

ABSTRACT

Title of Thesis: RESILIENT STATE ESTIMATION FOR

MICRO AIR VEHICLES UNDER SENSOR
ATTACKS

Akshay Prasad, Master of Science, 2017

Thesis Directed By: Dr. Nikhil Chopra (Department of Mechanical

Engineering)

This thesis proposes a solution to the problem of resilient state estimation and sensor fusion

in an autonomous micro air vehicle. The setup comprises of redundant sensors that measure

the same physical signal. An adversary may spoof a subset of these sensors and send

falsified readings to the controller, potentially compromising performance and safety of

the system. This work integrates Brooks-Iyengar Sensor fusion algorithm with a generic

state estimator as a method to thwart sensor attacks. The algorithm outputs a point estimate

and a fusion interval based on an assumed set of faulty sensors. Finally, the thesis illustrates

the usefulness of the resilient state estimator with a case study on a MAV flight dataset.

RESILIENT STATE ESTIMATION FOR MICRO AIR VEHICLES UNDER
SENSOR ATTACKS

by

Akshay Prasad

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master of Science

2017

Advisory Committee:
Professor Nikhil Chopra, Chair
Professor Jeffrey Herrmann
Professor Shapour Azarm

© Copyright by
Akshay Prasad

2017

ii

To my parents, family and friends.

iii

Acknowledgements

Firstly, I would like to thank Dr. Nikhil Chopra for making this thesis possible and for his

continuous support throughout my tenure at the University of Maryland, College Park. He

offered me the chance to pursue my thesis under his supervision and encouraged me

towards my thesis topic. I am highly grateful to him for his time and effort throughout the

last two years. Dr. Chopra ensured that I felt comfortable discussing any problems I

encountered. He set a lot of directions for me to delve deep into the field of micro air

vehicles (MAVs), something I had very little prior experience. He ensured I had access to

all possible resources for the successful completion of my thesis.

Further, I would like to thank Dr. John MacCarthy for his continuous support

regarding all matters including academic, administrative, and personal. He always ensured

that I was on track with my courses and thesis. He was also instrumental in helping me sort

out any issues that I faced during the span of my studentship at the University of Maryland,

College Park. I would also like to thank Dr. Jeffrey Herrmann and Dr. Shapour Azarm for

serving on my thesis committee and for reviewing my work. I deeply appreciate their time

and academic expertise.

I would additionally like to thank Nirupam Gupta and Gurtajbir Herr for their help

and support. Especially in matters related to getting my workspace set up and helping me

place orders for my hardware equipment.

Likewise, I would like to thank my peers at the University of Maryland for a

wonderful experience. Finally, I want to express deep gratitude to my family for their

relentless financial and emotional support. They played a key role in keeping me motivated,

iv

which has brought me to the point where I conclude my thesis. This work was partially

supported by Naval Air Warfare Center Aircraft Division - Pax River, MD under Contract

No. N00421132M022.

v

Table of Contents
Acknowledgements	..	iii	
List	of	Figures	..	vii	
List	of	Tables	..	viii	
Acronyms	...	ix	
1.	 Introduction	...	1	

1.1.	 Research Goals	..	5	
1.2.	 Organization of the Thesis	..	6	

2.	 Vulnerability	Analysis	of	Unmanned	Air	Vehicles	...	8	
2.1.	 Types of UAVs	...	8	
2.2.	 System of Interest:	...	9	
2.3.	 Threat Analysis:	...	12	

2.3.1.	 Physical Attacks	..	12	
2.3.2.	 Logical Attacks	..	13	

2.4.	 Summary	..	18	
3.	 Background	on	State	Estimation	in	MAVs	..	20	

3.1.	 Extended Kalman Filter Framework	...	21	
3.1.1.	 MAV Process Model vs Direct IMU Input	..	22	
3.1.2.	 Mathematical Background – Quaternion Algebra	...	24	

3.2.	 Extended Kalman Filter Setup	..	24	
3.2.1.	 Inertial Sensor Model	..	25	
3.2.2.	 State Representation	..	25	
3.2.3.	 Propagation Steps:	..	28	
3.2.4.	 Measurement Models:	...	29	

3.3.	 Vulnerability of the State Estimator	..	32	
3.4.	 Summary	..	34	

4.	 Resilient	State	Estimation	for	MAVs	...	35	
4.1.	 Related Work	..	35	
4.2.	 Resilient Sensor Fusion	...	40	
4.3.	 Byzantine Generals Problem	...	42	
4.4.	 Brooks-Iyengar Sensor Fusion	..	43	
4.5.	 System Description	...	45	

4.5.1.	 Problem Statement	...	45	
4.5.2.	 Attack Model	..	46	
4.5.3.	 Fusion Methodology	..	47	
4.5.4.	 Attack Detection:	..	48	

4.6.	 Secure State Estimator Structure	..	48	
4.7.	 Summary	..	49	

5.	 Results	and	Analysis	..	50	
5.1.	 Generic state estimator performance without compromised sensors.	51	
5.2.	 Generic state estimator performance in the presence of sensor attacks.	53	
5.3.	 Secure state estimator performance in the presence of sensor attacks.	55	
5.4.	 Quantitative Comparison	..	57	

vi

5.5.	 Summary	..	58	
6.	 Conclusion	and	Future	Work	...	59	

6.1.	 Contributions	..	59	
6.2.	 Future Work	..	61	

Appendix	A	..	62	
1.	 Main Function	..	62	
2.	 EKF Function	...	70	
3.	 Brooks Iyengar Sensor Fusion Function	...	73	
4.	 Helper Functions	...	76	

References	...	85	

vii

List of Figures

Figure 1: Outline of the Thesis ... 7
Figure 2: Different components in our system of interest. ... 11
Figure 3: Control Channels for our System of Interest ... 11
Figure 4: Threats to a UAV .. 12
Figure 5: Control Channel Attack ... 14
Figure 6: a) Gyroscope Sensor Data. b) Operator Control Signals [23] 16
Figure 7: a) Rotor Control Data. b) Altitude of the System [23] 17
Figure 8: Different threat vectors for a MAV and the focus of this thesis 18
Figure 9: Classification of sensors based on drift type and update rate [24] 21
Figure 10: Extended Kalman Filter Framework ... 33
Figure 11: State Estimator in the presence of an adversary .. 33
Figure 12: Defense strategy against sensor spoofing attacks .. 47
Figure 13: Secure State Estimator ... 49
Figure 14: Trajectory of a Quadrotor in nominal conditions while using the standard state

estimator. ... 51
Figure 15: Position of Quadrotor along X-axis in nominal conditions while using the

standard state estimator ... 52
Figure 16: Position of Quadrotor along Y-axis in nominal conditions while using the

standard state estimator. .. 52
Figure 17: Position of Quadrotor along Z-axis in nominal conditions while using the

standard state estimator. .. 53
Figure 18: Trajectory of a Quadrotor under adversarial attacks while using the standard

state estimator ... 53
Figure 19: Position of Quadrotor along X-axis under adversarial attacks while using the

standard state estimator ... 54
Figure 20: Position of Quadrotor along Y-axis under adversarial attacks while using the

standard state estimator. .. 54
Figure 21: Position of Quadrotor along Z-axis under adversarial attacks while using the

standard state estimator. .. 55
Figure 22: Trajectory of a Quadrotor under adversarial attacks while using the secure

state estimator. .. 56
Figure 23: Position of Quadrotor along X-axis under adversarial attacks while using the

secure state estimator. ... 56
Figure 24: Position of Quadrotor along Y-axis under adversarial attacks while using the

secure state estimator. ... 57
Figure 25: Position of Quadrotor along Z-axis under adversarial attacks while using the

secure state estimator. ... 57

viii

List of Tables

Table 1: Classification of UAVs. Austin [17] .. 9
Table 2: Comparing the MAV and IMU model .. 22
Table 3: Comparison of different sensor fusion techniques [56] 41
Table 4: Quantitative comparison of State Estimator Performance 58

ix

Acronyms

ADC Analog to Digital Converter

CAN Controller Area Network

CPS Cyber Physical System

DOF Degree of Freedom

DOS Denial of Service

EKF Extended Kalman Filter

ESC Electronic Speed Controller

GCS Ground Control Station

GPS Global Positioning System

I2C Inter - IC Bus

IMU Inertial Measurement Unit

IOT Internet of Things

LIDAR Light Detection and Ranging

LTE Long Term Evolution 4G Wireless Communication

Standard

MAV Micro Air Vehicles

MEMS Microelectromechanical Systems

PPM Pulse Position Modulation

RC Radio Control

SONAR Sound Navigation and Ranging

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transmitter

UAV Unmanned Air Vehicles

UGV Unmanned Ground Vehicles

1

1. Introduction

Cybersecurity incidents have been on the rise over the past years. No industry, gadget, or

tool is safe from threat and menace of cyber-attacks. The next generation of cyber physical

systems (CPS) is becoming complex in design and encompass a diverse set of components

and elements. Security concerns and considerations can no longer be an after-thought. The

design process needs to incorporate these vectors and ensure necessary protection.

Modern vehicles have numerous embedded elements communicating internally as

well as externally using different technologies. Moreover, with the recent interest in

Internet of Things (IOT), vehicle system designs have moved from insulated control

systems to open and connected architectures with functionalities such as remote diagnostic

information, inter-device communication, and online updates. An ever-increasing set of

functionalities, network connectivity, and design complexity introduces security

susceptibilities that are exploitable. Often the security guarantees of these systems are

based on the security of external communication links and authentication protocols.

Consequently, an effective attack that compromises the gateway, or physical attacks on

components connected on the internal network may be leveraged to completely handicap

the system. A similar strategy was used in [1] by the authors to disrupt the operation of a

car and take complete control over it.

An attack on a CPS may be carried out by intruding the computational nodes or

communication channels and altering the physical environment. Information security

approaches can be used to safeguard the CPS, but noninvasive attacks such as altering the

2

physical environment may still be possible [2], [3] and [4]. In [2], [3] and [4] the authors

review how an attack signal may be introduced into the control system loop by altering the

sensor measurements. Orthodox cybersecurity techniques such as secure communication

protocols for internal networks cannot defend the system against attacks on physical

components. Acquiring access to the internal network would allow the attacker to

completely compromise the controller, actuator, and all elements on board. Such attacks

may be restricted by using cryptography tools. However, these tools may add additional

processing delay and require additional resources, which might be scarce in some CPS

domains. Researchers in [5] identified that it is necessary to address this security challenge

in the control design phase because attacks may be disguised as malicious signals to the

controller. Vaguely attacks may be classified into:

• The attacker takes over a sensor to provide wrong readings.

• Disturb actuation.

The thesis primarily discusses the scenario when an adversary attacks the sensor

measurements of a micro air vehicle (MAV) (a subclass of UAVs, see Table 1). Unmanned

Air Vehicles (UAVs) are vehicles that are either controlled remotely by a Ground Control

Station, radio remote controller, or autonomously programmed prior to the mission flight.

UAVs are used for military missions as well as for commercial usage. MAVs hold the

promise of enabling online retail, survey, emergency services, etc. They have been gaining

recognition over the previous few years. With companies such as Amazon Prime [6], UPS,

Google [7], DJI, GoPro investing heavily in these air vehicles, MAVs are gradually

becoming a common place. This is also supplemented by an increasing affordability of

3

such MAVs making it more accessible to hobbyists and enthusiasts. One can construct a

MAV in as less as $250 by procuring parts from multiple online vendors.

Numerous companies working on different applications for such MAVs including

and not limited to cinematography, rescue missions, agricultural chemical deployment,

ecological surveys, emergency response, 3-D Mapping, drone delivery, etc. is increasing

incessantly. However, their exposure to cyber-attacks makes them a potential tool for

espionage, terrorism, vandalism, etc.

Recently, commercial UAVs were authorized to fly in the US national air space by

the FAA [8]. It is anticipated that more than 7 million small drones will occupy the US

airspace by 2020 [9]. Consequently, the enticement for cyber-attacks on UAVs is only

going to surge.

With an increasing level of autonomy, the mandate for secure and hardened systems

is going to surge exponentially. Additional studies and analysis, studying the susceptibility

of MAVs to cyber-attacks and investment in security of MAVs at each layer of abstraction

is quintessential. The infamous attack on a UAV system [10] highlighted this need; when

members of a terrorist group intercepted and recorded a UAV video feed using a $26

software SkyGrabber. SkyGrabber was designed to capture free satellite-entertainment

channels [10]. Investigations revealed that this was enabled due to an unencrypted video

channel. It was revealed later [11], that the flaw was known to the US government since

the 1990s. In 2012, Iranian forces stated that they captured an RQ-170 [12], [13].

Subsequently they landed the UAV and obtained mission data. It was postulated that a lack

of security measures of the UAV sensor system was used to attack the GPS subsystem [12].

In 2012, a research team at UT Austin [14], in a demonstration, showcased their ability to

4

hijack a military UAV by spoofing the GPS signal and thereby taking complete control of

the UAV. They showcased a proof-of-concept by using $1,000 worth of equipment. These

above cases demonstrate a necessity for investment in research for cybersecurity for UAVs

of all classes for military and public use.

Moreover, the GPS-spoofing notion emphasizes the need to include unusual

elements (e.g. sensors, input channels) while developing risk assessment models of UAVs

and for other autonomous systems. Autonomous systems such as UAVs, Unmanned

Ground Vehicles (UGVs), etc. are dependent on their sensor systems to operate optimally.

Ensuring that all the logical ports are hardened is vital to building a secure system.

The motivation for this work surfaced from our shared conviction that there is an

increasing threat diversity of attack threats to UAVs. A UAV that can fly at high speeds

over people and property is a weapon. Just like hacking is prevalent online, a UAV is

susceptible to the same risks with far greater consequences.

It has been established by investigations that cheap consumer MAVs are not secure.

As presented by Rodday (2015) [15], even professional grade MAVs previously presumed

to be secure and hack-proof; used by government agencies, have been found to be

susceptible to naïve attacks such as man-in-the-middle attacks. The security of such

professional grade MAVs is crucial because of the sensitivity of their missions. Hijacking

such drones may lead to loss of property and mission failure amongst other effects.

Due to the lack of adequate depth in cybersecurity of UAVs till recent past, most

of the existing autopilot software and their underlying control architecture, state estimation

techniques were built without taking security constraints into account. Since UAVs rely

heavily on the autopilot software and flight controller to function optimally, it is important

5

to develop autopilot systems that are robust and secure against adversaries. We hope that

our work through this thesis has a contribution towards this goal.

Quadcopters were identified as the system of interest because of their simplicity.

The platform is easy to implement for testing. There are only four control variables, which

enable 3 degrees of freedom. Furthermore, there are growing applications of quadrotors

and other such MAVs in varied industries.

This work examines the problem of resilient state estimation in MAV against sensor

spoofing. Resilient state estimation is the study of estimating the system states when sensor

measurements are compromised by attackers. It overviews the problem of attack resilient

state estimation in autonomous systems where multiple sensors measure the same physical

signal. In the scenario, where a malicious attacker may corrupt a subset of these sensors,

falsified sensor measurements are passed to the controller, potentially compromising the

safety of the system. The range of sensor attacks is evaluated in section 2.3.2.4.

1.1. Research Goals

This following research goals were identified at the beginning of the thesis.

RG-1. Identify security vulnerabilities that exist in the system design of MAVs.

RG-2. Review the state estimator used in our system of interest. Study the impact

of sensor attacks on the state estimation algorithm. Identify the most critical sensor

to the state estimation process.

RG-3. Identify a resilient sensor fusion technique to improve the state estimation

process. Integrate resilient sensor fusion technique with the generic state estimator.

RG-4. Verify improvement in resilience to sensor spoofing attacks with the

proposed state estimator through a case study on a MAV.

6

1.2. Organization of the Thesis

The thesis is divided into 6 chapters. In chapter 1 the need for a study for cybersecurity

consideration for MAVs is introduced, it identifies the need for the investigation and the

research goals. Chapter 2 summarizes the numerous security vulnerabilities and threat

vectors that exist in the current MAV models available to the public sector. Following

which, a synopsis of the state estimation techniques used in the system of interest is covered

in chapter 3. This background on state estimation is important to understand the critical

sensors in a MAV since it highlights the impact of sensor attacks on the system. Chapter 4

outlines Brooks-Iyengar Fusion as a resilient sensor fusion technique to defend against

sensor fusion attacks. The thesis proposes integrating Brooks-Iyengar Fusion with a

generic state estimator. In Chapter 5, the performance of the proposed state estimator is

showcased through results of a software in the loop simulations in the presence of sensor

spoofing attacks. The improvement in the state estimation process with the proposed state

estimator is evident. In chapter 6, the thesis is concluded with a summary of research goals

covered and a direction of future research. Figure 1, describes how the scope of this

research was narrowed.

7

Threats to MAVs - Why secure MAVs?

Vulnerabilities in MAVs - What
must be secured in MAVs?

Identify a Vulnerability -
What problem does this thesis

aim to tackle?

Which component is
critical?

How can this
component be

protected?

Verify
performance of
the proposal.

Figure 1: Outline of the Thesis

8

2. Vulnerability Analysis of Unmanned

Air Vehicles

In this chapter, our system of interest is described and the different kind of threat vectors

to a MAV are reviewed. Following which a case highlighting the need for securing against

sensor attacks in a MAV is presented and the security problem that this thesis aims to tackle

is identified. As defined by the Department of Defense [16] :

“A powered, aerial vehicle that does not carry a human operator, uses

aerodynamic forces to provide vehicle lift, can fly autonomously or be piloted remotely,

can be expendable or recoverable, and can carry a lethal or non-lethal payload. Ballistic

or semi-ballistic vehicles, cruise missiles, and artillery projectiles are not considered

unmanned aerial vehicles.”

The primary difference between a UAV and normal air vehicle is that no crew is

required to be on board the vehicle. The vehicle may be remotely controlled or programmed

for autonomous operation under supervision.

2.1. Types of UAVs

The following classification of UAVs is based on Austin [17] . Austin classifies the UAVs

based on the size and capability of the air vehicle to carry out a given mission. However,

there may be scenarios where a user or a system employs the air vehicle for different types

of missions. The focus of this work is primarily resilient state estimation problem for

MAVs. However, the study can be extended to other autonomous vehicles after suitable

modifications.

9

Type Purpose

HALE (High altitude long

endurance)

These are operated by Air Forces from fixed bases. They can

fly at high altitudes of 15,000m and can operate for more

than 24 hours. They are generally armed and are used for

long range (trans global) reconnaissance and surveillance.

MALE (Medium altitude

long endurance)

They operate at comparatively shorter ranges (greater than

500 km). They can fly at altitudes of 5,000m to 1,500m, but

from fixed bases.

TUAV (Tactical UAV)

These vehicles are smaller and have simpler than HALE and

MALE. They are operated by land and naval forces and have

a range of up to 500km.

Close-Range UAVs

They operate at ranges of 100 km and are used in fields,

including roles such as reconnaissance, target designation,

NBC monitoring ship-to-shore surveillance, airfield security,

power-line inspection, crop-spraying, etc.

MUAV or Mini UAV

These UAV's of below a specific mass generally below 20

kg. They operate at a range of about30 km. They are

primarily used by mobile battle groups and for numerous

civilian purposes.

Micro UAV or MAV

The MAVs were initially described as a UAV having a

wing-span of 150 mm or less. This condition has been

relaxed now. They are mostly used for urban operations and

for commercial purposes.

 Table 1: Classification of UAVs. Austin [17]

2.2. System of Interest:

The system of interest is a quadrotor that uses a Pixhawk flight controller. The flight

controller can be programmed using a ground control station or controlled using a radio

10

control as indicated in Figure 3. The MAV may be set for autonomous navigation using an

on-board computer.

Pixhawk is an open-hardware project that was conceptualized and developed in

consequence to the PIXHAWK Project at the Autonomous Systems Lab at ETH Zurich. It

was primarily made to provide sophisticated autopilot hardware and software to academic,

hobby, and industrial communities at low costs. This platform was identified based on its

outreach, capabilities, and its market share. It is an industry standard and designed by the

team in conjunction with 3D Robotics and the ArduPilot Group. The technical

specifications as specified are [18]:

§ 168 MHz Cortex M4F CPU (256 KB RAM, 2 MB Flash)

§ Sensors: 3D Accelerometer / Gyroscope / Magnetometer / Barometer

§ Integrated backup, override and failsafe processor with mixing

§ microSD card slot, 5 UARTs, CAN, I2C, SPI, ADC, etc.

The main components in our system as indicated in Figure 1 include:

1. PIXHAWK Flight Controller

2. GPS/3DOF Measurement Sensor

3. RC Receiver

4. Ground Control Station

5. Radio Controller

6. ESC and Motors.

11

Figure 2: Different components in our system of interest.

Figure 3: Control Channels for our System of Interest

12

2.3. Threat Analysis:

The type of attacks that may be mounted on a given MAV being operated autonomously,

or being controlled by the operator is overviewed in this section. The intentions of the

attacker may be unknown. As discussed in [19], vulnerabilities can be classified broadly

into application logic attacks where the attacker manipulates the sensor readings and other

inputs into the control system and control system attacks that damage the normal behavior

of the control system.

Figure 4: Threats to a UAV

2.3.1. Physical Attacks

Physical attacks could include physically targeting the MAV with a tool or a weapon. It

could be a missile launcher or a gun targeting the MAV. However, the cost for mounting

such an attack would far outweigh the incentive. Other attacks include flying another drone

into the target drone. One may also use other tools such as high-powered magnetic beams

to damage the electronic circuits on the drone. One may throw a net on the MAV to stop

the rotors and bring it down.

13

2.3.2. Logical Attacks

A brief description of the system structure and the exchange of control signals is described

in Figure 4. There are multiple control channels and several technologies enabling these

channels to control flight parameters such as position, pose, altitude, waypoints, etc. Since

these MAVs are autonomous and are generally not controlled actively, a compromised

channel may severely damage the mission goals. If an attacker changes high level control

signals such as way points or even change parameters such as calibration parameters of the

sensors, MAV may be lost or damaged. Total control of the MAV may be lost without any

scope of recovery if system parameters are changed or a malware software is installed on

board.

The control channels may use different technologies such as 4G LTE, Radio, XBee,

etc. Many of the low cost and low power control channel technologies do not have secure

protocols and are susceptible to cyber-attacks. Consequently, a lot of MAV manufacturers

are limited from installing security protocols and authentication modules because of the

limited processing capabilities. Also, using regular encryption and authentication

techniques adds delay corresponding to encryption and initial key exchange.

In [20], Villasenor points out the growing concern of counterfeit electronics. He

argues that the electronics supply chain could be intentionally compromised during design.

If these vulnerabilities are placed into the design prior to manufacture with sufficient skill,

they would be extremely difficult to detect. These backdoors could be exploited years later

to intentionally compromise the system containing the chip.

14

2.3.2.1. Control Channel Attacks

As observed in Figure 5, there are multiple control signals that may be used to send forged

data to the MAV. This is possible because of the absence of application layer encryption

in the MAV - GCS communication channel or the lack of authentication protocols. Without

a method to verify if the data received through the communication channel is legitimate or

not, the flight controller ought to assume that the data received is correct. This permits

forged signals to be processed as any other correct signals from an authorized operator.

This is a critical flaw that may be used to mount attacks such as changing the mission plan,

changing way points, etc. and may lead to loss of control of the MAV permanently.

Sometimes proprietary protocols are used without proper encryption and authentication

techniques. Even though these techniques may provide some level of security, these

protocols can be reverse engineered or an attacker might just mount a replay attack leading

to unexpected behavior.

Figure 5: Control Channel Attack

15

2.3.2.2. Denial of Service Attacks (DoS):

An attacker may use a simple Denial of Service attack on any of the control channels which

use wireless communication. Anyone close to either the transmitter or the receiver can

receive signals and analyze the packet information, making it vulnerable. Both the receiver

and the transmitter use the same channel for communication; the adversary may flood this

channel with bogus signals and thereby prevent legitimate messages and signals from being

sent and received. A hobby MAV, the AR.Drone operated using smartphones through a

local WIFI network was de-authenticated using such DoS attacks [21] .

2.3.2.3. Replay Attacks

As suggested in section 2.3.2.2, in case of proprietary protocols used as security measures,

one may use replay attacks to disrupt the normal operation of a MAV. One may even use

the same type of replay attacks even if the messages were encrypted. This would include

recording the signals and replaying them at a later period. This attack is only feasible when

there are no authentication modules to verify the origin of these messages.

2.3.2.4. Sensor Attacks

Sensor attacks can be mounted by installing malicious software on the flight controller or

the processor responsible for processing the sensor information. The software modifies the

sensor information before it is passed to the flight controller. The Stuxnet malware is a

famous example of such an attack [22]. Often, MAVs may rely on networked infrastructure

for sharing sensor information. This may be for swarm robotics, VICON systems, or WIFI

localization systems. An attacker may degrade sensor measurements by manipulating the

data packets being exchanged between different modules, elements or subsystems of the

system. Adversaries may also spoof sensors by tampering the sensor hardware externally

16

or modifying the sensor environment. This may lead the sensor to pass false information

of the value of physical signal it attempts to measure.

An attempt to externally manipulate the sensor measurements in a MAV was

described in [23]. In [23], Son et al. presented their work on “Rocking Drones with

Intentional Sound Noise on Gyroscopic Sensors”. They described a method using

consumer grade electronics to introduce noise in gyroscope sensor measurements. They

exploited the fact that resonant frequencies of many MEMS based gyroscopes are found in

the audible frequency band. They also present the effect of resonant/attacked output of the

gyroscopes on the flight control of the drone. They describe the attacking technique and

establish the consequence of such attacks, refer to Figures 6 and 7. In figure 6 and figure

7, region A and region C correspond to the gyroscope operating under normal conditions,

whereas region B corresponds to the region where the gyroscope is under attack (Fig 6.a.).

The operator increases the throttle of the quadrotor to increase its altitude (Fig 6.b.); as

soon as the attack starts, the altitude drops and the quadrotor crashes (Fig 7.b.).

Figure 6: a) Gyroscope Sensor Data. b) Operator Control Signals [23]

17

Figure 7: a) Rotor Control Data. b) Altitude of the System [23]

2.3.2.4.1. Global Positioning System (GPS)

DoS attacks like the one mentioned in section 2.3.2.2 can be mounted on GPS modules by

flooding garbage signals on the target GPS frequencies. This prevents correct signals from

passing through and disrupts localization and state estimation. There are devices available

that enable such jamming with different levels of sophistication. GPS jamming could be

used to disrupt the mission by preventing the MAV to reach its destination.

GPS spoofing is also another plausible threat vector. One may spoof GPS signals

and introduce them to the channel. The under-attack MAV may use the forged signals in

its state estimation calculations. Accordingly, an attacker may convince the MAV to

redirect its path because of a falsely identified location.

2.3.2.5. Software Attacks

There are two components to the software: the software on the ground control station and

the on-board software for flight control for conducting the autonomous mission. The

ground control station is used for programming flight paths and setting flight parameters.

18

Prior to the mission (or during the mission) the GCS programs the MAV with the mission

data including waypoints and other mission information. In most configurations, the GCS

is connected to the flight computer or flight controller constantly through a wireless

channel. The attacker may use malware onto the flight controller or on the ground control

station. This would allow the attacker to reprogram the flight mission and control the flight

as suited. The following scenarios are possible:

• The ground control station is connected to the Internet and the attacker uses the

flight planner in real time to obtain live control of the MAV.

• The attacker may introduce malware on the ground control station, which may

preprogram the flight as per the intentions of the attacker.

• A lot of hobby drones use generic ground control station software with an unsecure

communication link. One might use this vulnerability to force pair their computer

using a radio link.

2.4. Summary

Figure 8: Different threat vectors for a MAV and the focus of this thesis

Threat
Vectors

Physical
Attacks

Logical
Attacks

Control
Channel
Attack

Denial of
Service
Attacks

Replay
Attacks

Sensor
Attacks

Software
Attacks

19

In this chapter, the threat vectors for a MAV were identified. The threat vectors can be

broadly classified into physical attacks and logical attacks. Logical attacks were further

classified into control channel attacks, denial of service attacks, replay attacks, man in the

middle attacks, sensor attacks, and software attacks. Most of the logical attacks are

application layer security problems and must be tackled using encryption, authentication

and other application logic security techniques. However, sensor attacks, actuator attacks

and controller attacks are control system security problems. The work of Son et al. [23] is

presented to highlight the impact of sensor attacks on a MAV. The fact that the MAV

crashes as soon as there is an attack on it is an important observation. This highlights the

importance of studying the problem of resilient state estimation. The work in this thesis

discusses the problem of defending against sensor attacks for MAVs. Next, in Chapter 3,

the state estimation process in a current state of the art flight controller is reviewed to

identify the sensor that must be safeguarded.

20

3. Background on State Estimation in

MAVs

This chapter discusses the state estimation technique and a modular approach to state

estimation implemented in a flight controller. A controller in a MAV relies heavily on

information on the current state of the system. The controllers need information on the

states (position, attitude) at a high rate with minimum delay because of the fast dynamics

of the system. Inertial Measurement Unit (IMU) form the core of the state estimation

algorithm. IMUs consist of a gyroscope to measure angular velocity and an accelerometer

to measure the linear acceleration. Most MAVs can carry an IMU because of its

lightweight, inexpensiveness, and low energy requirements. In addition to noisy sensor

readings, the sensors are affected by a continuous time-varying bias; thereby making a

continuous accurate estimation of the pose in aggressive flights difficult and error prone.

Hence, IMUs are used in conjunction with other sensors such as cameras, Sound

Navigation and Ranging (SONAR), Light Radar (LIDAR), Global Positioning System

(GPS), etc. to support an accurate estimate.

IMUs have a high update frequency but with drifting measurements leading to error

accumulation. Sensors such as cameras, GPS, and laser systems have slowly drifting

measurements but at a much slower update rate. As suggested by Weiss (2012) [24],

sensors can be classified based on their drift speed and frame rate as in Figure 1. IMUs

have a high update rate but with accumulating errors, whereas GPS and Laser Trackers

provide information at low drift rates but with lowest update rates. The ideal sensor would

21

lie at the top left corner of the graph in Figure 7. Consequently, it’s necessary to have

sensors in addition to the IMU to enable good state estimation. The analysis in this chapter

is based on the work of Weiss (2012) [24] and Achtelik (2013) [25]. The discussion

analyzes a 6 Degree of Freedom (DOF) sensor (a camera) along with a 3DOF position

sensor (GPS) in addition to the on-board IMU. The discussion follows an Extended Kalman

Filter Framework to establish an algorithm to address the issue of drifting measurements

and low update rates.

Figure 9: Classification of sensors based on drift type and update rate [24]

3.1. Extended Kalman Filter Framework

The Extended Kalman Filter (EKF) is useful in MAVs because it is recursive and does not

need a history of state estimates to establish the current state estimate. It does so by

minimizing the error of the observed estimates. Within a EKF, there is a prediction step

followed by a correction step. In the prediction step, the framework predicts the states of

22

the system and the uncertainty of the process (covariance propagation) using the model of

the system. In the correction step, a sensor measurement is applied to the sensor model,

which corrects the state of the system and is used to update the uncertainty of the estimate.

The step is referred to as correction and covariance update.

Section 3.1.1 explores the EKF framework for an MAV as described in [24] and [25]. This

chapter aims to identify the most critical sensor with respect to state estimation process.

3.1.1. MAV Process Model vs Direct IMU Input

There are two techniques/models for state prediction.

MAV Model IMU Model

When, a MAV Model is used for the

prediction process. It uses the torques

and thrusts originating from the rotors

as inputs to the process Model.

IMU measurements use linear

acceleration and angular velocity as

inputs to the process model. Acceleration

is integrated to calculate velocity, which

is integrated to calculate the position.

Table 2: Comparing the MAV and IMU model

The IMU measurement model is advantageous because of lower computational

requirements. This is better exemplified when one analyzes the state size and weighs the

cost of IMU updates in the range of 1kHz. The following comparison is expressed in [24].

1. State Size: For the MAV model, the input to the process model will consist of angular

momentum. This process model will require additional vector states. Update and

covariance predictions steps run at high frequencies and require dense matrix

multiplications making it computationally inefficient.

23

2. Measurement update: As discussed in section 3.1.1, MAV process model has angular

momentum from rotor speeds as its inputs. IMU readings are used for EKF

measurement updates. Consequently, EKF updates must be computed for each IMU

measurement. At high measurement rates tending to 1kHz it gets computationally

expensive. However, when one use an IMU based model, IMU measurements appear

only in the EKF prediction step, which needs only a few calculations despite the

frequency. There are also benefits when analyzing the computational complexity.

3. Model uncertainty: The system model may not be accurate for all platforms. The MAV

model is not constant and may change based on different payloads and different

positioning of payloads. The moment of inertia, mass, rotor constants may change

based on the platform used. These model parameters can be estimated using our EKF

framework at a cost of a few additional states, again adding to computational

complexity. However, in the case of IMU based models, one must measure the current

linear acceleration and angular velocity to evaluate the position and orientation.

4. Un-modeled disturbances: There may be un-modeled disturbances such as wind gusts.

The IMU model is advantageous because it rejects noisy IMU measurements. IMUs

measure disturbances accurately but take a few time updates and corrections before the

MAV realizes it was a real disturbance. Modeling such disturbances for the MAV

model is a difficult task. Researchers have tried to model wind speeds and wind gusts.

Modeling wind gusts requires many assumptions and is a complex analysis. One would

have to incorporate these disturbances in his MAV model and for accurate state

estimation. However, in the case of an IMU model, disturbances are measured directly

and can be incorporated in the prediction step.

24

3.1.2. Mathematical Background – Quaternion Algebra

This section is based on the work done by Trawny and Roumeliotis (2015) [26]. Below is

a brief discussion on quaternion algebra.

Any quaternion 𝑞 is defined as:

𝑞 = 𝑞# + 𝑞%𝑖 + 𝑞'𝑗 + 𝑞)𝑘

where 𝑞# is the real part and 𝑞%𝑖 + 𝑞'𝑗 + 𝑞)𝑘 is the imaginary part. Here 𝑞%, 𝑞', 𝑞) are real

numbers, and 𝑖, 𝑗, 𝑘 are hyperimaginary numbers. The quaternion can also be written as a

4-dimenstional-column matrix:

𝑞 = [𝑞%		𝑞'		𝑞)		𝑞#]/

Let 𝑞 and 𝑝 be two quaternions, then quaternion multiplication can be defined as:

𝑞⨂𝑝 = (𝑞# + 𝑞%𝑖 + 𝑞'𝑗 + 𝑞)𝑘)(𝑝# + 𝑝%𝑖 + 𝑝'𝑗 + 𝑝)𝑘)	

𝑞⨂𝑝 = 𝑞 −𝑞/
𝑞 𝑞𝐼) + 𝑞× . 𝑝 = 𝑝 −𝑝/

𝑝 𝑝𝐼) + 𝑝× . 𝑞

The skew-symmetric matrix operator represented as 𝑞× is defined as:

𝑞× =
0 −𝑞) 				𝑞'
𝑞) 0 −𝑞%
−𝑞' 	𝑞% 			0

The cross product of two quaternions can also be written as:	𝑞×𝑝 = 𝑞× 𝑝

3.2. Extended Kalman Filter Setup

For the EKF setup, the IMU process model is used based on the discussion in section 3.1.1.

The prediction and covariance propagation steps for the core states is discussed in the

following sections. Other sensors may add additional or different states, however the

formulation of the core set of states obtained from the IMU does not change, because IMU

measurements are always available to the filter.

25

3.2.1. Inertial Sensor Model

The IMU measurements are perturbed by a bias 𝑏 and additive white Gaussian noise 𝑛.

Thus, the real angular velocity 𝜔 and the real linear acceleration 𝑎 in the IMU frame can

be modeled as:

𝜔 = 𝜔= − 𝑏> − 𝑛>	

𝑎 = 𝑎= − 𝑏? − 𝑛?	

𝐸 𝑛>/𝑛? = 0)×%

where 𝜔 is the angular velocity, 𝑎 is the acceleration, subscript 𝑚 refers to the measured

value, 𝑏 refers to the bias and 𝑛 is the additive white Gaussian noise. Here 𝐸 𝑛>/𝑛? is the

expectation of the noise signals 𝑛>, 𝑛?. Additive refers to noise that is added to any noise

that may be intrinsic to the system. The bias dynamics is modeled as a random walk process

with zero mean white Gaussian noise as its time derivative. Thus, we model the bias as:

𝑏> = 𝑛CD

𝑏? = 𝑛CE

𝐸 𝑛CD = 0)×%

𝐸 𝑛CE = 0)×%

3.2.2. State Representation

The state of the filter is described as:

𝑥G = 𝑝>H
/			𝑣>H

/		𝑞>H
/		𝑏>/ 		𝑏?/

/

where 𝑝>H is the position of the IMU in the world frame,	𝑣>	H 	 is the velocity of the IMU in

the world frame,	𝑞>H 	is the quaternion describing rotation from the world frame to the IMU

frame, 𝑏?	and 	𝑏> are the respective biases. Also, the hat operator placed over state variable

26

notations refer to the estimate of that variable, for example 𝑥G is the estimate of the core

set of states for our state estimator.

The equations that govern the abovementioned states are:

𝑝>H = 𝑣>H 	

𝑣>H = 𝐶>H . 𝑎= − 𝑏? − 𝑛? − 𝑔	

𝑞>H =
1
2 . 𝑞>

H ⨂ 0
𝜔= − 𝑏= − 𝑛=

	as	𝑞>H =
1
2 𝑞 ⊗𝜔	

𝑏> = 𝑛CD	𝑏? = 𝑛CE

Please note that g is the gravity vector, and 𝐶>H is the rotation matrix computed

using 𝑞>H . It is essential to include the biases as states, since these drifts accumulate over

time and must be updated online. Quaternions are used to represent the attitude of the

MAV.

Next, calculate the error vectors for each of the states. Note that, as suggested in

[26], the error in the quaternion value is calculated as 𝛿𝑞, instead of the difference between

𝑞	𝑎𝑛𝑑	𝑞 (the actual value of the quaternion and the quaternion estimate respectively).

Hence, using the small angle approximation:

𝑞 = 		 𝑞⨂𝛿𝑞 ⇔ 𝛿𝑞 = 𝑞∗⨂𝑞

If the rotation corresponding with the error quaternion 𝛿𝑞 is very small, we can use the

small angle approximation and calculate the error angle vector	𝛿𝜃 as:

𝛿𝑞 = 𝛿𝑞
𝛿𝑞#

≈ 𝛿𝑞 = 1
1
2 𝛿𝜃

/
/
	

where	𝛿𝜃 is the angle vector. Similarly, in the case of rotation matrices, as suggested in

[25],

𝐶 = 𝐶. Δ𝐶 ⇔ Δ𝐶 = 𝐶/. 𝐶

27

Δ𝐶 ≈ 𝐼) + 𝛿𝜃×

For other states, use the arithmetic difference to calculate the error, i.e., 𝑥 = 𝑥 − 𝑥.

Hence, as deduced in [26] and [24], the error in the state variables can be written as:

𝑥G = Δ𝑝>H
/			Δ𝑣>H

/		𝛿𝜃>H
/		Δ𝑏>/ 		Δ𝑏?/

∆𝑝>H = ∆𝑣>H

∆𝑣>H = −𝐶>H . 𝑎= − 𝑏? ×
. 𝛿𝜃H − 𝐶>H . Δ𝑏? − 𝐶>H 𝑛?

𝛿𝜃>H = 𝜔= − 𝑏> ×
. 𝛿𝜃>H − Δ𝑏> − 𝑛>

∆𝑏> = 𝑛CD	

∆𝑏? = 𝑛CE

The above equations can be summarized as 𝑥G = 𝐹GG. 𝑥G + 𝐺GG. 𝑛 . Linearizing above

equations using noise vector 𝑛G = 𝑛?/		𝑛CE
/ 		𝑛>/ 		𝑛CD

/ around 𝑥G . Here, the superscript c

used in the notation refers to the continuous time domain. As indicated in [25] and [24],

see that:

𝑥G =
𝜕𝑥G
𝜕𝑥G

𝑥G. 𝑥G −
𝜕𝑥G
𝜕𝑛 𝑥G. 𝑛 = 𝐹GG. 𝑥G + 𝐺GG. 𝑛

Calculate the noise covariance matrix for the discrete case as described in [24]:

𝑄G] = 𝐹G] 𝜏_` . 𝐺GG. 𝑄GG. 𝐺G
G,/. 𝐹G] 𝜏 /𝑑 𝜏 , where

𝐹G] =

𝐼]a Δ𝑡 𝐴 𝐵 −𝐶eDf
/ Δ𝑡' 0%)×)

0) 𝐼]a
0) 0)
0) 0)

𝐶 𝐷
𝐸 𝐹
0) 𝐼]a

−𝐶eDf
/ Δ𝑡 0%)×)
0) 			0%)×)
0) 0%)×)

0) 0)
0%)×) 0%)×)

0) 0)
0%)×) 0%)×)

𝐼]a 0%)×)
0%)×) 𝐼]ha

28

𝐴 = −𝐶eDf
/ 𝑎×

Δ𝑡'

2 −
Δ𝑡)

3! 𝜔× +
Δ𝑡#

4! 𝜔× '

𝐵 = −𝐶eDf
/ 𝑎×

−Δ𝑡)

3! +
Δ𝑡#

4! 𝜔× −
Δ𝑡l

5! 𝜔× '

𝐶 = −𝐶eDf
/ 𝑎× Δ𝑡 −

Δ𝑡'

2! 𝜔× +
Δ𝑡)

3! 𝜔× ' 	

𝐷 = −𝐴	

𝐸 = 𝐼] − Δ𝑡 𝜔× +
Δ𝑡'

2! 𝜔× '

𝐹 = −Δ𝑡 +
Δ𝑡'

2! 𝜔× −
Δ𝑡)

3! 𝜔× '	

𝑄]n

0) 0) 		0) 						0)
−𝐶eDf

/ 0) 		0) 						0)
0)
0)
0)
0%)×)

0)
0)
𝐼]a
0%)×)

−𝐼]a
0)
0)
0%)×)

0)
𝐼]a
0)
0%)×)

where 	𝑄GG is the noise covariance matrix for the continuous case, 𝑄GG =

𝑑𝑖𝑎𝑔(𝜎pE
' 	𝜎pqE

' 	𝜎pD
' 	𝜎pqD

'). The superscript 𝑐 in 𝐹GG refers to the continuous space, whereas

the superscript 𝑑 in 𝑄G] refers to the discrete space, 𝐼]ais a 3x3 identity matrix.

3.2.3. Propagation Steps:

The propagation steps for the state variables is as follows:

1. Using the state variable differential equations propagate the state variables. For the

quaternion, use the quaternion integration method described in [26]:

𝑞 𝑡st% = exp
1
2
Ω 𝜔 Δ𝑡 +

1
48

Ω 𝜔 𝑡st% Ω 𝜔 𝑡s − Ω 𝜔 𝑡st% Ω 𝜔 𝑡st% Δ𝑡' 𝑞 𝑡s

2. 𝐹G]	𝑎𝑛𝑑	𝑄G] are calculated based on the methods described in [24].

29

3. State covariance matrix is calculated using 𝑃st% s = 𝐹]𝑃s s𝐹],/ + 𝑄]	[25].

3.2.4. Measurement Models:

As noted earlier in the introduction of chapter 3, for robust state estimation, additional

sensors are needed around the IMU. These sensors help in correcting drift from integration

of IMU sensors. Note that the origin of the additional sensors does not coincide with that

of the IMU. Hence, additional states must be added to the core state 𝑥G. These states include

the displacement 𝑝H{ of the sensor from the IMU for the 6DOF and 3DOF sensors, the

rotation 𝑞H{ of the sensor from the IMU frame, and a scaling factor 𝜆. Note that these states

do not have any associated dynamics and are not updated during the propagation step:

𝑝H{ = 0

𝜆 = 0

𝑞}{ = 0

3.2.4.1. 6DOF Sensor:

As mentioned in section 3.2.4, one needs additional states for a 6DOF sensor. The new

state is defined as in [24]:

𝑥 = 𝑥G		𝜆		𝑝H{
/		𝑞H{

/

𝑧� = 𝑝>{ = 𝑝H{ + 𝐶>H . 𝑝H{ . 𝜆 + 𝑛�

where 𝑧�	 is the position measurement from the sensor and 𝑛� is the additive white

Gaussian noise. The position error is defined as:

𝑧� = 𝑧� − 𝑧�

𝑧� = 𝑝H{ + 𝐶>H . 𝑝H{ . 𝜆 + 𝑛� − 𝑝H{ + 𝐶>H . 𝑝H{ . 𝜆

where 𝑧� is the position estimate.

30

Also 𝑧� can be expressed using:

𝑝 = ∆𝑝 + 𝑝

𝐶 = 𝐶. (𝐼) + 𝑑𝜃×)

As indicated in [24], solving for 𝑧� using the above equations yields:

𝑧� = Δ𝑝>H 𝜆+𝐶>H . Δ𝑝H{. 𝜆 − 𝐶>H 𝑝H{× . 𝛿𝜃. 𝜆 + 𝑝>H . Δλ + 𝐶>H . 𝑝H{. Δ𝜆

The rotation measurement is

𝑧e = 𝑞>{ ⨂𝑞{H⨂𝛿𝑞p

Error rotation calculations are used to evaluate the following, like in [24].

𝑞 = 𝑞⨂𝛿𝑞 ⟺ 𝛿𝑞 = 𝑞∗⨂𝑞	𝑜𝑟	𝐶 = 𝐶. Δ𝐶 ⟺ Δ𝐶 = 𝐶/. 𝐶

Rotation error is formulated as in [24]:

Δ𝐶 = 𝐶/. 𝐶. Δ𝐶p

Δ𝐶 = 𝐶H{
�. 𝐶>H

�. 𝐶>H . 𝐶H{. Δ𝐶p	𝑤𝑖𝑡ℎ	Δ𝐶 = 𝐼) + 𝛿𝜃×

𝛿𝜃× = 𝐼) + 𝐶H{
�. 𝛿𝜃>H × . 𝐶H{ . 𝐼) + 𝛿𝜃H{× . 𝐼) + 𝛿𝜃p× − 𝐼)

Higher order terms such as 𝛿𝜃×𝛿𝜃 are omitted. These terms only cause errors at the point

of linearization where the expected value of these terms is zero. Also note that:

C. 𝑥× . 𝐶/ = 𝐶. 𝑥×

Hence following the discussion in [24], the estimation error can be calculated as:

𝑑𝜃× ≈ 𝐶H{
�. 𝑑𝜃>H × . 𝐶H{ +	 𝑑𝜃H{× +	 𝑑𝜃p× 	

⇒ 𝑧e = 𝛿𝜃 = 𝐶H{
�. 𝑑𝜃>H + 	𝑑𝜃H{ + 𝛿𝜃p

Thereafter, one can calculate the values for the Jacobians using the expressions obtained

for 𝑧e and 𝑧� namely. This includes 𝐻� = 	
���
��
, 𝐻e =

���
��
, 𝑉� =

���
�p�

, 𝑉e =
���
����

. Please

31

note that 𝐻 is the observability matrix obtained by stacking 𝐻�	and 𝐻e , 𝑃 is the state

covariance matrix and 𝑉 is obtained by stacking 𝑉� and 𝑉e.

Following which, proceed with the EKF correction steps as formulated in [24]:

1. Calculate residual, i.e., the error in the estimate: 𝑧 = 𝑧�/	𝑧e/
/

2. Calculate Innovation: 𝑆 = 𝐻. 𝑃. 𝐻/ + 𝑉. 𝑅. 𝑉�

3. Calculate Kalman Gain: 𝐾 = 𝑃.𝐻. 𝑆�%

4. Calculate correction: 𝑥 = 𝐾. 𝑧

5. Correct the states using the following equations:

a. 𝛿𝑞 = 𝑞∗⨂𝑞; 𝛿𝑞 = 𝑞 %
'
𝛿𝜃/

/

b. 𝑥 = 𝑥 − 𝑥 for the remaining states

6. State covariance is updated as:

𝑃st% st% = 𝐼 + 𝐾.𝐻 . 𝑃st% s. 𝐼 + 𝐾.𝐻 / + 𝐾. 𝑉. 𝑅. 𝑉/. 𝐾/

3.2.4.2. 3DOF Sensor (GPS):

In this section, we analyze inclusion of a 3DoF Sensor such as GPS or a laser tracker, which

yields the position of the vehicle in the world frame. The rotation vector is irrelevant and

is not included as the state 𝑞{H . Nonetheless, keep the scaling factor and the translational

calibration state for the position vector from the IMU to the sensor as suggested in [25].

The state is described as:

𝑥 = 𝑥G		𝜆		𝑝H{
/

where

𝑧� = 𝑝>{ = 𝑝H{ + 𝐶>H . 𝑝H{ . 𝜆 + 𝑛�

The Jacobian calculations and the EKF update steps remain unchanged [25], [24]:

32

𝐻� = 	
𝜕𝑧�
𝜕𝑥 , 𝐻e =

𝜕𝑧e
𝜕𝑥 , 𝑉� =

𝜕𝑧�
𝜕𝑛�

, 𝑉e =
𝜕𝑧e
𝜕𝛿𝜃p

.

Following which, proceed with the EKF correction steps as formulated in [24]:

1. Calculate residual: 𝑧 = 𝑧�/
/

2. Calculate Innovation: 𝑆 = 𝐻. 𝑃. 𝐻/ + 𝑉. 𝑅. 𝑉/

3. Calculate Kalman Gain: 𝐾 = 𝑃.𝐻. 𝑆�%

4. Calculate correction: 𝑥 = 𝐾. 𝑧

5. Correct the states using the following equations:

a. 𝛿𝑞 = 𝑞∗⨂𝑞; 𝛿𝑞 = 𝑞 %
'
𝛿𝜃/

/

b. 𝑥 = 𝑥 − 𝑥 for the remaining states

6. State covariance is updated as:

𝑃st% st% = 𝐼 + 𝐾.𝐻 . 𝑃st% s. 𝐼 + 𝐾.𝐻 / + 𝐾. 𝑉. 𝑅. 𝑉/. 𝐾/

3.3. Vulnerability of the State Estimator

In section 3.1 and section 3.2, a background on EKF based state estimator frame work was

provided to highlight the importance of the IMU at the core of the state estimator. The IMU

measurements form the core of the EKF framework and are explicitly used in the “Time

Update – Prediction Step” and implicitly affect the calculations of the state covariance and

noise covariance matrix. Hence any attack on the IMU compromises the state estimator.

Figure 10 depicts the normal operation of the state estimator and Figure 11 illustrates the

impact of an attack on the IMU on the state estimator.

33

Figure 10: Extended Kalman Filter Framework

Figure 11: State Estimator in the presence of an adversary

34

3.4. Summary

This chapter presents a background on the essential components of state estimation in

autonomous MAVs. Many essential aspects of state estimation, enabling autonomous

flights with a MAV were covered. First, the different models used for the state estimation

in MAVs were compared. The IMU model was identified as a better option for the state

estimator. The IMU measurements received at rates of 1kHz were used for the prediction

process of the state estimator and form an integral part of the state covariance matrix, noise

covariance matrix calculations; hence, implicitly impacting the performance of the

correction process of the state estimator as well.

Thus, there is a necessity to secure the IMU from sensor attacks. The IMU

measurements form the core of the state estimation process and must be safeguarded

against any malicious intents. In the next chapter, a method of integrating a resilient sensor

fusion technique while using redundant sensors to counteract the effect of attacks on the

IMU is proposed. The background review on the state estimation process is vital to

appreciate the need for protecting the IMU in a MAV.

35

4. Resilient State Estimation for MAVs

Most cyber-physical systems and specifically MAVs are systems that continuously interact

with dynamic and stochastic environments. Sensors are fundamental to transforming

physical signals into logical signals, thereby providing an irreplaceable bridge between the

real world and control systems. Sensors are undeniably one of the most important parts of

automated control systems like MAVs. In this chapter, the problem of state estimation in

the presence of compromised sensors is confronted.

4.1. Related Work

This section examines the current state of the art in resilient state estimation and secure

control techniques against faults, failures, and attacks. It is a result of an exhaustive search

of recent publications on our topics of interest.

First, the latest research on attack models and attack techniques on cyber physical

systems and control systems is reviewed in this chapter. In [4], Teixeira et al. present an

adversarial model for networked control system architecture. Using a typical control

architecture for a networked control system, they analyze and present attack models for

replay attacks, bias injection attacks, and zero dynamics. This work is useful for modeling

attack spaces and threat vectors. In [27], Smith discussed a method to covertly modify

sensor and actuator signals. He suggested that it can be accomplished by intruding the

network or through physically modifying the sensors. He also proposes a parametrized

feedback structure to gain control of a Linear time-invariant plant. The controller assumes

that any disturbance or fault entering the system is comparable to an uncompromised

setting. A malicious agent can construct such an attack using just the design of the plant;

36

knowledge of the controller is not needed. The above work advocates the case for

safeguarding the sensors and the state estimation process.

There have been numerous investigations into various approaches to secure general

cyber-physical systems, based on different assumptions and conditions. Previous work

done in the field of robust control [28] is not extendable to our problem of security since

attacks cannot be modeled as bounded disturbances and can be random in nature.

In [29], LeBlanc, Zhang, Koutsoukos, Sundaram attempt to tackle the problem of

intra-network consensus in the presence of faulty nodes. The strategy is based on local

information and is resilient to breaches, with an assumption that the compromised nodes

have knowledge of the other nodes on the network. The authors provide necessary and

sufficient conditions for the functional nodes to reach consensus in the presence of

adversarial nodes. They argue that connectivity is not adequate and instead suggest a

unique graph property called network robustness. Mitra and Sundaram [30], describe the

problem of distributed state estimation in Linear time-invariant systems using a network of

sensors, wherein some sensors are attacked to report faulty measurements. They developed

a secure estimation strategy given a bounded Byzantine attack model, where compromised

nodes have knowledge of the system dynamics and deviate from normal operation. They

present sufficient guarantees for their estimation strategy. The relationship between the

dynamics of the system, the graph structure, and the measurement structure of the nodes is

discussed. Zhang and Sundaram [31] developed a resilient median-based consensus

algorithm in the presence of faulty nodes. They claim that the consensus algorithm is

computationally lightweight and is efficacious for multiple fault models. In [32], Sundaram

and Hadjicostis present a distributed consensus algorithm that enables the system to

37

calculate an arbitrary state of the system in the presence of malicious/faulty nodes. They

also calculate the maximum number of malicious nodes that the consensus algorithm can

tolerate.

Chabukswar, Mo, and Sinopoli [33], present a model based technique for detecting

integrity attacks on sensors of a control system. They discuss the effect of an attack on a

control system in steady state by replaying the sensor information. The paper then suggests

a control algorithm that addresses this vulnerability by augmenting the controller using a

zero-mean Gaussian authentication signal to the Linear Quadratic Gaussian optimal

control. They also show that the authentication signal helps in detecting the replay attack

with a side-effect of degraded control performance. They also structure a method to design

the covariance of the authentication signal to reduce performance loss with detection

guarantees. In [34], Mo, Weerakkody, Sinopoli suggest a method called physical

watermarking as a method to ensure the correct operation of a control system. They identify

that cryptography tools are ineffective against physical attacks on the system or internal or

through malicious insiders. They suggest physical watermarking to physically authenticate

cyber-physical components; given a noisy input sensor reading, the effect of the noisy

measurement can be observed in the true output based on the system dynamics. An attacker

cannot emulate the watermark because he cannot construct the output measurement that

should correspond to the faulty sensor measurement.

In [35], Pasqualetti et al. present a framework monitor to detect faults in linear

systems and specifically in a power network caused by an adversary. They provide

algorithms to design fault-monitoring filters for intruder detection. However, the number

of monitor filters needed is combinatorially dependent on the number of sensors, leading

38

to concerns of scalability. Numerous researchers have attempted to model the attack and

defense model within a game theory framework [36], [37], [38]. The attacker (modeled to

maximize said cost) and the controller (modeled to minimize the same) are modeled as

competitors in a game.

In [39], Fawzi, Tabuada, and Diggavi present a secure state estimation method for

arbitrary attacks on sensors and actuators with the assumption that the profile of the

attacked sensors does not change. They show that one can design an output-feedback

stabilization law using a state estimator resilient to attacks with a standard feedback law.

In [40], Hu et al. present a secure state estimator that protects UAV against arbitrary and

unbounded attacks, where the attacked sensors may change over time. The authors couple

their secure state estimator with a standard Kalman filter (as a pre-filter) and identify better

results. Shoukry et al. [41] present a secure state estimator using a satisfiability modulo

theory approach. They leverage formal methods over real numbers to identify a secure state

estimator that is sound, complete, and computationally efficient. They also present an upper

bound on the runtime performance. Their analysis is made without assumptions about the

attack model, on a multi-dimensional system with multiple sensors.

Other attempts to solve the combinatorial state estimation problem have been done

using brute force or convex relaxations. Chong et al. [42] present two different algorithms

for secure state estimation. The algorithm uses the observability gramian and a consistency

condition to select the correct estimate amongst multiple state estimates. They also present

an observer that asymptotically converges to the right estimate based on the values of its

past inputs and outputs. These approaches can be identified as brute force search

techniques. In [43], Pajic et al. present a resilient state estimator that can be used in systems

39

with modeling errors. They also present a bound on the state estimation error. The authors

model the state estimation problem as a 𝑙�minimization problem which is then relaxed into

a convex 𝑙%/𝑙�	problem which can be solved in polynomial time. However, this relaxation

may lead to incorrect estimates.

The authors of [5], building on the work of [43], [44], and [45] present some of the

novel work in the field of attack resilient cyber physical systems with a focus on attack

resilient state estimators. [46], [47], [48], [49], and [50] present some more work on

resilient state estimators for different attack models and assumptions. Pajic, Weimer,

Bezzo, Sokolosky, Pappas, and Lee [5] describe their work on the development of an attack

resilient cyber physical system and conclude with a case study on the cruise controller for

an Autonomous Ground Vehicle. Following the work in [43], they address attack-resilient

state estimation and provide respective robustness guarantees. They conclude that the

maximal performance loss by a smart malicious agent exploiting the difference between

the physical dynamic model of the system and the model used for state estimation is

bounded and linear. The article also presents a technique to map latency, jitter, and

synchronization faults to parameters of the state estimator. Thus, one may map control

performance to real time specifications. Lastly, they discuss a technique to construct an

assurance case which includes the model of the state estimator and the physical

environment, along with the software structure of the controller. The modeling, robustness

guarantees, and assumptions made throughout the study for the system of interest (model

used for the study) are like a lot of other CPS control and estimation problems.

40

4.2. Resilient Sensor Fusion

It is important to consider using redundant sensors to prevent a system breakdown due to

sensor failure. Nonetheless, adding redundant sensors poses a new problem of fusing

sensor measurements with varying and unpredictable error profiles. The system must

identify faulty or error infused sensor readings from correct sensor readings.

Sensor fusion discusses methods to combine data from independent sensors into

one sensor reading while ensuring robustness, precision, accuracy, and reliability.

Distributed sensing enables identifying the number of node failures the system can handle

while maintaining correctness and reliability. This section examines and structures the

problem of attack resilient sensor fusion for resilient state estimation in the presence of

adversaries. Each sensor measurement is structured as an interval and the width of the

interval is based on the noise profile of the sensor; reflecting the underlying accuracy of a

sensor. The sensor fusion technique makes no assumptions about the system dynamics.

Hence, a similar approach can be used for other comparable systems to structure resilient

state estimators.

The work integrates Brooks – Iyengar fusion, which outputs a fusion interval for a

presumed set of compromised or spoofed sensors with the generic state estimator (Chapter

3), to construct a resilient state estimator. A compromised/attacked sensor is any sensor

that is under the effect of an adversary is defined.

Sensor fusion is discussed in detail to highlight how a control system can be certain

to make correct decisions in presence of compromised nodes or nodes under adversarial

attacks. A summary of the Byzantine generals problem identified by Lamport et al. [51] is

presented followed by a discussion on Brooks-Iyengar Fusion as the underlying sensor

41

fusion architecture to address the Byzantine generals problem. Other sensor fusion

algorithms that improve the precision and accuracy of the measurements taken by multiple

sensor networks include Approximate Consensus [52], In-exact Consensus [53], Byzantine

Vector Consensus [54], and Multidimensional Agreement [55]. But, as concluded in [56],

refer to Table 3, Brooks-Iyengar Fusion is a superior algorithm when compared in terms

of maximum faulty nodes, convergence rate, accuracy, and precision of each round; against

the other algorithms.

Algorithm Approximate

agreement

FCA Approximate

BVC

Marzullo

sensor fusion

Brooks-Iyengar

algorithm

Input scalar scalar vector interval interval/hybrid

Faulty PEs

tolerated
< 𝑁/2 < 	𝑁/3

≤ 	 (𝑁	 − 	1)/(𝑑	

+ 	2)
< 	𝑁/3 < 	𝑁/3

Maximum

faulty PEs
< 	𝑁/3 < 	2𝑁/3

≤ 	 (𝑁	 − 	1)/(𝑑	

+ 	2)
< 	𝑁/2 < 	𝑁/2

Convergence

rate [21]

1/(1 + [𝑁	 − 2𝜏	

− 1])
2𝜏	/𝑁 (1	 − 	𝛾) 2	 ∗ 	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 2𝜏	/𝑁

Accuracy
𝛿(𝑈)

𝜅						 +	

𝛿𝜏	/𝑁

in the convex

hull
[𝑎>n£�¤, 𝑏>n£�¤] [𝑎>n£�¤, 𝑏>n£�¤]

Precision of

each round 𝛿(𝑈)/2 2𝜏𝛿/𝑁

(1 − 𝛾)(Ω¦	[𝑡

− 1] − µ¦[𝑡

− 1])

|𝑏>n£�'¤

− 𝑎>n£�'¤|

|𝑏>n£�'¤

− 𝑎>n£�'¤|	/(1	

+ 	α)

Table 3: Comparison of different sensor fusion techniques [56]

The variables used in Table 3 are summarized below:

1. 𝑁 is the number of sensors

42

2. 𝜏 is the number of faulty sensors

3. 𝛿 𝑈 = max 𝑈 −min 𝑈

4. 𝜅 refers to the accuracy, i.e., difference between the sensor’s observed value and

the ground truth, i.e., max 𝑣� − 𝑣 ≤ 𝜅

5. 𝑑 refers to the number of dimensions for BVC

6. 𝛾 = %

£(­
(­®¯))

7. Ω¦ = 𝑚𝑎𝑥%°s±=𝑣s¦ 𝑡 in 𝑚 non-faulty sensors, where 𝑣s¦ 𝑡 is the 𝑙 − 𝑡ℎ entry of

the vector of the 𝑘 − 𝑡ℎ sensor in the 𝑡 − 𝑡ℎ round.

8. µ¦ = 𝑚𝑖𝑛%°s±=𝑣s¦ 𝑡 in 𝑚 non-faulty sensors, where 𝑣s¦ 𝑡 is the 𝑙 − 𝑡ℎ entry of

the vector of the 𝑘 − 𝑡ℎ sensor in the 𝑡 − 𝑡ℎ round.

9. 𝑏² = 𝑚𝑜𝑠𝑡	𝑟𝑖𝑔ℎ𝑡	𝑒𝑛𝑑	𝑝𝑜𝑖𝑛𝑡	𝑜𝑓	𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠	𝑤𝑖𝑡ℎ	𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ≤ 𝑤

10. 𝑎² = 𝑚𝑜𝑠𝑡	𝑙𝑒𝑓𝑡	𝑒𝑛𝑑	𝑝𝑜𝑖𝑛𝑡	𝑜𝑓	𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠	𝑤𝑖𝑡ℎ	𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ≤ 𝑤	

11. 𝛼 = £�¤
('£�¤)¤

4.3. Byzantine Generals Problem

The Byzantine generals problem is a decision-making problem that was formalized by

Lamport et al. [51], in which a commander-in-chief has multiple regiments of the

Byzantine army camped outside an enemy city. Each regiment is commanded by a general

and the generals can communicate with the generals only through a messenger. The

generals must observe the enemy’s actions and deduce a common plan of action. Though,

some of the generals may be traitors and may attempt to obstruct the loyal generals from

coming to a consensus. All the generals and their corresponding regiments must follow the

43

order of a reliable commander-in-chief for success. The problem demands an algorithm

such that:

1. All generals decide on the same plan of action.

2. A small number of traitors should not direct the generals towards adopting a

wrong plan.

3. One can easily draw parallels between the generals problem and our problem of

sensor consensus/fusion by making necessary analogies. It can be restated as a

system of N nodes, amongst which p may be faulty. The algorithm must ensure

that:

4. The non-faulty nodes must come to a consensus about the data received from

another node Z.

5. If Z is non-faulty, the consensus must match the message received from Z.

4.4. Brooks-Iyengar Sensor Fusion

A formalization of the Brooks-Iyengar Sensor Fusion is established in this section. Brooks-

Iyengar Sensor Fusion merges the Fast Convergence Algorithm (FCA) presented by

Mahaney and Schneider [53] with the optimal region algorithm to produce the Brooks

Iyengar Algorithm which has superior accuracy and precision for distributed decision

making. The abovementioned optimal region algorithm is based on Brooks and Iyengar’s

Multidimensional Agreement algorithm [57] and is comparable to Marzullo’s fusion

algorithm [58].

Given a system with 𝑛 sensors and 𝜁 faulty sensors. Each sensor presents its

measurement as an interval constructed using its precision. The output of the algorithm

includes a point estimate of the measurement and a corresponding interval.

44

The algorithm follows the work of [59], [56]:

Algorithm 1: Brooks-Iyengar Sensor Fusion Algorithm

Input:

The measurements sent by sensor 𝑘 where 1 ≤ 𝑘 ≤ 𝑁, and the interval received from

sensor 𝑘 can be denoted as [𝑙s, ℎs]. Let 𝜁 be the number of faulty sensors.

Output:

As suggested earlier, the output is a point estimate and an interval of the measurement

1. State estimator receives point estimate and corresponding interval from all the

sensors.

2. Take the union of the intervals of the collected measurements.

3. Divide the union into mutually exclusive intervals based on the number of

measurement intervals that intersect. We call the number of intersected intervals

the weight for that interval.

4. Identify intervals with weight less than 𝑁 − 𝜁. Let 𝑁 − 𝜁	be denoted as 𝐹.

5. The set of remaining intervals 𝑆 = 𝐼%, 𝑤% … 𝐼¹, 𝑤¹ where 𝐼H	𝑎𝑛𝑑	𝑤H refer to

the interval and weight for the 𝑖`º	sensor respectively

6. The point estimate can be calculated as:

𝑝 =
(𝑙H + ℎH)×𝑤H

2¹

𝑤H¹

7. The interval estimate is evaluated as (𝑙»h, ℎ»¼)

According to [56], the accuracy of the sensor fusion measurement can be calculated as:

45

𝑝H − 𝑝 ≤ 𝑏²n£�½ − 𝑎²n£�½ ≤ min
½t%

𝑢 : 𝑢𝜖𝑈 	

𝑤ℎ𝑒𝑟𝑒	𝑝H	𝑖𝑠	𝑝𝑜𝑖𝑛𝑡	𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒	𝑓𝑜𝑟	𝑠𝑒𝑛𝑠𝑜𝑟	𝑖, 𝑢 	𝑑𝑒𝑛𝑜𝑡𝑒𝑠	𝑡ℎ𝑒	𝑙𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑢	

𝑎𝑛𝑑	𝑏² = 𝑚𝑜𝑠𝑡	𝑟𝑖𝑔ℎ𝑡	𝑒𝑛𝑑	𝑝𝑜𝑖𝑛𝑡	𝑜𝑓	𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠	𝑤𝑖𝑡ℎ	𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ≤ 𝑤	

𝑎𝑛𝑑	𝑎² = 𝑚𝑜𝑠𝑡	𝑙𝑒𝑓𝑡	𝑒𝑛𝑑	𝑝𝑜𝑖𝑛𝑡	𝑜𝑓	𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠	𝑤𝑖𝑡ℎ	𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ≤ 𝑤

Also, the precision of the sensor fusion measurement can be calculated as in [56]:

1
1 + 𝛼 𝑏²n£�½ − 𝑎²n£�½ 	

𝑤ℎ𝑒𝑟𝑒	𝛼 =
𝑁 − 𝜁

(2𝑁 − 𝜁)𝜁

4.5. System Description

Our system has 𝑛 sensors measuring some physical variables and communicating with the

flight controller over a shared bus. The sensors deliver the measurement in the form of

intervals. The controller then calculates an interval containing all possible values of the

true state based on the given precision. Given a precision guarantee of ∆, an interval sized

2∆ is constructed around the sensor measurement. The interval size may be expanded based

on implementation restraints and delay or jitter sensitivities. The controller on receiving n

intervals, fuses the measurements assuming 𝑓 faulty sensors. The fusion operates

conservatively. A sensor is correct if its interval contains the true state value.

4.5.1. Problem Statement

The problem in this work is to neutralize an attack on the sensors. The attacker’s policy to

maximize the impact of the attack is first formalized. The goal is to reach the correct state

estimate despite compromised sensors.

46

4.5.2. Attack Model

The fact that adversaries may control/spoof what sensor measurements are being passed to

the controller is assumed. The attacker’s goal is to maximize the fused interval and lead to

an incorrect point measurement while remaining undetected. Thus, the attacker can spoof

the sensors to maximize the width of the fusion interval and greatly disrupt the performance

of an air vehicle. As discussed in section 2.3.2.4, there are multiple ways of spoofing

sensors, either by modifying the software of the flight controller or through physical means.

Our attack model discusses attacks on the IMU of the MAV. As examined in

chapter 3, since our state estimator uses the IMU readings instead of the MAV dynamic

model to estimate the state, the system is heavily dependent on the IMU readings to ensure

correct state estimation and consequently stable control.

The defense model is to use multiple IMUs to ensure no single point of failure. This

is a viable solution, since IMUs are inexpensive, have low power requirements, and are

light-weight. At the same time, one may also argue that compromising all the IMUs on a

given system is not possible. Also, it may be possible that not all the components of the

IMU are compromised and may partly be functional. The system has multiple sensors that

measure the angular velocity and linear acceleration. Before the sensor readings are sent to

the controller, the readings are passed through a pre-filter to assess for possible attacks or

faults and discard the compromised measurements.

47

Figure 12: Defense strategy against sensor spoofing attacks

4.5.3. Fusion Methodology

Brooks and Iyengar proposed an interval-based resilient sensor fusion algorithm, wherein

the accuracy of the fused sensor reading is better than the individual sensor readings. The

fusion algorithm provides a point estimate as well as an interval around the point estimate.

The interval size is bounded if the number of faulty sensors are bounded. Brooks Iyengar

fusion assumes an upper bound on the number of faulty measurements or sensors, i.e., 𝑛/3.

The defense model is to use multiple IMUs to
ensure no single point of failure.

Discard the
compromised
measurement

-s.

Compromisin
-g all IMUs
may not be

possible

IMUs are
inexpensive,

have low
power

requirements,
and are light-

weight.

48

The fusion algorithm outputs a fusion interval that is guaranteed to contain the true

value. As discussed in 5.2. the fusion algorithm identifies the intersecting intervals and the

corresponding weights. The fused estimate and interval is calculated by taking a weighted

average of the intervals.

1. If 𝑓 < 𝑛/3, then the fusion interval is bounded by a correct interval.

2. If 𝑓 < 𝑛/2, then the fusion interval is bounded by an interval which might

not be correct.

3. If 𝑓 ≥ 𝑛/2, then the fusion interval is not bounded and may not contain the

correct measurement; where 𝑓	is the number of attacked sensors.

4. For our analysis, we assume 𝒇 < 𝒏/𝟑.

4.5.4. Attack Detection:

The fusion algorithm as discussed in section 4.5.3. detects an attack by checking if an

interval intersects the calculated fusion interval (from the un-attacked sensors). Intervals

not intersecting the fusion interval correspond to the attacked sensor since they cannot

contain the true value. A possible criticism of this sensor algorithm is that it handles sensor

faults and sensor attacks equivalently.

4.6. Secure State Estimator Structure

A state estimator that uses Brook Iyengar Fusion to fuse the sensor readings from IMUs

prior to feeding the angular velocity and linear acceleration measurements into the EKF

based state estimator as discussed in chapter 4 is proposed. A model of our state estimator

is described in Figure 9.

49

Figure 13: Secure State Estimator

4.7. Summary

In this chapter, a state of the art state estimation framework with an attack resilient sensor

fusion technique to defend MAVs against sensor attacks was integrated. As highlighted in

chapter 3, the IMU forms the core of the state estimation process. Since, IMUs are

lightweight and have low energy requirements, we advocate using redundant IMUs to

prevent a single point of failure and a compromised system. Consequently, we identify

Brooks Iyengar Sensor Fusion as an attack resilient sensor fusion technique. The

improvements in the state estimation resilience is exemplified through the simulations in

Chapter 5. The experiments show that the resilient state estimator can correctly estimate

the state of the system in the presence of sensor attacks.

50

5. Results and Analysis

The results of the software in the loop simulation are discussed in this section. Following

which is an analysis to verify the proposed state estimator’s performance and inferences

that may be drawn from the results. The simulator was programmed in MATLAB

(MATLABR_2015A) on a standard MacOSX personal computer. The simulations used the

EuRoC MAV dataset [60], [61]. Available data includes [61]:

• Stereo Images (Aptina MT9V034 global shutter, WVGA monochrome, 2×20 FPS)

• MEMS IMU (ADIS16448, angular rate and acceleration, 200 Hz)

• VICON motion capture system (6D pose)

• Leica MS50 laser tracker (3D position)

The dataset represents the sensor measurements of a MAV following programmed

waypoints. The simulation represents a MAV installed with multiple IMUs, and is also

receiving position measurements from a Leica Total Station. The outputs of these sensors

are fused together to generate an estimate for the position, velocity, and attitude of the

system. One or some of these IMU measurements are attacked. A uniformly distributed

random attack is simulated. The comparative performance of the state estimators in

different conditions is presented. Please note that the simulations of the state estimator do

not include of the control dynamics and response of the system. While examining the

performance of the generic state estimator in the presence of adversarial attacks, it is vital

to respect that the deference of the estimated state from the ground truth will be amplified

by the response of the flight controller. The flight controller which was programmed to

follow a certain trajectory or to reach certain way points will make position control and

51

attitude control calculations based on the incorrect state estimate. This will lead to incorrect

actuator controls and lead the quadrotor to incorrect positions and lead to a greater state

estimate error. This effect will be propagated and lead to a severely erroneous system

performance and unpredictable behavior. Incorrect control signals in unknown states may

possibly lead to the system crashing due to compounding error factors. For all the

simulations, the blue trajectory is the estimated position of the MAV state estimator, and

the red trajectory is the ground truth trajectory obtained from the VICON motion capture

system. Broadly, the simulations in this section describe:

5.1. Generic state estimator performance without compromised sensors.

This simulation (Figure 14) describes the performance of the generic state estimator when

the sensors are operating correctly. The red trajectory represents the ground truth

coordinates obtained from the VICON tracker. The blue trajectory is the estimated position

of the MAV state estimator. The axes are indicative of the position along the X, Y, Z

directions.

Figure 14: Trajectory of a Quadrotor in nominal conditions while using the standard state

estimator.

6
4

Position along X axis(m)

2

Position in 3-D Frame(Trajectory)

0
-2

-4-5

Position along Y axis(m)

0

5

0

-0.5

-1.5

-1

1.5

1

0.5

10

Po
si

tio
n

al
on

g
Z

ax
is

(m
)

Estimated Position
Ground Truth

52

Figure 15, Figure 16, Figure 17 represent the estimated X, Y, and Z positions of the

MAV (blue trajectory) along with the ground truth X, Y, and Z positions of the MAV

(red trajectory). The state estimator correctly tracks the position of the MAV.

Figure 15: Position of Quadrotor along X-axis in nominal conditions while using the

standard state estimator

Figure 16: Position of Quadrotor along Y-axis in nominal conditions while using the

standard state estimator.

Time(s) #104
0 0.5 1 1.5 2 2.5 3 3.5 4

Po
si

tio
n

al
on

g
X

ax
is

(m
)

-3

-2

-1

0

1

2

3

4

5

6
X Coordinate Estimate and Actual Value

Estimated Position
Ground Truth

Time(s) #104
0 0.5 1 1.5 2 2.5 3 3.5 4

Po
si

tio
n

al
on

g
Y

ax
is

(m
)

-4

-2

0

2

4

6

8

10
Y Coordinate Estimate and Actual Value

Estimated Position
Ground Truth

53

Figure 17: Position of Quadrotor along Z-axis in nominal conditions while using the

standard state estimator.

5.2. Generic state estimator performance in the presence of sensor attacks.
This simulation (Figure 18) describes the performance of the generic state estimator when

the IMU is under attack. The red trajectory represents the ground truth coordinates obtained

from the VICON tracker. The blue trajectory is the estimated position of the MAV state

estimator. The axes are indicative of the position along the X, Y, Z directions. The state

estimator fails to estimate the position of the MAV.

Figure 18: Trajectory of a Quadrotor under adversarial attacks while using the standard

state estimator

Time(s) #104
0 0.5 1 1.5 2 2.5 3 3.5 4

Po
si

tio
n

al
on

g
Z

ax
is

(m
)

-1.5

-1

-0.5

0

0.5

1

1.5
Z Coordinate Estimate and Actual Value

Estimated Position
Ground Truth

10

Position along X axis(m)

5

Position in 3-D Frame(Trajectory)

0

-5-5

Position along Y axis(m)

0

5

3

2

-4

-3

-2

-1

0

1

5

4

10

Po
si

tio
n

al
on

g
Z

ax
is

(m
)

Estimated Position
Ground Truth

54

Figure 19, Figure 20, Figure 21 represent the estimated X, Y, and Z positions of the MAV

(blue trajectory) along with the ground truth X, Y, and Z positions of the MAV (red

trajectory).

Figure 19: Position of Quadrotor along X-axis under adversarial attacks while using the

standard state estimator

Figure 20: Position of Quadrotor along Y-axis under adversarial attacks while using the

standard state estimator.

Time(s) #104
0 0.5 1 1.5 2 2.5 3 3.5 4

Po
si

tio
n

al
on

g
X

ax
is

(m
)

-4

-2

0

2

4

6

8

10
X Coordinate Estimate and Actual Value

Estimated Position
Ground Truth

Time(s) #104
0 0.5 1 1.5 2 2.5 3 3.5 4

Po
si

tio
n

al
on

g
Y

ax
is

(m
)

-4

-2

0

2

4

6

8

10
Y Coordinate Estimate and Actual Value

Estimated Position
Ground Truth

55

Figure 21: Position of Quadrotor along Z-axis under adversarial attacks while using the

standard state estimator.

5.3. Secure state estimator performance in the presence of sensor attacks.

This simulation (Figure 22) describes the performance of the resilient state estimator when

the sensors are operating correctly. The red trajectory represents the ground truth

coordinates obtained from the VICON tracker. The blue trajectory is the estimated position

of the MAV state estimator. The axes are indicative of the position along the X, Y, Z

directions.

Time(s) #104
0 0.5 1 1.5 2 2.5 3 3.5 4

Po
si

tio
n

al
on

g
Z

ax
is

(m
)

-4

-3

-2

-1

0

1

2

3

4

5
Z Coordinate Estimate and Actual Value

Estimated Position
Ground Truth

56

Figure 22: Trajectory of a Quadrotor under adversarial attacks while using the secure

state estimator.

Figure 23, Figure 24, Figure 25 represent the estimated X, Y, and Z positions of the MAV

(blue trajectory) along with the ground truth X, Y, and Z positions of the MAV (red

trajectory). We observe an improved performance of the state estimation process with the

integrated resilient sensor fusion module. The resilient state estimator correctly estimates

the state of the MAV.

Figure 23: Position of Quadrotor along X-axis under adversarial attacks while using the

secure state estimator.

6
4

Position along X axis(m)

2

Position in 3-D Frame(Trajectory)

0
-2

-4-5

Position along Y axis(m)

0

5

1.5

-1.5

-1

-0.5

0

0.5

2

1

10

Po
si

tio
n

al
on

g
Z

ax
is

(m
)

Estimated Position
Ground Truth

Time(s) #104
0 0.5 1 1.5 2 2.5 3 3.5 4

Po
si

tio
n

al
on

g
X

ax
is

(m
)

-3

-2

-1

0

1

2

3

4

5

6
X Coordinate Estimate and Actual Value

Estimated Position
Ground Truth

57

Figure 24: Position of Quadrotor along Y-axis under adversarial attacks while using the

secure state estimator.

Figure 25: Position of Quadrotor along Z-axis under adversarial attacks while using the

secure state estimator.

5.4. Quantitative Comparison

We evaluate the performance of the state estimators based on the Hausdorff distance [62].

The Hausdorff distance is a metric that compares the distance between two sets of spaces.

It is used as a measure of trajectory similarity. The results of the Hausdorff distance

calculations are mentioned in Table 4. A smaller value indicates a high similarity between

Time(s) #104
0 0.5 1 1.5 2 2.5 3 3.5 4

Po
si

tio
n

al
on

g
Y

ax
is

(m
)

-4

-2

0

2

4

6

8

10
Y Coordinate Estimate and Actual Value

Estimated Position
Ground Truth

Time(s) #104
0 0.5 1 1.5 2 2.5 3 3.5 4

Po
si

tio
n

al
on

g
Z

ax
is

(m
)

-1.5

-1

-0.5

0

0.5

1

1.5

2
Z Coordinate Estimate and Actual Value

Estimated Position
Ground Truth

58

two trajectories. In the simulations, the ground truth trajectory and the estimated

trajectories are compared.

Simulation
Haursdroff

Distance

Generic State Estimator without Attack 0.3717

Generic State Estimator with sensors under attack 5.9983

Resilient State Estimator with sensors under attack 0.4819

Table 4: Quantitative comparison of State Estimator Performance

5.5. Summary

This chapter presents a proof of concept for the performance of the integrated resilient state

estimator for MAVs in the presence of attacks on the IMU. The generic state estimator fails

to correctly estimate the state of the MAV in the presence of attacks on the MAV (Figures

18 – 21). However, as observed in Figures 22 – 25, the resilient state estimator could

successfully estimate the position of the MAV. A quantitative comparison between the

state estimators is also presented in the form of the Hausdorff distance metric. In the next

chapter, we conclude the thesis and set directions for the future work.

59

6. Conclusion and Future Work

The thesis investigated and presented a solution to the resilient state estimation problem.

We integrated a state of the art state estimator with a resilient sensor fusion technique, and

could reconstruct the state of the MAV in the presence of adversarial attacks. This is vital

for existing commercial MAVs, for future drone delivery systems, and for other

applications of MAVs. The proposed resilient state estimator makes no assumptions about

the attack signal model.

Based on the formalization of Brooks Iyengar Fusion, one can fuse the

measurements from the attacked sensors to give an accurate fused point estimate and an

interval. Brooks Iyengar fusion is combined and used as a pre-filter to the EKF based state

estimator for fusing multiple sensor measurements of the same physical signal. The

performance of the generic state estimator and the proposed resilient state estimator is

compared after introducing an attack on a sensor, i.e., modifying sensor readings.

Specifically, simulations to show the performance of secure state estimators in navigation

of a quadrotor under sensor attacks on the IMU, refer to Figure 10 – Figure 21. The number

of attacks that can be tolerated, i.e., the number of sensors that can be attacked is a

maximum of 𝑛/3 sensors while maintaining safe operation.

6.1. Contributions

The research goals were identified in the beginning of the thesis and have been addressed.

The security vulnerabilities of MAVs, i.e., the different threat vectors were identified in

chapter 2 (RG-1). In chapter 3, the current state of the art state estimation technique used

in MAVs (RG - 2) was summarized to study the impact of sensor attacks on a generic state

60

estimator. Propositions to improve the existing state estimator were stated in chapter 4,

where Brooks-Iyengar sensor fusion was identified as a viable solution (RG - 2 & RG - 3).

Chapter 5 offered a proof-of-concept for our resilient state estimator (RG - 4) through a

case study.

The primary contributions of this thesis are:

1. By understanding the state estimation process of MAVs, we identify the importance

of the IMU as the most vulnerable attack surface for a MAV.

2. Having identified the IMU as the most vulnerable component of the MAV state

estimation process, we develop a resilient state estimator for the MAV using

existing results in resilient fusion. An important feature of the fusion algorithm is

that it makes no assumptions about the system dynamics.

3. The resilient state estimator was validated by implementing it on a real dataset

containing IMU, Leica, VICON data obtained from a MAV. The performance of

the resilient state estimator is exemplified in chapter 5.

As a final comment, it is important to admit that much of the motivation and enthusiasm

for this work is derived from the foresight of the future of MAVs. In the end, it is this vision

that provided the guiding framework. However, it is equally critical to realize that many of

the results and techniques developed in this thesis are not limited to MAVs. For example,

a similar pre-filter sensor fusion approach is likely to be relevant for other autonomous

vehicles – for autonomous cars, such redundancy could be useful for wheel encoders

measuring the velocity of the car. Thus, even though MAVs motivated this thesis, its

impact is likely to transcend to other robotic applications.

61

6.2. Future Work

Future directions for the work are to construct a resilient state estimator by adding

redundancy in measured variables measured by different types of sensors. For example, if

one wants to secure the velocity of a given MAV. Instead of using velocity measurements

from redundant sensors of a single type that measure velocity like a GPS, the estimator can

be modified to fuse measured velocity from different sensors like a GPS, IMU, Camera,

LIDAR, etc. Redundancy through a broader range of sensors will make the system even

more robust. One can also improve the attack detection procedure by leveraging the

system’s dynamical model.

Moreover, a major underlying assumption is that uncompromised sensors provide

error-free measurements. An extension of this work would be to introduce random faults

in the sensor measurements and study the system performance in more generalized

conditions.

Another possible extension of this work is to incorporate sensor measurement

history to better tune the state estimator to ignore faulty measurements. One may utilize

past measurements in conjunction with a dynamical model of the system to reduce the size

of the convex hull of the measurement intervals of the sensor readings and improve the

precision of the fusion algorithm.

Finally, to better study the performance of the resilient state estimator, the next step

is to implement a controller for the MAV and observe the response of the MAV when it

uses the resilient state estimator.

62

Appendix A

Appendix A presents the MATLAB code and helper functions used to simulate the state
estimator.

1. Main Function

% Date: Thu, 20 Feb, 2017

% Last updated: 15 March, 2017

% Author: Akshay Prasad

% Organization: University of Maryland, College Park (MSSE Student)

%

% Project: Secure State Estimation for Quadrotors

% Component: Simulator - Main Function

%

% Description:This function is the main script to simulate the state

% estimator.

%

% {trawny2005indirect,

% title={Indirect Kalman filter for 3D attitude estimation},

% author={Trawny, Nikolas and Roumeliotis, Stergios I},

% journal={University of Minnesota, Dept. of Comp. Sci. \& Eng., Tech. Rep},

% volume={2},

% year={2005}

% }

%---------------------------Clearing Values--------------------------------

clc;

clear;

%-----------------------Defining Filter Parameters-------------------------

n=20; %number of states

currTime=0;

%------------------------------Noise values--------------------------------

63

r=0.1; %std of measurement

errZ=0.01*eye(3); %Leica Measurement Noise Covariance Matrix

%Process Noise Covariance Matrix

varNw=0.00135;varMatNw=varNw^2*eye(3);

varBw=0.00011;varMatBw=varBw^2*eye(3);

varNa=(0.023*1e-6);varMatNa=varNa^2*eye(3);

varBa=(0.011/60);varMatBa=varBa^2*eye(3);

zer=zeros(3);

Qc=[varMatNa zer zer zer;

 zer varMatBa zer zer;

 zer zer varMatNw zer;

 zer zer zer varMatBw];

%-----------------------------Alotting Space-------------------------------

%initial estimate

x=zeros(n,1);

x(17,1)=1;

x(7:10)=.1;

P = eye(n-1); % initial state covraiance

% total dynamic steps

%------------------------Feed Sensor Data------------------------------

fileID = fopen('imu.csv');

csvRawData = textscan(fileID, '%u64,%f,%f,%f,%f,%f,%f', 'headerLines', 1);

imudata1.t = csvRawData{1}';

imudata1.omega = [csvRawData{2}, csvRawData{3}, csvRawData{4}]';

imudata1.a = [csvRawData{5}, csvRawData{6}, csvRawData{7}]';

fileID = fopen('imu.csv');

csvRawData = textscan(fileID, '%u64,%f,%f,%f,%f,%f,%f', 'headerLines', 1);

imudata2.t = csvRawData{1}';

imudata2.omega = [csvRawData{2}, csvRawData{3}, csvRawData{4}]';

imudata2.a = [csvRawData{5}, csvRawData{6}, csvRawData{7}]';

64

 imudata2.a=imudata2.a+10;

 imudata2.omega=imudata2.omega;

fileID = fopen('imu.csv');

csvRawData = textscan(fileID, '%u64,%f,%f,%f,%f,%f,%f', 'headerLines', 1);

%Attacked IMU

imudata3.t = csvRawData{1}';

imudata3.omega = [csvRawData{2}, csvRawData{3}, csvRawData{4}]';

imudata3.a = [csvRawData{5}, csvRawData{6}, csvRawData{7}]';

imudata3.a= imudata3.a+varNa*randn(3,36820);

imudata4.t = csvRawData{1}';

imudata4.omega = [csvRawData{2}, csvRawData{3}, csvRawData{4}]';

imudata4.a = [csvRawData{5}, csvRawData{6}, csvRawData{7}]';

imudata4.a= imudata4.a+varNa*randn(3,36820);

fileID = fopen('leica.csv');

csvRawData = textscan(fileID, '%u64,%f,%f,%f', 'headerLines', 1);

leicadata.t = csvRawData{1}';

leicadata.pos = [csvRawData{2}, csvRawData{3}, csvRawData{4}]';

fileID = fopen('ground.csv');

csvRawData = textscan(fileID,

'%u64,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f', 'headerLines', 1);

grounddata.t = csvRawData{1}';

grounddata.pos = [csvRawData{2}, csvRawData{3}, csvRawData{4}]';

grounddata.vel=[csvRawData{5}, csvRawData{6}, csvRawData{7}]';

grounddata.quat=[csvRawData{8}, csvRawData{9},

csvRawData{10},csvRawData{11}]';

grounddata.biasw=[csvRawData{12}, csvRawData{13}, csvRawData{14}]';

grounddata.biasa=[csvRawData{15}, csvRawData{16}, csvRawData{17}]';

prevTime=min(imudata1.t(1),leicadata.t(1));

measItr=1;

xV = zeros(n,numel(imudata1.t)); %estimate

65

sV = zeros(n,numel(imudata1.t)); %actual

xV(:,1)=x;

k=2;

ctr=2;

%-----------------------Filter operation----------------------------------

while(k<numel(imudata1.t))

 if(imudata1.t(k)<leicadata.t(measItr))

 currTime=imudata1.t(k);

 g=[0;0;9.8];

 dt=double(currTime-prevTime)/1e9;

 sV(1:3,ctr)=leicadata.pos(1:3,measItr);

 w0=imudata2.omega(1:3,k-1);

 w1=imudata2.omega(1:3,k);

% a11=marzulloFusion({[imudata1.a(1,k)-2.5,imudata1.a(1,k)+1],[imudata2.a(1,k)-

8,imudata2.a(1,k)+7],[imudata3.a(1,k)-2,imudata3.a(1,k)+1],[imudata4.a(1,k)-

1,imudata4.a(1,k)+2]},4,1);

% a12=marzulloFusion({[imudata1.a(2,k)-2.5,imudata1.a(2,k)+1],[imudata2.a(2,k)-

8,imudata2.a(2,k)+7],[imudata3.a(2,k)-2,imudata3.a(2,k)+1],[imudata4.a(2,k)-

1,imudata4.a(2,k)+2]},4,1);

% a13=marzulloFusion({[imudata1.a(3,k)-2.5,imudata1.a(3,k)+1],[imudata2.a(3,k)-

8,imudata2.a(3,k)+7],[imudata3.a(3,k)-2,imudata3.a(3,k)+1],[imudata4.a(3,k)-

1,imudata4.a(3,k)+2]},4,1);

% a1=[a11;a12;a13];

% a11=approxAgreement([imudata1.a(1,k);imudata2.a(1,k);imudata3.a(1,k);imudat

a4.a(1,k)],1);

% a12=approxAgreement([imudata1.a(2,k);imudata2.a(2,k);imudata3.a(2,k);imudat

a4.a(2,k)],1);

% a13=approxAgreement([imudata1.a(3,k);imudata2.a(3,k);imudata3.a(3,k);imudat

a4.a(3,k)],1);

% a1=[a11;a12;a13];

66

% a1=(imudata1.a(1:3,k)+imudata2.a(1:3,k)+imudata3.a(1:3,k)+imudata4.a(1:3,k))/4;

a11=sensorFusion({[imudata1.a(1,k)-0.5,imudata1.a(1,k)+0.5],[imudata2.a(1,k)-

0.5,imudata2.a(1,k)+0.5],[imudata3.a(1,k)-0.5,imudata3.a(1,k)+0.5],[imudata4.a(1,k)-

0.5,imudata4.a(1,k)+0.5]},4,1);

 a12=sensorFusion({[imudata1.a(2,k)-0.5,imudata1.a(2,k)+0.5],[imudata2.a(2,k)-

0.5,imudata2.a(2,k)+0.5],[imudata3.a(2,k)-0.5,imudata3.a(2,k)+0.5],[imudata4.a(2,k)-

0.5,imudata4.a(2,k)+0.5]},4,1);

 a13=sensorFusion({[imudata1.a(3,k)-0.5,imudata1.a(3,k)+0.5],[imudata2.a(3,k)-

0.5,imudata2.a(3,k)+0.5],[imudata3.a(3,k)-0.5,imudata3.a(3,k)+0.5],[imudata4.a(3,k)-

0.5,imudata4.a(3,k)+0.5]},4,1);

 a1=[a11;a12;a13];

 pos_hat_avg_0=xV(1:3,ctr-1);

 vel_hat_avg_0=xV(4:6,ctr-1);

 q_hat_avg_0 = xV(7:10,ctr-1);

 bw=xV(11:13,ctr-1);

 ba = xV(14:16,ctr-1);

 lambda = xV(17,ctr-1);

 posgps = xV(18:20,ctr-1);

 C=qGetRotation(q_hat_avg_0);

 w_hat_0 = w0;

 %State Propogation

 % We instead proceed as follows:

 % 1. We propagate the bias (assuming the bias is constant over the integration

interval)

 ba1 = ba; % TODO : Here is a problem : we have no way of validating or updating

the bias. Update it externally periodically can do the trick.

 bw1 = bw;

 % 2. Using the measurement w1 and b1, we form the estimate of the new turn rate

w_hat_1

 w_hat_1 = w1-bw1 ;

 a_hat_1 = C'*(a1-ba1)-g;

67

 % 3. We propagate the quaternion using a first order integrator with w_hat_0 and

w_hat_1 tp obtain q_hat_avg_1

 w_avg = (w_hat_0 + w_hat_1) / 2;

 pos_hat_avg_1= pos_hat_avg_0+vel_hat_avg_0*dt;

 vel_hat_avg_1=vel_hat_avg_0+a_hat_1*dt;

 q_hat_avg_1 = NormalizeV((expm(1/2*Omega(w_avg)*dt) +

1/48*(Omega(w_hat_1)*Omega(w_hat_0) - Omega(w_hat_0)*Omega(w_hat_1))*dt^2)

* q_hat_avg_0);

 lambda1=lambda;

 posgps1=posgps;

 C=qGetRotation(q_hat_avg_1);

 xV(:,ctr)=[pos_hat_avg_1;vel_hat_avg_1;q_hat_avg_1;bw1;ba1;lambda1;posgps1];

 F = propogateMatrix(a1,w1,ba1,bw1,C,dt);

 Qd=returnQd(a1,w1,ba1,bw1,C,dt,Qc);

 % 5. We Compute the state covariance matrix according to the Extended Kalman

Filter equation

 P=double(P);

 P = double(F*P*F' + Qd);

 prevTime=imudata1.t(k);

 k=k+1;

 ctr=ctr+1;

 else

 currTime=leicadata.t(measItr);

 dt=double(currTime-prevTime)/1e9;

 sV(1:3,ctr)=leicadata.pos(1:3,measItr);

 w0=imudata2.omega(1:3,k-1);

 w1=imudata2.omega(1:3,k);

% a11=marzulloFusion({[imudata1.a(1,k)-2.5,imudata1.a(1,k)+1],[imudata2.a(1,k)-

8,imudata2.a(1,k)+7],[imudata3.a(1,k)-2,imudata3.a(1,k)+1],[imudata4.a(1,k)-

1,imudata4.a(1,k)+2]},4,1);

68

% a12=marzulloFusion({[imudata1.a(2,k)-2.5,imudata1.a(2,k)+1],[imudata2.a(2,k)-

8,imudata2.a(2,k)+7],[imudata3.a(2,k)-2,imudata3.a(2,k)+1],[imudata4.a(2,k)-

1,imudata4.a(2,k)+2]},4,1);

% a13=marzulloFusion({[imudata1.a(3,k)-2.5,imudata1.a(3,k)+1],[imudata2.a(3,k)-

8,imudata2.a(3,k)+7],[imudata3.a(3,k)-2,imudata3.a(3,k)+1],[imudata4.a(3,k)-

1,imudata4.a(3,k)+2]},4,1);

% a1=[a11;a12;a13];

% a1=(imudata1.a(1:3,k)+imudata2.a(1:3,k)+imudata3.a(1:3,k)+imudata4.a(1:3,k))/4;

%

a11=approxAgreement([imudata1.a(1,k);imudata2.a(1,k);imudata3.a(1,k);imudata4.a(1,k

)],1);

% a12=approxAgreement([imudata1.a(2,k);imudata2.a(2,k);imudata3.a(2,k);imudat

a4.a(2,k)],1);

% a13=approxAgreement([imudata1.a(3,k);imudata2.a(3,k);imudata3.a(3,k);imudat

a4.a(3,k)],1);

% a1=[a11;a12;a13];

a11=sensorFusion({[imudata1.a(1,k)-0.5,imudata1.a(1,k)+0.5],[imudata2.a(1,k)-

0.5,imudata2.a(1,k)+0.5],[imudata3.a(1,k)-0.5,imudata3.a(1,k)+0.5],[imudata4.a(1,k)-

0.5,imudata4.a(1,k)+0.5]},4,1);

 a12=sensorFusion({[imudata1.a(2,k)-0.5,imudata1.a(2,k)+0.5],[imudata2.a(2,k)-

0.5,imudata2.a(2,k)+0.5],[imudata3.a(2,k)-0.5,imudata3.a(2,k)+0.5],[imudata4.a(2,k)-

0.5,imudata4.a(2,k)+0.5]},4,1);

 a13=sensorFusion({[imudata1.a(3,k)-0.5,imudata1.a(3,k)+0.5],[imudata2.a(3,k)-

0.5,imudata2.a(3,k)+0.5],[imudata3.a(3,k)-0.5,imudata3.a(3,k)+0.5],[imudata4.a(3,k)-

0.5,imudata4.a(3,k)+0.5]},4,1);

 a1=[a11;a12;a13];

 pos1=leicadata.pos(1:3,measItr);

 [xV(:,ctr),P]=ekf(Qc,xV(:,ctr-1),P,[w0 w1],a1,pos1,errZ,dt);

 P=double(P);

 prevTime=leicadata.t(measItr);

 measItr=measItr+1;

69

 ctr=ctr+1;

 end

end

figure

[t,len]=size(xV);

plot3(xV(1,2:len),xV(2,2:len),xV(3,2:len),grounddata.pos(1,:),grounddata.pos(2,:),groun

ddata.pos(3,:))

title('Position in 3-D Frame(Trajectory)')

xlabel('Position along X axis(m)')

ylabel('Position along Y axis(m)')

zlabel('Position along Z axis(m)')

legend('Estimated Position','Ground Truth','Location','northwest');

figure

hold on

plot(xV(1,2:len))

plot(grounddata.pos(1,:))

title('X Coordinate Estimate and Actual Value')

ylabel('Position along X axis(m)')

xlabel('Time(s)')

legend('Estimated Position','Ground Truth','Location','northwest');

figure

hold on

plot(xV(2,2:len))

plot(grounddata.pos(2,:))

title('Y Coordinate Estimate and Actual Value')

ylabel('Position along Y axis(m)')

xlabel('Time(s)')

legend('Estimated Position','Ground Truth','Location','northwest');

70

figure

hold on

plot(xV(3,2:len))

plot(grounddata.pos(3,:))

title('Z Coordinate Estimate and Actual Value')

ylabel('Position along Z axis(m)')

xlabel('Time(s)')

legend('Estimated Position','Ground Truth','Location','northwest');

2. EKF Function

% Date: Thu, 20 Feb, 2017

% Last updated: 15 March, 2017

% Author: Akshay Prasad

% Organization: University of Maryland, College Park (MSSE Student)

%

% Project: Secure State Estimation for Quadrotors

% Component: Simulator - Extended Kalman Filter

%

% Description:This function is responsible for the EKF Predict and Update

% steps.

function [xV1, P1] = ekf(Qc,xV0, P0, w,a1,gps0, errZ, dt)

% xV0 = current estimate of state

% w1=input gyroscope readings

% a1 = input accelerometer readings

% gps0 = input gps readings

% P0 = state covariance matrix

% Qc = noise covariance matrix

%% Initial Setup

varNw=0.0135;

71

varNa=(0.23*1e-6);

% We have gyroscope measurements w0 and w1.

w0 = w(:,1);

w1 = w(:,2);

% Gravity

g=[0;0;9.8];

% We have an estimate of the quaternion q_hat_avg and the bias b0

% xV0 = [pos; vel; q_hat_avg_0 ;ba; bw;lambda;pos]

pos_hat_avg_0=xV0(1:3);

vel_hat_avg_0=xV0(4:6);

q_hat_avg_0 = xV0(7:10);

bw_0=xV0(11:13);

ba_0 = xV0(14:16);

lambda_0 = xV0(17);

posgps_0 = xV0(18:20);

C=qGetRotation(q_hat_avg_0);

w_hat_0 = w0 - bw_0-varNw*randn;

%% State Prediction

% Propagate the bias

ba1 = ba_0;

bw1 = bw_0;

% Estimate new angular velocity and linear acceleration using the measurement w1 and

b1

w_hat_1 = w1 - bw1-varNw*randn;

a_hat_1 = C'*(a1 - ba1-varNa*randn)-g;

% Propagate the quaternion using first order integrator

w_avg = (w_hat_0 + w_hat_1) / 2;

pos_hat_avg_1= pos_hat_avg_0+vel_hat_avg_0*dt;

vel_hat_avg_1=vel_hat_avg_0+a_hat_1*dt;

72

q_hat_avg_1 = NormalizeV((exp(1/2*Omega(w_avg)*dt) +

1/48*(Omega(w_hat_1)*Omega(w_hat_0) - Omega(w_hat_0)*Omega(w_hat_1))*dt^2)

* q_hat_avg_0);

lambda1=lambda_0;

posgps1=posgps_0;

xV0=[pos_hat_avg_1;vel_hat_avg_1;q_hat_avg_1;bw1;ba1;lambda1;posgps1];

% Compute the transition matrix F and Qd

C=qGetRotation(q_hat_avg_1);

F = propogateMatrix(a1,w1,ba1,bw1,C,dt);

Qd=returnQd(a1,w1,ba1,bw1,C,dt,Qc);

% Update the state covariance matrix

P1_ = F*P0*F' + Qd;

%% Compute Kalman Gain

% Calculate the measurement matrix H

H = returnH(lambda1,C,posgps1,pos_hat_avg_1);

S = H*P1_*H' + errZ;

K = P1_*(H'*inv(S));

% Calculate residual error r according to r = z - z_hat

r=gps0-pos_hat_avg_1;

deltax=double(K*r);

dq=deltax(7:9)/2;

if (dq'*dq) > 1

 dq_hat_avg_1 = (1/sqrt(1 + (dq'*dq))) * [dq ; 1];

else

 dq_hat_avg_1 = [dq ; (sqrt(1 - (dq'*dq)))];

end

q = quaternionMult(dq_hat_avg_1, q_hat_avg_1);

temp=[deltax(1:6);q;deltax(10:19)];

xV1=xV0+temp;

73

xV1(7:10)=q;

P1 = double((eye(19) - K*H) * P1_ * (eye(19) - K*H)' + K*errZ*K');

end

3. Brooks Iyengar Sensor Fusion Function

% Date: Thu, 20 Feb, 2017

% Last updated: 15 March, 2017

% Author: Akshay Prasad

% Organization: University of Maryland, College Park (MSSE Student)

%

% Project: Secure State Estimation for Quadrotors

% Component: Simulator - Brooks Iyengar Fusion

%

% Description:This function is used to fuse the readings from the IMUs

% using the Brooks-Iyengar Fusion

%

function [pointEstimate] = sensorFusion(intervals, N, a)

 %Divide intervals into mutually exclusive intervals...HOW?

 %create empty array that will store all possible interval bounds (upper as well as

lower, independently)

 I = [];

 %now fill up this array with all values from intervals

 for i = 1 : N

 I = [I intervals{i}(1) intervals{i}(2)];

 end

74

 % delete repeated values from this array and sort it

 I = unique(I);

 %now create an empty cell array, each of whose entries will store the

 %newly created intervals from I(i) & I(i+1), as well as the weights of

 %each interval

 A = {};

 for i = 1 : (length(I) - 1)

 w = 0;

 x1 = I(i);

 y1 = I(i+1);

 for j = 1 : N

 x2 = intervals{j}(1);

 y2 = intervals{j}(2);

 %fprintf("[%f,%f] ... [%f,%f] ... ? \n",x1,y1,x2,y2)

 if ((x1 <= x2) && (x2 < y1)) || ((x1 < y2) && (y2 < y1)) || ((x1 >= x2) && (x1 <

y2)) || ((y1 > x2)&&(y1 < y2))

 w = w + 1;

 %fprintf("\tyes! w = %d\n")

 end

 end

 A{i} = {[x1, y1],w};

 %fprintf("[%f, %f],%d\n",A{i}{1}(1),A{i}{1}(2),A{i}{2})

 end

 %Let's say after the above step, we obtain our new intervals with the

 %corresponding weights

 %remove intervals with weights less than N - a

 %{

 for i = length(A):1

75

 %disp(A{i}{1}(1))

 %disp(A{i}{1}(2))

 w = (A{i}{2});

 if (w < N - a)

 A(:,i) = [];

 disp(A{i})

 end

 end

 %}

 %let's just print A to see everything is fine

 %{

 for i = 1 : length(A)

 fprintf("[%f, %f],%d\n",A{i}{1}(1),A{i}{1}(2),A{i}{2})

 end

 %}

 foundFirstInterval = false;

 lastInterval = 0;

 firstInterval = 0;

 P_E_Numerator = 0;

 P_E_Denominator = 0;

 for i = 1 : length(A)

 if(A{i}{2} >= N-a)

 %fprintf("%d >= %d ? \n",A{i}{2}, N-a)

 if (foundFirstInterval == false)

 foundFirstInterval = true;

76

 firstInterval = A{i}{1}(1); %first found interval where W >= N-a is the overall

lower interval

 end

 lastInterval = A{i}{1}(2); %last interval will always be the latest interval for

W >= N-a

 P_E_Numerator = P_E_Numerator + A{i}{2}*(A{i}{1}(1) + A{i}{1}(2))/2;

 P_E_Denominator = P_E_Denominator + A{i}{2};

 end

 end

 pointEstimate = P_E_Numerator / P_E_Denominator ; %Final point estimate

 outputIntervals = [firstInterval, lastInterval] ; %Final intervals

end

4. Helper Functions

% Date: Thu, 20 Feb, 2017

% Last updated: 15 March, 2017

% Author: Akshay Prasad

% Organization: University of Maryland, College Park (MSSE Student)

%

% Project: Secure State Estimation for Quadrotors

% Component: Skew Matrix

%

% Description:This function is responsible for returning the skew matrix

% representation for a said quaternion vector.

function [quatx] = skew(quat)

 quatx = [0 -quat(3) quat(2);

 quat(3) 0 -quat(1);

 -quat(2) quat(1) 0];

end

77

% Date: Thu, 20 Feb, 2017

% Last updated: 15 March, 2017

% Author: Akshay Prasad

% Organization: University of Maryland, College Park (MSSE Student)

%

% Project: Secure State Estimation for Quadrotors

% Component: Function - Noise Covariance Matrix

%

% Description:This function is responsible for calculating the system noise

% covariance matrix.

function Qd=returnQd(a,w,ba,bw,C,dt,Qc)

 if (dt~=0)

 Qc(1:3,:)=Qc(1:3,:)/dt;

 Qc(4:6,:)=Qc(4:6,:)*dt;

 Qc(7:9,:)=Qc(7:9,:)/dt;

 Qc(10:12,:)=Qc(10:12,:)*dt;

 end

 zero=zeros(3,3);

 iden=eye(3,3);

 a=a-ba;

 w=w-bw;

 A=-C'*skew(a)*((iden*((dt^2)/2))-

(((dt^3)/6)*skew(w))+(((dt^4)/24)*skew(w)*skew(w)));

 B=-C'*skew(a)*(-(iden*((dt^3)/6))+(((dt^4)/24)*skew(w))-

(((dt^5)/120)*skew(w)*skew(w)));

78

 Ch=-C'*skew(a)*((iden*dt)-(((dt^2)/4)*skew(w))+(((dt^3)/6)*skew(w)*skew(w)));

 D=-A;

 E=iden-dt*skew(w)+0.5*dt*dt*skew(w)*skew(w);

 F=-iden*dt+0.5*dt*dt*skew(w)-((dt^3)/6)*skew(w)*skew(w);

 Fd=double([iden dt*iden A B -C'*dt*dt*(1/2) zeros(3,4);

 zero iden Ch D -C'*dt zeros(3,4);

 zero zero E F zero zeros(3,4);

 zero zero zero iden zero zeros(3,4);

 zero zero zero zero iden zeros(3,4);

 zeros(4,3) zeros(4,3) zeros(4,3) zeros(4,3) zeros(4,3) zeros(4,4)]);

 G=[zero zero zero zero;

 -C' zero zero zero;

 zero zero -iden zero;

 zero zero zero iden;

 zero iden zero zero;

 zeros(4,3) zeros(4,3) zeros(4,3) zeros(4,3)];

 Qd=double(Fd*G*Qc*G'*Fd');

end

% Date: Thu, 20 Feb, 2017

% Last updated: 15 March, 2017

% Author: Akshay Prasad

% Organization: University of Maryland, College Park (MSSE Student)

% Project: Secure State Estimation for Quadrotors

% Component: Function - Observation Matrix

%

% Description:This function is responsible for calculating the observation

% matrix.

function H=returnH(lambda,C,ps,pw)

79

 H1=lambda*eye(3,3);

 zer=zeros(3,3);

 H3=-C'*skew(ps)*lambda;

 H6=pw+C'*ps;

 H7=C'*lambda;

 H=double([H1 ;zer; H3; zer ;zer; H6'; H7]');

end

% Date: Thu, 20 Feb, 2017

% Last updated: 15 March, 2017

% Author: Akshay Prasad

% Organization: University of Maryland, College Park (MSSE Student)

%

% Project: Secure State Estimation for Quadrotors

% Component: Function - Multiply Quaternions

%

% Description:This function is responsible for multiplying two quaternions

function mult=quaternionMult(q_quat,p)

 mult=[q_quat(4)*p(1) + q_quat(3)*p(2) - q_quat(2)*p(3) + q_quat(1)*p(4);

-q_quat(3)*p(1) + q_quat(4)*p(2) + q_quat(1)*p(3) + q_quat(2)*p(4);

q_quat(2)*p(1) - q_quat(1)*p(2) + q_quat(4)*p(3) + q_quat(3)*p(4);

-q_quat(1)*p(1) - q_quat(2)*p(2) - q_quat(3)*p(3) + q_quat(4)*p_quat(4)];

end

% Date: Thu, 20 Feb, 2017

% Last updated: 15 March, 2017

% Author: Akshay Prasad

% Organization: University of Maryland, College Park (MSSE Student)

%

80

% Project: Secure State Estimation for Quadrotors

% Component: Function - Rotation Matrix

%

% Description:This function is responsible for calculating the rotation

% matrix for the quaternion vector

function c = qGetRotation(quat)

c = eye(3) - 2*quat(4)*skew(quat) + 2*(skew(quat)*skew(quat));

% Date: Thu, 20 Feb, 2017

% Last updated: 15 March, 2017

% Author: Akshay Prasad

% Organization: University of Maryland, College Park (MSSE Student)

%

% Project: Secure State Estimation for Quadrotors

% Component: Function - Propogate Matrix

%

% Description:This function is responsible propogating the state variable

% and updating the covariance matrix.

function x=propogateMatrix(a,w,ba,bw,C,dt)

 zero=zeros(3,3);

 iden=eye(3,3);

 a=a-ba;

 w=w-bw;

 A=-C'*skew(a)*((iden*((dt^2)/2))-

(((dt^3)/6)*skew(w))+(((dt^4)/24)*skew(w)*skew(w)));

 B=-C'*skew(a)*(-(iden*((dt^3)/6))+(((dt^4)/24)*skew(w))-

(((dt^5)/120)*skew(w)*skew(w)));

 Ch=-C'*skew(a)*((iden*dt)-(((dt^2)/4)*skew(w))+(((dt^3)/6)*skew(w)*skew(w)));

 D=-A;

81

 E=iden-dt*skew(w)+0.5*dt*dt*skew(w)*skew(w);

 F=-iden*dt+0.5*dt*dt*skew(w)-((dt^3)/6)*skew(w)*skew(w);

 x=double([iden dt*iden A B -C'*dt*dt*(1/2) zeros(3,4);

 zero iden Ch D -C'*dt zeros(3,4);

 zero zero E F zero zeros(3,4);

 zero zero zero iden zero zeros(3,4);

 zero zero zero zero iden zeros(3,4);

 zeros(4,3) zeros(4,3) zeros(4,3) zeros(4,3) zeros(4,3) zeros(4,4)]);

end

% Date: Thu, 20 Feb, 2017

% Last updated: 15 March, 2017

% Author: Akshay Prasad

% Organization: University of Maryland, College Park (MSSE Student)

%

% Project: Secure State Estimation for Quadrotors

% Component: Function - Omega Representation

%

% Description:This function is responsible for evaluating the omega

% representation based on the angular velocity.

function [omega] = Omega(w)

 omega = [0 w(3) -w(2) w(1);

 -w(3) 0 w(1) w(2);

 w(2) -w(1) 0 w(3);

 -w(1) -w(2) -w(3) 0];

end

% Date: Thu, 20 Feb, 2017

% Last updated: 15 March, 2017

% Author: Akshay Prasad

% Organization: University of Maryland, College Park (MSSE Student)

82

%

% Project: Secure State Estimation for Quadrotors

% Component: Function - Normalization Function

%

% Description:This function is a generic normalizer function.

function [normalized] = NormalizeV(aVector)

 normalized = aVector./norm(aVector);

end

% Date: Thu, 20 Feb, 2017

% Last updated: 15 March, 2017

% Author: Akshay Prasad

% Organization: University of Maryland, College Park (MSSE Student)

%

% Project: Secure State Estimation for Quadrotors

% Component: Function - Convert To Quaternion

%

% Description:This function is responsible for converting a axisangle

% rotation to a quaternion representation.

function [quat] = convertToQuaternion(angle)

quat = [angle(1:3).*sin(angle(4)/2); cos(angle(4)/2)];

end

% Date: Thu, 20 Feb, 2017

% Last updated: 15 March, 2017

% Author: Akshay Prasad

% Organization: University of Maryland, College Park (MSSE Student)

%

% Project: Secure State Estimation for Quadrotors

% Component: Function - Convert To Axis Angle

%

83

% Description:This function is responsible for converting a quaternion

% vector to its axis angle representation.

function [angle] = convertToAxisAngle(quat)

t = wrapToPi(2*acos(quat(4)));

k = quat(1:3)./sin(t/2);

angle = [NormalizeV(k);t];

end

%

% function x=wrapToPi(a)

% x = a - 2*pi*floor((a)/(2*pi));

% end

% Date: Thu, 20 Feb, 2017

% Last updated: 15 March, 2017

% Author: Akshay Prasad

% Organization: University of Maryland, College Park (MSSE Student)

%

% Project: Secure State Estimation for Quadrotors

% Component: Function - Gc Matrix

%

% Description:This function calculates the Gc matrix

function [x] = calculateGc(C)

 temp=zeros(3);

 I_3=eye(3);

 x=[temp temp temp temp;

 -C' temp temp temp;

 temp temp -I_3 temp;

 temp temp temp I_3;

 temp I_3 temp temp;

 zeros(4,3) zeros(4,3) zeros(4,3) zeros(4,3)

];

84

end

85

References

[1] A. Greenberg, "Hackers Remotely Kill a Jeep on the Highway—With Me in It", Wired,

July 2015.

[2] N. O. Tippenhauer et al, "On the requirements for successful GPS spoofing attacks," in

Proceedings of the 18th ACM Conference on Computer and Communications Security,

2011, pp. 75-86.

[3] Y. Shoukry et al, "Non-invasive spoofing attacks for anti-lock braking systems," in

International Workshop on Cryptographic Hardware and Embedded Systems, 2013, pp.

55-72.

[4] A. Teixeira et al, "Attack models and scenarios for networked control systems," in

Proceedings of the 1st International Conference on High Confidence Networked Systems,

2012, pp. 55–64.

[5] M. Pajic et al. Design and implementation of attack-resilient cyberphysical systems:

With a focus on attack-resilient state estimators. IEEE Control Systems 37(2), pp. 66-81.

2017. DOI: 10.1109/MCS.2016.2643239.

[6] Amazon Prime Air. Available: https://www.amazon.com/Amazon-Prime-

Air/b?ie=UTF8&node=8037720011.

[7] Project Wing. Project Wing. Available: https://x.company.

[8] (December 14). FAA Announces Small UAS Registration Rule. Available:

https://www.faa.gov/news/press_releases/news_story.cfm?newsId=19856.

[9] Federal Aviation Administration, "FAA aerospace forecasts".

fiscal years 2016-2036.

86

[10] C. Arthur. SkyGrabber: The $26 software used by insurgents to hack into US drones.

The Guardian 2009. Available:

https://www.theguardian.com/technology/2009/dec/17/skygrabber-software-drones-

hacked.

[11] S. Gorman, Y. J. Dreazen and A. Cole. Insurgents hack U.S. drones. Wall Street

Journal 2009. Available: http://www.wsj.com/articles/SB126102247889095011.

[12] F. Gardner. Iran shows film of captured US drone. BBC News 2011. Available:

http://www.bbc.com/news/world-middle-east-16098562.

[13] P. Peterson and S. Faramarzi, "Iran hijacked US drone, says Iranian engineer,"

Christian Science Monitor, December 2011.

[14] D. Shepard, J. A. Bhatti and T. E. Humphreys, "Drone Hack: Spoofing Attack

Demonstration on a Civilian Unmanned Aerial Vehicle," GPS World, August. 2012.

[15] N. M. Rodday. "Exploring Security Vulnerabilities of Unmanned Aerial Vehicles",

University of Twente, 2015.

[16] T. H. Cox et al, "Civil UAV capability assessment," NASA, Tech.Rep., Draft Version,

2004.

[17] R. Austin, Unmanned Aircraft Systems: UAVS Design, Development and Deployment.

Wiley, 2010.

[18] (). Pixhawk - Open source Hardware. Available: https://pixhawk.org/.

[19] A. Kim et al. Cyber attack vulnerabilities analysis for unmanned aerial vehicles.

Presented at Infotech@Aerospace 2012. June 19, 2012, Available:

https://arc.aiaa.org/doi/abs/10.2514/6.2012-2438.

87

[20] J. Villasenor, "Compromised by design? securing the defense electronics supply

chain," November 4, 2013.

[21] S. Gallagher. (8/15/). Parrot drones easily taken down or hijacked, researchers

demonstrate. Available: https://arstechnica.com/security/2015/08/parrot-drones-easily-

taken-down-or-hijacked-researchers-demonstrate/.

[22] D. Kushner, "The Real Story of Stuxnet," IEEE Spectrum: Technology, Engineering,

and Science News, 2/26/. 2013.

[23] Y. Son et al, "Rocking drones with intentional sound noise on gyroscopic sensors," in

24th USENIX Security Symposium (USENIX Security 15), 2015, pp. 896.

[24] S. M. Weiss. "Vision Based Navigation for Micro Helicopters", ETH Zürich, 2012.

[25] M. W. Achtelik, "Advanced Closed Loop Visual Navigation for Micro Aerial

Vehicles", ETH-Zürich, 2014.

[26] N. Trawny and S. Roumeliotis, "Indirect kalman filter for 3D attitude estimation,"

University of Minnesota, March. 2005.

[27] R. S. Smith, "A decoupled feedback structure for covertly appropriating networked

control systems," IFAC Proceedings Volumes, vol. 44, pp. 90-95, 2011.

[28] C. Scherer, Theory of Robust Control. Delft University of Technology, 2001.

[29] H. J. LeBlanc et al. Resilient asymptotic consensus in robust networks. IEEE Journal

on Selected Areas in Communications 31(4), pp. 766-781. 2013. DOI:

10.1109/JSAC.2013.130413.

[30] Mitra and S. Sundaram, "Secure distributed observers for a class of linear time

invariant systems in the presence of byzantine adversaries," in IEEE 55th Conference on

Decision and Control (CDC), December 2016, pp. 2709-2714.

88

[31] H. Zhang and S. Sundaram, "A simple median-based resilient consensus algorithm,"

in 50th Annual Allerton Conference on Communication, Control, and Computing

(Allerton), October 2012, pp. 1734-1741.

[32] S. Sundaram et al, "The wireless control network: Monitoring for malicious behavior,"

in 49th IEEE Conference on Decision and Control (CDC), December 2010, pp. 5979-5984.

[33] Y. Mo, R. Chabukswar and B. Sinopoli. Detecting integrity attacks on SCADA

systems. IEEE Transactions on Control Systems Technology 22(4), pp. 1396-1407. 2014.

DOI: 10.1109/TCST.2013.2280899.

[34] Mo, S. Weerakkody and B. Sinopoli. Physical authentication of control systems:

Designing watermarked control inputs to detect counterfeit sensor outputs. IEEE Control

Systems 35(1), pp. 93-109. 2015. DOI: 10.1109/MCS.2014.2364724.

[35] F. Pasqualetti, F. Dörfler and F. Bullo, "Cyber-physical attacks in power networks:

Models, fundamental limitations and monitor design," in 50th IEEE Conference on

Decision and Control and European Control Conference, December 2011, pp. 2195-2201.

[36] M. H. Manshaei et al. Game theory meets network security and privacy. ACM Comput.

Surv. 45(3), pp. 25:1–25:39. 2013. Available:

http://doi.acm.org/10.1145/2480741.2480742. DOI: 10.1145/2480741.2480742.

[37] A. Gueye, V. Marbukh and J. C. Walrand, "Towards a metric for communication

network vulnerability to attacks: A game theoretic approach," in Game Theory for

Networks, 2012/5/24, pp. 259-274.

[38] F. Miao, M. Pajic and G. J. Pappas, "Stochastic game approach for replay attack

detection," in 52nd IEEE Conference on Decision and Control, December 2013, pp. 1854-

1859.

89

[39] H. Fawzi, P. Tabuada and S. Diggavi. Secure estimation and control for cyber-physical

systems under adversarial attacks. IEEE Transactions on Automatic Control 59(6), pp.

1454- 1467. 2014. DOI: 10.1109/TAC.2014.2303233.

[40] Q. Hu, Y. H. Chang and C. J. Tomlin. Secure estimation for unmanned aerial vehicles

against adversarial cyber attacks. 2016. Available: https://arxiv.org/abs/1606.04176.

[41] Y. Shoukry et al. Secure state estimation for cyber physical systems under sensor

attacks: A satisfiability modulo theory approach. IEEE Transactions on Automatic Control

PP(99), pp. 1-1. 2017. DOI: 10.1109/TAC.2017.2676679.

[42] M. S. Chong, M. Wakaiki and J. P. Hespanha, "Observability of linear systems under

adversarial attacks," in American Control Conference (ACC), July 2015, pp. 2439-2444.

[43] M. Pajic et al, "Robustness of attack-resilient state estimators," in ACM/IEEE

International Conference on Cyber-Physical Systems (ICCPS), April 2014, pp. 163-174.

[44] M. Pajic et al, "Attack-resilient state estimation in the presence of noise," in December

2015, pp. 5827-5832. 

[45] J. Weimer et al, "Towards assurance cases for resilient control systems," in IEEE

International Conference on Cyber-Physical Systems, Networks, and Applications, August

2014, pp. 1-6.

[46] H. Jeon et al, "Resilient State Estimation for Control Systems Using Multiple

Observers and Median Operation," Mathematical Problems in Engineering, vol. 2016,

2016.

90

[47] S. Z. Yong, M. Zhu and E. Frazzoli, "Resilient state estimation against switching

attacks on stochastic cyber-physical systems," in 54th IEEE Conference on Decision and

Control (CDC), December 2015, pp. 5162-5169.

[48] N. Forti et al, "A bayesian approach to joint attack detection and resilient state

estimation," in IEEE 55th Conference on Decision and Control (CDC), December 2016,

pp. 1192-1198.

[49] Y. Nakahira and Y. Mo, "Dynamic state estimation in the presence of compromised

sensory data," in 54th IEEE Conference on Decision and Control (CDC), December 2015,

pp. 5808- 5813.

[50] D. Han, Y. Mo and L. Xie, "Towards a unified resilience analysis: State estimation

against integrity attacks," in 35th Chinese Control Conference (CCC), July 2016, pp. 7333-

7340.

[51] L. Lamport, R. Shostak and M. Pease. The byzantine generals problem. ACM Trans.

Program. Lang. Syst. 4(3), pp. 382–401. 1982. Available:

http://doi.acm.org/10.1145/357172.357176. DOI: 10.1145/357172.357176.

[52] D. Dolev et al. Reaching approximate agreement in the presence of faults. J. Acm

33(3), pp. 499–516. 1986. Available: http://doi.acm.org/10.1145/5925.5931. DOI:

10.1145/5925.5931.

[53] S. R. Mahaney and F. B. Schneider, "Inexact agreement: Accuracy, precision, and

graceful degradation," in Proceedings of the Fourth Annual ACM Symposium on Principles

of Distributed Computing, 1985, pp. 237–249.

91

[54] N. H. Vaidya and V. K. Garg, "Byzantine vector consensus in complete graphs," in

Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing, 2013,

pp. 65–73.

[55] H. Mendes and M. Herlihy, "Multidimensional approximate agreement in byzantine

asynchronous systems," in Proceedings of the Forty-Fifth Annual ACM Symposium on

Theory of Computing, 2013, pp. 391–400.

[56] B. Ao et al. On precision bound of distributed fault-tolerant sensor fusion algorithms.

ACM Comput. Surv. 49(1), pp. 5:1–5:23. 2016. Available:

http://doi.acm.org/10.1145/2898984. DOI: 10.1145/2898984.

[57] R. R. Brooks and S. S. Iyengar, "Optimal matching algorithm for multidimensional

sensor readings," in Photonics East'95, 1995, pp. 91-99.

[58] K. Marzullo. Tolerating failures of continuous-valued sensors. ACM Trans. Comput.

Syst. 8(4), pp. 284–304. 1990. Available: http://doi.acm.org/10.1145/128733.128735.

DOI: 10.1145/128733.128735.

[59] R. R. Brooks and S. S. Iyengar. Robust distributed computing and sensing algorithm.

Computer 29(6), pp. 53–60. 1996. Available: http://dx.doi.org/10.1109/2.507632. DOI:

10.1109/2.507632.

[60] M. Burri et al. The EuRoC micro aerial vehicle datasets. The Int'L Journal of Robotics

Research 35(10), pp. 1157-1163. 2016. Available:

http://journals.sagepub.com/doi/abs/10.1177/0278364915620033. DOI:

10.1177/0278364915620033.

[61] The EuRoC MAV Dataset. Available:

http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets.

92

[62] Besse, Philippe, et al. "Review and perspective for distance based trajectory

clustering." arXiv preprint arXiv:1508.04904 (2015).

