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Climate change is affecting aspects of life across the globe.  Nowhere is this more 

prevalent than in the High Northern Latitudes where the Arctic Amplification of 

climate change has resulted in rates of warming that are twice the global average.  

Rising air temperatures drive deeper thawing of permafrost which is expressed, among 

many other ways, through changes in surface water extent.  In this dissertation I 

developed annual maps of surface water extent from a 30 year series of satellite 

observations from Landsat over a large region of North American tundra.  These maps 

were used in an object based approach to identify water bodies that show a significant 

trend in surface area over the past 30 years.  Over 25% of the 675,000 water bodies in 

my study region experienced a statistically significant (p<0.05) trend in surface area 

change between 1985 and 2015.  The analysis reveals that water bodies with a net 



  

increasing trend and those with a net decreasing trend are spatially clustered.  A 

distinct pattern of increasing extent in the Northwest and decreasing extent in the 

Southeast of the study region became clear when change was related to specific 

watersheds.  The watersheds that were dominated by decreasing extent were found to 

be correlated with presence of bedrock on the surface indicating that shallow soils 

limit subsurface connectivity and enhance potential for evaporation.  There is limited 

observational data for climate and weather in the region with only four weather 

stations unevenly distributed in the study region.  Therefore, reanalysis data from 

Modern Era retrospective Reanalysis for Research and Applications (MERRA-2) is 

used to explore potential climate drivers of surface water change.  Surface temperature 

and ground heating flux in the spring and fall transition periods (shoulder seasons) 

were found to be good predictors of surface water change.  The methodological 

advances in this dissertation including the object based analysis of water bodies 

through annual time series and the use of machine learning techniques in high end 

computing will facilitate future continental scale assessments of surface water extent 

and the attribution of that change to environmental drivers of change.   
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Chapter 1: Introduction 

1.1: Background and Motivation 

The High Northern Latitudes (HNL) include parts of the circumpolar Arctic 

and Boreal ecosystems and are generally described as the region above 60° N.  The 

HNL region plays a key role in moderating the climate of the Earth by dissipating 

heat generated at mid-latitudes, serves as a net carbon sink, and contains large stores 

of natural resources (Cole et al. 2007; Kortelainen et al. 2004; Post et al. 1990; 

Stokstad 2004; Turetsky et al. 2008; Walter et al. 2006).  The climate in HNL is 

driven by a large seasonal variability in the amount of incoming solar radiation with a 

strong impact from the Arctic Ocean, much of which is perennially frozen.  This is a 

temperature limited system with abundant water resources present on the surface or 

bound in the subsurface in the form of ice (Hinzman et al. 2005; Hobbie 1984).  

Although the overall precipitation in the region is low - some areas receiving in total 

less than 150 mm per year  with much of that as frozen precipitation in winter 

(Linacre 1992) – the short (3-5 month) period of snow- and ice- free conditions 

strongly limits the potential for evapotranspiration. 

The HNL region is changing at a much faster rate than other areas of the 

world (Barber et al. 2008; Bunn et al. 2007; Hinzman et al. 2005; IPCC 2014; 

Kaufman et al. 2009; Lawrence et al. 2008; Serreze and Francis 2006).  There is 

strong evidence that temperatures have increased more in the HNL region over the 

past two decades than in the rest of the world, a phenomena referred to as the Arctic 

amplification of the greenhouse effect (Francis et al. 2009b; McGuire et al. 2006; 
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Serreze et al. 2009; Serreze and Francis 2006).  Increasing temperatures are likely to 

result in deeper thaw depth in the Arctic and Boreal ecosystem soils (Grosse et al. 

2011; Jorgenson et al. 2010; Kokelj and Jorgenson 2013) resulting in a myriad of 

effects to the ecosystem (Bates et al. 2008).  Coincident with the increase in 

temperatures has been a decrease in sea ice extent (Serreze and Barry 2011; Stroeve 

et al. 2011) which is projected to continue to decline as temperatures continue to 

increase through the 21st century (Collins et al. 2013; IPCC 2014).  Changes in winter 

precipitation amounts and type (Barnett et al. 2005; Francis et al. 2009a; Hinzman et 

al. 2005), increase in cloud cover (Screen and Simmonds 2010; Serreze and Barry 

2011), and lower surface albedo (Chapin et al. 2005; Francis et al. 2009b; Subin et al. 

2012) are all anticipated responses to climate change.  There has been an increase in 

the occurrence of rain on top of snow pack which causes a change in the moisture 

content of the snow that subsequently freezes into a solid rather than a granular 

texture.  The so called “Rain on Snow” events impact travel for both humans and 

wildlife, availability of forage for wildlife as well as the timing of snowmelt (Barnett 

et al. 2005; Putkonen et al. 2009).  For the local population, these rain on snow events 

have become a hallmark or climate change that affects their regular activities. 

Changing climate is expressed through physical changes to the land surface as 

well as new weather patterns.  Hence, characterizing the land surface of the HNL 

region is critical to understanding the ecosystem processes and developing 

capabilities for modeling ecosystem change.  The water bodies in the HNL region are 

a key feature of the landscape with several million water bodies in North America 

alone (Carroll et al. 2011b; Downing 2010).  The majority of these water bodies are 
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smaller than 1 ha in size (Figure 1.1), and are primarily shallow - less than 3 m deep 

in most cases.  The water bodies of this region are also predominantly closed systems 

with little lateral movement of water between them due to the limited topographic 

relief (Hobbie 1984).  Water levels, and hence surface water extent, in these water 

bodies are dependent on recharge from local precipitation events  

 

Figure 1.1 False color composite (Red, Near-Infrared, Blue assigned to RGB respectively) of Landsat scene from a 
region near Barrow, Alaska.  Water can be seen as the dark, mostly black, features in the landscape.  This density 
and diversity of size of water bodies is typical in the Arctic tundra. 

and on the amount of evaporation during the ice-free period.  Ice acts as a cap 

preventing evaporation of water from a water body.  Water, and hence ice, is transient 
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in the environment and requires frequent measurements to track fluctuations through 

time.  With rising temperatures comes a lengthening of the ice-free period (late May 

to September) which provides a greater opportunity for evaporation.  Increased 

sediment exposure associated with greater evaporation may lead to the alteration of 

the biogeochemical cycles resulting in the potential release of soil carbon into the 

atmosphere which can further influence the Arctic Amplification (Cole et al. 2007).  

Rising temperatures also result in a longer growing season which provides a greater 

potential for transpiration from plants, hence a greater potential for changes in surface 

water extent. 

A unique feature of the HNL region is the permanently frozen ground - 

permafrost.  This affects, among other things, the subsurface movement of water both 

laterally and vertically (Hinkel et al. 2001; Karlsson et al. 2012; Langer et al. 2016; 

Woo and Guan 2006).  The distribution of permafrost is not uniform throughout the 

Arctic, rather it is stratified by latitude with sporadic and discontinuous permafrost in 

the southern reaches and becoming increasingly continuous in farther north regions 

(Figure 1.2) (Brown et al. 1998).  Permafrost is particularly sensitive to changes in 

climate with rising air temperatures causing greater depth of thaw in the upper soil 

layers that are seasonally thawed, also called active layer (Grosse et al. 2011; 

Jorgenson et al. 2010).  As the permafrost thaws in response to climate change there 

are three different responses that can occur depending on surface characteristics and  
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Figure 1.2 The distribution of permafrost within the circumpolar Arctic.  This figure has been reproduced from 
International Permafrost Association (https://ipa.arcticportal.org) with data from (Brown et al. 1998). 

subsurface composition 1) the soil can collapse forming a depression that fills with 

water creating a thermokarst lake, 2) the soil around the edges of an existing lake can 

slump resulting in lake expansion, and 3) deeper thaw depth melts ice wedges or ice 

in pores of coarse soil enabling vertical and lateral movement of water in the 

subsurface resulting in lake failure (Grosse et al. 2008; Karlsson et al. 2012; Kokelj 

and Jorgenson 2013).     

The hydrological cycle describes the movement of water through the 

environment and together with controls to the flow of water both natural (tree fall, 

beaver dam, etc.) and anthropogenic (dams, levees, etc.) determine the amount of 
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water that we see on the surface of the earth.  Water bodies fluctuate in size at time 

scales from seasonal (winter snowmelt filling rivers and lakes, monsoonal rains, etc.) 

to annual and decadal (drought, increased consumption, etc.).  In spite of the dynamic 

nature of water most maps show water as a permanent feature even over long time 

periods.   Generation of a reference map for the location and extent of water is partly 

dependent on the scale and scope of the research question at hand.  Static maps of the 

location and extent of persistent water bodies have been generated from remotely 

sensed data at various spatial scales (Carroll et al. 2009; Carroll et al. 2016b; Feng et 

al. 2015; Lehner and Doll 2004; Pekel et al. 2016; Watts et al. 2012).  Only the maps 

from Carroll et al. (2016), Feng et al. (2015), and Pekel et al. (2016) offer maps of 

water at spatial resolution finer than 250 m, which is necessary to capture the true 

range of water body features in the HNL region.  Of these only the datasets from 

Pekel et al. (2016) and Carroll et al. (2016) use a time series of inputs that helps 

minimize issues related to disparate satellite acquisitions with Landsat data.  They 

also are the only maps that represent multiple epochs with consistently generated 

maps that facilitate quantification of change in individual water bodies through time.   

Maps of surface water extent are used as an ecological determinant for 

identifying suitable habitat for plants and animals (Adrian et al. 2009), as a 

component of landcover (Bartholome and Belward 2005; Chen et al. 2015; Defourny 

et al. 2006; DiMiceli et al. 2011; Friedl et al. 2010) or as an input to a climate or 

carbon model (Poulter et al. 2017; Subin et al. 2012).  Of more environmental 

interest, work has been done using multiple satellite images or time series to show 

changes in the extent of water, mostly on a local basis or at moderate to coarse 
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resolution (Andresen and Lougheed 2015; Carroll et al. 2011b; Karlsson et al. 2012; 

Pavelsky and Smith 2008; Pietroniro et al. 1999; Rover et al. 2012; Smith et al. 

2005).  The change in extent of surface water at coarse resolution (25 – 40 km) has 

been used to inform carbon models that estimate the amount of CH4 emissions 

(Poulter et al. 2017).  Another study looked at overall depth and general stability of 

water bodies over time to support the creation of winter ice roads (Jones et al. 2009).  

Recent work by Pekel et al. (2016) used the Google Earth Engine to produce global 

annual maps of surface water extent at 30 m spatial resolution.  However, instead of 

using the time series to assess change they divided the time series in half producing 

two overview maps covering 1985 – 1999 and 2000 – 2015 then simply subtracted 

the two maps to show where “change” occurred over that time span.  All of these 

studies have been limited in spatial or temporal scope (or both) and in most cases the 

drivers of change have been broadly attributed to climate change impacting the 

permafrost and have not been fully explored.  

Despite the large body of research that has been performed in the HNL region 

there remains a significant knowledge gap with regards to the dynamics of surface 

water.  The HNL region is simultaneously data poor and data rich.  There is a lack of 

physical measurements including weather information and subsurface composition.  

At the same time, a wealth of satellite data is available as well as some thematic maps 

describing the surface characteristics.  In the past, there have been limitations on 

accessing available data and computing resources to process that data.  When the 

Landsat archive was made freely available, it opened up new avenues for the analysis 

of research problems (Wulder et al. 2012).  However, taking advantage of the dense 
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time series of Landsat data exposed a new problem with processing and data storage 

issues due to the large volumes of data.  This so called “big data” problem is not new 

as it has been well-recognized in climate modeling and other areas of environmental 

studies and requires significant computing resources to overcome.  The NASA Center 

for Climate Simulation (NCCS) provides high end computing resources to the 

scientific community that are used to run climate models and produce reanalysis data.  

More recently NCCS has developed the Advanced Data Analytics Platform (ADAPT) 

to support other science data processing needs including supporting science projects 

funded under NASA Terrestrial Ecology program’s Arctic and Boreal Vulnerability 

Experiment (ABoVE).  The ADAPT system provides access to Petabyte scale data 

storage as well as configurable compute resources that enable large scale processing 

that was previously not possible.  High end computing resources are becoming more 

commonly available at large research institutions and are reducing barriers to large 

scale analysis of big data including long time series of Landsat data in the Arctic.   

As discussed above, much work has already been done to map surface water 

extent in the Arctic but often the results have been more contradictory than 

complementary.  Surface water dynamics are directly linked to climatic variability, 

land use and to local conditions including permafrost, drainage networks and soil 

types.  Previous studies have uncovered differences in the rate and sign (increasing or 

decreasing) of surface water change in local regions but no consensus.  The goal of 

this research is to evaluate the existing data to identify and fill gaps in the knowledge 

surrounding surface water dynamics at the regional scale including separating inter-

annual variability from long term change and identifying potential drivers of change.  
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The work within this dissertation aims to bring together the cutting edge of big data 

analytics in the fields of satellite remote sensing and Earth System science to develop 

the first regional scale analysis of surface water change trends in the tundra regions of 

North America and provide the context and methodological framework for assessing 

the impact of various environmental and climatological drivers of the observed 

trends. 

1.2: Research Questions 

The overarching research question for my dissertation is: What is the spatial 

pattern of variability in the extent of tundra water bodies in High Northern Latitudes 

(HNL) of North America and what are its environmental determinants?  To answer 

this question I explore the relationships between surface water, vegetation, climate, 

and weather in three sub-questions:  

1. What is the long-term dynamic of surface water in HNL tundra? 

There is significant evidence in the literature and anecdotally that small water 

bodies change in size and shape through time.  However there has been no 

comprehensive work showing whether these are short-term or long-term changes.  

This question addresses both the frequency of maps required to identify change as 

well as the composition of maps from each period.   

2. What are the spatial patterns of change in surface water extent and what are the 

potential environmental drivers of this pattern? 

Through this question I address the spatial relationships, specifically spatial 

clustering, of change in surface water extent by looking at long term change in 
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specific water bodies.  Furthermore, I examine the potential drivers of the patterns of 

change by exploring the relationships between change and land cover type. 

3. Through what mechanisms do trends in climate variables in the region explain 

surface water variability? 

There is a clear trend towards higher temperatures in the circumpolar Arctic.  

The trend in other climate variables is less well defined.  With this question I explore 

the relationship between these known trends and the spatial patterns found in question 

2 using climate reanalysis data from Modern Era Retrospective reanalysis for 

Research and Applications (MERRA-2) and maximum entropy modeling. 

1.3: Organization of the study 

The remainder of the dissertation is organized into three chapters, 

supplementary material and the reference list.  Chapter 2 addresses research question 

1 with the development of annual maps of surface water extent for the study region in 

Nunavut, Canada.  The maps were generated from the full time series of Landsat data 

to show the nominal extent of surface water for each year from 1985 – 2015.  

“Nominal extent” is used here to describe the extent of water bodies as computed 

using the probability of water [calculated as (number of water observations/(sum of 

water and land observations))] with a threshold such that any pixel with a value of 

greater or equal to 50% probability of water is considered water for that period. These 

maps were then analyzed to identify overall inter-annual variability in surface water 

as well as long term trend per water body.  The results from these analyses formed the 
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basis for the work in chapters 3 and 4.  This work has been peer reviewed and 

published (Carroll and Loboda 2017).   

Chapter 3 corresponds to research question 2 and highlights the analysis 

results for spatial clustering of surface water change as well as exploring land surface 

properties as potential drivers of change.  All available maps, satellite based and 

observational, were interrogated to identify specific features of the surface and 

subsurface that are related to change in surface water extent.  Analysis techniques 

including spatial averaging, zonal statistics and ordinary least squares regression were 

used to identify the relationships between descriptive datasets and change results.  

Important properties of ecosystem function are possible even when observations of 

features are sparse.  Research presented in this chapter has also been peer reviewed 

and published (Carroll and Loboda 2018). 

Chapter 4 corresponds to research question 3 and highlights the results of 

analysis of MERRA-2 data as a surrogate for sparse weather observations.  The large 

pool of available climate variables from MERRA-2 necessitates the use of high end 

computing and inferential statistics to identify key variables related to change in 

surface water extent.  Maximum entropy modeling in a machine learning environment 

is capable of finding relationships between predictor variables and training data even 

when the training sample is small and some of the predictors are highly correlated.  

The small sample size is due to the coarse spatial resolution of MERRA-2 which has 

only 100 grid cells in the study region.  Random forest analysis is commonly used in 

this type of study but requires a large number of training samples which are not 

available in this case.  A Monte Carlo simulation is a series of model runs each with a 
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random set of inputs performed to identify a convergence in results that is not 

possible in a single run.  The large pool of predictors from MERRA-2 make it 

difficult to achieve a result from a single run of the maximum entropy model, hence a 

Monte Carlo simulation is used here to take advantage of the full set of predictors and 

find a solution.     

Chapter 5 presents the major conclusions for the doctoral dissertation with a 

summary of major scientific and methodological findings from chapters 2 – 4.  This 

chapter also puts the overall dissertation into the broader context of Arctic science 

and a direction for future work in this area. 
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Chapter 2: Multi-decadal Surface Water Dynamics in 
North American Tundra 

2.1: Introduction 

The North American tundra is a complex landscape where vegetation is 

interspersed with over one million water bodies, the majority of which are much 

smaller than 100 hectares (ha) (Carroll et al. 2011b; Downing et al. 2006).   

Understanding where the water is located and how it is changing over time is a 

critical component of understanding the role of water in the carbon cycle (Billings et 

al. 1982; Post et al. 1990), albedo (Chapin et al. 2005; McGuire et al. 2006), energy 

balance (Francis et al. 2009b; Slater et al. 2007; Subin et al. 2012), and quantifying 

habitat for migratory wildlife (Hinzman et al. 2005; Stow et al. 2004).  In the context 

of global warming, the Arctic region is warming much faster than lower latitudes 

(Serreze et al. 2009; Serreze and Barry 2011; Serreze and Francis 2006).  The Arctic 

also has a greater proportion of terrestrial surface occupied by surface water than 

lower latitudes (Downing et al. 2006; Muster et al. 2013; Prigent et al. 2012).  The 

sediments in Arctic water bodies are known to have high concentrations of carbon 

that can be released to the atmosphere if the surface water changes and/or if the active 

layer deepens (Cole et al. 2007; Kortelainen et al. 2004; Stokstad 2004; Turetsky et 

al. 2008; Walter et al. 2006).  Given the higher proportion of surface water in the 

Arctic, the large amount of carbon in the terrestrial Arctic, and the observations of 

changes in surface water it is important to understand not only the extent of surface 

water in the Arctic but also how that surface water is changing through time.  
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In recent years the extent of surface water has been mapped with several 

approaches and at regional to global scales.  Each of these products has represented 

an advance in the mapping capabilities but also still has significant limitations 

including spatial resolution (Carroll et al. 2009; Lehner and Doll 2004; Salomon et al. 

2004), temporal resolution (Feng et al. 2015; Verpoorter et al. 2014) or both (Pekel et 

al. 2016).  Most recently, work has been done to generate continental scale maps of 

surface water extent at the decadal time step using a time series of Landsat data as 

input (Carroll et al. 2016a; Carroll et al. 2016b).  Unlike many other 30 m spatial 

resolution water maps, the decadal water maps use three years of inputs to generate a 

single map in order to have enough repeated observations throughout the study region 

to have confidence that the water that was detected was not a false detection caused 

by cloud shadows or burn scars, and did not represent a local minimum or maximum 

caused by short-term weather events (i.e. drought or flood).  These decadal water 

maps represent an advance in the capability to determine surface water change but 

still do not provide the temporal detail necessary to determine if these decadal maps 

represent actual long-term trends in water dynamics. 

In addition to the mapping efforts there have been attempts to quantify change in 

surface water extent over time.  Most of these change studies (Briggs et al. 2014; 

Carroll et al. 2011b; Smith et al. 2005) quantify change between two distinct time 

periods and focus on either a few distinct lakes or the overall regional change.  This 

methodology works reasonably well for mapping forest extent or urban growth that 

are distinct and comparatively stable, but is less effective with water because water 

bodies are highly dynamic both inter-annually and seasonally.  Quantifying change in 
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surface water extent over large regional to continental areas requires a different 

approach. 

There are two main challenges with generating accurate maps of surface water 

change.  First is having an accurate map of the nominal (not maximum or minimum) 

extent of water.  Second is having enough representative maps in a time series to 

ensure that any detected change is an actual long term change and not simply seasonal 

or inter-annual fluctuations in the size of the water body.  This can become more 

problematic when the water bodies are small and shallow because they are more 

susceptible to short term weather effects (heavy rains or long dry spells). 

Inland water accounts for between 10% and 20% of the continental surface in 

northern Canada depending on the source of the water map (Carroll et al. 2009; Feng 

et al. 2015; Lehner and Doll 2004).  Previous work focused on the abundance (Carroll 

et al. 2009; Downing et al. 2006) and importance of small water bodies (Downing 

2010) both globally and in the Arctic.  Though the overall coverage of surface water 

is significant the impact is often overlooked in regional/global models that only 

consider large contiguous water bodies (Bonan 1995; Subin et al. 2012).  Even 

studies of volumetric storage and movement of water do not completely include small 

water bodies (McGuire et al. 2008; Rawlins et al. 2010; Slater et al. 2007; Tang et al. 

2010).  Here the focus is on generating a series of maps for the purpose of quantifying 

change rather than simply to map the location and extent of surface water. 

The primary goal of this work is to determine the extent of surface water change 

over a representative region of the North American tundra in north central Canada.  

To accomplish this goal the current study aims to 1) create annual maps of nominal 
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surface water extent (1985-2015); 2) quantify the trajectory of overall change; 3) 

assess and quantify the trajectory and trend in surface area for individual water 

bodies.  For this work, water bodies are defined as all open surface water including 

lakes and rivers but excluding oceans and wetlands dominated by emergent 

vegetation. 

2.2: Study area 

This research will focus on an area in northern Nunavut territory of Canada 

(Figure 2.1) that is bounded by a region with upper left 105W, 70N and lower right 

95W, 65N.  This area is in the Southern Arctic ecoregion (Olson et al. 2001) which is 

characterized by wide expanses of shrublands, wet sedge meadows, low topography 

and small polygonal water bodies.  The area is underlain by continuous permafrost 

(Brown et al. 1998), soils are relatively consistent throughout the area (Tarnocai et al. 

2002) though the best available dataset is very coarse (1:10,000,000), it is away from 

most human settlements, and away from most industry (oil, gas, and other mining) 

(NRC 2015) all of which could be factors in a land cover analysis.  These factors, if 

present, could influence water levels through human extraction of water from water 

bodies or diversion of water from rivers and streams for consumption or industrial 

use.   

 



 

 

17 

 

 

Figure 2.1 Study area in North American Arctic region, north central Nunavut territory Canada.  The study area is 
located primarily in the Southern Arctic ecoregion and is characterized by low topography and numerous small to 
moderate sized water bodies.  The Queen Maud Gulf Bird sanctuary is indicated with the red polygon. 

 

Finally, the study area includes a large protected area, the Queen Maud Gulf Bird 

sanctuary, which also decreases the likelihood of disruptive human activity affecting 

the landscape. 

2.3: Methods 

The Landsat data archive over Canada is dense (both temporally and spatially) 

and is publicly available through the US Geologic Survey (USGS 2016).  The 
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Dynamic Surface Water Extent (DSWE) algorithm (Jones 2015) uses the Landsat 

surface reflectance data to produce maps of surface water extent for each Landsat 

scene that is available in the archive.  This results in a standardized mapping of water 

across the Landsat suite of instruments including Thematic Mapper (TM) and 

Enhanced Thematic Mapper Plus (ETM+).  Using the full suite of Landsat data 

enables the creation of a time series of maps since 1984.  Annual maps of water 

extent can provide a rich time series to evaluate change in surface water extent over 

the past 31 years of the satellite record.   

Mapping water in cold regions using visible, near infra-red, short wave infra-red 

(such as the Landsat instruments) limits the inputs to the ice-free season, defined here 

as June through September.  Each of the Landsat satellites images every place on 

Earth every 16 days globally but more frequently at high northern latitudes due to the 

orbital overlap that increases near the poles (Goward et al. 2006).  This results in a 

maximum possible observations of ~35 daytime observations over the study region 

per year.  Given that cloud cover is frequent in the region (White and Wulder 2014) 

and the persistence of ice in the centers of water bodies the number of potential cloud 

free images is reduced to 3 – 8 cloud/ice free observations per year, based on 

evaluation of data in the current study.  To ensure that there are enough observations 

for the maps to depict nominal (neither maximum nor minimum) extent, a rolling set 

of cloud free observations over three years of inputs are used to create a single map 

(e.g. data from 1984, 1985, 1986 used for 1985 map; data from 1985, 1986, 1987 

used for 1986 map; etc.).  This approach was used effectively with Landsat data to 

generate the decadal water maps in the high northern latitudes (Carroll et al. 2016a). 
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For the current study, the DSWE data product (Jones 2015) was selected as input 

for the annual water maps instead of the custom classification algorithm in the 

decadal water maps.  The DSWE algorithm uses a hierarchical series of spectral tests 

on the visible and short wave infrared bands of Landsat to determine the presence of 

water.  This algorithm is run on Landsat surface reflectance data that have been ortho-

rectified and terrain corrected.  The ortho-rectification has a stated error of 

approximately ½ pixel for over 96% of the pixels (Storey et al. 2014).  The Landsat 

data (from Landsat 5 and 7) used in this study are provided in standard Landsat WRS-

2 grid (path 35 – 42 row 11 – 15).  In this format there is a significant amount of 

overlap between adjacent scenes that increases the total number of observations but is 

not conducive to large area studies.  For this study the DSWE data were processed 

into annual maps, projected and mosaicked into Canada Alber’s Equal Area 

projection, full description to follow. 

2.3.1: Annual product generation 

The “Raw” unmasked DSWE product was used as input for the annual map 

generation.  The DSWE product has 4 output values: 

0 Not water 

1 High confidence water 

2 Low confidence water 

3 Partial water 

A combination of high and low confidence water  was processed through the same 

post classification procedure (described below) that was used to generate the decadal 

water maps (Carroll et al. 2016a) to produce annual maps (Figure 2.2).  Though the 
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partial water class correctly identifies edges of water features it also seems to identify 

a lot of false positives and hence was treated as “not water” in the annual map 

creation. 

 
Figure 2.2 Algorithm flow for the generation of annual water maps from the individual dates of DSWE 
(reproduced from [28]).  In panel 1 (left most panel) individual scenes are converted from four classes to two 
(land and water) then summed to get total observations of land and total observations of water for the period.  
Panel 2 shows the “total water” for an individual path/row.  Panel 3 shows the mosaicked non-overlapping 
path/rows which are then summed.  Panel 4 shows the final “total water” for the full region of interest. 

Binary maps of water/ not water were made from DSWE for each time period.  

Although each time period included the total of three years, more than one DSWE 

layer was available for each year.  Moreover, the clear surface views within each 

scene are impacted by clouds and shadows resulting in a varying number of total 

valid observations for each pixel within the scene.   These were summed to get “total 

water” and “total land” for the three year input period.  Probability of water was 

calculated per pixel as  

Probw = (Wt/(Wt + Lt))        1 

where Probw is the probability of a pixel being water, Wt is the total observations of 

water for the period, and Lt is total observations of land for the period.  Water in the 

annual map is anything that has greater than or equal to 50% probability of being 

water.  Following this methodology annual maps were generated for each year from 

1985 to 2015, full description can be found in (28). 
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2.3.2: Annual product accuracy assessment 

Accuracy assessment was performed by comparing our delineations with very 

high resolution (VHR) data following the current best practices for remotely sensed 

data (Olofsson et al. 2014). Commercial VHR data are provided to NASA funded 

scientists through a contract with the National Geospatial Intelligence Agency (Neigh 

et al. 2013).  Multi-spectral data from WorldView-2 was identified for 10 areas 

within the study region (Figure 2.3).  WorldView-2 multi-spectral data has a nominal 

spatial resolution of 2 m and provide data in up to 8 bands (4 used in this study: Red, 

Green, Blue, Near-Infrared) (Globe 2016).  These data were ortho-rectified using the 

Ames Stereo Pipeline open source software (Moratto et al. 2010).  A random sample 

of 643 points (see Olofsson et al. 2014 for procedures for sample size determination) 

within the boundaries of the VHR data in the study area was chosen for evaluation.  

Each point was inspected by visual inspection and assigned a value of water or land. 

 

Figure 2.3 Distribution of WorldView-2 (WV2) scenes used in the accuracy assessment of the annual water maps.  
Footprints of WV2 scenes are shown as dark grey rectangles distributed throughout the image. 
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These results were compared to the 2010 annual water map because most of the VHR 

data used in the analysis was acquired in this year. 

2.3.3: Identifying unique water bodies 

The overall goal of this analysis is to determine if a trend is present for individual 

water bodies in the study region, thus requiring object-oriented analysis (i.e. changes 

in discrete water bodies).  We define a “water body” as any group of adjacent pixels 

and water body is inclusive of lakes, rivers and ocean.  Each annual raster map was 

vectorized and individual water body objects were defined using the “queen” 

adjacency rule where any pixel that touches the candidate pixel is included in the 

polygon and the area of the polygon was calculated.  However, the highly dynamic 

nature of small and shallow water bodies determines that the water bodies can split, 

merge, disappear, or appear over time.  To ensure that these changes are captured in 

our analysis, a master map was generated showing the extent of water over the entire 

31 year study period.   

For this project, annual maps were created that show land and water as 0 and 1 

respectively.  Calculating the sum of these 31 maps yields a single map showing the 

frequency of occurrence of water per pixel giving values from 0 – 31.  Using the 

adjacency rules described earlier we identify all contiguous water bodies with a 

frequency of occurrence of 1 – 31.  The resulting master map is the maximum 

possible extent of a water body over the 31-year study period.  In an individual year it 

is possible for there to be more than one distinguishable water body but we want to 

consider them as part of the same water body through time to make sense of the area 

statistics (Figure 2.4).  The master map was used to specify water body object 
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identifiers which were propagated through the full temporal extent of the data record.  

Subsequently, area of individual water body objects was calculated at the annual time 

step and the total change in water extent is quantified on the per object basis. 

 

Figure 2.4 In the images above water is shown in black and land is shown in light grey.  The first five images show 
a water body complex (small unnamed water body in northern Nunavut) in five individual years.  The final image 
shows the master map which is the maximum extent in the whole 31 year record.  Through time you see the 
water body shrinks and splits into several components.  The master map allows all of these components to be 
related to the same water body even when they split off into individual pieces.  The years shown here are chosen 
as representative examples of the 31 year record. 

The combined record of annual area estimates for each of the water body objects 

was processed in R statistical analysis software to generate a linear regression 
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(ordinary least squares regression) through time.  The slope, intercept, R2, RMSE, and 

p-values were calculated and recorded.   

2.4: Results 

2.4.1: Accuracy assessment results 

The results of the accuracy assessment show that the annual water maps for year 

2010 compared to WorldView-2 data represent water distribution of the tundra 

landscape of Northern Canada with the overall accuracy of 95% (Table 2.1).  

Although the producer’s accuracy for water bodies was lower (87%) visual inspection 

of the erroneous pixels shows that the misclassified pixels occurred at the edge of a 

water body or in a pond smaller than one Landsat pixel.     

Table 2.1 Confusion matrix for accuracy assessment of annual water maps using WorldView-2 multi-spectral 
data. 

    Reference (from VHR)     

    Land Water Total 
User's 

accuracy 

Predicted 
(annual 

map 2010) 
  

Land 486 19 505 96% 

Wate
r 

13 125 138 91% 

  Total 499 144 643   

Producer's 
accuracy 

  98% 87%     

    
Overall 

Accuracy 
95%  

 

2.4.2: Long term water dynamics 

The study region encompasses over 30,000,000 ha divided into two categories: 

land 25,820,000 ha (84.4%) and inland water 4,784,100 ha (15.6%), all values based 
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on average area of our maps over the 31 year study period.  Oceans were eliminated 

from evaluation as were ocean coastlines because changes to oceans and coastlines 

are outside the scope of the study question.  Over 675,000 individual water bodies 

were identified during the 31 year study period, using the master map of contiguous 

water bodies described earlier.  The inland water bodies range in size from 0.09 ha 

(one Landsat pixel) to 350,000 ha based on average size over the 31 year study period 

(Table 2.2).  The majority of detected water bodies (67%) are small (<1 ha) and the 

total number of water bodies decreases as size class increases.  

Table 2.2 Distribution of water bodies detected in the study region by size.  All sizes are in hectares and based on 
average area over the 31 year study period.  (The very low fractional representation of the largest water bodies in 
the total water body count necessitates the use of precision values to the third decimal point.) 

Size in 
ha 

<0.1 0.1 to 1 1 to 10 
10  to 
100 

100 to 
1,000 

1,000 to 
10,000 

10,000 
to 

100,000 
>100,000 

 Count  251,884  202,412  167,450  48,495    4,836   257  29  9  

Percent 
of total 
water 
bodies 

37.296% 29.970% 24.794% 7.180% 0.716% 0.038% 0.004% 0.001% 

 

Comparing maps from individual years exposes differences in extent of water 

bodies between those years.  The total area of inland water varies annually from a low 

in 1999 of 4,435,692 ha to a high of 4,764,440 ha in 1989 (Figure 2.5) with a 

significant amount of inter- 
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Figure 2.5 Total annual area of surface water between 1985 and 2015.  Red circles denote local temporal maxima 
and the minimum in the record. 

annual variability.  The three red circles are the area values at 10-year intervals 

beginning with 1989 suggesting a local maximum, minimum and another maximum 

respectively.  Water bodies that are less than 1 ha routinely fluctuate in size through 

the data record.  By overlaying multiple years together it is possible to see the 

progression of change in specific water bodies (Figure 2.6).  Typical fluvial processes 

can be seen as rivers meander and midstream islands change shape over time (Figure 

2.7). 
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Figure 2.6 Difference in extent for several water bodies in the study region.  The lighter colors indicate that water 
was present in early years of the study but not present in later years. 
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Figure 2.7 Variability of river extent and flow between 1985 and 2015.  Lighter colors indicate that water was 
present in some years but not in all years.  This is particularly noticeable in the edges of the river and in the 
islands in the middle of the channel. 

The amount and direction of change was quantified by performing a linear 

regression analysis (ordinary least squares) on area of water bodies over 31 years and 

is reported in Table 2.3.  Nearly 87% of all individual water bodies in the study 

region showed a trend in area with 45% showing positive trend (increasing size) and 

42% showing negative trend (decreasing size).  Over 168,000 (25%) water bodies that 

show a trend had p-value < 0.05 and nearly 73,000 (11%) had p-value <0.01.   
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Table 2.3 Overall 31 year trend in size of water bodies.   

Study area 
analysis 

Decreasing 
size 

Increasing 
size 

No change 

Total 
number of 

water 
bodies 

Count of water 
bodies 

282,904  304,204  88,264  675,372  

Count of water 
bodies with trend 
in surface water 
area with p<0.05 

75,988  92,059   168,047  

Count of water 
bodies with trend 
in surface water 

area with p <0.01 

30,194  42,528    72,722  

 

Small (0.1 – 1 ha) water bodies constitute the majority of water objects with 

significant (at p<0.05) trend in surface water area (Table 2.4).   This distribution is 

similar to the overall size distribution of water bodies (Table 2.2).  The results show 

that for the majority of water bodies, specifically those between 0.1 and 1,000 ha in 

size, the fraction of bodies that exhibited a significant trend in surface water area at 

p<0.05 is approximately 27%.  This fraction is smaller for very small (<0.1 ha) bodies 

at 21% and large water bodies at 24%, 14%, and 22% for 1,000 – 10,000 ha, 10,000 – 

100,000 ha, and >100,000 ha, respectively.  Breaking this down further into water 

bodies that are increasing compared to those that are decreasing more differences in 

the trends become apparent. 
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Table 2.4 Distribution of water bodies that exhibit significant trend in surface water area at p<0.05 by size and 
trajectory of change. 

size in ha <0.1 
0.1 to 

1 
1 to 
10 

10 to 
100 

100 
to 

1,000 

1,000 
to 

10,000 

10,000 
to 

100,000 
>100,000 

Count of 
water bodies 
with trend in 
surface water 
area at p<0.05 

52,475 55,081 45,724 13,330 1,369 62 4 2 

Fraction of 
total water 

bodies by size 
21% 27% 27% 27% 28% 24% 14% 22% 

                  Count of 
water bodies 
decreasing in 

size 

31,810 21,438 17,216 4,960 527 32 3 2 

Count of 
water bodies 
increasing in 

size 

20,665 33,643 28,508 8,370 842 30 1 0 

Fraction of 
water bodies 
decreasing 

61% 39% 38% 37% 38% 52% 75% 100% 

Fraction of 
water bodies 

increasing 
39% 61% 62% 63% 62% 48% 25% 0% 

 

The smallest size class shows a distinct trend toward decreasing in size: 61% of 

all water bodies in size <0.1 ha that exhibit a significant trend decreased in extent 

over time.  Since a single Landsat pixel is ~0.09 ha any water body that is <0.1 ha 

that decreased in size either disappeared or became too small to be detected by 

Landsat anymore.  In comparison, the next three size classes show a distinct trend 

toward increasing in size at approximately the same proportion (61 – 63% of water 

bodies that exhibit a significant trend in each category).  Approximately half of the 

medium (52% of the 1,000 – 10,000 ha) and most large (75% and 100% of 10,000 – 

100,000 ha and >100,000 ha, respectively) water bodies with significant trend have 

decreased in size over time.  The analysis here is possible because the use of the 
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master map prevents the counts from inflating artificially when several water bodies 

coalesce into a single water body or conversely a single water body dries and splits 

into two or more water bodies.  The master map keeps those water bodies together 

throughout the analysis. 

The water bodies that show a significant change can be found throughout the 

study area (Figure 2.8).  Water bodies that exhibit a trend toward growth are colored 

 

Figure 2.8 Spatial distribution of water bodies with a significant (p<0.05) trend in surface water area (ha/yr) over 
the 31 year time period of the study.  Water bodies that are increasing in size are shown in green while the ones 
that are decreasing in size are shown in red. 
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green, those that show a trend towards shrinking are colored red and those water 

bodies that have no significant trend are light blue-grey.  There are water bodies that 

are increasing in size that are spatially adjacent to water bodies that are decreasing in 

size.  It is also apparent that the water bodies are distributed throughout the study 

region regardless of size, i.e. small water bodies and large water bodies can be found 

anywhere in the study region. 

2.5: Discussion 

In this study, the annual maps are generated from a rolling set of three years of 

inputs which results in a map of nominal extent of surface water over the period of 

the inputs.  By doing this the likelihood that an individual map is showing maximum 

or minimum extent is reduced thereby increasing the validity of inter-comparison 

with other maps produced in the same way, i.e. the time series created here.  

Accuracy assessment was performed on the map for the year 2010 to closely match 

the VHR data that were used for the assessment.  It is assumed that the accuracy is 

similar for maps from other years because the input product (DSWE) and the 

methodology remain the same. 

Figure 2.4 suggests that the overall area of surface water changes from year to 

year.  This clearly shows that studies that use any two years as inputs and employ 

simple differencing to identify change will inevitably produce erroneous results.  The 

majority of water bodies that show significant trends are growing in size at an average 

rate of 0.03 ha per year.  The net trend in area of surface water per water body is 

0.009 ha calculated as average trend in growth minus average trend in decline.  This 

finding is consistent with predictions that as the Arctic warms the active layer of 
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permafrost deepens (Jorgenson et al. 2010; Lawrence et al. 2008).  As the active layer 

deepens, this can result in the erosion of the margins of a water body often resulting 

in expansion of the water body.  Conversely, deepening of the active layer could 

result in the collapse of the water body bottom which would likely cause the draining 

of the water body (Hinzman et al. 2005).  The changes to a water body by deepening 

of the active layer are not necessarily uni-directional, in some cases a water body 

could initially expand until a critical threshold is exceeded at which point an edge 

fails or the bottom falls out and the water body drains (i.e. thermokarst). 

The novelty in this analysis comes in the object based analysis that tracks water 

body area through time by spatial location.  Through this analysis any water body that 

is shown to disappear has not been absorbed by the growth of a larger immediately 

adjacent water body.  Table 2.4 shows that size of water body plays a role in the 

direction of change (increasing or decreasing) where the smallest water bodies (<0.01 

ha) are decreasing in size over the study period and the remaining small water bodies 

(< 1 ha) are increasing in size.  This could imply that water from the smallest water 

bodies is moving laterally into larger adjacent water bodies or it is exiting the system 

in a different way (possibly evaporation or drainage into ground water).  However, 

determining exactly where the water is going is beyond the scope of this study. 

While there are specific instances of complete drainage of a water body or the 

creation of new water bodies these instances are rare.  The more interesting result is 

the quantification of a significant trend showing expansion of surface water area over 

the long time series.  While the changes are distributed throughout the study region 

(Figure 2.8) there appear to be regions of increasing and decreasing water bodies.  
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The water bodies that are increasing appear to be concentrated in the northwest 

portion of the image and the water bodies that are decreasing appear to be 

concentrated on the eastern half of the image.  Further investigation with ancillary 

data such as ecoregions, soils, elevation and vegetation cover may provide additional 

insight into the potential patterns of change.  The implication of wide spread growth 

in surface water lies in the extensive stores of carbon in the soils and sediments in the 

region.  Greater surface water area can lead to (or be caused by) deepening of the 

active layer beneath and around the water bodies.  One potential implication of 

changing surface area of water is the possibility of mobilizing the significant amount 

of soil based carbon to the atmosphere through methanogenesis, denitritrification, 

aerobic decomposition/respiration and other biogeochemical processes. 

The methodology used to create the annual water maps from a series of water 

classifications is robust and has been employed for both Landsat and MODIS 

instruments (Carroll et al. 2016a; Carroll et al. 2009) and is similar to the method 

adopted for the Global Landsat Water maps (Pekel et al. 2016).  The development of 

these new time series products of surface water make it possible to apply our object 

based analysis methodology in other regions.  The challenge arises in large regions 

with a rapid increase in the number of objects.  The current process with over 600,000 

objects pushed the limits of what a standard software package (ArcGIS in this study) 

would handle.  Significant improvements in data handling in this software or the 

development of custom routines that are outside of proprietary software are needed to 

facilitate processing larger numbers of objects.  Ideally, these new processes would be 

developed to take advantage of “Big Data” processing environments and parallel 
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processing to both speed up the processing time and enable larger datasets to be 

considered.  

The DSWE water detection algorithm was originally designed and tuned to detect 

water in the contiguous United States.  This is the first application of the algorithm in 

the tundra ecotone and the algorithm has performed well as demonstrated by the 

validation presented in this text.  Future enhancements to the DSWE algorithm 

including improvements to the “partial water” class will have important implications 

for advancing the methodology presented here to support studies that quantify carbon 

exchange in the tundra.  In addition, the identification of a snow/ice coupled with 

improved cloud detection would increase the overall number of observations that 

could be used.  These improvements have been suggested to the developers of the 

DSWE and are currently under consideration.   

Previous analyses of water body change in the Arctic have focused on only a few 

observations and there has been more work done in the Alaskan North Slope than the 

Canadian high Arctic (Bouchard et al. 2013; Brown and Young 2006; Chen et al. 

2013; Hinkel et al. 2007).  Coarse resolution analysis using MODIS data (Carroll et 

al. 2011b) was limited to differencing over a decade and at 250 m spatial resolution 

does not fully capture the dynamics because so many of the water bodies are well 

below detection levels with MODIS (1 MODIS pixel at 250 m resolution ~6.25 

hectares) see table 2.4 showing over half of the water bodies with a significant trend 

are 1 hectare or less.  Coarser resolution analysis (25 km) using microwave data 

(Watts et al. 2012) has the advantages of fractional coverage and the ability to collect 

data under cloudy conditions but is still too coarse to capture the dynamics of small 
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water bodies.  Most recently global annual water maps have been generated from 

Landsat (Pekel et al. 2016), however the change mapping provided combines all maps 

up to 1999, all maps after 1999 (yielding two maps) and then does a simple 

difference.  Based on the information in figure 2.5, this approach is likely to lead to 

erroneous results at least for the current study region.  The ability to use the full time 

series of Landsat data to generate a time series of object based (individual water 

bodies) measurements provides a new perspective on the true dynamics of water 

bodies in the region.  The density and diversity of remote sensing observations has 

increased with the launch of Sentinel 1A/B (radar observations) and Sentinel 2 A/B 

(10 – 20 m visible and near infrared observations).  Combining the historical time 

series with the current and potential future observations from the Sentinel 

constellation will provide an extended record into the future. 

2.6: Conclusions 

This is one of the first analyses to produce annual water maps that show the 

nominal water extent in each year over 31 years for a region.  A large inter-annual 

variability in the results demonstrates that it is necessary to do time series analysis to 

fully understand the dynamics of surface water in the region.  Size analysis of water 

bodies confirms previous studies that show that small water bodies dominate the 

landscape. Our results show that over the past 31 years the smallest water bodies have 

been shrinking or disappearing entirely whereas slightly larger to moderate water 

bodies have been increasing in size.  The area based linear regression analysis shows 

an overall net growth of 0.009 ha year-1 per water body.  The occurrence of 

significant trend in surface water area in the study area, which is located far from 
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most anthropogenic activity, implies that environmental or climate factors are driving 

the observed change. Further investigation is required to determine if the potential 

periodicity seen in the graph of total area of surface water over 31 years (i.e. figure 

2.5) is related to a climate driver or other environmental factors and an analysis of 

spatial patterns and clustering will reveal potential areas for further investigation.  
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Chapter 3: The sign, magnitude and potential drivers 
of change in surface water extent in Canadian tundra 

3.1: Introduction 

The North American High Northern Latitudes are currently the subject of 

intensive research focus in both Canada and the United States.  Over the past 30 years 

air temperature in this region has increased faster than in the rest of the world with an 

average of 2 – 4° C (Miller et al. 2010; Serreze and Barry 2011) increase over that 

time span.  The observed warming has been identified as the primary driver of a 

broad spectrum of environmental changes from enhanced vegetation response (i.e. 

“greening”) (Goetz et al. 2010; Ju and Masek 2016; McManus et al. 2012), to the 

deepening of the active layer (seasonally melted layer above permafrost) and talik 

formation (unfrozen layer of soil beneath lakes and above the permafrost) in the 

Arctic (Arp et al. 2016; Brown et al. 1998; Camill 2005; Jorgenson et al. 2010), and 

to an overall trend toward lower sea ice cover (Stroeve et al. 2011).  Accounting for 

more than 20% of the land surface across the Arctic tundra, water bodies are a critical 

component of tundra ecosystems (Downing 2010; Downing et al. 2006).  These water 

bodies are essential to the hydrological cycle, carbon cycle and overall energy 

balance in the region (Bring et al. 2016; Cole et al. 2007; Francis et al. 2009b; 

Stokstad 2004; Walter et al. 2007; White et al. 2007).  Not surprisingly, numerous 

recent studies have focused on extensive changes  across various components of the 

hydrological cycle including  longer inland water ice-free season (Chen et al. 2013; 

Smejkalova et al. 2016), increased inland water temperatures (O'Reilly et al. 2015; 

Schneider and Hook 2010; Sharma et al. 2015), and  a change in the overall extent of 
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surface water across High Northern Latitudes (Hinzman et al. 2005; Jepsen et al. 

2013; Jorgenson et al. 2006; Roach et al. 2013; Rover et al. 2012; Smith et al. 2005; 

Smol and Douglas 2007b).   

Many factors including changes in temperature, precipitation, evaporation, 

vegetation cover, and subsurface soil structure affect the surface water extent of 

inland water bodies (Bring et al. 2016; Gibson and Edwards 2002; Yoshikawa and 

Hinzman 2003).  Incoming precipitation is balanced by runoff, surface storage, 

evaporation, and subsurface drainage.  In High Northern Latitudes (HNL), however, 

permafrost prevents surface water from percolating into ground water and thus 

largely controls subsurface drainage (Jorgenson and Grosse 2016; Jorgenson et al. 

2010; Kokelj and Jorgenson 2013).  In regions of permafrost this, in general, results 

in water ponding in depressions where there is not enough slope or an outlet to permit 

overland flow of water.  Surface water change in discontinuous permafrost has been 

shown to be primarily drying due to connection between surface water and sub-

surface water.  Whereas surface water change in continuous permafrost has been 

more complex to characterize with the hypothesis of initial wetting followed by 

drying due to talik formation under the water bodies (Smith et al. 2005).   

Many studies involving the use of satellite imagery have been conducted to 

ascertain the direction and magnitude of surface water extent change in the HNL over 

the past 30 years.  Most studies of surface water extent change are performed using a 

thresholding method to classify an image pair (or a few dates) to get the difference in 

water extent between those dates (Hinkel et al. 2007; Smith et al. 2005; Yoshikawa 

and Hinzman 2003).  However, those methods that pick a difference between two 
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arbitrarily selected points in time are likely plagued with considerable uncertainty due 

to a naturally large inter-annual variability of water extent as demonstrated in Carroll 

and Loboda (2017).  Better approaches focus on multi-temporal assessment of long-

term trends in surface water change.  A time series of Landsat data (one image per 

year) was used to explore long term change in Yukon Flats, Alaska (Rover et al. 

2012) which was subsequently used to investigate natural variability in extent of lakes 

(Chen et al. 2013).  The most robust currently available methods utilize the full 

archive of Landsat imagery to account for seasonal variability of surface water extent 

in addition to the inter-annual variability and obtain the long-term trends in nominal 

surface water extent as compared to potentially abnormally seasonally high or low 

gained from a single image per year (Carroll and Loboda 2017; Pekel et al. 2016).   

The approaches to analyzing the resultant change in surface water extent vary.  

The global analysis from Pekel et. al. (2016) compares the difference in a 15-year 

mean extent of water bodies before and after the year 2000: annual maps from 1984 – 

1999 and 2000 – 2015 were combined to produce two period maps, respectively, 

which were then differenced to produce change. Another example represents a 

regional study with four sites (two in Alaska and two in Siberia), that used Landsat 

time series with a machine learning approach to perform a per pixel classification into 

four classes (stable water, stable land, water to land, land to water) based on the trend 

in spectral indices over time (Nitze et al. 2017).    Lastly a regional study in northern 

Nunavut (Canada) used the full time series of Landsat to generate annual maps of the 

nominal surface water extent.  These maps were converted to polygons and used to 

generate a trend in areal extent for each water body (Carroll and Loboda 2017).  
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Unlike the methods from Carroll and Loboda 2017 and Pekel et al. 2016, the method 

from Nitze et al. 2017 produces a single output map that shows the classification with 

change as a class rather than annual maps that are used in a secondary analysis for 

change. 

Although mapping and quantifying surface water extent change over time at 

the regional scale is sufficiently challenging, developing an understanding of the 

drivers of the observed changes at this scale is particularly difficult since datasets 

representing subsurface parameters are largely unavailable or are grossly 

oversimplified.  The studies that have examined the mechanisms driving surface 

water extent are limited to local areas with local maps or field measurements (Rover 

et al. 2012) or local airborne data (Jepsen et al. 2013; Minsley et al. 2012).   These 

studies both concluded that subsurface composition, specifically coarse gravel, was a 

better determinant of water body change than the overall depth of talik.  In a study on 

Ellesmere Island it was found that water bodies on exposed bedrock disappeared 

completely in the summer of 2006 (Smol and Douglas 2007a).  Maps of permafrost 

(Brown et al. 1998) and soils (SLCWG 2010; Tarnocai et al. 2002) are coarse in 

spatial resolution, hence provide little ability to discriminate drivers of change in 

specific water bodies.  Considering the remoteness and difficulty of access for most 

of circumpolar tundra, large scale studies based on observed (rather than modeled) 

land surface conditions rely on satellite-derived data products.  One approach to 

developing an understanding of the regional scale drivers is to use other directly 

observable land surface parameters as a proxy for more general environmental 

conditions and subsurface characteristics.  Specifically, land cover and vegetation 
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fraction – both routinely mapped from satellite observations – can to some degree 

reflect the type of soils and the depth of active layer in otherwise uniform climatic 

conditions.  Datasets describing land cover (Didiuk and Ferguson 2005; Friedl et al. 

2010; Olthof and Fraser 2014) and vegetation (Carroll et al. 2011a; Hansen et al. 

2003; Sexton et al. 2013; Townshend et al. 2012) are available both globally and 

regionally.  

In this paper we use an existing surface water change map (Carroll and 

Loboda 2017) to explore potential drivers of that change at the regional scale in 

Nunavut, Canada.  Maps of land cover at coarse (DiMiceli et al. 2011; Friedl et al. 

2010; Walker et al. 2005) and moderate (Didiuk and Ferguson 2005; Olthof et al. 

2014; Wulder et al. 2008) spatial resolution are used to derive proxies for ecological 

factors from land cover type.  The specific objectives of this study are to 1) quantify 

the spatial relationships and sign (increasing or decreasing) of change shown in 

Carroll and Loboda 2017, and 2) to relate that change to ecological factors observable 

at the regional scale including weather station data and various land cover types. 

3.2:  Study area 

The study area is located in Nunavut territory primarily in north central 

continental Canada and extends into the Queen Maud Gulf including parts of several 

islands (figure 3.1) bounded by the geographic coordinates 69.2 N, 108.6 W, and 63.5 

N, 93.6 W.  This area falls within the Arctic Tundra biome (vegetation limited to 

mosses, grasses, sedges and shrubs) underlain by continuous permafrost (Brown et al. 

1998).  The study area is characterized by low topographic relief and the best 

available DEM (Canadian Digital Elevation Model used in this study) is at 1:50,000 



 

 

43 

 

spatial resolution (~30 m).  The average annual temperature and precipitation range 

from -11° C to -14° C and 273 mm to 148 mm from south to north respectively (CCN 

2017).   

 

Figure 3.1 Study region in northern Canada, Nunavut territory where multi-decadal trends in surface water extent 
have been established (Carroll and Loboda, 2017).  Water bodies in the region show opposite trends of surface 
water extent.  Red indicates a water body that is increasing in extent while green indicates a water body that is 
decreasing in surface water extent.  There are four weather stations within or just outside of the study region 
indicated by purple circles. 
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There is limited infrastructure with no major cities or roads in the study 

domain and the most prominent feature is the Queen Maud Gulf Bird Sanctuary on 

the northern coast.  This sanctuary is the largest federally owned protected area in 

Canada covering over 61,000 km2 and is listed in the Ramsar Convention on 

Wetlands of International Importance.  The study area boundaries were selected such 

that the sanctuary covers approximately half of the continental land area in the study 

region.  This is significant because the protected area designation puts strict limits on 

the amount of human activity that can be in the protected area, so any changes that 

are seen here are less likely to be caused by direct human intervention such as dam 

building or other infrastructure construction. 

3.3: Data and Methods 

In our previous work in this study area of North American tundra (Carroll and 

Loboda 2017) we mapped over 675,000 water bodies, which constitute over 20% of 

the land cover (excluding ocean), with over 25% of water bodies showing a 

significant increasing or decreasing trend in surface extent over time (p <0.05).  The 

goal of the current work is to put the previously identified trend in surface water 

extent into context with landscape and ecology of the region as well as other 

previously reported changes including the recent findings regarding vegetation 

greening and browning trends (Goetz et al. 2010; Ju and Masek 2016; McManus et al. 

2012).  We conducted a review of available regional-scale land cover and land cover 

change data to identify key data sets that we used in this analysis (see supplemental 

section for dataset review). 
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From our previous work identifying trend in surface water area per water 

body, we identified the actual areas of observed change (individual per pixel 

observations) within the water bodies that showed significant increasing or decreasing 

trends.  These grid cells were dichotomized into decreasing and increasing classes by 

assigning values of -1 for water bodies showing negative trend and 1 for water bodies 

showing positive trend irrespective of the actual magnitude of the trend.  Ocean 

(Queen Maud Gulf) was masked from all analysis using its maximum extent between 

1984 – 2015 (Carroll and Loboda 2017) to eliminate the coastal shoreline change 

which is governed by different ecological processes and does not represent the focus 

of this study.  Through the process described above, we identified over 4.3 million 

grid cells representing ~3870 km2 of area with statistically significant trend in long-

term surface water extent change within our study region. 

3.3.1: Identifying spatial patterns of change 

With surface water change identified and quantified down to the grid cell level 

the next challenge is to identify the driving ecological factors.  First order analysis 

involved identifying spatial patterns of observed dichotomized change.  A 

straightforward way to assess spatial grouping of data is to aggregate from finer 

resolution to coarser resolution to reveal spatial clustering of areas of change (Lam 

and Quattrochi 1992).  In this case, we took the positive and negative change at 30 m 

resolution and averaged to 3 km resolution and recorded the percent of grid cells 

showing change within the resulting 3 km grid cells.  Because each 30 m grid cell has 

a sign (positive or negative) when the averaging occurs, the end result is a “net” 

change within the grid cell where equal number of positive and negative values will 
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result in a “0” value within the 3 km grid cell.  Spatial aggregation to coarser 

resolution provides a systematic way to assess the spatial association of nearby 

change irrespective of other local-scale underlying ecological processes.   

Another way to identify spatial patterns is to group the change in terms of 

other meaningful spatial subsets.  We used watershed boundaries to provide a 

meaningful ecological stratification of the landscape for regional-scale analysis.  

Surface water area and surface water change were aggregated per watershed, defined 

by the Canadian National Hydro Network (Natural Resources Canada 2007), using 

zonal statistics.  This produces percent surface water area and percent surface water 

change per watershed.  As in the 3 km percent change, the change per watershed is 

net change because the sign of change is used in the calculation of area of change.   

3.3.2: Random forest analysis 

With several datasets available describing surface features it was necessary to 

determine which datasets are statistically related to surface water change.  Random 

forest analysis (RFA) (Breiman 2001) is a machine learning technique that facilitates 

assessing the combined influences of multiple inputs on the dependent variable.  

Unlike many other multivariate statistical models, RFA is not sensitive to the number 

of independent variables and readily allows for inclusion of both discrete and 

continuous variables in the analysis.  A byproduct of the RFA is a ranking of the 

independent variables in the context of importance to the RFA.  We used this feature 

of RFA to identify key variables for determining where surface water change will 

occur.   
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The 4.3 million individual pixels showing change were used as the dependent 

variable in the RFA. Values for Terrestrial Ecoregions of the World (TEOW), Circum 

Arctic Vegetation Map (CAVM), Soil Landscapes of Canada (SLCWG), National 

Hydrography Network-watershed (watersheds), National Hydrography Network-

connectivity (connectivity), Canadian DEM-elevation (elevation), Canadian DEM-

slope (slope), and MODIS percent bare (bare) were extracted under the raster pixels 

of change into a table and used as the independent variables in the RFA.  A random 

sample of 10% of the pixels (~430,000) from the table was used in successive runs of 

the random forest with increasing numbers of trees starting with 5 and increasing to 

1000 in 30 runs. 

3.3.3: Relating spatial patterns of change to ecological drivers 

Weather- specifically temperature and precipitation - is a critical factor 

controlling surface water extent with particularly complex conditions in cold regions 

where ice cover plays a role.  Temperature and precipitation data from four weather 

stations, figure 3.1, were examined in this study (http://climate.weather.gc.ca/).  To 

establish the overall trend per weather station the daily temperature data was averaged 

to a single annual average value per year consistent with previous studies (Easterling 

et al. 1997; Jones et al. 1999).  Most years had between 0 and 7 missing days of data, 

any year that was missing 10% or more of the observations was set to no data and 

was excluded from further analysis.  Of the four weather stations used only two 

(Cambridge Bay and Baker Lake) had a consistent record of precipitation while the 

other two had significant gaps in coverage and were excluded from analysis.  The 

precipitation data (total daily precipitation including frozen precipitation) was 

http://climate.weather.gc.ca/
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summed for each year to produce total annual precipitation for each year from 1985 – 

2015.   

There are a number of datasets that describe the land surface of the study 

region.  Many of these land cover characteristics can be used as proxies for ecological 

parameters.  We selected datasets that describe cover type (land cover maps), 

vegetation condition (Normalized Difference Vegetation Index (NDVI)), elevation 

and slope, and surface water extent/change across the full study area.  A full 

description of datasets that were investigated is included in the supplemental section.  

All variables that were used in this analysis provide a continuous representation (i.e. 

percent, trend, or fraction) except the three classes from the land cover of Canada that 

describes areas that are either exposed or lichen covered bedrock (henceforth 

“barren”).  Grid cells that were identified as barren were dichotomized into a separate 

dataset with two classes – barren and vegetated.  All datasets were aggregated at the 

watershed level using zonal statistics retaining the average (for continuous) or percent 

(for discrete) variable per watershed.  Univariate statistical relationships between 

individual surface characteristics and surface water change as the dependent variable 

were subsequently tested using R2 values for each variable to determine the goodness 

of fit. 
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3.4: Results 

Initial evaluation of the map of surface water change at 30 m resolution 

(figure 3.1) suggests that there are groups or areas within the map where water bodies 

with positive trend or negative trend are clustered.  The clustering becomes more 

apparent with aggregation of the original map to 3 km grid cells shown in figure 3.2.  

The clusters of significant surface water change in the right panel of figure 3.2 do not 

simply mimic locations where there are water bodies in the left panel, but rather they 

show a distinct and different spatial pattern.  Visually there does not appear to be a 

relationship between the amount of surface water area per watershed and surface 

water change per watershed.  The quantitative assessment also shows a poor 

correlation (R2 = 0.01) between surface water abundance in the watershed and 

Figure 3.2. The left panel shows percent surface water at 3 km spatial resolution with darker shades of blue 
corresponding to higher percentage of water.  The right panel shows percent water change at 3 km spatial resolution.  
Green colors indicated a higher percentage of water bodies with increasing extent.  Red colors indicate a higher 
percentage of water bodies with decreasing extent.  
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change.  Overall figures 3.2 and 3.3 highlight a pattern of change in the study region 

that goes from north-west to south-east.  

 

Figure 3.3 The study region divided into watersheds using the Canada National Hydro Network.  Figure 3a on left 
shows the percent surface water in each of the watersheds.  Figure 3b on right shows the percent net surface 
water change per watershed.  Both results determined by using the annual surface water extent product (Carroll 
and Loboda, 2017). 

   

Weather is a fundamental driver of surface water change where year to year 

differences in amount of precipitation can substantially affect the surface water extent 

for climatologically short periods of time.  The purpose of the current study is to 

identify long term trends in surface water extent and their drivers so we approached 

analysis of weather data with a similar long term approach.  We evaluated 

temperature and precipitation records from the four official weather stations that are 

within, or just outside of, the study region with records of at least 30 years (figure 

3.1). Taloyoak, Shepherd Bay and Cambridge Bay stations are located more than 500 

km (~6° of latitude) to the north of Baker Lake station and thus show substantially 
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lower mean annual temperatures.  The annual temperature trend at three of the four 

stations is positive over the available data record with an average increase of ~2° F 

across the study region (figure 3.4).  This rate of increase is consistent with reports of 

increasing temperatures throughout the Arctic (Miller et al. 2010; Serreze and Barry 

2011).  The station at Shepherd Bay shows a slight decline in temperatures over the 

study period.  The negative trend at the Shepherd Bay station is strongly influenced 

by the comparatively high mean annual temperature in the late 1980s.  However, a 

trend beginning from the early 1990s would show a similar direction and magnitude 

to the trend recorded at all other stations in the study area.  Averaged over the four 

stations, the regional trend in mean annual temperature remains positive (figure 3.4e).        
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Figure 3.4 Annual temperature trends for four weather stations within or in close proximity to the study domain 
showing individual trends (a - d) and an average of all four stations (e).  The overall trend for the domain is 
increasing temperature at a rate of 0.66° C per decade. 

The annual precipitation, available from only two stations, shows divergent 

trends for Cambridge Bay (slightly increasing) and Baker Lake (slightly decreasing) 

(figure 3.5).  Neither trend was significant; however it should be noted that the inter-

annual variability was very high at both stations which may indicate an inconsistency 

in the record, which is not uncommon in cold region precipitation records due to 

under-catch in winter precipitation (Adam and Lettenmaier 2003). 
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Figure 3.5 Annual precipitation trend for two weather stations within the study region.  Cambridge Bay (a) in the 
north-west shows a slight increasing trend while Baker Lake (b) in the south-east shows a slight decreasing trend. 

  The result of the multivariate analysis of surface parameters as determinants 

of surface water change from all random forest runs (table 3.1) shows that the 

watersheds dataset was the highest ranked predictor of an increasing or decreasing 

trend in surface water extent followed by elevation, soil types (SLCWG) and arctic 

vegetation (CAVM) with an Out of Bag (OOB) error (Breiman 2001) of 48.67%.  

The bare fraction, terrestrial ecoregions (TEOW), connectivity and slope were the 

least important in all runs.  

Table 3.1 Ranking of variables from the random forest analysis after all runs. 

Variable 
Mean 

Decrease 
Accuracy 

Mean 
Decrease 

Gini 

Watersheds -0.01320 49,525  

Elevation 0.06494 27,477  

SLC 0.04625 18,873  

CAVM 0.01664 10,612  

Bare 0.01013 6,830  

TEOW 0.01790 4,254  

Connectivity 0.00427 2,518  

Slope 0.00139 2,112  
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Further zonal statistics analysis, performed on the top four variables, was 

aimed at understanding how these variables are related to the observed pattern of 

surface water change.  The relationship between the percent water change and 

watersheds can be seen in figure 3.3b with primarily increasing water bodies in the 

northwest and primarily decreasing water bodies in the southeast.  The elevation data 

provides a per pixel height above sea level that the random forest analysis identified 

as important on a per pixel level.  However, elevation is a continuous variable that, by 

itself, does not provide a convenient way to identify groups or spatial patterns without 

creating arbitrary thresholds of elevation.  The soil types (SLCWG) show only a few 

broad regions that do not appear to be related to the distinct spatial pattern of surface 

water change (figure 3.6).  The final predictor from the top four of the random forest 

analysis is the arctic vegetation map (CAVM) where a single vegetation class -  

“Cryptogram barren complex (bedrock)” – is linked to a decreasing trend in surface 

water (figure 3.7).  The spatial resolution (1 km) of CAVM is coarse compared to the 

features of the region so finer resolution information is needed to confirm and to fully 

understand the relationship between direction of change and barren or bedrock 

surface condition.  Small outcroppings of bedrock may not be observable in the 1 km 

base data used to create CAVM and hence the bedrock class may underestimate the 

true coverage of bedrock in the region. 
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Figure 3.6 Soil Landscapes of Canada (black boundaries) with zonal statistics showing the sign of surface water 
change by soil regions. 



 

 

56 

 

 

Figure 3.7 In the left panel (a) is an overview of the Circumpolar Arctic Vegetation Map with 11 cover types 
described, notably the "Cryptogram Barren Complex" which is shown in salmon color.  The right panel (b) shows 
the result of calculating zonal statistics with CAVM as the zone and pixels of change as the variable.  The areas 
shown in red have decreasing surface water extent and generally relate to the Cryptogram Barren complex of 
CAVM. (Some CAVM long names have been shortened using the following abbreviations “d-s” is dwarf-shrub and 
“l-s” is low-shrub) 

The Canadian National Hydro Network Watersheds data (Natural Resources 

Canada 2007), which identify 38 distinct hydrologic units within our study area, are 

the most ecologically meaningful and the most statistically important (as specified by 

the random forest analysis) spatial zoning parameter for assessing the relationships 

between trends in surface water and other satellite-derived surface parameters related 

to vegetative cover and barren surfaces.  Table 3.2 shows the results of the linear 

regression between the median of each satellite-derived descriptor and the percent 

surface water change per watershed.  Median value is used to avoid anomalous values 

(caused by clouds, shadows, or other poor-quality data) that can contaminate an 

average or maximum calculation.   
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Table 3.2 Results from linear regression of surface type per watershed with respect to surface water change using 
R2 to measure correlation between the variable.  P-values denoted by symbol: no symbol denotes p > 0.05; * 
denotes p < 0.05; *** denotes p < 0.001. 

Dataset R2 

NCETM-LC:Barren 0.46*** 

MODIS: Median ET 0.15* 

Landsat NDVI: Vegetation Fraction 0.11* 

Elevation 0.04 

Landsat NDVI: Trend over 30 years 0.03 

MODIS: Percent Bare 0.03 

Surface Water Area – percent 0.01 

 

The percent surface water area per watershed has a low R2 and p>0.05 which 

implies that the amount and direction of change is not correlated with how much 

surface water is present in a given watershed.  Though the relationship is only 

moderately strong, the best predictor is the percent bare defined by the barren class of 

the Landsat ETM+ Land Cover of Northern Canada (Olthof et al. 2014) with an R2 of 

0.46, figure 3.8.  Though the p value is significant for the analysis of the 

evapotranspiration (ET) data, the R2 of 0.15 showing that ET was a weak predictor of 

surface water change.  This is likely due to the coarse spatial resolution of the  

 

Figure 3.8 Scatterplot showing the relationship between the percent barren class in each watershed when 
compared to the net percent change in surface water extent per watershed. 
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product, 500 m, and it was only available for the second half of the study period 

(2000 – 2015) because the Terra satellite was not launched until December 1999 and 

data from the MODIS instrument was not available until February 2000.  As a 

consequence of the spatial resolution it is likely that mixed land and water pixels 

confound the results.  Similarly the Landsat NDVI Vegetation Fraction has a 

significant p value but a poor R2 of 0.11 showing it is a weak predictor.  In this case it 

is likely that the NDVI is confounded by soil color or wetness leading to poor 

correlation. 

3.5: Discussion 

The areal extent of water in a water body at any given time is determined by 

the hydrological cycle and specifically three primary factors: incoming water 

(precipitation, inflow from streams/rivers), outgoing water (runoff, evaporation), and 

topographical depressions that are capable of holding the water.  With remotely 

sensed data we can measure surface features influencing the amount of water stored 

on that surface.  Measurements of subsurface conditions are significantly harder to 

get because they often require field data collection which can be difficult, expensive, 

and time consuming.  Numerous datasets that describe surface features in various 

ways are publicly available, however  only coarse spatial resolution datasets of 

subsurface conditions, namely the Circum Arctic Permafrost map (Brown et al. 1998) 

and the Soil Landscapes of Canada (SLCWG 2010), are available at continental 

scales. 

Building upon our previous work (Carroll and Loboda 2017) we have 

demonstrated that though there is no distinct pattern in fraction of surface water 
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“cover” there is a pattern from Northwest to Southeast for surface water “change” in 

our study region.  Direct observations of weather are limited in the study region with 

only four official weather stations in or near the area that have more than sporadic 

measurements.  Mean annual temperature across the entire region has been increasing 

at an average rate of ~0.78° C per decade over the past 32 years with no distinct 

spatial variability that could explain the observed spatial patterns of surface water 

change.  While it cannot be ignored that the precipitation data from the two weather 

stations with complete precipitation data show that precipitation is increasing in the 

north west (Cambridge Bay) and decreasing in the south east (Baker Lake) - the same 

pattern that is shown in the surface water change - having only two stations does not 

provide sufficient evidence to draw definitive conclusions because there could be 

significant variation locally. 

Watersheds are defined by topographical features that cause water to flow to a 

specific outlet.  The spatial relationship of change determined by location within a 

watershed shows that there are localized controls on the flow of water.  The analysis 

of surface water change presented here shows that a larger fraction of barren surface 

and bedrock are associated with the watersheds that decrease in surface water extent.  

This is significant because the presence of bedrock at or near the surface suggests that 

the soil is shallow in these locations.  Evaluation of surface water change with NDVI 

(surrogate for vegetation fraction), NDVI trend (change in NDVI over time), and 

trend in evapotranspiration all yielded weak correlations with surface water change.  

One possible explanation for this is that further distinction of vegetation type is 

needed to provide an adequate relationship between surface water change and 
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vegetation (i.e. NDVI is a general measure of vegetation vigor without giving an 

indication of vegetation type).  Generation of a new land cover map to investigate this 

potential is a large undertaking and well beyond the scope of the work described here.   

The observed changes in surface water extent are found throughout the study 

region.  Both air and water temperature (Schneider and Hook 2010; Sharma et al. 

2015) are increasing in this region.  With similar weather and climate conditions for 

all water bodies (i.e. they do not vary across the study region) the relationship that 

stands out is the amount of barren or bedrock that is present.  In areas where barren or 

bedrock is less prevalent, hence the vegetation component is higher, the water bodies 

are expanding.  This supports the hypothesis that as the near surface permafrost thaws 

the water bodies are expanding due to a deepening of the talik beneath the water 

body.  The deeper talik can create a connection to ground water which can have a 

positive (expansion of water body) or negative (contraction of water body) effect 

depending on the hydraulic gradient.  Talik formation is one possible explanation for 

the surface water changes that are reported here. 

Microtopography is another potential control on the flow of water both on the 

surface and below through its control on the hydraulic gradient.  A DEM finer than 

the CDED used in this study would be necessary to investigate this and may be 

possible with future releases of the ArcticDEM (PGC 2017) but at the time of this 

writing the ArcticDEM is incomplete in the study region which prevents a detailed 

analysis of the impact of microtopography on surface water.  Depth of thaw as well as 

the composition of the bedrock (fractured or permeable vs solid or impermeable) 

provide another control on the flow of water which impacts wetting and drying.   
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The water bodies are drying where barren or bedrock is more prevalent and 

the vegetation component is low.  We hypothesize that the presence of near surface 

bedrock implies shallow soils in the surrounding area that prevents subsurface lateral 

water flow and, barring the presence of cracks and fissures in the underlying bedrock, 

connection to the ground water.  There is evidence of similar occurrence in water 

bodies situated over bedrock on Ellesmere Island, Nunavut (Smol and Douglas 

2007a) where changes in evaporation to precipitation ratios have resulted in water 

deficit and hence reduction (or complete loss) of water body extent.  In contrast, in 

areas underlain by deeper soil layers, permafrost thawing associated with rising 

temperatures creates new pathways for water flow due to melting of ice wedges 

(Liljedahl et al. 2016), deepening talik (Arp et al. 2016) or increased surface 

connectivity between water bodies (Liljedahl et al. 2016; Woo and Guan 2006).   

Change in surface area of water bodies is not uniform and clearly depends on a suite 

of environmental conditions including subsurface composition, depth of water, as 

well as evaporation and precipitation ratios. 

3.6: Conclusions 

Over 25% of the 675,000 water bodies in the study region experienced a 

significant multi-decadal trend in change.  Though the entire region experienced the 

same amount of warming the surface water extent responded differently in different 

parts of the study domain.  The results provided here offer evidence of a direct 

relationship between surface water change and barren or bedrock substrate at the 

regional scale.  This relationship was identified using two independent datasets 

(CAVM and Landsat ETM+ Land Cover of Northern Canada) and at different spatial 
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resolutions (1 km and 30 m) respectively.  Relating surface water extent change to 

bedrock detected on the surface provides an extensible method that does not rely on 

local maps of soils/subsurface or airborne observations with ground penetrating radar.  

Improved land cover datasets with specific focus on barren (including lichen covered 

bedrock) land cover types would facilitate expansion of this method to larger region 

or continental scale.  Further improvement would come from a more complete 

understanding of the subsurface makeup including the amount of fracturing in the 

bedrock which can also facilitate subsurface flow. 

 



 

 

63 

 

Chapter 4: Identifying potential drivers of change in 
surface water extent in Arctic tundra using reanalysis 
data 

4.1: Introduction 

There is an abundance of evidence that rising air temperatures are having a 

significant impact on the aquatic and terrestrial environment in the High Northern 

Latitudes (HNL) (Hinzman et al. 2005; Miller et al. 2010; Serreze and Barry 2011; 

Serreze et al. 2000; Stroeve et al. 2011).  Among the many observed changes, a 

change in inland surface water extent has been widely reported in both local and 

regional studies (Bring et al. 2016; Carroll and Loboda 2017; Carroll et al. 2011b; 

Jepsen et al. 2016; Rover et al. 2012; Smith et al. 2005).  In most cases increasing 

thaw depth of permafrost resulting in the connection of the water body to other 

surface water bodies or to ground water is identified as the primary mechanism of 

change (Liljedahl et al. 2016; Smith et al. 2005; Woo and Guan 2006).  Rising 

temperatures in the region are driving permafrost thaw (Grosse et al. 2011; Jorgenson 

et al. 2010) but other components of the surface energy balance (evaporation, 

transpiration, latent and sensible heat flux, etc.) are also important factors in changing 

surface water extent.  In a study of water bodies in coastal Alaska Bowling and 

Lettenmaier (2010) modeled surface energy balance using inputs from weather 

stations to understand why surface water extent changed.  They found that they were 

able to reproduce temperature and ice cover of the water bodies as well as explain 

variance in snow water equivalent using the model outputs.  A different study 

compared modeled surface water fluxes based on precipitation records from weather 
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stations to reanalysis data across the Arctic and found good agreement between the 

reanalysis data and a modeled result using direct observations (Su et al. 2006).  While 

this study was focused on representing discharge, it demonstrates the ability of 

reanalysis data to represent surface water fluxes in the Arctic. 

The prior studies demonstrate a relationship between surface water change 

and surface energy balance, however the sparse distribution of weather stations in 

HNL (Chapin et al. 2000), and the limited diversity of measurements at the existing 

stations (usually only air temperature and precipitation) mean that researchers need to 

derive the surface energy components independently (Bowling and Lettenmaier 

2010).   Calculating surface energy components from weather station data requires 

implementation of a model and the computational resources to run that model.  These 

requirements can deter researchers from exploring the impact of surface energy 

balance on their studies.  This creates an information gap that has limited, among 

other things, attempts to relate surface water change directly to potential drivers of 

change represented by climate variables (Carroll and Loboda 2018).  As shown in Su 

et al. (2006), there is potential for climate reanalysis data to fill this gap by providing 

data on surface energy balance that can inform analyses of surface water change.   

Reanalysis data are generated by assimilation of observational data in a model 

framework to produce a consistent set of outputs based on the physics that are 

described in a climate model (Decker et al. 2012).  Several different reanalysis 

datasets exist that are generated from, primarily, the same observations but with 

different underlying models.  For example the Modern Era Retrospective Analysis for 

Research and Analysis version 2 (MERRA-2) is generated at NASA Goddard Space 
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Flight Center using the Goddard Earth Observing System (GEOS-5) model (Gelaro et 

al. 2017; Rienecker et al. 2011) whereas the European Centre for Medium-Range 

Weather Forecast (ECMWF) model is used to generate the ECMWF Re-Analysis 

(ERA-Interim) (Dee et al. 2011; Simmons et al. 2006) and the National 

Oceanographic and Atmospheric Administration (NOAA) National Centers for 

Environmental Prediction (NCEP) reanalysis (Kalnay et al. 1996).  Reanalysis data 

provide projections that describe hundreds of atmospheric and land surface variables, 

at sub-daily time steps, including temperature, precipitation and energy fluxes 

resulting in a comprehensive suite of metrics exceeding 750 Terabytes in size (Gelaro 

et al. 2017). 

There are key differences between reanalysis data, observations and 

interpolated results.  Observations are direct physical measurements of phenomena, 

such as weather station or radiosonde measurements (e.g. temperature, precipitation, 

barometric pressure, etc.).  These observations are relevant to the physical location 

where they were collected, but can be representative of a local region and are often 

taken in concert with similar measurements in other locations.  It is possible to 

estimate the values in between point source observations by performing mathematical 

interpolation functions (often distance weighted functions) to estimate values at those 

locations that do not have actual measurements.  This data interpolation can work 

well over short distances but suffers from increased uncertainty as the distance 

between adjacent observations increases.  Reanalyses take observations as input and 

produce a modeled output of what the value of a variable might be based on the 

physics constraining the model.  Positive aspects of reanalysis data include consistent 
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global representation, high temporal resolution, and a wide diversity of variables.  

Challenges with using reanalysis data include limited spatial resolution (0.5° or 

coarser) and the values that are represented are simulated rather than measured 

observations.  The simulated values can present a challenge when interpreting results 

because they demonstrate one possible scenario rather than a definitive measured 

value.  The inherent advantage of this approach is that there is a comparable level of 

confidence between adjacent pixels that is not possible with observations because the 

measurements are not acquired at equal intervals around the world. 

In this study we will use locations of surface water change (Carroll and 

Loboda 2017; Carroll and Loboda 2018) as a dependent variable in a maximum 

entropy model with MERRA-2 reanalysis land surface diagnostic variables as input to 

identify key variables for identifying locations of change.  The primary research 

questions addressed in this study are: 1) What components of the surface energy 

balance from the MERRA-2 land diagnostics suite are the best predictors of surface 

water change for positive change and negative change? 2) What do those climate 

variables tell us about the environmental conditions driving the change in surface 

water extent?  This analysis is based on a Monte Carlo simulation with MaxEnt 

software and random combinations of predictors derived from MERRA-2 variables to 

identify the top ten predictors and the analysis of the resulting map and the set of 

ranked predictors.   

4.2: Data and Methods 

The study area is in northern Nunavut territory in Canada, figure 4.1.  This 

region is located within the North American tundra as defined by Terrestrial 
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Ecoregions of the World (Olson et al. 2001), is underlain by continuous permafrost 

(Brown et al. 1998), and is characterized by low topographic relief with between 

 

Figure 4.1 Overview of study domain in Nunavut, Canada.  The regional map shows net change in surface water 

extent at 60 km spatial resolution to match MERRA spatial resolution derived from the water bodies with 

significant change in Carroll and Loboda 2018.   

20% and 40% surface water.  This area contains the Queen Maud Gulf Bird 

sanctuary, a global protected area, and has limited anthropogenic activity.   

The overall approach combines the ability of machine learning software to 

rank the predictive power of independent variables with a Monte Carlo convergence 
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method to identify key determinants of surface water change.  The workflow entails 

generation of a dependent variable from observations of surface water change and 

independent variables from a suite of climate variables.  Surface water change was 

identified in previously reported work (Carroll and Loboda 2017; Carroll and Loboda 

2018) and used here as the dependent variable.  The independent variables were 30 

year (1985 – 2015) trends derived from 14 MERRA-2 land surface diagnostics 

variables (Gelaro et al. 2017). 

4.2.1: Dependent variable 

The surface water change in the study area was quantified using annual maps 

of surface water created from a time series of Landsat data at 30 m spatial resolution 

in (Carroll and Loboda 2017; Carroll and Loboda 2018).  Over 25% of the 675,000 

water bodies in the study region showed a statistically significant amount of change 

between 1985 and 2015 (Carroll and Loboda 2017).  Specific grid cells (locations) of 

change were identified within water bodies with significant change and dichotomized 

into a positive (1) and negative (-1) state.  The resulting dataset with significant 

locations of change was aggregated from the native 30 m spatial resolution to 60 km 

spatial resolution (~0.5°) by obtaining the mean value from the dichotomized dataset 

(figure 4.1) providing net change per 60 km grid cell.  The resulting net change in 

surface water extent was projected from its native Canada Albers Equal Area 

projection to Geographic (WGS-84) projection to match the MERRA-2 data and 

converted to three values: 1 for net increase in surface water extent (positive change), 

-1 for net decrease in surface water extent (negative change), and 0 for no change.  
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Positive and negative change were addressed in separate models to analyze potential 

climate drivers independent of the sign of the change. 

4.2.2: Independent variables 

The inherent complexity and richness of model outputs combined with the 

sheer volume of the MERRA-2 dataset (>750 TB) necessitates the use of high end 

computing (HEC) and inferential analytics to extract meaningful information for 

specific science questions.  The MERRA Analytic Service (MAS) provides a 

straightforward way to access one or multiple variables of MERRA-2 data for user 

defined temporal and spatial subsets (Schnase et al. 2017).  Through MAS, canonical 

operations (max, min, average, etc.) were calculated for the user defined temporal 

range (day, week, month, season, etc.), thus reducing the overall size of the dataset, 

which facilitates incorporation into subsequent analyses.  MAS facilitates the use of 

MERRA-2 data by eliminating the need for the end user to download the large 

volumes of sub-daily data and reduces the programming/processing burden for the 

user.  The reduced dimensionality of the outputs from MAS still results in hundreds 

of output files that require inferential statistics to relate specific variables to 

ecological function.   

A total of 50 variables are available in the MERRA-2 land surface diagnostic 

variables (Bosilovich et al. 2016).  From this pool of available variables MAS was 

used to acquire MERRA-2 data for 14 variables of interest representing temperature, 

moisture and energy balance, in weekly and monthly averages (table 4.1).  Figure 4.2 

shows the workflow for the generation of a pool of “predictors” used in the MaxEnt 

model runs from the MERRA-2 variables.  The variables were converted from 
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representing a fixed point in time (e.g. average temperature for week 7 in 2006) to 

trend for that time period (e.g. week) over the 30 year record.  After completing the 

trend generation there were 728 (14 variables * 52 weeks/year) weekly “predictors”, 

and 168 (14 variables * 12 months/year) monthly “predictors”.  Filtering was 

Table 4.1 List of MERRA-2 variable names and plain English explanations for what the variables represent and 

associated units that were used in this analysis (Bosilovich et al. 2016). 

Variable Name Variable description Units 

ECHANGE rate of change of total land energy W/m2 

EVLAND evaporation from land kg/m2/s2 

EVPSOIL evaporation from soil W/m2 

EVPTRNS evapotranspiration W/m2 

GHLAND ground heating of land W/m2 

GWETTOP soil moisture surface 1 

LHLAND latent heat W/m2 

PRECTOTLAND precipitation kg/m2/s2 

SHLAND sensible heat W/m2 

SPLAND spurious land energy source W/m2 

TELAND total energy storage land W/m2 

TSURF surface temperature K 

TWLAND available water storage land kg/m2 

WCHANGE rate of change of total land water kg/m2/s2 

 

performed to eliminate predictors with only “null data” at locations with training 

points, which occurred for several of the energy balance variables during the winter.  

After filtering out the predictors with only null values the final pool contained 490 

weekly and 113 monthly predictors.  These predictors were used in the model because 

inputs tied to a fixed point in time can confound machine learning algorithms that are 

creating a single result over a long time period (Carroll et al. 2011a; Hansen et al. 
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2002).  The final pool of predictors was used to select random subsets of 10 

predictors for use in each MaxEnt run.   

 

Figure 4.2 Workflow for generating inputs for the MaxEnt software runs from MERRA-2 Land Surface Diagnostic 

variables.  The MERRA Analytic Service (Schnase et al. 2017) is used to derive weekly and monthly averages for 

each of 14 variables.  Ordinary Least Squares (OLS) regression is performed at each time step (week and month) 

to show trend at those time steps. 

 

4.2.3: Identification of primary predictors 

Maximum entropy modeling is a type of statistical inference based on 

estimated probability distribution that enables the identification of dominant variables 

without a-priori conditions (Jaynes 1957).  This enables us to extract meaningful 

information based on partial knowledge, when a dataset is too large to extract 

information directly, and generate descriptive statistics.  Two key characteristics of 

maximum entropy modeling make it an ideal choice in this study: 1) the model is 

insensitive to correlation between predictor variables, which is necessary because 

many of the climate variables are auto-correlated; 2) the model functions well even in 

cases where the training sample size is small which is also true in this case.  The 

classic implementation of maximum entropy modeling is in a machine learning 

algorithm that takes a dependent variable and models a probability distribution based 

on a set of independent variables (predictors).   The dependent variable is typically a 



 

 

72 

 

set of observations of a phenomena (e.g. locations where a species is observed, 

measurements of concentration of particulates in the atmosphere, etc.) while the 

independent variables are measurements or other representations of the physical 

environment that can be used to predict the dependent variable (e.g. landcover, 

elevation, temperature, precipitation, etc.).  MaxEnt software is a popular example of 

maximum entropy modeling as a machine learning implementation (Merow et al. 

2013).   

The overall processing scheme (figure 4.3) employs MaxEnt software within a 

Monte Carlo simulation to identify the best predictors of change using weekly and  

 

Figure 4.3 Workflow describing the Monte Carlo simulation to determine the top ten predictors for positive 

change and negative change, respectively at weekly, monthly and combined weekly/monthly time steps.  All 

processing was completed in the ADAPT system NCCS at Goddard Space Flight Center. 

monthly predictors.  A Monte Carlo simulation is an iterative set of runs of a given 

model with a random selection of inputs performed sequentially to determine if a 

model converges on a common result.  The large pool of predictors from MERRA-2 

makes it difficult to achieve a result from a single run of the maximum entropy model 
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because the complexity of relationships between variables goes up exponentially with 

increasing number of predictors.  While it is technically possible to perform a single 

run with all predictors it would require larger computing capacity than was available 

for this study.  Hence, the Monte Carlo simulation is used to facilitate use of the full 

set of predictors and still enable completion of processing in the available computing 

environment.  In this case we performed the simulation to determine which predictors 

perform best in the MaxEnt model.  The random selection of inputs was performed 

using the random seed generator in python.  Testing was performed to ensure that the 

random seed was not the same with successive runs. 

A “run” was defined as a single execution of MaxEnt software using a random 

selection of ten predictors.  A run produces a ranking of the predictors based on 

percent contribution to the resulting model and a map based on the model.  A batch 

was defined as a set of 10,000 runs each with a random selection of predictors.  After 

three batches there was a clear convergence in the top ten percent (~50) of weekly 

predictors.  These predictors were selected for a final batch of 10,000 runs to 

determine the top ten weekly predictors.  Monthly predictors were processed in the 

same way as the weekly with the omission of the intermediate step to identify the top 

ten percent because the original pool of monthly predictors only had 113 members 

(less than ¼ of the weekly predictors).  As with the weekly simulation, there was 

clear convergence on the top ten monthly predictors after three batches.  Finally, the 

top ten weekly predictors and top ten monthly predictors (20 total predictors) were 

used as independent variables in a final run of MaxEnt to determine an overall 

ranking of predictors.  In total the simulation entailed 140,000 runs of MaxEnt 
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software on ten virtual machines with five CPU’s each (one CPU on each VM was 

left idle for system tasks).  Overall time to complete the runs was ~150 hours of wall 

time and a similar amount of actual CPU time because the software maximizes the 

CPU usage.   

4.3: Results 

The MaxEnt software produces a map, displaying the result graphically, and 

two measures of the performance of the model.  First, the area under the receiver-

operator curve (Miller et al.) provides a measure of the predictive accuracy of the 

model.  As values of AUC approach 1 the predictive power of the model is assumed 

to be higher.  For positive change the AUC of the final MaxEnt model was 0.997, and 

for negative change the AUC of the final MaxEnt model was 0.996.  Both values are 

approaching “1” which suggests that the model is able to reproduce the training data.  

Second, separate rankings of variables by percent contribution and percent 

permutation importance, respectively, gives the user a sense of which variables the 

model used to make its predictions.   

The results (figure 4.4) show the MaxEnt predictions for positive change 

superimposed on negative change giving a sense of how the results relate to each 

other.  The output shows the probability that a change will occur in a given grid cell 

on a scale from 0 to 1.  This result shows that we can replicate the observed pattern of 

change only modeled land surface energy predictors derived from a suite of MERRA-

2 variables in a maximum entropy modeling system.  A quantitative comparison of 

the training data as it relates to the results from models of increasing surface water  
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Figure 4.4 Overall results from MaxEnt final runs for decreasing surface water extent and increasing surface 

water extent with the training data shown at 70% transparent in the background.  The separate results have been 

overlain on top of each other setting probability less than 0.25 to no color.  Increasing surface water extent is 

shown with diagonal lines increasing from left to right while negative change is shown with diagonal lines 

decreasing from left to right.  Heavier line weights indicating a higher probability of occurrence in that grid cell.  

The areas of overlap can be seen where the crosshatch makes a grid pattern. 

extent and decreasing surface water extent was performed and the results are shown 

in table 4.2.  This evaluation shows that MaxEnt labeled 11 out of 18 (61%) training 

pixels for decreasing, and 18 out of 28 (64%) of  training pixels for increasing as 
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either moderate or high probability of change.  In addition 24 out of 36 (67%) "no net 

change" pixels are labeled as equal probability of increasing or decreasing.  

Table 4.2 The relationship between the results of MaxEnt runs for increasing and decreasing surface water extent 
relative to the training data. 

Class 
Grid 

cells 

Training - 

Increasing 

Training - 

Decreasing 

High probability increasing 9 8 0 

Moderate probability 

increasing 
19 10 1 

Low probability of net 

change 
22 2 5 

Moderate probability 

decreasing 
13 0 3 

High probability decreasing 12 0 8 

High probability decreasing 

& Moderate probability 

increasing 

2 2 0 

High probability increasing 

& Moderate probability 

decreasing 

3 2 0 

Moderate probability 

decreasing & Moderate 

probability increasing 

14 4 1 

Majority Ocean 6     

        Total 100 28 18 

 

The top five predictors for increasing surface water extent and decreasing 

surface water extent based on permutation importance are shown in tables 4.3 and 4.4 

respectively.  The permutation importance measures the effect of removing a 

particular variable from the training on the value of Area Under Curve (Miller et al.).  

In cases where individual predictors may be correlated with other predictors it is more 

instructive to use the permutation importance than the percent contribution because it 
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does not depend on the structure or paths within the model (Phillips 2005) hence we 

use permutation importance to rank the predictors for this analysis.  The top five 

predictors explain 84% and 96% contribution to the final model for increasing surface 

water extent and decreasing surface water extent respectively.  

Table 4.3 Top five predictors for increasing surface water extent ranked by the permutation importance.  Numbers 

are converted to percent contribution to the model.   

Predictor Time Frame 
Permutation 

importance 

Downward ground heating Week 36 
(mid-September) 

32% 

Surface temperature Month 5 
(May) 

29% 

Surface temperature Week 17 
(late April) 

9% 

Rate of change of total 

land energy 
Week 21 
(late May) 

7% 

Surface temperature Week 18 
(early May) 

7% 

 

 
Table 4.4 Top ten predictors for decreasing surface water extent ranked by the permutation importance.  Numbers 

are converted to percent contribution to the model. 

Predictor Time Frame 
Permutation 

importance 

Surface temperature Week 17 
(late April) 

71% 

Surface temperature Week 26 
(early July) 

11% 

Downward ground heating Week 36 
(mid-September) 

7% 

Latent heat Week 38 
(late September) 

5% 

Surface temperature Month 7 
(July) 

2% 

 

For increasing surface water extent, table 4.3 shows the final ranking of the 

top five predictors from the combined run using top ten weekly plus top ten monthly 

predictors, 20 total predictors in the final run.  The results show that based on the 
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permutation importance weekly predictors make up all but one of the top five 

predictors and the top two predictors explain 61% of the contribution to the final 

model.  The trend in downward ground heating flux in week 36 is the top predictor 

with 32% contribution and the trend in surface temperature for month 5, May, is 

second with 29% contribution. 

The top predictor for decreasing surface water extent (table 4.4) is trend in 

surface temperature from week 17 with 72% contribution to the final model.  Two out 

of the top five predictors were the same between the increasing compared to 

decreasing surface water extent.  Four of the top five predictors are weekly and three 

of the top five predictors are based on surface temperature.   

4.4: Discussion 

The successful replication of observed patterns in surface water change using 

MERRA-2 surface energy balance variables in the MaxEnt software demonstrates the 

methodological viability of using MERRA-2 climate variables as a surrogate for 

weather observations.  The small sample size (100 MERRA pixels) precludes the use 

of many other machine learning algorithms (e.g. random forest) which require a much 

larger number of samples to deliver robust results.  MaxEnt has previously been 

shown to be successful in generating robust models even in cases where sample size 

is small (Hernandez et al. 2006; Pearson et al. 2006).  The challenge of linking 

observed phenomena to modeled data (such as MERRA-2 in this study) is 

considerable in the HNL regions where few observational records are available to fit 

the physical models.  It is, therefore, important to match the strong longer-term 

predictive capabilities of the reanalysis data with a proper analytical framework to 
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avoid misattribution of drivers of change to potentially unrelated spurious correlations 

between observed and modeled parameters within the data record.   Some examples 

of such analytical framework include assessing multi-year trends of a daily parameter 

(e.g. fire weather) to compare trends in fire occurrence at a decadal scale (French et al 

2015).  In this work, however, the long-term predictive capacity of the reanalysis data 

was extracted through assessing 30-year trends in weekly and monthly parameters 

rather than including the specific values for individual time periods (e.g. week 17 in 

year 2006).   The results show that there are specific variables within the MERRA 

Land Surface Diagnostics product suite that can reproduce greater than 60% of the 

training for change in surface water extent in our study region.  The top predictors, 

surface temperature and ground heating flux, are both surface energy balance 

components that are well characterized in MERRA-2.  Incorporation of these 

variables enables the analysis of atmospheric drivers of change that was not 

previously possible due to the lack of observations.  Future development of 

continental and circumpolar datasets of long-term trends in surface water extent will 

facilitate the expansion of this type of investigation to a larger geographic domain. 

In addressing the primary science question of this study, the results indicate 

that the long-term changes in surface energy within shoulder seasons drive the change 

in surface water extent regardless of the sign of the change (increasing or decreasing).  

The shoulder seasons are known to be important because they represent the transition 

of frozen to thawed surface in the spring and vice-versa in the fall (ACIA 2005).  This 

study’s findings are unique because they show that weekly trends serve as stronger 

predictors of long-term trends in surface water extent compared to monthly trends.  
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Given the briefness of the actual transition during the shoulder season it is clear that 

working at the weekly time step can provide a clearer signal for the magnitude of the 

transition in the shoulder season lost in the monthly data assimilation.  However, 

considering that weekly predictors are subject to greater inter-annual variability, care 

must be taken to ensure that extreme conditions are not driving the statistical 

inference.  In this study we mitigated that concern by generating trends in weekly 

averages of climate variables as opposed to using inputs from individual weeks or 

months. 

According to our results, increase in surface water extent is driven almost 

equally by ground heating flux in the fall (e.g. week 36 – mid-September) and the 

surface temperature in the spring (e.g. month 5 – May).  This suggests that the driver 

of increasing surface water extent is the overall lengthening of the period where 

temperatures are above freezing which allows for greater depth of thaw in the 

permafrost.  With deeper thaw in the permafrost there is greater opportunity to 

connect surface water with ground water and also to facilitate slumping around the 

edges of the water bodies which will expand the surface area.   

Decrease in surface water extent is primarily driven by early season 

temperature (e.g. week 17 – late April).  The trend in temperature for this period is 

declining which is counter-intuitive but may suggest that there are changes in snow 

cover which allow for changes in surface temperature.  A decrease in temperature 

may indicate a reduction in overall snow cover allowing cold air temperatures to 

penetrate into the land surface.  Snow depth observations, as with most observations 

in the region, are sparse due to limited number of settlements in the region.  A 
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remotely sensed dataset derived from active microwave sensors is available but only 

covers the period from 1998 to present (Brown and Brasnett 2010) which is 

insufficient to test this idea. 

Overall, precipitation is a key control for hydrologic processes but the 

dynamics are poorly understood.  MERRA-2 provides information that can be used to 

understand, at a process level, what may be happening with precipitation.  Trends in 

precipitation were included as predictors in the Monte Carlo simulation but only one 

appeared in the top ten selected predictors in the final run for increasing surface water 

extent.  Even the one predictor (Precipitation from month 3, March) was ranked low 

in permutation importance (6.5%).  Intuitively, we expected the precipitation 

variables to have greater importance in the final model.  Reanalysis data have had 

difficulty reconstructing precipitation (Reichle et al. 2017) and while it has been 

improved in MERRA-2 there are still known issues with the hydrology variables 

especially at high latitudes where observations are sparse (Gelaro et al. 2017). 

The long term trend in temperature in the study region shows a 2° C increase 

in average annual temperature over the past 30 years (Carroll & Loboda, 2018).  This 

warming results in a small amount of difference in physical comfort difference for 

humans but can ultimately manifest as a longer frost free season, as shown in our 

results for increasing surface water extent.  Climate projections show further warming 

in the coming years with as much as 4° C increase in temperature by the year 2100 

(IPCC, 2014).  Rising air temperatures result in greater annual thaw depth in 

permafrost and greater evaporation potential from open water.  Tipping points exist in 

any system (climate, ecosystem, etc.) and we often cannot predict them until they 
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actually occur.  The shallow water bodies in the Arctic tundra are highly responsive 

to changes in climate and may provide an early warning that tipping points are 

approaching in the way that they are responding to the rising temperatures.  At the 

minimum, a positive outcome of this work would be realized if the density of 

observations of weather variables could be expanded so that we can understand the 

variability of temperature at local and small regional scales. 

4.5: Conclusions 

The accelerated rates of warming in the Arctic are impacting ecosystems’ 

state and functioning in various ways.  The satellite-observed change in surface water 

extent over the past 30 years reveals persistent multi-year trends that cluster 

regionally into zones of growing and shrinking water bodies.  While it is anticipated 

that climatic changes are driving these trends, the scarcity of in situ meteorological 

observations in this region substantially limits the ability to explore climatic drivers 

of changes in surface water extent.  Although reanalysis data present a suite of 

modeled rather than observed values describing the climatic state of the system, they 

are the only viable source of information to support such studies.  The results of this 

work, focused on identifying MERRA-2 surface energy balance metrics that reflect 

the observed changes in surface water extent, show that surface temperature and 

downward ground heat flux in the shoulder seasons can reproduce the pattern of 

independently observed zones of growing and shrinking water bodies in Canadian 

tundra.   

The short snow and ice free season in the Arctic defines the window when 

surface energy balance drives the processes within the hydrological cycle that govern 
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changes in surface water extent.  Thus even comparatively small lengthening or 

shortening of this window can have a substantial impact on water bodies.  The results 

show that temporally narrow (e.g. weekly) changes in shoulder seasons hold the key 

to understanding the patterns of surface water change.  In contrast monthly variables, 

particularly those at the peak of the growing season, hold little explanatory power for 

the observed growing and shrinking water bodies.  Decrease in surface water extent is 

linked to decreasing trend in surface temperature in late April.  Increase in surface 

water extent is linked to an overall lengthening of the non-frozen season.   

The relatively coarse modeling grid of available climate reanalysis datasets 

limits the studies aimed at identifying climatic drivers of environmental change to 

those that can be observed at coarse regional scales.  One potential avenue for future 

work should focus on downscaling the climate variables to finer resolution to 

investigate localized conditions.   At the same time, another avenue for future 

research using the native resolution of the reanalysis datasets should pursue studies at 

continental and circumpolar scales to test and verify the linkages between surface 

energy balance and surface water change across the entire Arctic domain. 
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Chapter 5: Conclusion 

5.1: Major research findings 

The goal of this dissertation is to answer the overarching research question: 

“What is the spatial pattern of variability in the extent of tundra water bodies in High 

Northern Latitudes (HNL) of North America and what are its environmental 

determinants?”  To answer this question I conducted three integrated studies that took 

advantage of high end computing (HEC) and long time series (30 plus years) of 

satellite observations of land surface and reanalysis data. 

In question 1 I explored the type of maps required to understand the dynamics 

of surface water extent in the Arctic tundra so that inter-annual variability could be 

distinguished from actual long term change.  When I began my research there were 

several continental to global maps that showed surface water extent at 30 m spatial 

resolution (Carroll et al. 2016a; Feng et al. 2015; Zheng 2014).  Of these only the one 

that I generated in my previous work (Carroll et al. 2016a) had used multiple inputs to 

create three decadal surveys, i.e. three maps 10 years apart.  An important 

methodological sub-question within the scope of research question 1 was to assess 

whether the decadal surveys are representative of a long-term trend in surface water 

extent in the tundra.  Initial evaluation quickly revealed that having only three time 

periods to represent the extent of water was insufficient to identify the actual change.  

In most cases individual water bodies had different surface area at each of the three 

points in time with no clear trend.  To overcome this limitation I generated annual 

maps of surface water extent using the full time series of Landsat data to quantify the 



 

 

85 

 

location and extent of surface water change.  Analysis of the annual maps confirmed 

that inter-annual variability is extensive and that decadal scale maps are inadequate 

for analysis of change in surface water extent.   

Previous studies considered overall change in the region rather than assigning 

change to specific water bodies (Roach et al. 2013; Smith et al. 2005), used a sporadic 

time series of inputs (Jepsen et al. 2013; Rover et al. 2012), or conducted time series 

analysis on individual pixels (Nitze et al. 2017).  In my doctoral research I adopted an 

object based approach where each water body was identified as a unique entity and 

change was determined for the object and test for significance provided an additional 

attribute.  By doing this I was able to show not only the difference between inter-

annual variability and long term change of the total combined surface water extent 

but also the spatial relationship between water bodies that have a significant amount 

of change.  Change in surface water extent of individual water bodies is of 

considerable ecological importance, reflects ecosystem state, and in part determines 

ecosystem functioning (Adrian et al. 2009).   Thus my methodological approach to a 

regional assessment of change of individual water bodies over a long time frame is a 

highly novel and significant contribution to the methodological toolbox for Earth 

System research that can be scaled from local to global studies.   The methodology 

and scientific findings were published and can be followed by other researchers in the 

field (Carroll and Loboda 2017). 

Through question 2 I explored the distribution of changes within my study 

region to determine if there is a discernible pattern to the location and sign of the 

change and to expose any potential environmental drivers of that pattern.  A clear 
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transition of wetting to drying from Northwest to Southeast was evident when the 

surface water change extent was related to watersheds within the study region.  

Watersheds are defined by the topography of the area such that water generally flows 

through that area to a common outlet.  Relating the surface water change results to the 

watersheds provided an ecologically meaningful way to group the water bodies to 

look for patterns.  Despite a dearth of information regarding environmental 

characteristics and specifically subsurface composition of the region there is evidence 

that exposed bedrock is associated with a net decrease in surface water extent.  Given 

the overall lack of information available in the region I focused on interrogating all 

available satellite data for explanatory variables.  A detailed review of available 

datasets that were evaluated is included in the appendix.   

The entire study region is characterized by low topographic relief which 

means that the hydraulic gradient between water bodies is small.  Analysis of the 

Canadian Digital Elevation Data (CDED), at 30 m spatial resolution, was unable to 

reveal meaningful connectivity characteristics between the water bodies.  The new 

ArcticDEM version 2, at 5 m spatial resolution, will likely provide new insights into 

the microtopography of the region that affects the connectivity between water bodies.  

The relationship between a net decrease in surface water extent and exposed bedrock 

makes a compelling case for acquisition of data from ground penetrating radar as has 

been done in the Yukon Flats in Alaska (Minsley et al. 2012).  Finally, the lack of 

weather observations, particularly reliable precipitation measurements, limits the 

ability to relate surface water change to obvious potential drivers.  These results have 

been published through peer review (Carroll and Loboda 2018).    
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With question 3 I expanded that search for environmental drivers of change in 

surface water extent by exploring the use of climate variables.  The lack of consistent 

and well distributed meteorological stations in the Arctic make it difficult to generate 

a reliable gridded data product for temperature and precipitation.  The Daymet dataset 

- a gridded interpolation of weather station data that is available for this region 

(Thornton et al. 2017)  - exhibits extensive artifacts in my study region which reflect 

the extremely sparse network of measurements and introduce a very high degree of 

uncertainty in the analysis.  Reanalysis data are generated by assimilation of available 

information into climate models to produce projections for a suite of climate variables 

based on the physics of the model.   

In this work I used a subset of Modern Era Retrospective analysis for 

Research and Applications version 2 (MERRA-2) land surface diagnostic variables 

describing temperature and moisture conditions for the study region in a machine 

learning algorithm (MaxEnt) to identify any variables that are good predictors of 

surface water change.  This part of the research used the HEC environment and 

analysis tools to distill large volumes of MERRA-2 data into meaningful predictors at 

weekly and monthly time steps.  These 490 weekly and 113 monthly predictors were 

the pool of environmental variables used in a Monte Carlo simulation with MaxEnt 

software.  The resulting map clearly reproduced the pattern of change in the training 

data (i.e. the surface water change) and the top predictors came from the shoulder 

(early Spring and late Fall) seasons.  This research used maximum entropy modeling 

to relate surface water change to change in climate variables provided by reanalysis 

data.  To do this I used high end computing to reduce dimensionality and volume of 
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the climate variables and to convert from fixed point in time to trend over time.  The 

conversion from fixed point to trend helps the machine learning software from getting 

confused by extreme values associated with a single point in time.  These results have 

been compiled in chapter 4 and will be submitted for peer review. 

5.2: Study limitations 

The methods adopted within the scope of this dissertation demonstrate 

research capabilities within the constraints of existing software and data availability.  

However, the study domain of this research project represents only a comparatively 

small region within the Arctic tundra.  While the majority of methods used within this 

work are directly applicable to other regions, there are a number of limitations to their 

deployment in other regions.  First, the Canadian Arctic, including the study area of 

this doctoral research, represents the HNL region with the densest time series of 

Landsat data.  Historically, all Landsat 4 - 7 observations were acquired and archived 

through a Canadian satellite receiving station (Goward et al. 2006).  However, even 

within this study the overall availability of clear surface views was limited by the 

total available observations from the snow and ice free season of ~3 months duration.  

Further constraints are caused by persistent cloud cover and the infrequent (every 16 

days) repeat coverage of Landsat observations.  Expanding this methodology to other 

non-Canadian HNL regions, and specifically Alaska, would be challenging for the 

period prior to 1996 because Landsat data record is not sufficiently dense to generate 

high quality annual maps.  This problem becomes more acute when looking at the 

Arctic in Europe and Asia where the acquisition strategy for Landsat was to save one 

or two cloud free observations per year.  This policy was in place into the 2000’s 
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making it nearly impossible to build high quality annual maps with multiple 

observations to ensure that the nominal water extent is captured.  Many of the 

limitations of Landsat data availability are problematic only for the historical 

analysis.  Current satellite coverage with Landsat 8, Sentinel 2 A/B and radar data 

from Sentinel 1 A/B, not to mention the commercial high resolution instruments, 

provides enough data to make generation of current maps of surface water extent a 

more tractable problem.  However, the historical record is necessary to establish 

baseline conditions and, therefore, comprehensive use of the available data archive is 

key for examining environmental change at climate-relevant temporal scales.  

The second major limitation to the expansion of the object-based water bodies 

analysis stems from the existing software constraints.  Identification of individual 

water bodies is computationally intensive and is difficult to do if the data are in 

multiple images rather than one large mosaic because the seams where tiles are split 

will inevitably divide water bodies artificially.  The GIS software that is typically 

used for this task is often inefficient when working with image files that are very 

large.  A solution for this limitation is possible and will involve a substantial 

customization of GIS routines to enable the analysis over a larger spatial domain. 

The third factor is the lack of observational data for weather parameters, 

specifically temperature and precipitation.  As previously mentioned in sections 3.5 

and 4.4 there are only 4 weather stations in or near my study region and only two of 

these have consistent precipitation records.  Observational data is needed to help 

improve the reanalysis data and/or to validate the results of the modeled data.  A long 
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term record would be ideal but even a short term spatially dense observation network 

could improve the characterization of the modeled reanalysis data. 

The fourth limitation is the small number of input observations available at the 

coarse spatial resolution of MERRA.  The study region has only 100 pixels (grid 

cells) at MERRA resolution which precludes the use of many analysis tools including 

many common machine learning tools including random forest analysis.  With the 

current constraints it was necessary to use the MaxEnt software, which handles small 

numbers of input pixels well, and precluding saving out a sample of training pixels 

for testing and cross validation.  A larger spatial domain for the change in surface 

water extent or a finer resolution version of MERRA would facilitate a much broader 

analysis.  Doubling MERRA spatial resolution to 0.25 from 0.5 would yield 4 times 

as many pixels.    

The final and most constraining factor is the lack of spatially explicit data on 

subsurface composition at the regional scale.  The lack of datasets that characterize 

subsurface properties in tundra ecosystems prevents definitive attribution of change to 

potential causes.  Specifically measurements of thaw depth, depth of soil (prior to 

bedrock), soil texture (fine soil as compared to gravel), permafrost ice content, 

hydraulic gradient, and bedrock type and state (fractured or solid) all have impacts on 

subsurface water flow.   

 

5.3: Big data analytics 

Environmental science in HNL is simultaneously very data poor (particularly 

for in situ observations) and extremely data rich (for satellite and modeled data 
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suites).  To take advantage of the rich satellite and modeling data archive, big data 

processing and analytics as well as machine learning algorithms are a must for 

environmental analysis at regional to continental scales here.  My dissertation 

research specifically delved into 2 discrete activities – 1) regional scale long-term 

mapping and analysis of trajectories of change for discrete water bodies, and 2) 

analysis of MERRA-2 as a surrogate for observations of climate variables.   

The process to generate annual maps entailed image classification of ~30,000 

dates of Landsat data from 55 path/rows.  These data represent all available data for 

the ice-free season (nominally May – September) regardless of cloud cover.  In place 

of the custom classification algorithm used in Carroll et al. 2016 I used a product 

generated by the United States Geological Survey called Dynamic Surface Water 

Extent or DSWE (Jones 2015) for the image classification of individual dates.  

Analysis of the DSWE product demonstrated a comparable result to the decadal water 

maps (Carroll et al. 2016a) and use of this product over a custom algorithm enables 

future researchers to test and reproduce this result.  The data volume of raw DSWE 

inputs is over 1 TB including data from Landsat 5 and 7.  Using 20 virtual machines 

(VMs) in the Advanced Data Analytics Platform (ADAPT) at NASA Center for 

Climate Studies (NCCS) I was able to reduce ~30,000 inputs totaling 1 TB into 30 

maps totaling ~7 GB in approximately two weeks of compute time.  By way of 

comparison, a single server processing stream would have required ~ 9 months of run 

time.   

The generation of MERRA-2 data is only possible due to the availability of 

high end computing because it is generated using the Goddard Earth Observing 
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System version 5 (GEOS-5) climate model which is computationally intensive.  

MERRA-2 land surface diagnostic variables are produced at hourly time step which is 

not ideal as input to the MaxEnt software.  The MERRA Analytic Service was used to 

distill several terabytes of global MERRA-2 data into regional subsets at weekly and 

monthly time steps.  These weekly and monthly data were then used to generate trend 

per variable for 52 weeks and 12 months.  To perform these calculations outside of 

the HEC environment would have taken several months.  Finally, the Monte Carlo 

simulation which comprised 140,000 runs of MaxEnt to achieve the final map and 

ranking of predictors was completed on 10 VMs using 4 CPUs on each VM and 

finished in 147 hours.  For comparison this would have taken 40 times as long (5,880 

hours or 245 days) on a single server with one CPU.   

A significant outcome of my research is the combination of long time series of 

environmental data and high end computing to produce new and innovative results.  

This is the definition of “Big Data” analytics and has emerged as an essential 

component to current environmental research.  The proliferation of HEC at NASA 

institutions as well as universities suggests that this wave will continue.  In the private 

sector there are several cloud computing environments including Amazon Web 

Services and Google Earth Engine.  The latter of these has been used by researchers 

in the generation of map products from Landsat and other satellite data (Hansen et al. 

2010; Pekel et al. 2016).  The ease of access to these resources will encourage the 

next generation of product creation by reducing the constraints of input data volumes 

and long processing times that make it difficult for researchers to manage big data.  



 

 

93 

 

The time recovered from the processing end can be reallocated to the validation and 

analysis parts of the project as I have done in my research. 

5.4: Contribution of this research to the broader North 

American Arctic research 

5.4.1: Broader Arctic agenda 

The Arctic and Boreal regions are the subject of intensive research efforts 

with initiatives and assessments provided by organizations including the Arctic 

Council, Interagency Arctic Research Policy Committee (IARPC) as well as the 

governments of the countries with significant land area in the Arctic.  The Arctic 

Council is an international organization comprised of six working groups that 

provides a forum for promoting cooperation and coordination between council 

members (Council 2018).  The Arctic Monitoring and Assessment Programme 

(AMAP) is one of six working groups and is tasked with monitoring and assessing the 

status of the pollutants and climate change in the Arctic.  The most recent report from 

AMAP concludes that no unified trends have been discovered regarding thermokarst 

lake development and the further research is needed to understand if this means that 

there is no trend or that the current body of work has been insufficient to discover the 

trends (AMAP 2017).  The methodological advances in chapters 2 and 3 have direct 

applicability to solve the need to understand the dynamics of surface water in HNL. 

Furthermore, the report encourages future analysis to be performed at the catchment 

or watershed scale (AMAP 2017).  IARPC was formed in 2010 and consists of 

principals from 16 US federal agencies to enhance scientific monitoring and research 
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in the Arctic (IARPC 2018).   One goal of IARPC is to develop a more complete 

understanding of the effects of thawing permafrost on infrastructure and climate 

(IARPC 2018).  The research presented in this dissertation supports the goals of both 

the Arctic Council and IARPC by providing a specific methodology that not only 

quantifies the magnitude and direction of change in surface water extent but also a 

way to attribute the change to both physical drivers and climate drivers related to 

surface energy balance. 

The North American Arctic is completely within two countries: the United 

States and Canada.  In the US, NASA is funding an effort through the terrestrial 

ecology program called the Arctic and Boreal Vulnerability Experiment (ABoVE) 

with the multi-year goal of synthesizing observations and models to generate a fuller 

understanding of the processes at work in the region.  The federal government of 

Canada is funding several programs including the Global Water Futures (GWF) with 

the goal of improved disaster warning, predicting water futures, and adapting and 

managing risk.  The major findings in this dissertation provide the groundwork for a 

continental application of methods that will inform the hydrology related aspects of 

these programs. 

In addition to the direct effects of changing hydrology on infrastructure and 

resources, the change in surface water extent has an impact on carbon stocks through 

exposure of carbon rich soils.  Quantification of carbon stocks as well as identifying 

sinks and sources is a global concern.  It is well established that the sediments of 

many Arctic water bodies are laden with carbon and that this carbon can be activated 

by changes in the surface water extent.  Annual maps of surface water extent at the 
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continental scale could be used to supply carbon models with information about short 

term and long term exposure of sediments.  The models can incorporate surface water 

extent with other information to refine estimates of emissions and reductions in 

carbon within surface water in the Arctic. 

Changes in surface water extent can have major impacts on migratory 

waterfowl through the disruption of access to breeding grounds and food sources 

(Hinzman et al. 2005; Hinzman et al. 1991).  Waterfowl can have ecological and 

economic impacts on the region from subsistence living to tourism (Bromley 1996) 

with far reaching effects well south of the Arctic as the birds migrate to the south in 

the winter. 

5.4.2: Future directions 

I am currently leading a synthesis paper for the hydrology and permafrost 

working group for ABoVE.  The results from my study region will be used as one of 

four case studies in this synthesis paper.   One goal of this synthesis paper is to 

determine the best available method for quantifying historical surface water dynamics 

for the entire ABoVE study domain.  A second goal is to identify information gaps 

that can be filled by ABoVE scientists in the next round of projects.  One component 

of this will certainly be the collection of additional information about subsurface 

composition at broad scales.  The lack of suitable subsurface information on soil 

composition, soil depth, permafrost type and bedrock type are significant information 

gaps that need to be filled to truly understand the hydrology of the region.   

Historical data from Landsat 5 and 7 have been used to generate maps of land 

cover, including surface water, because of their capabilities in terms of spatial and 
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spectral resolution.  New satellites have come online over the past few years 

including more optical instruments such as Landsat 8 and Sentinel 2 A/B.  Optical 

instruments such as Landsat and Sentinel 2 provide moderate resolution maps of land 

cover features.  Using multiple instruments, a continuous record of observations 

exists that spans 1984 to present.  Taking full advantage of this record requires 

accurate characterization and calibration of each instrument and the differences 

between the instruments.  Work has begun to produce a “harmonized Landsat – 

Sentinel” data product that accurately calibrates the measurements from the disparate 

sensors (https://hls.gsfc.nasa.gov/).  The optical data provided by Landsat and 

Sentinel 2 is limited to daytime cloud free conditions to acquire data.  In regions with 

pervasive clouds, such as the Arctic, optical instruments with infrequent repeat 

coverage can struggle to get repeat measurements over short time steps.  Radar 

instruments have the ability to record measurements of the ground even when clouds 

are present, however the historical record of radar data is sparse.  Since their launch 

in 2014 and 2016, Sentinel 1 A and B have been collecting large area coverage of the 

Earth using C-band radar which is sensitive to surface water including water with 

emergent vegetation.  Hence, supplementing the optical data with information from 

radar instruments such as Sentinel 1 A/B can provide not only additional observations 

but also previously unavailable information about inundated vegetation (Huang et al. 

2018).  These instruments bring a depth and breadth of information that will enhance 

our ability to discriminate between wetlands, open water, and just vegetation.  As our 

understanding of the surface improves we will be able to develop a better 

understanding of the processes that are at work. 

https://hls.gsfc.nasa.gov/
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Finally, all of the data that is collected must be processed into actionable 

information which makes research in the Arctic a big data problem that can only be 

solved through integrated research with high end computing. The use of HEC is 

necessary to support the creation of novel data products as well as the creation and 

analysis of modeled synthesis outputs.  Simply collocating the large volumes of input 

data with a compute environment is a significant advance that reduces the burden on 

the researcher in terms of time needed to download and maintain those data.  HEC 

resources will become even less expensive and easier to access in the coming years.  

Big data analytics using HEC, long time series of satellite observations, and advanced 

computing techniques such as machine learning will drive future scientific advances 

and enable researchers to complete our understanding of the Earth system.  In 

northern Alaska, alone, there is a current need to build on existing maps of wetlands 

to support the National Wetland Inventory and to understand how exploration for 

resources, such as oil and gas, is impacting these wetlands.  The methods described in 

this dissertation can be applied more broadly to build the inventory of water bodies, 

including wetlands, and to facilitate long term monitoring of these sites for changes, 

both natural and anthropogenic.   
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Appendix 
 

Chapter 3: Supplemental Material 

Remotely sensed data are often used to quantify surface features such as cover 

type (water, forest, crop, grassland, etc.).  The advantage of remotely sensed data lies 

in the routine coverage at various spatial resolutions even in vast remote areas that are 

difficult to reach and/or expensive to collect field measurements.  Surface features 

that are detectable with remotely sensed data can be used to infer information about 

ecological function (Cohen and Goward 2004; King et al. 2005).  For example, land 

cover classes such as forest, cropland, and urban/impervious identify specific 

parameters and thresholds governing the hydrological cycle.  Although Arctic tundra 

is usually referred to as a single large ecosystem, the landscape is particularly 

complex with many small water bodies as well as different vegetation types which 

make it a challenging ecosystem to map.  This problem becomes more challenging at 

coarse spatial resolution (> 250 m spatial resolution) due to the heterogeneity of cover 

type in each grid cell at coarse resolution.  Below we provide a full account of surface 

parameters data suite assembled in this project.    

A.1: Land cover data 

Terrestrial Ecoregions of the World (TEOW) is a static single-time map at coarse 

spatial resolution that depicts land cover qualified with climate data to explain certain 

niches especially in the tropics (Olson et al. 2001).  Three TEOW ecoregions are 
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represented in the study region, including Northern Arctic, Southern Arctic and 

Western Taiga Shield.   

MODIS Vegetation Continuous Fields – Percent Bare (VCF): produced annually 

(2000 – 2015) at 250 m spatial resolution to depict the amount of non-vegetated 

surface (includes bare soil, rock, and permanent ice/snow) (DiMiceli et al. 2011).  

Data from 2011 – 2015 were used in this analysis. 

Landsat ETM+ mosaic of northern Canada - Land Cover: a static map of land 

cover in Canadian tundra circa 2000 at 90 m spatial resolution.  This is an 

intermediate product between the Landsat ETM+ mosaic and the Landcover of 

Northern Canada (Olthof et al. 2014) however it provides a class describing bare 

ground (Lichen-Barren) that filled a need in this analysis and has no direct correlate 

in the final product. 

Earth Observation for Sustainable Development of Forests (EOSD): The EOSD 

dataset (Wulder et al. 2008) was evaluated but found to be too inconsistent for use in 

this region with significant and obvious errors between adjacent Landsat scenes that 

were used as input. 

Land Cover of Queen Maud Gulf Bird Sanctuary (LCQMGBS): The LCQMGBS 

(Didiuk and Ferguson 2005) is derived from Landsat 5 Thematic Mapper data, 

provides the necessary detail but does not cover the entire study domain.  In addition, 

these data are outdated as they are based solely on Landsat data from 1986 – 1992.   

Globeland30: The Globeland30 (Zheng 2014) dataset is derived from Landsat at 30 

m spatial resolution circa 2010 but provides a single class for “tundra” which covers 

most of the study domain, hence did not provide anything to the analysis. 
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A.2: Vegetation Cover and Condition 

Circumpolar Arctic Vegetation Map (CAVM): static map circa 1995 produced at 

1:4,000,000 scale to depict Arctic vegetation communities (Walker et al. 2005).  This 

dataset is derived from coarse resolution Advanced Very High Resolution Radiometer 

(AVHRR) data but is relevant because it was created with expert knowledge and field 

data providing delineations of the vegetation that are unmatched in contemporary and 

finer spatial resolution products. 

MODIS Evapotranspiration (ET): produced annually at 500 m spatial resolution to 

depict the sum of evapotranspiration for the year (Mu et al. 2011).  While we would 

have preferred to test evaporation and transpiration separately to determine the 

influence on surface water in the region, only combined evapotranspiration product 

exists. 

Landsat NDVI vegetation fraction: median Normalized Difference Vegetation 

Index (NDVI) from August Landsat overpasses in the study region from 2011 – 2015 

at 30 m spatial resolution.  Vegetation fraction has been shown to be related to NDVI 

(Quarmby et al. 1993).  Here a median NDVI over 5 years of peak growing season 

data is used as a surrogate to detect relationships between vegetation cover to surface 

water trend.  Landsat NDVI is used because it provides information at finer spatial 

resolution than is possible with either the CAVM or the MODIS vegetation products. 

Landsat NDVI trend: trend in maximum NDVI from July/August Landsat 

overpasses from 1985 – 2015 at 30 m spatial resolution (Ju and Masek 2016).  

Numerous studies have shown that there is a mostly positive trend in NDVI in large 

areas of the tundra (Goetz et al. 2010; Ju and Masek 2016; McManus et al. 2012; 
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Neigh et al. 2008).  Here the trend in NDVI is tested against the trend in surface water 

extent. 

A.3: Other Surface and Subsurface Features 

Soil Landscapes of Canada (SLCWG): provides a static representation of soil 

regions at 1:1,000,000 scale circa 1991 (SLCWG 2010).  This dataset provides 

generalized regions that relate to likely subsurface conditions.   

Canadian Digital Elevation Model (CDEM): provides a static representation of 

elevation above sea level at 1:50,000 spatial resolution (Natural Resources Canada 

2012).  This is used to show the topography of the region and to calculate the slope, 

both of which help to determine the flow of surface water. 

National Hydro Network (NHN): is derived from the CDEM and provides 

delineation of sub watersheds and connectivity at 1:50,000 scale (Natural Resources 

Canada 2007).  The watershed delineations provide a hydrologically based 

subdivision of the study region to explore localized relationships with the surface 

water trend.  An attribute of connectivity is also available for individual water bodies 

shown in the data set, this was linked to the water body data used in this study to 

provide an additional descriptive layer. 

ArcticDEM: provides a static representation of elevation above sea level relative to 

the EGM96 geoid at 5 m spatial resolution.  This product is generated by stereoscopy 

with image pairs from Digital Globe WorldView satellites (PGC 2017).  At the time 

of this writing the current release is version 1 and it covers areas north of 60° N.  

However, there are many omissions due to unavailable data or poor correlation due to 

steep terrain or cloud cover.  Future releases are supposed to solve these problems but 
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for the study area of this project the ArcticDEM was found to have too many holes to 

be useful for analysis. 

A.4: Weather/Climate Data 

Temperature and Precipitation Observations: Canadian Weather Service 

maintains weather stations throughout Canada and provides the data through publicly 

accessible portals.  The data from four weather stations in and around study domain 

were used to determine temperature and precipitation for the study domain over the 

period of interest (CCN 2017). 

Daymet: The Daymet version 3 (Thornton et al. 2017) is a raster dataset derived from 

interpolation of weather station data to a spatial resolution of 1 km.  This is an 

exciting data set to use because it provides information on temperature and 

precipitation data at a much finer resolution than is usually available.  Since the data 

set is an interpolation of point data it is better in places where there is a high density 

of weather stations.  In the Arctic the network of weather stations is sparse which 

yields a poor interpolation.  This was found to be the case in our study region, hence 

this data set was not used for the analysis of weather. 

Modern Era Retrospective Reanalysis (MERRA): Reanalysis data are generated 

by assimilating all available observations into a modeling framework to provide 

consistent estimates of conditions on a global basis (Rienecker et al. 2011).  The 

output from MERRA-2 is ~ 60 km resolution which yields 100 pixels over our study 

region.  The advantage of reanalysis data is that they use all available data to initiate 

the model which is then run globally.  This mitigates, to some extent, the lack of 

specific observations in certain locations.  However, the limitation is that localized 
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variability cannot be captured based on the generalized model.  There are hundreds of 

variables available through MERRA describing various aspects of the atmosphere and 

near surface conditions.  Investigation of the usefulness of these variables is too much 

to be included in this manuscript and will be the topic of future work. 

From the initial analysis of spatial patterns of change in surface water extent it 

is clear that not only are there distinct groupings of change but also there is a north 

west to south east directionality to the change.  This is clearer when the data are 

arranged with the watersheds showing net change for each watershed.  The watershed 

delineation provides the finest logical delineation of the study area while also 

providing an ecologically and specifically hydrologically based boundary.  The DEM 

shows that the study region is largely flat with only a few rolling ridges in the south 

west and the slope over most of the region is < 2˚.  Connectivity of individual water 

bodies was assessed using the attribute from the water bodies identified in the NHN 

and intersected with water bodies used in this study.  This connectivity is determined 

based on the 30 m CDEM which may not have enough detail to capture micro 

topography that have been explored in other studies (Yang and Chu 2013).  The 

current version (v2.0) of the 5 m spatial resolution Arctic DEM (PGC 2017) is 

insufficient to produce new watershed delineations or relative height because of 

extensive “no data” areas.  The next version of the ArcticDEM at 5 m spatial 

resolution should have more complete coverage which will enable further analysis of 

connectivity in this region. 

Datasets describing the subsurface characteristics of the region are scarce, 

with only the Soil Landscapes of Canada (SLCWG 2010) and the Circum Arctic 
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Permafrost Map (Brown et al. 1998) providing complete coverage of the entire 

region.  The permafrost map indicates the entire region is underlain with continuous 

permafrost and the soils dataset provides only a broad overview of “soil regions” 

rather than a comprehensive description of variations in subsurface soils.  It is beyond 

the scope of this study to do the fieldwork necessary to develop a comprehensive 

dataset of subsurface conditions, therefore proxy or surrogate data must be used to 

infer subsurface characteristics based on surface characteristics. 

A composite of NDVI values from Landsat was created using data for the 

month of August from 5 years (2010 – 2014) by median value composite.  The 

median NDVI value per watershed was extracted, using zonal statistics.  The values 

were plotted against the percent surface water change with an R2=0.11.  Though the 

relationship is weak it does suggest that with decreasing NDVI there is a decrease in 

surface water extent. 

The trend in NDVI was determined from a time series of maximum annual 

NDVI (from July/August observations) using Landsat data from Landsat 5 and 7 from 

1985 to 2015.  An increasing NDVI trend is associated with enhanced vegetation 

productivity and/or an expansion of photosynthetically active vegetation (more green 

plants result in higher NDVI).  A decreasing NDVI trend is associated with decreased 

vegetation productivity or a decrease in coverage of photosynthetically active 

vegetation (more bare soil/rock or surface water results in lower NDVI).  When 

NDVI trend is plotted against percent surface water change the resulting correlation is 

poor with an R2=0.04.  It should be noted that the NDVI trend data used here (Ju and 

Masek 2016) used an internally derived water mask that differed significantly from 
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the water bodies delineated for this analysis.  This may have resulted in a slight bias 

in this measure since NDVI values near water bodies were masked, however this is 

mitigated by taking the mean trend per watershed rather than a pixel by pixel 

analysis. 

Annual evapotranspiration from MODIS was related to watersheds for each 

year from 2000 to 2015 by taking the sum of ET for the watershed.  Ordinary least 

square regression was applied to the time series of ET to determine a trend in ET over 

the available data.  The trend in ET per watershed was then related to percent surface 

water change per watershed with an R2=0.15.   

Building on the relationship between change and the CAVM – Cryptogram 

Barren Complex shown in figure 3.7, several datasets were tested that describe the 

amount of bare ground on the surface.  The VCF percent bare describes each 250 m 

pixel as a fraction of the surface that is non-vegetated which means that it could be 

bare ground, rock, ice, snow, or water.  The correlation between VCF percent bare 

and percent surface water change per watershed was poor with R2 <0.05.     
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