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This thesis proposes a solution to the problem of resilient state estimation and sensor fusion 

in an autonomous micro air vehicle. The setup comprises of redundant sensors that measure 

the same physical signal. An adversary may spoof a subset of these sensors and send 

falsified readings to the controller, potentially compromising performance and safety of 

the system. This work integrates Brooks-Iyengar Sensor fusion algorithm with a generic 

state estimator as a method to thwart sensor attacks. The algorithm outputs a point estimate 

and a fusion interval based on an assumed set of faulty sensors. Finally, the thesis illustrates 

the usefulness of the resilient state estimator with a case study on a MAV flight dataset. 
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1. Introduction 

Cybersecurity incidents have been on the rise over the past years.  No industry, gadget, or 

tool is safe from threat and menace of cyber-attacks. The next generation of cyber physical 

systems (CPS) is becoming complex in design and encompass a diverse set of components 

and elements. Security concerns and considerations can no longer be an after-thought. The 

design process needs to incorporate these vectors and ensure necessary protection.  

Modern vehicles have numerous embedded elements communicating internally as 

well as externally using different technologies. Moreover, with the recent interest in 

Internet of Things (IOT), vehicle system designs have moved from insulated control 

systems to open and connected architectures with functionalities such as remote diagnostic 

information, inter-device communication, and online updates. An ever-increasing set of 

functionalities, network connectivity, and design complexity introduces security 

susceptibilities that are exploitable. Often the security guarantees of these systems are 

based on the security of external communication links and authentication protocols. 

Consequently, an effective attack that compromises the gateway, or physical attacks on 

components connected on the internal network may be leveraged to completely handicap 

the system. A similar strategy was used in [1] by the authors to disrupt the operation of a 

car and take complete control over it.  

An attack on a CPS may be carried out by intruding the computational nodes or 

communication channels and altering the physical environment. Information security 

approaches can be used to safeguard the CPS, but noninvasive attacks such as altering the 
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physical environment may still be possible [2], [3] and [4]. In [2], [3] and [4] the authors 

review how an attack signal may be introduced into the control system loop by altering the 

sensor measurements. Orthodox cybersecurity techniques such as secure communication 

protocols for internal networks cannot defend the system against attacks on physical 

components. Acquiring access to the internal network would allow the attacker to 

completely compromise the controller, actuator, and all elements on board. Such attacks 

may be restricted by using cryptography tools. However, these tools may add additional 

processing delay and require additional resources, which might be scarce in some CPS 

domains. Researchers in [5] identified that it is necessary to address this security challenge 

in the control design phase because attacks may be disguised as malicious signals to the 

controller. Vaguely attacks may be classified into: 

• The attacker takes over a sensor to provide wrong readings. 

• Disturb actuation. 

The thesis primarily discusses the scenario when an adversary attacks the sensor 

measurements of a micro air vehicle (MAV) (a subclass of UAVs, see Table 1). Unmanned 

Air Vehicles (UAVs) are vehicles that are either controlled remotely by a Ground Control 

Station, radio remote controller, or autonomously programmed prior to the mission flight. 

UAVs are used for military missions as well as for commercial usage. MAVs hold the 

promise of enabling online retail, survey, emergency services, etc. They have been gaining 

recognition over the previous few years. With companies such as Amazon Prime [6], UPS, 

Google [7], DJI, GoPro investing heavily in these air vehicles, MAVs are gradually 

becoming a common place. This is also supplemented by an increasing affordability of 
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such MAVs making it more accessible to hobbyists and enthusiasts. One can construct a 

MAV in as less as $250 by procuring parts from multiple online vendors.  

Numerous companies working on different applications for such MAVs including 

and not limited to cinematography, rescue missions, agricultural chemical deployment, 

ecological surveys, emergency response, 3-D Mapping, drone delivery, etc. is increasing 

incessantly. However, their exposure to cyber-attacks makes them a potential tool for 

espionage, terrorism, vandalism, etc.  

Recently, commercial UAVs were authorized to fly in the US national air space by 

the FAA [8]. It is anticipated that more than 7 million small drones will occupy the US 

airspace by 2020 [9]. Consequently, the enticement for cyber-attacks on UAVs is only 

going to surge.  

With an increasing level of autonomy, the mandate for secure and hardened systems 

is going to surge exponentially. Additional studies and analysis, studying the susceptibility 

of MAVs to cyber-attacks and investment in security of MAVs at each layer of abstraction 

is quintessential. The infamous attack on a UAV system [10] highlighted this need; when 

members of a terrorist group intercepted and recorded a UAV video feed using a $26 

software SkyGrabber. SkyGrabber was designed to capture free satellite-entertainment 

channels [10]. Investigations revealed that this was enabled due to an unencrypted video 

channel. It was revealed later [11], that the flaw was known to the US government since 

the 1990s. In 2012, Iranian forces stated that they captured an RQ-170 [12], [13]. 

Subsequently they landed the UAV and obtained mission data. It was postulated that a lack 

of security measures of the UAV sensor system was used to attack the GPS subsystem [12]. 

In 2012, a research team at UT Austin [14], in a demonstration, showcased their ability to 
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hijack a military UAV by spoofing the GPS signal and thereby taking complete control of 

the UAV. They showcased a proof-of-concept by using $1,000 worth of equipment. These 

above cases demonstrate a necessity for investment in research for cybersecurity for UAVs 

of all classes for military and public use.  

Moreover, the GPS-spoofing notion emphasizes the need to include unusual 

elements (e.g. sensors, input channels) while developing risk assessment models of UAVs 

and for other autonomous systems. Autonomous systems such as UAVs, Unmanned 

Ground Vehicles (UGVs), etc. are dependent on their sensor systems to operate optimally. 

Ensuring that all the logical ports are hardened is vital to building a secure system.  

The motivation for this work surfaced from our shared conviction that there is an 

increasing threat diversity of attack threats to UAVs. A UAV that can fly at high speeds 

over people and property is a weapon. Just like hacking is prevalent online, a UAV is 

susceptible to the same risks with far greater consequences.  

It has been established by investigations that cheap consumer MAVs are not secure. 

As presented by Rodday (2015) [15], even professional grade MAVs previously presumed 

to be secure and hack-proof; used by government agencies, have been found to be 

susceptible to naïve attacks such as man-in-the-middle attacks. The security of such 

professional grade MAVs is crucial because of the sensitivity of their missions. Hijacking 

such drones may lead to loss of property and mission failure amongst other effects.  

Due to the lack of adequate depth in cybersecurity of UAVs till recent past, most 

of the existing autopilot software and their underlying control architecture, state estimation 

techniques were built without taking security constraints into account. Since UAVs rely 

heavily on the autopilot software and flight controller to function optimally, it is important 
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to develop autopilot systems that are robust and secure against adversaries. We hope that 

our work through this thesis has a contribution towards this goal.  

Quadcopters were identified as the system of interest because of their simplicity. 

The platform is easy to implement for testing. There are only four control variables, which 

enable 3 degrees of freedom. Furthermore, there are growing applications of quadrotors 

and other such MAVs in varied industries. 

This work examines the problem of resilient state estimation in MAV against sensor 

spoofing. Resilient state estimation is the study of estimating the system states when sensor 

measurements are compromised by attackers. It overviews the problem of attack resilient 

state estimation in autonomous systems where multiple sensors measure the same physical 

signal. In the scenario, where a malicious attacker may corrupt a subset of these sensors, 

falsified sensor measurements are passed to the controller, potentially compromising the 

safety of the system. The range of sensor attacks is evaluated in section 2.3.2.4. 

1.1. Research Goals 

This following research goals were identified at the beginning of the thesis.  

RG-1. Identify security vulnerabilities that exist in the system design of MAVs. 

RG-2. Review the state estimator used in our system of interest. Study the impact 

of sensor attacks on the state estimation algorithm. Identify the most critical sensor 

to the state estimation process. 

RG-3. Identify a resilient sensor fusion technique to improve the state estimation 

process. Integrate resilient sensor fusion technique with the generic state estimator. 

RG-4. Verify improvement in resilience to sensor spoofing attacks with the 

proposed state estimator through a case study on a MAV. 
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1.2. Organization of the Thesis 

The thesis is divided into 6 chapters. In chapter 1 the need for a study for cybersecurity 

consideration for MAVs is introduced, it identifies the need for the investigation and the 

research goals. Chapter 2 summarizes the numerous security vulnerabilities and threat 

vectors that exist in the current MAV models available to the public sector. Following 

which, a synopsis of the state estimation techniques used in the system of interest is covered 

in chapter 3. This background on state estimation is important to understand the critical 

sensors in a MAV since it highlights the impact of sensor attacks on the system. Chapter 4 

outlines Brooks-Iyengar Fusion as a resilient sensor fusion technique to defend against 

sensor fusion attacks. The thesis proposes integrating Brooks-Iyengar Fusion with a 

generic state estimator. In Chapter 5, the performance of the proposed state estimator is 

showcased through results of a software in the loop simulations in the presence of sensor 

spoofing attacks. The improvement in the state estimation process with the proposed state 

estimator is evident. In chapter 6, the thesis is concluded with a summary of research goals 

covered and a direction of future research. Figure 1, describes how the scope of this 

research was narrowed. 
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Threats to MAVs - Why secure MAVs?

Vulnerabilities in MAVs - What 
must be secured in MAVs?

Identify a Vulnerability -
What problem does this thesis 

aim to tackle?

Which component is 
critical?

How can this 
component be 

protected?

Verify 
performance of 
the proposal.

Figure 1: Outline of the Thesis 
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2. Vulnerability Analysis of Unmanned 

Air Vehicles 

In this chapter, our system of interest is described and the different kind of threat vectors 

to a MAV are reviewed. Following which a case highlighting the need for securing against 

sensor attacks in a MAV is presented and the security problem that this thesis aims to tackle 

is identified. As defined by the Department of Defense [16] : 

“A powered, aerial vehicle that does not carry a human operator, uses 

aerodynamic forces to provide vehicle lift, can fly autonomously or be piloted remotely, 

can be expendable or recoverable, and can carry a lethal or non-lethal payload. Ballistic 

or semi-ballistic vehicles, cruise missiles, and artillery projectiles are not considered 

unmanned aerial vehicles.” 

The primary difference between a UAV and normal air vehicle is that no crew is 

required to be on board the vehicle. The vehicle may be remotely controlled or programmed 

for autonomous operation under supervision.  

2.1. Types of UAVs 

The following classification of UAVs is based on Austin [17] . Austin classifies the UAVs 

based on the size and capability of the air vehicle to carry out a given mission. However, 

there may be scenarios where a user or a system employs the air vehicle for different types 

of missions. The focus of this work is primarily resilient state estimation problem for 

MAVs. However, the study can be extended to other autonomous vehicles after suitable 

modifications. 
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Type Purpose 

HALE (High altitude long 

endurance) 

These are operated by Air Forces from fixed bases. They can 

fly at high altitudes of 15,000m and can operate for more 

than 24 hours. They are generally armed and are used for 

long range (trans global) reconnaissance and surveillance.  

MALE (Medium altitude 

long endurance) 

They operate at comparatively shorter ranges (greater than 

500 km). They can fly at altitudes of 5,000m to 1,500m, but 

from fixed bases. 

TUAV (Tactical UAV) 

These vehicles are smaller and have simpler than HALE and 

MALE. They are operated by land and naval forces and have 

a range of up to 500km.  

Close-Range UAVs 

They operate at ranges of 100 km and are used in fields, 

including roles such as reconnaissance, target designation, 

NBC monitoring ship-to-shore surveillance, airfield security, 

power-line inspection, crop-spraying, etc. 

MUAV or Mini UAV 

These UAV's of below a specific mass generally below 20 

kg. They operate at a range of about30 km. They are 

primarily used by mobile battle groups and for numerous 

civilian purposes. 

Micro UAV or MAV 

The MAVs were initially described as a UAV having a 

wing-span of 150 mm or less. This condition has been 

relaxed now. They are mostly used for urban operations and 

for commercial purposes. 

 Table 1: Classification of UAVs. Austin [17]  

2.2. System of Interest: 

The system of interest is a quadrotor that uses a Pixhawk flight controller. The flight 

controller can be programmed using a ground control station or controlled using a radio 
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control as indicated in Figure 3. The MAV may be set for autonomous navigation using an 

on-board computer.  

Pixhawk is an open-hardware project that was conceptualized and developed in 

consequence to the PIXHAWK Project at the Autonomous Systems Lab at ETH Zurich. It 

was primarily made to provide sophisticated autopilot hardware and software to academic, 

hobby, and industrial communities at low costs. This platform was identified based on its 

outreach, capabilities, and its market share. It is an industry standard and designed by the 

team in conjunction with 3D Robotics and the ArduPilot Group. The technical 

specifications as specified are [18]: 

§ 168 MHz Cortex M4F CPU (256 KB RAM, 2 MB Flash) 

§ Sensors: 3D Accelerometer / Gyroscope / Magnetometer / Barometer 

§ Integrated backup, override and failsafe processor with mixing 

§ microSD card slot, 5 UARTs, CAN, I2C, SPI, ADC, etc. 

The main components in our system as indicated in Figure 1 include: 

1. PIXHAWK Flight Controller 

2. GPS/3DOF Measurement Sensor 

3. RC Receiver 

4. Ground Control Station 

5. Radio Controller 

6. ESC and Motors. 
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Figure 2: Different components in our system of interest. 

 

Figure 3: Control Channels for our System of Interest 
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2.3. Threat Analysis: 

The type of attacks that may be mounted on a given MAV being operated autonomously, 

or being controlled by the operator is overviewed in this section. The intentions of the 

attacker may be unknown. As discussed in [19], vulnerabilities can be classified broadly 

into application logic attacks where the attacker manipulates the sensor readings and other 

inputs into the control system and control system attacks that damage the normal behavior 

of the control system. 

 

Figure 4: Threats to a UAV 

2.3.1. Physical Attacks 

Physical attacks could include physically targeting the MAV with a tool or a weapon. It 

could be a missile launcher or a gun targeting the MAV. However, the cost for mounting 

such an attack would far outweigh the incentive. Other attacks include flying another drone 

into the target drone. One may also use other tools such as high-powered magnetic beams 

to damage the electronic circuits on the drone. One may throw a net on the MAV to stop 

the rotors and bring it down. 
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2.3.2. Logical Attacks 

A brief description of the system structure and the exchange of control signals is described 

in Figure 4. There are multiple control channels and several technologies enabling these 

channels to control flight parameters such as position, pose, altitude, waypoints, etc. Since 

these MAVs are autonomous and are generally not controlled actively, a compromised 

channel may severely damage the mission goals. If an attacker changes high level control 

signals such as way points or even change parameters such as calibration parameters of the 

sensors, MAV may be lost or damaged. Total control of the MAV may be lost without any 

scope of recovery if system parameters are changed or a malware software is installed on 

board.  

The control channels may use different technologies such as 4G LTE, Radio, XBee, 

etc. Many of the low cost and low power control channel technologies do not have secure 

protocols and are susceptible to cyber-attacks. Consequently, a lot of MAV manufacturers 

are limited from installing security protocols and authentication modules because of the 

limited processing capabilities. Also, using regular encryption and authentication 

techniques adds delay corresponding to encryption and initial key exchange. 

In [20], Villasenor points out the growing concern of counterfeit electronics. He 

argues that the electronics supply chain could be intentionally compromised during design. 

If these vulnerabilities are placed into the design prior to manufacture with sufficient skill, 

they would be extremely difficult to detect. These backdoors could be exploited years later 

to intentionally compromise the system containing the chip. 
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2.3.2.1. Control Channel Attacks 

As observed in Figure 5, there are multiple control signals that may be used to send forged 

data to the MAV. This is possible because of the absence of application layer encryption 

in the MAV - GCS communication channel or the lack of authentication protocols. Without 

a method to verify if the data received through the communication channel is legitimate or 

not, the flight controller ought to assume that the data received is correct. This permits 

forged signals to be processed as any other correct signals from an authorized operator. 

This is a critical flaw that may be used to mount attacks such as changing the mission plan, 

changing way points, etc. and may lead to loss of control of the MAV permanently. 

Sometimes proprietary protocols are used without proper encryption and authentication 

techniques. Even though these techniques may provide some level of security, these 

protocols can be reverse engineered or an attacker might just mount a replay attack leading 

to unexpected behavior. 

 

Figure 5: Control Channel Attack 
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2.3.2.2. Denial of Service Attacks (DoS): 

An attacker may use a simple Denial of Service attack on any of the control channels which 

use wireless communication. Anyone close to either the transmitter or the receiver can 

receive signals and analyze the packet information, making it vulnerable. Both the receiver 

and the transmitter use the same channel for communication; the adversary may flood this 

channel with bogus signals and thereby prevent legitimate messages and signals from being 

sent and received. A hobby MAV, the AR.Drone operated using smartphones through a 

local WIFI network was de-authenticated using such DoS attacks [21] . 

2.3.2.3. Replay Attacks 

As suggested in section 2.3.2.2, in case of proprietary protocols used as security measures, 

one may use replay attacks to disrupt the normal operation of a MAV. One may even use 

the same type of replay attacks even if the messages were encrypted. This would include 

recording the signals and replaying them at a later period. This attack is only feasible when 

there are no authentication modules to verify the origin of these messages. 

2.3.2.4. Sensor Attacks 

Sensor attacks can be mounted by installing malicious software on the flight controller or 

the processor responsible for processing the sensor information. The software modifies the 

sensor information before it is passed to the flight controller. The Stuxnet malware is a 

famous example of such an attack [22]. Often, MAVs may rely on networked infrastructure 

for sharing sensor information. This may be for swarm robotics, VICON systems, or WIFI 

localization systems. An attacker may degrade sensor measurements by manipulating the 

data packets being exchanged between different modules, elements or subsystems of the 

system. Adversaries may also spoof sensors by tampering the sensor hardware externally 
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or modifying the sensor environment. This may lead the sensor to pass false information 

of the value of physical signal it attempts to measure.  

An attempt to externally manipulate the sensor measurements in a MAV was 

described in [23]. In [23], Son et al. presented their work on “Rocking Drones with 

Intentional Sound Noise on Gyroscopic Sensors”. They described a method using 

consumer grade electronics to introduce noise in gyroscope sensor measurements. They 

exploited the fact that resonant frequencies of many MEMS based gyroscopes are found in 

the audible frequency band. They also present the effect of resonant/attacked output of the 

gyroscopes on the flight control of the drone. They describe the attacking technique and 

establish the consequence of such attacks, refer to Figures 6 and 7. In figure 6 and figure 

7, region A and region C correspond to the gyroscope operating under normal conditions, 

whereas region B corresponds to the region where the gyroscope is under attack (Fig 6.a.). 

The operator increases the throttle of the quadrotor to increase its altitude (Fig 6.b.); as 

soon as the attack starts, the altitude drops and the quadrotor crashes (Fig 7.b.). 

 

 

Figure 6: a) Gyroscope Sensor Data. b) Operator Control Signals [23]  
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Figure 7: a) Rotor Control Data. b) Altitude of the System [23]  

2.3.2.4.1. Global Positioning System (GPS) 

DoS attacks like the one mentioned in section 2.3.2.2 can be mounted on GPS modules by 

flooding garbage signals on the target GPS frequencies. This prevents correct signals from 

passing through and disrupts localization and state estimation. There are devices available 

that enable such jamming with different levels of sophistication. GPS jamming could be 

used to disrupt the mission by preventing the MAV to reach its destination.  

GPS spoofing is also another plausible threat vector. One may spoof GPS signals 

and introduce them to the channel. The under-attack MAV may use the forged signals in 

its state estimation calculations. Accordingly, an attacker may convince the MAV to 

redirect its path because of a falsely identified location. 

2.3.2.5. Software Attacks 

There are two components to the software: the software on the ground control station and 

the on-board software for flight control for conducting the autonomous mission. The 

ground control station is used for programming flight paths and setting flight parameters. 
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Prior to the mission (or during the mission) the GCS programs the MAV with the mission 

data including waypoints and other mission information. In most configurations, the GCS 

is connected to the flight computer or flight controller constantly through a wireless 

channel. The attacker may use malware onto the flight controller or on the ground control 

station. This would allow the attacker to reprogram the flight mission and control the flight 

as suited. The following scenarios are possible: 

• The ground control station is connected to the Internet and the attacker uses the 

flight planner in real time to obtain live control of the MAV. 

• The attacker may introduce malware on the ground control station, which may 

preprogram the flight as per the intentions of the attacker.  

• A lot of hobby drones use generic ground control station software with an unsecure 

communication link. One might use this vulnerability to force pair their computer 

using a radio link.  

2.4. Summary 
 

 
Figure 8: Different threat vectors for a MAV and the focus of this thesis 
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In this chapter, the threat vectors for a MAV were identified. The threat vectors can be 

broadly classified into physical attacks and logical attacks. Logical attacks were further 

classified into control channel attacks, denial of service attacks, replay attacks, man in the 

middle attacks, sensor attacks, and software attacks. Most of the logical attacks are 

application layer security problems and must be tackled using encryption, authentication 

and other application logic security techniques. However, sensor attacks, actuator attacks 

and controller attacks are control system security problems. The work of Son et al. [23] is 

presented to highlight the impact of sensor attacks on a MAV. The fact that the MAV 

crashes as soon as there is an attack on it is an important observation. This highlights the 

importance of studying the problem of resilient state estimation. The work in this thesis 

discusses the problem of defending against sensor attacks for MAVs. Next, in Chapter 3, 

the state estimation process in a current state of the art flight controller is reviewed to 

identify the sensor that must be safeguarded.  
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3. Background on State Estimation in 

MAVs 

This chapter discusses the state estimation technique and a modular approach to state 

estimation implemented in a flight controller. A controller in a MAV relies heavily on 

information on the current state of the system. The controllers need information on the 

states (position, attitude) at a high rate with minimum delay because of the fast dynamics 

of the system. Inertial Measurement Unit (IMU) form the core of the state estimation 

algorithm. IMUs consist of a gyroscope to measure angular velocity and an accelerometer 

to measure the linear acceleration. Most MAVs can carry an IMU because of its 

lightweight, inexpensiveness, and low energy requirements. In addition to noisy sensor 

readings, the sensors are affected by a continuous time-varying bias; thereby making a 

continuous accurate estimation of the pose in aggressive flights difficult and error prone. 

Hence, IMUs are used in conjunction with other sensors such as cameras, Sound 

Navigation and Ranging (SONAR), Light Radar (LIDAR), Global Positioning System 

(GPS), etc. to support an accurate estimate.  

IMUs have a high update frequency but with drifting measurements leading to error 

accumulation. Sensors such as cameras, GPS, and laser systems have slowly drifting 

measurements but at a much slower update rate. As suggested by Weiss (2012) [24], 

sensors can be classified based on their drift speed and frame rate as in Figure 1. IMUs 

have a high update rate but with accumulating errors, whereas GPS and Laser Trackers 

provide information at low drift rates but with lowest update rates. The ideal sensor would 
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lie at the top left corner of the graph in Figure 7. Consequently, it’s necessary to have 

sensors in addition to the IMU to enable good state estimation. The analysis in this chapter 

is based on the work of Weiss (2012) [24] and Achtelik (2013) [25]. The discussion 

analyzes a 6 Degree of Freedom (DOF) sensor (a camera) along with a 3DOF position 

sensor (GPS) in addition to the on-board IMU. The discussion follows an Extended Kalman 

Filter Framework to establish an algorithm to address the issue of drifting measurements 

and low update rates.  

 

Figure 9: Classification of sensors based on drift type and update rate [24]  

3.1. Extended Kalman Filter Framework  

The Extended Kalman Filter (EKF) is useful in MAVs because it is recursive and does not 

need a history of state estimates to establish the current state estimate. It does so by 

minimizing the error of the observed estimates. Within a EKF, there is a prediction step 

followed by a correction step. In the prediction step, the framework predicts the states of 
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the system and the uncertainty of the process (covariance propagation) using the model of 

the system. In the correction step, a sensor measurement is applied to the sensor model, 

which corrects the state of the system and is used to update the uncertainty of the estimate. 

The step is referred to as correction and covariance update.  

Section 3.1.1 explores the EKF framework for an MAV as described in [24] and [25]. This 

chapter aims to identify the most critical sensor with respect to state estimation process.   

3.1.1. MAV Process Model vs Direct IMU Input 

There are two techniques/models for state prediction.  

MAV Model IMU Model 

When, a MAV Model is used for the 

prediction process. It uses the torques 

and thrusts originating from the rotors 

as inputs to the process Model. 

IMU measurements use linear 

acceleration and angular velocity as 

inputs to the process model. Acceleration 

is integrated to calculate velocity, which 

is integrated to calculate the position. 

Table 2: Comparing the MAV and IMU model 

The IMU measurement model is advantageous because of lower computational 

requirements. This is better exemplified when one analyzes the state size and weighs the 

cost of IMU updates in the range of 1kHz.  The following comparison is expressed in [24]. 

1. State Size: For the MAV model, the input to the process model will consist of angular 

momentum. This process model will require additional vector states. Update and 

covariance predictions steps run at high frequencies and require dense matrix 

multiplications making it computationally inefficient. 
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2. Measurement update: As discussed in section 3.1.1, MAV process model has angular 

momentum from rotor speeds as its inputs. IMU readings are used for EKF 

measurement updates. Consequently, EKF updates must be computed for each IMU 

measurement. At high measurement rates tending to 1kHz it gets computationally 

expensive. However, when one use an IMU based model, IMU measurements appear 

only in the EKF prediction step, which needs only a few calculations despite the 

frequency. There are also benefits when analyzing the computational complexity. 

3. Model uncertainty: The system model may not be accurate for all platforms. The MAV 

model is not constant and may change based on different payloads and different 

positioning of payloads. The moment of inertia, mass, rotor constants may change 

based on the platform used. These model parameters can be estimated using our EKF 

framework at a cost of a few additional states, again adding to computational 

complexity. However, in the case of IMU based models, one must measure the current 

linear acceleration and angular velocity to evaluate the position and orientation.  

4. Un-modeled disturbances: There may be un-modeled disturbances such as wind gusts. 

The IMU model is advantageous because it rejects noisy IMU measurements. IMUs 

measure disturbances accurately but take a few time updates and corrections before the 

MAV realizes it was a real disturbance. Modeling such disturbances for the MAV 

model is a difficult task. Researchers have tried to model wind speeds and wind gusts. 

Modeling wind gusts requires many assumptions and is a complex analysis. One would 

have to incorporate these disturbances in his MAV model and for accurate state 

estimation. However, in the case of an IMU model, disturbances are measured directly 

and can be incorporated in the prediction step. 
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3.1.2. Mathematical Background – Quaternion Algebra 

This section is based on the work done by Trawny and Roumeliotis (2015) [26]. Below is 

a brief discussion on quaternion algebra. 

Any quaternion 𝑞 is defined as: 

𝑞 = 𝑞# + 𝑞%𝑖 + 𝑞'𝑗 + 𝑞)𝑘 

where 𝑞# is the real part and 𝑞%𝑖 + 𝑞'𝑗 + 𝑞)𝑘 is the imaginary part. Here  𝑞%, 𝑞', 𝑞) are real 

numbers, and 𝑖, 𝑗, 𝑘 are hyperimaginary numbers.   The quaternion can also be written as a 

4-dimenstional-column matrix: 

𝑞 = [𝑞%		𝑞'		𝑞)		𝑞#]/ 

Let 𝑞  and 𝑝 be two quaternions, then quaternion multiplication can be defined as: 

𝑞⨂𝑝 = (𝑞# + 𝑞%𝑖 + 𝑞'𝑗 + 𝑞)𝑘)(𝑝# + 𝑝%𝑖 + 𝑝'𝑗 + 𝑝)𝑘)	

𝑞⨂𝑝 = 𝑞 −𝑞/
𝑞 𝑞𝐼) + 𝑞× . 𝑝 = 𝑝 −𝑝/

𝑝 𝑝𝐼) + 𝑝× . 𝑞 

The skew-symmetric matrix operator represented as 𝑞×  is defined as: 

𝑞× =
0 −𝑞) 				𝑞'
𝑞) 0 −𝑞%
−𝑞' 	𝑞% 			0

 

The cross product of two quaternions can also be written as:	𝑞×𝑝 = 𝑞× 𝑝  

3.2. Extended Kalman Filter Setup 

For the EKF setup, the IMU process model is used based on the discussion in section 3.1.1. 

The prediction and covariance propagation steps for the core states is discussed in the 

following sections. Other sensors may add additional or different states, however the 

formulation of the core set of states obtained from the IMU does not change, because IMU 

measurements are always available to the filter. 
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3.2.1. Inertial Sensor Model 

The IMU measurements are perturbed by a bias 𝑏 and additive white Gaussian noise 𝑛. 

Thus, the real angular velocity 𝜔 and the real linear acceleration 𝑎 in the IMU frame can 

be modeled as: 

𝜔 = 𝜔= − 𝑏> − 𝑛>	

𝑎 = 𝑎= − 𝑏? − 𝑛?	

𝐸 𝑛>/𝑛? = 0)×% 

where 𝜔 is the angular velocity, 𝑎 is the acceleration, subscript 𝑚 refers to the measured 

value, 𝑏 refers to the bias and 𝑛 is the additive white Gaussian noise. Here 𝐸 𝑛>/𝑛?  is the 

expectation of the noise signals 𝑛>, 𝑛?. Additive refers to noise that is added to any noise 

that may be intrinsic to the system. The bias dynamics is modeled as a random walk process 

with zero mean white Gaussian noise as its time derivative. Thus, we model the bias as: 

𝑏> = 𝑛CD 

𝑏? = 𝑛CE 

𝐸 𝑛CD = 0)×% 

𝐸 𝑛CE = 0)×% 

3.2.2. State Representation  

The state of the filter is described as: 

𝑥G = 𝑝>H
/			𝑣>H

/		𝑞>H
/		𝑏>/ 		𝑏?/

/
 

where 𝑝>H  is the position of the IMU in the world frame,	𝑣>	H 	 is the velocity of the IMU in 

the world frame,	𝑞>H 	is the quaternion describing rotation from the world frame to the IMU 

frame, 𝑏?	and 	𝑏> are the respective biases. Also, the hat operator placed over state variable 
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notations refer to the estimate of that variable, for example 𝑥G is the estimate of the core 

set of states for our state estimator. 

The equations that govern the abovementioned states are: 

𝑝>H = 𝑣>H 	

𝑣>H = 𝐶>H . 𝑎= − 𝑏? − 𝑛? − 𝑔	

𝑞>H =
1
2 . 𝑞>

H ⨂ 0
𝜔= − 𝑏= − 𝑛=

	as	𝑞>H =
1
2 𝑞 ⊗𝜔	

𝑏> = 𝑛CD	𝑏? = 𝑛CE 

Please note that g is the gravity vector, and 𝐶>H  is the rotation matrix computed 

using 𝑞>H .  It is essential to include the biases as states, since these drifts accumulate over 

time and must be updated online. Quaternions are used to represent the attitude of the 

MAV. 

Next, calculate the error vectors for each of the states. Note that, as suggested in 

[26], the error in the quaternion value is calculated as 𝛿𝑞, instead of the difference between 

𝑞	𝑎𝑛𝑑	𝑞  (the actual value of the quaternion and the quaternion estimate respectively). 

Hence, using the small angle approximation:  

𝑞 = 		 𝑞⨂𝛿𝑞 ⇔ 𝛿𝑞 = 𝑞∗⨂𝑞 

If the rotation corresponding with the error quaternion 𝛿𝑞 is very small, we can use the 

small angle approximation and calculate the error angle vector	𝛿𝜃 as: 

𝛿𝑞 = 𝛿𝑞
𝛿𝑞#

≈ 𝛿𝑞 = 1
1
2 𝛿𝜃

/
/
	 

where	𝛿𝜃 is the angle vector. Similarly, in the case of rotation matrices, as suggested in 

[25], 

𝐶 = 𝐶. Δ𝐶 ⇔ Δ𝐶 = 𝐶/. 𝐶 
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Δ𝐶 ≈ 𝐼) + 𝛿𝜃×  

For other states, use the arithmetic difference to calculate the error, i.e., 𝑥 = 𝑥 − 𝑥. 

Hence, as deduced in [26] and [24], the error in the state variables can be written as: 

𝑥G = Δ𝑝>H
/			Δ𝑣>H

/		𝛿𝜃>H
/		Δ𝑏>/ 		Δ𝑏?/  

∆𝑝>H = ∆𝑣>H  

∆𝑣>H = −𝐶>H . 𝑎= − 𝑏? ×
. 𝛿𝜃H − 𝐶>H . Δ𝑏? − 𝐶>H 𝑛? 

𝛿𝜃>H = 𝜔= − 𝑏> ×
. 𝛿𝜃>H − Δ𝑏> − 𝑛> 

∆𝑏> = 𝑛CD	 

∆𝑏? = 𝑛CE 

The above equations can be summarized as 𝑥G = 𝐹GG. 𝑥G + 𝐺GG. 𝑛 . Linearizing above 

equations using noise vector 𝑛G = 𝑛?/		𝑛CE
/ 		𝑛>/ 		𝑛CD

/  around 𝑥G . Here, the superscript c 

used in the notation refers to the continuous time domain. As indicated in [25] and [24], 

see that: 

𝑥G =
𝜕𝑥G
𝜕𝑥G

𝑥G. 𝑥G −
𝜕𝑥G
𝜕𝑛 𝑥G. 𝑛 = 𝐹GG. 𝑥G + 𝐺GG. 𝑛 

Calculate the noise covariance matrix for the discrete case as described in [24]: 

𝑄G] = 𝐹G] 𝜏_` . 𝐺GG. 𝑄GG. 𝐺G
G,/. 𝐹G] 𝜏 /𝑑 𝜏 , where 

 

𝐹G] =

𝐼]a Δ𝑡 𝐴 𝐵 −𝐶eDf
/ Δ𝑡' 0%)×)

0) 𝐼]a
0) 0)
0) 0)

𝐶 𝐷
𝐸 𝐹
0) 𝐼]a

−𝐶eDf
/ Δ𝑡 0%)×)
0) 			0%)×)
0) 0%)×)

0) 0)
0%)×) 0%)×)

0) 0)
0%)×) 0%)×)

𝐼]a 0%)×)
0%)×) 𝐼]ha
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𝐴 = −𝐶eDf
/ 𝑎×

Δ𝑡'

2 −
Δ𝑡)

3! 𝜔× +
Δ𝑡#

4! 𝜔× '  

𝐵 = −𝐶eDf
/ 𝑎×

−Δ𝑡)

3! +
Δ𝑡#

4! 𝜔× −
Δ𝑡l

5! 𝜔× '  

𝐶 = −𝐶eDf
/ 𝑎× Δ𝑡 −

Δ𝑡'

2! 𝜔× +
Δ𝑡)

3! 𝜔× ' 	

𝐷 = −𝐴	

𝐸 = 𝐼] − Δ𝑡 𝜔× +
Δ𝑡'

2! 𝜔× ' 

𝐹 = −Δ𝑡 +
Δ𝑡'

2! 𝜔× −
Δ𝑡)

3! 𝜔× '	

𝑄]n

0) 0) 		0) 						0)
−𝐶eDf

/ 0) 		0) 						0)
0)
0)
0)
0%)×)

0)
0)
𝐼]a
0%)×)

−𝐼]a
0)
0)
0%)×)

0)
𝐼]a
0)
0%)×)

 

where 	𝑄GG  is the noise covariance matrix for the continuous case, 𝑄GG =

𝑑𝑖𝑎𝑔(𝜎pE
' 	𝜎pqE

' 	𝜎pD
' 	𝜎pqD

' ). The superscript 𝑐 in 𝐹GG refers to the continuous space, whereas 

the superscript 𝑑 in 𝑄G] refers to the discrete space, 𝐼]ais a 3x3 identity matrix. 

3.2.3. Propagation Steps: 

The propagation steps for the state variables is as follows: 

1. Using the state variable differential equations propagate the state variables. For the 

quaternion, use the quaternion integration method described in [26]: 

𝑞 𝑡st% = exp
1
2
Ω 𝜔 Δ𝑡 +

1
48

Ω 𝜔 𝑡st% Ω 𝜔 𝑡s − Ω 𝜔 𝑡st% Ω 𝜔 𝑡st% Δ𝑡' 𝑞 𝑡s  

2. 𝐹G]	𝑎𝑛𝑑	𝑄G] are calculated based on the methods described in [24]. 
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3. State covariance matrix is calculated using 𝑃st% s = 𝐹]𝑃s s𝐹],/ + 𝑄]	[25]. 

3.2.4. Measurement Models: 

As noted earlier in the introduction of chapter 3, for robust state estimation, additional 

sensors are needed around the IMU. These sensors help in correcting drift from integration 

of IMU sensors. Note that the origin of the additional sensors does not coincide with that 

of the IMU. Hence, additional states must be added to the core state 𝑥G. These states include 

the displacement 𝑝H{  of the sensor from the IMU for the 6DOF and 3DOF sensors, the 

rotation 𝑞H{ of the sensor from the IMU frame, and a scaling factor 𝜆. Note that these states 

do not have any associated dynamics and are not updated during the propagation step: 

𝑝H{ = 0 

𝜆 = 0 

𝑞}{ = 0 

3.2.4.1. 6DOF Sensor: 

As mentioned in section 3.2.4, one needs additional states for a 6DOF sensor. The new 

state is defined as in [24]: 

𝑥 = 𝑥G		𝜆		𝑝H{
/		𝑞H{

/  

𝑧� = 𝑝>{ = 𝑝H{ + 𝐶>H . 𝑝H{ . 𝜆 + 𝑛� 

where 𝑧�	 is the position measurement from the sensor and 𝑛�  is the additive white 

Gaussian noise. The position error is defined as: 

𝑧� = 𝑧� − 𝑧� 

𝑧� = 𝑝H{ + 𝐶>H . 𝑝H{ . 𝜆 + 𝑛� − 𝑝H{ + 𝐶>H . 𝑝H{ . 𝜆 

where 𝑧� is the position estimate. 
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Also 𝑧� can be expressed using: 

𝑝 = ∆𝑝 + 𝑝 

𝐶 = 𝐶. (𝐼) + 𝑑𝜃× ) 

As indicated in [24], solving for 𝑧� using the above equations yields: 

𝑧� = Δ𝑝>H 𝜆+𝐶>H . Δ𝑝H{. 𝜆 − 𝐶>H 𝑝H{× . 𝛿𝜃. 𝜆 + 𝑝>H . Δλ + 𝐶>H . 𝑝H{. Δ𝜆 

The rotation measurement is  

𝑧e = 𝑞>{ ⨂𝑞{H⨂𝛿𝑞p 

Error rotation calculations are used to evaluate the following, like in [24]. 

𝑞 = 𝑞⨂𝛿𝑞 ⟺ 𝛿𝑞 = 𝑞∗⨂𝑞	𝑜𝑟	𝐶 = 𝐶. Δ𝐶 ⟺ Δ𝐶 = 𝐶/. 𝐶 

Rotation error is formulated as in [24]: 

Δ𝐶 = 𝐶/. 𝐶. Δ𝐶p 

Δ𝐶 = 𝐶H{
�. 𝐶>H

�. 𝐶>H . 𝐶H{. Δ𝐶p	𝑤𝑖𝑡ℎ	Δ𝐶 = 𝐼) + 𝛿𝜃×  

𝛿𝜃× = 𝐼) + 𝐶H{
�. 𝛿𝜃>H × . 𝐶H{ . 𝐼) + 𝛿𝜃H{× . 𝐼) + 𝛿𝜃p× − 𝐼) 

Higher order terms such as 𝛿𝜃×𝛿𝜃 are omitted. These terms only cause errors at the point 

of linearization where the expected value of these terms is zero. Also note that: 

C. 𝑥× . 𝐶/ = 𝐶. 𝑥×  

Hence following the discussion in [24], the estimation error can be calculated as: 

𝑑𝜃× ≈ 𝐶H{
�. 𝑑𝜃>H × . 𝐶H{ +	 𝑑𝜃H{× +	 𝑑𝜃p× 	

⇒ 𝑧e = 𝛿𝜃 = 𝐶H{
�. 𝑑𝜃>H + 	𝑑𝜃H{ + 𝛿𝜃p 

Thereafter, one can calculate the values for the Jacobians using the expressions obtained 

for 𝑧e  and 𝑧�  namely. This includes 𝐻� = 	
���
��
, 𝐻e =

���
��
, 𝑉� =

���
�p�

, 𝑉e =
���
����

.  Please 
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note that 𝐻  is the observability matrix obtained by stacking 𝐻�	and 𝐻e , 𝑃  is the state 

covariance matrix and 𝑉 is obtained by stacking 𝑉� and 𝑉e. 

Following which, proceed with the EKF correction steps as formulated in [24]: 

1. Calculate residual, i.e., the error in the estimate: 𝑧 = 𝑧�/	𝑧e/
/
 

2. Calculate Innovation: 𝑆 = 𝐻. 𝑃. 𝐻/ + 𝑉. 𝑅. 𝑉� 

3. Calculate Kalman Gain: 𝐾 = 𝑃.𝐻. 𝑆�% 

4. Calculate correction: 𝑥 = 𝐾. 𝑧 

5. Correct the states using the following equations: 

a. 𝛿𝑞 = 𝑞∗⨂𝑞; 𝛿𝑞 = 𝑞 %
'
𝛿𝜃/

/
 

b. 𝑥 = 𝑥 − 𝑥 for the remaining states 

6. State covariance is updated as:  

𝑃st% st% = 𝐼 + 𝐾.𝐻 . 𝑃st% s. 𝐼 + 𝐾.𝐻 / + 𝐾. 𝑉. 𝑅. 𝑉/. 𝐾/ 

3.2.4.2. 3DOF Sensor (GPS): 

In this section, we analyze inclusion of a 3DoF Sensor such as GPS or a laser tracker, which 

yields the position of the vehicle in the world frame. The rotation vector is irrelevant and 

is not included as the state 𝑞{H . Nonetheless, keep the scaling factor and the translational 

calibration state for the position vector from the IMU to the sensor as suggested in [25]. 

The state is described as:  

𝑥 = 𝑥G		𝜆		𝑝H{
/  

where  

𝑧� = 𝑝>{ = 𝑝H{ + 𝐶>H . 𝑝H{ . 𝜆 + 𝑛� 

The Jacobian calculations and the EKF update steps remain unchanged [25], [24]:  
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𝐻� = 	
𝜕𝑧�
𝜕𝑥 , 𝐻e =

𝜕𝑧e
𝜕𝑥 , 𝑉� =

𝜕𝑧�
𝜕𝑛�

, 𝑉e =
𝜕𝑧e
𝜕𝛿𝜃p

. 

Following which, proceed with the EKF correction steps as formulated in [24]:  

1. Calculate residual: 𝑧 = 𝑧�/
/
 

2. Calculate Innovation: 𝑆 = 𝐻. 𝑃. 𝐻/ + 𝑉. 𝑅. 𝑉/ 

3. Calculate Kalman Gain: 𝐾 = 𝑃.𝐻. 𝑆�% 

4. Calculate correction: 𝑥 = 𝐾. 𝑧 

5. Correct the states using the following equations: 

a. 𝛿𝑞 = 𝑞∗⨂𝑞; 𝛿𝑞 = 𝑞 %
'
𝛿𝜃/

/
 

b. 𝑥 = 𝑥 − 𝑥 for the remaining states 

6. State covariance is updated as:  

𝑃st% st% = 𝐼 + 𝐾.𝐻 . 𝑃st% s. 𝐼 + 𝐾.𝐻 / + 𝐾. 𝑉. 𝑅. 𝑉/. 𝐾/ 

3.3. Vulnerability of the State Estimator 

In section 3.1 and section 3.2, a background on EKF based state estimator frame work was 

provided to highlight the importance of the IMU at the core of the state estimator. The IMU 

measurements form the core of the EKF framework and are explicitly used in the “Time 

Update – Prediction Step” and implicitly affect the calculations of the state covariance and 

noise covariance matrix. Hence any attack on the IMU compromises the state estimator. 

Figure 10 depicts the normal operation of the state estimator and Figure 11 illustrates the 

impact of an attack on the IMU on the state estimator. 
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Figure 10: Extended Kalman Filter Framework 

 

Figure 11: State Estimator in the presence of an adversary 
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3.4. Summary 

This chapter presents a background on the essential components of state estimation in 

autonomous MAVs. Many essential aspects of state estimation, enabling autonomous 

flights with a MAV were covered. First, the different models used for the state estimation 

in MAVs were compared. The IMU model was identified as a better option for the state 

estimator. The IMU measurements received at rates of 1kHz were used for the prediction 

process of the state estimator and form an integral part of the state covariance matrix, noise 

covariance matrix calculations; hence, implicitly impacting the performance of the 

correction process of the state estimator as well. 

Thus, there is a necessity to secure the IMU from sensor attacks. The IMU 

measurements form the core of the state estimation process and must be safeguarded 

against any malicious intents. In the next chapter, a method of integrating a resilient sensor 

fusion technique while using redundant sensors to counteract the effect of attacks on the 

IMU is proposed. The background review on the state estimation process is vital to 

appreciate the need for protecting the IMU in a MAV. 

  



 

 

35 
 

4. Resilient State Estimation for MAVs 

Most cyber-physical systems and specifically MAVs are systems that continuously interact 

with dynamic and stochastic environments. Sensors are fundamental to transforming 

physical signals into logical signals, thereby providing an irreplaceable bridge between the 

real world and control systems. Sensors are undeniably one of the most important parts of 

automated control systems like MAVs. In this chapter, the problem of state estimation in 

the presence of compromised sensors is confronted. 

4.1. Related Work 

This section examines the current state of the art in resilient state estimation and secure 

control techniques against faults, failures, and attacks. It is a result of an exhaustive search 

of recent publications on our topics of interest.  

First, the latest research on attack models and attack techniques on cyber physical 

systems and control systems is reviewed in this chapter. In [4], Teixeira et al.  present an 

adversarial model for networked control system architecture. Using a typical control 

architecture for a networked control system, they analyze and present attack models for 

replay attacks, bias injection attacks, and zero dynamics. This work is useful for modeling 

attack spaces and threat vectors. In [27], Smith discussed a method to covertly modify 

sensor and actuator signals. He suggested that it can be accomplished by intruding the 

network or through physically modifying the sensors. He also proposes a parametrized 

feedback structure to gain control of a Linear time-invariant plant. The controller assumes 

that any disturbance or fault entering the system is comparable to an uncompromised 

setting. A malicious agent can construct such an attack using just the design of the plant; 
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knowledge of the controller is not needed. The above work advocates the case for 

safeguarding the sensors and the state estimation process. 

There have been numerous investigations into various approaches to secure general 

cyber-physical systems, based on different assumptions and conditions. Previous work 

done in the field of robust control [28] is not extendable to our problem of security since 

attacks cannot be modeled as bounded disturbances and can be random in nature.  

In [29], LeBlanc, Zhang, Koutsoukos, Sundaram attempt to tackle the problem of 

intra-network consensus in the presence of faulty nodes. The strategy is based on local 

information and is resilient to breaches, with an assumption that the compromised nodes 

have knowledge of the other nodes on the network. The authors provide necessary and 

sufficient conditions for the functional nodes to reach consensus in the presence of 

adversarial nodes. They argue that connectivity is not adequate and instead suggest a 

unique graph property called network robustness. Mitra and Sundaram [30], describe the 

problem of distributed state estimation in Linear time-invariant systems using a network of 

sensors, wherein some sensors are attacked to report faulty measurements. They developed 

a secure estimation strategy given a bounded Byzantine attack model, where compromised 

nodes have knowledge of the system dynamics and deviate from normal operation. They 

present sufficient guarantees for their estimation strategy. The relationship between the 

dynamics of the system, the graph structure, and the measurement structure of the nodes is 

discussed. Zhang and Sundaram [31] developed a resilient median-based consensus 

algorithm in the presence of faulty nodes. They claim that the consensus algorithm is 

computationally lightweight and is efficacious for multiple fault models. In [32], Sundaram 

and Hadjicostis present a distributed consensus algorithm that enables the system to 
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calculate an arbitrary state of the system in the presence of malicious/faulty nodes. They 

also calculate the maximum number of malicious nodes that the consensus algorithm can 

tolerate. 

Chabukswar, Mo, and Sinopoli [33], present a model based technique for detecting 

integrity attacks on sensors of a control system. They discuss the effect of an attack on a 

control system in steady state by replaying the sensor information. The paper then suggests 

a control algorithm that addresses this vulnerability by augmenting the controller using a 

zero-mean Gaussian authentication signal to the Linear Quadratic Gaussian optimal 

control. They also show that the authentication signal helps in detecting the replay attack 

with a side-effect of degraded control performance. They also structure a method to design 

the covariance of the authentication signal to reduce performance loss with detection 

guarantees. In [34], Mo, Weerakkody, Sinopoli suggest a method called physical 

watermarking as a method to ensure the correct operation of a control system. They identify 

that cryptography tools are ineffective against physical attacks on the system or internal or 

through malicious insiders. They suggest physical watermarking to physically authenticate 

cyber-physical components; given a noisy input sensor reading, the effect of the noisy 

measurement can be observed in the true output based on the system dynamics. An attacker 

cannot emulate the watermark because he cannot construct the output measurement that 

should correspond to the faulty sensor measurement.  

In [35], Pasqualetti et al. present a framework monitor to detect faults in linear 

systems and specifically in a power network caused by an adversary. They provide 

algorithms to design fault-monitoring filters for intruder detection. However, the number 

of monitor filters needed is combinatorially dependent on the number of sensors, leading 
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to concerns of scalability. Numerous researchers have attempted to model the attack and 

defense model within a game theory framework [36], [37], [38]. The attacker (modeled to 

maximize said cost) and the controller (modeled to minimize the same) are modeled as 

competitors in a game.  

In [39], Fawzi, Tabuada, and Diggavi present a secure state estimation method for 

arbitrary attacks on sensors and actuators with the assumption that the profile of the 

attacked sensors does not change. They show that one can design an output-feedback 

stabilization law using a state estimator resilient to attacks with a standard feedback law. 

In [40], Hu et al. present a secure state estimator that protects UAV against arbitrary and 

unbounded attacks, where the attacked sensors may change over time. The authors couple 

their secure state estimator with a standard Kalman filter (as a pre-filter) and identify better 

results. Shoukry et al. [41] present a secure state estimator using a satisfiability modulo 

theory approach. They leverage formal methods over real numbers to identify a secure state 

estimator that is sound, complete, and computationally efficient. They also present an upper 

bound on the runtime performance. Their analysis is made without assumptions about the 

attack model, on a multi-dimensional system with multiple sensors.  

Other attempts to solve the combinatorial state estimation problem have been done 

using brute force or convex relaxations. Chong et al. [42] present two different algorithms 

for secure state estimation. The algorithm uses the observability gramian and a consistency 

condition to select the correct estimate amongst multiple state estimates. They also present 

an observer that asymptotically converges to the right estimate based on the values of its 

past inputs and outputs. These approaches can be identified as brute force search 

techniques. In [43], Pajic et al. present a resilient state estimator that can be used in systems 
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with modeling errors. They also present a bound on the state estimation error. The authors 

model the state estimation problem as a 𝑙�minimization problem which is then relaxed into 

a convex 𝑙%/𝑙�	problem which can be solved in polynomial time. However, this relaxation 

may lead to incorrect estimates. 

The authors of [5], building on the work of [43], [44], and [45] present some of the 

novel work in the field of attack resilient cyber physical systems with a focus on attack 

resilient state estimators. [46], [47], [48], [49], and [50] present some more work on 

resilient state estimators for different attack models and assumptions. Pajic, Weimer, 

Bezzo, Sokolosky, Pappas, and Lee [5] describe their work on the development of an attack 

resilient cyber physical system and conclude with a case study on the cruise controller for 

an Autonomous Ground Vehicle. Following the work in [43], they address attack-resilient 

state estimation and provide respective robustness guarantees. They conclude that the 

maximal performance loss by a smart malicious agent exploiting the difference between 

the physical dynamic model of the system and the model used for state estimation is 

bounded and linear. The article also presents a technique to map latency, jitter, and 

synchronization faults to parameters of the state estimator. Thus, one may map control 

performance to real time specifications. Lastly, they discuss a technique to construct an 

assurance case which includes the model of the state estimator and the physical 

environment, along with the software structure of the controller. The modeling, robustness 

guarantees, and assumptions made throughout the study for the system of interest (model 

used for the study) are like a lot of other CPS control and estimation problems. 
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4.2. Resilient Sensor Fusion 

It is important to consider using redundant sensors to prevent a system breakdown due to 

sensor failure. Nonetheless, adding redundant sensors poses a new problem of fusing 

sensor measurements with varying and unpredictable error profiles. The system must 

identify faulty or error infused sensor readings from correct sensor readings.  

Sensor fusion discusses methods to combine data from independent sensors into 

one sensor reading while ensuring robustness, precision, accuracy, and reliability. 

Distributed sensing enables identifying the number of node failures the system can handle 

while maintaining correctness and reliability. This section examines and structures the 

problem of attack resilient sensor fusion for resilient state estimation in the presence of 

adversaries. Each sensor measurement is structured as an interval and the width of the 

interval is based on the noise profile of the sensor; reflecting the underlying accuracy of a 

sensor. The sensor fusion technique makes no assumptions about the system dynamics. 

Hence, a similar approach can be used for other comparable systems to structure resilient 

state estimators.  

The work integrates Brooks – Iyengar fusion, which outputs a fusion interval for a 

presumed set of compromised or spoofed sensors with the generic state estimator (Chapter 

3), to construct a resilient state estimator. A compromised/attacked sensor is any sensor 

that is under the effect of an adversary is defined.  

Sensor fusion is discussed in detail to highlight how a control system can be certain 

to make correct decisions in presence of compromised nodes or nodes under adversarial 

attacks. A summary of the Byzantine generals problem identified by Lamport et al. [51] is 

presented followed by a discussion on Brooks-Iyengar Fusion as the underlying sensor 
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fusion architecture to address the Byzantine generals problem. Other sensor fusion 

algorithms that improve the precision and accuracy of the measurements taken by multiple 

sensor networks include Approximate Consensus [52], In-exact Consensus [53], Byzantine 

Vector Consensus [54], and Multidimensional Agreement [55]. But, as concluded in [56], 

refer to Table 3, Brooks-Iyengar Fusion is a superior algorithm when compared in terms 

of maximum faulty nodes, convergence rate, accuracy, and precision of each round; against 

the other algorithms. 

Algorithm Approximate 

agreement 

FCA Approximate 

BVC 

Marzullo 

sensor fusion 

Brooks-Iyengar 

algorithm 

Input scalar scalar vector interval interval/hybrid 

Faulty PEs 

tolerated 
< 𝑁/2 < 	𝑁/3 

≤ 	 (𝑁	 − 	1)/(𝑑	

+ 	2) 
< 	𝑁/3 < 	𝑁/3 

Maximum 

faulty PEs 
< 	𝑁/3 < 	2𝑁/3 

≤ 	 (𝑁	 − 	1)/(𝑑	

+ 	2) 
< 	𝑁/2 < 	𝑁/2 

Convergence 

rate [21] 

1/(1 + [𝑁	 − 2𝜏	

− 1]) 
2𝜏	/𝑁 (1	 − 	𝛾) 2	 ∗ 	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 2𝜏	/𝑁 

Accuracy 
𝛿(𝑈) 

𝜅						 +	

𝛿𝜏	/𝑁 

in the convex 

hull 
[𝑎>n£�¤, 𝑏>n£�¤	] [𝑎>n£�¤, 𝑏>n£�¤	] 

Precision of 

each round 𝛿(𝑈)/2 2𝜏𝛿/𝑁 

(1 − 𝛾)(Ω¦	[𝑡

− 1] − µ¦[𝑡

− 1]) 

|𝑏>n£�'¤

− 𝑎>n£�'¤| 

|𝑏>n£�'¤

− 𝑎>n£�'¤|	/(1	

+ 	α) 

Table 3: Comparison of different sensor fusion techniques [56] 

The variables used in Table 3 are summarized below: 

1. 𝑁 is the number of sensors 
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2. 𝜏 is the number of faulty sensors 

3. 𝛿 𝑈 = max 𝑈 −min 𝑈   

4. 𝜅 refers to the accuracy, i.e., difference between the sensor’s observed value and 

the ground truth, i.e., max 𝑣� − 𝑣 ≤ 𝜅 

5. 𝑑 refers to the number of dimensions for BVC 

6. 𝛾 = %

£( ­
(­®¯))

 

7. Ω¦ = 𝑚𝑎𝑥%°s±=𝑣s¦ 𝑡  in 𝑚 non-faulty sensors, where 𝑣s¦ 𝑡  is the 𝑙 − 𝑡ℎ entry of 

the vector of the 𝑘 − 𝑡ℎ sensor in the 𝑡 − 𝑡ℎ round. 

8. µ¦ = 𝑚𝑖𝑛%°s±=𝑣s¦ 𝑡  in 𝑚 non-faulty sensors, where 𝑣s¦ 𝑡  is the 𝑙 − 𝑡ℎ entry of 

the vector of the 𝑘 − 𝑡ℎ sensor in the 𝑡 − 𝑡ℎ round. 

9. 𝑏² = 𝑚𝑜𝑠𝑡	𝑟𝑖𝑔ℎ𝑡	𝑒𝑛𝑑	𝑝𝑜𝑖𝑛𝑡	𝑜𝑓	𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠	𝑤𝑖𝑡ℎ	𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ≤ 𝑤  

10. 𝑎² = 𝑚𝑜𝑠𝑡	𝑙𝑒𝑓𝑡	𝑒𝑛𝑑	𝑝𝑜𝑖𝑛𝑡	𝑜𝑓	𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠	𝑤𝑖𝑡ℎ	𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ≤ 𝑤	  

11. 𝛼 = £�¤
('£�¤)¤

  

4.3. Byzantine Generals Problem 

The Byzantine generals problem is a decision-making problem that was formalized by 

Lamport et al. [51], in which a commander-in-chief has multiple regiments of the 

Byzantine army camped outside an enemy city. Each regiment is commanded by a general 

and the generals can communicate with the generals only through a messenger. The 

generals must observe the enemy’s actions and deduce a common plan of action. Though, 

some of the generals may be traitors and may attempt to obstruct the loyal generals from 

coming to a consensus. All the generals and their corresponding regiments must follow the 
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order of a reliable commander-in-chief for success. The problem demands an algorithm 

such that: 

1. All generals decide on the same plan of action. 

2. A small number of traitors should not direct the generals towards adopting a 

wrong plan. 

3. One can easily draw parallels between the generals problem and our problem of 

sensor consensus/fusion by making necessary analogies. It can be restated as a 

system of N nodes, amongst which p may be faulty. The algorithm must ensure 

that: 

4. The non-faulty nodes must come to a consensus about the data received from 

another node Z. 

5. If Z is non-faulty, the consensus must match the message received from Z. 

4.4. Brooks-Iyengar Sensor Fusion 

A formalization of the Brooks-Iyengar Sensor Fusion is established in this section. Brooks-

Iyengar Sensor Fusion merges the Fast Convergence Algorithm (FCA) presented by 

Mahaney and Schneider [53] with the optimal region algorithm to produce the Brooks 

Iyengar Algorithm which has superior accuracy and precision for distributed decision 

making. The abovementioned optimal region algorithm is based on Brooks and Iyengar’s 

Multidimensional Agreement algorithm [57] and is comparable to Marzullo’s fusion 

algorithm [58].  

Given a system with 𝑛  sensors and 𝜁  faulty sensors. Each sensor presents its 

measurement as an interval constructed using its precision. The output of the algorithm 

includes a point estimate of the measurement and a corresponding interval.  
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The algorithm follows the work of [59], [56]: 

Algorithm 1: Brooks-Iyengar Sensor Fusion Algorithm 

Input: 

The measurements sent by sensor 𝑘 where 1 ≤ 𝑘 ≤ 𝑁, and the interval received from 

sensor 𝑘 can be denoted as [𝑙s, ℎs]. Let 𝜁 be the number of faulty sensors. 

Output: 

As suggested earlier, the output is a point estimate and an interval of the measurement 

1. State estimator receives point estimate and corresponding interval from all the 

sensors. 

2. Take the union of the intervals of the collected measurements. 

3. Divide the union into mutually exclusive intervals based on the number of 

measurement intervals that intersect. We call the number of intersected intervals 

the weight for that interval. 

4. Identify intervals with weight less than 𝑁 − 𝜁. Let 𝑁 − 𝜁	be denoted as 𝐹. 

5. The set of remaining intervals 𝑆 = 𝐼%, 𝑤% … 𝐼¹, 𝑤¹  where 𝐼H	𝑎𝑛𝑑	𝑤H refer to 

the interval and weight for the 𝑖`º	sensor respectively 

6. The point estimate can be calculated as: 

𝑝 =
(𝑙H + ℎH)×𝑤H

2¹

𝑤H¹
 

7. The interval estimate is evaluated as (𝑙»h, ℎ»¼) 

 

 

According to [56], the accuracy of the sensor fusion measurement can be calculated as: 
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𝑝H − 𝑝 ≤ 𝑏²n£�½ − 𝑎²n£�½ ≤ min
½t%

𝑢 : 𝑢𝜖𝑈 	

𝑤ℎ𝑒𝑟𝑒	𝑝H	𝑖𝑠	𝑝𝑜𝑖𝑛𝑡	𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒	𝑓𝑜𝑟	𝑠𝑒𝑛𝑠𝑜𝑟	𝑖, 𝑢 	𝑑𝑒𝑛𝑜𝑡𝑒𝑠	𝑡ℎ𝑒	𝑙𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑢	

𝑎𝑛𝑑	𝑏² = 𝑚𝑜𝑠𝑡	𝑟𝑖𝑔ℎ𝑡	𝑒𝑛𝑑	𝑝𝑜𝑖𝑛𝑡	𝑜𝑓	𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠	𝑤𝑖𝑡ℎ	𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ≤ 𝑤	

𝑎𝑛𝑑	𝑎² = 𝑚𝑜𝑠𝑡	𝑙𝑒𝑓𝑡	𝑒𝑛𝑑	𝑝𝑜𝑖𝑛𝑡	𝑜𝑓	𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠	𝑤𝑖𝑡ℎ	𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ≤ 𝑤 

Also, the precision of the sensor fusion measurement can be calculated as in [56]: 

1
1 + 𝛼 𝑏²n£�½ − 𝑎²n£�½ 	

𝑤ℎ𝑒𝑟𝑒	𝛼 =
𝑁 − 𝜁

(2𝑁 − 𝜁)𝜁 

4.5. System Description 

Our system has 𝑛 sensors measuring some physical variables and communicating with the 

flight controller over a shared bus. The sensors deliver the measurement in the form of 

intervals. The controller then calculates an interval containing all possible values of the 

true state based on the given precision. Given a precision guarantee of ∆, an interval sized 

2∆ is constructed around the sensor measurement. The interval size may be expanded based 

on implementation restraints and delay or jitter sensitivities. The controller on receiving n 

intervals, fuses the measurements assuming 𝑓  faulty sensors. The fusion operates 

conservatively. A sensor is correct if its interval contains the true state value.  

4.5.1. Problem Statement 

The problem in this work is to neutralize an attack on the sensors. The attacker’s policy to 

maximize the impact of the attack is first formalized. The goal is to reach the correct state 

estimate despite compromised sensors. 
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4.5.2. Attack Model 

The fact that adversaries may control/spoof what sensor measurements are being passed to 

the controller is assumed. The attacker’s goal is to maximize the fused interval and lead to 

an incorrect point measurement while remaining undetected. Thus, the attacker can spoof 

the sensors to maximize the width of the fusion interval and greatly disrupt the performance 

of an air vehicle. As discussed in section 2.3.2.4, there are multiple ways of spoofing 

sensors, either by modifying the software of the flight controller or through physical means.  

Our attack model discusses attacks on the IMU of the MAV. As examined in 

chapter 3, since our state estimator uses the IMU readings instead of the MAV dynamic 

model to estimate the state, the system is heavily dependent on the IMU readings to ensure 

correct state estimation and consequently stable control.  

The defense model is to use multiple IMUs to ensure no single point of failure. This 

is a viable solution, since IMUs are inexpensive, have low power requirements, and are 

light-weight. At the same time, one may also argue that compromising all the IMUs on a 

given system is not possible. Also, it may be possible that not all the components of the 

IMU are compromised and may partly be functional. The system has multiple sensors that 

measure the angular velocity and linear acceleration. Before the sensor readings are sent to 

the controller, the readings are passed through a pre-filter to assess for possible attacks or 

faults and discard the compromised measurements. 
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Figure 12: Defense strategy against sensor spoofing attacks 

 

4.5.3. Fusion Methodology 

Brooks and Iyengar proposed an interval-based resilient sensor fusion algorithm, wherein 

the accuracy of the fused sensor reading is better than the individual sensor readings. The 

fusion algorithm provides a point estimate as well as an interval around the point estimate. 

The interval size is bounded if the number of faulty sensors are bounded. Brooks Iyengar 

fusion assumes an upper bound on the number of faulty measurements or sensors, i.e., 𝑛/3. 

The defense model is to use multiple IMUs to 
ensure no single point of failure. 

Discard the 
compromised 
measurement

-s.

Compromisin
-g all IMUs 
may not be 

possible

IMUs are 
inexpensive, 

have low 
power 

requirements, 
and are light-

weight. 
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The fusion algorithm outputs a fusion interval that is guaranteed to contain the true 

value. As discussed in 5.2. the fusion algorithm identifies the intersecting intervals and the 

corresponding weights. The fused estimate and interval is calculated by taking a weighted 

average of the intervals. 

1. If 𝑓 < 𝑛/3, then the fusion interval is bounded by a correct interval. 

2.  If 𝑓 < 𝑛/2, then the fusion interval is bounded by an interval which might 

not be correct.  

3. If 𝑓 ≥ 𝑛/2, then the fusion interval is not bounded and may not contain the 

correct measurement; where 𝑓	is the number of attacked sensors. 

4. For our analysis, we assume 𝒇 < 𝒏/𝟑. 

4.5.4. Attack Detection: 

The fusion algorithm as discussed in section 4.5.3. detects an attack by checking if an 

interval intersects the calculated fusion interval (from the un-attacked sensors). Intervals 

not intersecting the fusion interval correspond to the attacked sensor since they cannot 

contain the true value. A possible criticism of this sensor algorithm is that it handles sensor 

faults and sensor attacks equivalently.  

4.6. Secure State Estimator Structure 

A state estimator that uses Brook Iyengar Fusion to fuse the sensor readings from IMUs 

prior to feeding the angular velocity and linear acceleration measurements into the EKF 

based state estimator as discussed in chapter 4 is proposed. A model of our state estimator 

is described in Figure 9.  
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Figure 13: Secure State Estimator 

4.7. Summary 

In this chapter, a state of the art state estimation framework with an attack resilient sensor 

fusion technique to defend MAVs against sensor attacks was integrated. As highlighted in 

chapter 3, the IMU forms the core of the state estimation process. Since, IMUs are 

lightweight and have low energy requirements, we advocate using redundant IMUs to 

prevent a single point of failure and a compromised system. Consequently, we identify 

Brooks Iyengar Sensor Fusion as an attack resilient sensor fusion technique. The 

improvements in the state estimation resilience is exemplified through the simulations in 

Chapter 5. The experiments show that the resilient state estimator can correctly estimate 

the state of the system in the presence of sensor attacks.   
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5. Results and Analysis 

The results of the software in the loop simulation are discussed in this section. Following 

which is an analysis to verify the proposed state estimator’s performance and inferences 

that may be drawn from the results. The simulator was programmed in MATLAB 

(MATLABR_2015A) on a standard MacOSX personal computer. The simulations used the 

EuRoC MAV dataset [60], [61]. Available data includes [61]: 

• Stereo Images (Aptina MT9V034 global shutter, WVGA monochrome, 2×20 FPS)  

• MEMS IMU (ADIS16448, angular rate and acceleration, 200 Hz) 

• VICON motion capture system (6D pose)  

• Leica MS50 laser tracker (3D position)  

The dataset represents the sensor measurements of a MAV following programmed 

waypoints. The simulation represents a MAV installed with multiple IMUs, and is also 

receiving position measurements from a Leica Total Station. The outputs of these sensors 

are fused together to generate an estimate for the position, velocity, and attitude of the 

system. One or some of these IMU measurements are attacked. A uniformly distributed 

random attack is simulated. The comparative performance of the state estimators in 

different conditions is presented. Please note that the simulations of the state estimator do 

not include of the control dynamics and response of the system. While examining the 

performance of the generic state estimator in the presence of adversarial attacks, it is vital 

to respect that the deference of the estimated state from the ground truth will be amplified 

by the response of the flight controller. The flight controller which was programmed to 

follow a certain trajectory or to reach certain way points will make position control and 
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attitude control calculations based on the incorrect state estimate. This will lead to incorrect 

actuator controls and lead the quadrotor to incorrect positions and lead to a greater state 

estimate error. This effect will be propagated and lead to a severely erroneous system 

performance and unpredictable behavior. Incorrect control signals in unknown states may 

possibly lead to the system crashing due to compounding error factors. For all the 

simulations, the blue trajectory is the estimated position of the MAV state estimator, and 

the red trajectory is the ground truth trajectory obtained from the VICON motion capture 

system. Broadly, the simulations in this section describe: 

5.1. Generic state estimator performance without compromised sensors. 
 
This simulation (Figure 14) describes the performance of the generic state estimator when 

the sensors are operating correctly. The red trajectory represents the ground truth 

coordinates obtained from the VICON tracker. The blue trajectory is the estimated position 

of the MAV state estimator. The axes are indicative of the position along the X, Y, Z 

directions. 

 
Figure 14: Trajectory of a Quadrotor in nominal conditions while using the standard state 

estimator. 
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Figure 15, Figure 16, Figure 17 represent the estimated X, Y, and Z positions of the 

MAV (blue trajectory) along with the ground truth X, Y, and Z positions of the MAV 

(red trajectory). The state estimator correctly tracks the position of the MAV. 

 
Figure 15: Position of Quadrotor along X-axis in nominal conditions while using the 

standard state estimator 

 
Figure 16: Position of Quadrotor along Y-axis in nominal conditions while using the 

standard state estimator. 
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Figure 17: Position of Quadrotor along Z-axis in nominal conditions while using the 

standard state estimator. 

5.2. Generic state estimator performance in the presence of sensor attacks. 
This simulation (Figure 18) describes the performance of the generic state estimator when 

the IMU is under attack. The red trajectory represents the ground truth coordinates obtained 

from the VICON tracker. The blue trajectory is the estimated position of the MAV state 

estimator. The axes are indicative of the position along the X, Y, Z directions. The state 

estimator fails to estimate the position of the MAV. 

 
Figure 18: Trajectory of a Quadrotor under adversarial attacks while using the standard 

state estimator 

Time(s) #104
0 0.5 1 1.5 2 2.5 3 3.5 4

Po
si

tio
n 

al
on

g 
Z 

ax
is

(m
)

-1.5

-1

-0.5

0

0.5

1

1.5
Z Coordinate Estimate and Actual Value

Estimated Position
Ground Truth

10

Position along X axis(m)

5

Position in 3-D Frame(Trajectory)

0

-5-5

Position along Y axis(m)

0

5

3

2

-4

-3

-2

-1

0

1

5

4

10

Po
si

tio
n 

al
on

g 
Z 

ax
is

(m
)

Estimated Position
Ground Truth



 

 

54 
 

 
Figure 19, Figure 20, Figure 21 represent the estimated X, Y, and Z positions of the MAV 

(blue trajectory) along with the ground truth X, Y, and Z positions of the MAV (red 

trajectory). 

 
Figure 19: Position of Quadrotor along X-axis under adversarial attacks while using the 

standard state estimator 

 

 
Figure 20: Position of Quadrotor along Y-axis under adversarial attacks while using the 

standard state estimator. 
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Figure 21: Position of Quadrotor along Z-axis under adversarial attacks while using the 

standard state estimator. 

5.3. Secure state estimator performance in the presence of sensor attacks. 

This simulation (Figure 22) describes the performance of the resilient state estimator when 

the sensors are operating correctly. The red trajectory represents the ground truth 

coordinates obtained from the VICON tracker. The blue trajectory is the estimated position 

of the MAV state estimator. The axes are indicative of the position along the X, Y, Z 

directions. 
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Figure 22: Trajectory of a Quadrotor under adversarial attacks while using the secure 

state estimator. 

Figure 23, Figure 24, Figure 25 represent the estimated X, Y, and Z positions of the MAV 

(blue trajectory) along with the ground truth X, Y, and Z positions of the MAV (red 

trajectory). We observe an improved performance of the state estimation process with the 

integrated resilient sensor fusion module. The resilient state estimator correctly estimates 

the state of the MAV. 

 
Figure 23: Position of Quadrotor along X-axis under adversarial attacks while using the 

secure state estimator. 
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Figure 24: Position of Quadrotor along Y-axis under adversarial attacks while using the 

secure state estimator. 

 
Figure 25: Position of Quadrotor along Z-axis under adversarial attacks while using the 

secure state estimator. 

5.4. Quantitative Comparison 

We evaluate the performance of the state estimators based on the Hausdorff distance [62]. 

The Hausdorff distance is a metric that compares the distance between two sets of spaces. 

It is used as a measure of trajectory similarity. The results of the Hausdorff distance 

calculations are mentioned in Table 4. A smaller value indicates a high similarity between 
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two trajectories. In the simulations, the ground truth trajectory and the estimated 

trajectories are compared. 

Simulation 
Haursdroff 

Distance 

Generic State Estimator without Attack 0.3717 

Generic State Estimator with sensors under attack 5.9983 

Resilient State Estimator with sensors under attack 0.4819 

Table 4: Quantitative comparison of State Estimator Performance 

5.5. Summary 

This chapter presents a proof of concept for the performance of the integrated resilient state 

estimator for MAVs in the presence of attacks on the IMU. The generic state estimator fails 

to correctly estimate the state of the MAV in the presence of attacks on the MAV (Figures 

18 – 21). However, as observed in Figures 22 – 25, the resilient state estimator could 

successfully estimate the position of the MAV. A quantitative comparison between the 

state estimators is also presented in the form of the Hausdorff distance metric. In the next 

chapter, we conclude the thesis and set directions for the future work. 
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6. Conclusion and Future Work 

The thesis investigated and presented a solution to the resilient state estimation problem. 

We integrated a state of the art state estimator with a resilient sensor fusion technique, and 

could reconstruct the state of the MAV in the presence of adversarial attacks. This is vital 

for existing commercial MAVs, for future drone delivery systems, and for other 

applications of MAVs. The proposed resilient state estimator makes no assumptions about 

the attack signal model. 

Based on the formalization of Brooks Iyengar Fusion, one can fuse the 

measurements from the attacked sensors to give an accurate fused point estimate and an 

interval. Brooks Iyengar fusion is combined and used as a pre-filter to the EKF based state 

estimator for fusing multiple sensor measurements of the same physical signal. The 

performance of the generic state estimator and the proposed resilient state estimator is 

compared after introducing an attack on a sensor, i.e., modifying sensor readings. 

Specifically, simulations to show the performance of secure state estimators in navigation 

of a quadrotor under sensor attacks on the IMU, refer to Figure 10 – Figure 21. The number 

of attacks that can be tolerated, i.e., the number of sensors that can be attacked is a 

maximum of 𝑛/3 sensors while maintaining safe operation. 

6.1. Contributions 

The research goals were identified in the beginning of the thesis and have been addressed. 

The security vulnerabilities of MAVs, i.e., the different threat vectors were identified in 

chapter 2 (RG-1). In chapter 3, the current state of the art state estimation technique used 

in MAVs (RG - 2) was summarized to study the impact of sensor attacks on a generic state 
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estimator. Propositions to improve the existing state estimator were stated in chapter 4, 

where Brooks-Iyengar sensor fusion was identified as a viable solution (RG - 2 & RG - 3). 

Chapter 5 offered a proof-of-concept for our resilient state estimator (RG - 4) through a 

case study. 

The primary contributions of this thesis are: 

1. By understanding the state estimation process of MAVs, we identify the importance 

of the IMU as the most vulnerable attack surface for a MAV.  

2. Having identified the IMU as the most vulnerable component of the MAV state 

estimation process, we develop a resilient state estimator for the MAV using 

existing results in resilient fusion. An important feature of the fusion algorithm is 

that it makes no assumptions about the system dynamics. 

3. The resilient state estimator was validated by implementing it on a real dataset 

containing IMU, Leica, VICON data obtained from a MAV. The performance of 

the resilient state estimator is exemplified in chapter 5.  

As a final comment, it is important to admit that much of the motivation and enthusiasm 

for this work is derived from the foresight of the future of MAVs. In the end, it is this vision 

that provided the guiding framework. However, it is equally critical to realize that many of 

the results and techniques developed in this thesis are not limited to MAVs. For example, 

a similar pre-filter sensor fusion approach is likely to be relevant for other autonomous 

vehicles – for autonomous cars, such redundancy could be useful for wheel encoders 

measuring the velocity of the car. Thus, even though MAVs motivated this thesis, its 

impact is likely to transcend to other robotic applications. 
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6.2. Future Work 

Future directions for the work are to construct a resilient state estimator by adding 

redundancy in measured variables measured by different types of sensors. For example, if 

one wants to secure the velocity of a given MAV. Instead of using velocity measurements 

from redundant sensors of a single type that measure velocity like a GPS, the estimator can 

be modified to fuse measured velocity from different sensors like a GPS, IMU, Camera, 

LIDAR, etc. Redundancy through a broader range of sensors will make the system even 

more robust. One can also improve the attack detection procedure by leveraging the 

system’s dynamical model. 

Moreover, a major underlying assumption is that uncompromised sensors provide 

error-free measurements. An extension of this work would be to introduce random faults 

in the sensor measurements and study the system performance in more generalized 

conditions.  

Another possible extension of this work is to incorporate sensor measurement 

history to better tune the state estimator to ignore faulty measurements. One may utilize 

past measurements in conjunction with a dynamical model of the system to reduce the size 

of the convex hull of the measurement intervals of the sensor readings and improve the 

precision of the fusion algorithm.  

Finally, to better study the performance of the resilient state estimator, the next step 

is to implement a controller for the MAV and observe the response of the MAV when it 

uses the resilient state estimator. 



 

 

62 
 

Appendix A 

Appendix A presents the MATLAB code and helper functions used to simulate the state 
estimator. 

1. Main Function 
 

% Date: Thu, 20 Feb, 2017 

% Last updated: 15 March, 2017 

% Author: Akshay Prasad 

% Organization: University of Maryland, College Park (MSSE Student) 

%  

% Project: Secure State Estimation for Quadrotors 

% Component: Simulator - Main Function 

%  

% Description:This function is the main script to simulate the state 

% estimator. 

%  

% {trawny2005indirect, 

%   title={Indirect Kalman filter for 3D attitude estimation}, 

%   author={Trawny, Nikolas and Roumeliotis, Stergios I}, 

%   journal={University of Minnesota, Dept. of Comp. Sci. \& Eng., Tech. Rep}, 

%   volume={2}, 

%   year={2005} 

% } 

%---------------------------Clearing Values-------------------------------- 

clc; 

clear; 

%-----------------------Defining Filter Parameters------------------------- 

n=20; %number of states 

currTime=0; 

%------------------------------Noise values-------------------------------- 
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r=0.1;    %std of measurement 

errZ=0.01*eye(3); %Leica Measurement Noise Covariance Matrix 

%Process Noise Covariance Matrix 

varNw=0.00135;varMatNw=varNw^2*eye(3); 

varBw=0.00011;varMatBw=varBw^2*eye(3); 

varNa=(0.023*1e-6);varMatNa=varNa^2*eye(3); 

varBa=(0.011/60);varMatBa=varBa^2*eye(3); 

zer=zeros(3); 

Qc=[varMatNa zer zer zer; 

    zer varMatBa zer zer; 

    zer zer varMatNw zer; 

    zer zer zer varMatBw]; 

%-----------------------------Alotting Space------------------------------- 

%initial estimate         

x=zeros(n,1); 

x(17,1)=1; 

x(7:10)=.1; 

P = eye(n-1);                           % initial state covraiance                                     

% total dynamic steps                         

%------------------------Feed Sensor Data------------------------------ 

fileID = fopen('imu.csv'); 

csvRawData = textscan(fileID, '%u64,%f,%f,%f,%f,%f,%f', 'headerLines', 1); 

imudata1.t = csvRawData{1}'; 

imudata1.omega = [csvRawData{2}, csvRawData{3}, csvRawData{4}]'; 

imudata1.a = [csvRawData{5}, csvRawData{6}, csvRawData{7}]'; 

fileID = fopen('imu.csv'); 

csvRawData = textscan(fileID, '%u64,%f,%f,%f,%f,%f,%f', 'headerLines', 1); 

imudata2.t = csvRawData{1}'; 

imudata2.omega = [csvRawData{2}, csvRawData{3}, csvRawData{4}]'; 

imudata2.a = [csvRawData{5}, csvRawData{6}, csvRawData{7}]'; 
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 imudata2.a=imudata2.a+10; 

  imudata2.omega=imudata2.omega; 

fileID = fopen('imu.csv'); 

csvRawData = textscan(fileID, '%u64,%f,%f,%f,%f,%f,%f', 'headerLines', 1); 

%Attacked IMU 

  

imudata3.t = csvRawData{1}'; 

imudata3.omega = [csvRawData{2}, csvRawData{3}, csvRawData{4}]'; 

imudata3.a = [csvRawData{5}, csvRawData{6}, csvRawData{7}]'; 

imudata3.a= imudata3.a+varNa*randn(3,36820); 

imudata4.t = csvRawData{1}'; 

imudata4.omega = [csvRawData{2}, csvRawData{3}, csvRawData{4}]'; 

imudata4.a = [csvRawData{5}, csvRawData{6}, csvRawData{7}]'; 

imudata4.a= imudata4.a+varNa*randn(3,36820); 

fileID = fopen('leica.csv'); 

csvRawData = textscan(fileID, '%u64,%f,%f,%f', 'headerLines', 1); 

leicadata.t = csvRawData{1}'; 

leicadata.pos = [csvRawData{2}, csvRawData{3}, csvRawData{4}]'; 

fileID = fopen('ground.csv'); 

csvRawData = textscan(fileID, 

'%u64,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f', 'headerLines', 1); 

grounddata.t = csvRawData{1}'; 

grounddata.pos = [csvRawData{2}, csvRawData{3}, csvRawData{4}]'; 

grounddata.vel=[csvRawData{5}, csvRawData{6}, csvRawData{7}]'; 

grounddata.quat=[csvRawData{8}, csvRawData{9}, 

csvRawData{10},csvRawData{11}]'; 

grounddata.biasw=[csvRawData{12}, csvRawData{13}, csvRawData{14}]'; 

grounddata.biasa=[csvRawData{15}, csvRawData{16}, csvRawData{17}]'; 

prevTime=min(imudata1.t(1),leicadata.t(1)); 

measItr=1; 

xV = zeros(n,numel(imudata1.t));     %estimate         
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sV = zeros(n,numel(imudata1.t));          %actual   

xV(:,1)=x; 

k=2; 

ctr=2; 

%-----------------------Filter operation---------------------------------- 

while(k<numel(imudata1.t)) 

    if(imudata1.t(k)<leicadata.t(measItr)) 

        currTime=imudata1.t(k); 

        g=[0;0;9.8]; 

        dt=double(currTime-prevTime)/1e9; 

        sV(1:3,ctr)=leicadata.pos(1:3,measItr); 

        w0=imudata2.omega(1:3,k-1); 

        w1=imudata2.omega(1:3,k); 

%        a11=marzulloFusion({[imudata1.a(1,k)-2.5,imudata1.a(1,k)+1],[imudata2.a(1,k)-

8,imudata2.a(1,k)+7],[imudata3.a(1,k)-2,imudata3.a(1,k)+1],[imudata4.a(1,k)-

1,imudata4.a(1,k)+2]},4,1); 

%         a12=marzulloFusion({[imudata1.a(2,k)-2.5,imudata1.a(2,k)+1],[imudata2.a(2,k)-

8,imudata2.a(2,k)+7],[imudata3.a(2,k)-2,imudata3.a(2,k)+1],[imudata4.a(2,k)-

1,imudata4.a(2,k)+2]},4,1); 

%         a13=marzulloFusion({[imudata1.a(3,k)-2.5,imudata1.a(3,k)+1],[imudata2.a(3,k)-

8,imudata2.a(3,k)+7],[imudata3.a(3,k)-2,imudata3.a(3,k)+1],[imudata4.a(3,k)-

1,imudata4.a(3,k)+2]},4,1); 

%         a1=[a11;a12;a13]; 

%         a11=approxAgreement([imudata1.a(1,k);imudata2.a(1,k);imudata3.a(1,k);imudat

a4.a(1,k)],1); 

%         a12=approxAgreement([imudata1.a(2,k);imudata2.a(2,k);imudata3.a(2,k);imudat

a4.a(2,k)],1); 

%         a13=approxAgreement([imudata1.a(3,k);imudata2.a(3,k);imudata3.a(3,k);imudat

a4.a(3,k)],1); 

%         a1=[a11;a12;a13]; 
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% a1=(imudata1.a(1:3,k)+imudata2.a(1:3,k)+imudata3.a(1:3,k)+imudata4.a(1:3,k))/4; 

a11=sensorFusion({[imudata1.a(1,k)-0.5,imudata1.a(1,k)+0.5],[imudata2.a(1,k)-

0.5,imudata2.a(1,k)+0.5],[imudata3.a(1,k)-0.5,imudata3.a(1,k)+0.5],[imudata4.a(1,k)-

0.5,imudata4.a(1,k)+0.5]},4,1); 

        a12=sensorFusion({[imudata1.a(2,k)-0.5,imudata1.a(2,k)+0.5],[imudata2.a(2,k)-

0.5,imudata2.a(2,k)+0.5],[imudata3.a(2,k)-0.5,imudata3.a(2,k)+0.5],[imudata4.a(2,k)-

0.5,imudata4.a(2,k)+0.5]},4,1); 

        a13=sensorFusion({[imudata1.a(3,k)-0.5,imudata1.a(3,k)+0.5],[imudata2.a(3,k)-

0.5,imudata2.a(3,k)+0.5],[imudata3.a(3,k)-0.5,imudata3.a(3,k)+0.5],[imudata4.a(3,k)-

0.5,imudata4.a(3,k)+0.5]},4,1); 

        a1=[a11;a12;a13]; 

        pos_hat_avg_0=xV(1:3,ctr-1); 

        vel_hat_avg_0=xV(4:6,ctr-1); 

        q_hat_avg_0 = xV(7:10,ctr-1); 

        bw=xV(11:13,ctr-1); 

        ba = xV(14:16,ctr-1); 

        lambda = xV(17,ctr-1); 

        posgps = xV(18:20,ctr-1); 

        C=qGetRotation(q_hat_avg_0); 

        w_hat_0 = w0; 

        %State Propogation 

        % We instead proceed as follows: 

        % 1. We propagate the bias (assuming the bias is constant over the integration 

interval) 

        ba1 = ba; % TODO : Here is a problem : we have no way of validating or updating 

the bias. Update it externally periodically can do the trick. 

        bw1 = bw; 

        % 2. Using the measurement w1 and b1, we form the estimate of the new turn rate 

w_hat_1 

        w_hat_1 = w1-bw1 ; 

        a_hat_1 = C'*(a1-ba1)-g; 
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        % 3. We propagate the quaternion using a first order integrator with w_hat_0 and 

w_hat_1 tp obtain q_hat_avg_1 

        w_avg = (w_hat_0 + w_hat_1) / 2; 

        pos_hat_avg_1= pos_hat_avg_0+vel_hat_avg_0*dt; 

        vel_hat_avg_1=vel_hat_avg_0+a_hat_1*dt; 

        q_hat_avg_1 = NormalizeV((expm(1/2*Omega(w_avg)*dt) + 

1/48*(Omega(w_hat_1)*Omega(w_hat_0) - Omega(w_hat_0)*Omega(w_hat_1))*dt^2) 

* q_hat_avg_0); 

        lambda1=lambda; 

        posgps1=posgps; 

        C=qGetRotation(q_hat_avg_1); 

        xV(:,ctr)=[pos_hat_avg_1;vel_hat_avg_1;q_hat_avg_1;bw1;ba1;lambda1;posgps1]; 

        F = propogateMatrix(a1,w1,ba1,bw1,C,dt); 

        Qd=returnQd(a1,w1,ba1,bw1,C,dt,Qc); 

        % 5. We Compute the state covariance matrix according to the Extended Kalman 

Filter equation 

        P=double(P); 

        P = double(F*P*F' + Qd); 

        prevTime=imudata1.t(k); 

        k=k+1; 

        ctr=ctr+1; 

    else 

        currTime=leicadata.t(measItr); 

        dt=double(currTime-prevTime)/1e9; 

        sV(1:3,ctr)=leicadata.pos(1:3,measItr); 

        w0=imudata2.omega(1:3,k-1); 

        w1=imudata2.omega(1:3,k); 

%         a11=marzulloFusion({[imudata1.a(1,k)-2.5,imudata1.a(1,k)+1],[imudata2.a(1,k)-

8,imudata2.a(1,k)+7],[imudata3.a(1,k)-2,imudata3.a(1,k)+1],[imudata4.a(1,k)-

1,imudata4.a(1,k)+2]},4,1); 
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%         a12=marzulloFusion({[imudata1.a(2,k)-2.5,imudata1.a(2,k)+1],[imudata2.a(2,k)-

8,imudata2.a(2,k)+7],[imudata3.a(2,k)-2,imudata3.a(2,k)+1],[imudata4.a(2,k)-

1,imudata4.a(2,k)+2]},4,1); 

%         a13=marzulloFusion({[imudata1.a(3,k)-2.5,imudata1.a(3,k)+1],[imudata2.a(3,k)-

8,imudata2.a(3,k)+7],[imudata3.a(3,k)-2,imudata3.a(3,k)+1],[imudata4.a(3,k)-

1,imudata4.a(3,k)+2]},4,1); 

%         a1=[a11;a12;a13]; 

% a1=(imudata1.a(1:3,k)+imudata2.a(1:3,k)+imudata3.a(1:3,k)+imudata4.a(1:3,k))/4; 

% 

a11=approxAgreement([imudata1.a(1,k);imudata2.a(1,k);imudata3.a(1,k);imudata4.a(1,k

)],1); 

%         a12=approxAgreement([imudata1.a(2,k);imudata2.a(2,k);imudata3.a(2,k);imudat

a4.a(2,k)],1); 

%         a13=approxAgreement([imudata1.a(3,k);imudata2.a(3,k);imudata3.a(3,k);imudat

a4.a(3,k)],1); 

%         a1=[a11;a12;a13]; 

a11=sensorFusion({[imudata1.a(1,k)-0.5,imudata1.a(1,k)+0.5],[imudata2.a(1,k)-

0.5,imudata2.a(1,k)+0.5],[imudata3.a(1,k)-0.5,imudata3.a(1,k)+0.5],[imudata4.a(1,k)-

0.5,imudata4.a(1,k)+0.5]},4,1); 

        a12=sensorFusion({[imudata1.a(2,k)-0.5,imudata1.a(2,k)+0.5],[imudata2.a(2,k)-

0.5,imudata2.a(2,k)+0.5],[imudata3.a(2,k)-0.5,imudata3.a(2,k)+0.5],[imudata4.a(2,k)-

0.5,imudata4.a(2,k)+0.5]},4,1); 

        a13=sensorFusion({[imudata1.a(3,k)-0.5,imudata1.a(3,k)+0.5],[imudata2.a(3,k)-

0.5,imudata2.a(3,k)+0.5],[imudata3.a(3,k)-0.5,imudata3.a(3,k)+0.5],[imudata4.a(3,k)-

0.5,imudata4.a(3,k)+0.5]},4,1); 

        a1=[a11;a12;a13]; 

        pos1=leicadata.pos(1:3,measItr); 

        [xV(:,ctr),P]=ekf(Qc,xV(:,ctr-1),P,[w0 w1],a1,pos1,errZ,dt); 

        P=double(P); 

        prevTime=leicadata.t(measItr); 

        measItr=measItr+1;   
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        ctr=ctr+1; 

    end 

end 

  

figure 

[t,len]=size(xV); 

plot3(xV(1,2:len),xV(2,2:len),xV(3,2:len),grounddata.pos(1,:),grounddata.pos(2,:),groun

ddata.pos(3,:)) 

title('Position in 3-D Frame(Trajectory)') 

xlabel('Position along X axis(m)') 

ylabel('Position along Y axis(m)') 

zlabel('Position along Z axis(m)') 

legend('Estimated Position','Ground Truth','Location','northwest'); 

  

figure 

hold on 

plot(xV(1,2:len)) 

plot(grounddata.pos(1,:)) 

title('X Coordinate Estimate and Actual Value') 

ylabel('Position along X axis(m)') 

xlabel('Time(s)') 

legend('Estimated Position','Ground Truth','Location','northwest'); 

  

figure 

hold on 

plot(xV(2,2:len)) 

plot(grounddata.pos(2,:)) 

title('Y Coordinate Estimate and Actual Value') 

ylabel('Position along Y axis(m)') 

xlabel('Time(s)') 

legend('Estimated Position','Ground Truth','Location','northwest'); 
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figure 

hold on 

plot(xV(3,2:len)) 

plot(grounddata.pos(3,:)) 

title('Z Coordinate Estimate and Actual Value') 

ylabel('Position along Z axis(m)') 

xlabel('Time(s)') 

legend('Estimated Position','Ground Truth','Location','northwest'); 
  

2. EKF Function 

 

% Date: Thu, 20 Feb, 2017 

% Last updated: 15 March, 2017 

% Author: Akshay Prasad 

% Organization: University of Maryland, College Park (MSSE Student) 

%  

% Project: Secure State Estimation for Quadrotors 

% Component: Simulator - Extended Kalman Filter 

%  

% Description:This function is responsible for the EKF Predict and Update 

% steps. 

function [ xV1, P1] = ekf( Qc,xV0, P0, w,a1,gps0,  errZ, dt) 

% xV0 = current estimate of state 

% w1=input gyroscope readings 

% a1 = input accelerometer readings 

% gps0 = input gps readings 

% P0 = state covariance matrix 

% Qc = noise covariance matrix 

%% Initial Setup 

varNw=0.0135; 
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varNa=(0.23*1e-6); 

% We have gyroscope measurements w0 and w1.  

w0 = w(:,1); 

w1 = w(:,2); 

% Gravity 

g=[0;0;9.8]; 

% We have an estimate of the quaternion q_hat_avg and the bias b0 

% xV0 = [pos; vel; q_hat_avg_0 ;ba; bw;lambda;pos] 

pos_hat_avg_0=xV0(1:3); 

vel_hat_avg_0=xV0(4:6); 

q_hat_avg_0 = xV0(7:10); 

bw_0=xV0(11:13); 

ba_0 = xV0(14:16); 

lambda_0 = xV0(17); 

posgps_0 = xV0(18:20); 

  

C=qGetRotation(q_hat_avg_0); 

w_hat_0 = w0 - bw_0-varNw*randn; 

%% State Prediction 

% Propagate the bias 

ba1 = ba_0;  

bw1 = bw_0; 

% Estimate new angular velocity and linear acceleration using the measurement w1 and 

b1 

w_hat_1 = w1 - bw1-varNw*randn; 

a_hat_1 = C'*(a1 - ba1-varNa*randn)-g; 

% Propagate the quaternion using first order integrator  

w_avg = (w_hat_0 + w_hat_1) / 2; 

pos_hat_avg_1= pos_hat_avg_0+vel_hat_avg_0*dt; 

vel_hat_avg_1=vel_hat_avg_0+a_hat_1*dt; 
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q_hat_avg_1 = NormalizeV((exp(1/2*Omega(w_avg)*dt) + 

1/48*(Omega(w_hat_1)*Omega(w_hat_0) - Omega(w_hat_0)*Omega(w_hat_1))*dt^2) 

* q_hat_avg_0); 

lambda1=lambda_0; 

posgps1=posgps_0; 

xV0=[pos_hat_avg_1;vel_hat_avg_1;q_hat_avg_1;bw1;ba1;lambda1;posgps1]; 

% Compute the transition matrix F and Qd 

C=qGetRotation(q_hat_avg_1); 

F = propogateMatrix(a1,w1,ba1,bw1,C,dt); 

Qd=returnQd(a1,w1,ba1,bw1,C,dt,Qc); 

% Update the state covariance matrix  

P1_ = F*P0*F' + Qd; 

  

%% Compute Kalman Gain 

% Calculate the measurement matrix H  

H = returnH(lambda1,C,posgps1,pos_hat_avg_1); 

S = H*P1_*H' + errZ; 

K = P1_*(H'*inv(S)); 

  

% Calculate residual error r according to r = z - z_hat 

r=gps0-pos_hat_avg_1; 

deltax=double(K*r); 

dq=deltax(7:9)/2; 

if (dq'*dq) > 1 

    dq_hat_avg_1 = (1/sqrt(1 + (dq'*dq))) * [dq ; 1]; 

else 

    dq_hat_avg_1 = [dq ; (sqrt(1 - (dq'*dq)))]; 

end 

q = quaternionMult(dq_hat_avg_1, q_hat_avg_1); 

temp=[deltax(1:6);q;deltax(10:19)]; 

xV1=xV0+temp; 
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xV1(7:10)=q; 

P1 = double((eye(19) - K*H) * P1_ * (eye(19) - K*H)' + K*errZ*K'); 

end 

3. Brooks Iyengar Sensor Fusion Function 

 

% Date: Thu, 20 Feb, 2017 

% Last updated: 15 March, 2017 

% Author: Akshay Prasad 

% Organization: University of Maryland, College Park (MSSE Student) 

%  

% Project: Secure State Estimation for Quadrotors 

% Component: Simulator - Brooks Iyengar Fusion 

%  

% Description:This function is used to fuse the readings from the IMUs 

% using the Brooks-Iyengar Fusion 

%  

  

  

function [pointEstimate] = sensorFusion(intervals, N, a) 

     

    %Divide intervals into mutually exclusive intervals...HOW? 

     

    %create empty array that will store all possible interval bounds (upper as well as 

lower, independently) 

    I = []; 

     

    %now fill up this array with all values from intervals 

    for i = 1 : N 

        I = [I intervals{i}(1) intervals{i}(2)]; 

    end 
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    % delete repeated values from this array and sort it 

    I = unique(I); 

     

    %now create an empty cell array, each of whose entries will store the 

    %newly created intervals from I(i) & I(i+1), as well as the weights of 

    %each interval 

    A = {}; 

    for i = 1 : (length(I) - 1) 

        w = 0; 

        x1 = I(i); 

        y1 = I(i+1); 

        for j = 1 : N 

            x2 = intervals{j}(1); 

            y2 = intervals{j}(2); 

            %fprintf("[%f,%f] ... [%f,%f] ... ? \n",x1,y1,x2,y2) 

            if ((x1 <= x2) && (x2 < y1)) || ((x1 < y2) && (y2 < y1)) || ((x1 >= x2) && (x1 < 

y2)) || ((y1 > x2)&&(y1 < y2)) 

                w = w + 1; 

                %fprintf("\tyes! w = %d\n") 

            end 

        end 

        A{i} = {[x1, y1],w}; 

        %fprintf("[%f, %f],%d\n",A{i}{1}(1),A{i}{1}(2),A{i}{2}) 

    end 

  

    %Let's say after the above step, we obtain our new intervals with the 

    %corresponding weights 

    %remove intervals with weights less than N - a  

    %{ 

    for i = length(A):1 
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        %disp(A{i}{1}(1)) 

        %disp(A{i}{1}(2)) 

        w = (A{i}{2}); 

        if (w < N - a) 

            A(:,i) = []; 

            disp(A{i}) 

        end 

    end 

    %} 

     

    %let's just print A to see everything is fine 

     

    %{ 

    for i = 1 : length(A) 

        fprintf("[%f, %f],%d\n",A{i}{1}(1),A{i}{1}(2),A{i}{2})   

    end 

    %} 

     

     

    foundFirstInterval = false; 

    lastInterval = 0; 

    firstInterval = 0; 

     

    P_E_Numerator = 0; 

    P_E_Denominator = 0; 

     

    for i = 1 : length(A) 

        if(A{i}{2} >= N-a) 

            %fprintf("%d >= %d ? \n",A{i}{2}, N-a) 

            if (foundFirstInterval == false)  

                foundFirstInterval = true; 
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                firstInterval = A{i}{1}(1); %first found interval where W >= N-a is the overall 

lower interval 

            end 

            lastInterval = A{i}{1}(2);      %last interval will always be the latest interval for 

W >= N-a 

            P_E_Numerator = P_E_Numerator + A{i}{2}*(A{i}{1}(1) + A{i}{1}(2))/2; 

            P_E_Denominator = P_E_Denominator + A{i}{2}; 

        end 

    end 

     

    pointEstimate = P_E_Numerator / P_E_Denominator  ;   %Final point estimate 

    outputIntervals = [firstInterval, lastInterval]  ;   %Final intervals 

end 

4. Helper Functions 

 

% Date: Thu, 20 Feb, 2017 

% Last updated: 15 March, 2017 

% Author: Akshay Prasad 

% Organization: University of Maryland, College Park (MSSE Student) 

%  

% Project: Secure State Estimation for Quadrotors 

% Component: Skew Matrix 

%  

% Description:This function is responsible for returning the skew matrix 

% representation for a said quaternion vector. 

function [ quatx ] = skew( quat )    

    quatx = [ 0   -quat(3)  quat(2); 

          quat(3)   0   -quat(1); 

         -quat(2)  quat(1)   0 ]; 

end 
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% Date: Thu, 20 Feb, 2017 

% Last updated: 15 March, 2017 

% Author: Akshay Prasad 

% Organization: University of Maryland, College Park (MSSE Student) 

%  

% Project: Secure State Estimation for Quadrotors 

% Component: Function - Noise Covariance Matrix 

%  

% Description:This function is responsible for calculating the system noise 

% covariance matrix. 

  

function Qd=returnQd(a,w,ba,bw,C,dt,Qc) 

      

     if (dt~=0) 

        Qc(1:3,:)=Qc(1:3,:)/dt; 

        Qc(4:6,:)=Qc(4:6,:)*dt; 

        Qc(7:9,:)=Qc(7:9,:)/dt; 

        Qc(10:12,:)=Qc(10:12,:)*dt; 

     end 

     

         

  

    zero=zeros(3,3); 

    iden=eye(3,3); 

    a=a-ba; 

    w=w-bw; 

    A=-C'*skew(a)*((iden*((dt^2)/2))-

(((dt^3)/6)*skew(w))+(((dt^4)/24)*skew(w)*skew(w))); 

    B=-C'*skew(a)*(-(iden*((dt^3)/6))+(((dt^4)/24)*skew(w))-

(((dt^5)/120)*skew(w)*skew(w))); 
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    Ch=-C'*skew(a)*((iden*dt)-(((dt^2)/4)*skew(w))+(((dt^3)/6)*skew(w)*skew(w))); 

    D=-A; 

    E=iden-dt*skew(w)+0.5*dt*dt*skew(w)*skew(w); 

    F=-iden*dt+0.5*dt*dt*skew(w)-((dt^3)/6)*skew(w)*skew(w); 

    Fd=double([iden dt*iden A B -C'*dt*dt*(1/2) zeros(3,4); 

        zero iden Ch D -C'*dt zeros(3,4); 

        zero zero E F zero zeros(3,4); 

        zero zero zero iden zero zeros(3,4); 

        zero zero zero zero iden zeros(3,4); 

        zeros(4,3) zeros(4,3) zeros(4,3) zeros(4,3) zeros(4,3) zeros(4,4)]); 

    G=[zero zero zero zero; 

       -C' zero zero zero; 

       zero zero -iden zero; 

       zero zero zero iden; 

       zero iden zero zero; 

       zeros(4,3) zeros(4,3) zeros(4,3) zeros(4,3)]; 

    Qd=double(Fd*G*Qc*G'*Fd'); 

  

end 

 

% Date: Thu, 20 Feb, 2017 

% Last updated: 15 March, 2017 

% Author: Akshay Prasad 

% Organization: University of Maryland, College Park (MSSE Student) 

% Project: Secure State Estimation for Quadrotors 

% Component: Function - Observation Matrix 

%  

% Description:This function is responsible for calculating the observation 

% matrix. 

  

function H=returnH(lambda,C,ps,pw) 
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    H1=lambda*eye(3,3); 

    zer=zeros(3,3); 

    H3=-C'*skew(ps)*lambda; 

    H6=pw+C'*ps; 

    H7=C'*lambda; 

    H=double([H1 ;zer; H3; zer ;zer; H6'; H7]');  

     

end 

 

% Date: Thu, 20 Feb, 2017  

% Last updated: 15 March, 2017 

% Author: Akshay Prasad 

% Organization: University of Maryland, College Park (MSSE Student) 

%  

% Project: Secure State Estimation for Quadrotors 

% Component: Function - Multiply Quaternions 

%  

% Description:This function is responsible for multiplying two quaternions 

  

function mult=quaternionMult(q_quat,p) 

    mult=[q_quat(4)*p(1) + q_quat(3)*p(2) - q_quat(2)*p(3) + q_quat(1)*p(4); 

-q_quat(3)*p(1) + q_quat(4)*p(2) + q_quat(1)*p(3) + q_quat(2)*p(4); 

q_quat(2)*p(1) - q_quat(1)*p(2) + q_quat(4)*p(3) + q_quat(3)*p(4); 

-q_quat(1)*p(1) - q_quat(2)*p(2) - q_quat(3)*p(3) + q_quat(4)*p_quat(4)]; 

end 

 

% Date: Thu, 20 Feb, 2017 

% Last updated: 15 March, 2017 

% Author: Akshay Prasad 

% Organization: University of Maryland, College Park (MSSE Student) 

%  
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% Project: Secure State Estimation for Quadrotors 

% Component: Function - Rotation Matrix 

%  

% Description:This function is responsible for calculating the rotation 

% matrix for the quaternion vector 

  

function c = qGetRotation( quat ) 

c = eye(3) - 2*quat(4)*skew(quat) + 2*(skew(quat)*skew(quat)); 

 

% Date: Thu, 20 Feb, 2017 

% Last updated: 15 March, 2017 

% Author: Akshay Prasad 

% Organization: University of Maryland, College Park (MSSE Student) 

%  

% Project: Secure State Estimation for Quadrotors 

% Component: Function - Propogate Matrix 

%  

% Description:This function is responsible propogating the state variable 

% and updating the covariance matrix. 

 

function x=propogateMatrix(a,w,ba,bw,C,dt) 

    zero=zeros(3,3); 

    iden=eye(3,3); 

    a=a-ba; 

    w=w-bw; 

    A=-C'*skew(a)*((iden*((dt^2)/2))-

(((dt^3)/6)*skew(w))+(((dt^4)/24)*skew(w)*skew(w))); 

    B=-C'*skew(a)*(-(iden*((dt^3)/6))+(((dt^4)/24)*skew(w))-

(((dt^5)/120)*skew(w)*skew(w))); 

    Ch=-C'*skew(a)*((iden*dt)-(((dt^2)/4)*skew(w))+(((dt^3)/6)*skew(w)*skew(w))); 

    D=-A; 
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    E=iden-dt*skew(w)+0.5*dt*dt*skew(w)*skew(w); 

    F=-iden*dt+0.5*dt*dt*skew(w)-((dt^3)/6)*skew(w)*skew(w); 

    x=double([iden dt*iden A B -C'*dt*dt*(1/2) zeros(3,4); 

        zero iden Ch D -C'*dt zeros(3,4); 

        zero zero E F zero zeros(3,4); 

        zero zero zero iden zero zeros(3,4); 

        zero zero zero zero iden zeros(3,4); 

        zeros(4,3) zeros(4,3) zeros(4,3) zeros(4,3) zeros(4,3) zeros(4,4)]); 

end 

 

% Date: Thu, 20 Feb, 2017 

% Last updated: 15 March, 2017 

% Author: Akshay Prasad 

% Organization: University of Maryland, College Park (MSSE Student) 

%  

% Project: Secure State Estimation for Quadrotors 

% Component: Function - Omega Representation 

%  

% Description:This function is responsible for evaluating the omega 

% representation based on the angular velocity. 

function [omega] = Omega(w) 

    omega = [ 0    w(3) -w(2) w(1); 

             -w(3) 0     w(1) w(2); 

              w(2) -w(1) 0    w(3); 

             -w(1) -w(2) -w(3) 0 ]; 

end 

  

% Date: Thu, 20 Feb, 2017 

% Last updated: 15 March, 2017 

% Author: Akshay Prasad 

% Organization: University of Maryland, College Park (MSSE Student) 
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%  

% Project: Secure State Estimation for Quadrotors 

% Component: Function - Normalization Function 

%  

% Description:This function is a generic normalizer function. 

function [normalized] = NormalizeV(aVector) 

    normalized = aVector./norm(aVector); 

end 

 

% Date: Thu, 20 Feb, 2017 

% Last updated: 15 March, 2017 

% Author: Akshay Prasad 

% Organization: University of Maryland, College Park (MSSE Student) 

%  

% Project: Secure State Estimation for Quadrotors 

% Component: Function - Convert To Quaternion 

%  

% Description:This function is responsible for converting a axisangle  

% rotation to a quaternion representation. 

function [quat] = convertToQuaternion(angle) 

quat = [angle(1:3).*sin(angle(4)/2); cos(angle(4)/2)]; 

end 

 

% Date: Thu, 20 Feb, 2017 

% Last updated: 15 March, 2017 

% Author: Akshay Prasad 

% Organization: University of Maryland, College Park (MSSE Student) 

%  

% Project: Secure State Estimation for Quadrotors 

% Component: Function - Convert To Axis Angle 

%  
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% Description:This function is responsible for converting a quaternion 

% vector to its axis angle representation. 

function [angle] = convertToAxisAngle(quat) 

t = wrapToPi(2*acos(quat(4))); 

k = quat(1:3)./sin(t/2); 

angle = [NormalizeV(k);t]; 

end 

%  

% function x=wrapToPi(a) 

% x = a - 2*pi*floor( (a)/(2*pi) );  

% end 

 

% Date: Thu, 20 Feb, 2017 

% Last updated: 15 March, 2017 

% Author: Akshay Prasad 

% Organization: University of Maryland, College Park (MSSE Student) 

%  

% Project: Secure State Estimation for Quadrotors 

% Component: Function - Gc Matrix 

%  

% Description:This function calculates the Gc matrix 

function [ x ] = calculateGc( C ) 

    temp=zeros(3); 

    I_3=eye(3); 

    x=[temp temp temp temp; 

       -C' temp temp temp; 

       temp temp -I_3 temp; 

       temp temp temp I_3; 

       temp I_3 temp temp; 

       zeros(4,3) zeros(4,3) zeros(4,3) zeros(4,3) 

       ]; 
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end  
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