, b′k} from parameters {bk, tk, p̂}, in

which the implicit function theorem has been used because of optimization function.

The second fold is to compute to the final covariance w. With the covariance
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of {t′k, b′k, p̂, L̂}, the problem is regarded as an explicit case and can be solved by

applying the Jacobian matrix.

Define x ∈ R10 as vector x = [bk, tk, p̂, L̂]T , where bk ∈ R2, tk ∈ R2, p̂ ∈ R3 and

L̂ ∈ R3, with the assumption that the four components are statistically independent,

the covariance matrix of x can be written as:

Λx =



Λb 0 0 0

0 Λt 0 0

0 0 Λp̂ 0

0 0 0 ΛL̂


(5.20)

Following the computation presented in Appendix B, the covariance w can be ob-

tained as:

w = ∇hAΛxA
T∇T

h . (5.21)

5.5.2 Monte Carlo estimation of uncertainty on height measurement

The Monte Carlo method estimates the uncertainty of the height measurement

by exhaustive simulation [107]. It can validate the results of the analytical method.

The inputs in each experiment include the plane vanishing line, the vertical vanishing

point and the two end points of the object of interest, each of which is associated

with a covariance. The simulation used 10,000 samples. The implementation steps

are described in Table 5.1.
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• For j = 1 to N (N is the number of simulation samples)

- Generate a random vanishing line according to its covariance ΛL̂;

- Generate a random vertical vanishing point according to its covariance

Λp̂;

- Generate two random end points b and t of the object of interest according

to corresponding covariances Λb and Λt;

- Estimate the MLE end points b̂ and t̂;

- Compute the object height hj by applying (5.15)

• The standard deviation of height estimation is computed as σ2
h =

∑N
j=1(hj −

h)2/(N − 1).

Table 5.1: Monte Carlo Simulation
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5.5.3 Error estimation result

The noises in the experiments are basically from the image noises, which cor-

respond to the estimates of the end-points of the object, the vanishing lines and

the vertical point. To focus on exploring how the noises are propagated during the

procedure of height estimation, we assume all the noises are Gaussian distributions

with zero means and uniform standard deviation values. We have tried five noise

levels in the experiments. Both the analytical estimations and Monte Carlo simu-

lation results are reported in Table 5.2 with corresponding relative errors. The two

sets of results are coincident.

σ (pixel) Analytical result Monte Carlo result Relative error

σh
σh

h σ′
h

σ′
h

h
∥σh−σ′

h∥
σ′
h

0.2 0.9290 1.02% 1.0163 1.12% 8.59%

0.5 1.4573 1.62% 1.5499 1.71% 5.98%

1 2.0443 2.25% 2.1086 2.32% 3.05%

1.5 2.4969 2.75% 2.5507 2.81% 2.11%

2 2.8816 3.17% 2.9099 3.20% 0.97%

Table 5.2: Error estimation results with the estimated height h = 91inch using the

analytical approach and Monte Carlo simulation. Relative errors are also computed.

In our algorithm, the measurement uncertainty results from two sources, the

image noise, which affects the estimate of the ending points of the object, the van-

ishing line and the vertical vanishing point; and the calibration error, which affects

the estimate of the vanishing line and the vertical vanishing point. It is also worth

mentioning here that the former occurs in both the manual-calibrated metrology and
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σn = 1 Calibration error σc = σn × γ

σ2
n = 4.1380 γ = 2 γ = 5 γ = 10 γ = 20 γ = 30

σ2
n,c 4.1653 4.2473 4.3839 4.6572 4.9304

∥σ2
c−σ2

n∥
σ2
n

0.66% 2.64% 5.94% 12.55% 19.15%

Table 5.3: Uncertainty analysis under different calibration errors. σn is the image

noise, σc is the calibration noise, σn,c is the entire uncertainty concerning both the

image noise and calibration error.
the auto-calibrated metrology, while the latter is only introduced in auto-calibrated

metrology. Therefore, it is useful to study how these two sources of errors propagate,

with respect to the entire error propagation, to evaluate the robustness of the pro-

posed algorithm. Table 5.3 reports another experiment we conducted in which we

simulated extra calibration errors and added them to the height estimate procedure

with the image noises. Basically, the extra calibration errors were added to the esti-

mate error of the vanishing line and the vertical vanishing point. We computed the

proportions of the calibration related uncertainties with respect to the image noise

related uncertainty. From the reported results, we conclude that the calibration er-

ror contributes only a relative small portion to the entire measurement uncertainty,

i.e., automatic calibration does not vastly affect the accuracy of final results, though

it introduces extra errors. This happens mainly because the automatic calibration

errors affect only the vanishing points and the vertical points. When computing the

height, the contributions of the vanishing points and the vertical points are limited

compared to those of the ending points of the object. The result validates that our

algorithm with self-calibration can achieve reasonable performance.
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5.6 Experiments and Discussion

5.6.1 Vanishing line estimation

We have applied our method to different sets of outdoor surveillance video

sequences taken from stationary cameras. Moving objects include vehicles and hu-

mans; tracking data contain both feature point based and motion blob based data

for subsequent clustering. We perform morphological operations on motion blobs

for smoothing and denoising. After initialization, the EM algorithm usually takes

3 to 10 iterations to converge. In one possible reason for fast convergence, the mo-

tion blob information provides a strong clue to trajectory clustering. Some results

appear in Figure 5.6. The first sequence has two major sets of trajectories: one

from a vehicle, the other from a pedestrian. The second sequence explores three

sets of trajectories: one from a car, the other two from riding and walking humans,

respectively. The third sequence has one human running in the scene. We use two

sets of trajectories from the same human, but during different time intervals and

in different directions. The fourth sequence contains trajectories from two vehicles

and two pedestrians, both along different directions and during different time in-

tervals. A common characteristic shared by all these four scenes is a lack of solid

background parallel lines, which makes manual labeling of vanishing lines a highly

unreliable task.
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Figure 5.6: Examples of vanishing lines being automatically estimated

in video sequences. Left column: scenes with vanishing lines; Right col-

umn: trajectory observations. We observe many discontinuous and short

trajectories in the last sequence, which are caused by instant motions of

objects. Trajectories lasting no more than 20 frames are not counted in

estimation.
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Figure 5.7: Examples of multi-frame measurements. The first plot in

each set of examples is a “height ratio vs frame” plot, the second plot

dedpicts the “estimation convergence by RMSA”, the third plot gives

“image height vs frame” as a comparison. The red dashed lines in “ra-

tio vs frame” plot give the optimal estimates obtained using the RMSA

algorithm. The small cropped images show how the objects appear in

different frames, with red lines representing the constrained heights. The

small images in the 1st plot of example (b) and (d) explain the underlying

reason of perturbations in certain intervals. (b) shows the pedestrian is

occluded and (d) shows that the bottom point of the object is undetectable.

Additional discussions in the text.
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5.6.2 Single-view height measurement

To measure the height of an object, we need to select an object as a reference

in the same sequence, then compute the height ratio of the object of target w.r.t

the reference object in each frame. Therefore, the height of the target is determined

once the height of the reference object is available. In fusion, we set 10 as the

number of random-chosen subset members S, 500 as the iteration times. Figure 5.7

shows estimations of object heights from multi-frame observations. For each set of

examples, we show three plots: “ratio vs frame” and “image height vs frame” plot

the worldly height ratio (w.r.t. the reference height) and the image height (image

distance) of observed object in each frame, respectively; “estimation convergence by

RMSA” records the converging procedure of applying the RMSA method to multi-

frame measurements. From the descending (ascending) height curves in “image

height vs frame” plots, we infer that the first, third and fourth objects are moving

away from the camera, and the second object is moving toward to the camera.

Meanwhile, in “ratio vs frame” plots the ratio curves remain even, indicating that the

ratio is not influenced by the distance of object to camera. Therefore, the perspective

projection is recovered. We observe slight periodic perturbations existing in all

measurement results, incurred by the periodic walking property of people that affects

the measurement. The “convergence” plot shows how the estimation procedure

converges. The curves show abrupt drops in both “ratio” and “image height” plots

in example (b) from frame 65 to 82, due to occlusion in these frames. However,

this part of the data does not influence the final estimate. We estimate the optimal
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value as 1.0050, while the mean of the data is 0.9560. The optimal value excluding

the error part is 1.0028. In example (d), we observe a hump from frame 110 to 150,

which occurs when the truck wheels are both invisible and location of the bottom

point of truck height is hard to detect. Using the RMSA method, we find that the

best estimate is 1.6401 while the mean is 1.6601. Again as a comparison, the best

estimate of data excluding the error part is 1.6374. Therefore, in such cases, the

LMedS can generate more robust results.

We have explored three different scenarios in our experiments: (1) moving

target, still reference object; (2) moving reference object, still target; (3) moving

reference object and moving target. Figure 5.8 illustrate an example that estimates

the height of a moving target (a FedEx truck) with a still UPS truck as a reference.

The upper images demonstrate the metrology procedure. In the left bottom image,

the red line and the blue line are the estimated vanishing line and the ground truth,

respectively. Figure 5.9 shows a moving reference object (a FedEx truck) and a

still target (a pole). The upper images interpret the measurement procedures. The

bottom diagrams record the estimated height ratios and the image heights of the

pole in successive frames. Figure 5.10 shows an example with a moving target (a

pedestrian) and a moving reference (a FedEx truck). The measurement results and

corresponding ground truths are listed in Table 5.4. The major deviation results

from tracking errors. The “MT+MR” case yields the most inaccurate results because

errors arise from tracking both the target and the reference object.
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Figure 5.8: An example of a moving object and a still reference object

(MT/SR). (a) is an original frame in the sequence. (b)(c)(d) show some

mensuration images. The red lines represent the height of the FedEx

truck, the yellow lines represent the height of the UPS truck. (e) shows

the vanishing line and the vertical point (marked by “+”). The red line

is the estimated line, and the blue line the ground truth. The upper plot

in (f) shows the height ratio of a moving FedEx truck to a still UPS

truck, and the bottom plot in (f) is the image height of the FedEx truck

throughout frames. The ground truth of the ratio of a FedEx truck height

to a UPS truck height is 0.8381, our estimation is 0.8233± 0.0218.
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Figure 5.9: An example of a still target and a moving reference (ST/MR).

(a) illustrates some mensuration images in the sequence. The red line

inside each frame depicts a still pole we want to measure, and the yellow

line depicts the reference object, a moving FedEx truck. The red lines

outside the frames are the estimated vanishing lines. Green lines are

used for geometry deductions. In the upper diagram of (b), the red solid

curve records the relative ratios of the target with respect to the reference

in each frame, the dashed blue line is the final estimate. The red solid

curve in the bottom diagram of (b) represents the image heights of the

target given the reference height.

133



(a)

0 10 20 30 40 50 60 70
0.4

0.5

0.6

0.7

0.8

Frame

H
ei

gh
t R

at
io

0 10 20 30 40 50 60 70
22

24

26

28

30

32

34

Frame

Im
ag

e 
H

ei
gh

t

(b)

Figure 5.10: An example of a moving target and a moving reference

(MT/MR). (a) illustrates some mensuration images in the sequence. The

red line inside each frame depicts a moving pedestrian whose height we

want to measure, and the yellow line depicts the reference height of a

moving FedEx truck. In the upper diagram of (b), the red solid curve

records the relative ratios of the target with respect to the reference, the

dashed blue line is the final estimate. The red solid curve in the bottom

diagram of (b) plots the image heights of the target given the reference

height.
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truth estimate covariance error relative

(inch) (inch) (inch) (inch) error

MT/SR 88 90.5630 2.3180 2.5630 2.91%

ST/MR 34.10 32.7459 0.7788 1.3541 3.97%

MT/MR 64.36 60.7008 2.6176 3.6592 5.74%

Table 5.4: Height measurement results under different scenarios. (M: moving; S:

still; T: target; R: reference.)
5.6.3 Two-view object height measurement

In this section, we applied the height estimation method to the Honeywell

dataset 1. Two static cameras with different view angles are used to acquire a

pair of videos of the subject walking the same path in a hallway, as illustrated in

Fig. 5.11. There are nine subjects, with each subject appearing between one and

four times (maximum). The subject changes part of his/her clothing in different

acquisition sessions. In total, 30 pairs of video sequences are acquired, all with

different clothing.

Recognizing nonrigid object, such as a person, across different views and differ-

ent clothing presents a challenging research topic. Conventional holistic appearance-

based approaches [118, 119, 120, 121], like template matching and PCA, have diffi-

culty in handling the large appearance variation. Part-specific appearance-based ap-

proaches, for example the Geometric Transform (GeT) in [122, 123], showed promis-

ing results. The GeT characterizes certain invariance under nonrigid-deformation

1The video sequences in this dataset were acquired by Honeywell Corporation under the

HSARPA contract 433829 monitored by the Office of Navy Research (ONR).
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and view change, and uses the silhouette information to combat the appearance

variation caused by clothing difference. A person’s height is independent of view

and clothing. If estimated correctly, it provides an invariant feature. When this

invariant feature is combined with recent advances in nonrigid object recognition,

such as [123], the object recognition accuracy should be improved. However, in this

chapter, we do not delve into this particular avenue, leaving it for future work.

The two cameras in use share a common reference object, which is the black

board marked by the red lines in Fig. 5.11(a). However, we do not know its exact

height, hence all our height estimation is subject to an unknown scale factor. Fig.

5.11(b) presents the height estimation results. Its x-axis uses the cropped image

of the subject in one view to represent each walking session, and its y-axis shows

the estimated height values with two dots, one red dot for view 1 and one blue dot

for view 2. It is clear that for almost all 30 walking sessions, the subject’s heights

are measured consistently across two views. Even for the same subject in difference

sessions, as marked out by the green boxes, his/her estimated height values are quite

consistent, regardless of the view and the clothing.

5.6.4 Discussion on GPCA vs. our algorithm

Generalized principal component analysis (GPCA) [124] is an algebraic, geo-

metric approach to the problem of estimating a mixture of linear subspaces from

sample data points. In other words, the problems lie in identifying each subspace

from samples without knowing the number of subspaces and which sample point
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(a)

(b)

Figure 5.11: (a) The two views of one walking session in the Honeywell

dataset. (b) The estimated height values.
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belong to which subspace. One of its applications is to detect vanishing points [125]

given N sets of perspective projections of parallel lines. In our problem, it provides

an alternative way to estimate the vanishing points by samples of feature point

based trajectory data. Therefore, it is interesting to compare the performances of

the GPCA and our proposed EM-based approach.

In the GPCA method, the problem of estimating n vanishing points from

the set of N lines, without knowing which subsets of lines intersect in the same

point, is equivalent to estimating a collection of n planes in R3 with normal vectors

vi ∈ R2 from sample lines lj ∈ R2. We set the sample lines as the trajectories of all

feature points obtained directly from tracking results. A polynomial factorization

algorithm (PFA) is applied to estimate the number of subspaces. Unlike the plain

lines extracted from man-made environments, the motion trajectory lines extracted

from tracking results tend to be more noise-corrupted. In such a degenerate case,

we have to use a pre-specified threshold for matrix rank estimation. Consequently,

the results are fairly sensitive to threshold settings. We report experiment results in

Table 5.5 with various thresholds. The results show that, in the presence of noise,

the estimate of the number of subspaces by the GPCA method varies when using

different threshold setting. We also notice that even after we have fixed the number

of the subspaces, degenerate data samples may still not achieve valid solutions when

estimating each subspace.

The possible reasons that our proposed algorithm outperforms the plain GPCA

method on robustness and efficiency are: 1) The trajectory data are noise-corrupted.

Our EM-based algorithm uses statistical method to suppress the influences from
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GPCA(pre-defined threshold) EM-based

0.0002 0.0015 0.015 0.035 algorithm

Experiment 1 N/A 4 2 N/A 2

Experiment 2 5 N/A N/A 4 3

Table 5.5: Subspace number estimation using two algorithms. The GPCA algo-

rithm has different estimates on subspace numbers with different threshold settings.

“N/A” represents the case with no valid solution.
outliers. On the contrary, GPCA without any denoising processes hardly generates

satisfactory results when working on noisy data; 2) The setting of the threshold in

GPCA is data dependent; while our algorithm takes the blob motion into account,

which guarantees a relative robust estimation.

5.7 Summary

We have presented an automatic method for robustly measuring object heights

from video sequences in this chapter. We first recover the minimal calibration of

the scene by tracking moving objects (blob based and feature point based), then

applying mensuration algorithm to each of the frames, and finally fusing the multi-

frame measurements, using the LMedS as the cost function and the RMSA as the

optimization algorithm. To clarify the contribution of our algorithm, we make a com-

parison in Table 5.6 between single video metrology, two-view metrology and video

metrology. The two-view metrology algorithm attempts to solve metrology prob-

lems with stationary objects and moving cameras. Consequently, it self-calibrates

in an entirely new way, which has many similarities to approaches in the structure
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from motion (SfM) problem. In contrast, our algorithm concentrates on stationary

cameras and moving objects.

Single View Metrology [97] Two-View Metrology [101] Video Metrology

camera parameters uncalibrated uncalibrated uncalibrated

calibration type minimal minimal minimal

calibration method human interactive computer automatic computer automatic

data type single image ∗ two frames video

sequence feature N/A stationary target, moving camera moving target, stationary camera

object location manual tracker tracker

measurement single frame single frame multiple frames

occlusion handling N/A N/A RMSA

error source human operation tracker tracker, non-rigid motion

Table 5.6: Comparison between single view metrology, two-view metrology and our

method. *: Single view metrology can operate on video sequences, but is still based

on individual frames.

The proposed method can be used in surveillance system and forensic inves-

tigation. We plan to generalize the method to moving camera scenarios, where a

stabilization process is needed to compensate for the position change of related ge-

ometry features, such as the vanishing line and the vertical point. It is also worth

noting that automatically estimating the minimal calibration has significant usages

not only in mensuration, but also in many other interesting applications, such as

normalizing object sizes in perspective images for classification, rectifying perspec-

tive images and reconstructing 3D object structures.
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Chapter 6

Conclusions

6.1 Summary of the Dissertation

This doctoral dissertation focused mainly on tracking and mensuration in

surveillance videos. The first part of the thesis discussed several object tracking

approaches, based on the different properties of tracking targets. Two tracking

algorithms have been proposed: one for rigid objects and the other for non-rigid

objects. A new generic regulation model has been introduced as a module for the

generalized tracking framework. The second part of the thesis covered the video

mensuration. We discussed a video-based height measuring algorithm.

Here are some the thesis’ key contributions made:

• For airborne videos, where the targets are usually small and have low resolu-

tions, an approach of building motion models for foreground/background has

been proposed, in which the foreground target is simplified as a rigid object.

To make the tracker more robust and accurate, a motion model, consisting of

both background and foreground motion parameters, is built. Multiple cues

are adaptively integrated in a system observation model when estimating the

likelihood functions.

• For non-rigid models, we proposed an active contour based algorithm. We
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decompose the estimation of non-rigid movements into three parts; transition

estimation, deformation detection, and shape regulation. First, we employ a

particle filter to estimate the affine transform parameters between successive

frames. Second, by using a dynamic object model, we generate a probabilistic

map of deformation to reshape its contour. Finally, we project the updated

model onto a trained shape subspace to constrain deformations within possible

object appearances. This enables us to reconstruct the occluded parts of the

active contour and accurately track it, while allowing changes specific to the

given object.

• We proposed a new regulation model to add constraints to tracking frame-

works: the active appearance Markov chain (AAMC) model. It integrates

a statistical model of shape, appearance and motion. In the AAMC model,

a Markov chain represents the switching of motion phases (poses), and sev-

eral pairwise active appearance model (P-AAM) components characterize the

shape, appearance and motion information for different motion phases. Addi-

tionally, the configuration of the proposed model lends itself to adaptability

during tracking.

• We proposed an automatic method of using video motions to recover the min-

imal calibration information and use it to extract object heights. From videos

acquired by an uncalibrated stationary camera, we first recover the vanishing

line and the vertical point of the scene based on tracking moving objects that

lie primarily on a ground plane. Using geometric properties of moving objects,
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a probabilistic model is constructed for simultaneously grouping trajectories

and estimating vanishing points. Then, we apply a single view mensuration

algorithm to each of the frames to obtain height measurements. We finally fuse

the multi-frame measurements using the LMedS as the cost function and the

Robbins-Monro stochastic approximation (RMSA) technique. The method

requires less human supervision, has increased flexibility and improve robust-

ness.

6.2 Future Direction of Research

Both video tracking and mensuration discussed in this dissertation could be

expanded in multiple ways. The following lists some potential directions to explore

in the near future.

Model Regulation We have proposed a regulation model based on shape, appear-

ance and motion information for tracking frameworks. It is straightforward to

consider extending the usage of the model for object detection and recognition.

Video Mensuration for Multiple View Recognition We conducted a simple

experiment on multiple view video mensuration. The preliminary result seems

promising in its use of height information to recognize objects with different

appearances and views. We could try some optimization approaches we could

try to improve the measurement results with multi-view videos. For exam-

ple, we can apply bundle-adjustment to obtain more accurate estimates of

vanishing lines. The recognition results should show improvement.
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Generalized Video Mensuration The dissertation is focused on one single prob-

lem on video mensuration: measuring object height. We would like to extend

the method to measure other metrics, such as object volumes, object widths,

etc. These metrics are useful in several applications, including the medical

field, object recognition, and robotics.

Radian Distortion At this time, radian distortion is not a concern in the video

mensuration approach because we concentrate on self-minimal-calibration of

the scene and stochastic approximation of the multi-frame estimates. However,

radian distortion cannot be ignored. It would be interesting to apply our

method on videos after radian distortion corrections.
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Chapter A

Appendix

A.1 Robbins-Monro Optimization

Using RMSA [116], the problem of seeking the LMedS can be presented as:

Let H be the set of observations of size K, C be set of corresponding variances,

A(θ) = {f(θ, h, c), h ∈ H, c ∈ C} be the ordered set of the values of f at a fixed

point θ. Eqn.(5.18) becomes:

θ∗ = argmin
θ
f(θ, h(med), c(med)) = argmin

θ
F (θ) (A.1)

where F (θ) is differentiable with respect to θ. Initializing θ = θ0, we calculate the

gradient grad(F (θ)) at the point. The recursion in the step i is given by:

θi+1 = θi − ai ∗ grad(F (θi)), (A.2)

where ai is the gain sequence defined by ai = 0.1/(i+1)0.501, f(θ, h, c) = c−1(h−θ)2.

After substituting the gradient in (A.2), we have

θi+1 = θi + 2
ai(h− θi)

c
. (A.3)

The optimal estimate θ∗ is achieved after a number of recursions.

145



A.2 Proof of Theorem 1

Given ξ ∈ R10 as vector ξ = [b, t, p̂, L̂]T , where b ∈ R2, t ∈ R2, p̂ ∈ R3

and L̂ ∈ R3, and with the assumption that the four components are statistically

independent, the covariance matrix of ξ can be written as:

Λξ =



Λb 0 0 0

0 Λt 0 0

0 0 Λp̂ 0

0 0 0 ΛL̂


(A.4)

(1) We first derive the covariance of the two MLE end points. As claimed, we

must use the implicit function [126] because the two MLE end points are obtained

through minimization. The implicit function theorem states that if x ∈ Rm, z ∈ Rn,

C : Rm × Rn → R is a continuously differentiable mapping, C(x, z) = 0, where

z = φ(x) with a mapping φ : Rn → Rm. The local minimum of C(x, z) with respect

to z can be solved uniquely as z0, and the covariance matrix of z0 has a closed form.

The function C in our problem is the objective function in MLE points opti-

mization. Therefore, we rewrite the MLE objective function as C : R7×R4 → R, as
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follows:

Γ =

 b− b

t− t

 (A.5)

x = ξ7 = [b1, b2, t1, t2, p̂1, p̂2, p̂3] (A.6)

z = [b
1
, b

2
, t

1
, t

2
] (A.7)

C(ξ7, z) = ΓT

 Λb 0

0 Λt

Γ + λ(t× b) · p̂ (A.8)

where z is a variable dependent on ξ7. We define the MLE points as ζ̂ ∈ R4 such

that ζ̂ = [b′, t′]. ζ̂ is a local minimum of C(ξ7, z) with respect to z. Furthermore, the

covariance matrix of the MLE end points Λζ̂ can be derived following the implicit

function theorem as:

Λζ̂ = H−1∂Φ

∂ξ7
Λξ7

∂Φ

∂ξ7

T

H−T , (A.9)

where

Λξ7 =


Λb 0 0

0 Λt 0

0 0 Λp̂

 , (A.10)

Φ =

(
∂C
∂z

)T

, (A.11)

H =
∂Φ

∂z
, (A.12)

H is the Hessian matrix of C.

(2) The second step is quite straightforward. We use a Jacobian matrix to

compute c as:

c = ∇hΛξ̂∇
T
h (A.13)
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where Λξ̂ is the covariance matrix of parameters ξ̂ = (ζ̂ , p̂, L̂):

Λξ̂ =


H−1 ∂Φ

∂ξ7
Λξ7

∂Φ
∂ξ7

T
H−T H−1 ∂Φ

∂p̂
Λp̂ 0

Λp̂
∂Φ
∂p̂

T
H−T Λp̂ 0

0 0 ΛL̂

 (A.14)

Combined with (A.4) and (A.9), the above equation can be simplified as:

Λξ̂ = A •Λξ •AT (A.15)

A =


H−1 · ∂Φ

∂ξ7
04×3

03×4 I3 03×3

03×7 I3

 (A.16)

Finally, the entire computation of the covariance c can be compactly rewritten as:

c = ∇hAΛξA
T∇T

h (A.17)

If interested, refer to [127, 128], for the derivations of the matrix H, ∂Φ
∂ξ7

, Λp̂,

ΛL̂ and ∇h in (A.14) and (A.17).

148



Bibliography

[1] Y. Bar-Shalom and T.F. Fortman, Tracking and Data Association, Academic Press,
1988.

[2] G. Verghese, K.L. Gale, and C.R. Dyer, “Real-time motion tracking of three-
dimensional object,” Proc. IEEE Robotics Automat. Conf., pp. 1998–2003, 1990.

[3] J. Shi and C. Tomasi, “Good features to track,” Proceeding of IEEE Computer
Vision and Pattern Recognition 1994, pp. 593–600, June 1994.

[4] C. Wren, A. Azarbayejanni, T. Darrel, and A. Pentland, “Pfinder: Real-time tracing
of the human body,” IEEE Trans. on Pattern Analysis Machine Intelligence, vol.
19, no. 7, pp. 780–785, July 1997.

[5] C. Stauffer and E. Grimson, “Learning patterns of activity using real-time tracking,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 747–
757, August 2000.

[6] A. Azarbayejani and A. Pentland, “Recursive estimation of motion, structure, and
focal length,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 17, pp. 562–575, June 1995.

[7] M. Isard and A. Blake, “Contour tracking by stocastic propagation of conditional
density,” in Proceeding of Proc. of European Conference on Computer Vision, Cam-
bridge, England, 1996, pp. 343–356.

[8] N.J. Gordon, D.J. Salmond, and A. Smith, “Novel approach to nonlinear/non-
Gaussian Bayesian state estimation,” IEEE Proceedings on Radar and Signal Pro-
cessing, vol. 140, pp. 107–113, 1993.

[9] M. Isard and A. Blake, “Condensation: conditional density propagation for visual
tracking,” International Journal on Computer Vision, vol. 29, no. 1, pp. 5–28, 1998.

[10] S. Zhou, V. Kruger, and R. Chellappa, “Probabilistic recognition of human faces
from video,” Computer Vision and Image Understanding, vol. 91, pp. 214–245,
July/August 2003.

[11] G. Qian and R. Chellappa, “Structure from motion using sequential monte carlo
methods,” Intl. Jl. Computer Vision, vol. 59, no. 1, pp. 5–31, August 2004.

[12] T. Jebara and A. Pentland, “Parameterized structure from motion for 3d adaptive
feedback tracking of faces,” Proc. of IEEE Computer Society Conf. on Computer
Vision Pattern Recognition, pp. 144–150, June, 1997.

[13] R. T. Collins, A.J. Lipton, and T. Kanade, “Introduction to the special section on
video surveillance,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 22, no. 8, pp. 745–746, August 2000.

[14] J.M. Rehg, M. Loughlin, and K. Waters, “Vision for a smart kiosk,” in Proc. IEEE
Conf. on Computer Vision and Pattern Recognition 97, San Juan, Puerto Rico, June
17-19 1997, pp. 690–696.

149



[15] R. Collins, A. Lipton, and T. Kanade, “A system for video surveillance and moni-
toring,” Tech. Rep., 1999.

[16] R.J. Morris and D.C. Hogg, “Statistical models of object interaction,” International
Journal of Computer Vision, vol. 37, no. 2, pp. 209–215, 2000.

[17] I. Haritaoglu, D. Harwood, and L.S. Davis, “w4: Real-time surveillance of people and
their activities,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, no. 8, pp. 809–830, August 2000.

[18] M. Irani and P. Anandan, “Video indexing based on mosaic representation,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 86, no. 5, pp. 905–921,
May 1998.

[19] J.W. Davis and A.F. Bobick, “The representation and recognition of action us-
ing temporal templates,” in Proc. IEEE Conf. on Computer Vision and Pattern
Recognition 97, San Juan, Puerto Rico, June 17-19 1997, IEEE Computer Society
Press.

[20] M. Brand, N. Oliver, and A. Pentland, “Coupled hidden markov models for com-
plex action recognition,” in Proc. IEEE Conf. on Computer Vision and Pattern
Recognition 97, San Juan, Puerto Rico, June 17-19 1997, IEEE Computer Society
Press.

[21] N.M. Oliver, B. Rosario, and A.P. Pentland, “A bayesian computer vision system
for modeling human interactions,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 22, no. 8, August 2000.

[22] S. Avidan and A. Shashua, “Novel view synthesis by cascading trilinear tensor,”
IEEE Trans. Visualization and Computer Graphics, vol. 4, pp. 293–306, 1998.

[23] M. Isard and A. Blake, “Icondensation: unifying low-level and high-level tracking
in a stochastic framework,” Proc. of European Conference on Computer Vision, pp.
893–908, June 2-6 1998.

[24] Omar Javed, K. Shafique, and Mubarak Shah, “A hierarchical approach to robust
background subtraction using color and gradient information,” in Proc. of IEEE
Workshop on Motion and Video Computing, Orlando, USA, December 5-6 2002.

[25] M.J. Black and D.J. Fleet, “Probabilistic detection and tracking of motion discon-
tinuities,” in Proc. of IEEE International Conference on Computer vision, Corfu,
Greece, September 2000, pp. 551–558.

[26] M.J. Black and A.D. Jepson, “Eigentracking: robust matching and tracking of
articulated objects using a view-based representation,” in Proc. of 4th European
Conference on Computer Vision, Cambridge, UK, April 13-14 1996, vol. 1.

[27] S. Zhou, R. Chellappa, and B. Moghaddam, “Visual tracking and recognition using
appearance-adaptive models in particle filters,” IEEE trans. on Image Processing,
vol. 13, no. 11, pp. 1491–1506, November 2004.

150



[28] C. Rasmussen and G.D. Hager, “Probabilistic data association methods for tracking
complex visual objects,” IEEE Trans. on Pattern Analysis Machine Intelligence, vol.
23, no. 6, pp. 560–576, June 2001.

[29] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-rigid objects
using mean shift,” in IEEE Computer Vision and Pattern Recognition, Hilton Head,
SC, June 13-15 2000, pp. 142–149.

[30] D.C. Hogg, Interpreting images of a known moving object, Ph.D. thesis, University
of Sussex, UK, 1984.

[31] K. Rohr, Human movement analysis based on explicit motion models, chapter 8, pp.
171–198, Kluwer Academic Publishers, Dordrechit Boston, 1997.
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