
ABSTRACT

Title of dissertation: PARTICLE FILTERING FOR
STOCHASTIC CONTROL AND
GLOBAL OPTIMIZATION

Enlu Zhou, Doctor of Philosophy, 2009

Dissertation directed by: Professor Steven I. Marcus
Department of Electrical and Computer Engineering

Professor Michael C. Fu
Department of Decision, Operations,
and Information Technologies

This thesis explores new algorithms and results in stochastic control and global

optimization through the use of particle filtering. Stochastic control and global

optimization are two areas that have many applications but are often difficult to

solve.

In stochastic control, an important class of problems, namely, partially observ-

able Markov decision processes (POMDPs), provides an ideal paradigm to model

discrete-time sequential decision making under uncertainty and partial observation.

However, POMDPs usually do not admit analytical solutions, and are computation-

ally very expensive to solve most of the time. While many efficient numerical algo-

rithms have been developed for finite-state POMDPs, there are only a few proposed

for continuous-state POMDPs, and even more sparse are relevant analytical results

regarding convergence and error bounds. From the modeling viewpoint, many ap-

plication problems are modeled more naturally by continuous-state POMDPs rather

than finite-state POMDPs. Therefore, one part of the thesis is devoted to devel-

oping a new efficient algorithm for continuous-state POMDPs and studying the

performance of the algorithm both analytically and numerically. Based on the idea

of density projection with particle filtering, the proposed algorithm reduces the

infinite-dimensional problem to a finite-low-dimensional one, and also has the flex-

ibility and scalability for better approximation if given more computational power.

Error bounds are proved for the algorithm, and numerical experiments are carried

out on an inventory control problem.

In global optimization, many problems are very difficult to solve due to the

presence of multiple local optima or badly scaled objective functions. Many ap-

proximate solutions methods have been developed and studied. Among them, a

recent class of simulation-based methods share the common characteristic of repeat-

edly drawing candidate solutions from an intermediate probability distribution and

then updating the distribution using these candidate solutions, until the probabil-

ity distribution becomes concentrated on the optimal solution. The efficiency and

accuracy of these algorithms depend very much on the choice of the intermediate

probability distributions and the updating schemes. Using a novel interpretation of

particle filtering, these algorithms are unified under one framework, and hence, many

new insights are revealed. By better understanding these existing algorithms, the

framework also holds the promise for developing new improved algorithms. Some

directions for new improved algorithms are proposed, and numerical experiments

are carried out on a few benchmark problems.

PARTICLE FILTERING FOR
STOCHASTIC CONTROL AND GLOBAL OPTIMIZATION

by

Enlu Zhou

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2009

Advisory Committee:
Professor Steven I. Marcus, Chair/Advisor
Professor Michael C. Fu, Co-Chair/Co-Advisor
Professor P. S. Krishnaprasad
Professor André L. Tits
Professor S. Raghavan

c© Copyright by
Enlu Zhou

2009

Dedication

In memory of my grandfather Mr. Mengquan Yu.

ii

Acknowledgments

First of all, I would like to express my sincerest gratitude to my advisors

Professor Steven I. Marcus and Professor Michael C. Fu. They have guided me in

research and in career, provided me with tremendous support, and always had faith

in me. I regard them as my role models for my career life, because of their dedication

to the quality and integrity of research, love and patience for students, and being

wonderful human beings. I have become a better person because of the five years

of interaction with them. I will always cherish my experience as a graduate student

under their supervision.

I would also like to thank Professor P. S. Krishnaprasad. I took five graduate

courses taught by him, and often went to ask him questions or discuss problems.

He is also the first person that introduced me to the field of particle filtering. His

lectures are insightful, inspiring, and challenging. I have been greatly influenced by

his great passion in research and pursuit of new knowledge.

I also want to thank Professor André L. Tits. He is not only a great teacher but

also a good friend. I have learned a lot from him in class, and especially benefited

from his technical rigorousness. I also had a lot fun with him in skiing, playing ping

pong, and chatting at coffee hours.

I cannot express enough thanks to my mother Zhilin Yu and father Huaishen

Zhou, who always give me unconditional love and support, and are the source of

my courage in hard times. I also want to thank Peng Qiu, for the continuous happy

time spent together and the discrete times listening to my complaints.

iii

Table of Contents

List of Tables vi

List of Figures vii

List of Abbreviations viii

1 Introduction 1
1.1 Particle Filtering . 1
1.2 Partially Observable Markov Decision Processes 4
1.3 Contributions . 7
1.4 Outline . 10

2 Nonlinear Filtering 12
2.1 Extended Kalman Filter . 13
2.2 Weighted Extended Kalman Filter . 15
2.3 Particle Filtering . 18
2.4 Fading Memory Particle Filter . 23

3 Stochastic Control 32
3.1 Markov Decision Processes . 32

3.1.1 Value Iteration . 34
3.1.2 Policy Iteration . 36
3.1.3 Simulation-Based Methods . 38

3.2 Partially Observable Markov Decision Processes 38
3.2.1 Belief MDPs . 40
3.2.2 Finite-State vs. Continuous-State 42

4 Solving Continuous-State POMDPs 44
4.1 Related Work and Motivation . 44
4.2 Dimension Reduction . 47

4.2.1 Density Projection . 47
4.2.2 Projected Belief MDP . 49

4.3 Projection Particle Filtering . 51
4.4 Analysis of Projected Belief MDP . 55

4.4.1 Main Idea . 55
4.4.2 Error Bound . 56

4.5 Analysis of Projection Particle Filtering 61
4.5.1 Notations . 62
4.5.2 Main Idea . 63
4.5.3 Error Bound . 65

4.6 Validation of Assumptions . 74
4.7 Numerical Experiments . 75

4.7.1 Scalability and Computational Issues 75

iv

4.7.2 Simulation Results . 77
4.8 Conclusions . 83

5 Particle Filtering Framework for Optimization 88
5.1 Related Work and Motivation . 88
5.2 Filtering for Optimization . 91
5.3 Particle Filtering Framework for Optimization 94
5.4 Interpretation of EDAS, CE, MRAS 97

5.4.1 Estimation of Distribution Algorithms 98
5.4.2 Cross Entropy Method . 100
5.4.3 Model Reference Adaptive Search 103

5.5 Implication for New Algorithms . 106
5.5.1 Balancing Exploration and Exploitation 107
5.5.2 Combining Global Search with Local Search 107
5.5.3 Overcoming Premature Convergence 108

5.6 Numerical Experiments . 109
5.7 Conclusions and Future Research . 115

6 Conclusions and Future Research 116
6.1 Conclusions . 116
6.2 Future Research . 118

Bibliography 121

v

List of Tables

2.1 Performances under different real system parameters ρr, with model sys-
tem parameter ρm = 0.5, and system noise uk ∼ Γ(3, 1). Each entry shows
the mean and standard error (in parentheses) of the MSEs based on 100
independent runs. 29

2.2 Performances under different system noises, with system parameter ρr =
ρm = 0.5. Each entry shows the mean and standard error (in parentheses)
of the MSEs based on 100 independent runs. 29

4.1 Notations of Different Conditional Distributions 65

4.2 Optimal average cost estimates for the inventory control problem us-
ing different methods. Each entry represents the average cost of a
run of horizon 105. 85

4.3 Optimal discounted cost estimate for the inventory control problem
using different methods. Each entry represents the discounted cost
(mean, standard error in parentheses) based on 1000 independent
runs of horizon 40. 86

4.4 Continue Table 4.3 . 87

5.1 Average performance of CEA and CE on some benchmark problems.
Each entry presents the mean of H(x∗) with standard error in paren-
theses, based on 100 independent runs. 113

5.2 Average performance of CEA with different parameter values of α
and β on the Rosenbrock function. Each entry presents the mean of
H(x∗) with standard error in parentheses, based on 100 independent
runs. 113

vi

List of Figures

2.1 A graphic illustration of Table 2.1: Performances (mean and standard
error of MSEs based on 100 independent runs) under different values of
the real system parameter ρr. 30

2.2 A graphic illustration of Table 2.2: Performances (mean and standard error
of MSEs based on 100 independent runs) under different system noises. . 30

2.3 A typical run of the estimated states tracking the true state, when the
system noise uk ∼ Γ(3, 2), and the system parameter ρr = ρm = 0.5. . . . 31

2.4 A typical run of the estimated states tracking the true state when the
system model is inaccurate. The real system parameter ρr = 0.6, the
model system parameter ρm = 0.5, and the system noise uk ∼ Γ(3, 2). . . . 31

4.1 Our algorithm: actions taken for different inventory levels under dif-
ferent observation noise variances. 82

5.1 At the first three iterations, the conditional density bk becomes more
and more concentrated on the optimal solution. 94

5.2 Some benchmark problems in two dimensions. 112

5.3 Average performance of CEA and CE on some benchmark problems. 114

vii

List of Abbreviations

CE Cross Entropy Method
DP Dynamic Programming
EDA Estimation of Distribution Algorithm
EKF Extended Kalman Filter
MDP Markov Decision Process
MRAS Model Reference Adaptive Search
KF Kalman Filter
KL Kullback-Leibler
PF Particle Filter
POMDP Partially Observable Markov Decision Process

viii

Chapter 1

Introduction

Stochastic control and global optimization are fields that share two charac-

teristics: (i) their models can be used to formulate problems in many applications

areas; (ii) algorithms for solving problems in these fields are usually intractable and

difficult to analyze. To attack difficult problems of a size that are found in most

applications requires significant new methodologies. This dissertation attempts to

solve problems in stochastic control and global optimization through the use of par-

ticle filtering. This chapter gives a brief introduction to particle filtering and an

important class of problems in stochastic control, namely, the partially observable

Markov decision processes (POMDPs).

1.1 Particle Filtering

The goal of filtering is to estimate the unobserved states of a dynamic system

given a noisy observation process of the states. The classic problem is to estimate

the conditional density of the current state given the history of observations [24].

The conditional density usually evolves according to some equation, for instance, in

the case of a diffusion process the normalized Kushner-Stratonovich equation [52]

[84] or the unnormalized Zakai equation [92]. However, these equations usually do

not admit an analytical form of the solution except in some special cases, such as

1

linear Gaussian systems and finite state space hidden Markov models. For more

general systems, many approximation filtering methods have been developed.

One approach of approximation is to modify the system in such a way that

exact filters can be applied to the modified system. For example, a well-known

method is the Extended Kalman filter (EKF) (pp. 182-190, [31]) for nonlinear/non-

Gaussian systems. EKF linearizes the system equation and observation equation,

and approximates the system noise and observation noise by their first two moments,

i.e., Gaussian random variables. Hence, the approximated linear Gaussian system

can be filtered using the standard Kalman filter [46] [47]. EKF is computationally

efficient, but the convergence of the filter is not guaranteed and the performance

could be poor in many situations. Another method is to discretize the state space

and transform the system to a finite state hidden Markov model. The disadvantage

of this method is that the number of grids has to be sufficiently large to obtain a

good approximation and the number of grids increases dramatically as the dimension

of the state space increases.

A recent and powerful method for nonlinear filtering is particle filtering. It is a

class of Monte Carlo simulation-based filtering methods for nonlinear/non-Gaussian

systems, a setting where traditional methods often lead to computational intractabil-

ity. Particle filtering was first introduced by Gordon et al. [34], and is also called

bootstrap filtering [34], sampling importance resampling [4], the condensation algo-

rithm [42], and sequential Monte-Carlo method [4]. A good tutorial can be found

in [4], a good survey of the field and recent trends can be found in [21], and more

details can be found in the book [29].

2

The idea of particle filtering is to approximate the conditional density by a

finite number of particles/samples and let these particles propagate in a certain way

to mimic the evolution of the conditional density. The approximated conditional

density converges to the true conditional density in a certain sense as the number

of particles increases to infinity [23], [54].

The plain particle filter consists of three steps at each time/iteration: impor-

tance sampling, weighting, and resampling. In the importance sampling step, i.i.d.

particles are sampled from a importance density. In the weighting step, particles are

weighted according to the ratio of the conditional density to the importance den-

sity and also according to the Bayes’ rule using the new observation of the current

state. These weighted particles represent a discrete distribution with support points

equal to the locations of the particles and the associated probabilities equal to the

weights of the particles. This discrete distribution is an approximation to the true

conditional distribution. In the last step, new particles are resampled from the old

particles according to their weights. These new particles go through the same steps

at the next time/iteration.

The importance distribution is often chosen as the distribution of the current

state given the previous state. The benefit of this choice is twofold. First, this

importance distribution is easy to sample, since it is equivalent to propagating the

particles through the system equation. Thus, the importance sampling step is also

called propagation or prediction step in this case. Second, the weight of each particle

is proportional to the likelihood of the current observation given that particle, and

hence is very easy to calculate. However, this is not the optimal choice of importance

3

distribution. The simulation can be very inefficient if the importance distribution is

very different from the target distribution. For instance, if the conditional distribu-

tion is peaky and the importance distribution is flat, it is very likely that most of

the particles sampled from the importance distribution lie in an area of probability

close to zero according to the conditional distribution. Therefore, many improved

particle filters have been proposed based on a better choice of the importance distri-

bution, such as the extended Kalman particle filter [25], the auxiliary particle filter

[68], and the unscented particle filter [88].

The plain particle filter often suffers from the problem of sample impover-

ishment or loss of diversity, meaning that all particles collapse to a small num-

ber of particles within a few iterations. Since new particles are resampled from

the old particles according to their weights/probabilities, old particles with large

weights/probablities will have more copies in the next iteration. The problem of

sample impoverishment is especially severe when the system noise is small, because

the copies of the same particle cannot be dispersed far away enough through prop-

agation. Therefore, improving the resampling step is also a goal of many improved

particle filters, such as the regularized particle filter [65], and the particle filter with

MCMC steps [3].

1.2 Partially Observable Markov Decision Processes

POMDPs provide a powerful paradigm for modeling discrete-time optimal

decision making under uncertainty and partial observation. It has been used to

4

model application problems arising in the areas such as manufacturing systems,

artificial intelligence, financial engineering, and operations research. A POMDP

model consists of a time-indexed state equation that models the system dynamics,

a time-indexed observation equation that models the observation or measurement

of the state, and an objective function that models the cost (or reward) that needs

to be minimized (or maximized). A decision maker interacts with the environment

over a finite or infinite time horizon that is divided into stages or periods. At each

stage, the decision maker receives a partial observation of the current state, takes

an action based on this piece of information along with the history of observations

and actions, and then transitions to a new state probabilistically at the next stage.

The action taken incurs a one-step cost (or reward). The objective is to minimize

(or maximize) a cost (or reward) function, where the one-step costs (or rewards) are

accrued in each stage.

The difference between a POMDP and a Markov Decision Process (MDP) is in

the observation of the state. The state can be fully recovered from the observation

in an MDP, whereas the observation only provides partial information for the state

in a POMDP. A POMDP can be transformed to a so-called belief MDP, which is an

MDP whose states are conditional probability distributions of the true states of the

POMDP and are called belief states. This transformation allows us to utilize the

existing various techniques for solving MDPs. However, it also creates new difficul-

ties. The first difficulty is how to accurately and efficiently estimate the distribution

of the states, which is the goal of a filtering problem. The second difficulty is that

although it is an MDP problem, the state space is generally continuous and may

5

have infinite dimensionality. The reason is explained as follows.

Consider a POMDP problem with a finite state space. The estimation of

the state is a discrete probability distribution, which sits in a finite-dimensional

probability simplex. Hence, the corresponding belief MDP has a finite-dimensional

continuous state space, which suffers from the curse of dimensionality of the continu-

ous state space of the MDP. Now consider a POMDP problem that has a continuous

state space. The probability distribution of the state sits in an infinite-dimensional

space of continuous probability distributions. Hence, the corresponding belief MDP

has a infinite-dimensional continuous state space that makes the problem even more

difficult to solve. Therefore, efficient numerical solution of POMDPs with large or

continuous state spaces is a challenging research area.

The past research on numerical solutions of POMDPs is mostly focused on

finite-state problems. For finite-state POMDPs, it is proved that the value function

is a piecewise linear convex function after a finite number of iterations, provided

that the one-step cost function is piecewise linear and convex [81]. This feature has

been exploited in various exact and approximate algorithms such as those found

in [82], [81], [83], [57], and [36]. The algorithm in [81] and the Witness algorithm

in [57] carry out exact value iterations by finding and updating the minimum set

of linear functions that determine the value function at each iteration for a finite-

horizon problem. Because the number of such linear functions grow exponentially

with the number of iterations, these algorithms are computationally very expensive

and are limited to very simple problems in practice. Howard [39] and Sondik [83] use

policy iteration to solve the infinite-horizon discounted-cost problems. Hauskrecht

6

[36] summarizes several value function approximation methods in a nice framework

of modifying the value iteration equation by changing the order of summations and

maximization, including approximation with fully observable MDP, approximation

with Q-functions, fast informed bound method, and approximation with unobserv-

able MDP. [36] also summarizes many grid-based methods with various techniques

of choosing the set of grids and approximating the value function.

Despite the abundance of algorithms for finite-state POMDPs, the aforemen-

tioned infinite-dimensionality of continuous-state POMDPs suggests that simple

generalizations of many of the discrete-state algorithms to continuous-state mod-

els are not appropriate or applicable. Therefore, some researchers have been mo-

tivated to look for efficient algorithms for continuous-state POMDPs [87] [69] [75]

[17]. However, compared to finite-state POMDPs, the research on continuous-state

POMDPs is more recent and still sparse. Therefore, it is a field worth exploring.

1.3 Contributions

My doctoral research has yielded new solution methods to partially observ-

able Markov decision processes and global optimization through the use of particle

filtering. To the best of our knowledge, application of particle filtering to POMDPs

is relatively sparse, and it has never before been applied to the field of global opti-

mization.

The first line of our research aims to establish a framework for solving large or

continuous-state POMDPs. Most of the existing approximate solutions for continuous-

7

state POMDPs involve some kind of dimension reduction of the belief space, i.e.,

reducing the infinite dimensionality to a finite (low) dimensionality. Dimension

reduction is a very broad idea, and it is worth studying how to do dimension re-

duction in an efficient and meaningful way. On the one hand, we want to reduce

the dimensionality as much as possible so that the computational demand can be

lowered. On the other hand, we do not want to lose too much information during

dimension reduction so that the approximation is useful. Moreover, we would like

to have a mechanism that allows us to control the tradeoff between complexity and

accuracy: we can increase the accuracy of the solution by increasing the computa-

tional power, and vice versa. These considerations have motivated our research to

investigate a new dimension reduction technique to develop efficient numerical solu-

tions for large/continuous-state POMDPs. Based on the idea of density projection

with particle filtering, we have developed a theoretically sound method that effec-

tively reduces the dimension of the belief state and has the flexibility to represent

arbitrary belief states, such as multimodal or heavy-tailed distributions. We have

proved rigorous convergence results and error bounds of the algorithm. We have

also applied the approach to and obtained good numerical results on an inventory

control problem and portfolio optimization problems in financial engineering. The

development and analysis of the approach appear in our papers [95] [96]. Applica-

tions of the approach to financial engineering are to appear in our working paper

[94].

As a second line of our research, we have proposed a filtering approach to opti-

mization, and in particular, have developed a framework based on particle filtering.

8

Global optimization problems can be extremely difficult to solve, due to the presence

of multiple local optimal solutions in the general setting. A class of simulation-based

methods for global optimization has been introduced recently, which includes the

estimation of distribution algorithms (EDAs), the cross-entropy (CE) method, and

model reference adaptive search (MRAS). In these algorithms, new solutions are

generated from an intermediate probability distribution that is updated or induced

from the previously generated solutions. Algorithms that fall in this category differ

in the choice and updating of the intermediate probability distribution, which plays

a key role in determining the effectiveness of the algorithm. This has motivated us

to look for a unifying and systematic approach to such simulation-based methods

for optimization. We have introduced a framework based on particle filtering that

unifies EDAs, the CE method and MRAS, as well as combining the simulation-based

global search with the gradient-based local search in a nice way. This flexible frame-

work holds the promise of generating new improved algorithms by incorporating

many of the vast array of techniques that have been developed to improve particle

filters, and other recent results in nonlinear filtering. This framework unifies many

recent simulation-based algorithms, and combines simulation-based global search

with gradient-based local search in a nice way. More importantly, the framework

holds the promise of generating new improved algorithms by incorporating many of

the vast array of techniques that have been developed to improve particle filters,

and other recent results in nonlinear filtering. We are currently developing and

testing new algorithms under this framework, and analyzing convergence properties

and error bounds of the framework. Preliminary results of this work appear in our

9

paper [97]. A more complete and developed work appears in our paper [96].

Besides the two main lines of research, we have also developed a fading memory

particle filter. It is an improved particle filter in situations where the system models

are inaccurate and simulation is insufficient.

1.4 Outline

The rest of the dissertation is organized as follows.

Chapter 2 provides the necessary background and literature review on nonlin-

ear filtering, and proposes a fading memory particle filter. We describe the problem

formulation of nonlinear filtering, and describe in details some approximate non-

linear filters, including the extended Kalman filter, the weighted extended Kalman

filter, and particle filtering in general. In the end of the chapter, we present the

derivation of a fading memory particle filter and results from numerical experiments.

Chapter 3 provides the necessary background and literature review on stochas-

tic control. In particular, we focus on Markov decision processes and partially ob-

servable Markov decision processes, and describe the problem formulation of each.

For MDPs, we describe in details the value iteration method and policy iteration

method, and briefly describe simulation-based methods. For POMDPs, we describe

the transformation to belief MDPs, and discuss numerical complexity of finite-state

vs. continuous-state POMDPs.

Chapter 4 presents our work on a new efficient numerical method for solving

continuous-state POMDPs. Section 4.1 reviews related work and explains our moti-

10

vation for this work; section 4.2 describes the density projection technique, and uses

it to develop the projected belief MDP; section 4.3 develops the projection particle

filter; section 4.4 computes error bounds for the projected belief MDP; section 4.5

computes an error bound for the projection particle filter; section 4.6 presents a

validation of the assumptions used in the proof of error bounds; section 4.7 dis-

cusses scalability and computational issues of the method, and applies the method

to a simulation example of an inventory control problem; section 4.8 concludes and

discusses the work.

Chapter 5 presents a particle filtering framework for simulation-based opti-

mization algorithms. Section 5.1 reviews related work and explains our motivation

for this work; section 5.2 transforms a global optimization problem to a filtering

problem; section 5.3 applies particle filtering to the transformed filtering problem

and develops a general framework for simulation-based optimization algorithms;

section 5.4 uses the framework to interpret some existing algorithms and reveals

some new insights; section 5.5 discusses the directions for developing new improved

algorithms under this framework; section 5.6 presents numerical results of a new

improved algorithm in comparison with the cross-entropy method on some bench-

mark problems; section 5.7 concludes our current work and discusses some future

research direction.

Chapter 6 concludes the dissertation and outlines some future research.

11

Chapter 2

Nonlinear Filtering

The nonlinear filtering problem [24] [61] [45] involves the estimation of a

stochastic process x (called the state process) which cannot be observed directly.

Information concerning x is obtained from observations of a related process y (the

observation process). The objective is the computation, for each t, of least-square

estimates of functions of the state xt given the “past” observations {ys, 0 ≤ s ≤ t},

i.e., to compute quantities of the form E[φ(xt)|ys, 0 ≤ s ≤ t], or perhaps to compute

the entire conditional distribution of the state xt given {ys, 0 ≤ s ≤ t}. When the

observations are being received sequentially, it is also desired that this computation

be done recursively. Except in some special cases such as the linear Gaussian case,

there do not exist statistics of the conditional distribution that can be computed

recursively with finite-dimensional filters [16] [63] [62] [40] [90]. Hence, there have

been many attempts to develop recursive finite dimensional suboptimal filters, and

significant effort has been dedicated to developing numerical methods for solving

nonlinear filtering problems (see [19] for a recent survey).

In this thesis, we focus on a discrete-time model

xk = f(xk−1, uk−1), k = 1, 2, . . . ,

yk = h(xk, vk), k = 0, 1, . . . , (2.1)

where for all k, xk ∈ Rnx is the state , yk ∈ Rny is the observation, the random

12

disturbances {uk} ∈ Rnu and {vk} ∈ Rnv are sequences of i.i.d. continuous random

vectors, and nx, ny, nu, and nv are the dimensions of xk, yk, uk, and vk, respectively.

Assume that {uk} and {vk} are independent of each other, and independent of x0,

which follows a distribution p0. The goal of filtering is to estimate the conditional

density

p(xk|y0:k), k = 0, 1, . . . , (2.2)

where y0:k = {y0, . . . , yk}, all the observations from time 0 to k.

2.1 Extended Kalman Filter

In (2.1), if f and g are linear functions in x, u and v, u and v are Gaus-

sian noises, and the initial condition x0 is Gaussian, then the conditional density

p(xk|y0:k) is Gaussian for all time k, and there exists a finite-dimensional optimal

filter, namely, the Kalman filter (KF) [46] [47].

If (2.1) takes the form as

xk = f(xk−1) + uk−1, k = 1, 2, . . . ,

yk = h(xk) + vk, k = 0, 1, . . . , (2.3)

where f and h are nonlinear functions, then the Kalman filter can be applied to

(2.3) by linearizing the system equations, and approximating the system noise and

observation noise as Gaussian noises. This approach is referred to as the extended

Kalman filter (EKF) [31] [1] [2]. More specifically, the true conditional density

p(xk|y0:k) is approximated by a Gaussian density with mean x̄k|k and covariance

13

Pk|k that are defined as

x̄k|k , E[xk|y0:k], Pk|k , E[(xk − x̄k|k)(xk − x̄k|k)
T |y0:k].

The estimates x̄k|k and Pk|k are often called the posterior mean and covariance of

the state xk. Similarly, the predicted mean and covariance at time k are defined as

x̄k|k−1 , E[xk|y0:k−1], Pk|k−1 , E[(xk − x̄k|k−1)(xk − x̄k|k−1)
T |y0:k−1].

To linearize the system (2.3), define

Fk =
∂f(x)

∂x
|x=x̄k|k , Hk =

∂h(x)

∂x
|x=x̄k|k−1

.

Without loss of generality, we assume that uk and vk are zero mean. Let Qk and Rk

denote the covariance matrices of uk and vk, respectively. Then the linearized and

Gaussianized system of (2.3) is

xk = Fk−1xk−1 + uk−1,

yk = Hkxk + vk, (2.4)

where uk−1 ∼ N(0, Qk−1) and vk ∼ N(0, Rk). For (2.4), if the initial condition x0

follows a Gaussian distribution N(x̄0, P0), the conditional density is Gaussian for

every time k, and the optimal filter is the Kalman filter, which recursively propagates

the predicted mean x̄k|k−1 and the predicted covariance matrix Pk|k−1, and updates

the posterior mean x̄k|k and the posterior covariance matrix Pk|k using the new

observation yk. Mathematically, the Kalman filter consists of the following recursive

14

equations

x̄k|k−1 = Fk−1x̄k−1|k−1,

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Qk−1,

Kk = Pk|k−1H
T
k (Rk + HkPk|k−1H

T
k)−1,

x̄k|k = x̄k|k−1 + Kk(yk −Hkx̄k|k−1),

Pk|k = Pk|k−1 −KkHkPk|k−1, (2.5)

with initialization x̄0|−1 = x̄0, P0|−1 = P0. The EKF extends the KF to the

nonlinear system (2.3) as follows:

x̄k|k−1 = f(x̄k−1|k−1),

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Qk−1,

Kk = Pk|k−1H
T
k (Rk + HkPk|k−1H

T
k)−1,

x̄k|k = x̄k|k−1 + Kk(yk − h(x̄k|k−1)),

Pk|k = Pk|k−1 −KkHkPk|k−1, (2.6)

with initialization x̄0|−1 = x̄0, P0|−1 = P0. The EKF (2.6) looks almost the same as

the KF (2.5), except that f(x̄k−1|k−1) replaces Fk−1x̄k−1|k−1 and h(x̄k|k−1) replaces

Hkx̄k|k−1. The EKF is a suboptimal filter, and its convergence is not guaranteed.

2.2 Weighted Extended Kalman Filter

Sometimes the system model is not an accurate model of the actual system.

The model inaccuracy degrades the value of past information [44]. Therefore, we

15

sometimes want to discount old observations, or equivalently, to put more weight on

the more recent observations. Fading memory of old observations can compensate

the model inaccuracy, and the physical justification is that “old observations, when

predicted over long time arcs through an erroneous system, can be valueless” (pp.

305, [44]). This idea of fading memory of old observations has been proposed and

studied theoretically and empirically for several decades for the Kalman filter [1][56]

[31]. One approach often used is exponential data weighting, or in other words,

exponentially discounting the old observations.

Anderson and Moore derived the Kalman filter with exponential data weighting

(KF-EDW) (pp. 135-138, [1]), by observing that the KF estimate x̄k|k−1 is equal

to x∗k, which is the last component of the solution (x∗0, . . . , x
∗
k) to the minimization

problem

min
x0,...,xk

Jk =
1

2
(x0 − x̄0)

T P †
0 (x0 − x̄0)

+
1

2

k−1∑
i=0

(yi −HT
i xi)R

†
i (yi −HT

i xi)

+
1

2

k−1∑
i=0

uT
i Q†

iui, (2.7)

s.t. xi = Fi−1xi−1 + ui−1, i = 1, . . . , k.

where the superscript † denotes pseudo inverse. The function (2.7) can be viewed as

a total cost function on the estimation errors from time 0 to k− 1. With this inter-

pretation, placing more emphasis on the more recent observations is equivalent to

penalizing the more recent estimation errors more heavily. This suggests increasing

the weighting matrices R†
i and Q†

i in (2.7) for larger values of i, such as replacing

16

Ri and Qi by α−2iRi and α−2(i+1)Qi in (2.7), yielding

Jk =
1

2
(x0 − x̄0)

T P †
0 (x0 − x̄0)

+
1

2

k−1∑
i=0

(yi −HT
k xi)α

2iR†
i (yi −HT

i xi)

+
1

2

k−1∑
i=0

uT
i α2(i+1)Q†

iui, (2.8)

where α is some constant greater than 1. In view of the relationship between (2.7)

and the Kalman filter, there could exist a similar relationship between (2.8) and

a designed filter. More specifically, we can replace the actual covariance matrices

Rk and Qk−1 in (2.5) by the design values α−2kRk and α−2kQk−1, to obtain the

designed filter that achieves the minimum of (2.8). The resultant designed filter is

the KF-EDW:

x̄k|k−1 = Fk−1x̄k−1|k−1,

Pα
k|k−1 = α2Fk−1P

α
k−1|k−1F

T
k−1 + Qk−1,

Kk = Pα
k|k−1H

T
k (Rk + HkP

α
k|k−1H

T
k)−1,

x̄k|k = x̄k|k−1 + Kk(yk −Hkx̄k|k−1),

Pα
k|k = Pα

k|k−1 −KkHkP
α
k|k−1, (2.9)

where

Pα
k|k−1 = α2kPk|k−1, Pα

k|k = α2kPk|k,

with initialization x̄0|−1 = x̄0, P α
0|−1 = P0. The parameter α is called the forgetting

factor, because it indicates how fast the observation is forgotten. Notice the main

difference between (2.9) and (2.5) is the coefficient α2 in the second equation. Also

17

notice that while Pk|k in the KF is the error covariance E[(xk−x̄k|k)(xk−x̄k|k)T |y0:k],

the estimate Pα
k|k in the KF-EDW is not. Although the KF-EDW is not optimal,

the exponential data weighting promotes exponential stability of the filter.

In a similar spirit to how the EKF extends the KF, we extend the KF-EDW to

the nonlinear system (2.3) as follows to obtain the weighted extended Kalman filter

(WEKF):

x̄k|k−1 = f(x̄k−1|k−1),

Pα
k|k−1 = α2Fk−1P

α
k−1|k−1F

T
k−1 + Qk−1,

Kk = Pα
k|k−1H

T
k (Rk + HkP

α
k|k−1H

T
k)−1,

x̄k|k = x̄k|k−1 + Kk(yk − h(x̄k|k−1)),

Pα
k|k = Pα

k|k−1 −KkHkP
α
k|k−1, (2.10)

with initialization x̄0|−1 = x̄0, P α
0|−1 = P0. Unlike the optimality difference between

the KF and the KF-EDW, the EKF and the WEKF are both suboptimal, and

none of the estimates Pk|k and Pα
k|k are the error covariance. Like the EKF, the

convergence of the WEKF is not guaranteed either.

2.3 Particle Filtering

Particle filtering is a class of filters that utilize Monte Carlo simulation and

importance sampling techniques to estimate the conditional density of the state

given the past observations [4] [29] [21]. It is also called bootstrap filtering [34],

sampling importance resampling [4], the condensation algorithm [42], and sequential

Monte-Carlo method [21]. Particle filtering approximates the conditional density

18

p(xk|y0:k) using a finite number of particles and mimicking the evolution of the

conditional density through the propagation of these particles. More specifically,

the particle filter approximates p(xk|y0:k) by a probability mass function

p̂(xk|y0:k) =
N∑

i=1

wi
kδ(xk − xi

k), (2.11)

where δ denotes the Dirac delta function, {xi
k, i = 1, . . . , N} are the random support

points, and {wi
k, i = 1, . . . , N} are the associated weights satisfying {wi

k ≥ 0, i =

1, . . . , N,
∑N

i=1 wi
k = 1}.

Since p(xk|y0:k) is unknown, we opt to generate the particles by sampling from

another known density q(xk|y0:k), and adjust the weights of the samples to get an

estimate of p(xk|y0:k). This approach is known as the importance sampling, and

the density q(xk|y0:k) is referred to as the importance density. The rationale of

importance sampling can be observed from the following transformation:

Ep[φ(x)] =

∫
φ(x)p(x)dx =

∫
φ(x)

p(x)

q(x)
q(x)dx = Eq[φ(x)

p(x)

q(x)
], (2.12)

where φ is an arbitrary integrable function, p is the target density, and q is the

importance density. Hence, from (2.12) it is easy to see that in order to approximate

p(xk|y0:k), for samples {xi
k, i = 1, . . . , N} drawn i.i.d. from q(xk|y0:k), their weights

should be

wi
k ∝

p(xi
k|y0:k)

q(xi
k|y0:k)

, (2.13)

where ∝ means “proportional to”, and the weights should be normalized.

To carry out the estimation recursively, we use the Bayes’ rule to derive the

19

following recursive equation for the conditional density:

p(xk|y0:k) =
p(xk, yk|y0:k−1)

p(yk|y0:k−1)

=
p(yk|y0:k−1, xk)p(xk|y0:k−1)

p(yk|y0:k−1)

=
p(yk|xk)

∫
p(xk|y0:k−1, xk−1)p(xk−1|y0:k−1)dxk−1

p(yk|y0:k−1)

∝ p(yk|xk)

∫
p(xk|xk−1)p(xk−1|y0:k−1)dxk−1, (2.14)

where p(yk|y0:k−1, xk) = p(yk|xk) and p(xk|y0:k−1, xk−1) = p(xk|xk−1) both follow

from the Markovian property of model (2.1), the denominator p(yk|y0:k−1) does not

explicitly depend on xk and k, and ∝ means p(xk|y0:k) is the normalized version of

the right-hand side. The state transition density p(xk|xk−1) is induced from the state

equation in (2.1) and the distribution of the system noise uk−1, and the likelihood

p(yk|xk) is induced from the observation equation in (2.1) and the distribution of

the observation noise vk. Substituting (2.14) into (2.13), we get

wi
k ∝

p(yk|xi
k)p(xi

k|xi
k−1)

q(xi
k|y0:k)

p(xi
k−1|y0:k−1). (2.15)

If the importance density q(xk|y0:k) is chosen to be factored as

q(xk|y0:k) = q(xk|xk−1, yk)q(xk−1|y0:k−1), (2.16)

then

wi
k ∝ p(yk|xi

k)p(xi
k|xi

k−1)

q(xi
k|xi

k−1, yk)

p(xi
k−1|y0:k−1)

q(xi
k−1|y0:k−1)

∝ p(yk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1, yk)
wi

k−1. (2.17)

Moreover, to avoid sample degeneracy, new samples are resampled i.i.d. from

the approximate conditional density p̂(xk|y0:k) at each step, hence the weights are

20

reset to wi
k−1 = 1/N , and (2.17) is reduced to

wi
k ∝

p(yk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1, yk)
, i = 1, . . . , N. (2.18)

In the plain particle filter, the importance density q(xk|xi
k−1, yk) is chosen to be the

state transition density p(xk|xi
k−1), which is independent of the current observation

yk, yielding

wi
k ∝ p(yk|xi

k), i = 1, . . . , N. (2.19)

The plain particle filter recursively propagates the support points and updates

the associated weights. The algorithm is as follows:

Algorithm 2.1 Plain Particle Filter

1. Initialization: Sample x1
0, . . . , x

N
0 i.i.d. from an initial p.d.f./p.m.f. p0. Set

k = 1.

2. Importance Sampling/Propagation: Sample xi
k from p(xk|xi

k−1), i = 1, . . . , N .

3. Bayes’ Updating: Receive new observation yk. The conditional density is ap-

proximated by p̂(xk|y0:k) =
∑N

i=1 wi
kδ(x− xi

k), where wi
k is computed according

to (2.19) and normalized.

4. Resampling: Sample x1
k, . . . , x

N
k i.i.d. from p̂(xk|y0:k).

5. k ← k + 1 and go to step 2.

For the resampling step, we can similarly use the importance sampling tech-

nique to resample from an importance density gk−1(xk−1|y0:k−1), which we will refer

21

to as the resampling importance density to distinguish from qk(xk|xk−1, yk). Hence,

in general, the weights are updated according to

wi
k ∝

p(yk|xi
k)p(xi

k|xi
k−1)p(xi

k−1|y0:k−1)

qk(xi
k|xi

k−1, yk)gk−1(xi
k−1|y0:k−1)

, (2.20)

The plain particle filter (Algorithm 2.2) is a special case of the general particle

filter, with the particular choice of the importance density qk(xk|xk−1, yk) and the

resampling importance density gk(xk|y0:k).

Algorithm 2.2 General Particle Filter

1. Initialization: Sample xi
0, . . . , x

N
0 i.i.d. from an initial p.d.f./p.m.f. p0. Set

k = 1.

2. Importance Sampling: Sample xi
k from qk(xk|xi

k−1, yk), i = 1, . . . , N .

3. Bayes’ Updating: Receive new observation yk. The conditional density is ap-

proximated by p̂(xk|y0:k) =
∑N

i=1 wi
kδ(xk − xi

k), where wi
k is computed according

to (2.20) and normalized.

4. Importance Resampling: Sample x1
k, . . . , x

N
k i.i.d. from gk(xk|y0:k).

5. k ← k + 1 and go to step 2.

It has been proved that p̂(xk|y0:k) converges to p(xk|y0:k) as the sample size N

increases to infinity [23] [54]. However, uniform convergence in time has only been

proved for the special case where the system dynamics has a mixing kernel that

ensures that any error is forgotten (exponentially) in time. Usually, the particle

filter needs an increasing number of samples as time k increases to ensure a given

precision of the approximation p̂(xk|y0:k) for all k.

22

2.4 Fading Memory Particle Filter

Particle filtering weights equally all the observations when estimating the cur-

rent state. However, if, for example, the system model is inaccurate, the prediction

based on all the past observations and the system model may not be a good one,

which we have already mentioned in Section 2.2. Bad predictions can be also caused

by the simulation in the particle filtering, when the system noise is large and the

number of samples is not sufficient. This can also be viewed as model inaccuracy,

since the system noise is inaccurately represented by the samples due to simulation.

The model inaccuracy degrades the value of past information [44]. Therefore, we

sometimes want to discount old observations, or equivalently, to put more weight

on the more recent observations. This idea of fading memory of old observations

has been proposed and studied theoretically and empirically for several decades for

the Kalman filter but rarely in particle filtering. Related work on particle filtering

with fading memory [25] [28] [66] addresses the issue by incorporating the fading

memory into the model not the filter, and the models are tailored for special cases

and do not address the general setting.

Our approach is to incorporate the weighted extended Kalman filter to gen-

erate the importance density in the particle filter. The weighted extended Kalman

filter is based on the Kalman filter with exponential data weighting. The expo-

nential data weighting weights more heavily the more recent observations, and it

promotes exponential stability of the Kalman filter. Since the fading memory only

affects the locations of the generated particles, the convergence property of the par-

23

ticle filter is preserved. Moreover, we expect that the fading memory can enhance

the convergence of the particle filter, as it does for the Kalman filter.

Like many improved particle filters, such as the auxiliary particle filter [68], the

extended Kalman particle filer [25], and the unscented particle filter [88], the fading

memory particle filter also incorporates the current observation into generating the

importance density and thus holds the promise for generating better importance

densities than the plain particle filter which takes p(xk|xk−1) as the importance

density. The fading memory particle filter looks similar to the extended Kalman

particle filter [25] [88]; however, the fading memory particle filter uses the weighted

extended Kalman filter to generate the importance density instead of the unweighted

one. With the simple addition of a forgetting factor, the weighted extended Kalman

filter has the advantages in giving the filter a prescribed degree of stability and

curing many error problems.

Retaining the convergence property of the particle filter, we incorporate the

WEKF into the particle filter through the importance density. At time k, the WEKF

generates a Gaussian approximation, denoted as N (x̄k|k, P α
k|k). Let the importance

density be

q(xk|xi
k−1, yk) = N(x̄k|k, P

α
k|k), i = 1, . . . , N, (2.21)

from which the random support points {xi
k}N

i=1 are drawn. Substituting (2.21) into

the weight updating equation (2.20), and assuming resampling is applied at time

k − 1, we obtain

wi
k ∝

p(yk|xi
k)p(xi

k|xi
k−1)

N (xi
k|x̄k|k, P α

k|k)
, i = 1, 2, . . . , N. (2.22)

24

Now that an approximated conditional density p̂(xk|y0:k) =
∑N

i=1 wi
kδ(xk − xi

k) is

obtained, it can be used to update the WEKF mean x̄k|k and variance Pα
k|k according

to

x̄k|k = Ep̂k
[x], P α

k|k = Varp̂k
(x),

where p̂k is short for p̂(xk|y0:k). The algorithm is as follows:

Algorithm 2.3 Fading Memory Particle Filter (FMPF)

1. Initialization: Set forgetting factor α > 1. Sample x1
0, . . . , x

N
0 i.i.d. from the

initial density p0. Set x̄0 = Ep0 [x], P α
0 = V arp0(x). Set k = 1.

2. Importance Sampling:

• Generate the importance density. Compute x̄k|k and Pα
k by the WEKF

(2.10), using x̄k−1|k−1, P̄α
k−1|k−1 and yk.

• Sample xi
k, . . . , x

N
0 i.i.d. from N(x̄k|k, P α

k|k).

3. Bayes’ Updating: Receive new observation yk. The conditional density is ap-

proximated by p̂(xk|y0:k) =
∑N

i=1 wi
kδ(xk − xi

k), where wi
k is computed according

to (2.22) and normalized.

4. Resampling. Sample x1
k, . . . , x

N
k i.i.d. from p̂(xk|y0:k).

5. Parameter Updating: x̄k|k = Ep̂k
[x], P α

k|k = V arp̂k
(x).

6. k ← k + 1 and go to step 2.

The FMPF can be viewed from two viewpoints. The obvious viewpoint is that

the WEKF is incorporated to improve the PF, since it is used to generate a better

25

importance density for the PF. From another viewpoint, the PF is incorporated to

improve the WEKF, since particles sampled from the WEKF approximated density

N(x̄k|k, P α
k|k) are updated to yield an empirical density p̂(xk|y0:k), which is used to

tune the WEKF parameters x̄k|k and Pα
k|k. Therefore, we expect that the FMKF

retains the advantages of both PF and WEKF, namely the asymptotic convergence

of the PF and the stability of the WEKF.

Fading memory is not only a technique of weighting heavily the more recent

data, but also a way to prevent the divergence of the filter (see pp. 137-138, [1] for

details). As the exponential data weighting promotes exponential stability of the

Kalman filter, our hope is that fading memory also enhances uniform convergence

of the particle filter.

Note that the FMPF only needs to compute one importance density N(x̄k|k, P α
k|k)

at time k, whereas the extended Kalman particle filter (EKPF) needs to compute a

different importance density N(x̄i
k|k, P

i
k|k) in order to draw each particle xi

k (see [88],

[4] and [25] for details on EKPF). Hence, the EKPF is much more computationally

expensive than the FMPF, especially when the state is multi-dimensional, since the

computation of the EKF involves matrix inversions.

We test the FMPF, EKPF, and PPF numerically on the example in [88]

xk+1 = 1 + sin (0.04πk) + ρxk + uk, x0 = 0,

yk =





0.2x2
k + vk k ≤ 30

0.5xk − 2 + vk k > 30,

where ρ is a scalar system parameter. The system noise uk follows a Gamma dis-

tribution Γ(3, θ), where θ is the scale parameter. The observation noise vk follows a

26

Gaussian distribution N(0, 1e−5). A larger θ means a more spread distribution and

hence implies a larger system noise.

We compare the performance of the PPF, EKPF, and FMPF in terms of

tracking the true state xk by the filtered state mean E[xk|y0:k] in two cases:

• Inaccurate models of system dynamics, i.e., the real system parameter ρr is

not equal to the model system parameter ρm.

• Different values of system noise parameter θ, with other parameters fixed and

ρr = ρm.

For each case, we simulate 100 independent runs of length 60 with random initial-

izations, calculate the mean square error (MSE) of the estimated states for each run,

and then calculate the means and standard errors of the MSEs of the 100 runs. All

three filters use 200 particles and stratified resampling [74]. The forgetting factor

in the FMPF is chosen as α = 1.2.

Table 2.1 lists the means and standard errors of the MSEs under different real

system parameters ρr, when the model system parameter is ρm = 0.5, the system

noise is uk ∼ Γ(3, 1) (see Fig. 2.1 for a graphical illustration). As we can see, when

the model is accurate, i.e., ρr = 0.5 = ρm, the MSEs are smallest for all three filters,

which is consistent with our intuition. The PPF is very sensitive to the inaccuracy

of the model parameter, while the EKPF and FMPF are much more robust. The

FMPF performs best among all three.

Table 2.2 lists the means and standard errors of the MSEs for different values of

system noise, with the system parameter ρr = ρm = 0.5 (see Fig. 2.2 for a graphical

27

illustration). As the system noise increases, the PPF and EKPF deteriorate quickly,

and their performances at θ = 2 are probably unacceptable, whereas the FMPF

performs well under all cases with slightly increasing MSEs.

Fig. 2.3 shows a typical run of the estimated state generated by the three

filters tracking the true state, with θ = 2, and ρr = ρm = 0.5. Fig. 2.4 shows a

typical run of the estimated states tracking the true state when the system model is

inaccurate, where the real system parameter is ρr = 0.6, and other parameters are

the same as Fig. 2.3. The PPF apparently misses many points before time k = 30 in

Fig. 2.3, and even beyond k = 30 in Fig. 2.4. The EKPF tends to overshoot when

there is a big upward change in the trajectory, such as at times k = 2, 19, 22, 29 in

Fig. 2.3, and k = 4, 9, 11, 13, 17, 22, 26, 30 in Fig. 2.4. In contrast, the FMPF tracks

the true states very closely in both cases, and shows its robustness with respect to

the inaccuracy in the model system parameter. All three filters perform better after

time k = 30 than before k = 30, because the observation function is not invertible

in a unique way before k = 30.

28

Table 2.1: Performances under different real system parameters ρr, with model system

parameter ρm = 0.5, and system noise uk ∼ Γ(3, 1). Each entry shows the mean and

standard error (in parentheses) of the MSEs based on 100 independent runs.

ρr ρr = 0.3 ρr = 0.4 ρr = 0.5 ρr = 0.6

PPF 3.77 (0.111) 1.63 (0.0801) 1.48 (0.102) 3.62 (0.207)

EKPF 0.323 (0.0305) 0.290 (0.0294) 0.290 (0.0392) 0.344 (0.0219)

FMPF 0.112 (0.0092) 0.0696 (0.0069) 0.0630 (0.0124) 0.0854 (0.0092)

Table 2.2: Performances under different system noises, with system parameter ρr =

ρm = 0.5. Each entry shows the mean and standard error (in parentheses) of the MSEs

based on 100 independent runs.

Gamma(3, θ) θ = 0.5 θ = 1 θ = 1.5 θ = 2

PPF 0.226 (0.025) 1.48 (0.102) 4.10 (0.271) 8.71 (0.412)

EKPF 0.0087 (0.0010) 0.290 (0.0392) 1.38 (0.123) 5.18 (0.440)

FMPF 0.0086 (0.0010) 0.0630 (0.0124) 0.192 (0.0265) 0.421 (0.0614))

29

0.3 0.4 0.5 0.6 0.7
−1

0

1

2

3

4

5

Real system parameter ρ

M
S

E

MSEs under Inaccurate System Models

FMPF
EKPF
PPF

Figure 2.1: A graphic illustration of Table 2.1: Performances (mean and standard error of

MSEs based on 100 independent runs) under different values of the real system parameter

ρr.

0.5 1 1.5 2
−2

0

2

4

6

8

10

12

System noise parameter θ

M
S

E

MSEs under Different System Noises

FMPF
EKPF
PPF

Figure 2.2: A graphic illustration of Table 2.2: Performances (mean and standard error

of MSEs based on 100 independent runs) under different system noises.

30

0 10 20 30 40 50 60
0

5

10

15

20

25

30

Time k

S
ta

te
 e

st
im

at
e

E
[x

(k
)|

y(
1:

k)
]

State Estimate Tracking True State

True state x(k)
FMPF estimate
EKPF estimate
data4

Figure 2.3: A typical run of the estimated states tracking the true state, when the system

noise uk ∼ Γ(3, 2), and the system parameter ρr = ρm = 0.5.

0 10 20 30 40 50 60
0

5

10

15

20

25

30

Time k

S
ta

te
 e

st
im

at
e

E
[x

(k
)|

y(
1:

k)
]

State Estimate Tracking True State for Inaccurate Model

True state x(k)
FMPF estimate
EKPF estimate
PPF estimate

Figure 2.4: A typical run of the estimated states tracking the true state when the system

model is inaccurate. The real system parameter ρr = 0.6, the model system parameter

ρm = 0.5, and the system noise uk ∼ Γ(3, 2).

31

Chapter 3

Stochastic Control

The stochastic control problem involves designing a controller for a stochastic

process in order to minimize (or maximize) some cost (or reward) function. In this

thesis, we focus on discrete-time problems, namely, Markov decision processes and

partially observable Markov decision processes.

3.1 Markov Decision Processes

Consider a stationary discrete-time system model:

xk = f(xk−1, ak−1, uk−1), k = 1, 2 . . . , (3.1)

where for all k, the state xk is in a state space S ⊆ Rnx , the action ak is in an action

space A ⊆ Rna , and the random disturbance uk ∈ D ⊆ Rnu is a sequence of i.i.d.

random vectors with known distributions. Assume that {uk} is independent of x0,

which follows a distribution p0. For simplicity, we assume that all actions in A are

admissible to each state x ∈ S, and that D is a countable set to avoid mathematical

complications.

Given an initial state x0, the objective is to find a policy π that consists of a

sequence of functions π = {µ̄0, µ̄1, . . .}, where µ̄k : S → A, such that π minimizes

32

the infinite-horizon discounted cost function

Jπ(x0) = lim
H→∞

E{uk}H
k=0

{
H∑

k=0

γkg(xk, µ̄k(xk), uk)

}
,

subject to the system equation (3.1). The one-step cost function g : S×A×D → R

is given, γ ∈ (0, 1) is the discount factor, and E{uk}H
k=0

denotes the expectation with

respect to the joint distribution of u0, . . . , uH . For simplicity, we assume that the

above limit defining Jπ(x0) exists.

Denote the set of all admissible policies by Π. The optimal value function is

defined by

J∗(x) = min
π∈Π

Jπ(x), ∀x ∈ S

An optimal policy, denoted by π∗, is an admissible policy that achieves J∗. A station-

ary policy is an admissible policy of the form π = {µ, µ, . . .} (i.e., µ̄k is independent

of k), referred to as the stationary policy µ for brevity, and its corresponding value

function is denoted by Jµ.

For any function J : S → R, the dynamic programming (DP) mapping applied

to J is defined as

(TJ)(x) = min
a∈A

Eu[g(x, a, u) + γJ(f(x, a, u))], x ∈ S.

Hence, the mapping T transforms the function J on S into the function TJ on S.

For a given stationary policy µ, the mapping Tµ is defined as

(TµJ)(x) = Eu[g(x, µ(x), u) + γJ(f(x, µ(x), u))], x ∈ S.

Throughout this section, we assume the following:

33

Assumption 3.1 The one-step cost function g satisfies

|g(x, a, u)| ≤ M < ∞, ∀(x, a, u) ∈ S × A×D.

Please note this is the simplest type of infinite-horizon discounted cost MDPs.

Nonetheless, the boundedness of the one-step cost function is not as restrictive as

it seems to be. The boundedness is satisfied if S, A, and D are of finite cardinality.

Even if they are not, the boundedness is satisfied in many computation methods

because they are approximated by finite sets. It needs more complicated technical

treatment for MDPs involving unbounded one-step cost functions, which we will not

delve into.

The following proposition (cf. prop. 1.2.2 [10]) shows that the value function

J∗ is the unique solution of Bellman’s equation.

Proposition 1 The optimal value function J∗ satisfies

J∗(x) = min
a

Eu[g(x, a, u) + γJ∗(f(x, a, u))], x ∈ S,

or equivalently,

J∗ = TJ∗.

Furthermore, J∗ is the unique solution of this equation within the class of bounded

functions.

3.1.1 Value Iteration

Value iteration is an iterative method to compute the value function J∗. It is

basically the dynamic programming algorithm, and its performance is based on the

34

convergence of dynamic programming, as shown in the next proposition (cf. prop.

1.2.1 in [10]).

Proposition 2 For any bounded function J : S → R, the value function satisfies

J∗(x) = lim
k→∞

(T kJ)(x), ∀x ∈ S.

Value iteration starts with an arbitrary bounded function J0(x),∀x ∈ S, and

then at each iteration k applies the DP mapping T to the old function Jk(x) to get

a new function Jk+1(x) for all x ∈ S. More specifically, at each iteration k,

Jk+1(x) = (TJk)(x) = min
a∈A

Eu[g(x, a, u) + γJk(f(x, a, u))], ∀x ∈ S.

In view of Proposition 2, the value iteration method usually needs an infinite

number of iterations to achieve convergence. Hence, it is desirable to have an es-

timate on the convergence rate. The following convergence rate [10] [73] has been

established for any bounded function J :

max
x∈S

|(T kJ)(x)− J∗(x)| ≤ γk max
x∈S

|J(x)− J∗(x)|, k = 0, 1,

The value iteration method may be implementable only approximately, if the

state space is continuous or has a finite but large number of states. Instead of

computing (TJ)(x) for all states x ∈ S, (TJ)(x) can be computed for only some of

the states and estimated for the other states. The expectation in (3.1.1) may also

be computed through approximation or simulation.

35

3.1.2 Policy Iteration

As an alternative to value iteration, the policy iteration method directly works

with policies to find an optimal stationary policy. It starts with an arbitrary sta-

tionary policy µ0, at each iteration, evaluates the current policy µk to obtain the

associated value function Jµk
, and then computes a new policy µk+1 based on Jµk

.

The evaluation of the policy µk is based on the following corollary (cf. cor. 1.2.2.1

in [10]) that is derived from Proposition 2.

Corollary 1 For every stationary policy µ, the associated value functions satisfies

Jµ(x) = Eu[g(x, µ(x), u) + γJµ(f(x, µ(x), u))], ∀x ∈ S,

or, equivalently,

Jµ = TµJµ.

Furthermore, Jµ is the unique solution of this equation within the class of bounded

functions.

Therefore, the detailed algorithm for the policy iteration method is as follows.

Algorithm 3.1 Policy Iteration Algorithm

1. Initialization: Guess an initial stationary policy µ0.

2. Policy Evaluation: Evaluate the value function Jµk
associated with the current

stationary policy µk by solving

Jµk
= Tµk

Jµk
.

36

3. Policy Improvement: Compute a new stationary policy µk+1 by applying the

DP mapping T to the value function Jµk
, i.e.,

Tµk+1
Jµk

= TJµk
.

4. If Jµk
= TJµk

, stop; otherwise return to the policy evaluation step and repeat

the process.

It can proved that Jµk+1
≤ Jµk

, and the strict inequality Jµk+1
(x) < Jµk

(x)

holds for at least one x ∈ S, if µk is not optimal. Hence, µk+1 is strictly better than

µk, if µk is not optimal. For finite state and action spaces, the number of admissible

policies is finite, and hence, the policy iteration algorithm terminates after a finite

number of iterations to yield an optimal policy.

Similar to the value iteration method, the policy iteration method is imple-

mentable only approximately, if the state space is continuous or has a finite but large

number of states. The policy evaluation step may be approximated using a finite

number of value iterations or linear programming. The policy improvement step

may be carried out for only some of the states, and approximated for the remaining

states.

In addition to variations of the value iteration and policy iteration methods,

there are other approximation methods for solving large-state MDPs, such as the

state aggregation approach [11], approximation using basis functions and linear

programming [80], and approximation using post-decision state variable [72].

37

3.1.3 Simulation-Based Methods

The above methods are applicable only when the system model and cost func-

tion are available. However, sometimes the system model is not available, but

instead, the system and cost structure can be simulated. The above methods can

still be applied to this case, with the help of using Monte Carlo simulation to calcu-

late approximately the transition probabilities and cost functions. Another branch

of simulation-based methods is the so-called reinforcement learning [86] or neuro

dynamic programming, such as temporal difference learning [85], and Q-learning

[89]. The reinforcement learning methods learn the system model (and sometimes

a policy) through repeatedly simulating the system using the current policy and

improving the current policy. Some of the recent simulation-based methods con-

cern efficient allocation of the simulation budget by focusing on the more promising

actions or policies, such as the multi-stage adaptive sampling algorithm, and the

population-based evolutionary approaches, both described in [22].

3.2 Partially Observable Markov Decision Processes

Consider a stationary discrete-time continuous-state system model:

xk = f(xk−1, ak−1, uk−1), k = 1, 2 . . . , (3.2)

yk = h(xk, ak−1, vk), k = 1, 2, . . . , y0 = h0(x0, v0), (3.3)

where for all k, the state xk is in a continuous state space S ⊆ Rnx , the action ak

is in an action space A ⊂ Rna , the observation yk is in a continuous observation

space O ⊆ Rny , and the random disturbances uk ∈ Rnu and vk ∈ Rnv are sequences

38

of i.i.d. random vectors with known distributions. Assume that {uk} and {vk} are

independent of each other, and independent of x0, which follows a distribution p0.

Also assume that f(x, a, u) is continuous in x for every a ∈ A and u ∈ Rnu , h(x, a, v)

is continuous in x for every a ∈ A and v ∈ Rnv , and h0(x, v) is continuous in x for

every v ∈ Rnv . Eq. (3.2) is often called the state equation, and (3.3) the observation

equation.

All the information available to the decision maker at time k can be summa-

rized by means of an information vector Ik, which is defined as

Ik = (y0, y1, . . . , yk, a0, a1, . . . , ak−1), k = 1, 2, . . . ,

I0 = y0.

The objective is to find a policy π consisting of a sequence of functions π =

{µ̄0, µ̄1, . . .}, where each function µk maps the information vector Ik onto the action

space A, that minimizes the cost function

Jπ = lim
H→∞

Ex0,{uk}H−1
k=0 ,{vk}H

k=0

{
H∑

k=0

γkg(xk, µk(Ik))

}
,

where g : S ×A → R is the one-step cost function, γ ∈ (0, 1) is the discount factor,

and Ex0,{uk}H−1
k=0 ,{vk}H

k=0
denotes the expectation with respect to the joint distribu-

tion of x0, u0, . . . , uH−1, v0, . . . , vH . For simplicity, we assume that the above limit

defining Jπ exists. The value function is defined by

J∗ = min
π∈Π

Jπ,

where Π is the set of all admissible policies. An optimal policy, denoted by π∗, is

an admissible policy that achieves J∗. A stationary policy is an admissible policy of

39

the form π = {µ, µ, . . .}, referred to as the stationary policy µ for brevity, and its

corresponding value function is denoted by Jµ.

3.2.1 Belief MDPs

The information vector Ik grows as the history expands. The standard ap-

proach to encode historical information is the use of the belief state, which is the

conditional probability density of the current state xk given the past history, i.e.,

bk : S → [0,∞) :

bk(x) , p(xk = x|Ik).

Given our assumptions on (3.2) and (3.3), bk exists, and can be computed recursively

via Bayes’ rule:

bk(x) = p(xk = x|Ik−1, ak−1, yk)

∝ p(yk|xk = x, ak−1)

∫

S

p(xk = x|Ik−1, ak−1, xk−1) . . .

p(xk−1|Ik−1, ak−1)dxk−1

∝ p(yk|xk = x, ak−1)

∫

S

p(xk = x|ak−1, xk−1) . . .

bk−1(xk−1)dxk−1, (3.4)

where the second line follows from the Markovian property; ∝ means “proportional

to” because the denominator p(yk|Ik−1, ak−1) does not explicitly depend on xk or k;

and the third line follows from the Markovian property of {xk} and the fact that

ak−1 is a function of Ik−1 given a policy. The righthand side of (3.4) can be expressed

40

in terms of bk−1, ak−1 and yk. Hence,

bk = ψ(bk−1, ak−1, yk), (3.5)

where yk is characterized by the time-homogeneous conditional distribution PY (yk|bk−1)

that is induced by (3.2) and (3.3), and does not depend on {y0, . . . , yk−1}.

A POMDP can be converted to an MDP by conditioning on the information

vectors, and the converted MDP is called the belief MDP (Chapter 5, [10]). The

states of the belief MDP are the belief states, which follow the system dynamics

(3.5), where yk can be seen as the system noise with the distribution PY . The state

space of the belief MDP is the belief space, denoted by B, which is the set of all

belief states, i.e., a set of probability densities. A policy π is a sequence of functions

π = {µ0, µ1, . . .}, where each function µk maps the belief state bk onto the action

space A. Notice that

Ex0,{ui}k−1
i=0 ,{vi}k

i=0
{g(xk, ak)} = E {Exk

{g(xk, ak)|Ik}} ,

thus the one-step cost function can be written in terms of the belief state as the

belief one-step cost function

g̃(bk, ak) , Exk
{g(xk, ak)|Ik}

=

∫

x∈S

g(x, ak)bk(x)dx

, 〈g(·, a), b〉.

Assuming there exists a stationary optimal policy, the optimal value function

is given by

J∗(b) = lim
k→∞

T kJ(b), ∀b ∈ B,

41

where T is the dynamic programming (DP) mapping operated on any bounded

function J : S → R according to

TJ(b) = min
a∈A

[〈g(·, a), b〉+ γEY {J(ψ(b, a, Y))}], (3.6)

where EY denotes the expectation with respect to the distribution PY .

3.2.2 Finite-State vs. Continuous-State

For finite-state POMDPs, the belief state b is a vector with each entry being

the probability of being at one of the states, and hence, the belief space B is a finite-

dimensional probability simplex. Past research on numerical solutions of POMDPs

is mostly focused on finite-state problems. For finite-state POMDPs, it is proved

that the value function is a piecewise linear convex function after a finite number of

iterations, provided that the one-step cost function is piecewise linear and convex

[81]. This feature has been exploited in various exact and approximate algorithms

such as those found in [82], [81], [83], [57], and [36]. The algorithm in [81] and the

Witness algorithm in [57] carry out exact value iterations by finding and updating

the minimum set of linear functions that determine the value function at each itera-

tion for a finite-horizon problem. Because the number of such linear functions grow

exponentially with the number of iterations, these algorithms are computationally

very expensive and are limited to very simple problems in practice. Howard [39] and

Sondik [83] use policy iteration to solve the infinite-horizon discounted-cost prob-

lems. Hauskrecht [36] summarizes several value function approximation methods in

a nice framework of modifying the value iteration equation by changing the order

42

of summations and maximization, including approximation with fully observable

MDP, approximation with Q-functions, fast informed bound method, and approx-

imation with unobservable MDP. [36] also summarizes many grid-based methods

with various techniques of choosing the set of grids and approximating the value

function.

For continuous-state POMDPs, the belief state b is a continuous density, and

thus, the belief space B is an infinite-dimensional space that contains all sorts of

continuous densities. For continuous-state POMDPs, the value function preserves

convexity [91], but value iteration algorithms are not directly applicable because the

belief space is infinite dimensional. The infinite-dimensionality of the belief space

also creates difficulties in applying the approximate algorithms that were developed

for finite-state POMDPs. For example, one straightforward and commonly used

approach is to approximate a continuous-state POMDP by a finite-state one via

discretization of the state space. In practice, this could lead to computational

difficulties, either resulting in a belief space that is of huge dimension or in a solution

that is not accurate enough. In addition, note that even for a relatively nice prior

distribution bk (e.g., a Gaussian distribution), the exact evaluation of the posterior

distribution bk+1 is computationally intractable; moreover, the update bk+1 may not

have any structure, and therefore can be very difficult to handle. Past research is

relatively sparse on numerically solving continuous-state POMDPs.

43

Chapter 4

Solving Continuous-State POMDPs

4.1 Related Work and Motivation

As described at the end of last chapter, a POMDP can be converted to a

continuous-state Markov decision process (MDP) by introducing the notion of the

belief state [10], which is the conditional distribution of the current state given the

history of observations and actions. For a finite-state POMDP, the belief space

is finite dimensional (i.e., a probability simplex), whereas for a continuous-state

POMDP, the belief space is an infinite-dimensional space of continuous probability

distributions. This difference suggests that simple generalizations of many of the

finite-state algorithms to continuous-state models are not appropriate or applicable.

For example, discretization of the continuous-state space may result in a finite-state

POMDP of dimension either too large to solve computationally or not sufficiently

precise. Taking another example, many algorithms for solving finite-state POMDPs

(see [36] for a survey) are based on discretization of the finite-dimensional probabil-

ity simplex; however, it is usually not feasible to discretize an infinite-dimensional

probability distribution space. Throughout this chapter, when we use the word

“dimension” or “dimensional”, we refer to the dimension of the belief space/state.

Despite the abundance of algorithms for finite-state POMDPs, the aforemen-

tioned difficulty has motivated some researchers to look for efficient algorithms for

44

continuous-state POMDPs [69] [70] [87] [75] [17] [18]. Assuming discrete observa-

tion and action spaces, Porta et al. [69] showed that the optimal finite-horizon

value function is defined by a finite set of “α-functions”, and model all functions of

interest by Gaussian mixtures. In a later work [70], they extended their result and

method to continuous observation and action spaces using sampling strategies. How-

ever, the number of Gaussian mixtures in representing belief states and α-functions

grows exponentially in value iteration as the number of iterations increases. Thrun

[87] addressed continuous-state POMDPs using particle filtering to simulate the

propagation of belief states and represent the belief states by a finite number of

samples. The number of samples determines the dimension of the belief space, and

the dimension could be very high in order to approximate the belief states closely.

Roy [75] and Brooks et al. [17] used sufficient statistics to reduce the di-

mension of the belief space, which is often referred to as belief compression in the

Artificial Intelligence literature. Roy [75] proposed an augmented MDP (AMDP),

using maximum likelihood state and entropy to characterize belief states, which are

usually not sufficient statistics except for a linear Gaussian model. As shown by

Roy himself, the algorithm fails in a simple robot navigation problem, since the two

statistics are not sufficient for distinguishing between a unimodal distribution and

a bimodal distribution. Brooks et al. [17] proposed a parametric POMDP, rep-

resenting the belief state as a Gaussian distribution so as to convert the POMDP

to a problem of computing the value function over a two-dimensional continuous

space, and using the extended Kalman filter to estimate the transition of the ap-

proximated belief state. The restriction to the Gaussian representation has the same

45

problem as the AMDP. The algorithm recently proposed in Brooks and Williams

[18] is similar to ours, in that they also approximate the belief state by a parame-

terized density and solve the approximate belief MDP on the parameter space using

Monte Carlo simulation-based methods. However, they did not specify how to cal-

culate the parameters except for Gaussian densities, whereas we explicitly provide

an analytical way to calculate the parameters for exponential families of densities.

Moreover, we develop rigorous theoretical error bounds for our algorithm. There are

some other belief compression algorithms designed for finite-state POMDP, such as

value-directed compression [71] and the exponential family principle components

analysis (E-PCA) belief compression [76]. They are not suitable for generalization

to continuous-state models, since they are based on a fixed set of support points.

Motivated by the work of [87] [75] and [17], we develop a computationally

tractable algorithm that effectively reduces the dimension of the belief state and

has the flexibility to represent arbitrary belief states, such as multimodal or heavy

tail distributions. The idea is to project the original high/infinite-dimensional belief

space to a low-dimensional family of parameterized distributions by minimizing the

Kullback-Leibler (KL) divergence between the belief state and its projection on

that family of distributions. For an exponential family, the minimization of KL

divergence can be carried out in analytical form, making the method very easy to

implement. The projected belief MDP can then be solved on the parameter space

by using simulation-based algorithms, or can be further approximated by a finite-

state MDP via a suitable discretization of the parameter space and thus solved by

using standard solution techniques such as value iteration and policy iteration. Our

46

method can be viewed as a generalization of the AMDP in [75] and the parametric

POMDP in [17], which considers only the family of Gaussian distributions. In

addition, we provide theoretical results on the error bound of the value function and

the performance of the near-optimal policy generated by our method.

We also develop a projection particle filter for online filtering and decision

making, by incorporating the density projection technique into particle filtering.

The projection particle filter we propose here is a modification of the projection

particle filter in [5]. Unlike in [5] where the predicted conditional density is projected,

we project the updated conditional density, so as to ensure the projected belief state

remains in the given family of densities. Although seemingly a small modification

in the algorithm, we prove under much less restrictive assumptions a similar bound

on the error between our projection particle filter and the exact filter.

4.2 Dimension Reduction

4.2.1 Density Projection

Density projection is a useful idea to approximate an arbitrary (most likely,

infinite-dimensional) density as accurately as possible by a density in a chosen family

that is characterized by only a few parameters. A projection mapping from the belief

space B to a family of parameterized densities Ω, denoted as ProjΩ : B → Ω, is

defined by

ProjΩ(b) , arg min
f∈Ω

DKL(b‖f), b ∈ B, (4.1)

47

where DKL(b‖f) denotes the Kullback-Leibler (KL) divergence (or relative entropy)

between b and f , which is

DKL(b‖f) ,
∫

b(x) log
b(x)

f(x)
dx. (4.2)

Hence, the projection of b on Ω has the minimum KL divergence from b among all

the densities in Ω.

When Ω is an exponential family of densities, the minimization (4.1) has an

analytical solution and can be carried out easily. The exponential families include

many common families of densities, such as Gaussian, binomial, Poisson, Gamma,

etc. An exponential family of densities is defined as follows [6]:

Definition 4.1 Let {c1(·), . . . , cm(·)} be affinely independent scalar functions de-

fined on Rn, i.e., for distinct points x1, . . . , xm+1,
∑m+1

i=1 λic(xi) = 0 and
∑m+1

i=1 λi =

0 implies λ1, . . . , λm+1 = 0, where c(x) = [c1(x), . . . , cm(x)]T . Assuming that Θ0 =

{θ ∈ Rm : ϕ(θ) = log
∫

exp (θT c(x))dx < ∞} is a convex set with a nonempty

interior, then Ω defined by

Ω = {f(·, θ), θ ∈ Θ},

f(x, θ) = exp [θT c(x)− ϕ(θ)],

where Θ ⊆ Θ0 is open, is called an exponential family of probability densities, with

θ its parameter and c(x) its sufficient statistic.

Substituting f(x) = f(x, θ) into (4.2) and expressing it further as

DKL(b‖f(·, θ)) =

∫
b(x) log b(x)dx−

∫
b(x) log f(x, θ)dx,

48

we can see that the first term does not depend on f(·, θ), hence min DKL(b‖f(·, θ))

is equivalent to

max

∫
b(x) log f(x, θ)dx,

which by Definition 4.1 is the same as

max

∫
(θT c(x)− ϕ(θ))b(x)dx. (4.3)

Recall the fact that the log-likelihood l(θ) = θT c(x) − ϕ(θ) is strictly concave in

θ [55], and therefore,
∫

(θT c(x)− ϕ(θ))b(x)dx is also strictly concave in θ. Hence,

(4.3) has a unique maximum and the maximum is achieved when the first-order

optimality condition is satisfied, i.e.,

∫ (
cj(x)−

∫
cj(x) exp (θT c(x))dx∫

exp (θT c(x))dx

)
b(x)dx = 0.

Therefore, b and its projection f(·, θ) is related by

Eb [cj(X)] = Eθ [cj(X)] , j = 1, . . . , m, (4.4)

where Eb and Eθ denote the expectations with respect to b and f(·, θ), respectively.

4.2.2 Projected Belief MDP

Using the idea of density projection, we can transform the belief MDP to

another MDP confined on a low-dimensional belief space, and then solve this MDP

problem. We call such an MDP the projected belief MDP. Its state is the projected

belief state bp
k ∈ Ω that satisfies the system dynamics

bp
0 = ProjΩ(b0),

bp
k = ψ(bp

k−1, ak−1, yk)
p, k = 0, 1, . . . ,

49

where ψ(bp
k−1, ak−1, yk)

p = ProjΩ(ψ(bp
k−1, ak−1, yk)), and the dynamic programming

mapping on the projected belief MDP is

T pJ(bp) = min
a∈A

[〈g(·, a), bp〉+ γEY {J(ψ(bp, a, Y)p)}] . (4.5)

For the projected belief MDP, a policy is denoted as πp = {µp
0, µ

p
1, . . .}, where each

function µp
k maps the projected belief state bp

k into the action space A. Similarly,

a stationary policy is denoted as µp; an optimal stationary policy is denoted as µp
∗;

and the optimal value function is denoted as Jp
∗ (b

p).

The projected belief MDP is in fact a low-dimensional continuous-state MDP,

and can be solved in numerous ways. One common approach is to use value iteration

or policy iteration by converting the projected belief MDP to a discrete-state MDP

problem via a suitable discretization of the projected belief space (i.e., the parameter

space) and then estimating the one-step cost function and transition probabilities

on the discretized mesh. The effect of the discretization procedure on dynamic

programming has been studied in [9]. We describe this approach in detail below.

Discretization of the projected belief space Ω is equivalent to discretization of

the parameter space Θ, which yields a set of grid points, denoted by G = {θi, i =

1, . . . , N}. Let g̃(θi, a) denote the one-step cost function associated with taking

action a at the projected belief state bp = f(·, θi). Let P̃ (θi, a)(θj) denote the

transition probability from the current projected belief state bp
k = f(·, θi) to the next

projected belief state bp
k+1 = f(·, θj) by taking action a. Estimation of P̃ (θi, a)(θj) is

done using a variation of the projection particle filtering algorithm, to be described

50

in the next section. g̃(θi, a) can be estimated by its sample mean:

g̃(θi, a) =
1

N

N∑
j=1

g(xj, a), (4.6)

where x1, . . . , xN are sampled i.i.d. from f(·, θi).

Remark 4.1 The approach for solving the projected belief MDP described here is

probably the most intuitive, but not necessarily the most computationally efficient.

Other more efficient techniques for solving continuous-state MDPs can be used to

solve the projected belief MDP, such as the linear programming approach [27], neuro-

dynamic programming methods [12], and simulation-based methods [22].

4.3 Projection Particle Filtering

Solving the projected belief MDP gives us a policy, which tells us what action

to take at each projected belief state. In an online implementation, at each time k,

the decision maker receives a new observation yk, estimates the belief state bk, and

then chooses his action ak according to bk and that policy. Hence, to implement our

approach requires addressing the problem of estimating the belief state. Estimation

of bk, or simply called filtering, does not have an analytical solution in most cases

except linear Gaussian systems, but it can be solved using many approximation

methods, such as the extended Kalman filter and particle filtering. Here we focus

on particle filtering, because 1) it outperforms the extended Kalman filter in many

nonlinear/non-Gaussian systems [4], and 2) we will develop a projection particle

filter to be used in conjunction with the projected belief MDP.

51

To obtain a reasonable approximation of the belief state, particle filtering needs

a large number of samples/particles. Since the number of samples/particles is the

dimension of the approximate belief state b̂, particle filtering is not very helpful in

reducing the dimensionality of the belief space. Moreover, particle filtering does not

give us an approximate belief state in the projected belief space Ω, hence the policy

we obtained by solving the projected belief MDP is not immediately applicable.

We incorporate the idea of density projection into particle filtering, so as to

approximate the belief state by a density in Ω. The projection particle filter we

propose here is a modification of the one in [5]. Their projection particle filter

projects the empirical predicted belief state, not the empirical updated belief state,

onto a parametric family of densities, and hence, the approximate belief state might

not be in that family after Bayes’ updating. We will directly project the empirical

updated belief state onto a parametric family. In addition, we will need much less

restrictive assumptions than [5] to obtain similar error bounds. Since resampling is

from a continuous distribution instead of an empirical (discrete) one, the proposed

projection particle filter also overcomes the difficulty of sample impoverishment [4]

that occurs in the bootstrap filter.

Applying the density projection technique we described in the last section,

projecting the empirical belief state b̂k onto an exponential family Ω involves finding

a f(·, θ) with the parameter θ satisfying (4.4). Hence, letting b = b̂k in (4.4) and

plugging in (2.11), θ should satisfy

N∑
i=1

wicj(x
i
k|k−1) = Eθ [cj] , j = 1, . . . , m,

52

which constitutes the projection step in the projection particle filter.

Algorithm 4.1 (Projection particle filtering for an exponential family of densities

(PPF))

• Input: a (stationary) policy µp on the projected belief MDP; a family of ex-

ponential densities Ω = {f(·, θ), θ ∈ Θ}; a sequence of observations y1, y2, . . .

arriving sequentially at time k = 1, 2,

• Output: a sequence of approximate belief states f(·, θ̂1), f(·, θ̂2),

• Step 1. Initialization: Sample x1
0, . . . , x

N
0 i.i.d. from the approximate initial

belief state f(·, θ̂0). Set k = 1.

• Step 2. Prediction: Compute x1
k|k−1, . . . , x

N
k|k−1 by propagating x1

k−1, . . . , x
N
k−1

according to the system dynamics (3.2) using the action ak−1 = µp(f(·, θ̂k−1))

and randomly generated noise {ui
k−1}N

i=1, i.e., sample xi
k|k−1 from p(·|xi

k−1, ak−1),

i = 1, . . . , N .

• Step 3. Bayes’ updating: Receive a new observation yk. Calculate weights as

wi
k =

p(yk|xi
k, ak−1)∑N

i=1 p(yk|xi
k, ak−1)

, i = 1, . . . , N.

• Step 4. Projection: The approximate belief state is f(·, θ̂k), where θ̂k satisfies

the equations
N∑

i=1

wi
kcj(x

i
k|k−1) = Eθ̂k

[cj], j = 1, . . . , m.

• Step 5. Resampling: Sample x1
k, . . . , x

N
k from f(·, θ̂k).

53

• Step 6. k ← k + 1 and go to Step 2.

In an online implementation, at each time k, the PPF approximates bk by

f(·, θ̂k), and then decides an action ak according to ak = µp(f(·, θ̂k)), where µp is an

optimal policy solved for the projected belief MDP.

As mentioned in the last section, PPF can be varied slightly for estimating

the transition probabilities of the discretized projected belief MDP, as follows:

Algorithm 4.2 (Estimation of the transition probabilities)

• Input: θi, a, N ;

• Output: P̃ (θi, a)(θj), j = 1, . . . , N .

• Step 1. Sampling: Sample x1, . . . , xN from f(·, θi).

• Step 2. Prediction: Compute x̃1, . . . , x̃N by propagating x1, . . . , xN according

to the system dynamics (3.2) using the action a and randomly generated noise

{ui}N
i=1.

• Step 3. Sampling observation: Compute y1, . . . , yN from x̃1, . . . , x̃N according

to the observation equation (3.3) using randomly generated noise {vi}N
i=1.

• Step 4. Bayes’ updating: For each yk, k = 1, . . . , N , the updated belief state is

b̃k =
N∑

i=1

wk
i δ(x− x̃i),

where

wk
i =

p(yk|x̃i, a)∑N
i=1 p(yk|x̃i, a)

, i = 1, . . . , N.

54

• Step 5. Projection: For k = 1, . . . , N , project each b̃k to the exponential family,

i.e., finding θ̃k that satisfies (4.4).

• Step 6. Estimation: For k = 1, . . . , N , find the nearest-neighbor of θ̃k in G.

For each θj ∈ G, count the frequency P̃ (θi, a)(θj) = (number of θj)/N .

4.4 Analysis of Projected Belief MDP

4.4.1 Main Idea

Our method solves the projected belief MDP instead of the original belief

MDP, and that raises two questions: How well does the optimal value function of

the projected belief MDP approximate the optimal value function of the original

belief MDP? How well does the optimal policy obtained by solving the projected

belief MDP perform on the original belief MDP? To answer these questions, we first

need to rephrase them mathematically.

Here we assume perfect computation of the belief states and the projected

belief states. We also assume the existence of an optimal policy that is stationary,

as stated below.

Assumption 4.1 There exist a stationary optimal policy for the belief MDP, de-

noted by µ∗, and a stationary optimal policy for the projected belief MDP, denoted

by µp
∗.

Assumption 4.1 holds under some mild conditions [10], [37]. Using the station-

arity, and the dynamic programming mapping on the belief MDP and the projected

55

belief MDP given by (3.6) and (4.5), the optimal value function J∗(b) for the belief

MDP can be obtained by

J∗(b) , Jµ∗(b) = lim
k→∞

T kJ0(b),

and the optimal value function for the projected belief MDP obtained by

Jp
∗ (b

p) , Jp
µp
∗
(bp) = lim

k→∞
(T p)kJ0(b

p).

Therefore, the questions posed at the beginning of this section can be formu-

lated mathematically as:

1. How well the optimal value function of the projected belief MDP approxi-

mates the true optimal value function can be measured by

|J∗(b)− Jp
∗ (b

p)| .

2. How well the optimal policy µp
∗ for the projected belief MDP performs on

the original belief space can be measured by

∣∣J∗(b)− Jµ̄p
∗(b)

∣∣ ,

where µ̄p
∗(b) , µp

∗ ◦ ProjΩ(b) = µp
∗(b

p).

4.4.2 Error Bound

The next assumption bounds the difference between the belief state b and its

projection bp, and also the difference between their one-step evolutions ψ(b, a, y) and

ψ(bp, a, y)p. It is an assumption on the projection error.

56

Assumption 4.2 There exist ε1 > 0 and δ1 > 0 such that for all a ∈ A, y ∈ O and

b ∈ B,

|〈g(·, a), b− bp〉| ≤ ε1,

|〈g(·, a), ψ(b, a, y)− ψ(bp, a, y)p〉| ≤ δ1.

The following assumption can be seen as a continuity property of the value

function.

Assumption 4.3 Given δ > 0 that satisfies |〈g(·, a), b− b′〉| ≤ δ, there exists ε > 0

such that |Jk(b)− Jk(b
′)| ≤ ε, ∀,

¯
b′ ∈ B, ∀k, and there exists a ε̃ > 0 such that

|Jµ(b)− Jµ(b′)| ≤ ε̃, ∀b, b′ ∈ B, ∀µ ∈ Π.

Now we present our main result.

Theorem 4.1 Under Assumptions 4.1, 4.2 and 4.3, for all b ∈ B,

|J∗(b)− Jp
∗ (b

p)| ≤ ε1 + γε2

1− γ
, (4.7)

∣∣J∗(b)− Jµ̄p
∗(b)

∣∣ ≤ 2ε1 + γ(ε2 + ε3)

1− γ
, (4.8)

where ε1 is the constant in Assumption 4.2, and ε2, ε3 are the constants ε and ε̃,

respectively, in Assumption 4.3 corresponding to δ = δ1.

Proof:

Denote Jk(b) , T kJ0(b), J
p
k (bp) , (T p)kJ0(b

p), k = 0, 1, . . ., and define

bk(b, a) = 〈g(·, a), b〉+ γEY {Jk−1(ψ(b, a, Y))} ,

µk(b) = arg min
a∈A

Qk(b, a),

57

bp
k(b, a) = 〈g(·, a), bp〉+ γEY {Jk−1(ψ(bp, a, Y)p)} ,

µp
k(b) = arg min

a∈A
Qp

k(b, a).

Hence,

Jk(b) = min
a∈A

Qk(b, a) = Qk(b, µk(b)),

Jp
k (bp) = min

a∈A
Qp

k(b, a) = Qp
k(b, µ

p
k(b)).

Denote errk , maxb∈B |Jk(b)− Jp
k (bp)|, k = 1, 2,

We consider the first iteration. Initialize with J0(b) = Jp
0 (bp) = 0. By As-

sumption 4.2, ∀a ∈ A,

|Q1(b, a)−Qp
1(b, a)| = |〈g(·, a), b− bp〉| ≤ ε1, ∀b ∈ B. (4.9)

Hence, with a = µp
1(b), the above inequality yields Q1(b, µ

p
1(b)) ≤ Jp

1 (bp) + ε1. Using

J1(b) ≤ Q1(b, µ
p
1(b)), we get

J1(b) ≤ Jp
1 (bp) + ε1, ∀b ∈ B. (4.10)

With a = µ1(b), (4.9) yields Qp
1(b, µ1(b))− ε1 ≤ J1(b). Using Jp

1 (bp) ≤ Qp
1(b, µ1(b)),

we get

Jp
1 (bp)− ε1 ≤ J1(b), ∀b ∈ B. (4.11)

From (4.10) and (4.11), we conclude

|J1(b)− Jp
1 (bp)| ≤ ε1, ∀b ∈ B.

Taking the maximum over b on both sides of the above inequality yields

err1 ≤ ε1. (4.12)

58

Now we consider the (k+1)th iteration. For a fixed Y = y, by Assumption 4.2,

|〈g(·, a), ψ(b, a, y)− ψ(bp, a, y)p〉| ≤ δ1.

Let δ1 be the δ in Assumption 4.3 and denote the corresponding ε by ε2. Then

|Jk(ψ(b, a, y))− Jk (ψ(bp, a, y)p)| ≤ ε2, ∀b ∈ B. (4.13)

Therefore, ∀a ∈ A,

∣∣Qk+1(b, a)−Qp
k+1(b, a)

∣∣

≤ |〈g(·, a), b− bp〉|+ γEY {|Jk(ψ(b, a, Y))− Jp
k (ψ(bp, a, Y)p)|}

≤ ε1 + γEY {|Jk(ψ(b, a, Y))− Jk(ψ(bp, a, Y)p)|+ |Jk(ψ(bp, a, Y)p)− Jp
k (ψ(bp, a, Y)p)|}

≤ ε1 + γ(ε2 + errk), ∀b ∈ B.

The third inequality follows from (4.13) and the definition of errk. Using an argu-

ment similar to that used to prove (4.12) from (4.9), we conclude that

errk+1 ≤ ε1 + γ(ε2 + errk). (4.14)

Using induction on (4.14) with initial condition (4.12) and taking k →∞, we obtain

|J∗(b)− Jp
∗ (b

p)| ≤
∞∑

k=0

γkε1 +
∞∑

k=1

γkε2

=
ε1 + γε2

1− γ
. (4.15)

Therefore, (4.7) is proved.

Fixing a policy µ on the original belief MDP, define the mappings under policy

µ on the belief MDP and the projected belief MDP as

TµJ(b)=〈g(·, µ(b)), b〉+ γEY {J(ψ(b, µ(b), Y))} , (4.16)

T p
µJ(b)=〈g(·, µ(b)), bp〉+ γEY {J(ψ(bp, µ(b), Y)p)} , (4.17)

59

respectively. Since µp
∗ is a stationary policy for the projected belief MDP, µ̄p

∗ =

µp
∗ ◦ ProjΩ is stationary for the original belief MDP. Hence,

Jp
∗ (b

p) = T p
µp
∗
Jp
∗ (b

p),

Jµ̄p
∗(b) = Tµ̄p

∗Jµ̄p
∗(b).

Subtracting both sides of the above two equations, and substituting in the definitions

of T p and T (i.e., (4.17) and (4.16)) for the righthand sides respectively, we get

Jp
∗ (b

p)− Jµ̄p
∗(b) = 〈g (·, µp

∗(b
p)) , bp − b〉 . . .

+ γEY

{
Jp
∗ (ψ(bp, µp

∗(b
p), Y)p)− Jµ̄p

∗ (ψ(b, µp
∗(b

p), Y))
}

.(4.18)

For a fixed Y = y,

∣∣Jp
∗ (ψ(bp, µp

∗(b
p), y)p)− Jµ̄p

∗(ψ(b, µp
∗(b

p), y))
∣∣

≤
∣∣∣Jp
∗ (b̃)− Jµ̄p

∗(b̃)
∣∣∣ +

∣∣Jµ̄p
∗ (ψ(bp, µp

∗(b
p), y)p)− Jµ̄p

∗ (ψ(b, µp
∗(b

p), y))
∣∣ ,

where b̃ = ψ(bp, µp
∗(b

p), y)p ∈ B. By Assumption 4.2,

|〈g(·, a), ψ(bp, µp
∗(b

p), y)p − ψ(b, µp
∗(b

p), y)〉| ≤ δ1.

Letting δ = δ1 in Assumption 4.3 and denoting the corresponding ε̃ by ε3, we get

the second term

∣∣Jµ̄p
∗ (ψ(bp, µp

∗(b
p), y)p)− Jµ̄p

∗ (ψ(b, µp
∗(b

p), y))
∣∣ ≤ ε3.

Denoting err , maxb∈B

∣∣Jp
∗ (b

p)− Jµp
∗(b)

∣∣, we obtain

∣∣Jp
∗ (ψ(bp, µp

∗(b
p), y)p)− Jµ̄p

∗ (ψ(b, µp
∗(b

p), y))
∣∣ ≤ err + ε3.

60

Therefore, (4.18) becomes

∣∣Jp
∗ (b

p)− Jµ̄p
∗(b)

∣∣ ≤ ε1 + γ(err + ε3).

Taking the maximum over b on both sides of the above inequality yields

err ≤ ε1 + γ(err + ε3).

Hence,

err ≤ ε1 + γε3

1− γ
. (4.19)

With (4.15) and (4.19), we obtain

∣∣J∗(b)− Jµ̄p
∗(b)

∣∣ ≤ |J∗(b)− Jp
∗ (b

p)|+
∣∣Jp
∗ (b

p)− Jµ̄p
∗(b)

∣∣

≤ 2ε1 + γ(ε2 + ε3)

1− γ
, ∀b ∈ B.

Therefore, (4.8) is proved. ¥

Remark 4.2 In (4.7) and (4.8), ε1 is a projection error, and ε2 and ε3 decreases

as the projection error δ1 decreases. Therefore, as the projection error decreases,

the optimal value function of the projected belief MDP Jp
∗ (b

p) converges to the true

optimal value function J∗(b), and the corresponding policy µ̄p
∗ converges to the true

optimal policy µ∗. Roughly speaking, the projection error decreases as the number

of sufficient statistics in the chosen exponential family increases (for details, please

see Section 4.6: Validation of the Assumptions).

4.5 Analysis of Projection Particle Filtering

In the above analysis, we assumed perfect computation of the belief states

and the projected belief states. In this section, we consider the filtering error, and

61

compute an error bound on the approximate belief state generated by the projection

particle filter (PPF).

4.5.1 Notations

Let Cb(Rn) be the set of all continuous bounded functions on Rn. Let B(Rn)

be the set of all bounded measurable functions on Rn. Let ‖·‖ denote the supremum

norm on B(Rn), i.e., ‖φ‖ , supx∈Rn |φ(x)|, φ ∈ B(Rn). Let M+(Rn) and P(Rn) be

the sets of nonnegative measures and probability measures on Rn, respectively. If

η ∈M+(Rn) and φ : Rn → R is an integrable function with respect to η, then

〈η, φ〉 ,
∫

φdη.

Moreover, if η ∈ P(Rn),

Eη[φ] = 〈η, φ〉,

V arη(φ) = 〈η, φ2〉 − 〈η, φ〉2.

We will use the representations on the two sides of the above equalities interchange-

ably in the sequel.

The belief state and the projected belief state are probability densities; how-

ever, we will prove our results in terms of their corresponding probability mea-

sures, which we refer to as “conditional distributions” (belief states are conditional

densities). The two representations are essentially the same once we assume the

probability measures admit probability densities. Therefore, the notations used for

probability densities before are used to denote their corresponding probability mea-

sures from now on. Namely, we use b to denote a probability measure on Rnx and

62

assume it admits a probability density with respect to Lebesgue measure, which is

the belief state. Similarly, we use f(·, θ) to denote a probability measure on Rnx

and assume it admits a probability density with respect to Lebesgue measure in the

chosen exponential family with parameter θ.

A probability transition kernel K : P(Rnx)× Rnx → R is defined by

Kη(E) ,
∫

Rnx

η(dx)K(E, x),

where E is a set in the Borel σ-algebra on Rnx . For φ : Rnx → R, an integrable

function with respect to K(·, x),

Kφ(x) ,
∫

Rnx

φ(x′)K(dx′, x).

Let Kk(dxk, xk−1) denote the probability transition kernel of the system (3.2) at

time k, which satisfies

bk|k−1(dxk) = Kkbk−1(dxk|k−1)

=

∫

Rnx

bk−1(dxk−1)Kk(dxk|k−1, xk−1).

We let Ψk denote the likelihood function associated with the observation equa-

tion (3.3) at time k, and assume that Ψk ∈ Cb(Rnx). Hence,

bk =
Ψkbk|k−1

〈bk|k−1, Ψk〉 .

4.5.2 Main Idea

The exact filter (EF) at time k can be described as

bk−1 −→ bk|k−1 = Kkbk−1 −→ bk =
Ψkbk|k−1

〈bk|k−1, Ψk〉 .

prediction updating

63

The PPF at time k can be described as

f̂(·, θ̂k−1) −→ b̂k|k−1 = Kkf(·, θ̂k−1) −→ . . .

prediction updating

b̂k =
Ψkb̂k|k−1

〈b̂k|k−1, Ψk〉
−→ f(·, θ̂k) −→ f̂(·, θ̂k).

projection resampling

To facilitate our analysis, we introduce a conceptual filter (CF), which at each

time k is reinitialized by f(·, θ̂k−1), performs exact prediction and updating to yield

b′k|k−1 and b′k, respectively, and does projection to obtain f(·, θ′k). It can be described

as

f(·, θ̂k−1) −→ b′k|k−1 = Kkf(·, θ̂k−1) −→ . . .

prediction updating

b′k =
Ψkb

′
k|k−1

〈b′k|k−1, Ψk〉 −→ f(·, θ′k).

projection

The CF serves as an bridge to connect the EF and PPF, as we describe below.

We are interested in the difference between the true conditional distribution

bk and the PPF generated projected conditional distribution f(·, θ̂k) for each time

k. The total error between the two can be decomposed as follows:

bk − f(·, θ̂k) = (bk − b′k) + (b′k − f(·, θ′k)) + (f(·, θ′k)− f(·, θ̂k)). (4.20)

The first term (bk − b′k) is the error due to the inexact initial condition of the CF

compared to EF, i.e., (bk−1 − f(·, θ̂k−1)), which is also the total error at time k − 1.

64

Table 4.1: Notations of Different Conditional Distributions

bk exact conditional distribution

b̂k PPF conditional distribution before projection

f(·, θ̂k) PPF projected conditional distribution

b′k CF conditional distribution before projection

f(·, θ′k) CF projected conditional distribution

The second term (b′k− f(·, θ′k)) evaluates the minimum deviation from the exponen-

tial family generated by one step of exact filtering, since f(·, θ′k) is the projection

of b′k. The third term (f(·, θ′k) − f(·, θ̂k)) is purely due to Monte Carlo simulation,

since f(·, θ′k) and f(·, θ̂k) are obtained using the same steps from f(·, θ̂k−1) and its

empirical version f̂(·, θ̂k−1), respectively. We will find error bounds on each of the

three terms, and finally find the total error at time k by induction.

4.5.3 Error Bound

We shall look at the the case in which the observation process has an arbitrary

but fixed value y0:k = {y0, . . . , yk}. Hence, all the expectations E in this section are

with respect to the sampling in the algorithm only. We consider the test function

65

φ ∈ B(Rnx). It can be seen that Kφ ∈ B(Rnx) and ‖Kφ‖ ≤ ‖φ‖, since

|Kφ(x)| =

∣∣∣∣
∫

Rnx

φ(x′)K(dx′, x)

∣∣∣∣

≤
∫

Rnx

|φ(x′)K(dx′, x)|

≤ ‖φ‖
∫

Rnx

K(dx′, x) = ‖φ‖.

Since Ψ ∈ Cb(Rnx), we know that Ψ ∈ B(Rnx) and Ψφ ∈ B(Rnx).

We also need the following assumptions.

Assumption 4.4 All the projected distributions are in a compact subset of the given

exponential family. In other words, there exists a compact set Θ′ ⊆ Θ such that

θ̂k ∈ Θ′, and θ′k ∈ Θ′, ∀k.

Assumption 4.5 For all k ∈ N,

〈bk|k−1, Ψk〉 > 0,

〈b′k|k−1, Ψk〉 > 0, w.p.1,

〈b̂k|k−1, Ψk〉 > 0, w.p.1.

Assumption 4.5 guarantees that the normalizing constant in the Bayes’ updat-

ing is nonzero, so that the conditional distribution is well defined. Under Assump-

tion 4.4, the second inequality in Assumption 4.5 can be strengthened using the com-

pactness of Θ′. Since f(·, ak, uk) in (3.2) is continuous in x, Kk is weakly continuous

(pp. 175-177, [37]). Hence, 〈b′k|k−1, Ψk〉 = 〈Kkf(·, θ̂k−1), Ψk〉 = 〈f(·, θ̂k−1), KkΨk〉 is

continuous in θ̂k−1, where θ̂k−1 ∈ Θ′. Since Θ′ is compact, there exists a constant

δ > 0 such that for each k

〈b′k|k−1, Ψk〉 ≥ 1

δ
, w.p.1. (4.21)

66

The assumption below guarantees that the conditional distribution stays close

to the given exponential family after one step of exact filtering if the initial dis-

tribution is in the exponential family. Recall that starting with initial distribution

f(·, θ̂k−1), one step of exact filtering yields b′k, which is then projected to yield

f(·, θ′k), where θ̂k−1 ∈ Θ′, θ′k ∈ Θ′.

Assumption 4.6 There exists a constant ε > 0 such that for all φ ∈ B(Rnx) and

all k ∈ N,

E [|〈b′k, φ〉 − 〈f(·, θ′k), φ〉|] ≤ ε‖φ‖.

Remark 4.3 Assumption 4.6 is our main assumption, which essentially assumes

an error bound on the projection error. Our assumptions are much less restrictive

than the assumptions in [5], while our conclusion is similar to but slightly different

from that in [5], which will be seen later. Although Assumption 4.6 appears similar

to Assumption 3 in [5], it is essentially different. Assumption 3 in [5] says that

the optimal conditional density stays close to the given exponential family for all

time, whereas Assumption 4.6 only assumes that if the exact filter starts in the

given exponential family, after one step the conditional distribution stays close to the

family. Moreover, we do not need any assumption like the restrictive Assumption 4

in [5].

Lemma 4.1 considers the bound on the first term in (4.20).

Lemma 4.1 For each k ∈ N, suppose E[|〈bk−1 − f(·, θ̂k−1), φ〉|] ≤ ek−1‖φ‖, ∀φ ∈

B(Rnx), where ek−1 is a positive constant. Then under Assumptions 4.4 and 4.5,

67

for each k ∈ N, there exists a constant ζk > 0 such that for all φ ∈ B(Rnx)

E [|〈bk − b′k, φ〉|] ≤ ζkek−1‖φ‖. (4.22)

Proof:

E
[∣∣∣〈bk−1 − f(·, θ̂k−1), φ〉

∣∣∣
]

is the error from time k−1, which is also the initial

error for time k. Hence, the prediction step yields

E
[∣∣〈bk|k−1 − b′k|k−1, φ〉

∣∣]

= E
[∣∣∣〈Kk(bk−1 − f(·, θ̂k−1)), φ〉

∣∣∣
]

= E
[∣∣∣〈bk−1 − f(·, θ̂k−1), Kkφ〉

∣∣∣
]

≤ ek−1‖Kkφ‖

≤ ek−1‖φ‖. (4.23)

Under Assumptions 4.4 and 4.5, we have showed (4.21). Using (4.21) and

(4.23), the Bayes’ updating step yields

E [|〈bk − b′k, φ〉|]

= E

[∣∣∣∣∣
〈bk|k−1, Ψkφ〉
〈bk|k−1, Ψk〉 −

〈b′k|k−1, Ψkφ〉
〈b′k|k−1, Ψk〉

∣∣∣∣∣

]

= E

[∣∣∣∣∣
〈bk|k−1, Ψkφ〉
〈bk|k−1, Ψk〉 −

〈bk|k−1, Ψkφ〉
〈b′k|k−1, Ψk〉

∣∣∣∣∣

]
+ E

[∣∣∣∣∣
〈bk|k−1, Ψkφ〉
〈b′k|k−1, Ψk〉 −

〈b′k|k−1, Ψkφ〉
〈b′k|k−1, Ψk〉

∣∣∣∣∣

]

≤ E

[∣∣∣∣∣
〈bk|k−1, Ψkφ〉〈bk|k−1 − b′k|k−1, Ψk〉

〈bk|k−1, Ψk〉〈b′k|k−1, Ψk〉

∣∣∣∣∣

]
+ E

[∣∣∣∣∣
〈bk|k−1 − b′k|k−1, Ψkφ〉

〈b′k|k−1, Ψk〉

∣∣∣∣∣

]

≤ δ

∣∣〈bk|k−1, Ψkφ〉
∣∣

〈bk|k−1, Ψk〉 E
[∣∣〈bk|k−1 − b′k|k−1, Ψk〉

∣∣] + δE
[∣∣〈bk|k−1 − b′k|k−1, Ψkφ〉

∣∣]

≤ δek−1‖φ‖‖Ψk‖+ δek−1‖Ψkφ‖

≤ 2δek−1‖Ψk‖‖φ‖ = ζkek−1‖φ‖,

68

where ζk = 2δ‖Ψk‖. ¥

Lemma 4.2 considers the bound on the third term in (4.20) before projection.

Lemma 4.2 Under Assumptions 4.4 and 4.5, for each k ∈ N, there exists a constant

τk > 0 such that for all φ ∈ B(Rnx)

E
[∣∣∣〈b̂k − b′k, φ〉

∣∣∣
]
≤ τk

‖φ‖√
N

.

Proof:

This lemma uses essentially the same proof technique as Lemmas 3 and 4 in

[23]. However, it is not quite obvious how these lemmas imply our lemma here.

Therefore, we state the proof to make this chapter more accessible. After the re-

sampling step, f̂(·, θ̂k−1) = 1
N

∑N
i=1 δ(x− xi

k−1), where xi
k−1, i = 1, . . . , N are i.i.d.

samples from f(·, θ̂k−1). Using the Cauchy-Schwartz inequality, we have

(
E

[
〈f̂(·, θ̂k−1)− f(·, θ̂k−1), φ〉2

])1/2

=


E




(
1

N

N∑
i=1

(
φ(xi

k−1)− 〈f(·, θ̂k−1), φ〉
))2







1/2

=
1√
N

(
E

[
1

N

N∑
i=1

(φ(xi
k−1)− 〈f(·, θ̂k−1), φ〉)2

])1/2

=
1√
N

(
〈f(·, θ̂k−1), φ

2〉 − 〈f(·, θ̂k−1), φ〉2
)1/2

≤ 1√
N
〈f(·, θ̂k−1), φ

2〉1/2

≤ 1√
N
‖φ‖. (4.24)

69

The Bayes’ updating step yields

E
[∣∣∣〈b̂k − b′k, φ〉

∣∣∣
]

= E

[∣∣∣∣∣
〈b̂k|k−1, Ψkφ〉
〈b̂k|k−1, Ψk〉

−
〈b′k|k−1, Ψkφ〉
〈b′k|k−1, Ψk〉

∣∣∣∣∣

]

= E

[∣∣∣∣∣
〈b̂k|k−1, Ψkφ〉
〈b̂k|k−1, Ψk〉

− 〈b̂k|k−1, Ψkφ〉
〈b′k|k−1, Ψk〉

∣∣∣∣∣

]
+ E

[∣∣∣∣∣
〈b̂k|k−1, Ψkφ〉
〈b′k|k−1, Ψk〉 −

〈b′k|k−1, Ψkφ〉
〈b′k|k−1, Ψk〉

∣∣∣∣∣

]

≤ E

[∣∣∣∣∣
〈b̂k|k−1, Ψkφ〉〈b̂k|k−1 − b′k|k−1, Ψk〉

〈b̂k|k−1, Ψk〉〈b′k|k−1, Ψk〉

∣∣∣∣∣

]
+ E

[∣∣∣∣∣
〈b̂k|k−1 − b′k|k−1, Ψkφ〉

〈b′k|k−1, Ψk〉

∣∣∣∣∣

]
.

Under Assumptions 4.4 and 4.5, we have showed (4.21). Using the Cauchy-Schwartz

inequality, (4.21) and (4.24), the first term can be simplified as

E

[∣∣∣∣∣
〈b̂k|k−1, Ψkφ〉〈b̂k|k−1 − b′k|k−1, Ψk〉

〈b̂k|k−1, Ψk〉〈b′k|k−1, Ψk〉

∣∣∣∣∣

]

≤ δ

(
E

[
〈b̂k|k−1, Ψkφ〉2
〈b̂k|k−1, Ψk〉2

])1/2 (
E

[
〈b̂k|k−1 − b′k|k−1, Ψk〉2

])1/2

= δ

(
E

[
〈b̂k|k−1, Ψkφ〉2
〈b̂k|k−1, Ψk〉2

])1/2 (
E

[
〈f(·, θ̂′k−1)− f(·, θ′k−1), KkΨk〉2

])1/2

≤ δ‖φ‖ 1√
N
‖Ψk‖,

and the second term can be simplified as

E

[∣∣∣∣∣
〈b̂k|k−1 − b′k|k−1, Ψkφ〉

〈b′k|k−1, Ψk〉

∣∣∣∣∣

]

≤ δ
(
E

[
〈b̂k|k−1 − b′k|k−1, Ψkφ〉2

])1/2

= δ
(
E

[
〈f̂(·, θ̂k−1)− f(·, θ̂k−1), KkΨkφ〉2

])1/2

≤ δ
1√
N
‖Ψkφ‖

≤ δ
1√
N
‖Ψk‖‖φ‖.

Therefore, adding these two terms yields

E
[∣∣∣〈b̂k − b′k, φ〉

∣∣∣
]
≤ 2δ‖Ψk‖ ‖φ‖√

N
= τk

‖φ‖√
N

,

70

where τk = 2δ‖Ψk‖. ¥

Lemma 4.3 considers the bound on the third term in (4.20) based on the

result of Lemma 4.2. The key idea of proof is to connect the errors before and after

projection through (4.4), which we derived for the density projection that minimizes

the KL divergence.

Lemma 4.3 Let cj, j = 1, . . . , m be the sufficient statistics of the exponential family

as defined in Definition 4.1, and assume cj ∈ B(Rnx), j = 1, . . . ,m. Then under

Assumptions 4.4 and 4.5, for each k ∈ N, there exists a constant dk > 0 such that

for all φ ∈ B(Rnx)

E
[∣∣∣f(·, θ̂k)− 〈f(·, θ′k), φ〉

∣∣∣
]
≤ dk

‖φ‖√
N

. (4.25)

Proof:

The key idea of the proof for Lemma 4 in [5] is used here. From (4.4), we

know that Eθ̂k
[cj(X)] = Eb̂k

[cj(X)] and Eθ′k [cj(X)] = Eb′k [cj(X)]. Hence, we obtain

E
[∣∣Eθ̂k

(cj(X))− Eθ′k(cj(X))
∣∣] = E

[∣∣∣〈b̂k − b′k, cj〉
∣∣∣
]
,

for j = 1, . . . ,m. Taking summation over j, we obtain

E

[
m∑

j=1

∣∣Eθ̂k
(cj(X))− Eθ′k (cj(X))

∣∣
]

=
m∑

j=1

E
[∣∣∣〈b̂k − b′k, cj〉

∣∣∣
]
.

Since cj ∈ B(Rnx), we apply Lemma 4.2 with φ = cj and thus obtain

E
[∣∣∣〈b̂k − b′k, cj〉

∣∣∣
]
≤ bk

‖cj‖√
N

, j = 1, . . . , m.

Therefore,

E
[∥∥Eθ̂k

(c(X))− Eθ′k(c(X))
∥∥

1

]
≤ τ̃k√

N
,

71

where ‖ · ‖1 denotes the L1 norm on Rnx , c = [c1, . . . , cm]T , and τ̃k =
∑m

j=1 ‖cj‖.

Since Θ′ is compact and the Fisher information matrix

[Eθ [ci(X)cj(X)]− Eθ [ci(X)] Eθ [cj(X)]]ij is positive definite, we get (cf. Fact 2 in

[5] for a detailed proof)

∥∥∥θ̂k − θ′k
∥∥∥

1
≤ α

∥∥Eθ̂k
(c(X))− Eθ′k(c(X))

∥∥
1
.

Taking the expectation on both sides yields

E
[∥∥∥θ̂k − θ′k

∥∥∥
1

]
≤ αE

[∥∥Eθ̂k
(c(X))− Eθ′k(c(X))

∥∥
1

]

≤ ατ̃k
1√
N

.

On the other hand, taking derivative of Eθ[φ(X)] with respect to θi yields

∣∣∣∣
d

dθi

Eθ[φ(X)]

∣∣∣∣ = |Eθ[ci(X)φ(X)]− Eθ[ci(X)]Eθ[φ(X)]|

≤
√

V arθ(ci)V arθ(φ)

≤
√

Eθ(c2
i)Eθ(φ2)

≤ ‖ci‖‖φ‖.

Hence,
∥∥∥∥

d

dθ
Eθ[φ(X)]

∥∥∥∥
1

≤
(

m∑
i=1

‖ci‖
)
‖φ‖.

Since Θ′ is compact, there exists a constant β > 0 such that Eθ[φ(X)] is Lipschitz

over θ ∈ Θ′ with Lipschitz constant β‖φ‖ (cf. the proof of Fact 2 in [5]), i.e.,

∣∣Eθ̂k
[φ]− Eθ′k [φ]

∣∣ ≤ β ‖φ‖
∥∥∥θ̂k − θ′k

∥∥∥
1
.

72

Taking expectation on both sides yields

E
[∣∣∣f(·, θ̂k)− f(·, θ′k), φ〉

∣∣∣
]
≤ β‖φ‖E

[∥∥∥θ̂k − θ′k
∥∥∥

1

]

≤ β‖φ‖ατ̃k
1√
N

= dk
|φ‖√
N

,

where dk = αβτ̃k. ¥

Now we present our main result on the error bound of the projection particle

filter.

Theorem 4.2 Suppose E[|〈b0 − f(·, θ̂0), φ〉|] ≤ e0‖φ‖, e0 ≥ 0, ∀φ ∈ B(Rnx). Under

Assumptions 4.4, 4.5 and 4.6, and assuming that cj ∈ B(Rnx), j = 1, . . . , m, there

exist ζi > 0, di > 0, i = 1, . . . , k such that for all φ ∈ B(Rnx) ,

E
[∣∣∣〈bk − f(·, θ̂k), φ〉

∣∣∣
]
≤ ek‖φ‖, k = 1, 2, . . . ,

where

ek = ζk
1 e0 +

(
k∑

i=2

ζk
i + 1

)
ε +

(
k∑

i=2

ζk
i di−1 + dk

)
1√
N

, (4.26)

ζk
i =

∏k
j=i ζj for k ≥ i, and ζk

i = 0 for k < i, ε is the constant in Assumption 4.6.

Proof:

Applying Lemma 4.1, Assumption 4.6, and Lemma 4.3, we have that for all

φ ∈ B(Rnx) and k ∈ N, there exist ζi > 0, di > 0, i = 1, . . . , k such that

E
[∣∣∣〈bk − f(·, θ̂k), φ〉

∣∣∣
]

≤ E [|〈bk − b′k, φ〉|] + E [|〈b′k − f(·, θ′k), φ〉|] . . .

+ E
[∣∣∣〈f(·, θ′k)− f(·, θ̂k), φ〉

∣∣∣
]

≤
(

ζkek−1 + ε + dk
1√
N

)
‖φ‖ = ek‖φ‖.

73

It is easy to deduce by induction that

ek = ζk
1 e0 +

(
k∑

i=2

ζk
i + 1

)
ε +

(
k∑

i=2

ζk
i di−1 + dk

)
1√
N

.

¥

Remark 4.4 As we mentioned in Remark 4.2, the projection error e0 and ε decrease

as the number of sufficient statistics in the chosen exponential family, m, increases.

The error ek decreases at the rate of 1√
N

, as we increase the number of samples

in the projection particle filter. However, notice that the coefficient in front of 1√
N

grows as time, so we have to use an increasing number of samples as time goes on,

in order to ensure a uniform error bound with respect to time.

4.6 Validation of Assumptions

Assumptions 4.2 and 4.6 are the main assumptions of our analysis. They are

assumptions on the projection error, assuming that density projection introduces

a “small” error. We will show that in certain cases these assumptions hold, and

the projection error converges to 0 as the number of sufficient statistics, m, goes to

infinity. We will first state a convergence result from [7]. However, as their conver-

gence result is in the sense of KL divergence, we will further show the convergence

in the sense employed in our assumptions by using an intermediate result in [7].

Consider a probability density function b defined on a bounded interval, and

approximate it by bp, a density function in an exponential family, whose sufficient

statistics consist of polynomials, splines or trigonometric series. The following the-

orem is proved in [7].

74

Theorem 4.3 If log b has r square-integrable derivatives, i.e.,
∫ |Dr log b|2 < ∞,

then DKL(b||bp) converges to 0 at rate m−2r as m →∞.

Theorem 4.3 says the projected density bp converges to b in the sense of KL

divergence, as m goes to infinity. An intermediate result (see (6.6) in [7]) is:

‖ log b/bp‖ ≤ νm, where νm is a constant that depends on m, and νm → 0 as

m →∞.

Since b is bounded and log(·) is a continuously differentiable function, there ex-

ists a constant ξ such that ‖b−bp‖ ≤ ξ‖ log b− log bp‖. Hence, with the intermediate

result above,

|〈φ, b− bp〉| ≤ ‖φ‖
∫
‖b− bp‖dx

≤ ‖φ‖
∫

ξ‖log b

bp
‖dx ≤ ‖φ‖ξlνm,

where l is the length of the bounded interval that b is defined on. Since νm can

be made arbitrarily small by taking large enough m, it is easy to see that Assump-

tions 4.2 and 4.6 hold in the cases that we consider.

4.7 Numerical Experiments

4.7.1 Scalability and Computational Issues

Estimation of the one-step cost function (4.6) and transition probabilities (Al-

gorithm 4.2) are executed for every belief-action pair that is in the discretized mesh

G and the action space A. Hence, the algorithms scale according to O(|G||A|N)

and O(|G||A|N2), respectively, where |G| is the number of grid points, |A| is the

75

number of actions, and N is the number of samples specified in the algorithms. In

implementation, we found that most of the computation time is spent on executing

Algorithm 4.2 over all belief-action pairs. However, estimation of cost functions and

transition probabilities can be pre-computed and stored, and hence only needs to

be done once.

The advantage of the algorithms is that the scalability is independent of the

size of the actual state space, since G is a grid mesh on the parameter space of

the projected belief space. That is exactly what is desired by employing density

projection. However, to get a better approximation, more parameters in the expo-

nential family should be used, and that will lead to a higher-dimensional parameter

space to discretize. Increasing the number of parameters in the exponential family

also makes sampling more difficult. Sampling from a general exponential family is

usually not easy, and may require some advanced techniques, such as Markov chain

Monte Carlo (MCMC) [33], and hence more computation time. This difficulty can

be avoided by resampling from the discrete particles instead of the projected density,

which is equivalent to using the plain particle filter and then doing projection out-

side the filter. This may lead to sample degeneracy however. The trade-off between

a better approximation and less computation time is complicated and needs more

research. We plan to study how to appropriately choose the exponential family and

improve the simulation efficiency in the future.

76

4.7.2 Simulation Results

Since most of the benchmark POMDP problems in the literature assume a

discrete state space, it is difficult to compare against the state of the art. Here we

consider an inventory control problem by adding a partial observation equation to

a fully observable inventory control problem. The fully observable problem has an

optimal threshold policy [60], which allows us to verify our method in the limiting

case by setting the observation noise very close to 0. In our inventory control

problem, the inventory level is reviewed at discrete times, and the observations are

noisy because of, e.g., inventory spoilage, misplacement, distributed storage. At

each period, inventory is either replenished by an order of a fixed amount or not

replenished. The customer demands arrive randomly with known distribution. The

demand is filled if there is enough inventory remaining. Otherwise, in the case of

a shortage, excess demand is not satisfied and a penalty is issued on the lost sales

amount. We assume that the demand and the observation noise are both continuous

random variables; hence the state, i.e., the inventory level, and the observation, are

continuous random variables.

Let xk denote the inventory level at period k, uk the i.i.d. random demand at

period k, ak the replenish decision at period k (i.e., ak = 0 or 1), Q the fixed order

amount, yk the observation of inventory level xk, vk the i.i.d. observation noise, h

the per period per unit inventory holding cost, s the per period per unit inventory

77

shortage penalty cost. The system equations are as follows

xk+1 = max(xk + akQ− uk, 0), k = 0, 1, . . . ,

yk = xk + vk, k = 0, 1,

The cost incurred in period k is

gk(xk, ak, uk) = h max (xk + akQ− uk, 0) + s max (uk − xk − akQ, 0).

We consider two objective functions: average cost per period and discounted total

cost, given by

lim sup
H→∞

E
[∑H

k=0 gk

]

H
, lim

H→∞
E

[
H∑

k=0

γkgk

]
,

where γ ∈ (0, 1) is the discount factor.

In the simulation, we first choose an exponential family and specify a grid mesh

on its parameter space, then implement (4.6) and Algorithm 4.2 on the grid mesh,

and use value iteration to solve for a policy. These are done offline. In an online

run, Algorithm 4.1 (PPF) is used for filtering and making decisions with the policy

obtained offline. We also consider a small variation of this method: instead of using

PPF, we use Algorithm 2.1 (PF) and do density projection outside the filter each

time. We compare our two methods (called “Ours 1” and “Ours 2”, respectively)

described above to four other algorithms: (1) Certainty equivalence using the mean

estimate (CE-Mean); (2) Certainty equivalence using the maximum likelihood esti-

mate (CE-MLE); (3) EKF-based Parametric POMDP (EKF-PPOMDP) in [17]; (4)

Greedy policy. Certainty equivalence methods treat the state estimate as the true

state in the solution to the full observation problem. We use the bootstrap filter to

78

obtain the mean estimate and the MLE of the states for the certainty equivalence

method. EKF-PPOMDP approximates the belief state by a Gaussian distribution,

and uses the extended Kalman filter to estimate the transition of the belief state.

Similar to our method, it also solves a discretized MDP defined on the parameter

space of the Gaussian density. The greedy policy chooses an action ak that attains

the minimum in the expression minak∈A Exk,uk
[gk(xk, akQ, uk)|Ik].

Numerical experiments are carried out in the following settings:

• Problem parameters: initial inventory level x0 = 5, holding cost h = 1, short-

age penalty cost s = 10, fixed order amount b = 10, random demand uk ∼

exp(5), discount factor γ = 0.9, inventory observation noise vk ∼ N(0, σ2)

with σ ranging from 0.1 to 3.3 in steps of 0.2.

• Algorithm parameters: The number of particles in both the usual particle

filter and the projection particle filter is N = 200; the exponential family

in the projection particle filter is chosen as the Gaussian family; the set of

grids on the projected belief space is G = { mean = [0 : 0.5 : 15], standard

deviation = [0 : 0.2 : 5]} for both our methods and EKF-PPOMDP; one run of

horizon length H = 105 for each average cost criterion case, 1000 independent

runs of horizon length H = 40 for each discounted total cost criterion case;

nearest neighbor as the value function approximator in both our methods and

EKF-PPOMDP.

• Simulation issues: We use common random variables among different policies

and different σ’s.

79

In order to implement the certainty equivalence methods, we use Monte Carlo

simulation to find the optimal threshold policy for the fully observed problem (i.e.,

yk = xk): if the inventory level is below the threshold L, the store/warehouse

should order to replenish its inventory; otherwise, if the inventory level is above L,

the store/warehouse should not order. That is,

ak =





0, if xk > L;

1, if xk < L.

(4.27)

The simulation result indicates both the average and discounted cost functions are

convex in the threshold and the minimum is achieved at L = 7.7 for both.

Table 4.2 and Table 4.3 list the simulated average costs and discounted total

cost using different policies under different observation noises, respectively. Our

methods generally outperforms all the other algorithms under all observation noise

levels. also performs very well, and slightly outperforms CE-MLE. EKF-PPOMDP

performs better in the average cost case than the discounted cost case. The greedy

policy is much worse than all other algorithms. While our methods and the EKF-

PPOMDP involve offline computation, the more critical online computation time of

all the simulated methods is approximately the same.

For all the algorithms, the average cost/discounted cost increases as the obser-

vation noise increases. That is consistent with the intuition that we cannot perform

better with less information. Fig. 5.2 shows 1000 actions taken by our method ver-

sus the true inventory levels in the average cost case (the discounted total cost case

is similar and is omitted here). The dotted vertical line is the optimal threshold

under full observation L. Our algorithm yields a policy that picks actions very close

80

to those of the optimal threshold policy when the observation noise is small (cf.

Fig. 5.2(a)), indicating that our algorithm is indeed finding the optimal policy. As

the observation noise increases, more actions picked by our policy violate the op-

timal threshold, and that again shows the value of information in determining the

actions.

The performances of our two methods are very close, with one slightly better

than the other. Solely for the purpose of filtering, doing projection outside the

filter is easier to implement if we want to use a general exponential family, and

also gives a better estimate of the belief state, since the projection error will not

accumulate. However, for solving POMDPs, we conjecture that PPF would work

better in conjunction with the policy solved from the projected belief MDP, since

the projected belief MDP assumes that the transition of the belief state is also

projected. However, we do not know which one is better.

Our method outperforms the EKF-PPOMDP, mainly because the projection

particle filter used in our method is better than the extend Kalman filter used in the

EKF-PPOMDP for estimating the belief transition probabilities. This agrees with

the results in [18], which also observed that Monte Carlo simulation of the belief

transitions is better than the EKF estimate.

Although the performance of the certainty equivalence method is comparable

to that of our methods for this particular example, certainty equivalence is generally

a suboptimal policy except in some special cases (cf. section 6.1 in [10]), and it does

not have a theoretical error bound. Moreover, to use certainty equivalence method

requires solving the full observation problem, which is also very difficult in many

81

0 5 10 15 20 25

0

1

State x (Inventory level)

A
ct

io
n

a
(r

ep
le

ni
sh

 o
r

no
t r

ep
le

ni
sh

)

(state, action yielded by our method)
optimal threshold under full observation

0 5 10 15 20 25

0

1

State x (Inventory level)

A
ct

io
n

a
(r

ep
le

ni
sh

 o
r

no
t r

ep
le

ni
sh

)

(state, action) yielded by our method
optimal threshold under full observation

(a) observation noise σ = 0.1 (b) observation noise σ = 1.1

0 5 10 15 20 25

0

1

State x (Inventory level)

A
ct

io
n

a
(r

ep
le

ni
sh

 o
r

no
t r

ep
le

ni
sh

)

(state, action) yielded by our method
optimal threshold under full observation

0 5 10 15 20 25

0

1

State x (Inventory level)

A
ct

io
n

a
(r

ep
le

ni
sh

 o
r

no
t r

ep
le

ni
sh

)

(state,action) yielded by our method
optimal threshold under full observation

(c) observation noise σ = 2.1 (d) observation noise σ = 3.1

Figure 4.1: Our algorithm: actions taken for different inventory levels under different

observation noise variances.

cases. In contrast, our method has a proven error bound on the performance, and

works with the POMDP directly without having to solve the MDP problem under

full observation.

82

4.8 Conclusions

We developed a method that effectively reduces the dimension of the belief

space via the orthogonal projection of the belief states onto a parameterized fam-

ily of probability densities. For an exponential family, the density projection has

an analytical form and can be carried out efficiently. The exponential family is

fully represented by a finite (small) number of parameters, hence the belief space

is mapped to a low-dimensional parameter space and the resultant belief MDP is

called the projected belief MDP. The projected belief MDP can then be solved in

numerous ways, such as standard value iteration or policy iteration, to generate a

policy. This policy is used in conjunction with the projection particle filter for online

decision making.

We analyzed the performance of the policy generated by solving the projected

belief MDP in terms of the difference between the value function associated with

this policy and the optimal value function of the POMDP. We also provided a bound

on the error between our projection particle filter and exact filtering.

We applied our method to an inventory control problem, and it generally out-

performed other methods. When the observation noise is small, our algorithm yields

a policy that picks the actions very closely to the optimal threshold policy for the

fully observed problem. Although we only proved theoretical results for discounted

cost problems, the simulation results indicate that our method also works well on

average cost problems. We should point out that our method is also applicable

to finite horizon problems, and is suitable for large-state POMDPs in addition to

83

continuous-state POMDPs.

84

Table 4.2: Optimal average cost estimates for the inventory control problem using

different methods. Each entry represents the average cost of a run of horizon 105.

σ Ours 1 Ours 2 CE-Mean CE-MLE PPOMDP Greedy

0.1 12.849 12.849 12.842 12.837 12.941 25.454

0.3 12.845 12.837 12.857 12.861 12.950 25.467

0.5 12.864 12.862 12.867 12.884 12.964 25.457

0.7 12.881 12.884 12.882 12.890 12.990 25.452

0.9 12.904 12.918 12.908 12.940 13.006 25.450

1.1 12.938 12.943 12.945 12.969 13.059 25.428

1.3 12.973 12.986 12.977 12.993 13.105 25.356

1.5 13.016 13.017 13.034 13.029 13.141 25.293

1.7 13.066 13.067 13.100 13.117 13.182 25.324

1.9 13.110 13.105 13.159 13.172 13.214 25.343

2.1 13.123 13.140 13.183 13.227 13.255 25.332

2.3 13.210 13.201 13.263 13.292 13.307 25.355

2.5 13.250 13.246 13.314 13.333 13.380 25.402

2.7 13.323 13.324 13.382 13.454 13.441 25.428

2.9 13.374 13.384 13.458 13.497 13.491 25.478

3.1 13.444 13.459 13.527 13.580 13.553 25.553

85

Table 4.3: Optimal discounted cost estimate for the inventory control problem using

different methods. Each entry represents the discounted cost (mean, standard error

in parentheses) based on 1000 independent runs of horizon 40.

σ Ours 1 Ours 2 CE-Mean CE-MLE PPOMDP Greedy

0.1 126.79 127.26 129.12 129.09 137.41 241.67

(1.64) (1.63) (1.81) (1.81) (1.65) (2.99)

0.3 126.86 126.95 129.17 129.11 137.64 242.08

(1.63) (1.63) (1.78) (1.78) (1.62) (2.98)

0.5 126.61 126.35 129.12 129.16 138.16 242.66

(1.63) (1.62) (1.77) (1.78) (1.60) (2.98)

0.7 126.42 126.99 129.30 129.62 141.78 243.33

(1.62) (1.61) (1.77) (1.79) (1.55) (2.98)

0.9 126.78 126.86 129.59 129.76 138.23 244.00

(1.63) (1.63) (1.76) (1.78) (1.60) (2.97)

1.1 127.49 127.74 130.19 130.23 140.86 244.81

(1.64) (1.63) (1.77) (1.75) (1.57) (2.97)

1.3 128.74 128.30 130.49 130.54 146.02 245.67

(1.65) (1.64) (1.76) (1.72) (1.52) (2.96)

1.5 129.30 129.45 130.74 131.09 144.88 246.71

(1.68) (1.66) (1.75) (1.77) (1.52) (2.95)

86

Table 4.4: Continue Table 4.3

σ Ours 1 Ours 2 CE CE-MLE PPOMDP Greedy

1.7 129.71 128.93 130.95 131.45 146.80 247.70

(1.67) (1.67) (1.76) (1.77) (1.52) (2.96)

1.9 130.11 129.85 131.29 131.60 147.16 248.55

(1.69) (1.67) (1.75) (1.73) (1.56) (2.93)

2.1 130.67 130.17 131.76 132.24 144.67 249.45

(1.69) (1.67) (1.74) (1.79) (1.54) (2.95)

2.3 130.96 130.36 132.22 132.76 145.35 250.07

(1.68) (1.67) (1.75) (1.78) (1.55) (2.97)

2.5 131.90 130.86 132.54 133.47 145.06 250.49

(1.68) (1.68) (1.76) (1.78) (1.58) (2.96)

2.7 131.81 131.66 133.18 133.98 148.39 250.76

(1.68) (1.68) (1.75) (1.78) (1.54) (2.96)

2.9 132.36 131.78 133.61 134.56 146.27 250.81

(1.68) (1.68) (1.75) (1.83) (1.57) (2.96)

3.1 132.95 133.51 134.09 135.83 147.96 250.89

(1.70) (1.70) (1.76) (1.79) (1.54) (2.95)

3.3 133.08 132.76 134.81 136.12 145.32 250.77

(1.69) (1.69) (1.76) (1.84) (1.60) (2.94)

87

Chapter 5

Particle Filtering Framework for Optimization

5.1 Related Work and Motivation

We consider the global optimization problem:

x∗ = arg max
x∈X

H(x),

and assume that it has a unique global optimal solution x∗.

Many of the simulation-based global optimization methods, such as the esti-

mation of distribution algorithms (EDAs) [64] [59], the cross-entropy (CE) method

[78] [79], and model reference adaptive search (MRAS) method [41], fall into the

category of “model-based methods” as classified by [98]. They share the similarities

of iteratively repeating the following two steps:

• Generate candidate solutions from an intermediate distribution over the solu-

tion space;

• Update the intermediate distribution using the candidate solutions.

This intermediate distribution is often referred to as a probabilistic model, since it

often imposes a model on the relationship between the components that are needed

to represent a solution. The choice and updating of the probabilistic model (or

intermediate distribution) play a key role in determining the efficiency and accuracy

of the algorithm.

88

EDAs were first proposed by [64] in the field of evolutionary computation, with

the goal of eliminating the mutation and cross-over operations in genetic algorithms

(GAs) in order to avoid partial solutions. EDAs generate offspring by sampling from

a distribution over the solution space that is estimated from the candidate solutions

of the previous iteration. The estimation of this distribution is often based on a

probabilistic model that explicitly expresses the relationship between the underlying

variables [53].

The cross-entropy (CE) method was originally introduced for estimating prob-

abilities of rare events in complex stochastic networks [77], and later was modified

slightly to be used for solving combinatorial and continuous optimization problems

[78]. A key idea of the CE method is to minimize the Kullback-Leibler (KL) di-

vergence between a desired density (the optimal importance sampling density) and

a family of parameterized densities, in particular an exponential family, since an

analytical solution can be calculated in this case.

The MRAS method was introduced in [41]. MRAS implicitly constructs a

sequence of reference distributions and uses this sequence to facilitate and guide

the parameter updating associated with a family of parameterized distributions.

At each iteration, candidate solutions are sampled from the distribution (in the

prescribed family) that has the minimum KL divergence with respect to the reference

distribution of the previous iteration.

The aforementioned various ways of updating the probabilistic model motivate

us to look for a unifying and systematic approach to the probabilistic model-based

methods for optimization. Our main idea is to transform the optimization problem

89

into a filtering problem. The goal of filtering is to estimate the unobserved state

in a dynamic system through a sequence of noisy observations of the state. The

unobserved state corresponds to the optimal solution to be estimated; the noisy ob-

servations in filtering brings randomization into the optimization algorithm; and the

conditional distribution of the unobserved state is a distribution over the solution

space, which approaches a delta function concentrated on the optimal solution as

the system evolves. Hence, the task of searching for the optimal solutions is carried

out through the procedure of estimating the conditional density sequentially. This

idea is only conceptual, since filtering can hardly be solved analytically, and some

approximate filtering methods are needed. We apply particle filtering to solve the

transformed filtering problem. Based on particle filtering, we propose a plain parti-

cle filtering framework and a general particle filtering framework for optimization.

The former framework is a special case of the latter one and more intuitive, while

the latter framework is a generalization and hence provides more opportunities for

developing new algorithms. To the best of our knowledge, it is the first work on

applying particle filtering to the field of optimization.

The particle filtering framework unifies EDAs, the CE method, and MRAS,

and provides new insights into the three optimization methods from another view-

point. More specifically, EDAs and the CE method fit in the plain particle filtering

framework, and in particular, the CE method corresponds to the projection parti-

cle filtering described in section 4.3. EDAs and the CE method differ only in their

ways of constructing an approximation for the conditional density based on the sam-

ples/particles. The MRAS method fits in the general particle filtering framework,

90

with a specific way to construct the resampling importance density.

The particle filtering framework also sheds light on developing new improved

algorithms for global optimization. The possibilities of new algorithms come from

the freedom in the particle filtering framework, as well as the vast arrays of tech-

niques of improving nonlinear filtering and particle filtering. We focus on three

promising directions: adjusting the trade-off between exploration and exploitation

in the search by appropriately choosing the importance densities in particle filtering;

incorporating gradient-based local search into simulation-based global search by in-

cluding the gradient term of the objective function in the state-space model in the

filtering problem; preventing premature convergence in simulation-based optimiza-

tion methods by introducing the idea of “persistent excitation” to optimization.

5.2 Filtering for Optimization

We consider the global optimization problem:

x∗ = arg max
x∈X

H(x), (5.1)

where the solution space X is a nonempty set in Rn, and H(·) : X → Y is a real-

valued function that is bounded, i.e., ∃M1 > −∞, M2 < ∞ s.t. M1 ≤ H(x) ≤ M2,

∀x ∈ X . We assume that (5.1) has a unique global optimal solution, i.e., ∃x∗ ∈ X

s.t. H(x) < H(x∗), ∀x 6= x∗, x ∈ X .

The optimization problem (5.1) can be transformed into a filtering problem

91

by constructing an appropriate state-space model. Let the state-space model be

xk = xk−1, k = 1, 2, . . . ,

yk = H(xk)− vk, k = 0, 1, . . . , (5.2)

where xk ∈ Rn is the unobserved state to be estimated, yk ∈ R is the observation,

vk ∈ R is the observation noise that is an i.i.d. sequence, and the initial state

is x0 = x∗ which is unobserved. We assume that vk has a p.d.f. ϕ(·) that is

nondecreasing on its support.

As shown before, the conditional density bk(xk) , p(xk|y1:k) is updated recur-

sively according to

bk(xk) ∝ p(yk|xk)

∫
p(xk|xk−1)bk−1(xk−1)dxk−1. (5.3)

For the above state-space model (5.2), the transition density is

p(xk|xk−1) = δ(xk − xk−1), (5.4)

where δ denotes the Dirac delta function. The likelihood function is

p(yk|xk) = ϕ(H(xk)− yk). (5.5)

Substituting (5.4) and (5.5) into (5.3), we obtain

bk(xk) =
ϕ(H(xk)− yk)bk−1(xk)∫
ϕ(H(xk)− yk)bk−1(xk)dxk

. (5.6)

The connection between the filtering problem (5.2) and the optimization prob-

lem (5.1) takes at several places. The underlying value of the unobserved state xk is

x∗, and hence, the goal of filtering (to estimate xk) is the same as that of optimiza-

tion (to find x∗). In filtering, at each time k, we estimate a conditional density bk of

92

xk. In optimization, bk is a density over the solution space, interpreted as the our

beliefs about the possible values that x∗ might take, and serves as the intermediate

distribution for drawing new candidate solutions at the next iteration . At each iter-

ation k, bk is updated according to (5.6) for an incoming new observation yk, which

reveals new information about x∗. The noise in yk, or in other words, a nondegener-

ated p.d.f. ϕ, brings randomization into the optimization algorithm. We can choose

ϕ to determine how the conditional density (i.e., bk−1) is tuned by the performance

of solutions to yield a new conditional density (i.e., bk) at the next iteration. For

example, if ϕ(x) is an increasing function of x, the likelihood function (5.5) assigns

more weight to the candidate solutions that have better performance; if ϕ(x) = 0 for

x < 0, then (5.5) discards inferior candidate solutions whose performance is worse

than yk.

It should be expected that if yk increases with k, the conditional density bk

will get closer to the density of xk, i.e., a Dirac delta function concentrated on x∗.

From the viewpoint of filtering, bk is the posterior density of xk that approaches

the density of xk. From the optimization viewpoint, bk is a density defined on the

solution space that becomes more and more concentrated on the optimal solution as

k increases. Fig. 5.2 is an illustration of how bk changes in the first three iterations:

at k = 0, it has no prior knowledge of x∗ (the true value of xk), and hence, b0 is

uniform over the solution space; at k = 1, as observation y0 provides new information

about x∗, b1 has more weight on the solution space centered around x∗; at k = 2, b2

becomes even more concentrated on x∗.

In summary, to solve the maximization problem (5.1) is equivalent to recur-

93

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x*

b
0

b
1

b
2

Figure 5.1: At the first three iterations, the conditional density bk becomes more

and more concentrated on the optimal solution.

sively estimating bk of the model (5.2) while constructing an increasing sequence of

observations {yk}.

5.3 Particle Filtering Framework for Optimization

The filtering idea is only conceptual and the resulting problem is not analyt-

ically solvable. Hence, we need some approximation methods to solve the above

filtering problem. We apply the plain particle filter and the general particle filter

to the filtering problem, with just a little tweak to adapt to the optimization prob-

lem. The application of particle filtering turns out to be a framework for many

simulation-based optimization algorithms. In the following, we present the plain

particle filter framework for optimization (PPFO), and then the general particle fil-

ter framework for optimization (GPFO). The former framework is a special case of

the latter and provides more intuition, while the latter framework is more general

94

and allows more variations in the development of new algorithms.

Algorithm 5.1 Plain Particle Filter Framework for Optimization (PPFO)

1. Initialization. Specify ρ ∈ (0, 1], and an initial p.d.f./p.m.f. b0 that is defined

on X . Sample {xi
1}N

i=1 i.i.d. from b0. Set k = 1.

2. Observation Construction. Let yk be the sample (1−ρ)-quantile of {H(xi
k)}N

i=1.

If k > 1 and yk ≤ yk−1, then set yk = yk−1.

3. Bayes’ Updating. b̂k(xk) =
∑N

i=1 wi
kδ(xk − xi

k), where weights are calculated

according to

wi
k ∝ ϕ(H(xi

k)− yk), i = 1, 2, . . . , N,

and normalized.

4. Resampling. Construct a continuous approximation b̃k(xk) from b̂k(xk). Sam-

ple {xi
k+1}N

i=1 i.i.d. from b̃k(xk).

5. Stopping. If a stopping criterion is satisfied, then stop; else, k ← k + 1 and

go to step 2.

At initialization, the PPFO algorithm draws samples from an initial distribu-

tion b0 that is defined on X . A parameter ρ is specified to determine the (1 − ρ)-

quantile samples that will be used to construct a nondecreasing the observation se-

quence {yk}. The requirement of nondecreasing is to ensure the observation sequence

does not become worse as the algorithm goes on. Since the transition probability is

1, the importance sampling step is omitted with suitable change of the indices. The

95

Bayes’ updating step assigns weights to the samples according to their performance.

Slightly different from the plain particle filter, the resampling step here constructs

a continuous density b̃k first, since the discrete approximation b̂k does not provide

any new samples. The new samples drawn from b̃k are more concentrated in the

promising areas than the old samples. To adapt to optimization, a stopping step

is added to the algorithm; whereas in filtering, the algorithm keeps going on as the

real system operates.

Similarly, by applying the general particle filter, we introduce the general

particle filtering framework for optimization as follows:

Algorithm 5.2 A General Particle Filtering Framework for Optimization (GPFO)

1. Initialization. Specify ρ ∈ (0, 1], a nonnegative nonincreasing sequence {εk},

and an initial p.d.f./p.m.f. p0 that is defined on X . Sample {xi
0}N

i=1 i.i.d. from

b0. Set k = 1.

2. Importance Sampling. Sample xi
k from qk(xk|xi

k−1, yk), i = 1, . . . , N .

3. Observation Construction. Let yk be the sample (1−ρ)-quantile of {H(xi
k)}N

i=1.

If k > 1 and yk ≤ yk−1, then set yk = yk−1.

4. Bayes’ Updating. b̂k(xk) =
∑N

i=1 wi
kδ(xk − xi

k), where the normalized weights

are calculated as

wi
k ∝

ϕ(H(xi
k)− yk)bk−1(x

i
k−1)

qk(xi
k|xi

k−1, yk)gk−1(xi
k−1|y0:k−1)

.

5. Importance Resampling. Sample {xi
k}N

i=1 i.i.d. from gk(xk|y0:k).

96

6. Stopping. If a stopping criterion is satisfied, then stop; else, k ← k + 1 and

go to step 2.

5.4 Interpretation of EDAS, CE, MRAS

In this section, we use the particle filtering framework to interpret some of

the existing optimization algorithms: estimation of distribution algorithms (EDAs),

the cross entropy (CE) method, and model reference adaptive search (MRAS). A

class of EDAs can fit in the plain particle filtering framework. The CE method can

be viewed as projection particle filtering, which also fits in the plain particle filter-

ing framework with a specific way to construct a continuous approximation of the

conditional density, namely the density projection approach. The MRAS method

can fit in the general particle filtering framework where the resampling importance

density is constructed via density projection. This interpretation also provides an-

other insight into the relationships between the three methods in addition to the

view in [41]. Specifically, the main difficulty in EDAs is to estimate a distribu-

tion from the samples, and this difficulty is solved in the CE method by projecting

the empirical distribution of the samples to obtain an approximate continuous den-

sity. However, the density projection introduces an error, which is corrected in the

MRAS method by taking the projected density as a resampling importance density

and hence weighting the samples differently from the CE method.

In all three methods, the most common sample selection scheme is the so-

called truncated selection [93], which selects the elite samples whose performance is

97

above a threshold. In the following, we will focus on the truncated selection scheme.

Recall that in the optimization problem (5.1), the objective function H(x) is

bounded by M1 ≤ H(x) ≤ M2. In the state-space model (5.2), let the observation

noise vk follow a uniform distribution U(0,M2 −M1). Since vk = H(xk) − yk, the

likelihood function is

p(yk|xk) =





1
M2−M1

, if 0 ≤ H(xk)− yk ≤ M2 −M1;

0, otherwise.

(5.7)

Since yk = H(x), x ∈ X , the inequality H(xk)−yk ≤ M2−M1 always holds. Hence,

(5.7) can be written in a more compact way as

p(yk|xk) =
1

M2 −M1

I{H(xk)≥yk}, (5.8)

where I{·} denotes the indicator function.

Substituting (5.8) into (5.6), we obtain

bk(xk) =
I{H(xk)≥yk}bk−1(xk)∫
I{H(xk)≥yk}bk−1(xk)dxk

. (5.9)

With i.i.d. samples {xi
k}N

i=1 drawn from bk−1, bk(xk) can be approximated by

b̂k(xk) =

∑N
i=1 I{H(xi

k)≥yk}δ(xk − xi
k)∑N

i=1 I{H(xi
k)≥yk}

. (5.10)

Thus, (5.9) is equivalent to selecting the elite solutions to tune the sampling dis-

tribution at the previous iteration, and (5.10) is the Monte Carlo version of (5.9).

These two equations are the cornerstone of the rest of this section.

5.4.1 Estimation of Distribution Algorithms

EDAs are a class of optimization algorithms based on the key idea of iteratively

doing the two steps:

98

1. Select elite samples from a pool of samples that are generated from a proba-

bility distribution;

2. Estimate the probability distribution of selected samples and generate new

samples from it.

With the truncation selection scheme, one class of EDAs can be viewed as an

instantiation of the plain particle filtering framework as follows:

Algorithm 5.3 Instantiation 1 of Plain Particle Filter Framework for Optimiza-

tion (PPFO1)

1. Initialization. Specify ρ ∈ (0, 1], and an initial p.d.f./p.m.f. b0 that is defined

on X . Sample {xi
1}N

i=1 i.i.d. from b0. Set k = 1.

2. Observation Construction. Let yk be the sample (1−ρ)-quantile of {H(xi
k)}N

i=1.

If k > 1 and yk ≤ yk−1, then set yk = yk−1.

3. Bayes’ Updating. The discrete approximation b̂k(xk) is as (5.10).

4. Resampling. Estimate a continuous approximation b̃k(xk) from b̂k(xk). Sample

{xi
k+1}N

i=1 i.i.d. from b̃k(xk).

5. Stopping. If a stopping criterion is satisfied, then stop; else, k ← k + 1 and

go to step 2.

It is obvious that the observation construction and Bayes’ updating steps es-

sentially select the elite samples according to the truncated selection scheme, cor-

responding to step 1 in EDAs; and the resampling step corresponds to step 2 in

EDAs.

99

The main difficulty in EDAs is to estimate the distribution of the selected

samples. When doing so, EDAs often take into account the interaction between the

underlying variables that represent a solution, and express the interaction explicitly

through the use of different probabilistic models. One way is to use a dynamic

Bayesian network (DBN) to represent such a probabilistic model and infer the un-

derlying probability distribution [53]. Put in our context, the relationship between

the components of the state vector xk is expressed through the use of a DBN, and

the estimation of the joint distribution of the components is b̃k(xk). Interestingly,

there is a particular particle filter designed especially for DBNs [49], which samples

xk according to the relationship between its components so that the sampling is

more efficient. This particle filter can be adopted to improve EDAs that use the

DBN representation.

5.4.2 Cross Entropy Method

The standard CE method (we use the word “standard” to distinguish it from

the extended version of standard CE [26]) for the optimization problem (5.1) is as

follows:

Algorithm 5.4 Standard CE Algorithm for Optimization

1. Choose an initial p.d.f./p.m.f. f(·, θ0), θ0 ∈ Θ. Specify the parameter ρ ∈

(0, 1], and set k = 1.

2. Generate samples {xi
k}N

i=1 from the density f(·, θk−1) and compute the sample

(1− ρ)-quantile yk of the performances {H(xi
k)}N

i=1.

100

3. Compute the new parameter according to

θk = arg max
θ∈Θ

1

N

N∑
i=1

I{H(xi
k)≥yk} log f(xi

k, θ). (5.11)

4. If a stopping criterion is satisfied, then terminate; else, set k = k + 1 and go

to step 2.

Equation (5.11) comes from the density projection of the optimal importance

sampling density onto a parameterized family of densities {f(·, θ), θ ∈ Θ}. Projec-

tion particle filtering [95] also uses the density projection technique, but for a very

different reason. It projects the discrete approximation b̂k onto the parameterized

family {f(·, θ), θ ∈ Θ} in order to obtain a continuous approximation b̃k that is char-

acterized by only a few parameters, which is very useful in reducing the complexity

of dynamic programming in a decision making problem. Specifically, projection

particle filtering chooses a value of the parameter θ such that the Kullback-Leibler

(KL) divergence between b̂k and f(·, θ) is minimized. The KL divergence between

b̂k and f(·, θ) is:

DKL(b̂k‖f(·, θ)) =

∫
b̂k log

b̂k

f(·, θ)
=

∫
b̂k log b̂k −

∫
b̂k log f(·, θ).

Since the first term does not depend on f(·, θk), minimizing the above equation is

equivalent to solving the maximization problem

max
θ∈Θ

Eb̂k
[log f(·, θ)].

101

Since b̂k(xk) satisfies (5.10), the above maximization problem can be approximated

by

max
θ∈Θ

∑N
i=1 I{H(xi

k)≥yk} log f(xi
k, θ)∑N

i=1 I{H(xi
k)≥yk}

,

which is equivalent to

max
θ∈Θ

1

N

N∑
i=1

I{H(xi
k)≥yk} log f(xi

k, θ). (5.12)

Therefore, the optimization algorithm adapted from projection particle filtering is

as follows:

Algorithm 5.5 Instantiation 2 of Plain Particle Filter Framework for Optimiza-

tion (PPFO2)

1. Initialization. Specify ρ ∈ (0, 1], and an initial p.d.f./p.m.f. f(x0, θ0) that is

defined on X . Sample {xi
1}N

i=1 i.i.d. from f(x0, θ0). Set k = 1.

2. Observation Construction. Let yk be the sample (1−ρ)-quantile of {H(xi
k)}N

i=1.

If k > 1 and yk ≤ yk−1, then set yk = yk−1.

3. Bayes’ Updating. The discrete approximation b̂k(xk) is as 5.10.

4. Resampling. Construct a continuous approximation b̃k(xk) = f(xk, θk), where

θk = arg max
θ∈Θ

1

N

N∑
i=1

I{H(xi
k)≥yk} log f(xi

k, θ). (5.13)

Sample {xi
k+1}N

i=1 i.i.d. from b̃k(xk).

5. Stopping. If a stopping criterion is satisfied, then stop; else, k ← k + 1 and

go to step 2.

102

It is easy to see that this algorithm is essentially the same as the standard

CE algorithm (Note that (5.11) and (5.13) are exactly the same). Compared with

EDAs, the CE method avoids complicated estimation of the density bk through

the use of density projection without the need to specify the relationships among

the components of xk. However, from a filtering viewpoint, the projection particle

filtering introduces a projection error that is accumulated over iterations. The reason

can be seen by scrutinizing the one-step evolution of the approximate density. Since

samples {xi
k}N

i=1 are sampled from b̃k−1 = f(·, θk−1), the density that the algorithm

actually tries to approximate at iteration k is

bk(xk) =
I{H(xk)≥yk}f(xk−1, θk−1)∫

I{H(xk)≥yk}f(xk−1, θk−1))dxk−1

.

Compared with the original equation (5.9) for bk, bk−1 is replaced by its approxima-

tion f(·, θk−1), which introduces a projection error that is accumulated to the next

iteration. This projection error can be corrected by taking f(·, θk−1) as an impor-

tance density and hence taken care of by the weights of the samples. This leads to

another instantiation of the particle filtering framework, which coincides with the

instantiation of MRAS developed in [41].

5.4.3 Model Reference Adaptive Search

As in the CE method, at each iteration the MRAS method projects a desired

density onto a family of parameterized densities to yield a density from which the

candidate solutions are drawn. In the CE method the target distribution is a single

optimal importance sampling density, whereas in the MRAS method, the parameter

103

updating is guided by an implicit sequence of distributions called the reference

distributions. Here, we consider the Monte Carlo version of the MRAS0 algorithm

with truncated selection scheme presented in [41]:

Algorithm 5.6 Model Reference Adaptive Search Method with Truncated Selection

Scheme

1. Choose an initial p.d.f./p.m.f. f(·, θ0), θ0 ∈ Θ. Specify the parameter ρ ∈

(0, 1], and set k = 1.

2. Generate samples {xi
k}N

i=1 from the density f(·, θk−1) and compute the sample

(1− ρ)-quantile yk of the performances {H(xi
k)}N

i=1.

3. Compute the new parameter according to

θk = arg max
θ∈Θ

1

N

N∑
i=1

I{H(xi
k)≥yk}

f(xi
k, θk−1)

log f(xi
k, θ). (5.14)

4. If a stopping criterion is satisfied, then terminate; else, set k = k + 1 and go

to step 2.

Equation (5.14) comes from the projection of the implicit reference distribution onto

the family of parameterized densities. In the particle filtering framework, we will

see that the sequence of reference distributions is the sequence of the approximated

conditional densities {b̂k}, which guide the design of the resampling importance

densities {f(·, θk)}. Specifically, let the initial p.d.f./p.m.f. be

b0(x0) =
I{H(x0)≥y0}∫
I{H(x0)≥y0}dx0

.

104

Since yk is a nondecreasing sequence, using the recursive equation (5.9), it can be

shown by induction that

bk(xk) =
I{H(xk)≥yk}∫
I{H(xk)≥yk}dxk

. (5.15)

Suppose the resampling importance density gk−1 is

gk−1(xk−1|y0:k−1) = f(xk−1, θk−1),

from which the i.i.d. samples {xi
k}N

i=1 are drawn, then the weight of each xi
k is

wi
k =

bk(x
i
k)

gk−1(xi
k−1|y0:k−1)

∝ I{H(xi
k)≥yk}

f(xi
k−1, θk−1)

. (5.16)

As shown before, projection of b̂k(xk) onto the parameterized family of densities

{f(·, θ), θ ∈ Θ} is equivalent to the maximization problem

max
θ∈Θ

Eb̂k
[log f(·, θ)]. (5.17)

Since b̂k(xk) =
∑N

i=1 wi
k(xk − xi

k), where wi
k satisfies (5.16), and xi

k−1 = xi
k, (5.17)

can be approximated by

max
θ∈Θ

N∑
i=1

I{H(xi
k)≥yk}

f(xi
k, θk−1)

log f(xi
k, θ).

Thus, the algorithm is as follows:

Algorithm 5.7 Instantiation 1 of General Particle Filter Framework for Optimiza-

tion (GPFO1)

1. Initialization. Specify ρ ∈ (0, 1], and an initial p.d.f./p.m.f. f(x0, θ0) that is

defined on X . Sample {xi
1}N

i=1 i.i.d. from f(x0, θ0). Set k = 1.

105

2. Observation Construction. Let yk be the sample (1−ρ)-quantile of {H(xi
k)}N

i=1.

If k > 1 and yk ≤ yk−1, then set yk = yk−1.

3. Bayes’ Updating. b̂k(xk) =
∑N

i=1 wi
k(xk − xi

k), where the weights are

wi
k ∝

I{H(xi
k)≥yk}

f(xi
k, θk−1)

.

4. Resampling. Construct a resampling importance density gk(xk|y0:k) = f(xk, θk),

where

θk = arg max
θ

1

N

N∑
i=1

I{H(xi
k)≥yk}

f(xi
k, θk−1)

log f(xi
k, θ). (5.18)

Sample {xi
k+1}N

i=1 i.i.d. from gk(xk|y0:k).

5. Stopping. If a specified stopping criterion is satisfied, then stop; else, k ← k+1

and go to step 2.

Note that the (5.18) is exactly the same as the updating equation (5.14) in

MRAS, and Algorithm 5.7 and Algorithm 5.6 are essentially the same.

5.5 Implication for New Algorithms

The particle filtering framework for optimization not only provides a unifying

framework for some of the existing algorithms, but also opens up the possibility for

new algorithms. There is a considerable amount of freedom in the framework, such

as the choices of the observation noise, the observation sequence, the sampling and

resampling importance densities, each of which can lead to a different algorithm. In

addition, many of the techniques that have been used to improve particle filtering

106

can also be adapted to optimization, such as the improvement of EDAs with the

particle filter for DBNs as we mentioned in last section. In the rest of this section,

we will focus on discussing three promising directions for developing new improved

algorithms under this framework.

5.5.1 Balancing Exploration and Exploitation

Proper sampling and resampling importance densities can be chosen to adjust

the trade-off between exploitation and exploration. Construction of the resampling

importance density using the kernel method for density estimation [65], or approx-

imation with Gaussian mixture [50] is very easy to implement, and the obtained

continuous distributions are easy to sample from. They add more exploration on

the solution space, compared to a single Gaussian density that is often used in the

CE and MRAS. A Markov chain Monte Carlo (MCMC) step can be added after

resampling [32] to further adjust the trade-off between exploitation and exploration,

or add some local search.

5.5.2 Combining Global Search with Local Search

We can incorporate local/gradient search into global search systematically by

including the gradient of the objective function into the state-space model. First,

assume that the objective function H(x) is differentiable with respect to x and its

derivative is denoted as

G(x) , OH(x). (5.19)

107

Let the state-space model be

xk = xk−1 + εkG(xk−1), k = 1, 2, . . . ,

yk = H(xk)− vk, k = 0, 1, . . . , (5.20)

where{εk} is a sequence of step sizes that are properly chosen. The intuition of

model (5.20) is that the unobserved state xk has a stationary underlying value x∗

if the initial condition x0 = x∗. Since G(x∗) = 0, the state stays at x∗ for all time

k if it starts at x∗. For this model, the propagation step in the particle filtering

framework moves each sample along its gradient. Therefore, the resulting algorithm

incorporates a gradient-based local search into the simulation-based global search.

5.5.3 Overcoming Premature Convergence

Many of the simulation-based optimization algorithms suffer from the problem

of premature convergence, i.e., they converge too fast such that they get stuck at a

local optimum. This problem is especially severe if the objective function has many

local optima. A similar phenomenon often happens in filtering for a static state, also

called system identification: the algorithm converges too fast such that it converges

to a wrong value. To avoid premature convergence, many system identification

algorithms employs the idea of “persistent excitation”, which adds an artificial noise

to the static system dynamics to keep a continuous exploration of the state space [48]

[58]. The artificial noise is large at the beginning to prevent premature convergence

to a wrong value, and gradually dies down as the estimate converges to the true

108

value. Hence, in the state-space model (5.2), the state equation becomes

xk = xk−1 + αkωk, k = 1, 2, . . . , (5.21)

where

αk = α1β
k−1, β ∈ (0, 1).

From the optimization viewpoint, the propagation step moves each candidate solu-

tion around randomly with a decreasing randomness at each iteration, which allows

for more exploration at the beginning. This idea is very effective in preventing

premature convergence in optimization algorithms, as shown in the next section.

5.6 Numerical Experiments

The standard CE method often suffers from the problem of premature con-

vergence due to the quick convergence of the parameterized family of distributions

f(·, θk) to a degenerate measure (Dirac measure) [26]. A smoothed parameter up-

dating procedure has been used to address this problem [26], i.e., a smoothed version

of the distribution parameter θk is computed at each iteration k according to

θ̃k = νθk + (1− ν)θ̃k−1, ν ∈ (0, 1),

where ν is the smoothing parameter, and θ̃k−1 the smoothed distribution parameter

at iteration k − 1.

Since the standard CE method can be included in the particle filtering frame-

work, it is straightforward to apply “persistent excitation” to the standard CE

method. Hence, instead of smoothing the parameter, at each iteration we randomly

109

move the candidate solutions according to (5.21) before updating the parameterized

density. In the following, we numerically compare our proposed method (abbrevi-

ated as CEA) and the CE method with smoothing on some benchmark problems,

which have been previously studied in [67] [51] [41]. These test functions are:

(1) Rosenbrock function (n = 20)

H(x) =
n−1∑
i=1

100(xi+1 − x2
i)

2 + (xi − 1)2,

where x∗ = (1, . . . , 1)T , H(x∗) = 0.

(2) Dejong’s 5th function (n = 2)

H(x) = [0.002 +
25∑

j=1

1

j +
∑2

i=1 (xi − aj,i)6
]−1,

where aj,1 = {−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16,

0, 16, 32,−32,−16, 0, 16, 32}, aj,2 = {−32,−32,−32,−32,−32,−16,−16,−16,−16,

−16, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32}; with 24 local minima and one

global minimum at x∗ = (−32,−32)T , H(x∗) ≈ 0.998.

(3) Powel singular function (n = 20)

H(x) =
n−2∑
i=1

[(xi−1 + 10xi)
2 + 5(xi+1 − xi+2)

2 + (xi − 2xi+1)
4 + 10(xi−1 − xi+2)

4],

where x∗ = (0, . . . , 0)T , H(x∗) = 0.

(4) Pintér’s function (n = 20)

H(x) =
n∑

i=1

ix2
i +

n∑
i=1

20i sin2(xi−1 sin xi − xi + sin xi+1)

+
n∑

i=1

i log10(1 + i(x2
i−1 − 2xi + 3xi+1 − cos xi + 1))2,

where x0 = xn, xn+1 = x1, x∗ = (0, . . . , 0)T , H(x∗) = 0.

110

(5) Shekel’s function (n = 4)

H(x) =
∑
i=1

5((x− ai)
T (x− ai) + ci)

−1,

where a1 = (4, 4, 4, 4)T , a2 = (1, 1, 1, 1)T , a3 = (8, 8, 8, 8)T , a4 = (6, 6, 6, 6)T , a5 =

(3, 7, 3, 7)T , and c = (0.1, 0.2, 0.2, 0.4, 0.4)T , x∗ ≈ (4, 4, 4, 4)T , H(x∗) ≈ −10.153.

Dejong’s 5th function and Shekel’s function are relatively low dimensional and

has only a few local optima, but the optima are separated by plateaus. Rosenbrock

function and Powel singular function are 20-dimensional badly scaled problems.

Pinter’s function has many local optima, and the number of local optima increases

exponentially as the number of dimension increases. Fig. 5.6 shows some of the

functions in two dimensions.

For the CE method, we use the parameter values suggested by [51], with

smoothing parameter ν = 0.7. We also found by trial and error that ν = 0.2 works

very well for the CE method with smoothing. For CEA, the noise ωk is chosen to be

a standard Gassian N(0, In×n), where n is the dimension of the solution space. In

both methods, the parametrized family of distributions is chosen to be a multivariate

Gaussian family. Table 5.1 and Fig. 5.3 show that CEA converges to better solutions

than the CE method on these benchmark problems, and it converges faster than the

CE method with ν = 0.2.

Note that on the Rosenbrock function, CEA can approach the optimum very

closely with appropriately chosen parameters; whereas for whatever smoothing pa-

rameter values α and β, the CE method with smoothing always gets stuck at some-

where far from the optimum. Table 5.2 shows on the Rosenbrock function how the

111

(a) Dejong’s 5th function, −50 ≤ xi ≤ 50, i = 1, 2

−50

0

50

−50

0

50
0

100

200

300

400

500

(b) Pinter’s function, −5 ≤ xi ≤ 5, i = 1, 2

−5

0

5

−5

0

5
0

50

100

150

(c) Rosenbrock function, −5 ≤ xi ≤ 5, i = 1, 2

−5

0

5

−5

0

5
0

2

4

6

8

10

x 10
4

Figure 5.2: Some benchmark problems in two dimensions.

112

Table 5.1: Average performance of CEA and CE on some benchmark problems.

Each entry presents the mean of H(x∗) with standard error in parentheses, based

on 100 independent runs.

Function H(x∗) CEA (α1 = 10, β = 0.95) CE (ν = 0.7) CE (ν = 0.2)

Rosenbrock 0 16.84 (0.971) 19.41 (1.11) 17.39 (0.009)

Dejong 5th 0.998 0.998 (1.8e-12) 1.01 (0.010) 0.998 (2.3e-15)

Powel 0 2.4e-5 (2.0e-6) 420.8 (266.8) 2.5e-4 (2.4e-4)

Pintér’s 0 0.0068 (4.0e-4) 4.51 (0.15) 3.82 (0.055)

Shekel’s -10.153 -10.153 (8.5e-9) -9.033 (0.268) -9.929 (0.128)

value of β, i.e. the decreasing rate of the artificial noise, affects the performance of

CEA: slower decrease of the noise yields better solutions, but not surprisingly takes

more time to converge.

Table 5.2: Average performance of CEA with different parameter values of α and β

on the Rosenbrock function. Each entry presents the mean of H(x∗) with standard

error in parentheses, based on 100 independent runs.

Function H(x∗) α1 = 10, β = 0.95 α1 = 10, β = 0.98 α1 = 10, β = 0.995

Rosenbrock 0 16.84 (0.971) 11.90 (0.023) 0.505 (0.010)

113

0 0.5 1 1.5 2

x 10
5

10
0

10
1

10
2

Total sample size

F
un

ct
io

n
va

lu
e

Dejong’s 5th

CEA
CE v = 0.2
CE v = 0.7

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

10
−5

10
0

10
5

10
10

Total sample size

F
un

ct
io

n
va

lu
e

20−D Powel

CEA
CE v = 0.2
CE v = 0.7

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

10
−4

10
−2

10
0

10
2

10
4

10
6

Total sample size

F
un

ct
io

n
va

lu
e

20−D Pinter

CEA
CE v = 0.2
CE v = 0.7

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

−10
2

−10
1

−10
0

−10
−1

−10
−2

−10
−3

Total sample size

F
un

ct
io

n
va

lu
e

4−D Shekel

CEA
CE v = 0.2
CE v = 0.7

0 1 2 3 4 5 6

x 10
6

10
0

10
2

10
4

10
6

10
8

Total sample size

F
un

ct
io

n
va

lu
e

20−D Rosenbrock

CEA σ=10, β=0.995
CEA σ=10, β=0.98
CE v = 0.2
CE v = 0.7

Figure 5.3: Average performance of CEA and CE on some benchmark problems.

114

5.7 Conclusions and Future Research

We transformed a global optimization problem to a filtering problem, and

hence many ideas and results from filtering can be adapted to global optimization.

Based on particle filtering, we proposed a framework for many simulation-based op-

timization algorithms. In particular, the framework unifies: EDAs, the CE method

and MRAS, and provides new insight into the relationship between them. More-

over, the framework holds the promise for developing new optimization algorithms

through the choice of observation noise, sampling and resampling importance den-

sities, as well as a vast array of improving techniques for nonlinear filtering and

particle filtering.

There are two important lines of future research that we will continue to

pursue. First, we will further study how to develop new algorithms using the particle

filtering framework and the performance of these new algorithms. Secondly, we

plan to investigate the convergence property of the particle filtering framework for

optimization. Although convergence has been proved for EDAs [93], the CE method

[78], and MRAS [41] individually, we are interested in unifying convergence results

under the particle filtering framework. The analysis will be based on some existing

stability results for nonlinear filters, such as [20].

115

Chapter 6

Conclusions and Future Research

6.1 Conclusions

This dissertation has proposed and developed new methods and results for

solving problems in partially observable Markov decision processes and global opti-

mization.

The first part of the dissertation focuses on continuous-state POMDPs. Continuous-

state POMPDs provide a more natural mathematical model than finite-state POMDPs

for many application problems. While there are a good number of numerical meth-

ods for finite-state POMDPs, there are only a few for continuous-state ones and their

convergence results are sparse. Existing algorithms (for finite-state POMDPs) are

hard to extend to continuous-state POMDPs, mainly due to the infinite dimensional

belief space in a continuous-state POMDP as opposed to a finite-dimensional belief

space in a finite-state POMDP. Based on the idea of density projection with particle

filtering, we have developed a numerical method for effective dimension reduction

and scalable approximation for an arbitrary belief state, such as a multi-modal or

a heavy-tail distribution. The idea of density projection orthogonally projects an

arbitrary density onto a parameterized family of densities, namely, an exponential

family of densities in our algorithm, to yield a finite low-dimensional representation

for that density. Based on some existing results, we have shown that under certain

116

mild conditions, the approximate density approaches the true density as the number

of parameters increases, and hence, shown the convergence of our algorithms. We

have proved error bounds for our proposed POMDP solving algorithm and online

filtering algorithm. We have applied our method to an inventory control problem for

which there are some known analytical results for the purpose of comparison, and

obtained good numerical results that show the promise of our method. Although

we have only proved error bounds for the infinite-horizon discounted cost criterion,

the numerical results also indicate our method works very well for the average cost

criterion. In addition, with a little straightforward modification, our method can be

easily applied to finite-horizon problems or (finite) large-state problems.

The second part of the dissertation is devoted to the understanding and im-

proving of a class of simulation-based algorithms for global optimization. We have

transformed a global optimization algorithm into a filtering problem, and hence,

many results in filtering can be adapted to global optimization. In particular, we

have used a novel interpretation of particle filtering to develop a unifying frame-

work for many simulation-based optimization algorithms, such as the cross-entropy

method, the estimation of distribution algorithms, and the model reference adaptive

search. The framework reveals relationships between these algorithms and new inter-

esting insights. By better understanding these algorithms, we have proposed several

promising directions under the same framework for new improved algorithms, such

as balancing the exploitation and exploration, combining simulation-based global

search with gradient-based local search, and preventing premature convergence. We

explored the last direction, and obtained a new improved algorithm which shows

117

better performance than the existing cross-entropy algorithm on some benchmark

problems.

6.2 Future Research

Currently I am applying the method for continuous-state POMDPs described

in Chapter 4 to some stochastic control problems in finance. Many financial prob-

lems, such as portfolio optimization or hedging, can be modeled as stochastic control

problems, where the control is the investment strategy. In many financial models,

such as the classical Black-Scholes model [15], the price of a risky asset is modeled as

a stochastic process, where the volatility of the risky asset is treated as a constant.

However, to better model the reality, more and more financial models assume that

the volatility itself is also a stochastic process. While many analytical results have

been derived for constant volatility models, stochastic volatility models generally do

not admit analytical solutions except in some rare cases, such as the Heston model

for option pricing [38]. Hence, problems involving stochastic volatility often needs

to be solved numerically. A POMDP is a natural model for a portfolio optimization

or hedging problem involving assets with stochastic volatility, where the volatility

is the hidden state, the price observed at discrete times is a partial observation of

the volatility, and the utility function is the objective function. Since the asset price

and capital are discrete at least down to the pennies, there are a huge number of

states such that the algorithms for finite-state POMPDs are not applicable here.

Our proposed method for continuous-state POMDPs provides an efficient numerical

118

tool for these financial problems to find the best investment strategy and study the

effect of the amount of initial capital.

Another ongoing work is the study of the convergence of the particle filter-

ing framework for global optimization. The hope is that the conditional density

converges to a degenerated density concentrated on the optimal solution in spite of

the initial conditional. That is closely related with the stability result of nonlinear

filtering [20].

There are two lines of future research that we plan to pursue. The first line is

to develop numerical methods for POMDPs with the state or/and observation equa-

tion being a jump diffusion process. The second line of future research is to extend

the particle filtering framework to stochastic optimization, i.e., optimization prob-

lems where the objective functions cannot be evaluated exactly. ‘ For POMDPs, the

state equation (3.2) can be viewed as either a discrete state difference equation, or a

discretized diffusion process. If it is a diffusion process, the discretization introduces

error in the simulation of the propagation of the state. Some recent research has

studied the exact simulation (without discretization error) of a diffusion process [14]

[13], to replace the usual Euler-discretization scheme of the state equation between

observations. However, the exact simulation has not yet been extended to jump-

diffusion processes, and recent research on the inference of a jump-diffusion process

still uses an Euler scheme [43]. Therefore, we need to further investigate efficient

filtering methods of jump-diffusion processes, and numerical solutions to the cor-

responding POMDPs. In financial engineering, many models with jump-diffusion

processes have been proposed to better model the financial market than those mod-

119

els with only diffusion processes. For example, Bates [8] added a Poisson process

to the asset price process based on Heston’s stochastic volatility model. In recent

years, much research has focused on jump-diffusion process models on the so-called

ultra-high-frequency data [30] due to more frequent intra-day transactions. More

examples of jump-diffusion processes in financial applications can be found in [35].

120

Bibliography

[1] B. D. O. Anderson and J. B. Moore. Optimal Filtering. Prentice Hall, New
Jersey, 1979.

[2] B. D. O. Anderson, J. B. Moore, and M. Eslami. Optimal filtering. IEEE
Transactions on Systems, Man and Cybernetics, 12(2):235–236, 1982.

[3] C. Andrieu, J. F. G. deFreitas, and A. Doucet. Sequential MCMC for Bayesian
model selection. IEEE Higher Order Statistics Workshop, 1999.

[4] S. Arulampalam, S. Maskell, N. J. Gordon, and T. Clapp. A tutorial on particle
filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Transac-
tions on Signal Processing, 50(2):174–188, 2002.

[5] B. Azimi-Sadjadi and P. S. Krishnaprasad. Approximate nonlinear filtering and
its application in navigation. Automatica, 41(6):945–956, 2005.

[6] O. E. Barndorff-Nielsen. Information and Exponential Families in Statistical
Theory. Wiley, New York, 1978.

[7] A. R. Barron and C. Sheu. Approximation of density functions by sequences
of exponential family. The Annals of Statistics, 19(3):1347–1369, 1991.

[8] D. S. Bates. Jumps and stochastic volatility: Exchange rate processes implicit
in deutschemark option. The Review of Financial Studies, 9(1):69–107, 1996.

[9] D. P. Bertsekas. Convergence of discretization procedures in dynamic program-
ming. IEEE Trasactions on Automatic Control, 20(3):415–419, 1975.

[10] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,
1995.

[11] D. P. Bertsekas and D. A. Castanon. Adaptive aggregation methods for infi-
nite horizon dynamic programming. IEEE Trasactions on Automatic Control,
34(6):589–598, 1989.

[12] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Optimiza-
tion and Neural Computation Series. Athena Scientific, 1st edition, 1996.

[13] A. Beskos, O. Papaspiliopoulos, and G. Roberts. Computationally efficient
likelihood-based estimation for discretely observed diffusion processes (with dis-
cussion and reply from the authors). Journal of the Royal Statistical Society,
Series B, Statistical Methodology, 68:1–29, 2006.

[14] A. Beskos and G. Roberts. Exact simulation of diffusions. Annals of Applied
Probability, 15:2422–2444, 2005.

121

[15] F. Black and M. Scholes. The pricing of options and corporate liabilities. Jour-
nal of Political Economics, 81:637–659, 1973.

[16] R. W. Brockett. Remarks on finite dimensional nonlinear estimation. In C. Lo-
bry, editor, Analyse des Systèmes, 1978.

[17] A. Brooks, A. Makarenkoa, S. Williamsa, and H. Durrant-Whytea. Parametric
POMDPs for planning in continuous state spaces. Robotics and Autonomous
Systems, 54(11):887–897, 2006.

[18] A. Brooks and S. Williams. A monte carlo update for parametric POMDPs.
International Symposium of Robotics Research, Nov. 2007.

[19] A. Budhiraja, L. Chen, and C. Lee. A survey of numerical methods for nonlinear
filtering problems. Physica D: Nonlinear Phenomena, 230:27–36, 2007.

[20] A. Budhiraja and D. Ocone. Exponential stability of discrete-time filters for
bounded observation noise. System and Control Letters, 30:185–193, 1997.

[21] O. Cappé, S. J. Godsill, and E. Moulines. An overview of existing methods and
recent advances in sequential Monte Carlo. Proceedings of the IEEE, 95(5):899–
924, 2007.

[22] H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus. Simulation-based Algorithms for
Markov Decision Processes. Communications and Control Engineering Series.
Springer, New York, 1st edition, 2007.

[23] D. Crisan and A. Doucet. A survey of convergence results on particle filtering
methods for practitioners. IEEE Transaction on Signal Processing, 50(3):736–
746, 2002.

[24] M. H. A. Davis and S. I. Marcus. An introduction to nonlinear filtering. In
M. Hazewinkel and J. C. Willems, editors, Stochastic Systems: The Mathemat-
ics of Filtering and Identification and Applications, pages 53–75, Amsterdam,
The Netherlands, 1981. Reidel.

[25] J. F. G. de Freitas, M. Niranjan, and A. H. Gee. Hierachical bayesian Kalman
models for regularisation and ARD in sequential learning. Technical Report
CUED/F-INFENG/TR 307, Cambridge University Engineering Department,
1998.

[26] P. T. DeBoer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A tutorial on
the cross-entropy method. Annals of Operations Research, 134:19–67, 2005.

[27] D. deFarias and B. VanRoy. The linear programming approach to approximate
dynamic programming. Operations Research, 51(6), 2003.

[28] P. M. Djuric, J. H. Kotecha, F. Esteve, and E. Perret. Sequential parameter
estimation of time-varying non-Gaussian autoregressive processes. EURASIP
Journal on Applied Signal Processing, 8:865–875, 2002.

122

[29] A. Doucet, J. F. G. deFreitas, and N. J. Gordon, editors. Sequential Monte
Carlo Methods In Practice. Springer, New York, 2001.

[30] R. Engle. The econometrics of ultra-high-frequency data. Econometrica, 68:1–
22, 2000.

[31] A. Gelb. Applied Optimal Estimation. The M.I.T. Press, 1974.

[32] W. Gilks and C. Berzuini. Following a moving target - Monte Carlo inference for
dynamic Bayesian models. Journal of the Royal Statistical Society, 63(1):127–
146, 2001.

[33] W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, editors. Markov Chain
Monte Carlo in Practice. Chapman & Hall, 1996.

[34] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings F
(Radar and Signal Processing), volume 140, pages 107–113, 1993.

[35] F.B. Hanson. Appplied Stochastic Processes and Control for Jump-Diffusions:
Modeling, Analysis and Computation, chapter Financial Engineering Applica-
tions. SIAM Books: Advances in Design and Control Series. Society For Indus-
trial & Applied Mathematics,U.S., 2007.

[36] M. Hauskrecht. Value-function approximations for partially observable Markov
decision processes. Journal of Artificial Intelligence Research, 13:33–95, 2000.

[37] O. Hernandez-Lerma and J. B. Lasserre. Discrete-Time Markov Control Pro-
cesses Basic Optimality Criteria. New York:Springer, 1996.

[38] S. L. Heston. A closed-form solution for options with stochastic volatility with
applications to bond and currency options. Review of Financial Studies, 6(327-
343), 1993.

[39] R. A. Howard. Dynamic Programming and Markov Processes. The M.I.T.
press, Cambridge, 1960.

[40] G.Q. Hu and S.S.-T. Yau. Finite-dimensional filters with nonlinear drift xv:
New direct method for construction of universal finite-dimensional filter. IEEE
Transactions on Aerospace and Electronic Systems, 38(1), 2002.

[41] J. Hu, M. C. Fu, and S. I. Marcus. A model reference adaptive search method
for global optimization. Operations Research, 55:549–568, 2007.

[42] M. Isard and A. Blake. Contour tracking by stochastic propagation of con-
ditional density. In Proceedings of European Conference on Computer Vision,
pages 343–356, 1996.

[43] A. Jasra, D. Stephens, A. Doucet, and T. Tsagaris. Inference for Levy driven
stochastic volatility models via adaptive SMC. Preprint, 2008.

123

[44] A. H. Jazwinski. Stochastic Processes and Filtering Theory. New York: Aca-
demic Press, 1970.

[45] G. Kallianpur. Stochastic Filtering Theory. Springer-Verlag, New York, 1980.

[46] R. E. Kalman. A new approach to linear filtering and prediction problems.
Journal of Basic Engineering, 82:33–45, 1960.

[47] R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction
theory. Journal of Basic Engineering, 83:95–108, 1961.

[48] G. Kitagawa. A self-organizing state-space model. Journal of the American
Statistical Association, 33(443):1203–1215, 1998.

[49] D. Koller and U. Lerner. Sequential Monte Carlo Methods in Practice, chap-
ter 10: Sampling in factored dynamic systems, pages 445–464. Statistics for
engineering and information science. Springer-Verlag, New York, 2001.

[50] J. H. Kotecha and P. M. Djuric. Gaussian sum particle filtering. IEEE Trans-
actions on Signal Processing, 51(10):2602–2612, 2003.

[51] D. P. Kroese, S. Porotsky, and R. Y. Rubinstein. The cross-entropy method for
continuous multiextremal optimization. Methodology and Computing in Applied
Probability, 8:383–407, 2006.

[52] H. J. Kushner. On the differential equations satisfied by conditional probability
densities of Markov processes. SIAM Journal of Control, 2:106–119, 1964.

[53] P. Larranaga, R. Etxeberria, J. A. Lozano, and J. M. Pena. Optimization
by learning and simulation of Bayesian and Gaussian networks. Technical
Report EHU-KZAA-IK-4/99, Department of Computer Science and Artificial
Intelligence, University of the Basque Country, 1999.

[54] F. LeGland and N. Oudjane. Stability and uniform approximation of nonlinear
filters using the Hilbert metric and application to particle filter. The Annals
of Applied Probability, 14(1):144–187, 2004.

[55] E. L. Lemann and G. Casella. Theory of Point Estimation. New York: Springer,
1998.

[56] F. L. Lewis. Optimal Estimation: With an Introduction to Stochastic Control
Theory. Wiley-Interscience, 1986.

[57] M. L. Littman. The witness algorithm: Solving partially observable Markov
decision processes. Tr cs-94-40, Department of Computer Science, Brown Uni-
versity, Providence, RI, 1994.

[58] J. Liu and M. West. Combined parameter and state estimation in simulation-
based filtering. In A. Doucet, J. F. G. deFreitas, and N. J. Gordon, editors,
Sequential Monte Carlo Methods in Practice, New York, 2001. Springer-Verlag.

124

[59] J. A. Lozano, P. Larranaga, I. Inza, and E. Bengoetxea, editors. Towards a
New Evolutionary Computation: Advances on Estimation of Distribution Algo-
rithms. Springer Verlag, New York, 2006.

[60] P. Naor M. Resh. An inventory problem with discrete time review and replen-
ishment by batches of fixed size. Management Science, 10(1):109–118, 1963.

[61] S. I. Marcus. Nonliear estimation. In Systems Control Encyclopedia, pages 3293
– 3304, Oxford, 1987. Pergamon Press.

[62] S. I. Marcus. Low dimensional filters for a class of finite state estimation prob-
lems with Poisson observations. System Control Letters, 1:237–241, January
1982.

[63] S. I. Marcus and A. S. Willsky. Algebraic structure and finite dimensional
nonlinear estimation. SIAM Journal on Mathematical Analysis, 9:312–327,
April 1978.

[64] H. Muhlenbein and G. Paaß. From recombination of genes to the estimation of
distributions: I. binary parameters. In H. M. Voigt, W. Ebeling, I. Rechenberg,
and H. P. Schwefel, editors, Parallel Problem Solving from Nature-PPSN IV,
pages 178–187, Berlin, Germany, 1996. Springer Verlag.

[65] C. Musso, N. Oudjane, and F. LeGland. Improving regularized paricle filters.
In A. Doucet, J. F. G. deFreitas, and N. J. Gordon, editors, Sequential Monte
Carlo Methods in Practice, New York, 2001. Springer-Verlag.

[66] K. Nummiaro, E. Koller-Meier, and L. Van Gool. An adaptive color-based
particle filter. Image and Vision Computing, 21(1):99–110, 2003.

[67] J. D. Pintér. Global Optimization in Action. Kluwer Academic Publishers,
Dordrecht, The Neitherlands, 1996.

[68] M. K. Pitt and N. Shephard. Filtering via simulation: Auxilliary particle filters.
Journal of the American Statistical Association, 94(446):590–599, 1999.

[69] J. M. Porta, M. T. J. Spaan, and N. Vlassis. Robot planning in partially
observable continuous domains. In Robotics: Science and Systems, Cambridge,
MA, 2005. MIT.

[70] J. M. Porta, N. Vlassis, and M. T.J. Spaan amd P. Poupart. Point-based value
iteration for continuous POMDPs. Journal of Machine Learning Research,
7:2329–2367, 2006.

[71] P. Poupart and C. Boutilier. Value-directed compression of POMDPs. Ad-
vances in Neural Information Processing Systems, 15:1547–1554, 2003.

[72] W. B. Powell. Approximate dynamic programming: Solving the curses of di-
mensionality. Wiley, New York, 22007.

125

[73] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley & Sons, New York, 1994.

[74] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer Texts
in Statistics. Springer, New York, 2004.

[75] N. Roy. Finding Approximate POMDP Solutions through Belief Compression.
PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburg, PA,
2003.

[76] N. Roy and G. Gordon. Exponential family PCA for belief compression in
POMDPs. Advances in Neural Information Processing Systems, 15(1635-
1642), 2003.

[77] R. Y. Rubinstein. Optimization of computer simulation models with rare events.
European Journal of Operational Research, 99:89–112, 1997.

[78] R. Y. Rubinstein. The cross-entropy method for combinatorial and continuous
optimization. Methodology and Computing in Applied Probability, 2:127–190,
1999.

[79] R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified Ap-
proach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine
Learning. Springer-Verlag, New York, 2004.

[80] P. J. Schweitzer and A. Seidman. Generalized polynomial approximations in
markovian decision problems. Journal of Mathematical Analysis and Applica-
tions, 110:568–582, 1985.

[81] R. D. Smallwood and E. J. Sondik. The optimal control of partially observable
Markov processes over a finite horizon. Operations Research, 21(5):1071–1088,
1973.

[82] E. J. Sondik. The Optimal Control of Partially Observable Markov Processes.
PhD thesis, Stanford University, Palo Alto, CA, 1971.

[83] E. J. Sondik. The optimal control of partially observable Markov processes
over the infinite horizon: Discounted costs. Operations Research, 26(2):282–
304, 1978.

[84] R. L. Stratonovich. Conditional Markov Processes and Their Application to the
Theory of Optimal Control. Elsevier, New York, 1968.

[85] R. S. Sutton. Learning to predict by the method of temporal differences. Ma-
chine Learning, 3(1):9–44, 1988.

[86] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, 1998.

126

[87] S. Thrun. Monte Carlo POMDPs. Advances in Neural Information Processing
Systems, 12:1064–1070, 2000.

[88] R. van der Merwe, N. de Freitas, A. Doucet, and E. Wan. The unscented
particle filter. Advances in Neural Information Processing Systems, 13, 2001.

[89] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279–
292, 1992.

[90] S.S.-T. Yau and G.Q. Hu. Classification of finite dimensional estimation alge-
bras of maximal rank with arbitrary state-space dimension and mitter conjec-
ture. International Journal of Control, 78(10), 2005.

[91] H. J. Yu. Approximate Solution Methods for Partially Observable Markov and
Semi-Markov Decision Processes. PhD thesis, M.I.T., Cambridge, MA, 2006.

[92] M. Zakai. On the optimal filtering of diffusion processes. Probability Theory
and Related Fields, 11:230–243, 1969.

[93] Q. Zhang and H. Muhlenbein. On the convergence of a class of estimation
of distribution algorithm. IEEE Transactions on Evolutionary Computation,
8:127–136, 2004.

[94] E. Zhou, M. C. Fu, and S. I. Marcus. A fading memory particle filter. In
preparation for submission.

[95] E. Zhou, M. C. Fu, and S. I. Marcus. Solving continuous-state POMDPs via
density projection. IEEE Transactions on Automatic Control. Conditionally
accepted, full paper.

[96] E. Zhou, M. C. Fu, and S. I. Marcus. A density projection approach to di-
mension reduction for continuous-state pomdps. Proceedings of 47th IEEE
Conference on Decision and Control, page 5576 C 5581, 2008.

[97] E. Zhou, M. C. Fu, and S. I. Marcus. A paricle filtering framework for ran-
domized optmization algorithms. Proceedings of the 2008 Winter Simulation
Conference, pages 647 – 654, 2008.

[98] M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-based search for
combinatorial optimization: A critical survey. Annals of Operations Research,
131:373–395, 2004.

127

