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Chapter 1

Introduction

1.1 Motivations and historical perspectives

In some perspective, geometry is another tool for the study of dynamical sys-

tems which deal with the portrayal of physical phenomenon in terms of analytic

language. Finding a good description of the total hierarchy of dynamics is con-

sidered to be very significant and noteworthy to not only the dynamical systems

themselves but also geometric problems arising from very different settings. The

study of the moduli space of holomorphic vector bundles over an algebraic curve is

one sort of such investigation of the totality. However, even though a fair amount

of abstract machinery of the research has been developed for the last 70 years, it is

well-known that explicit descriptions of such spaces are extremely difficult and not

well-understood usually except the trivial case, i.e., the moduli space of rank one

vector bundles over a compact Riemann surface (see [25]).

The moduli space of holomorphic line bundles over a compact Riemann surface

R of genus g is depicted by its Jacobi variety Jac(R), which is a complex torus

embedded in a projective space. A divisor D of degree g on R corresponds to

a holomorphic line bundle L on R in one-to-one manner. The Abel-Jacobi map1

characterizes the isomorphism between the gth symmetric product of R and its

1See [20, 26, 28, 62].
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Jacobi variety:

SgR ∼= Jac(R).

On the other hand, this classification is not easily extended to the moduli space of

higher rank vector bundles, since the moduli space tends to be non-Hausdorff. In

1963, D. Mumford defined a special class of vector bundles to get rid of the non-

Hausdorff phenomenon in [51]. The element in the class is called a (semi-)stable

vector bundle. Another description of such bundles came from (or rather revived

from) the study of A. N. Tyurin in [64, 65, 66]. He studied matrix divisors2 in order

to characterize semi-stable vector bundles and defined parameters to describe them.

Moreover, he showed that an open set of S lg(R× Pl−1) can parametrize the moduli

space of stable vector bundles of rank l over R.

The analytic aspect of the moduli space is well portrayed in the dynamics

of the K-dV hierarchy. The Hamiltonian theory of the K-dV equations started

around the late 1960’s by Gardner, Greene, Kruskal, and Miura in Princeton. In

terms of the moduli space point of views, a significant work, known as the periodic

problem of the K-dV hierarchy was investigated by S. Novikov and P. Lax in 1974

[45, 54], simultaneously and independently. After the Novikov’s work, he and his

students, notably B. Dubrovin and I. Krichever, in Moscow developed a beautiful

geometric theory about the K-dV hierarchy. Loosely speaking, a dynamics of a

completely integrable system, i.e., Hamiltonian dynamics, is described by foliation

of tori or complex vector spaces. In the case when the leaves are tori, we may see

the appearance of spectral curves by means of their Jacobi varieties. The geometric

2We will explain this concept in Subsection 2.1.2.
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theory of the K-dV hierarchy expounds that the solution space of the K-dV hierarchy

is parametrized by, i.e., foliated by, the Jacobi varieties of hyper-elliptic curves,

which are spectral curves over P1. See further details in [12, 13, 14, 15].

There are two ways to extend this theory to general cases: The first is moti-

vated by the study of the K-P hierarchy [38, 40, 41]. In this case, the base curve is

a projective plane P1 and the fibers of Hamiltonians, i.e., the leaves of foliation, are

the Jacobi varieties of general compact Riemann surfaces. This analysis leads to the

famous Novikov’s conjecture, which is proved by T. Shiota. See [1, 16, 47, 60] for

more detail. The second way to extend the machinery is to change the base curve

P1 to a compact Riemann surface with a positive genus. This direction leads to the

theory of the Yang-Mills equations [2] and the Hitchin system [30, 31, 32, 42].

Another facet along this machinery is a representation founded by P. Lax. In

[45], P. Lax defined a system of differential equations characterizing an isospectral

deformation:

d

dt
Lt = [Mt, Lt].

For (l × l)−matrices Lt and Mt, the objects invariant under time shift are complex

tori associated with the matrix Lt. More precisely, it is the Jacobi variety of a

compact Riemann surface R̂, which we will call a spectral curve. The eigenvalues

of Lt are invariant under the time evolution, yet its eigenvector may vary depending

on Mt. The dynamics of flows is governed by Mt and the appearance of a spectral

curve is given by the zero locus

R̂ = {det(µ · idl×l−Lt) = 0}.
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Notice that in a Lax representation, we do not have any notion of Hamiltonian

dynamics. In order to translate flows induced by a Lax representation into Hamil-

tonians, we need a symplectic structure on the space where flows stays.

A moduli space is often a symplectic manifold. For example, a Jacobi variety

is a symplectic manifold because it is an abelian variety. The realization of the sym-

plectic form on a moduli space has been studied in many instances: W. Goldman

proves that the cup product on H1(π1(R), gAd) is a symplectic form on the variety

Hom(π,G)−/G of representations in [23, 24] where G is a Lie group and gAd is the

associated adjoint representation of G. For another example, S. Wolpert proves that

the length and twist parameters construct a symplectic structure on the Teichmüller

space, the moduli space of complex structures on a compact Riemann surface R in

[34, 67, 68, 69]. In order to take an advantage of the symplectic point of view in the

study of a moduli space, N. Hitchin studied the cotangent bundle of a moduli space

in [32], which has a natural symplectic structure. Comparably, Krichever constructs

a symplectic structure associated with Lax matrices in [44]. From this symplec-

tic structure, we will induce Hamiltonians from the flows in a Lax representation.

Moreover, it turns out that the cotangent bundles provide much easier and more

concrete ways to study the theory than the original moduli spaces alone. Likewise,

we will see that the extension of the parameters by A. N. Tyurin on the moduli

space to the cotangent bundle by I. Krichever in [44] indeed characterizes the space

more definite than Tyurin parameters alone.

The final ingredient in this paper came from the work by P. A. Griffiths. Note

that the flows in a Lax representation are not necessarily straight line flows. In
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order to describe the Hitchin system using a Lax representation, we need a special

condition on M. In [27], P. A. Griffiths gave a necessary and sufficient condition

where the flows from a Lax representation are straight in the case of spectral curves

over P1. A similar question for the Hitchin system has not been answered yet in

the author’s knowledge3. In this paper, we will investigate this question and give

an answer.

It is the author’s hope that this investigation would serve a preliminary effort

to the big progress in this area as N. Hitchin put it in his seminal 1987 paper very

beautifully,

“ Finding some natural, concrete realization of the integrable systems

which arise so naturally in this way may lead to an application in the

other direction—from algebraic geometry to differential equations. This

would be an agreeable outcome, and one consistent with Manin’s view

of the unity of mathematics.”

1.2 Brief descriptions of each chapter

The purpose of Chapter 2 is to give descriptions of the Hitchin system and to

present the explicit parameter space constructed by A. N. Tyurin. In Section 2.1, we

introduce the definition and properties of the main objects we will investigate, which

are called semi-stable bundles over a compact Riemann surface and characterize the

3After completing this paper, we made an acquaintance with a paper [21] by Letterio Gatto

and Emma Previato.
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moduli space of such objects. An exposition about Tyurin parameters in terms

of matrix divisors is supplied. In Section 2.2 we describe the cotangent bundle of

the moduli space in terms of a symplectic point of views. This naturally brings a

spectral curve into our attention.

In Chapter 3, we parametrize the Hitchin system in terms of parameters con-

structed by I. M. Krichever. In Section 3.1, we explicitly give examples associated

with the Hitchin system. Theses examples will also serve as a basis to the further

examples in the later sections. In Section 3.2 we establish the relationship between

the Hitchin system and the constructed parameter space by Krichever.

Chapter 4 is the principal part of our research. This chapter is devoted to

cohomological interpretation of the straightness of flows and allied examples con-

cerning explicit Hamiltonians. First of all, we will give basic facts and preliminaries

for the further reading to the reader’s convenience in Section 4.1 and Section 4.2.

The main part of this chapter is Section 4.3. This section deals with a cohomolog-

ical theory in a Lax representation. The ambiguity in a Lax representation can be

well encoded in cohomology classes. The main results are stated in Theorem 4.2,

Theorem 4.3, and Corollary 4.1. They will completely characterize the straightness

of flows in terms of cohomology classes. In Section 4.4 we explain a relationship

of choices of M in the Lax representation d
dt

L = [M, L]. In Section 4.5, we calcu-

late explicit Hitchin’s Hamiltonians in terms of Hamiltonians given by Krichever.

Incidentally, the characterization of the Krichever-Tyurin parameters for classical

groups in [32] is established. Those explicit examples are given in Example 4.2, 4.4

and 4.6.
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In Appendix, we will explain the theory of commutative rings of differential

operators. This is an analytic counter part of the Hitchin system and this part will

enhance the historical attribution and understanding in the analytic theory of vector

bundles over a compact Riemann surface as well as stimulate further developments

along this direction. Section A.1 motivates the proof of Theorem 3.1. In Section A.2,

we give the basic property of an (n,m)-curve, which will be used as a basic object

in many examples.
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Chapter 2

Moduli space of stable vector bundles

2.1 Tyurin parameters and semi-stable vector bundles

2.1.1 Uniquely equipped bundles and semi-stable bundles

Let E be a vector bundle1 of rank l and degree lg over a compact Riemann

surface R of genus g. The Riemann-Roch theorem2 implies

dim H0(R,E)− dim H1(R,E) = lg + l(1− g) = l.

Clearly, dim H0(R,E) ≥ l. For a holomorphic line bundle L of degree g over a

compact Riemann surface R of genus g, we have dim H0(R,L) ≥ 1. Consequently,

such a bundle L has a nonzero section η, and the holomorphic section η generates

each fiber Lp where p ∈ R except g points γi ∈ R associated with the divisor of the

line bundle L. Unlike the case of a line bundle, a different phenomenon occurs when

we deal with a vector bundle E of rank l and degree lg. In general, a set {η1, . . . , ηl}

of linearly independent sections of H0(R,E) does not guarantee to generate even

a single fiber Ep by span{η1(p), . . . , ηl(p)} where p ∈ R. If there exist a basis

{η1, . . . , ηl} of H0(R,E) and a point p ∈ R such that

Ep = span{η1(p), . . . , ηl(p)},
1Throughout this section, a vector bundle means a holomorphic vector bundle.
2See p.64 in [29].
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then we say that H0(R,E) is an equipment of E. In particular, we say that E is a

uniquely equipped vector bundle if dim H0(R,E) = l (equivalently, dim H1(R,E) =

0) and H0(R,E) is an equipment (p.250 in [64]).

It is easy to see that an equipment {η1, . . . , ηl} generates a fiber Ep for all

p ∈ R except lg points γi which is the divisor D = γ1 + · · · + γlg of det E:

If dim span{η1(p), . . . , ηl(p)} < l over an infinite number of points p ∈ R, then

dim span{η1(p), . . . , ηl(p)} < l for all p ∈ R, since R is a compact Riemann surface.

In other words, all the sub-bundles of a uniquely equipped vector bundle E are less

ample than E. For example, a non-special3 holomorphic line bundle L of degree g

over a compact Riemann surface R of genus g is a uniquely equipped bundle. The

set of such bundles forms an open set in the Jacobi variety Jac(R), which is a moduli

space of line bundles.

Definition 2.1. [51] A holomorphic vector bundle E of rank l is said to be semi-

stable if for all proper sub-bundles H of E we have

slope(H) =
deg H

rank H
≤ deg E

rank E
= slope(E).

It is said to be a stable bundle if the strict inequality holds.

Let H be a proper sub-bundle of rank m of a uniquely equipped vector bundle

E of rank l and degree lg. Then dim H0(R,H) ≤ m and dim H1(R,H) = 0. By the

Riemann-Roch theorem, we have

deg H ≤ m−m(1− g) = mg.

3A holomorphic line bundle L is said to be non-special if dimC H1(R,L) = 0.
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Consequently,

slope(H) =
deg H

rank H
≤ mg

m
= g = slope(E).

Hence, we may conclude that a uniquely equipped holomorphic vector bundle E of

rank l and degree lg is necessarily a semi-stable vector bundle. Let us look at the

converse: From an easy consequence of Lemma 2.1 (p.16) in [53], we have

Lemma 2.1. If E is a semi-stable bundle of rank l > 1 and degree lg over R of

genus g, then dimC H1(R,E) = 0.

Proof. Let us remark that the slope of any homomorphic image of a semi-stable

bundle E is larger than or equal to the slope of E. This can be proved by the

following observation: For a short exact sequence of vector bundles

0 // E1
// E // E2

// 0 ,

we see that slope(E) ≤ slope(E2), since

deg E1 + deg E2 = deg E and rank E1 + rank E2 = rank E .

On the other hands, by the Serre duality4 we have

H1(R,E) ∼= H0(R,E∗⊗K).

Here K is the canonical bundle over R and E∗ is the dual bundle of E. If there is

a nonzero homomorphism f : E→ K, i.e., f ∈ H0(R,Hom(E,K)) ∼= H0(R,E∗⊗K),

then the slope of the image of f : E→ K is equal to 2g− 2, since slope(K) = 2g− 2

and K is a line bundle. Hence, we have

slope(f(E)) = 2g − 2 < 2g ≤ slope(E) = lg.

4See p.70 in [29].
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This contradicts the remark.

Now we are going to show that a semi-stable bundle of rank l and degree lg is

indeed a uniquely equipped bundle. By the virtue of Lemma 2.1, it suffices to show

that H0(R,E) is an equipment: Suppose there does not exist a point p ∈ R such

that span{η1(p), . . . , ηl(p)} = Ep where {η1, . . . , ηl} is a basis of H0(R,E). Then the

linear span of all the elements of H0(R,E) generates a proper sub-bundle H of E

such that slope(H) = lg
m
> g = lg

l
, which contradicts semi-stability. Hence, this is

an equipment. By summarizing all the results, we have proved

Theorem 2.1. There is a one-to-one correspondence between semi-stable bundles

and uniquely equipped bundles of rank l and degree lg.

Let us parametrize the set of uniquely equipped bundles of rank l and degree

lg by, so-called, Tyurin parameters5: Let E be a uniquely equipped bundle of rank

l and degree lg. Let D = γ1 + · · · + γlg be the associate divisor of det E and take

a basis {η1, . . . , ηl} of the equipment H0(R,E). Over the points {γ1, · · · , γlg}, we

have linear dependence up to constant multiplications

0 =
l∑

j=1

αi,jηj(γi).

The Tyurin parameters associated with a uniquely equipped bundle E up to choosing

a basis of H0(R,E) are given by
{
γi, {αi,j}lj=1

}lg

i=1
∈ S lg(R × Pl−1). The diagonal

action of SL(l,C) on the symmetric power of Pl−1 induces the action on the space

5In the next subsection, we will investigate the specific correspondence between the Tyurin

parameters and holomorphic vector bundles in terms of matrix divisors.
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of Tyurin parameters

S lg(R× Pl−1)/SL(l,C).

In the space of Tyurin parameters, generically γi for i = 1, . . . , lg are distinct and

{η1(γi), . . . , ηl−1(γi)} generates an (l − 1)-dimensional subspace of a fiber Eγi
for

i = 1, . . . , lg, i.e,

ηl(γi) =
l−1∑
j=1

αi,jηj(γi) and ηl(γi) 6= 0. (2.1)

In other words, we may find an open setM0 in S lg(R×Pl−1) satisfying the above two

conditions and parameterizing stable bundles. Note that the set of stable bundles

forms an open set in the set of semi-stable bundles. Later, we will study the following

space further

M̂0 :=M0/SL(l,C) ⊂ S lg(R× Pl−1)/SL(l,C).

Pictorially, Figure 2.1 shows inclusions of the spaces. Each space6 is contained

in another as an open set in the sense of Zariski.

2.1.2 Tyurin parameters

The theory of relationship between divisors and holomorphic line bundles

over a compact Riemann surface R has been well developed in many treatises

[19, 20, 26, 28]. The main theorem in this scheme is that a divisor D on a compact

Riemann surface R induces an associated line bundle LD (p.132 in [26]). That is, a

holomorphic line bundle L can be completely characterized by a divisor D on R.

6For the definition ofM′
0, see the below of Equation (3.1).
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M0

M′
0

The space of Tyurin parameters

The space of uniquely equipped bundles

The space of stable vector bundles

Figure 2.1: The inclusions of the spaces
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This comparison of holomorphic line bundles to divisors on R is extended

to the correspondence of holomorphic vector bundles and matrix divisors on R by

A. N. Tyurin in [64, 65]. We will elucidate the Tyurin’s investigation in [64, 65]

informally: Let us remind that a divisor D on R is an equivalence class
[
{fi}

]
of

sets {fi} of local meromorphic functions associated with an open cover {Ui}i∈I of

R such that {fi} and {f ′i} are equivalent, {fi} ∼ {f ′i}, if there are non-vanishing

holomorphic functions hi such that

fi = hi · f ′i for i ∈ I where I is an index set.

This can be generalized to a matrix divisor E on R as follows: A matrix divisor7

E is an equivalence class
[
{Ei}

]
of sets {Ei} of local matrix-valued meromorphic

functions such that {Ei} ∼ {E′i} if there are invertible matrix-valued holomorphic

functions Ai such that

Ei = Ai · E′i for i ∈ I.

Similar to the case of divisors8, a matrix divisor E =
[
{Ei}

]
defines an associated

holomorphic vector bundle E on R by the set {Gij} of transition functions where

Ei · Gij = Ej on Ui ∩ Uj.

We will show how the parameter formulated by A. N. Tyurin describes a

general matrix divisor E =
[
{Ei}

]
: Clearly, a set {det Ei} defines a divisor on R.

7Note that a geometric meaning of a divisor D as a sum of points on R is lost in the definition

of a matrix divisor E on R in general. However, if the divisor of {det Ei} consists of distinct points,

a matrix divisor E can be geometrically assigned to a sum of points on R× Pl−1.
8The set {gij} of transition functions associated with a divisor D =

[
{fi}

]
where gij = f−1

i · fj

on Ui ∩ Uj defines a holomorphic line bundle LD.
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Let us assume that {det Ei} is an effective divisor D =
∑N

k=1mkpk on R where mk

is a positive integer. Then the characterization of an equivalence class E =
[
{Ei}

]
is given by a normal form9 around pk ∈ Ui

Epk,i =



zd1,k 0 · · · · · · 0

0 zd2,k
. . .

...

...
. . . . . . . . .

...

...
. . . zdl−1,k 0

0 · · · · · · 0 zdl,k





1 α1,2,k,i(z) · · · · · · α1,l,k,i(z)

0 1
. . .

...

...
. . . . . . . . .

...

...
. . . 1 αl−1,l,k,i(z)

0 · · · · · · 0 1


.

Here αr,s,k,i(z) ∈ C[[z]]

z
ds,k−dr,k C[[z]]

where z is a local coordinate around pk ∈ Ui and

C[[z]] is the ring of power series in one variable. Note that dr,k ≤ ds,k if r ≤ s and

mk =
∑l

r=1 dr,k. For an index j where Uj does not contain pk, a normal form of Ej

is defined by

Ej = idl×l .

Accordingly, if {det Ei} defines an effective divisor D =
∑N

k=1 pk where pk are

distinct, a normal form can get simplified noticeably. The normal form is given by

Epk,i =



1 0 · · · · · · 0

0 1
. . .

...

...
. . . . . . . . .

...

...
. . . 1 0

0 · · · · · · 0 z





1 0 · · · 0 α1,l,k,i

0 1
. . .

...
...

...
. . . . . . 0

...

...
. . . 1 αl−1,l,k,i

0 · · · · · · 0 1


where αr,l,k,i ∈ C.

Example 2.1. Let us consider a holomorphic vector bundle E of rank 2 on R of

9p.253 in [64].
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genus g. Over a point γk for k = 1 . . . , 2g, we may have

Eγk,i =

1 αk,i

0 zk,i

 and Eγk,j =

1 αk,j

0 zk,j

 .

Here zk,i is a local coordinate around pk in Ui. So,

Gij = E−1
γk,i
· Eγk,j =

1 −αk,i

zk,i

0 1
zk,i


1 αk,j

0 zk,j

 =

1 αk,j − αk,i zk,j

zk,i

0
zk,j

zk,i

 if γk ∈ Ui ∩ Uj

Gij =

1 0

0 1

 if γk 6∈ Ui ∩ Uj.

Hence, {Gij} defines a holomorphic vector bundle E. Note that
zk,j

zk,i
is non-zero in

Ui ∩ Uj.

Example 2.2. Let us consider a holomorphic vector bundle E of rank 3 on R of

genus g. Over a point γk for k = 1 . . . , 3g, we may have

Eγk,i =


1 0 α1,k,i

0 1 α2,k,i

0 0 zk,i

 and Eγk,j =


1 0 α1,k,j

0 1 α2,k,j

0 0 zk,j

 .

Hence, on Ui ∩ Uj containing pk we have

Gij = E−1
γk,i
· Eγk,j =


1 0 −α1,k,i

zk,i

0 1 −α2,k,i

zk,i

0 0 1
zk,i




1 0 α1,k,j

0 1 α2,k,j

0 0 zk,j

 =


1 0 α1,k,j − α1,k,i

zk,j

zk,i

0 1 α2,k,j − α2,k,i
zk,j

zk,i

0 0
zk,j

zk,i

 .

Otherwise, Gij is given by the (3× 3)-identity matrix.
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From these examples, it is not hard to see that for γk ∈ Ui ∩ Uj

Gij = E−1
γk,i
· Eγk,j =



1 0 · · · 0 α1,l,k,j − α1,l,k,i
zk,j

zk,i

0 1
. . .

...
...

...
. . . . . . 0

...

...
. . . 1 αl−1,l,k,j − αl−1,l,k,i

zk,j

zk,i

0 · · · · · · 0
zk,j

zk,i


.

Hence, over γk it defines a point

[
zk,j
zk,i

, α1,l,k,j − α1,l,k,i
zk,j
zk,i

, . . . , αl−1,l,k,j − αl−1,l,k,i
zk,j
zk,i

] ∈ Pl−1.

Note that this turns out to be the Tyurin parameters in (2.1). This indeed implies

that a generic point10 (γ, α) ∈ S lg(R × Pl−1) in the space of Tyurin parameters

defines an effective11 vector bundle Eγ,α up to the diagonal action of SL(l,C).

10All γk are distinct.
11The divisor of the associated determinant vector bundle det E is effective.
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2.2 Hitchin systems and symplectic geometry

2.2.1 Hamiltonian dynamics

We will briefly give basic definitions in Hamiltonian dynamics. For more detail,

we refer to [10] and [48]. Let M be a symplectic manifold with a symplectic form ω.

A Hamiltonian vector field XH associated to the symplectic form ω and a smooth

function H on M is defined by

dH = ι(XH)ω.

We will call H a Hamiltonian or Hamiltonian function. The Poisson bracket { , }

(p.108 in [10]) associated to the symplectic form is defined by

{H,G} = XH ·G.

Two functions H,G are said to be Poisson commutative if

{H,G} = 0.

Note that the maximal number of linearly independent Hamiltonians on a symplectic

manifold M of dimension 2n is n. Accordingly, we say that a symplectic manifold

M of dimension 2n is a completely integrable system if it has n linearly independent

Hamiltonians H1, . . . , Hn generically, i.e.,

dH1 ∧ · · · ∧ dHn 6= 0 generically.

If M is a completely integrable system, we may define a map

H : M2n → Cn by H(m) = (H1(m), . . . , Hn(m)).
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This is a special case of a momentum map (p.133 in [10]) in symplectic geometry.

Indeed, it is a momentum map for the action of an abelian group, i.e., a complex

torus. The primary dynamical system to study in this paper is presented as follows:

Definition 2.2. (p.96 in [32]) A dynamical system is said to be an algebraically

completely integrable system if

1 it is a completely integrable system

2 a generic fiber of H is an (Zariski) open set of an abelian variety

3 each Hamiltonian flow of XHi
is linear on a generic fiber.

2.2.2 Spectral curve and Hitchin system

In [32], N. Hitchin studied a moduli space of stable vector bundles in terms of

symplectic geometry in an infinite dimensional setting. He proves that the cotangent

bundle of a moduli space is an algebraically completely integrable system, so-called a

Hitchin system. In this section, we will describe this gauge theoretic and symplectic

interpretation of the moduli space in detail.

Definition 2.3. Let E be a smooth complex vector bundle of rank l over a compact

Riemann surface R. A holomorphic structure on E is a differential operator d′′A

satisfying the Leibniz rule

d′′A(fs) = ∂f ⊗ s+ fd′′As where

s ∈ A0(R,E) and f ∈ C∞(R). Here A0(R,E) is the set of smooth sections on E.
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Since a compact Riemann surface R is a 1-dimensional complex manifold, the

integrability condition d′′A◦d′′A = 0 is trivially satisfied. That is, we can find l linearly

independent local solutions of d′′As = 0. Thus, each holomorphic structure gives rise

to a holomorphic vector bundle E over R up to a conjugation action of a gauge

group G, which consists of smooth maps g : R → GL(l,C). Let us denote the

space of all holomorphic structures on E by A. This is an affine infinite dimensional

space. The quotient space of the space A by the action of gauge group G tends to

be non-Hausdorff. In order to overcome this drawback, we can take an open set

where the quotient space becomes a manifold. An open set As in A consisting of

stable vector bundles is indeed such a set12. In fact, the quotient space becomes a

projective variety when the degree and the rank of E are coprime, which we will

assume throughout this section.

Since A is an affine space, we may define a cotangent bundle T∗ A. Moreover,

it is not hard to see that it has a natural symplectic form ω(A,Φ) defined by

ω(A,Φ)((Ȧ1, Φ̇1), (Ȧ2, Φ̇2)) =

∫
R

Tr(Ȧ1Φ̇2 − Ȧ2Φ̇1) where (A,Φ) ∈ T∗
A A.

A momentum map µ : T∗ As → Lie(G)∗ induced by the action of gauge group G is

given by

µ(A,Φ) = d′′AΦ.

The zero locus µ−1(0) of the momentum map consists of holomorphic fields Φ with

respect to the holomorphic structure d′′A. It is called a Higgs field. The Marsden-

12See Section 2.1 for the definition and properties of a stable vector bundle.
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Weinstein quotient13

T∗ N := T∗(As/G) ∼= µ−1(0)/G := (T∗ As)//G

is the space which N. Hitchin investigated in [32]. In this description, a Higgs field

Φ[A](z) for z ∈ R and [A] ∈ N is a cotangent vector in T∗
[A] N and holomorphic on

R. The main thesis in [32] can be put in the following way:

Theorem 2.2. [32] Let N be a moduli space of stable holomorphic vector bundles of

rank l over a compact Riemann surface R of genus > 1. Then the cotangent bundle

T∗ N is an algebraically completely integrable system. The statement is also true for

the cotangent bundle of a moduli space of stable holomorphic principal G-bundles

over a compact Riemann surface R of genus > 1 where G is a semi-simple complex

Lie group..

The main part of the proof builds up on an observation that a generic fiber of

H is an open set of the Jacobi variety of a spectral curve, which we will construct

later. Let KR be the canonical bundle of R. The Hitchin map H is defined by

invariant polynomials

H : T∗ N→
k⊕
i=1

H0(R,Kdi
R) where H(Φ[A](z)) =

(
h1(Φ[A](z)), . . . , hk(Φ[A](z))

)
.

The invariant polynomials h1, . . . , hk are the coefficients of the characteristic poly-

nomial of a Higgs field and the constituents of invariant polynomials are Hamil-

tonians with respect to the canonical symplectic form on T∗ N and N functions

Hi, the constituents of invariant polynomials, on T∗ N are Poisson commutative

13This is also called a symplectic quotient. See p.141 in [10].
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where N = dimC N. Thus, T∗ N is a completely integrable system (Proposition 4.1,

Proposition 4.5 in [32]). Consider the following diagram

λz ∈ KR
π∗−−−→ π∗λ ∈ π∗ KR

π

y y
z ∈ R

π←−−− λz ∈ KR .

(2.2)

A spectral curve R̂ associated with a Higgs field Φ is the zero locus of a section

π∗ det(λz · Il×l − Φ[A](z)) ∈ (π∗ KR)l

R̂ = {λz ∈ KR | π∗ det(λz · Il×l − Φ[A](z)) = 0}.

2.2.3 Parametrization for G = GL(l,C)

Fixing a value of the Hitchin map H is equivalent to fixing a spectral curve R̂φ

associated to a fiber H−1(φ) where φ = H
(
Φ[A](z)

)
. A spectral curve associated

with a generic fiber of H is smooth and is a ramified l-sheeted covering space of R.

In particular, the genus is l2(g− 1)+1 and the ramification index is 2(l2− l)(g− 1).

Since each point of R̂ is an eigenvalue of a Higgs field Φ[A], a holomorphic vector

bundle E[A] induced from a holomorphic structure d′′A to R̂ defines an eigenspace line

bundle Ker(λz · Il×l−Φ[A](z)). Conversely, a holomorphic line bundle L on R̂ gives

rise to a holomorphic vector bundle E of rank l on R by the direct image sheaf π∗L.

In this way, each point of a fiber H−1(φ) can be parametrized by an open set of

Jac(R̂φ).

The last information we need to identify T∗ N with an algebraically completely

integrable system is the linearity of the Hamiltonian flow of a Hamiltonian vector

field XHi
: The main observation is that T∗ N is contained in a larger symplectic
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manifold (with singularities) where an open set of Jac(R̂φ) is naturally compacti-

fied14. That is, the momentum map can be constructed on the cotangent bundle

of the space A of all the holomorphic structures instead of the space As of stable

holomorphic structures

µ̃ : T∗ A→ Lie(G)∗.

The construction is natural and

T∗ N = µ−1(0)/G ⊆ µ̃−1(0)/G.

Hence, the Hitchin map H can be naturally extended to µ̃−1(0)/G and a generic fiber

of H on µ̃−1(0)/G is in fact the whole of Jac(R̂φ). Consequently each Hamiltonian

vector field XHi
is extended to the whole Jacobi variety Jac(R̂φ). Therefore, the

flow of XHi
must be linear. Let us summarize the results for classical groups in [32]

Theorem 2.3. [32] Let φ = H(Φ[A]).

1 For G = SL(l,C), a spectral curve R̂φ associated with a generic fiber is smooth

and is an l-sheeted covering space of R. A generic fiber H−1(φ) is an open

set of Jac(R̂φ).

2 For G = SP(l,C), a generic spectral curve R̂φ is smooth and is a 2l-sheeted

covering space of R. A generic fiber H−1(φ) is an open set of Prym(R̂φ)

associated with a 2-sheeted covering π : R̂φ → R̂φ/σ ramified at 4l(g − 1)

points where σ is a natural involution induced by a symplectic form on E.

14See also [31].
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3 For G = SO(2l,C), a generic spectral curve R̂φ is singular with 2l(g − 1)

ordinary double singularities and is a 2l-sheeted covering space of R. A

generic fiber H−1(φ) is an open set of Prym(
˜̂
Rφ) associated with a unram-

ified 2-sheeted covering π :
˜̂
Rφ →

˜̂
Rφ/σ where σ is a natural involution

induced by a non-degenerated symmetric bilinear form on E and
˜̂
Rφ is the

de-singularization of R̂φ

4 For G = SO(2l + 1,C), a generic spectral curve R̂φ is smooth and is a

2l + 1-sheeted covering space of R. A generic fiber H−1(φ) is an open set

of Prym(R̂φ) associated with a 2-sheeted covering π : R̂φ → R̂φ/σ ramified at

2(2l + 1)(g − 1) points.

In Section 4.5, we will give explicit examples of T∗ N for various classical

groups by applying the techniques15 in the proof of Theorem 2.3. As by-product,

we may see that the description of T∗ N associated with various classical groups

by the Krichever-Tyurin parameters is considerably easier than that of N for the

classical groups by the Tyurin parameters.

15See [32] for detail.
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Chapter 3

Lax equations on algebraic curves

An explicit parametrization of the cotangent bundle of a moduli space of stable

vector bundles over a compact Riemann surface is given in [44]. We will give an

exposition about it and provide detailed examples1 allied with this exposition in

terms of the Krichever-Tyurin parameters2.

3.1 Parametrization of the cotangent bundle of a moduli space of

stable vector bundles

Let Eγ,α be a holomorphic vector bundle of rank l on a compact Riemann

surface R of genus g associated with Tyurin parameters (γ, α) =
{
γj,αj

}lg

j=1
∈

S lg(R × Pl−1). A global section ζγ,α(z) of Eγ,α can be written as a vector-valued

meromorphic function on R: Let αj = (α1,j, . . . , αl−1,j, 1) ∈ Cl for j = 1, . . . , lg.

Then

ζγ,α(z) =
cjαj

z − z(γj)
+O(1) where cj ∈ C. (3.1)

From the Riemann-Roch theorem and the given constraint (3.1), we have

dimC H0(R,Eγ,α) ≥ l(lg − g + 1)− lg(l − 1) = l.

1These will also serve as backgrounds for examples in Section 4.5.
2See Lemma 3.1.
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Such vector bundles Eγ,α with mutually distinct γj for j = 1, . . . , lg and satisfying

dimC H0(R,Eγ,α) = l form an open set M′
0 of S lg(R × Pl−1). Note that M0 is an

open set ofM′
0.

Definition 3.1. A Krichever-Lax matrix3 associated to Tyurin parameters (γ, α)

and a canonical divisor K of a compact Riemann surface R of genus g is a matrix-

valued meromorphic function L(p; γ, α) with simple poles at γi and poles at K sat-

isfying the following conditions: There exist βj ∈ Cl and κj ∈ C for j = 1, . . . , lg

such that a local expression in a neighborhood of γj is given by

L(p; γ, α) =
Lj,−1(γ, α)

z(p)− z(γj)
+ Lj,0(γ, α) +O

(
(z(p)− z(γj))

)
for j = 1, . . . , lg

with the following two constraints

1. Lj,−1(γ, α) = βTj ·αj, i.e., of rank 1 and it is traceless

Tr Lj,−1 = αj · βTj = 0.

2. αj is a left eigenvector of Lj,0

αjLj,0(γ, α) = κjαj.

Note that we may find that a holomorphic differential ω such that the associated

divisor K with ω does not intersect with {γj}lgj=1 and a local coordinate zj at γj is

given by dzj = ω in the neighborhood of γj.

Let us denote the set of Krichever-Lax matrices associated to Tyurin parame-

ters (γ, α) and a canonical divisor K by LKγ,α.
3For simplicity, we will also call it a Lax matrix as in [44].
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The two constraints imply that a Lax matrix can be thought as a Higgs field

L(p; γ, α)⊗ ω, i.e., a global section of End(Eγ,α)⊗ K: In a neighborhood of γj, the

first and the second condition respectively imply

ζγ,α(z)Lj,−1(γ, α) = O(1)

ζγ,α(z)Lj,0(γ, α) = κjζγ,α(z).

(3.2)

Since we are assuming the divisor K of ω does not intersect with {γj}lgj=1, we may

conclude that L(p; γ, α)⊗ ω is a global section of End(Eγ,α)⊗K. The dimension of

the space of Lax matrices associated to Tyurin parameters (γ, α) is

dimC LKγ,α = l2(2g − 2 + lg − g + 1)− lg · l · (l − 1)− lg − lg(l − 1) = l2(g − 1).

The first term is from the Riemann-Roch theorem, the second term from the con-

dition on rank 1, the third term from the traceless condition, and the fourth term

is from the condition on left eigenvectors. Consequently,

dimC LK = l2(2g − 1) where LK =
⋃

(γ,α)∈M′
0

LKγ,α.

In fact, the following lemma shows that (α, β, γ, κ) can be served as coordinates4 of

LK .

Lemma 3.1. (p.236 in [44]) Let (γ, α) ∈M′
0. There is a bijection map

L 7→
{
αj,βj, γj, κj

}lg

j=1

between LK and a subset V of S lg(Pl−1 × Cl ×R× C) defined by

4We will call them the Krichever-Tyurin parameters.
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αj · βTj = 0 for j = 1, . . . , lg and

∑
p∈R

res(L⊗ ω) =

lg∑
j=1

βTj ·αj = Ol×l.

(3.3)

Here Ol×l is the (l × l)-zero matrix.

Because of the dimension differences, the space LK whose dimension is l2(2g−

1) cannot be identified with a cotangent bundle T∗M0 whose dimension is 2l2g.

However, we may see that LK/SL(l,C) can be identified with

T∗ M̂0 = T∗M0/SL(l,C) where dimC T∗ M̂0 = 2(l2(g − 1) + 1).

First note that there is a conjugation action, which is not necessarily free, of W ∈

SL(l,C) on the set LK of Lax matrices L(p; γ, α),

L 7→ W−1 · L ·W.

This action defines an action of W ∈ SL(l,C) on the space of the Krichever-Tyurin

parameters equivariantly:

W ·
{
αj,βj, γj, κj

}lg

j=1
=

{
αj ·W,βj · (W−1)T , γj, κj

}lg

j=1
.

We may find an open set V ′ of V such that any l + 1 vectors {αs1 , . . . ,αsl+1
} of lg

vectors in
{
αj

}lg
j=1

generate an l-dimensional vector space and those l + 1 vectors

satisfy the relation

αsl+1
=

l∑
j=1

csj
αsj

where csj
6= 0.

V ′/SL(l,C) has an atlas whose charts are indexed by {s1, . . . , sl+1}. For example,

let us assume

{s1, . . . , sl+1} = {1, . . . , l + 1}.
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There is an W ∈ SL(l,C) such that ej = αjW where ej is a basis vector with

coordinates eij = δij for j = 1, . . . , l. Since αl+1 ∈ Pl−1, there is 0 6= c ∈ C such that

ce0 = αl+1W where e0 =
l∑

j=1

ej.

For j = 1, . . . , lg let

Aj = αjW and Bj = βj(W
−1)T .

This
{
Aj,Bj, γj, κj

}lg

j=1
is a coordinate of an SL(l,C)-orbit in the chart indexed

by {1, . . . , l + 1}. Notice that B1, . . . ,Bl+1 can be explicitly found from the data{
Aj,Bj

}lg
j=l+2

using the two conditions (3.3) in Lemma 3.1

Bi
l+1 = −

lg∑
j=l+2

Bi
jA

i
j

Bi
k +Bi

l+1 = −
lg∑

j=l+2

Bi
jA

k
j where k = 1, . . . , l.

Here Bj = (B1
j , . . . , B

l
j) and Aj = (A1

j , . . . , A
l
j). Consequently, we have

dimC LK/SL(l,C) = (2l − 2)(lg − l − 1) + 2lg = 2(l2(g − 1) + 1).

Example 3.1. Let us parametrize an open set of the cotangent bundle of moduli

space of vector bundles of rank 2 over a hyper-elliptic curve of genus 2 defined by

y2 =
5∏
i=1

(x− ci) where ci ∈ C1 and ci are distinct.

Homogeneous coordinates are given by

A1 = [1, 0],A2 = [0, 1],A3 = [1, 1] and A4 = [1, a] where a 6= 1.

From conditions (3.3), we have

B1 = (0, ab− b),B2 = (a2b− ab, 0),B3 = (ab,−ab) and B4 = (−ab, b).
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{
Aj,Bj

}4

j=1
is a 2-parameter family. Accordingly,

{
Aj,Bj, γj, κj

}4

j=1
is a 10-

parameter family by taking 4 distinct points γj = (xj, yj) and the associated eigen-

values κj in Definition 3.1 for j = 1, . . . , 4. Note that we are assuming (α, γ) ∈M′
0.

The assumption can be retrieved by the second condition in Definition 3.1: We have

4 vector equations for j = 1, . . . , 4

κjAj = AjL0 + AjL1xj +
∑

1≤k 6=j≤4

AjB
T
kAk

yj + yk
xj − xk

.

Consequently, we are given 8 equations with 8 unknowns. In general, for a hyper-

elliptic curve, we have l2g equations with l2g unknowns

κjAj =

g−1∑
i=0

AjLix
i
j +

∑
1≤k 6=j≤lg

AjB
T
kAk

yj + yk
xj − xk

for j = 1, . . . , lg.

The 4 vector equations become

κ1 0

0 κ2

 = L0 +

x1 0

0 x2

 L1 + T1

1 1

1 a


−1 κ3 κ3

κ4 aκ4

 = L0 +

ax3−x4

a−1
ax3−ax4

a−1

x4−x3

a−1
ax4−x3

a−1

 L1 + T2.

Here T1 and T2 are (2×2)-matrices depending on
{
Aj,Bj, γj, κj

}4

j=1
. Thus, L0 and

L1 are completely determined if and only if

det

x1 − ax3−x4

a−1
−ax3−ax4

a−1

−x4−x3

a−1
x2 − ax4−x3

a−1

 6= 0.

This is the condition for {Aj, γj}4j=1 ∈M′
0.
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Example 3.2. Let us consider an open set of the cotangent bundle of moduli space

of vector bundles of rank 3 over a hyper-elliptic curve of genus 2. Homogeneous

coordinates are given by

A1 = [1, 0, 0], A2 = [0, 1, 0], A3 = [0, 0, 1]

A4 = [1, 1, 1], A5 = [1, a1, a2], A6 = [1, a3, a4].

From conditions (3.3), we have

B1 =
(
0,−b1 − b3 − b5,−b2 − b4 − b6

)
,

B2 =
(
b1 + b2 + a1(a1b3 + a2b4) + a3(a3b5 + a4b6), 0,−b2 − a1b4 − a3b6

)
,

B3 =
(
b1 + b2 + a2(a1b3 + a2b4) + a4(a3b5 + a4b6),−b1 − a2b3 − a4b5, 0

)
,

B4 =
(
− b1 − b2, b1, b2

)
,B5 =

(
− a1b3 − a2b4, b3, b4

)
,B6 =

(
− a3b5 − a4b6, b5, b6

)
.

Note that we also have

b1 + a1b3 + a3b5 = 0

b2 + a2b4 + a4b6 = 0.

{
Aj,Bj

}6

j=1
is an 8-parameter family. Accordingly,

{
Aj,Bj, γj, κj

}6

j=1
is a 20-

parameter family by taking 6 distinct points γj = (xj, yj) and the associated eigen-

values κj in Definition 3.1 for j = 1, . . . , 6. Let us retrieve the condition for

(α, γ) ∈ M′
0. By the second condition in Definition 3.1, we have 6 vector equa-
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tions for j = 1, . . . , 6

κjAj = AjL0 + AjL1xj +
∑

1≤k 6=j≤6

AjB
T
kAk

yj + yk
xj − xk

.

Consequently, we are given 18 equations with 18 unknowns. The 6 vector equations

become


κ1 0 0

0 κ2 0

0 0 κ3

 = L0 +


x1 0 0

0 x2 0

0 0 x3

 L1 + T1


κ4 κ4 κ4

κ5 a1κ5 a2κ5

κ6 a3κ6 a4κ6

 =


1 1 1

1 a1 a2

1 a3 a4

 L0 +


x4 x4 x4

x5 a1x5 a2x5

x6 a3x6 a4x6

 L1 + T2.

Here, T1 and T2 are (3 × 3)-matrices depending on
{
Aj,Bj, γj, κj

}6

j=1
. Hence, L0

and L1 are completely determined by the non-degeneracy conditions

det


1 1 1

1 a1 a2

1 a3 a4

 6= 0 and

det
(


x1 0 0

0 x2 0

0 0 x3

−


1 1 1

1 a1 a2

1 a3 a4



−1 
x4 x4 x4

x5 a1x5 a2x5

x6 a3x6 a4x6


)
6= 0.

Example 3.3. Let us parametrize an open set of a cotangent bundle of moduli space
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of vector bundles of rank 2 over a (4, 3)-curve5 {R(y, x) = 0} of genus 3 defined by

R(y, x) = y4+x3+c3,0y
3+c2,1y

2x+c1,2yx
2+c2,0y

2+c1,1yx+c0,2x
2+c1,0y+c0,1x+c0,0.

As in Example 3.1, we may have

A1 = [1, 0],A2 = [0, 1],A3 = [1, 1],

A4 = [1, a1],A5 = [1, a2],A6 = [1, a3].

From conditions (3.3), we have

B1 = (0,−
3∑
j=1

bj −
3∑
j=1

ajbj), B2 = (
3∑
j=1

ajbj +
3∑
j=1

a2
jbj, 0),

B3 = (−
3∑
j=1

ajbj,
3∑
j=1

ajbj), B4 = (−a1b1, b1),

B5 = (−a2b2, b2), B6 = (−a3b3, b3).

So,
{
Aj,Bj

}6

j=1
is a 6-parameter family. Accordingly,

{
Aj,Bj, γj, κj

}6

j=1
is an

18-parameter family where γj = (xj, yj) ∈ R and κj is the associated eigenvalues

for j = 1, . . . , 4. The condition (α, γ) ∈ M′
0 is given as follows: A meromorphic

differential on R with residues BT
j Aj at γj has the form

L
dx

Ry

=
(
L0 + L1x+ L2y +

6∑
k=1

BT
kAk

y +Ry(xk, yk)− yk
x− xk

)dx
Ry

where Ry =
∂R(x, y)

∂y
.

From the second condition in Definition 3.1, there are 6 vector equations for j =

1, . . . , 6

κjAj = AjL0 + AjL1xj + AjL2yj +
∑

1≤k 6=j≤6

AjB
T
kAk

yj +Ry(xk, yk)− yk
xj − xk

.

Consequently, theses are 12 equations with 12 unknowns. The 6 vector equations

become
5See Appendix A.2 for basic facts about an (n, m)-curve.
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κ1 0

0 κ2

 = L0 +

x1 0

0 x2

 L1 +

y1 0

0 y2

 L2 + T1

κ3 κ3

κ4 a1κ4

 =

1 1

1 a1

 L0 +

x3 x3

x4 a1x4

 L1 +

y3 y3

y4 a1y4

 L2 + T2

κ5 a2κ5

κ6 a3κ6

 =

1 a2

1 a3

 L0 +

x5 a2x3

x6 a3x6

 L1 +

y5 a2y5

y6 a3y6

 L2 + T3.

Here T1, T2, T3 are (2×2)-matrices depending on
{
Aj,Bj, γj, κj

}6

j=1
. Hence, L0, L1, L2

are completely determined if and only if

det



1 0 x1 0 y1 0

0 1 0 x2 0 y2

1 1 x3 x3 y3 y3

1 a1 x4 a1x4 y4 a1y4

1 a2 x5 a2x5 y5 a2y5

1 a3 x6 a3x6 y6 a3y6



6= 0.

This condition is for {Aj, γj}6j=1 ∈M′
0.
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We investigate a correspondence between Lax matrices and inverse algebraic

spectral data6. This section explains how the Hitchin’s abstract theory can be

translated to the machinery expounded by Krichever. Throughout this section, we

assume that (γ, α) ∈M0.

3.2 Krichever-Lax matrices and spectral curves

Let L(p; γ, α) be an (l×l)-Lax-matrix on R associated with Tyurin parameters

(γ, α) and a canonical divisor K where γ = γ1 + · · · + γlg. Take a characteristic

polynomial

R(µ, p) = det
(
µ · Il×l − L(p; γ, α)

)
= 0.

The zero locus {R(µ, p) = 0} defines an algebraic curve. We denote the smooth

model of this algebraic curve by R̂ and call it a spectral curve associated with a Lax

matrix L(p; γ, α). The coefficients hd(p; L) of

R(µ, p) = µl +
l∑

d=1

hd(p; L)µl−d

are a priori meromorphic functions on R on the neighborhoods Uj of γj by definition.

It is not hard to prove the next lemma7:

Lemma 3.2. (p.234 in [44]) Let L have a simple pole at γi for i = 1, . . . , lg. Then

L satisfies the two constraints in Definition 3.1 if and only if in the neighborhood Uj

of γj with a local coordinate z, L can be expressed as

L(z; γ, α) = Φ(z; γ, α) · ˜L(z; γ, α) · Φ−1(z; γ, α)

6Appendix A.1 provides further premises of this section.
7See p.234 in [44] for the proof.
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where Φ(z; γ, α) and ˜L(z; γ, α) are holomorphic.

From Lemma 3.2, the eigenvalues of L are holomorphic in Uj and all the

hd(p; L) are holomorphic in Uj. Note that hd(p; L) has poles of order d at pi where

K =
∑2g−2

i=1 pi. We denote the space of such meromorphic functions on R by HK .

This is just

HK ∼=
l⊕

d=1

H0(R,Kd).

From the Riemann-Roch theorem,

dimCHK = dimC

l⊕
d=1

H0(R,Kd)

= g +
l∑

d=2

(d(2g − 2)− (g − 1))

= l2(g − 1) + 1.

We have a map

H : LK → HK by H(L) =
(
h1(p; L), . . . , hl(p; L)

)
.

Since it is invariant under the conjugation action of SL(l,C), the map H can descend

to the quotient space

H : LK/SL(l,C)→ HK by H([L]) =
(
h1(p; L), . . . , hl(p; L)

)
. (3.4)

This map is what Hitchin investigated in [32]. By the parameters of the images and

fibers of H, we can foliate the space LK/SL(l,C). We summarize the contents of

pp.241–243 in [44] as follows:
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Theorem 3.1. Let [L] ∈ LK/SL(l,C) be an SL(l,C)-orbit of L in LK. Then there

is a one-to-one correspondence

[L]←→
(
(h1, . . . , hl), [D̂]

)
=

(
R̂, [D̂]

)
.

[D̂] is an equivalence class of an effective divisor of degree ĝ + l − 1 on R̂ where ĝ

is the genus of R̂.

Theorem 3.1 implies that the fibers of H can be parametrized by points of

Jac(R̂): In order to describe it accurately, we need to pick l points q̂1, . . . , q̂l−1, q̂l of

R̂. The l − 1 points among l points characterize the translation of degree ĝ + l − 1

to a point in the space SbgR̂ of ĝth symmetric power of R̂, and the remaining point

plays role of a base point in the Abel map from SbgR̂ to Jac(R̂).

Proof. The ramification index ν of an l-sheeted covering π : R̂→ R is equal to the

degree of the divisor of zeros of ∂µR(µ, p), which is the same as the degree of the

divisor of poles of ∂µR(µ, p) on R̂:

ν = deg(∂µR)0 = deg(∂µR)∞ = (2g − 2)(l − 1)l.

From the Riemann-Hurwitz formula8, the genus of R̂ is given by

ĝ = l2(g − 1) + 1.

Each point p̂ = (p, µ) ∈ R̂ represents an eigenvalue. Accordingly, a generic point

p̂ = (p, µ) ∈ R̂ has a unique normalized eigenvector

ψ(p, µ)L(p) = µ(p)ψ(p, µ) where ψ = (ψ1, . . . , ψl) with
l∑

i=1

ψi(p̂) = 1.

8See p.140 in [20].
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Let D̂ be a divisor of poles of ψ(p̂). Note that p̂′ is a pole of ψ(p̂) if and only if

p̂′ is a pole of all the components ψi(p̂) for i = 1, . . . , l by definition. Suppose that

all the ramification points have the ramification index l − 1, i.e., every branching

points are totally ramified. Let F (p) = detl Ψ where

Ψ(p) =
(
ψ(p̂1), . . . ,ψ(p̂l)

)
l×l

where p̂1, . . . , p̂l ∈ π−1(p).

Of course, Ψ(p) is well-defined up to permutation, but its determinant det Ψ is a

well-defined meromorphic function on R. We may see that

l · deg D̂ = deg(F )∞ = deg(F )0.

The zeros of F are at γ1+· · ·+γlg and totally ramified (2g−2)l points on R counting

multiplicities. The degree of zeros of F is equal to

deg(F )0 = l · lg + l · (1
l

+ · · ·+ l − 1

l
) · (2g − 2)l

= l · lg + l · l(l − 1)

2l
· (2g − 2)l

= l2g + l2(l − 1) · (g − 1)

= l · deg D̂.

Hence,

deg D̂ = lg + l(l − 1)(g − 1)

= l2(g − 1) + l

= ĝ + l − 1.

The conjugation action of W ∈ SL(l,C) on L is carried on ψ as

ψ 7→ ψ′ =
( l∑

i,j

wjiψi
)−1
ψW where W =

(
wji

)
l×l.
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Note that
∑l

i=1 ψ
′
i(p̂) = 1 generically. The divisor of poles of a meromorphic function∑l

i,j wjiψi(p̂) on R̂ is D̂. So, the divisor D̂′ of poles of ψ′ is the divisor of zeros of∑l
i,j wjiψi. Consequently, D̂ is linearly equivalent to D̂′. Hence, [L] ∈ LK/SL(l,C)

defines algebraic spectral data
(
(h1, . . . , hl), [D̂]

)
=

(
R̂, [D̂]

)
.

Suppose that we are given
(
(h1, . . . , hl), [D̂]

)
. The spectral curve R̂ is given

by

0 = R(µ, p) = µl +
l∑

i=1

hi(p)µ
l−i.

For a generic point q ∈ R, we have l pre-images q̂1, . . . , q̂l on R̂. For a divisor

D̂ ∈ [D̂], since deg D̂ = ĝ+ l− 1, the Riemann-Roch theorem implies that there are

l linearly independent meromorphic functions ψ1(p̂), . . . , ψl(p̂) having poles at D̂ on

R̂ with normalization ψi(q̂j) = δji . Let ψ(p̂) = (ψ1(p̂), . . . , ψl(p̂)) and

Ψ(p) =
(
ψ(p̂1), . . . ,ψ(p̂l)

)
l×l

where p̂1, . . . , p̂l ∈ π−1(p).

Ψ(p) is well-defined up to permutation. The ambiguity can be removed by the

conjugation action of SL(l,C). A matrix-valued function Ψ′(p) associated with a

different base point q′ ∈ R is conjugate to

Ψ(p) = W ·Ψ′(p) ·W−1 where W ∈ SL(l,C).

Let µ1(p), . . . , µl(p) be the roots of R(µ, p) and K(p) = diag
(
µ1(p), . . . µl(p)

)
be the

associated (l × l)-diagonal matrix. Define

L(p) = Ψ(p) · K(p) ·Ψ−1(p).

Since hd ∈ H0(R,Kd), Ψ(p) and K(p) are holomorphic except possibly at a multiple

of the canonical divisor K. So, Lemma 3.2 implies that L is a Lax matrix associated
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with K and (γ, α). Moreover, choosing another equivalent divisor D̂′ ∈ [D̂] is

characterized by the multiplication of a meromorphic function f(p̂) to Ψ(p̂). Hence,

an equivalent divisor gives the same Lax matrix, but a different normalization gives

a Lax matrix conjugate to the original Lax matrix. Therefore, the algebraic data(
(h1, . . . , hl), [D̂]

)
define an SL(l,C)-orbit [L] in the space of Lax matrices. For

more information, see Appendix A.1.
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Chapter 4

A cohomological interpretation of straight line flows and examples

The theory of straight line flows on the Jacobi variety of a spectral curve over a

projective plane P1 is well-known around 1960s from the investigation of the K-dV

equation. The classical notion of a spectral curve over P1 can be constructed as

follows: Consider the following diagram1

λξ ∈ OP1(n)
π∗−−−→ π∗λ ∈ π∗OP1(n)

π

y y
ξ ∈ P1 π←−−− λξ ∈ OP1(n).

(4.1)

If A(ξ) =
∑n

i=1Ai · ξi ∈ H0(P1,End E) and Ai are constant (l× l)−matrices, then a

spectral curve is the zero locus

R = {π∗ det(λξ · Il×l − A(ξ)) = 0}.

Note that π∗ det(λξ ·Il×l−A(ξ)) is a section of a line bundle (π∗OP1(n))l over OP1(n)

where OP1(n) =
⊗nOP1(1) and OP1(1) is the sheaf of a hyperplane bundle H over

P1. In [27], P. Griffiths gave a cohomological criterion about the straightness of

flows in a Lax representation:

d

dt
A(ξ, t) = [B(ξ, t),A(ξ, t)].

Here ξ is a rational parameter on P1. The dynamics of A(ξ, t) in gl(l,C)[ξ, ξ−1] is

characterized in a cohomological class induced by the singularities of B(ξ, t). It is

1Compare it with diagram (2.2) in Subsection 2.2.2.
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clear that if B ∈ gl(l,C)[ξ, ξ−1], then [B,A] is tangent to gl(l,C)[ξ, ξ−1]. In [27],

the author describes a straight line flow in terms of a cohomology class in the sheaf

cohomology group for a skyscraper sheaf CD (see Subsection 4.1.1 for the definition

and properties of a skyscraper sheaf): Let π : R→ P1 and D = π−1(0)+π−1(∞). In

p.1475 of [27], it was shown that the flows are straight in Picd(R) where d = degD

if and only if

d

dt
ρ(B) ≡ 0 modulo span{H0(R, LD), ρ(B)} where ρ(B) ∈ H0(R,CD).

Here LD is the sheaf of the associated line bundle with the divisor D on R. For the

definition of a residue section ρ(B) associated with B, see Definition 4.2. Moreover,

we may formulate Hamiltonians corresponding to the linear flows explicitly. Indeed,

in p.429 of [58] the corresponding Hamiltonians to the linear flows are explicitly

identified as

H(A) = resξ=0 ξ
−mh(A).

Here h(A) is an invariant polynomial on gl(l,C)[ξ, ξ−1] and it depends on B. Note

that another characterization of the linear flows are also possible. In p.1476 of [27],

the author characterizes the linear flows associated with Bt as linear functions2.

They are given by

F (Bt, ω) = t
∑
pi∈D

respi

(
ρi(Bt)ω

)
where ω ∈ H0(R,K).

On the other hand, when we deal with the Hitchin system the framework

becomes a little bit different. The principal cohomology groups are changed in

2Note that the Hamiltonian is a constant function on the linear flow.
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order to fit the scheme of Hitchin system. Nevertheless, the similar cohomological

interpretation of a straight line flow in the classical case can be still valid in the case

of Hitchin system. It is possible because the fundamental underlying concepts in [27]

are applicable to the case of Hitchin system, namely, an eigenvector mapping (see

p.1456 in [27]) and the fact that the sum of all residues of a meromorphic 1-from is

zero on a compact Riemann surface. However, the machinery used in [27] can not

be applied directly. A small modification is needed. This is what we will analyze in

this section. As a byproduct, we will reprove several theorems in [44] in this setting.

A spectral curve R̂ appeared in what Hitchin investigated is constructed an

l-sheeted covering space of a compact Riemann surface R of genus at least greater

than one. Unlike the spectral curves over a projective plane P1, a spectral curve R̂

over R is defined as the zero locus in the canonical bundle KR of a compact Riemann

surface R. The divisor D = π−1(0)+π−1(∞) in [27] is replaced with a lifting divisor

π′−1(nK) of a canonical divisor K on a compact Riemann surface R where π′ : R̂→

R and n is a positive integer. The necessary and sufficient condition that [M, L] is

tangent to the space LK of Lax matrices should be investigated. Moreover, we need

to characterize the space where M should belong. The characterization of linear

flows in the Hitchin system is given in Corollary 4.1 and an explicit formula of the

Hitchin’s Hamiltonians is expressed in Section 4.4. Moreover, explicit calculations

of the Hitchin’s Hamiltonians in terms of examples are also given in Section 4.5.

Furthermore, these explicit calculations of Hamiltonians help us to characterize the

conditions3 on the Krichever-Tyurin parameters for classical groups described in

3See Example 4.2, 4.4 and 4.6.
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[32].

Let us begin with this chapter by giving general definitions and preliminaries

for reader’s convenience. For more detailed theory of sheaf cohomology groups, we

refer to [20, 26, 28].

4.1 Basic facts in sheaf theory

4.1.1 Skyscraper sheaf

Let p be a point of a compact Riemann surface R and U be an open set of R.

Define a sheaf on R by

Cp(U) :=


C if p ∈ U

0 if p 6∈ U

This is called a skyscraper sheaf Cp on R associated with a point p. In particular,

we have

H0(R,Cp) ∼= C1

H1(R,Cp) ∼= 0.

Let D =
∑d

k=1mkpk be a divisor of a compact Riemann surface R. A skyscraper

sheaf CD on R associated with a divisor D is defined as

CD =
d⊕

k=1

(
Cpk

+ · · ·+ Cpk︸ ︷︷ ︸
mk

)
.

For instance, we have

H0(R,CD) ∼= C
Pd

k=1mk

H1(R,CD) ∼= 0.
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A meromorphic function λ(p) on R can define a global section of a skyscraper sheaf

associated with the divisor D as follows: In the neighborhood of pk, λ(p) can have

the tail of a Laurent expansion

λ(zk) =
ck,mk

zmk
k

+ · · ·+ ck,1
zk
.

Consequently, a vector
(
(c1,1, . . . , c1,m1), . . . , (cd,1, . . . , cd,md

)
)

can be regarded as an

element of a vector space C
Pd

k=1mk ∼= H0(R,CD). We will call this element of

H0(R,CD) associated to λ(p) the Laurent tail of λ(p) at D.

4.1.2 Definition of a connecting homomorphism

Let F ,G and H be sheaves on a Riemann surface R. A short exact sequence

0→ F i−→ G π−→ H → 0

induces a long exact sequence

0→H0(R,F)
i0∗−→ H0(R,G) π0

∗−→ H0(R,H)
δ1−→

H1(R,F)
i1∗−→ H1(R,G) π1

∗−→ H1(R,H)
δ2−→

H2(R,F)
i2∗−→ H2(R,G) π2

∗−→ · · · .

Let {Ui} be a Leray covering4 of R. Suppose that {hi} ∈ H0(R,H). There exists

gαi ∈ G(Ui) such that

π(gαi ) = hi.

4An open covering {Ui}i∈I of R such that H1(Ui,F) = 0 for every index i ∈ I is called a Leray

covering. Throughout this paper, by an open cover of a compact Riemann surface R we mean a

Leray cover without further indication.
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{hi} ∈ H0(R,H) implies that hi − hj ≡ 0 on Ui ∩ Uj. Since π(gαi − gαj ) ≡ 0 on

Ui ∩ Uj, there exists {fαij} ∈ C1(R,F) such that

i(fαij) = gαi − gαj .

The injectivity of i implies that fαij + fαji + fαki = 0. Define

δ1({hi}) = {fαij} ∈ Z1(R,F).

Now suppose that we choose a different gβi ∈ G(Ui) such that

π(gβi ) = hi.

Then we have {fβij} ∈ C1(M,F) such that i(fβij) = gβi − g
β
j . So, δ1({hi}) = {fβij} ∈

Z1(R,F). Consequently, δ1 is not well-defined in Z1(R,F). On the other hand, δ1

is indeed well-defined in H1(R,F):

i(fαij)− i(f
β
ij) = gαi − gαj − (gβi − g

β
j )

= (gαi − g
β
i )− (gαj − g

β
j ).

Since π((gαi − g
β
i )) = hi − hi ≡ 0, we can find {fi} ∈ C1(R,F) such that

i(fi) = gαi − g
β
i .

Combining this with the injectivity of i, we get

fαij − f
β
ij = fi − fj.

Hence,

{fαij} = {fβij} ∈ H1(R,F).
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4.1.3 Euler sequence

Consider the Euler sequence over Pl−1 (p.409 in [26]):

0 // OPl−1 // Cl ⊗OPl−1(1) // ΘPl−1 // 0. (4.2)

Here OPl−1(1) is the sheaf of a hyperplane bundle H over Pl−1 and ΘPl−1 is the sheaf

of a holomorphic tangent bundle T Pl−1: The dual bundle H∗ of a hyperplane bundle

H over Pl−1 is called a universal bundle. This universal bundle H∗ is a canonical

realization of a point [v] in Pl−1 as a line in the product space Pl−1 × Cl (p.145 in

[26]). The hyperplane bundle H can be regarded as the set of linear functionals on

a line [v] in Cl. This construction gives a short exact sequence of sheaves over Pl−1

0 // OPl−1(1)∗ // Cl // Cl/OPl−1(1)∗ // 0 : (4.3)

Let U be an open set of Pl−1 and ([w],v) ∈ Cl(U) be a local section. A local section

in OPl−1(1)(U) is written as ([w], σ|[w]) where σ|[w] is a linear functional restricted

to the line [w] in Cl. Define

v : OPl−1(1)(U)→ ΘPl−1(U) by v(σ|[w]) =
(
v − σ|[w](v) · (σ|[w])

∗).
From this, we may conclude that

(Pl−1 × Cl)/H∗ ∼= Hom(H,T Pl−1).

Thus, (
(Pl−1 × Cl)/H∗ )

⊗ H ∼= Hom(H,T Pl−1)⊗ H ∼= T Pl−1.
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Consequently, in a tangent space T[w] Pl−1, we have σ|[w] ⊗ (σ|[w])
∗ = 0, i.e.,

l∑
i=1

Xi
∂

∂Xi

= 0.

Here X1, . . . , Xl are homogeneous coordinates of Pl−1. After tensoring OPl−1(1) to

(4.3), the Euler sequence is obtained:

0 // OPl−1 // Cl ⊗OPl−1(1) // ΘPl−1 // 0.

In other words, over a point [w] ∈ Pl−1 we have

0 //OPl−1,[w]
// ⊕lOPl−1(1)[w]

//ΘPl−1,[w]
//0

c //c · (X1|[w], . . . , Xl|[w])

(σ1|[w], . . . , σl|[w]) //
∑l

i=1 σi|[w] · ∂
∂Xi

.

(4.4)

4.2 Short exact sequences of vector bundles over an algebraic curve

and eigenvector mappings on a spectral curve

Let R̂ be a spectral curve associated with a Lax matrix L(p; γ, α):

R̂ = {det
(
µ · Il×l − L(p; γ, α)

)
= 0} where p ∈ R.

Each point (µ, p) := p̂ ∈ R̂ is an eigenvalue of L(p; γ, α). From the proof of Theo-

rem 3.1, it is easy to see the following lemma.

Lemma 4.1. For a Lax matrix L(p; γ, α), there exists a unique eigenspace complex

line bundle L of L(p; γ, α) on R̂ which is a sub-bundle of a trivial bundle Cl on R̂.

Definition 4.1. We shall call (4.5)

ψt(γ(t), α(t)) : R̂→ Pl−1 (4.5)
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an eigenvector mapping associated to a Lax representation

d

dt
Lt = [Mt, Lt]. (4.6)

In other word, letting ψt(p̂; γ(t), α(t)) = C ·ψt(p̂; γ(t), α(t)), we have

ψt(p̂; γ(t), α(t))Lt(p; γ(t), α(t)) = µ(p̂) ·ψt(p̂; γ(t), α(t)).

A vector-valued meromorphic function ψt(p̂; γ(t), α(t)) on R̂ defines a vector-valued

(and multi-valued) meromorphic function π∗ψt on R where π : R̂→ R and the de-

gree of each component of a vector ψt is ĝ+l−1. Moreover, the multi-valued function

π∗ψt has poles at γ(t) = γ1(t) + · · · + γlg(t), and it is written as (3.1) associated

with a Tyurin parameter (γ(t), α(t)) (see also Equation (3.2)). The eigenvalue µ(p̂)

can be regarded as a multi-valued meromorphic function on R with poles at the

canonical divisor K of R. Let

Lt = ψ
∗
t

(
OPl−1(1)

)
∈ Picbg+l−1(R̂).

Note that the degree of Lt is ĝ+l−1 by Theorem 3.1 and Lt is a line bundle associated

with an equivalence class [D̂t] of divisors in Theorem 3.1. Let LKbR/SL(l,C) ⊂

LK/SL(l,C) be the pre-images of the Hitchin map (3.4) associated to a spectral

curve R̂. The eigenvector mapping ψt induces

ϕbR : LKbR/SL(l,C)→ Picbg+l−1(R̂) by ϕbR([Lt]) = ψ
∗
t

(
OPl−1(1)

)
. (4.7)

We will also call it an eigenvector mapping associated to a spectral curve R̂. Since
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the tangent space of Picbg+l−1(R̂) is isomorphic to H1(R̂,ObR), we have

d

dt
Lt |t=0 ∈ H1(R̂,ObR).

Pulling back the Euler sequence (4.2) on R̂ by ψt(p̂; γ(t), α(t)) induces the

following short exact sequence on R̂:

0 // ObR // Cl ⊗ Lt // ψ
∗
tΘPl−1

// 0. (4.8)

From short exact sequence (4.8), we have a long exact sequence:

· · · // H0(R̂,Cl ⊗ Lt)
// H0(R̂,ψ

∗
tΘPl−1)

δ // H1(R̂,ObR) // · · · . (4.9)

Let {gt,i(p̂)} be the set of local trivializations of a line bundle Lt associated to an

open cover {Ui} of R̂ and denote a transition function gt,ij(p̂) by the restriction of

gt,i(p̂)
−1 · gt,j(p̂) to Ui ∩ Uj. Since ψt(p̂; γ(t), α(t)) = C ·ψt(p̂; γ(t), α(t)), any global

section5 st of Cl ⊗ Lt ∼=
⊕l Lt can be given by {ρ−1

t,i (p̂) · ψt,i} where ψt,i is the

restriction of ψt(p̂; γ(t), α(t)) to an open set Ui and

ρt,i(p̂)
−1 · ρt,j(p̂) = gt,ij(p̂) on Ui ∩ Uj.

Here {ρt,i(p̂)} is the set of local non-vanishing holomorphic functions.

Lemma 4.2. A time-derivative d
dt
st can be regarded as an element of H0(R̂,ψ

∗
tΘPl−1).

Proof. Note that a line bundle Lt has a global section. Let st := {ρ−1
t,i (p̂) · ψt,i} be

5Consequently, without loss of generality we may also regard ψt as a global section of Cl ⊗ Lt.
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a global section of Cl ⊗ Lt. Accordingly,

d

dt
ψt,i =

d

dt
(ρt,i · st,i)

= (
d

dt
ρt,i) · st,i + ρt,i · (

d

dt
st,i).

Here st,i is the restriction of st to Ui. Thus,

ρ−1
t,i ·

d

dt
ψt,i = ρ−1

t,i · (
d

dt
ρt,i) · st,i + (

d

dt
st,i).

From Sequence (4.4), we see that

0 //ObR st //Cl ⊗ Lt //ψ
∗
tΘPl−1

//0.

{ξi} //{ξi · st,i}

Consequently, {ρ−1
t,i · ddtψt,i} = [ d

dt
st] defines an element of H0(R̂,Cl⊗Lt /ObR). Since

H0(R̂,Cl ⊗ Lt /ObR) ∼= H0(R̂,ψ
∗
tΘPl−1),

we can see that {ρ−1
t,i · ddtψt,i} defines an element of H0(R̂,ψ

∗
tΘPl−1).

The mapping ϕbR : LKbR/SL(l,C) → Picbg+l−1(R̂) induces a mapping between

tangent spaces

TϕbR : T[L] LKbR/SL(l,C)→ H1(R̂,ObR) where [L] ∈ LKbR/SL(l,C).

In other word,

TϕbR( d
dt

[Lt(p; γ(t), α(t))]|t=0

)
∈ H1(R̂,ObR).

We can observe the following result:

Theorem 4.1. Let st := {ρ−1
t,i (p̂) · ψt,i} be a global section of Cl ⊗ Lt and [ d

dt
st] in

Lemma 4.2 be regarded as an element of H0(R̂,ψ
∗
tΘPl−1). Then we may have

TϕbR( d
dt

[Lt]|t=0

)
= δ([

d

dt
st|t=0]).
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Moreover, it is independent of a section st we chose. Hence, we may write

TϕbR( d
dt

[Lt]|t=0

)
= δ(

d

dt
ψt|t=0).

Proof. The infinitesimal change TϕbR(
d
dt

[Lt]|t=0

)
of line bundles is characterized by

d
dt

log gij(t) where {gij(t)} is the set of transition functions of a line bundle Lt over

R̂ associated with an open cover {Ui}. From Section 4.1.2, the connecting homo-

morphism δ of long exact sequence (4.9) is given by

δ([
d

dt
st]) = {ρ−1

t,j · (
d

dt
ρt,j)− ρ−1

t,i · (
d

dt
ρt,i)} ∈ H1(R̂,ObR).

Since ρ−1
t,i · ρt,j = gij(t) on Ui ∩ Uj, we have

ρ−1
t,j · (

d

dt
ρt,j)− ρ−1

t,i · (
d

dt
ρt,i) =

d

dt
log ρt,j −

d

dt
log ρt,i

=
d

dt
log ρ−1

t,i ρt,j

=
d

dt
log gij(t).

So,

TϕbR( d
dt

Lt|t=0

)
= δ([

d

dt
st|t=0]).

Also notice that the explicit expression

δ([
d

dt
st]) = {ρ−1

t,j · (
d

dt
ρt,j)− ρ−1

t,i · (
d

dt
ρt,i)} ∈ H1(R̂,ObR)

implies that it only depends on ψt and is independent of choosing st.

4.3 Cohomological interpretation of residues

The dynamics of a Lax representation d
dt

Lt = [Mt, Lt] on LK is invariant under

the addition of a polynomial P(Lt) of Lt or an element Qt commuting with Lt, since
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d

dt
Lt = [Mt, Lt] = [Mt + P(Lt), Lt] = [Mt + Qt, Lt]. (4.10)

Thus, the dependence of flows on M might be indicated by an equivalence object as-

sociated with M. We will characterize it in terms of a cohomological class associated

with M.

In fact, what we are interested in is a flow in the quotient space LK/SL(l,C).

Note that for W ∈ SL(l,C), we have

d

dt
(W−1LW ) = [M,W−1LW ] = M(W−1LW )− (W−1LW )M

= W−1(WMW−1L− LWMW−1)W

= W−1[WMW−1, L]W.

(4.11)

Thus, if d
dt

L = [M, L], then

d

dt
L = [WMW−1, L].

So, the characteristic class of M should be invariant under the change of gauges.

We will show the gauge-invariance of the associated cohomology class of Mt in

Lemma 4.5.

First, we describe the condition on isospectral deformations, that is, the con-

dition that the flow of a Lax representation stays in a leaf LKbR in the foliation of the

Hitchin map.

Lemma 4.3. If the flow of a vector field [Mt, Lt] is tangent to LK, then [Mt, Lt] has

poles only at the canonical divisor K of R other than γ(t) = γ1(t) + · · ·+ γlg(t).

Proof. Suppose that a vector field [Mt, Lt] on the space of matrix-valued meromor-
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phic functions on R is tangent to LK . Then the flow Lt stays in LK . So, we can

write

d

dt
Lt = [Mt, Lt].

From Definition 3.1, it is easy to see that d
dt

Lt has a double pole possibly at γj(t)

for j = 1, . . . , lg and a simple pole at pi where K =
∑2g−2

i=1 pi. Thus, we have the

desired result.

Suppose that [Mt, Lt] is tangent to LKbR . From eigenvector mapping (4.7), we

have

ψt(p̂; γ(t), α(t))Lt(p; γ(t), α(t)) = µ(p̂) ·ψt(p̂; γ(t), α(t)).

After differentiating ψtLt = µ ·ψt with respect to t, we have

(
d

dt
ψt)Lt +ψt(

d

dt
Lt) = µ · ( d

dt
ψt).

Note that µ(p̂) does not depend on t, i.e., it is isospectral. It only depends on p̂ ∈ R̂.

From ψtLt = µ ·ψt and ( d
dt
ψt)Lt +ψt[Mt, Lt] = µ · ( d

dt
ψt), we have

(
ψtMt + (

d

dt
ψt)

)
Lt = µ ·

(
ψtMt + (

d

dt
ψt)

)
.

Since the eigenspace of Lt(p) associated with the eigenvalue µ is 1-dimensional gener-

ically, we find a meromorphic function λt(p̂; γ(t), α(t)) such that

ψtMt + (
d

dt
ψt) = λtψt. (4.12)

This meromorphic function λt certainly depends on Mt and ψt. However, the Lau-

rent tails of λt at poles only depend on Mt: For another ψ′t = %t ·ψt associated with
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a line bundle Lt where %t(p̂) is a local non-vanishing holomorphic function on R̂, λt

is transformed to

λt + %−1
t

d

dt
%t.

Thus the Laurent tails are well-defined quantities associated to Mt only. Hence, the

meromorphic functions λt in Equation (4.12) can be regarded as a global section of

a skyscraper sheaf Cπ−1(nK) for some positive integer n where π : R̂→ R and K is

a canonical divisor of R. In this notation we make a definition:

Definition 4.2. A residue section ρ(Mt) ∈ H0(R̂,Cπ−1(nK)) associated to Mt is

defined to be the Laurent tail {λt,i} of λt in Equation (4.12) at π−1(nK) where

K =
∑2g−2

i=1 pi.

We may observe the following lemma6:

Lemma 4.4. Suppose that d
dt

Lt = [Mt, Lt]. Then in the neighborhood of γj, M can

be written, up to commuting elements with Lt, as

M =
Mj,−1

z − z(γj)
+ Mj,0 +O(z − z(γj)) for j = 1, . . . , lg. (4.13)

In particular, the (l × l)-matrix Mj,−1 is given by vTj ·αj and

αjMj,0 = κjαj −
d

dt
αj + wj where vj,wj ∈ Cl.

Proof. Let us remind Equation (4.10)

d

dt
L = [M, L] = [M + P(L), L] = [M + Q, L] where P(x) ∈ C[x].

6In [44], the condition for M is given in the beginning and it is the starting point of the paper.

This corollary confirms the definition of [44]. See p.233 and Lemma 2.3 in [44] for detail.
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Accordingly, M can be specified up to commuting elements with L. So, it suffices to

prove that Mj,−1 is of rank 1. We know that π∗ψt is a multi-valued function on R

where π : R̂ → R. Taking a branch of it, from Equation (3.2) we may write π∗ψt

in the neighborhood of γj for j = 1, . . . , lg as

π∗ψt(z) =
cjαj(t)

z − z(γj(t))
+ψj,0(t) +O

(
(z − z(γj))

)
. (4.14)

Here cj ∈ C and αj(t) = (α1,j(t), . . . , αl−1,j(t), 1) ∈ Cl. Consequently,

d

dt
π∗ψt =

cj ·αj(t) · ddtz(γj(t))(
z − z(γj(t))

)2 +
cj · ddtαj(t)
z − z(γj(t))

+O(1). (4.15)

Equation (4.12) implies that the possible poles which λt can have are at the poles

of ψt and the pre-images π−1(nK) of the canonical divisor K, which are the poles

of the global meromorphic function µ(p̂). Consequently, after taking a branch of a

multi-valued function π∗λt on R around γj, we have

π∗λt =
λj,−1(t)

z − z(γj(t))
+ λj,0(t) +O

(
(z − z(γj(t)))

)
. (4.16)

Thus, from Equation (4.15) and (4.12) we see that

cjαj(t)Mj,−1 + cj
d

dt
z(γj(t))αj(t) = cjλj,−1(t)αj(t)

ψj,0(t)Mj,−1 + cjαj(t)Mj,0 + cj
d

dt
αj(t) = cjλj,0(t)αj(t) + λj,−1(t)ψj,0(t).

(4.17)

From Equation (4.17), we conclude that there is a vector vj(t) ∈ Cl such that

Mj,−1(t) = vTj (t) ·αj(t) where αj(t) · vTj (t) = − d

dt
z(γj(t)) + λj,−1(t)
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and letting κj(t) = λj,0(t)− 1
cj
ψj,0(t) · vT ,

αj(t)Mj,0(t) = κj(t)αj(t)−
d

dt
αj(t) + λj,−1(t)ψj,0(t).

Generically, the poles of ψt are simple and degψt = ĝ + l − 1. So in the

neighborhood of a pole γ̂j(t) of ψt we may write ψt as

ψt(ẑ) =
cj(t)

ẑ − ẑ(γ̂j(t))
+O(1) where cj(t) ∈ Cl.

Consequently,

d

dt
ψt =

cj(t) · ddt ẑ(γ̂j(t))(
ẑ − ẑ(γj(t))

)2 +
d
dt
cj(t)

ẑ − ẑ(γj(t))
+O(1). (4.18)

The next theorem indicates how the behavior of the poles of the global meromorphic

function λt on R̂ governs the dynamics of Lax representation.

Theorem 4.2. Suppose that d
dt

Lt = [Mt, Lt]. Then there is λt ∈ H0(R̂, π∗ Kn
R) for

some positive integer n such that ψt(p̂; γ, α)Mt−λtψt(p̂; γ, α) defines a global section

of Cl ⊗ Lt if and only if the flows are constant, i.e.,

d

dt
Lt = 0.

Proof. Suppose that there is λt ∈ H0(R̂, π∗ Kn
R) for some positive integer n such

that ψt(p̂; γ, α)Mt − λtψt(p̂; γ, α) defines a global section of Cl ⊗ Lt. Accordingly,

there is a global meromorphic function ξt on R̂ such that

ψtMt − λtψt = ξt ·ψt.

57



Of course, the only possible poles of ξt are at π−1(nK), since λt ∈ H0(R̂, π∗ Kn
R).

This implies that Mt preserves the eigenspaces of Lt. Thus, Mt and Lt commute.

From d
dt

Lt = [Mt, Lt], we conclude that

d

dt
Lt = 0.

Suppose that d
dt

Lt = 0. Since [Mt, Lt] = 0, the Mt preserves the eigenspaces of Lt.

What this amounts is that there is a global meromorphic function ςt(p̂) on R̂ such

that

ψtMt = ςtψt.

Notice that ςt only has poles possibly at π−1(nK) where n is a positive integer and K

is the canonical divisor of R, since M preserves the eigenspace of L and ψtLt = µ ·ψt

where µ(p̂) takes poles only at π−1(K). Thus,

ψt(p̂; γ, α)Mt − λtψt(p̂; γ, α) = (ςt − λt)ψt

defines a global section of Cl⊗Lt. Moreover, since d
dt

Lt = 0 implies that d
dt
ẑ(γ̂j(t)) =

0 for j = 1, . . . , ĝ + l − 1, we see that d
dt
ψt has only first order poles at γj from

Equations (4.18). Since

(ςt − λt)ψt = − d

dt
ψt,

we conclude that λt ∈ H0(R̂, π∗ Kn
R).

Theorem 4.2 exhibits how the dynamics on LKbR of a Lax representation d
dt

Lt =

[Mt, Lt] is related with Mt in terms of the residue section ρ(Mt) = {λt,i} ∈ H0(R̂,Cπ−1(nK)).

When the flow is constant, i.e., it is fixed, then ρ(Mt) = {λt,i} defines a global sec-

tion in H0(R̂, π∗ Kn
R). In other word, if Lt and Mt commutes, then Mt defines an
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endomorphism of Eγ(t),α(t). In Corollary 4.1, we will give a necessary and sufficient

condition for {λt,i} when the flow of Lt is linear, which is the second simplest case

next to the constant flows.

It is not hard to see that a residue section ρ(Mt) of Mt is gauge-invariant:

Lemma 4.5. For W ∈ SL(l,C), we have

ρ(Mt) = ρ(W−1 ·Mt ·W ).

Proof. Let ψtLt = µ ·ψt and ψtMt +
d
dt
ψt = λt ·ψt. Since

(WψtW
−1)Lt = W ·ψt(W

−1LtW ) ·W−1

= W · µψt ·W−1

= µ · (WψtW
−1),

we have

(WψtW
−1)Mt +

d

dt
(WψtW

−1) = λt ·WψtW
−1.

Accordingly,

ψt(W
−1MtW ) +

d

dt
ψt = W−1 ·

(
(WψtW

−1)Mt +
d

dt
(WψtW

−1)
)
W

= W−1 · (λt ·WψtW
−1) ·W

= λtψt.

For a positive integer n, consider a short exact sequence

0 // ObR // ObR ⊗ π∗ Kn  // Cπ−1(nK)
// 0. (4.19)
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This induces a long exact sequence

0 // H0(R̂,ObR) // H0(R̂, π∗ Kn)
 // H0(R̂,Cπ−1(nK))

∂ // H1(R̂,ObR) // H1(R̂, π∗ Kn) // H1(R̂,Cπ−1(nK)).

(4.20)

Note that

dimC H0(R̂,ObR) = 1, dimC H0(R̂,Cπ−1(nK)) = ln(2g − 2)

dimC H1(R̂,ObR) = ĝ, dimC H1(R̂,Cπ−1(nK)) = 0.

The time dependence of the residue section ρ(Mt) = {λt,i} associated to Mt can be

characterized by the following theorem:

Theorem 4.3. If [Mt, Lt] is tangent to LKbR , then

d

dt
Lt = ∂ρ(Mt) ∈ H1(R̂,ObR) ∼= H0(R̂,KbR).

Proof. In the notation of the proof of Lemma 4.2, we let

$1 = {ρ−1
t,i ·

d

dt
ψt} ∈ H0(R̂,ψ

∗
tΘPl−1).

Similarly, we may let

$2 = {ρ−1
t,i · λt,i ·ψt} = {ρ−1

t,i · (ψtMt +
d

dt
ψt)} ∈ H0(R̂,Cl ⊗ Lt⊗π∗ Kn).

Since H0(R̂,Cl ⊗ Lt⊗π∗ Kn /ObR) ∼= H0(R̂,ψ
∗
tΘPl−1 ⊗ π∗ Kn), $2 may induce an

element in H0(R̂,ψ
∗
tΘPl−1 ⊗ π∗ Kn). Let us denote this element by τ($2). Now we

let

$3 = {λt,i} ∈ H0(R̂,Cπ−1(nK)).
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Since ρt,i is a non-vanishing local holomorphic function, from Section 4.1.2 and the

short exact sequence (4.19)

0 // ObR // ObR ⊗ π∗ Kn  // Cπ−1(nK)
// 0,

ρ−1
t,i · λt,i

 // λt,i

it is clear that

∂{λt,i} = { d
dt

log gt,ij}.

From Theorem 4.1, we also have

δ{ρ−1
t,i ·

d

dt
ψt} = {ρ−1

t,j ·
d

dt
ρt,j − ρ−1

t,i ·
d

dt
ρt,i} = { d

dt
log gt,ij}.

Hence,

d

dt
Lt = ∂ρ(Mt).

Cohomologically, this is just chasing the following diagram:

// H0(R̂,ObR) //

��

H0(R̂, π∗Kn)

��

 // $3 ∈ H0(R̂, Cπ−1(nK))

σ

��

∂ //

H0(R̂, Cl ⊗ Lt)

��

// $2 ∈ H0(R̂, Cl ⊗ Lt⊗π∗Kn)

τ

��

 // H0(R̂, Cl ⊗ Lt⊗Cπ−1(nK))

τ

��

$1 ∈ H0(R̂,ψ
∗
tΘPl−1)

δ
��

ı // H0(R̂,ψ
∗
tΘPl−1 ⊗ π∗Kn)

 // H0(R̂,ψ
∗
tΘPl−1 ⊗ Cπ−1(nK))

∂ // H1(R̂,ObR)

Since τ ◦  =  ◦ τ and ı($1) = τ($2), we have

τ ◦ ($2) =  ◦ τ($2) =  ◦ ı($1) = 0.
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Hence, there is $3 ∈ H0(R̂,Cπ−1(nK)) such that

σ($3) = ($2).

From the chasing the diagram, we see

∂($3) = δ($1).

Note that Theorem 4.3 confirms Theorem 4.2 again and this cohomological

proof of Theorem 4.3 again shows that the gauge-invariance of the residue section,

which was verified in Lemma 4.5. Moreover, we can deduce from Theorem 4.3 that

the flow on the quotient LKbR of a Lax representation is described by the Laurent tails

of λt at π−1(nK) of R̂. A corollary we can have from Theorem 4.3 is as follows:

Corollary 4.1. Lt is linear on Picbg+l−1(R̂) if and only if

d

dt
ρ(Mt) ≡ 0 modulo span{

(
H0(R̂, π∗ Kn)

)
, ρ(Mt)}.

Proof. Clearly, we can observe that the flow Lt is straight if

1 d2

dt2
Lt = 0 or

2 d2

dt2
Lt = c · d

dt
Lt where c 6= 0.

By Theorem 4.3, d2

dt2
Lt = 0 if and only if d

dt
ρ(Mt) ≡ 0 modulo 

(
H0(R̂, π∗ Kn)

)
. And

d2

dt2
Lt = c · d

dt
Lt if and only if d

dt
ρ(Mt) ≡ 0 modulo ρ(Mt). This proves the claim.
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4.4 A characterization of flows in terms of M

The dynamics of a Lax representation d
dt

Lt = [Mt, Lt] is completely described

by Mt up to addition of a polynomial P(Lt) or commuting element Qt with Lt. As

in the case of meromorphic functions on a compact Riemann surface, a matrix-

valued meromorphic function on a compact Riemann surface is determined by the

behavior of its poles. Consequently, the characterization of poles of Mt determines

the dynamics of the Lax representation. From Lemma 4.3, we may see that at the

poles of Mt other than lg points γj, the poles of [Mt, Lt] are no greater than the poles

of Lt. This is one restriction for defining tangent flows and it turns out to be the

only one.

The existence of a meromorphic (matrix-valued) function on a compact Rie-

mann surface is manifested by the Riemann-Roch theorem. Accordingly, we may

not have M for generally prescribed poles D. What this means is that we need

special ansatz to have the existence of M. In [44], Krichever defines special ansatz

which guarantees the existence of M. That is, M exits if M has a special form in

Equation (4.13) at lg points: Let us denote the space of all M having representations

in Equation (4.13) at lg points by ND. For a given (γ, α) ∈M′
0, we have

dimCND
γ,α = l2(d+ lg − g + 1)− lg(l2 − l) = l2(d+ 1) where d = degD.

From this we conclude that we do have M for any prescribe poles D as long as it

obeys Equation (4.13). Thus any flow from the Lax representation comes from M

satisfying Lemma 4.3 and Equation (4.13).

The description of straight line flows in terms of Mt will be given as follows:
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Let K =
∑2g−2

i=1 pi be a canonical divisor of R where all pi are distinct. Consider Mt

satisfying Equation (4.13) around γj for j = 1, . . . , lg and locally given by

Mt(wi) = w−mi
i Lni

t around pi.

Here wi is a local coordinate around pi. From Lemma 4.3, we see that [Mt, Lt] is

tangent to LKbR . By Equation (4.14), we may see that

ψtMt = ζt,i(p̂) ·ψt locally.

Note that the set {ζt,i} of local meromorphic functions has poles only at the pre-

images π−1(K) of the canonical divisor K on R and they are invariant under time

shift, since ζt,i(p̂) = ŵi(p̂)
miµ(p̂)ni in the neighborhoods of π−1(pi) where π : R̂→ R

and ŵi is the lifting of wi. From Equation (4.12), we have

(λt − ζt,i) ·ψt =
d

dt
ψt around pi.

What this says is that the poles of λt at π−1(pi) are also isospectral, since d
dt
ψt does

not have poles at π−1(pi). Consequently, Theorem 4.3 confirms the linearity of this

flow, since

d

dt
Lt = ∂ρ(Mt) = constant.

We may see that adding an element in H0(R̂, π∗ Kn) to ρ(Mt) is equivalent to adding

an element commuting with L to M in the Lax representation d
dt

L = [M, L]: Consider

a time-dependent matrix Qt(p) such that [Qt, Lt] = 0 where p ∈ R. Since Qt and Lt

commute with each other, Qt preserves the eigenspaces of Lt. Accordingly, there is

a global meromorphic function ϑt(p̂) on R̂ such that

ψtQt = ϑt(p̂) ·ψt. (4.21)
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Moreover, since ψtLt = µ(p̂) ·ψt and the poles of µ(p̂) are at π−1(nK), we see that

the poles of ϑt are only at π−1(nK). Thus we conclude that

ϑt ∈ H0(R̂, π∗ Kn).

Note that ϑt is not necessarily isospectral unless Qt is of form P(Lt) where P is a

polynomial. Combining Equation (4.12) with Equation (4.21), we have

ψt(Mt + Qt) +
d

dt
ψt = (λt + ϑt) ·ψt.

Consequently, we see that

ρ(Mt + Qt) ≡ ρ(Mt) modulo H0(R̂, π∗ Kn).

After normalizing by M(p0) = 0, we denote this straight line flow by

a = (pi, ni,mi).

Note that mi can be a negative integer. The underlying machinery of this obser-

vation is that the sum of residues is zero. More precisely, what this implies is that

the behavior of ĝ + l − 1 poles is translated into the behavior of the lifting divisor

in π−1(nK). The linearity of the dynamics of ĝ + l − 1 poles is portrayed by the

linearity of the dynamics of the lifting divisor in π−1(nK).

It is not hard to see that theses flows commute with each other (Theorem

2.1 in [44]). Moreover, by constructing a symplectic structure on LK/SL(l,C),

Krichever calculates Hamiltonians. The Hamiltonian of the flow associated with

a = (pi, ni,mi) is given by

Ha(L) = − 1

ni
respi

Tr(w−miLni)dz for a = (pi, ni,mi) where
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wi is a local coordinate around pi. See p.248 in [44] for more detailed investigation.

We will give examples of Hitchin’s Hamiltonians in Section 4.5.
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4.5 Hamiltonians in terms of Krichever-Lax matrices

In the Hitchin’s investigation [32], the dynamics of Hamiltonians on the cotan-

gent bundle of the moduli space of stable vector bundles on a compact Riemann sur-

face is characterized by straight line flows. Indeed, it is a basic distinction between

algebraically completely integrable systems and completely integrable systems. The

essence of this characterization in [32] comes from the existence of a larger sym-

plectic manifold containing the cotangent bundle where each fiber, an open set of

the Jacobi variety of a spectral curve, is naturally compactified. The extension

of Hamiltonian vector fields to the larger symplectic manifold is equivalent to the

straightness of the associated Hamiltonian flows, since each fiber is a complex torus.

See p.101 in [32] or Section 2.2.2.

In the space of Lax matrices, we have not defined a symplectic structure nor a

Poisson structure. Because of this reason, we do not have any Hamiltonian dynamics

yet. The starting point of [44] is to define the dynamics of system on the space of

Lax matrices in terms of what is called a Lax equation:

∂taL = [Ma, L]. (4.22)

Note that Ma is a function of L. The matrix Ma characterizes the dynamics of flows

in the space of Lax matrices. Krichever gives the condition of Ma when the flows of

the Lax equation become straight (Theorem 2.1, Theorem 2.2 in [44]).

Moreover, he constructs a symplectic structure on the space of Lax matrices

and shows that the straight line flows coming from the Lax equation indeed are

Hamiltonian flows. That is, they define Hamiltonians associated with the symplectic
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structure.

Theorem 4.4. (p.248 in [44]) Let K =
∑2g−2

i=1 pi and ∂ta be the linear vector fields

corresponding to the Lax equation (4.22). Then the Hamiltonian Ha corresponding

to ∂ta is given by

Ha(L) = − 1

n+ 1
respi

Tr(w−mLn+1dz) for a = (pi, n,m) where

w is a local coordinate in the neighborhood of pi ∈ R.

In this section, we illustrate how Hamiltonians in the Hitchin system can be

expressed in terms of Lax matrices. Moreover, we will also provide the conditions on

the Krichever-Tyurin parameters for the Hitchin systems allied with classical groups

in [32].

Example 4.1. Let us follow Example 3.1 where R is given by

y2 =
5∏
i=1

(x− ci) with ci 6= 0.

A Higgs field is given by

L⊗ ω =
(
L0 + L1x+

4∑
k=1

BT
kAk

y + yk
x− xk

)dx
2y

=

(
l011 + l111x + ab

y+y3
x−x3

− ab
y+y4
x−x4

l012 + l112x + (a2b − ab)
y+y2
x−x2

+ ab
y+y3
x−x3

− a2b
y+y4
x−x4

l021 + l121x + (ab − b)
y+y1
x−x1

− ab
y+y3
x−x3

+ b
y+y4
x−x4

l022 + l122x − ab
y+y3
x−x3

+ ab
y+y4
x−x4

)
dx

2y

=

L11 L12

L21 L22

 dx

2y
where L0 =

(
l0ij

)
2×2

, L1 =
(
l1ij

)
2×2

and ω =
dx

2y
.

The condition for
{
Aj,Bj

}4

j=1
was given in Example 3.1. The Lax matrix L(p) has

poles at (xj, yj) for j = 1, . . . , 4 with residue BT
j Aj. We have the components of the
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Hitchin map (3.4) as

h1(p; L) = Tr L(p) and h2(p; L) = det L(p) where p ∈ R.

We may let w be a local coordinate at p1 = (∞,∞) where x = 1
w2 . Note that the

canonical divisor K of R is given by

(
dx

y
)0 = 2p1.

From this,

h1((x, y); L) = (l011 + l022) + (l111 + l122)x

= resp1 Tr(x
3
2 L
dx

y
) +

(
resp1 Tr(x

1
2 L
dx

y
)
)
x.

Accordingly, after identifyingHK with C5 the Hamiltonians coming from the Hitchin

map

H : LK/SL(l,C)→ C5 by H(L) = (H1(L), . . . , H5(L))

are given by

H1(L) : = resp1 Tr(x
3
2 L
dx

y
)

H2(L) : = resp1 Tr(x
1
2 L
dx

y
).

By the second condition in Definition 3.1, we have

L12(γ1) = l012 + l112x1 + (a2b− ab) y1 + y2

x1 − x2

+ ab
y1 + y3

x1 − x3

− a2b
y1 + y4

x1 − x4

= 0

L21(γ2) = l021 + l121x2 + (ab− b) y2 + y1

x2 − x1

− ab y2 + y3

x2 − x3

+ b
y2 + y4

x2 − x4

= 0.

Consequently, L12(p) ·L21(p) is holomorphic at γ1 = (x1, y1) and γ2 = (x2, y2). Thus,

h2(p; L) = det L(p) is holomorphic at γ1 = (x1, y1) and γ2 = (x2, y2). Let

L(p) =

L11(p) L12(p)

L21(p) L22(p)

 :=

J11(p) + ab y+y3
x−x3

J12(p) + ab y+y3
x−x3

J21(p)− ab y+y3x−x3
J22(p)− ab y+y3x−x3
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The second condition in Definition 3.1 implies

J11(γ3) + J21(γ3) = J12(γ3) + J22(γ3) and Jij(γ3) ∈ C.

Consequently,

det L(γ3) = J11(γ3)J22(γ3)− J12(γ3)J21(γ3)

+ ab
y3 + y3

x3 − x3

(
J11(γ3) + J21(γ3)− J12(γ3)− J22(γ3)

)
is a complex number. Thus, h2(p; L) = det L(p) is holomorphic at γ3 = (x3, y3).

In the similar way, we can prove that it is also holomorphic at γ4. The fact that

det L(p) is holomorphic at γi for i = 1, . . . , 4 implies that

det L =
1

2

((
Tr L

)2 − Tr L2
)

=
1

2

((
Tr L

)2 − Tr
(
L0 + L1x)

2

− 2 Tr
(
(L0 + L1x)(

4∑
k=1

BT
kAk

y + yk
x− xk

)
)

+ Tr
( 4∑
k=1

BT
kAk

y + yk
x− xk

)2
)

=
1

2

((
Tr L

)2 − Tr
(
L0 + L1x)

2
)

=
1

2

((
resp1 Tr(x

3
2 L
dx

y
) + resp1 Tr(x

1
2 L
dx

y
)x

)2

− resp1 Tr(x
3
2 L2dx

y
)−

(
resp1 Tr(x

1
2 L2dx

y
)
)
x−

(
resp1 Tr(x−

1
2 L2dx

y
)
)
x2

)
.

Thus, we may write Hamiltonians in the Hitchin’s map explicitly in terms of the
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Hamiltonians constructed by Krichever as follows:

H1(L) = resp1 Tr(x
3
2 L
dx

y
)

H2(L) = resp1 Tr(x
1
2 L
dx

y
)

H3(L) =
1

2

((
resp1 Tr(x

3
2 L
dx

y
)
)2 − resp1 Tr(x

3
2 L2dx

y
)
)

H4(L) =
1

2

(
2 resp1 Tr(x

3
2 L) · resp1 Tr(x

1
2 L
dx

y
)− resp1 Tr(x

1
2 L2dx

y
)
)

H5(L) =
1

2

((
resp1 Tr(x

1
2 L
dx

y
)
)2 − resp1 Tr(x−

1
2 L2dx

y
)
)
.

The Hitchin’s HamiltoniansHi are in the ring generated by Krichever’s Hamiltonians

{(
resp1 Tr(x

m
2 Ln

dx

y
)
)r | n, r ∈ N and m ∈ Z

}
.

We will investigate Example 4.1 more closely in the next example for classical

groups in Theorem 2.3.

Example 4.2. Let us characterize a subspace of the space of the Krichever-Tyurin

parameters coming from symplectic vector bundles in Example 4.1. From the

Hitchin’s investigation in [32], the characteristic polynomial of a Higgs field as-

sociated with a symplectic vector bundle must be of form

R(µ, p) = µ2l + h2(p)µ
2l−2 + · · ·+ h2l−2(p)µ

2 + h2l(p),

since a symplectic form makes eigenvalues be a pair µ,−µ. Accordingly, we have

h1((x, y); L) = 0 in Example 4.1. Thus, the condition on a Higgs field is given by

Tr L0 = Tr L1 = 0.

On the other hand, the characterization of a Higgs field associated with a holomor-

phic vector bundle of rank 2 with a non-degenerate symmetric bi-linear form is given
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as follows: In this case, the symmetric form also provides a pair µ,−µ of eigenval-

ues. However, the characteristic polynomial of a Higgs field has another condition in

addition to having a pair of eigenvalues. The condition is that h2((x, y); L) = det(L)

is the square of a polynomial Pfaff(L), which is called the Pfaffian. Consequently,

from the following equation

det L =
1

2

((
Tr L

)2 − Tr
(
L0 + L1x)

2
)

= −1

2

(
Tr

(
L0 + L1x)

2
)

=
(

Pfaff(L)
)2

,

we have a relation (
Tr

(
L0L1)

)2

= Tr L2
0 · Tr L2

1

along with h1((x, y); L) = 0.

Example 4.3. Let us follow Example 3.2 where the moduli space of vector bundles

of rank 3 over a hyper-elliptic curve was considered. Let p1 = (∞,∞). Similarly

to Example 4.1, h1(p; L), h2(p; L), and h3(p; L) are holomorphic at γi for i = 1, . . . , 6

where

H : LK/SL(l,C)→ HK by H(L) = (h1(p; L), h2(p; L), h3(p; L)).

Identifying HK with C10, Hamiltonians in the Hitchin map are given by

H : LK/SL(l,C)→ C10 by H(L) = (H1(L), . . . , H10(L)).

Note that

dimC H0(R,KR) = 2

dimC H0(R,K2
R) = 3

dimC H0(R,K3
R) = 5.

72



It is easy to see that

h1((x, y); L) = (l011 + l022 + l033) + (l111 + l122 + l133)x

= resp1 Tr(x
3
2 L
dx

y
) +

(
resp1 Tr(x

1
2 L
dx

y
)
)
x.

Thus,

H1(L) : = resp1 Tr(x
3
2 L
dx

y
)

H2(L) : = resp1 Tr(x
1
2 L
dx

y
).

The fact that h2(p; L) is holomorphic at γi for i = 1, . . . , 4 implies that

h2((x, y); L) =
1

2

((
resp1 Tr(x

3
2 L
dx

y
) + resp1 Tr(x

1
2 L
dx

y
)x

)2

− resp1 Tr(x
3
2 L2dx

y
)−

(
resp1 Tr(x

1
2 L2dx

y
)
)
x−

(
resp1 Tr(x−

1
2 L2dx

y
)
)
x2

)
.

Letting resp1 Tr(x
m
2 Ln dx

y
) by H{m,n}(L) in order to simplify the notations, we have

h3((x, y); L) = det L =
1

6

(
Tr L

)3 − 1

2

(
Tr L2

)
Tr L +

1

3
Tr L3

=
1

6

(
H{3,1}(L) +H{1,1}(L)x

)3

+
1

2

(
H{3,2}(L) +H{1,2}(L)x+H{−1,2}(L)x2

)(
H{3,1}(L) +H{1,1}(L)x

)
+

1

3

(
H{3,3}(L) +H{1,3}(L)x+H{−1,3}(L)x2 +H{−3,3}(L)x3

)
.

Let us remind that we may take a basis of H0(R,K3
R) as

{
xi
dx⊗ dx⊗ dx

y3
, y
dx⊗ dx⊗ dx

y3
| i = 0, 1, 2, 3

}
.

The Hitchin’s HamiltoniansHi are in the ring generated by Krichever’s Hamiltonians

{(
resp1 Tr(x

m
2 Ln

dx

y
)
)r | n, r ∈ N and m ∈ Z

}
.
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Explicitly, they are given as follows:

H1(L) = H{3,1}(L)

H2(L) = H{1,1}(L)

H3(L) =
1

2

(
H{3,1}(L)2 −H{3,2}(L)

)
H4(L) =

1

2

(
2H{3,1}(L)H{1,1}(L)−H{1,2}(L)

)
H5(L) =

1

2

(
H{1,1}(L)2 −H{−1,2}(L)

)
H6(L) =

1

6
H{3,1}(L)3 +

1

2
H{3,1}(L)H{3,2}(L) +

1

3
H{3,3}(L)

H7(L) =
1

2

(
H{3,1}(L)2H{1,1}(L) +H{1,2}(L)H{3,1}(L) +H{3,2}(L)H{1,1}(L)

)
+

1

3
H{1,3}(L)

H8(L) =
1

2

(
H{3,1}(L)H{1,1}(L)2 +H{−1,2}(L)H{3,1}(L) +H{1,2}(L)H{1,1}(L)

)
+

1

3
H{−1,3}(L)

H9(L) = 0

H10(L) =
1

6
H{1,1}(L)3 +

1

2
H{−1,2}(L)H{1,1}(L) +

1

3
H{−3,3}(L).

Example 4.4. Let us describe a Higgs field associated with a holomorphic vector

bundle of rank 3 with a non-degenerate symmetric bi-linear form among the Higgs

fields in Example 4.3. In this case, the characteristic polynomial of a Higgs field is

given by

R(µ, p) = µ(µ2 + h2(p)).

Consequently, the condition is given by

h1((x, y); L) = h3((x, y); L) = 0.

Example 4.5. Following Example 3.3, consider vector bundles of rank 2 over a

(4, 3)-curve R = {R(x, y) = 0} of genus 3 defined by

R(x, y) = y4+x3+c3,0y
3+c2,1y

2x+c1,2yx
2+c2,0y

2+c1,1yx+c0,2x
2+c1,0y+c0,1x+c0,0.
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This curve is a 4-sheeted covering over C

π : R→ C by π(x, y) = x.

We first characterize the ramification points of π. For a generic (4, 3)-curve, it is

ramified over 4 points with multiplicity 4. On the other hands, the possible places

of the zeros of dx
Ry

must be at the ramification points where deg dx
Ry

= 4: When a

ramification point is over a complex number, we may find a local coordinate z such

that

x = z4 and y = t1z where t1 ∈ C.

Accordingly, dx
Ry(z4,t1z)

= 4z3dz
t2z3
6= 0. Thus, the holomorphic differential does not take

zeros at the ramification points over complex numbers. Hence, we conclude that it

must be ramified over the infinity where a local coordinate w is given by

x =
1

w4
and Ry(

1

w4
, t1

1

w3
) = t2

1

w9
where t1, t2 ∈ C.

Therefore, it is ramified over 3 points in C and the infinity ∞ with multiplicity

4 and the canonical divisor K of dx
Ry

is 4 · (∞,∞). The Hitchin map is given by

H : LK/SL(l,C)→ HK ∼= C9 by

H(L) = (h1(p; L), h2(p; L)) = (H1(L), . . . , H9(L)).

Here

dimC H0(R,KR) = 3 and dimC H0(R,K2
R) = 6.

Let p1 = (∞,∞). A Higgs field is given by

L
dx

Ry

=
(
L0 + L1x+ L2

y

t1
+

6∑
k=1

BT
kAk

y +Ry(xk, yk)− yk
x− xk

)dx
Ry

where Ry =
∂R(x, y)

∂y
.
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We see that

h1((x, y); L) = (l011 + l022) + (l111 + l122)x+ (l211 + l222)
y

t1

= resp1 Tr(w−5L
t2dx

Ry

) +
(

resp1 Tr(w−1L
t2dx

Ry

)
)
x+

(
resp1 Tr(w−2L

t2dx

Ry

)
) y
t1
.

Thus,

H1(L) : = resp1 Tr(w−5L
t2dx

Ry

)

H2(L) : = resp1 Tr(w−1L
t2dx

Ry

)

H3(L) : = resp1 Tr(w−2L
t2dx

Ry

).

Let us denote resp1 Tr(w−mLn t2dx
Ry

) by H{m,n}(L) in order to simplify the notations.

The fact that h2(p; L) is holomorphic at γi for i = 1, . . . , 4 implies that

h2((x, y); L) =
1

2

((
H{5,1}(L) +H{1,1}(L)x+H{2,1}(L)

y

t1

)2

−H{5,2}(L)−H{2,2}(L)
y

t1
−H{−1,2}(L)(

y

t1
)2

−H{1,2}(L)x−H{−2,2}(L)
xy

t1
−H{−3,2}(L)x2

)
.

The Hamiltonians induced from the Hitchin’s map are given explicitly in terms of

the Hamiltonians constructed by Krichever as follows:

H1(L) = H{5,1}(L), H2(L) = H{1,1}(L), H3(L) = H{2,1}(L)

H4(L) =
1

2

(
H{5,1}(L)2 −H{5,2}(L)

)
, H5(L) =

1

2

(
2H{5,1}(L)H{2,1}(L)−H{2,2}(L)

)
H6(L) =

1

2

(
H{2,1}(L)2 −H{−1,2}(L)

)
, H7(L) =

1

2

(
2H{1,1}(L)H{1,1}(L)−H{1,2}(L)

)
H8(L) =

1

2

(
2H{2,1}(L)H{1,1}(L)−H{−2,2}(L)

)
, H9(L) =

1

2

(
H{1,1}(L)2 −H{−3,2}(L)

)
.

Example 4.6. Following Example 4.5, consider a holomorphic vector bundles of

rank 2 over a (4, 3)-curve R = {R(x, y) = 0} of genus 3 with a symplectic form.

The characterization of such bundles is exactly same as in the case of Example 4.2.
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That is, the condition is simply to put

h1((x, y); L) = 0.

Furthermore, analogously to Example 4.2, it is not hard to see that the condition

on a Higgs field associated with a holomorphic vector bundle of rank 2 with a non-

degenerate symmetric bi-linear form becomes(
Tr

(
L0L1)

)2

= Tr L2
0 · Tr L2

1(
Tr

(
L0L2)

)2

= Tr L2
0 · Tr L2

2(
Tr

(
L1L2)

)2

= Tr L2
1 · Tr L2

2

in addition to h1((x, y); L) = 0.
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Appendix A

This part is an exposition of papers by I. Krichever [35, 37] which construct

a correspondence effectively between commutative rings of ordinary differential op-

erators in one variable and certain geometric data. This effective and constructive

algorithm is worth reviewing for our future investigation. For a general categorical

approach using abstract machinery, let us note [49, 52]:

A.1 Commutative rings of ordinary differential operators in one vari-

able

Consider two monic differential operators of one variable:

L1 =
n∑
i=0

ui(x)
di

dxi
and L2 =

m∑
i=0

vi(x)
di

dxi

satisfying a commutative relation [L1, L2] = 0. The subring R(L1, L2) generated by

L1 and L2 is a commutative subring of the ring D of differential operators in one

variable x. The Burchnall-Chaundy lemma in [9] states that there is a polynomial

relation

R(L1, L2) = 0.

Let us mention that the commutative relation [L1, L2] = 0 is a system of differential

equations. We will call this a system of Novikov equations.
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A.1.1 When m and n are coprime

The direct problem asks us to construct a Riemann surface with a distin-

guished point P0 and g points γ1, . . . , γg on it from a given subring R(L1, L2).

For L1ψ(x, k) = knψ(x, k), there is a unique normalized formal solution which

is called a Baker-Akhiezer function

ψ(x, k, x0) = exp
(
k(x− x0)

)
(
∞∑
s=0

ξs(x)k
−s) with ψ(x0, k, x0) = 1.

It is meromorphic in k ∈ C. Notice that for λ = kn, we have an n-dimensional

solution space of L1ψ = λψ given by

ψi(x, λ, x0) = ψ(x, εik, x0) with εni = 1.

Since [L1, L2] = 0, we can solve a simultaneous eigenvalue problem
L1ψ(x, k, x0) = λψ(x, k, x0)

L2ψ(x, k, x0) = µψ(x, k, x0).

From the (n × n)-matrix representation L2(λ) on the n-dimensional space L(λ) of

solutions of L1ψ = λψ, we have

R(λ, µ) = det(µ · In×n − L2(λ)).

Now the key observation is
λ(k) = kn

µ(k) = km +
∑∞

i=−m+1 aik
−i
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From this observation and (n,m) = 1, it is obvious that for all λ(k) = λ(εik) but a

finite number of λ, we have n distinct µ’s given by

µi = µ(εik).

Moreover, by the same reasoning, we have exactly one point P0 = (λ, µ) = (∞,∞)

as k →∞. This proves that R = {R(λ, µ) = 0} is an irreducible algebraic curve, not

necessarily smooth, with one point P0 at the infinity. We will call it the associated

Burchnall-Chaundy Riemann surface. It is not hard to see that

R(λ, µ) = µn+λm+
∑
i,j

ci,jµ
iλj where 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1, im+ jn < nm.

For a generic pair (L1, L2), the associated Burchnall-Chaundy Riemann surface R

is smooth and the genus is given by

g =
(n− 1)(m+ 1)

2
− (n− 1) =

(n− 1)(m− 1)

2
.

This irreducible algebraic curve is called an (n,m)-curve in literature, i.e., [9, 18].

One example is a hyper-elliptic curve, which is a (2, 2g+1)-curve. Furthermore, since

we constructed a one-dimensional space of solutions of the simultaneous eigenvalue

problem over a point P = (λ, µ) in the (n,m)-curve, we have a unique function

ψ(x, P, x0) = ψ(P ) on R by the normalization condition ψ(x0, P, x0) = 1.

Lemma A.1. The number of poles of ψ(P ) is given by (n − 1)(m − 1)/2 for a

generic pair (L1, L2).

Proof. Let R be the constructed smooth (n,m)-curve with genus g = (n− 1)(m−

1)/2 with P0 and consider the n-sheeted covering map λ : R → P1. Letting Qi =
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(λ, µi) for i = 0, . . . , n− 1 be the inverse images of λ, we can define a meromorphic

function

F (λ, x0) = det(∂ixψ(x,Qj, x0)) on P1.

Since the zeros of F are the ramification points except the infinity λ = ∞, the

number of zeros of F is m with multiplicity

1

n
· n(n− 1)

2
=
n− 1

2
.

The poles of F consist of poles of ψ(P ) and the infinity λ =∞ with multiplicity of

(n− 1)/2 from ψ(x, k, x0) = exp
(
k(x− x0)

)
(1 +

∑∞
s=1 ξs(x)k

−s). Since the number

of zeros of F is the same as the number of poles of F , we have

N +
n− 1

2
= m · n− 1

2
,

where N is the number of poles of ψ(P ) on R. Consequently,

N =
(n− 1)(m− 1)

2
= g.

Let us consider the inverse problem: Suppose we are given an algebraic spec-

tral data (R, P0, γ1, . . . , γg). Here, R is a compact Riemann surface with one distin-

guished point P0 and g points γ1, . . . , γg in general position on R. By the Riemann-

Roch theorem, we have a unique Baker-Akhiezer function ψ having poles at those

points and a local expression at P0 is given by

ψ(x, k, x0) = exp
(
k(x− x0)

)
(
∞∑
s=0

ξs(x)k
−s) with ψ(x0, k, x0) = 1.
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k−1 is a local parameter at P0. Let A(R, P0) be the set of meromorphic functions

regular except (possibly) at P0. If f ∈ A(R, P0), then locally

f = kn +
∞∑

i=−n+1

ai(x)k
−i.

Formally we can construct a unique monic differential operator Lf in one variable

x such that

(Lf − f)ψ = O(k−1) exp(k(x− x0)).

The function (Lf − f)ψ is also defined on R and satisfies all the properties of the

Baker-Akhiezer function. Consequently (Lf − f)ψ ≡ 0 on R. Therefore, the Baker-

Akhiezer function defines an isomorphism from A(R, P0) to a commutative subring

of the ring D of differential operators

A(R, P0)
ψ
↪→ D by f 7→ Lf .

We need to show that the image of A(R, P0) contains a pair of mutually coprime

two monic operators. Let n be the minimal positive number where there exists a

function f ∈ A(R, P0) with ordP0(f) = −n. If g > 0, then n > 1 and there exists

another function g ∈ A(R, P0) with ordP0(g) = −an−1 where a is a positive integer.

Hence, Lf and Lg are a mutually coprime pair. Notice that the coprime pair does

not necessarily generate A(R, P0).

The inverse problem deals with a broader class of Riemann surfaces than

the considered direct problem. That is, two coprime generic operators can only

construct an (n,m)-curve among all Riemann surfaces, but in the inverse problem

we considered a general compact Riemann surface as a part of algebraic spectral
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data (R, P0, γ1, . . . , γg). In fact, there is a considerably more general version of the

inverse problem than the direct problem. That is, the inverse problem associated

with the following algebraic spectral data

(R̃, P1, . . . , Pl, γ1, . . . , γg+l−1+d, E1, . . . , Ed)

Here, R̃ is the unique smooth model of a singular Riemann surface R with singu-

larities E1, . . . , Ed. This inverse construction can characterize all the commutative

subrings containing a coprime pair of differential operators in D, which is stated in

[35].

A.1.2 When m and n are not coprime

We will retain the same notation in this section as in the previous section.

The rank of a ring R(L1, L2) generated by L1 and L2 is the minimal number l such

that

µ(k) = µ(εlk) where ε = exp(
2πi

n
).

This is equivalent to the existence of µ̃ such that

µ(k) = µ̃(kl).

Certainly, l is a common divisor of n and m, not necessarily the greatest common

divisor. In the previous section, we considered the case l = 1. Notice that it is

possible that l = 1 even if (m,n) 6= 1. In this section we will consider only when

(m,n) = l > 1 in the direct problem.
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Let us consider the Burchnall-Chaundy Riemann surface associated with a

higher rank. It is when µ(k) = µ̃(kl) for l > 1: In this case,

R(λ, µ) =
n∏
j=1

(µ− µ(εik)) =
n′∏
j=1

(µ− µ̃(ε̃ik))
l = (R̃(λ, µ))l,

where (εik)
n = (ε̃ik)

n′ = λ for n′l = n. This associated Burchnall-Chaundy Riemann

surface R = {R̃(λ, µ) = 0} is an irreducible algebraic (n′,m′)-curve with genus

g = (n′− 1)(m′− 1)/2 where m′l = m, (n′,m′) = 1 and compactified with one point

at the infinity, since 
λ(k̃) = k̃n

′

µ(k̃) = k̃m
′
+

∑∞
i=−m′+1 aik̃

−i.

From the simultaneous eigenvalue problem, we have an l-dimensional space of eigen-

vectors over each point P = (λ, µ) ∈ R with a basis of normalized Baker-Akhiezer

functions

ψj(x, P, x0) =
n−1∑
s=0

χsj(P, x0)cs(x, λ, x0) with

∂ixψj(x, P, x0)|x=x0 = δij where 0 ≤ i, j ≤ l − 1.

Here ci(x, λ, x0) for i = 0, . . . , n−1 is a normalized basis of the n-dimensional space

of solutions of L1ψ = λ(k)ψ with

∂jxci(x, λ, x0)|x=x0 = δij where 0 ≤ i, j ≤ n− 1.

Lemma A.2. The number of poles of ψ(P ) is lg for a generic pair (L1, L2).

Proof. Let R be the constructed smooth (n′,m′)-curve with genus g = (n′−1)(m′−

1)/2 with P0 and consider the n′-sheeted covering map λ : R → P1. Letting Qi =

84



(λ, µi) for i = 0, . . . , n′− 1 be the inverse images of λ, we can define a meromorphic

function

F (λ, x0) = det

(
∂ixψ(x,Qj, x0)

)
n′×n′

.

Similar to the proof of Lemma A.1, we may conclude the desired result using the

constructed meromorphic function.

Note that the poles of ψi(P ) only depend on the base point x0. Of course,

the zeros of ψ(P ) will move as x varies. For a generic pair (L1, L2), the poles

γ1(x0), . . . , γlg(x0) are simple and there are constants αi,j(x0) such that

αi,j(x0) resγi(x0) ψl−1 = resγi(x0) ψj.

The set
{
γi(x0), {αi,j(x0)}l−1

j=0

}lg

i=1
∈ S lg(R × Pl−1) is a set of Tyurin parameters.

The residue resγi(x0) ψj will vary as x varies. Let

αi(x0) = (αi,0(x0), . . . , αi,l−2(x0), 1) and βi(x) = resγi(x0) ψl−1.

Around a point γi with a local variable zi, the vector-valued Baker-Akhiezer function

ψ = (ψ0, . . . , ψl−1) can be written as

ψ(zi) =
βi(x)αi(x0)

zi − zi(γi(x0))
+O(1).

Let

Ψ(x, P, x0) =

(
∂ixψj(x, P, x0)

)
l×l

where P ∈ R.

Since the poles of ψ do not depend on x, letting βi,j(x) = resγi(x0) ∂
j
xψl−1, Ψ can be

written as around a point γi with a local variable zi,

Ψ(x, zi, x0) =
βTi (x)αi(x0)

zi − zi(γi(x0))
+O(1) where βi(x) =

(
βi,0(x), . . . , βi,l−1(x)

)
.
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From Ψ we can extract the final geometric information, namely, the set {ũ0, ũ1, . . . , ũl−2}

of l − 1 functions from

A = (∂xΨ)Ψ−1 =



0 1 0 · · · 0

0 0 1
. . .

...

...
...

. . . . . . 0

0 0 · · · 0 1

k + ũ0 ũ1 · · · ũl−2 0


+O(k−1).

In the case of rank l = 1, this is

A = ∂x logψ = k +O(k−1).

When we reconstruct Ψ from the information {ũ0, ũ1, . . . , ũl−2} in the inverse prob-

lem, we encounter the ambiguity of the singular part of Ψ. It can be removed by

solving the Riemann problem of factoring Ψ into a product of an entire part and a

singular part around k =∞:

Ψ0(x, k, x0) =
( ∞∑
i=0

Ξi(x, x0)k
−i)Ψ with Ξ0(x, x0) = Ψ0(x0, k, x0) ≡ idl×l .

Note that Ψ0(x, k, x0) is entire in k ∈ C and the exponential analogue in a scalar-

valued Baker-Akhiezer function ψ(x, k, x0) = exp
(
k(x − x0)

)
(
∑∞

i=0 ξi(x)k
−i). In-

deed, the vector-valued Baker-Akhiezer function ψ is given by

ψ =
( ∞∑
i=0

ξi(x, x0)k
−i)Ψ0(x, k, x0) with ξ0(x, x0) = (1, 0, . . . , 0).
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Moreover,

A0 = (∂xΨ0)Ψ
−1
0 =



0 1 0 · · · 0

0 0 1
. . .

...

...
...

. . . . . . 0

0 0 · · · 0 1

k + u0 u1 · · · ul−2 0


.

In the case of rank l = 1, this is

A0 = ∂x log exp(k(x− x0)) = k.

This datum A0 has a significant geometric meaning for a higher rank: In the case of

rank one, a divisor D = γ1 + · · ·+ γg in the inverse problem is enough to construct

a line bundle of degree g + 1 on R by taking P0 = (∞,∞) as another divisor.

However, in a higher rank case Tyurin parameters alone are not enough to construct

a vector bundle, i.e., a corresponding commutative subring of differential operators.

Data combining Tyurin parameters with a set {u0(x), u1(x), . . . , ul−2(x)} of “control

parameters” are indeed sufficient. These control parameters determine the behavior

of a vector bundle of rank l over R at the infinity P0 = (∞,∞). That is, Ψ0 is the

transition function in the neighborhood of P0. The x-dynamics of control parameters

in the moduli space of vector bundles will be investigated later.

In the inverse problem, we are given an algebraic spectral data

(
R, P0,

{
γi, {αi,j}l−1

j=0

}lg

i=1
, {u0(x), u1(x), . . . , ul−2(x)}

)
.

From these data, we may construct a unique vector-valued Baker-Akhiezer function

ψ = (ψ0, . . . , ψl−1) having poles at those points with the conditions αi,j resγi
ψl−1 =
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resγi
ψj and a local expression at P0 is given by

ψ =
( ∞∑
i=0

ξi(x)k
−i)Ψ0(x, k) with ξ0(x) = (1, 0, . . . , 0).

Let A(R, P0) be the set of meromorphic functions regular except (possibly) at P0.

Formally we can construct a unique monic differential operator Lf of order ln′ in

one variable x such that

(Lf − f)ψ = O(k−1)Ψ0 where ordP0f = −n′.

Remark that the vector-valued Baker-Akhiezer function ψ is uniquely associated

with a given Tyurin parameter by the Riemann-Roch theorem. From this remark

we conclude that

(Lf − f)ψ ≡ 0.

Hence, the vector-valued Baker-Akhiezer function defines an isomorphism from

A(R, P0) to a commutative subring of the ring D of differential operators

A(R, P0)
ψ∼= A ⊆ D by f 7→ Lf .

We saw that the commutative subring associated with rank one contains a coprime

pair of operators. By the same reasoning, we may conclude that l is the greatest

common divisor of the orders of the operators in A. Therefore, we have solved the

inverse problem. See Theorem 2.3 in [37] for detailed proofs.
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A.2 (n,m)-curve

Let n and m be coprime. An (n,m)-curve [6, 9] is an algebraic curve with a

representation for 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1, im+ jn < nm

0 = R(x, y) = yn + xm +
∑
i,j

ci,jy
ixj.

For example, a hyper-elliptic curve is a (2, 2g + 1)-curve: In general, a (2, 2g + 1)-

curve is given by

0 = y2 + x2g+1 +

g∑
j=0

cjyx
j +

2g∑
i=0

dix
i.

A hyper-elliptic curve is a (2, 2g + 1)-curve with all cj = 0 for j = 0, . . . , g.

Definition A.1. Let n and m be coprime. The Weierstrass gap sequence Wn,m is

the set of positive integers which are not representable in the form

an+ bm where a, b are non negative integers.

The number of these integers is called the length of the sequence.

It is not hard to prove that the length of Wn,m = {w1, . . . , wg} is equal to

(n−1)(m−1)
2

which is the genus of an (n,m)-curve and its maximal element wg is

2g − 1 (p.84 in [6] or p.561 in [9]). Using the Weierstrass gap sequence, we can

find g linearly independent holomorphic differentials on the curve. The g linearly

independent holomorphic differentials are given by

xaiybi
dx

Ry

where i = 1, . . . , g

where {(ai, bi)}gi=1 is the set of the first g non-gaps, i.e., ain + bim /∈ Wn,m with

ai, bi non-negative and Ry(x, y) = ∂R(x,y)
∂y

.
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For instance, the Weierstrass gap sequence W2,2g+1 of a (2, 2g + 1)-curve is

{1, 3, 5, . . . , 2g − 1}.

Thus, g linearly independent holomorphic differentials are given by

dx

Ry

, x
dx

Ry

, . . . , xg−1 dx

Ry

.

In particular, for a hyper-elliptic curve we have Ry(y, x) = 2y. Hence,

dx

2y
, x
dx

2y
, . . . , xg−1dx

2y
.

The Weierstrass gap sequence W4,3 of a (4, 3)-curve is

{1, 2, 5}.

Hence, 3 linearly independent holomorphic differentials of a (4, 3)-curve are given

by

dx

Ry

, x
dx

Ry

, and y
dx

Ry

.
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Teoret. Fiz., 67(6):2131–2144, 1974.

91



[13] B. A. Dubrovin and S. P. Novikov. A periodic problem for the Korteweg-de
Vries and Sturm-Liouville equations. Their connection with algebraic geometry.
Dokl. Akad. Nauk SSSR, 219:531–534, 1974.

[14] B. A. Dubrovin. A periodic problem for the Korteweg-de Vries equation in the
class of finite band potentials. Funkcional. Anal. i Priložen., 9(3):41–51, 1975.
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mann surfaces and the Kadomcev-Petviašvili equation. I. Funktsional. Anal. i
Prilozhen., 12(4):41–52, 1978.

[39] I. M. Krichever. Rational solutions of the Kadomcev-Petviašvili equation and
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