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Abstract

The Adaptive Time-delay Neural Network (ATNN), a paradigm for training a
nonlinear neural network with adaptive time-delays, is described. Both time delays
and connection weights are adapted on-line according to a gradient descent approach,
with time delays unconstrained with respect to one another, and an arbitrary number
of interconnections with different time delays placed between any two processing units.
Weight and time-delay adaptations evolve based on inputs and target outputs consist-
ing of spatiotemporal patterns (e.g. multichannel temporal sequences). The ATN N is
used to generate circular and figure-eight trajectories, to model harmonic waves, and
to do chaotic time series predictions. Its performance outstrips that of the time-delay
neural network (T DN N), which has adaptable weights but fixed time delays. Appli-
cations to identification and control as well as signal processing and speech recognition

are domains to which this type of network can be appropriately applied.






1 Introduction

Understanding the dynamic behavior of neural networks is a key issue in the development
of network architectures that recognize and produce temporal sequences and spatiotemporal
patterns. Whereas simple feed-forward networks can be trained to accomplish pattern recog-
nition tasks with complex nonlinear boundaries, they are limited to processing static patterns
- patterns that are fixed rather than temporal in nature. We propose here a network that
overcomes this limitation and that is capable of processing temporally modulated signals.
Networks with this capability can play an important role in applications domains that have
naturally time-varying properties to their signals and dynamic situations. These domains
include identification and control as well as signal processing and speech recognition.

An important contribution in this area has been the time-delay neural network (TDNN)
proposed by Waibel et al [26], which employs time-delays on connections in feedforward
network and has been successfully applied to speech recognition [27, 10]. The time-delay
neural network also classifies spatiotemporal patterns and provides robustness to noise and
graceful degradation [15]. However, a limitation of the TDNN as originally posed [26] is its
inability to learn or adapt the values of the time delays. Time delays are fixed initially and
remain the same throughout training. As a result, the system may have poor performance
due to the inflexibility of time delays and due to mis-match between the choice of time delay
values and the temporal location of the important information in the input patterns. In
addition, the system performance may vary depending on the range of the time delay values.

To overcome this limitation, we have used an Adaptive Time Delay Neural Network model

(ATNN) [13]. This network adapts its time delay values as well as its weights during training,



to better accommodate to changing temporal patterns, and to provide more flexibility for
optimization tasks. The AT NN used here allows arbitrary placement of time delays along
interconnections and adapts those time delays independently of one another. Furthermore,
time-windows are not used as in previous work [2, 26] but instead classification relies on a set
of individual time delay values associated with each interconnection. Although other artificial
neural network architectures that make use of time delays have been suggested [23, 6, 2, 5],
these paradigms employ different training rules or different network topologies, and the
network presented here is simple to use and has a general formulation.

In this paper, we describe the AT NN network architecture and learning paradigm. The
derivation of the ATNN training rule is given in the appendix. Applications are shown
to trajectory generation, with trajectories of different topologies. AT NN modeling of har-
monic waves is then described, followed by prediction of a chaotic time series. Performance
comparisons show that the AT NN has greater capability that its predecessor, the TDNN.
In conclusion, we discuss the relationship of the ATNN to other networks, its biological

plausibility, and the applications domains to which it would natually apply.

2 Adaptive Time Delay Neural Model

2.1 Network Architecture

The proposed ATNN model employs modifiable time delays along the interconnections
between two processing units, and both time delays and weights are adjusted according
to system dynamics in an attempt to achieve the desired optimization. The schematic

architecture of the connections from one processing unit to another processing unit of the



Delay Block

Figure 1: Delay Block: Basic time-delay connections between two processing units (node ¢
of layer h — 1 and node j of layer h) in ATNN, and nj; ,—; is the number of delays applied.
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Figure 3: Three layered ATNN

ATNN is depicted in Figure 1. The configuration of multiple interconnections between a
single pair of units, each with its own delay, is called a delay block. Node ¢ of layer A — 1
is connected to node j of the next layer h, with the connection line having an independent
time-delay Tjix r—1 and synaptic weight wjik p-1.

The entire network is constructed by the delay blocks which connect neurons layer by layer
as illustrated in Figure 2. The multilayered network is not necessarily fully connected layer
by layer, but may be sparsely connected, and connections can skip layers. It is not necessary
to have the same number of delays for different units in the same layer or the same delay
values from different units, since the computation is local for each interconnection. Each
connection can have an arbitrary delay value. For the sake of simplicity, in this discussion

we assume the network is layered and fully or sparsely connected layer by layer. To illustrate,

a three layered ATNN is shown in Figure 3.



Next we propose definitions that are used to describe a general ATNN architecture with

flexible configuration.

Definition 1 nj; is the number of time-delays employed of the connection to node i from

node j (i.e., the number of samples in the time frame T;;).

Definition 2 Time frame: Time frame T;; is a set of time delays (1;;1, ..., Tjin;;) employed

on the connections to node j from node .

Definition 3 The set of time frames T; for connections that originate at node i is defined

as:’

’];:(’]ii’...,Tﬁ,...,’];i)_

Definition 4 p;;(t,7;;) is the set of signal values transmitted to node j from node i via time

fmme 7}5 at tz'me t. Thus, pji(t, 7;,) = [p]‘,‘(t — Tj,‘l), ...,pji(t - ijﬂ)].

Definition 5 P;(t,7;) is the set of signal values transmitted from node i to other nodes at

time t. Thus,

(

pli(t77'1i) [Pli(t - 7'1:‘1), ---7p1i(t - Tlinl,')]
BT = | put, Ta) | = | [pist = mjia), oes it — Tiing,)|
Pai(t, 7yi) [Pai(t = Tyin); oo Pai(t = Tgings )|

Let J; » be a set of nodes that receive connections from node ¢ on layer h. Node 7 transmits
the set of pattern values F;(7;) to selected subset J; ;. In other words, Vj € .J;;, node j
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receives pattern P;(7j;) from node 7 through a time frame 7j;. The samples in the time frame
7;; correspond to the delays 7i,1, where & = 1,2,- - nj;, where nj; = |T;{|,5 € J; 1, and h
is the index of the layer in which ¢ belongs. In the definitions above, we have omitted the

layer index A for simplicity.
Definition 6 N, is the set of nodes {1,2,...,\Wi—i} of layer h

Thus, each node j of layer b (eg. j € NV3), receives nj; inputs from each i € Z;;, where Z;,
is the subset of nodes on layer h — 1 (Z;, C My_1) that connects to unit j on layer h. The
total number of inputs to j is: m; = Yier, , nji-

In this paper, we assume that p = |WVi|l,q = |IV|,r = |IW{| are fixed, and that the
connectivity between layers is fixed (||J; s—1| for the same layer is fixed), and for the sake of
simplity, we assume |}J; 4| = |W9| and |[J; 4| = |W4| (fully connected). In general, the number
of samples in the time frame, n;;, and the values of the delays (therefore the size of 7};)
are variables. In this paper, we assume that n;; is fixed (selected) and allow 7;; -1 to be
variable. We also assume that nj; is the same for all ¢ € Z;;, and for all j € J; —;. If nj; is

the same (fixed) for all ¢ € Z;, then m; = nj; - |IZ; Al

Definition 7 n,_; is defined as the number of time-delays on connections originating at

node ¢ on layer h — 1 where ny_y = nj; for all j.
Then our model possesses the following property:

Property 1 For each nodet € Ny_y connecting to all j € J; p—y, Jine1 C Ny, there is a time
frame T;; with ny_y samples, corresponding to the delays Tjimp—1,2 =1,-++,n5_1. Inputs to

node j (on layer h) are from node i (on layer h —1), and there are np_y - |Wh_1|| such inputs.



In this model, the adaptation variables are time-delay and weight (75 and wj5). Each
node sums up the net inputs from the activation values of the previous neurons, through the
corresponding time-delays on each connection line, i.e. at time ¢, unit j on layer h receives

a weighted sum :

Kjih—y
Sin(tn) = D_ Y wjikh-1 - Gip-1(tn — Tjikno1) (1)
1€ENp_1 k=1

where

@i h—1(tn — Tjikh—1) the activation level of unit 7 on layer b —1 at t, — 7jix p—1
Tiik,h—1 = the time-delay of the kth connection to node j of layer A
from node ¢ of layer h — 1

Kjin—1 = the total number of connections to node j (layer ) from

node : of layer h — 1

Wik h—1 the synapse weight of the kth connection to node j from

node ¢ of layer h — 1, and k =1,2,..., Kj; h1

Then the output of node j is governed by a nondecreasing differentiable function f of

the net input (sigmoid function is selected in this paper) :

Fin(Sin(tn)) if h>2

ajn(tn) = (2)
aj’o(tn) lf h = 1
where
Bin
fin(@) = T2 s = i (3)

and a;o(t,) denotes the sampled value of the jth channel of the input signal at time ¢, and



Q;n, Bin and v, are real numbers which define the symmetry point (0, %41 —v;n) of fin(z)
if x is symmetric to 0, the range [~7;x, Bjn — ¥in] of fin(z) and the steepness of f; () (e.g.

1(0) = 31'%@1&) For simplicity, we use the same sigmoid function for each node in this

paper, although in practice f; may differ and be modifiable for each node.

2.2 Learning Paradigm

The adaptation of the delays and weights are derived based on the gradient descent method
to minimize the energy or cost function FE during training. Weight modification is based on
error back-propagation [17] and the mathematical derivation of the time-delay modifications
is described from a gradient descent approach in [14, 13]. The training set consists of a

sequence of spatiotemporal patterns and target outputs over time. An instantaneous error

measure is defined as MSE:

E(ta) = 5 2 (dita) = a50(tn))” (4)

JENL

where L denotes the output layer and d;(¢,) indicates the desired (target) value of output
node j at time ¢,,.

Furthermore, the continuous real values of desired output are condensed to the center
regime of the sigmoid output. Specifically, the target values are scaled to range [—cvj 1, ¢(Bjn—
¥i1)], where —~; 5 and (B;n — ;) are the upper bound and lower bound of the sigmoid
function respectively, and ¢ denotes a scale factor. We selected the scale factor ¢ = 0.5 in

this paper, which significantly improved the mapping accuracy by a factor of 2 to 10 in terms



of NMSE ' compared to our previous simulation results that did not use scaling. These
improved results occurred because with scaling, the target value is a real number that never
reaches the upper or lower bound of the sigmoid function. Thus, the weight adjustment was
more limited and stable when the asymptotic region was avoided.

In this paradigm, the network parameters are updated by an on-line algorithm and in a
discrete manner, and the input signals are differentiable (f is differentiable too) and sampled
at a Nyquist rate, i.e. the sampling time step r = ﬁ, where f,,.. is the maximum
frequency of all input channels.

The weights and time-delays are updated step by step proportional to the opposite di-

rection of the error gradient respectively:

0E(t,

Awjigp = —m BwSk: (5)
]1 b
0E(t,

ATjign = —12 ('3T~(-k h) (6)
IR,

where m; and 7, are the learning rates.
The derivation of this learning algorithm was addressed explicitly in [14, 13], and is

covered in the Appendiz. We summarize the learning rules as follows.

Awjik -1 = 116 n(tn) @i h—1(tn — Tjik,h-1) (7)

ATjikh-1 = 0205n(En)Wjik,h-105 -1 (tn — Tjik,h-1) (8)

Inormalized mean square error: NMSE = EE(‘x(xt)t—l_Ea[Ezzt)]zy , where z(t) is the original signal value and
#(t) is the network output value

10



where

(dj(tn) — ajn(tn)) f'(S;n(tn)) Jif 7 is an output unit

6jh(tn) = Ko (9)
(ZPGNh+1 Yo" Gpnt1 (tn)Wpign(tn)) F/(Sjn(tn)) ,if j is a hidden unit

and

—(dj(tn) — ajn(tn) f(Sin(tn)) ,if 7 is an output unit
pin(tn) =

~[CpeNins Tas® Pontt (b )Wpsg h(t)) f/(Sin(tn)) Hif 7 is a hidden unit

(10)

The time delay values A7ji, -1 can cross one another during learning, and ( 10) can
specify Tjim n-1 to go below zero. We reset 7j, -1 to zero in this case. Processing units
do not receive data through a fixed time window, but gather important information from
various time delays which are adapted via the learning procedure. The largest time delay
between two units can change during adaptation, and the interconnection that has the largest
time-delay can also change. With these mechanisms, the network implements the dynamic

delays along the interconnections of the ATNN.

3 Simulations

In this section, we demonstrate the ability of the ATNN to learn embedded dynamics in
nonlinear sequences of states. The ATNN learns the transformation of given input sets to

output sets in sequence.
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3.1 Circular and Figure Eight Trajectory

We trained an ATNN to follow the ”circular trajectory” and the ”figure eight trajectory”,
as in {19] and [24]. The formation of these two trajectories are:

z(t) = Asinwt z(t) = Asinwt
circular trajectory: figure eight:

y(t) = Acoswt y(t) = Asin2wt
We selected A = 0.5, w = 1, and time step At = 0.1; therefore, it requires approximately 63
time steps to complete a full circle.

A three layered ATNN was configured with two input units (taking data from z(¢) and
y(t)), five hidden units and two output units (2-5-2). There were 4 time delays for each pair
of units from input layer to hidden layer, and 6 time delays from each hidden layer unit
to each output layer unit. The initial synapse weights were random numbers with uniform
distribution between 1 and -1. Time-delays were initiated consecutively and trained to set
individual length optimally to catch the necessary or significant information to the whole
system.

Instead of taking the whole circle as the training data, the network learned to generate the
trajectory by consecutively taking segments of arcs where the length of the needed segment
was decided by the time delays that were adjusted during learning.

The progress of learning is plotted in Figure 4, 5, and 6. Figure 4 shows the learning of the
first 500 samples, the network starts at a position determined by its initial (random) weights
and initial delays. The initial point is calculated by using a segment of arc as input and

reading the point’s cpprdinates from the output of the network. The network then learns the

12
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trajectory topology (no cross-overs) very quickly. The network learns the circular trajectory
with average RMSE of 0.0054 after 20000 samples are presented to the network (shown in
Figure 6), and the learning curve in terms of RMSFE is drawn in Figure 7. Observing from
the resulting values of time delays (the maximum value of time-delays between input and
hidden layer is 3, and the maximum value of those between hidden and output layer is 14),
the network demands a total length of 18 points to reveal the next position. The length is
about a quarter of a complete circle.

Next, we trained the network to learn the figure eight by using the same architecture used
in the previous simulation. The learning process is shown in Figures 8, 9, and 10. Apparently,
learning the figure eight is a more difficult task, since the trajectory crosses itself; however,

it still learns the topology immediately. A trajectory similar to the figure eight appears

13
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within the very beginning 500 iterations of learning, and the rest of the learning time is
spent to approach the exact position. The RMSFE approaches to 0.0441 after 80000 training
samples. The network uses information spanning 66 time steps to reveal the next position.
(The maximum time-delay value in the first connection layer is 12, and the maximum time-
delay value in the second connection layer is 53). The learning curve of the entire process is
illustrated in Figure 11. The circle and eight are two different topologies, but the network
learned both shapes within the first 10% of the learning iterations, then smoothed and
adjusted the shapes during the remaining iterations. This network characteristic can be
compared to Kohonen’s self-organized feature map, which learns topology in the first 10%
of iterations [11], but requires the remaining 90% to smooth its results to match the data
effectively.

Next, we tested the network’s ability to generate figures given its own outputs as input
signals. Given any segment (length must be greater than 17) of the original circle starting
at any point along the circular trajectory, the network generated the next new position
clockwise, then completed the remaining trajectory recursively by using the new segment

generated by the network.
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From the experiments, the reproduced trajectories of the circle are plotted with dotted
lines in Figure 12 (a)-(c). The RMSE values of these three examples are 0.0113, 0.0162
and 0.0114 which are impressively low. In these runs, the network was initially given only a
segment of the original circle (length of 18 in this case), but after the initial segment utilized
its own past trajectory as input and then completed the whole circle. The difference between
these is the starting position. These results demonstrate the capability of the network to
perform predictive recognition and figure completion when only partial information of the
original data is available. The trained network completes the pattern or figure no matter
where the starting position is.

A similar experiment was done for the figure eight. While the performance for the figure
eight reproduction is less (RMSE about 0.05 for all starting positions shown in Figure 13 (a)-
(c)), the accuracy improves when the network learns for a longer time. It appears that the

more difficult the target trajectory is, the more error is encountered during generalization.

15
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3.2 Harmonic Wave Approximation

In this experiment, the ATNN is trained to model the square wave approximation from
the Fourier series expansion of the sum of different odd harmonics. The class of functions
which can be represented by Fourier series is surprisingly large and general. The values
of various series with constant terms or periodic functions can be obtained by evaluating
Fourier series at specific points [12]. If the network can capture the fundamental harmonic
characteristics of various waves, then neural networks will lead to a novel approach to describe
the representation of signals. Five different wave approximations are used in this study: a
fundamental sine wave or first harmonic, a wave with the sum of first and third harmonics
(y = sin(t) + M:LQ), a wave with the sum of first to fifth harmonics (y = sin(t) + fﬂ;ﬁl +

ﬁﬂsi*—tl), a signal with the combination of first to seventh harmonics (i.e. y = sin(t) +

sm(;*t) + Sin(;*t) + Sin(.;*t)), and one with the sum of first to ninth harmonics (ie. y =

sin(t) + Sings*t) + Si"(ss*t) + smg*t) + Si"(gg*t)). A three layered ATNN with one input unit,
three hidden units and one output unit was trained to identify these particular wave forms
according to the adaptive learning paradigm.

Three of the simulation results are illustrated in Figure 14, 15 and 16. The original
functions are plotted in solid lines, and the dotted lines denote the output of network. The
system performance is so good that the solid line and dotted line almost overlap and show
high accuracy. The error measure of all wave form tests are shown in Table 1. The error
measure NMSE is lower than 0.1% in the first three cases, while the NMSE is 0.12%
which is still small in the complicated case of the sum of the 1st to 9th odd harmonics. This

indicates that the network hag learned the various complexities with similar accuracy.
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Wave with the sum of odd harmonics

fundamental |

st to 3rd | 1st to 5th

| Ist to 7th | 1st to 9th

[[NMSE ] 9.2895 x 10~7 | 8.8645 x 10~* | 9.2176 x 10~ |

0.0010 [ 0.0012 ]

Table 1: The error measure NMSE of this system output under different approximation to

a square wave
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3.3 Chaotic Time Series Modeling

Recently, considerable effort has been devoted to finding the embedded dynamics in an
input sequence [18], or to capturing the characteristics of chaotic environments, using neural
network techniques [20, 9, 22, 25, 28]. The objective of the system modeling problem is to
construct a suitable embedded identification function ’ﬁ, for a given plant P and its input-
output pair {u;(-), ym(-)} (where i and m denotes the dimension of input and output vectors
correspondingly), such that ||§ — y|| = ||75(u) — P(u)|| < € for some desired ¢ > 0.

A chaotic time series (based on the Mackey-Glass delay differential equation) was selected

for experimentation with the ATNN. The delay differential equation of the form

= F(a(t),2(t — 7)) (11)

describes systems in which a stimulus has a delayed response [8]. In this study, we used the
example proposed by Mackey and Glass which describes the production of blood cells [16]

as the following

az(t — 1)

T = m — ba(t) (12)

where a, b and c are parameters. This differential equation possesses many dynamic prop-
erties such as nonlinearity, limit cycle oscillations, aperiodic wave forms and other dynamic
behaviors [7], and can be used as a benchmark for temporal learning.

A three layered ATNN, with the same complexity as used in the previous examples,
was simulated to model chaotic time series of the Mackey-Glass differential equation. The

network was trained to resolve values of . The training set consisted of the first three
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Figure 17: Simulation results of ATNN with Mackey-Glass equation modeling t=0 to 1000,
NMSE = 0.002

| adaptive parameters | fixed parameters | equivalence | NMSE |
weights I{ji,h—l =1, Tjikh-1 =0 BP 0.0126
weights time-delays TDNN 0.0097
time-delays weights - 0.0264
weights, time-delays - ATNN 0.003

Table 2: Experiments with different network configurations trained to predict the Mackey-
Glass equation. Each table entry is the average of three runs.

hundred samples (from ¢t = 1 to ¢ = 300), and the testing set included ten thousand samples
of the differential equation (from ¢ =1 to ¢ = 10000).

The first 1000 time step outputs and last 1000 time step outputs (from 9000 to 10000)
of the network is shown in Figure 17 and Figure 18. The solid line and dotted line represent
the original equation value and the output of the ATNN respectively. As we can observe
from these two figures, the network follows the original function, and catches the variation
well with a NMSE of 0.3% up to t = 10000 this is better than our previous results with
unscaled outputs (NMSE = 0.84%) [13].

To evaluate performance, the network was trained by various choices of adaptive param-
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Figure 18: Simulation results of ATNN with Mackey-Glass equation modeling, t=9000 to
10000, NMSE = 0.004

eters, and the NMSFE measures of the corresponding system outputs are shown in Table 2.
When weights are adapted but no time delays are included (equivalent to BP ), the NMSE
was 0.0126. When time delays were included but were fixed and weights were adapted (e.g. a
TDNN), then the NMSE was considerably improved at 0.0097. If time delays were adapted
but weights were fixed, the worst performance was attained at NMSE = 0.0264. When
both weights and time delays were adapted with the ATNN paradigm, the best performance

was attained at NMSE = 0.0084 for the first 1000 samples. The results indicated that the

proposed network improves the generalization.

4 Discussion

We have described an Adaptive Time-delay Neural Network (ATNN), which has a dynamic
learning technique for adapting both weights and time-delays on-line, during training with
temporally varying patterns. The network is an efficient and flexible model that addresses

learning situations where inputs arrive over a period of time and outputs are produced over
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a period of time, thus the network has spatiotemporal patterns as both inputs and outputs.
The AT NN was trained to learn and identify two-dimensional sequences (trajectories) and
one-dimensional sequences (time series prediction). The ATNN can be applied to a wide
variety of domains, including the recognition of movements, trajectory generation, speech
analysis, and signal processing.

The proposed ATNN is a generalization of the Error-Back Propagation neural network
(BP). TDNN and BP can be viewed as special cases of the ATNN if certain parameters of

ATNN’s paradigm are fixed.

Case 1: If we fixed the time-delay 7jizp—1 in Equation (1) and applied weight learning
(Equation (7)) without updating the time-delay variables, it would become a Time-

Delay Neural Network.

Case 2: The Error-Backpropagation Network is also a subset case of the ATNN. If we set

Kjin-1 =1 and 7jixp—1 = 0, then Equation (1) will become:

Stv= D Wiika-1-aly, (13)
1€ENR_1

This equation above is exactly in the same form of Error-Backpropagation’s net input
rule. If we applied gradient descent learning and update weights, the ATNN turns out

to be the Error-Backpropagation Network in this restricted case.

Neural networks with time delays are inspired from biological models of nerve signal
transmissions and processing. Biological studies have shown that varying time delays do

occur along axons due to different conduction times and differing lengths of axonal fibers,
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leading to variable delays on inputs to target neurons [4]. In addition, postsynaptic potentials
occurring in the dendrites and cell bodies exhibit temporal dependencies that may be varied
depending on biochemical substrates and dendritic microstructure [3, 21]

We have applied the ATNN to three examples which possess spatiotemporal complexity,
with temporal sequences of patterns and in one case with embedded chaos. The simulation
results show that the ATNN learns the topology of a circular trajectory and figure eight
within 500 on-line training iterations, and reproduces the circular trajectory itself dynam-
ically with very high accuracy (RMSE < 0.0162). Other results show that the ATNN
successfully models harmonic waves and does accurate time series predictions of a chaotic
sequence. These applications show that the ATNN is a powerful tool and learning tech-
nique for spatiotemporal data and for any applications that involve time varying signals or

patterns.
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Appendix: Time-Delay Learning Derivation

We define the following notation:

L = the number of layers in the network.
N, = theset of nodes {1,2,..., NV}|} of layer h.
Tjikh—1 = the time-delay of the kth connection to node j of layer h from
node 7 of layer h — 1
Kjin-1 = the total number of connections to node j (layer &) from node :
of layer h — 1
T;in-1 = the set of delays on connections to node j (layer k) from node ¢
of layer h — 1, i.e. Tpip-1 = {Tjit,h=1, Tjizh—15 -+ Tjim,h—1}, Where
m = Kj;p1
ato(t) = the ith channel of the input training pattern p at time ¢
t, = the nth sampling time, where r is a single time step (e.g., t, =
nr)
wjikh—1 = the synapse weight of the kth connection to node j from node :

of layer h — 1, and k = 1,2, ..., K;; p—1

The activation value of node j of layer A when input pattern p is present at time ¢, is

defined in Equation ( 2 ):

[i(Sin(tn)) ifh>2
a%p(tn) = T
o) ifh=1

bl
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where

Kjin-1
S = D0 Y wjikaor - @by (tn — Tiikh-1) (14)
’iENh_l k=1
B
fi(z) = Tz (15)

where «;, #; and +; are real numbers which have been discussed in Section 2.1.
The adaptation of the delays and weights are derived based on the gradient descent
method to minimize the error measure ¥ during training. The training set consists of a set

of spatiotemporal patterns and target outputs over time. An instantaneous error measure is

defined as MSE (shown in Equation ( 4 )):

E(tn) = 5 3 (d;(ta) — aj(tn))* (16)

JENL

The time-delay is modified step by step proportional to the opposite direction of the error

gradient with respect to this delay. The updating rule is therefore:

_ 0E(ty) .
ATjikh1 = —m FES— (17)
where 7 is the learning rate.
By the chain rule
0E(t,)  OE(t,) 0S;x(ts) (18)

OT;jik h—1 0S;n OTjikn-1

The second factor of Equation (18) can be expressed as

K, p—

8Sj,h(tn) _ J It
7o = O Z Wipgh-1aph—1(tn = Tjpg,n-1)

Tjik,h—=1 Tjik,h—1 pENL_1 g=1
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!
= —Wjikh-10 p_1(tn — Tjikh-1)

We define

o OE(t)
p]ah(t") - asj,h

Substitute Equation (19) and (20) into Equation (18), we obtain

0E(ty,)

or. jik,h—1

= — P h(tn)Wjik h-10; 1 (tn — Tjik,p-1)

17
uy ATjikh-1 = Mmpip(ta)Wiik h-10 )y (tn — Tjikn-1)

To derive p;1(t,), we need to apply chain rule and consider two cases:

JE(t,
pin(tn) = %Sh)
-77
_ OE(tn) 0a;jn(ta)
- 8aj,h 6Sj,h
OE(t,) |,
= —%L,h—)f (Sin(tn))
Jy

To find %?—:L we consider the following two cases:
2y

1. If 7 is an output unit:
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B pialtn) = —(di(ta) — azn(ta)) F/(Sin(ta)) (25)

2. If 5 1s a hidden unit:

O0E(t,) O0E(t,) 0Spht1(tn)

aSp,h_}_l 8(1]"},,

OE(t.) 9 &

Y- B Y iqh @i h(tn — Tpi
S, her aa]’,h( E Z Wpig,h ik Tpiq))

iENh gq=1

PENR11

2

PENR41
Kps',h

= — Z Pp,h+1(tn)(2ijq,h(tn)) (26)

PENL41 g=1

@ Pin(tn) = _[zpe/\fh+1 Z;\:ﬂh Pp,ht1(tn)Wpig b ()] /(S (tn)) (27)

We have now found p.
From Equation (22) it remains to find a; ;,_,(tn —Tjit.n—1). The value of a; ,_, (t, —Tjix,h-1)
can be approximated as following: From the elementary calculus we know that if the function

f(z) is differentiable, then

d .
Fleot h) = (o) = hor ..., (28)

for some point z, such that zy < z. < x¢ + h. The derivative is evaluated at a point =z,

(between zg and zo + k), and by the Mean Value theorem of differential calculus, z, always
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exists. Accordingly, we get

tn)—a{t,— .
sl i T =0

@ py(tn = Tiikho1) R ’

a(t —a(tr— : e — ..
slep)oalem) §f ¢, — 7y g = by, Tikger # 0

where r = ¢, — ty_1,k € {0,1,...,n}.

The time-delay learning rule is summarized as follows:

ATjikh-1 = 1103, (tn)Wjik,h=105 1 (tn — Tjikh-1) (29)

where

—(dj(tn) — ajn(tn)) f'(Sin(tn)) Jif 7 1s an output unit
pin(tn) =

~[pennas Zaegyin o1 (Ea)Wpjan(tn)] f/(Sin(ta)) if 7 is a hidden unit

Similarly, the learning rule for weights can also be obtained in the same manner and is

summarized as following;:

Awjigh-1 = 161 (tn) i h-1(tn — Tjik,p-1) {30)

where

(d;(tn) — ajn(tn))f(Sin(tn)) Jif 7 is an output unit
6;n(tn) =

(ZPGN?L“ Y€t Op ht1(tn)Wpjg n(tn)) f'(Sjn(tn)) ,if 7 is a hidden unit
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