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“Cell Clinics,” CMOS/MEMS hybrid microsystems for on-chip investigation

of biological cells, are currently being engineered for a broad spectrum of appli-

cations including olfactory sensing, pathogen detection, cytotoxicity screening and

biocompatibility characterization. In support of this effort, this research makes two

primary contributions towards designing the cell-based lab-on-a-chip systems.

Firstly it develops CMOS capacitance sensors for characterizing cell-related

properties including cell-surface attachment, cell health and growth. Assessing these

properties is crucial to all kinds of cell applications. The CMOS sensors measure

substrate coupling capacitances of anchorage-dependent cells cultured on-chip in a

standard in vitro environment. The biophysical phenomenon underlying the ca-

pacitive behavior of cells is the counterionic polarization around the insulating cell

bodies when exposed to weak, low frequency electric fields. The measured capaci-

tance depends on a variety of factors related to the cell, its growth environment and



the supporting substrate. These include membrane integrity, morphology, adhesion

strength and substrate proximity. The demonstrated integrated cell sensing tech-

nique is non-invasive, easy-to-use and offers the unique advantage of automated real

time cell monitoring without the need for disruptive external forces or biochemical

labeling.

On top of the silicon-based cell sensing platform, the cell clinics microsystem

comprises MEMS structures forming an array of lidded microvials for confining single

cells or small cell groups within controllable microenvironments in close proximity

to the sensor sites. The opening and closing of the microvial lids are controlled

by actuator hinges employing an electroactive polymer material that can electro-

chemically actuate. In macro-scale setups such electrochemical actuation reactions

are controlled by an electronic instrument called potentiostat. In order to enable

system miniaturization and enhance portability of cell clinics, this research makes

its second contribution by implementing and demonstrating a CMOS potentiostat

module for in situ control of the MEMS actuators.

The original contributions of this dissertation include:

• First generation single electrode capacitance sensors based on charge shar-

ing for establishing proof of concept for the on-chip cell sensing approach.

Demonstration of novel cell sensing applications including cell adhesion char-

acterization, viability monitoring and proliferation tracking.

• Second generation fully-differential rail-to-rail capacitance sensors with on-

chip gain tuning capability for achieving improved performance in terms of



higher sensitivity, capacitance resolution, dynamic range and noise immunity.

Shielded current routing bus architectures for incorporating the capacitance

measurement circuit in high density sensor arrays and conserving individual

sensor performance. Mismatch compensation and sensor output offset cance-

lation by employing in-circuit floating gate trimming.

• An integrated CMOS potentiostat module custom designed for in situ control

of the microactuators housed in cell clinics. Demonstration of potentiostat

operation for control of off-chip and on-chip electroactive polymer-based mi-

croactuators.
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Chapter 1

Introduction

1.1 Cell clinics overview

Integrated sensor and actuator systems can offer versatile solutions for complex

biosensing problems involving the acquisition of responses from individual cells. This

lab-on-a-chip approach to cell biology has potential for enabling a wide spectrum

of applications, including studies of specific biochemical mechanisms, fast medical

diagnosis, pharmaceutical tests, and detection of biochemicals of military or envi-

ronmental relevance [1–4].

vial  

CMOS chip

comprising

sensors and

signal

processing

circuitry 

microactuator

lid   

hinge   

cell sensing

electrodes 

cells

Lab-on-a-chip

Figure 1.1: Conceptual visualization of the cell clinics microsystem (figure courtesy
of Dr. E. Smela, Dr. P. Abshire and M. Urdaneta).
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Motivated by its many potential applications, cell clinics, a CMOS/MEMS hy-

brid microsystem for capturing and performing in-situ investigation of living cells,

aims at providing an integrated, automated, and high-speed solution for cell mon-

itoring applications. CMOS sensors are being developed for extracellular signal

amplification, cell-substrate capacitance sensing, contact imaging, and fluorescence

detection. The MEMS platform provides an array of lidded microvials for confin-

ing living cells in close proximity to the CMOS sensors and isolating them within

controllable microenvironments. Fig. 1.1 provides a conceptual illustration of the

microsystem being developed. The biolab SoC (System-on-Chip) comprises elec-

trodes, sensors, microstructures for isolating and containing living cells, and CMOS

circuitry for on-chip signal conditioning of sensor responses to cells [5, 6].

1.2 Integrated electronic sensing of biological cells

The electrical properties of biological cells and tissues have a strong correlation

with their morphological and physiological states [7, 8]. For example, the existence

of the membrane potential is a feature that can be used to distinguish between

living and non-living cells. In special cell types such as neurons and muscle cells,

the time-varying electrical potential across the cell membrane reflects changes in the

cellular environment and serves as a mechanism for both intra- and inter-cellular

communication. Impedance measurements can be used to sense cell morphology

and motion [9], to monitor cell adhesion and growth [10], to measure transepithelial

and transendothelial electrical resistances of cultured cell monolayers [11], and also
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to differentiate between normal and abnormal cell types [12].

Miniaturized electronic biosensing techniques have many advantages to offer

in comparison to traditional biochemical detection approaches. Firstly, it is possi-

ble for complex measurements to be minimally disruptive in that the responses of

living cells can be monitored in real time without altering the biochemical compo-

sition of the extracellular environment. This prevents unnecessary modification of

the in vitro cellular environment which can interfere with the analysis procedure

and produce unintended side effects. In addition, microfabrication technologies can

readily produce sensing interfaces with physical dimensions matched to the living

samples under study, including single cells or even subcellular structures [13]. This

enables novel measurement methodologies with capability for exquisite sensitivity

and spatial resolution. Electronic biosensing also offers the flexibility of probing liv-

ing samples over time scales varying over many orders of magnitude and tailored to

the specific application. Further, lab-on-a-chip microsystems may provide versatile

solutions to complex biosensing problems by automating the sensing and analy-

sis procedures. Such automated, integrated systems offer the potential to reduce

infrastructure and cost requirements and, ultimately, to make such sophisticated

measurements possible outside the confines of a cell biology laboratory.
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1.3 Research contributions

1.3.1 Design and characterization of CMOS-only capacitance sensors

for on-chip cell monitoring

The primary contribution of this research involves development of CMOS-only

capacitance sensors for on-chip cell sensing applications including characterizing cell

adhesion, monitoring cell viability and tracking cell proliferation by sensing the ca-

pacitive coupling between sensing electrodes and the cellular matrix. The proposed

technique employs electrodes arranged in a planar configuration within the substrate

of the growth chamber and insulated from the growth medium using the passivation

layer of the chip. The underlying biophysical phenomenon is that, on exposure to

low frequency, low strength electric fields, living cells in growth medium behave as

insulating structures surrounded by ionic clouds compensating fixed charges present

in their membranes [14]. An electric field polarizes the counterionic cloud, giving rise

to electric dipoles which are the dominant factor responsible for the low frequency ca-

pacitive behavior of cells. Healthy cells with well formed plasma membranes sustain

stronger electric dipoles than dead or unhealthy cells with compromised membrane

structures, so the measured capacitance is higher for healthy cells [15, 16]. In ad-

dition, healthy cells adhere more tightly to a surface in comparison with dead or

unhealthy cells, which results in stronger capacitive coupling between the cells and

underlying electrodes. Both of these properties can be exploited to monitor the

health and growth of cells, and also their interaction with substrates.
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The proof of concept for the integrated capacitance sensing approach was es-

tablished through the design of single electrode sensors that operated based on the

charge sharing principle [17–21]. The sensors were tested on-bench and character-

ized with living cells cultured on the chip surface. The sensors were demonstrated to

track the cell adhesion and proliferation processes. Also promising correlations were

obtained between the variations in sensed capacitance and changes in cell viabil-

ity. In addition to delivering encouraging experimental results, the first generation

sensors posed a set of problems related to parasitic capacitance effects, interference

noise coupling, limited output dynamic range and limited spatial resolution.

In response to the above mentioned problems, a second generation fully differ-

ential rail-to-rail capacitance measurement circuit was designed based on the charge

based capacitance measurement (CBCM) technique [22,23]. The design extends pre-

viously reported CBCM circuits with single-ended output configurations [24–27] to

a differential output architecture. The differential sensor achieves improved perfor-

mance by compensating for parasitic capacitances, by suppressing correlated noise

and by providing a higher output dynamic range. Novel array architectures based

on a shielded current routing bus were developed for incorporating the differential

capacitance measurement circuit in sensor arrays. Apart from improving sensor spa-

tial resolution, the shielded current bus also conserves sensor evaluation speed and

provides protection from junction leakage in large sensor arrays. The sensor employs

a 3-phase clocking scheme for enabling on-chip gain tuning and also for limiting out-

put voltage offsets. The differential sensor in combination with the shielded current

bus exhibits a maximum sensitivity of 200 mV/fF, a maximum achievable resolution
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of 15 aF and an output dynamic range of 65 dB. In addition to this, another novel

differential sensor circuit incorporating floating gate transistors for output offset can-

celation was also designed and fabricated. Output offset cancelation was achieved

using a combination of impact ionized channel hot electron injection and Fowler-

Nordheim tunneling. Both versions of the differential sensor circuits incorporated in

test arrays using the shielded current routing bus were successfully fabricated and

tested [28].

1.3.2 Design and demonstration of a CMOS potentiostat for control

of integrated MEMS actuators

The microvial lids in the cell clinics microsystem are opened and closed using

electrochemically controlled bilayer actuators. The actuators comprise an electroac-

tive polymer layer in combination with a gold contact layer. The polymer layer has

the property of changing volume due to electrochemical oxidation and reduction. At

the macro-scale, such electrochemical reactions are controlled using an instrument

known as a potentiostat. In the first generation of cell clinics the bilayer actuators

were controlled using an external potentiostat instrument. In addition to developing

the capacitance sensing platform for on-chip cell sensing, another contribution of the

current research was to integrate the necessary potentiostat circuitry for control of

and integration with the microactuators on top of the CMOS chip. This effort has

enabled miniaturization and enhanced portability of the cell clinics system.

The potentiostat module was tailored in accordance with the driving require-
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ments of the microactuators [29, 30]. The design was optimized in terms of on-chip

area requirements for the cell clinics application. A test chip comprising the control

circuit connected to on-chip electrodes was designed and fabricated. The electrode

set comprised: counter, reference and working electrodes, necessary for the opera-

tion of the electrochemical actuators. Tests were performed for validating the control

circuit for actuation of off-chip polymer films and lidded microactuators [29]. The

operation of the integrated potentiostat was also successfully demonstrated for in

situ actuation of lidless microactuators fabricated on top of the CMOS chip [30].
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Part I

INTEGRATED CAPACITANCE SENSING FOR ON-CHIP CELL MONITORING
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Chapter 2

Capacitance Sensing Using CMOS Technology

Capacitance sensing involves (i) exposing an object or system under analysis

to electric fields, (ii) performing current, voltage or charge based measurements

and (iii) computing the capacitance value of the given object or system from the

measured data. The measured capacitance is a parameter that can be employed for

a variety of applications involving detection of material properties, sensing location,

proximity and motion of either conductive, dielectric or semi-insulating objects.

The design and development of cell clinics, a cell-based lab-on-a-chip tech-

nology, poses several requirements concerning manipulation of cells and sensing of

different aspects of cell morphology, growth and physiology. From an electrical

perspective the cellular environment is a complex heterogeneous system compris-

ing ionic conductors and organic dielectrics. In addition to this the system also

exhibits temporal changes due to cell activity (e.g., adhesion, proliferation, move-

ment). Understanding the behavior of such complex systems requires extensive

characterization through various biochemical and biophysical techniques. In this

direction, capacitance sensing can serve as a useful technique for integrated sensing,

characterization and monitoring of biological systems at the cellular level.

Capacitance sensors have several inherent features that favor their utility in

cell sensing. They can be tailored to perform non-contact sensing. This can be
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an extremely critical requirement while sensing biological samples. These sensors

generally operate at low power. Capacitance sensing being highly amenable to inte-

gration enables array-based sensing. They also provide better temperature stability

in comparison with piezoresistive and piezoelectric sensors, easier A/D conversion,

better reliability and lower cost when batch fabricated. Capacitance sensing offers

additional advantages in comparison to other cell sensing modalities such as opti-

cal detection [31], fluorescence sensing [32] and frequency based measurements [33].

These include reduced system complexity, elimination of off-chip optics, no post-

fabrication requirements, and prevention of electrochemical side-effects which are

prominent in electrode based sensors with sensing surfaces exposed directly to the

cell medium.

One of the first efforts towards sensing microscopic cell capacitances employed

microfluidic flow cytometry, with measurements performed using an external ca-

pacitance bridge [34]. Capacitance changes in the fF range were evoked by pass-

ing individual cells through a 1 kHz electric field across a pair of microelectrodes.

Another lab-on-a-chip system employed capacitance sensing in combination with

dielectrophoretic actuation for short-term cell detection and manipulation, with the

cells suspended in a microchamber and the capacitances measured in between the

on-chip microelectrodes and an external conductive glass lid [35]. Detection and

manipulation were performed in a modified in vitro environment using mannitol

instead of growth medium. An aqueous solution of 280 mM mannitol provided

the low conductivity conditions required for detection and manipulation, and pre-

served the osmotic pressure required for the cells to survive. This work, in contrast,
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employs integrated capacitance sensors for long-term monitoring of anchorage de-

pendent cells in a standard in vitro environment using normal cell growth medium.

Since many living cells need to be attached to a solid surface before they can grow

and proliferate, this approach can be applied for monitoring a wide spectrum of cell

types. Through this research, we have demonstrated the utility of this technique

for characterizing adhesion, monitoring viability and tracking proliferation of living

cells cultured on the sensor chips [17–21]. This approach in contrast to previous

efforts does not require specialized 3D arrangement of electrodes and is well suited

to monitoring cells in a standard cell culture environment by employing on-chip

passivated coplanar microelectrodes.

2.1 Sensor basics

The capacitance as seen by the sensor arises from the combination of a drive

electrode, a sense electrode and the material under test (MUT). The electric field

lines travel across the drive and sense electrodes, passing through the MUT. The

measured capacitance is determined by the geometrical configuration of the drive

and sense electrodes, and the dielectric properties and spatial orientation of the

MUT. A CMOS-only sensor, constrained by the planar nature of its fabrication

process, is restricted to coplanar electrode configurations. Coplanar electrodes of-

fer the additional advantage of one-sided access for biological sensing applications,

leaving the other side open to the isolated and sterile biological environment. The

electric field resulting from the excitation of coplanar electrodes is entirely fringing
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(a) (b)

Figure 2.1: (a)Parallel plate capacitor (b)coplanar plate capacitor creating fringing
electric field.

in contrast to a direct normal field inside an ideal parallel plate capacitor. Fig. 2.1

illustrates this distinguishing feature. The penetration depth of the fringing electric

field above the coplanar electrodes is proportional to the spacing between the cen-

terlines of the sense and drive electrodes. This is an important aspect to consider

while designing sensors for biological samples (e.g., tissues, cells, microbes, proteins,

DNA) whose dimensions scale across several orders of magnitude. Typical cellular

dimensions being at the micron scale, are easily sensed by microelectronic sensors

comprising integrated microelectrodes.

Fig. 2.2 illustrates the equivalent circuit of the most basic capacitance sensor

configuration [36]. The figure shows a parallel guard plane underlying the sense

and drive electrodes. The drive electrode is connected to the excitation source. The

sense electrode is connected to the measurement and signal processing circuitry. The

interelectrode conductances G10, G20 and G12, the interelectrode capacitances C10,

C20 and C12, and the input capacitance of the measurement circuit CL, comprise the

impedance network excited by the source VS. The guard plane driven by a potential

VG = VL, serves to nullify the impedance formed by G20 and C20. This eliminates

their effect on the circuit response and enhances sensitivity.
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Figure 2.2: Generic capacitance sensor configuration.

2.2 A review on CMOS capacitance sensors

Integrated CMOS capacitance sensors have been previously employed for a

variety of applications including fingerprint sensing [37], position sensing [38], inter-

connect characterization [39], humidity sensing [40], and particle detection [27]. The

goal of this research is to demonstrate the application of this technology for on-chip

cell sensing applications including adhesion characterization, viability monitoring

and proliferation tracking. Capacitance sensing techniques using CMOS technology

can be broadly classified under four categories: (i) amplitude based, (ii) frequency

based, (iii) time based and (iv) charge based measurements. These techniques are

discussed in the following sections. Table 2.1 gives a brief overview of each of these

approaches.
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Figure 2.3: Capacitance measurement using synchronous demodulation.

2.2.1 Amplitude based capacitance measurement

The amplitude based measurement approach involves excitation of a capacitive

network comprising a reference capacitor CR and the sensed capacitance CS by

a high frequency excitation signal (10kHz - 1MHz) followed by amplification and

synchronous demodulation of the capacitively modulated signal [41]. Fig. 2.3 shows

a block diagram of a full-wave demodulation scheme, with both positive and negative

half-cycles of signal contributing to the output. The bandpass filter is added to limit

the noise bandwidth. Commercially available high-quality amplifiers and filters can

be used for on-board implementation of the synchronous demodulator required to

implement precise and low-noise capacitance measurements.

2.2.2 Frequency based capacitance measurement

The frequency based approach involves translation of sensed capacitance val-

ues to frequencies or digital pulses using oscillator circuits. In the oscillator based

capacitance sensors, the sensed capacitor replaces the tuning element in the oscil-

lator. Sensors comprising discrete components can employ RC or LC oscillators,

where for an RC oscillator, the frequency is proportional to 1/RC and for an LC

oscillator frequency is proportional to 1/
√

LC. Integrated oscillator circuits imple-
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Figure 2.4: Capacitance measurement using oscillator circuit.

mented in CMOS involve charging and discharging of the sensed capacitor using

transistors acting as controlled current sources.

For example, Ferri et al. designed an oscillator as a capacitive sensor interface

mapping a capacitance range of 10 fF - 100 pF to a frequency span of 300 Hz - 3

MHz [42]. Fig. 2.4 shows the block diagram of the designed oscillator. The circuit

comprises a hysteresis comparator and a current starved inverter in a loop. The

sensed capacitor CS is charged and discharged with constant currents I from the

current starved inverter. The hysteresis comparator comprises two traditional com-

parators with different threshold voltages Vtr+ and Vtr−. The comparator converts

the triangular voltage across CS into a square wave of output frequency:

fosc =
I

2(Vtr+ − Vtr−)
× 1

CS

(2.1)

The chip area was reported to be 0.2 mm2. Frequency measurement or pulse count-

ing would require additional on-chip or off-chip circuitry.

The frequency based technique offers a wide range of measurable capacitances.
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Since the oscillators can be designed to produce digital outputs, the sensors can

operate under noisy conditions.

2.2.3 Time based capacitance measurement

This approach employs a linear relationship to map the sensed capacitance

to the pulse width of the output signal. Based on this technique, Bruschi et al.

designed a capacitance-to-pulse width converter that generates a pulse width mod-

ulated (PWM) signal in accordance to the sensed capacitance [43]. Fig. 2.5 shows

a schematic of the implemented system along with the relevant waveforms.

The sensed capacitance is represented by the capacitance CS along with the

parasitic capacitances CP1 and CP2. The measurement circuit comprises three in-

tegrators INT1-3. The transconductance amplifier OTA2 has 2 identical, in-phase,

current output ports. CMP is a comparator. CR and CI are reference capacitors.

Currents IRMP , ISH and IDIS are obtained from precision current mirrors and are

scaled according to:

ISH = k1 IRMP , IDIS = k2 IRMP (2.2)

k1 and k2 being scaling constants.

When clock (CLK with period TCLK) is low, IRMP is integrated by INT1

resulting in a final output voltage of Vf ,

Vf =
TCLK IRMP

2 CR

(2.3)
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Figure 2.5: Capacitance measurement using pulse width modulation.

INT2 forms a negative feedback loop around OTA2. Since VRMP and VX track each

other from 0 to Vf ,

∫ TCLK/2

0

I2 dt = CS Vf =
TCLK IRMP

2

(
CS

CR

)
(2.4)

Concurrently, the current I1 − ISH is integrated by INT3. Assuming I1 = I2, the

charge stored on CI , at the end of CLK low can be computed as

QI =
TCLK IRMP

2

(
CS − k1 CR

CR

)
(2.5)

CMP output is high during the entire CLK low phase.

When CLK goes high, I1−ISH is disconnected from INT3, and CI is discharged

by IDIS. When VI = 0 after discharging, CMP output goes low and the discharge

stops. From the above discussion, the PWM signal duration TPW can be evaluated
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as:

TPW =
QI

IDIS

=
TCLK

2 k2

(
CS

CR

− k1

)
(2.6)

TPW is proportional to CS. The ratio TPW /TCLK depends on the current ratio k1/k2

and the capacitance ratio CS/CR. The measurement circuit exhibits low sensitivity

to temperature and process variations because these variations are largely canceled

by the computation of the ratio.

2.2.4 Charge based capacitance measurement

The approaches described above for capacitance measurement offer several ad-

vantages including high precision, good linearity, noise immunity, wide signal range

and low temperature sensitivity. However, the measurement circuitry employs sev-

eral signal processing or conditioning modules which increases their on-chip area.

Since the sensor for the current application needs to be tailored for on-chip cell

sensing, employing any of the above approaches would lead to very few sensing

sites. In contrast to the above approaches, charge based techniques have proven to

result in sensors having minimal on-chip footprints and resolution in the aF range.

These factors have favored the adoption of the charge based capacitance measure-

ment approach for the cell sensing application demonstrated here. Recently, charge

based capacitance measuring circuits have been employed for several applications

including fingerprint sensing, interconnect characterization of fabricated chips and

particle detection. This section briefly reviews related architectures reported in the

literature.

19



2.2.4.1 Fingerprint sensing

Charged based capacitance sensor arrays have been used to sample fingerprint

patterns by detecting the electric field variation induced by the skin surface. The

sensing electrodes are covered by a dielectric material on top of which a finger is

placed. The presence of a finger above the sensing electrode produces a capacitor.

The ridge and valley patterns on the fingers translate to the capacitive patterns

sensed across the array.

Tartagni et al. designed a fingerprint sensor based on a feedback capacitive

sensing scheme [44]. Fig. 2.6(a) illustrates the sensing technique. Each sensor cell

comprises two coplanar plates interacting with the overlying finger surface. This is

shown in the figure as the feedback capacitance Cf connected across the amplifier

input and output terminals. Cf is formed by the two coplanar electrodes facing a

third electrode modeling the finger surface. If the input capacitive node is discharged

by a δQ amount of charge, the output voltage ∆Vo can be derived as:

∆Vo =
δQ

Ci

Ao

+

(
1 +

1

Ao

)
Cf

(2.7)

where Ao is the gain of the charge amplifier OP. Cf can be approximated as:

Cf ≈ ε0S

2d
(2.8)

where S is the plate overlap area and d is the distance between the coplanar elec-

trodes and the third electrode. If Ao À 1, the output voltage signal ∆Vo can be
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Figure 2.6: (a)Feedback capacitive sensing scheme. (b)Implemented sensor circuit.

approximated as:

∆Vo ≈ δQ

Cf

=
2δQ

ε0S
d (2.9)

The charge amplifier Ac is implemented as a high gain inverter as shown in

2.6(b). The sensing operation proceeds in two phases. During the reset phase, the

charge amplifier is reset by shorting the input and output using the reset switch,

so that the input and output are set to VT , the logical threshold of the inverter.

During the evaluation phase, a voltage step is applied across an input capacitance

Ci, resulting in an output voltage signal proportional to the feedback capacitance

as shown in Eqn. 2.9 [44].

2.2.4.2 Interconnect capacitance characterization

Interconnect capacitance characterization in conjunction with simulations dur-

ing design phases can provide circuit designers an accurate assessment of speed and

noise issues arising due to interconnect capacitances. Sylvester et al. developed a
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charge based capacitance measurement (CBCM) technique for interconnect charac-

terization [39,45]. Fig. 2.7 shows a schematic of the test structure used.

It comprises complimentary pairs of NMOS and PMOS transistors. The struc-

ture on the left is identical to the one on the right except for the test capacitance

to be measured. Both structures are driven by two nonoverlapping signals V1 and

V2. Turning on the PMOS transistor charges the interconnect capacitance which is

subsequently discharged by the NMOS transistor. Ammeters are used to measure

the average values of the charge/discharge currents. The difference between the two

average currents I and I ′ is used to extract the value of the interconnect capacitance

to be measured.

I ′ − I = Inet (2.10)

Inet = C.Vdd.f (2.11)
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For the purpose of extracting capacitance values, Inet is plotted as a function

of Vdd for specific frequencies. C is extracted by dividing the slope of the fitted line

by the corresponding frequency. The resolution of this technique is limited by the

mismatch in the drain junction and the overlap capacitances of the left and right

transistor pairs.

2.2.4.3 Particle detection

Microelectronic capacitance transducers can be used in miniaturized electri-

cal tomography systems for industrial applications. In this direction Evans et al.

designed a CMOS capacitance sensor for detecting dispersed particles in an oil

medium [27]. They extended the previously developed CBCM technique by in-

corporating a measurement circuit along with the CBCM sensing front-end, instead

of using external current measurement instrumentation. The sensor circuit is shown

in Fig. 2.8. As in CBCM, the sensed capacitance, the stray capacitances (para-

sitic capacitances arising from the measurement circuitry) at the sensing node and

the standing capacitance (capacitance offered by the sensing electrodes themselves)

of the sensing electrodes are charged through Q1 when Clk1 is low and discharged

through Q2 when Clk2 is high. Clk1 and Clk2 are nonoverlapping clocks. A current

mirror comprising Q3 and Q4 mirrors, amplifies and integrates the charging current

over a capacitor Cint. Q6 and Q7 buffer the resulting voltage. Q5 resets the sensing

node after every measurement cycle. The relation between the sensing node voltage
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Vx and the output voltage Vint can be derived as:

Vint

Vx

=
Cx

∫
I4 dt

Cint

∫
I3 dt

=
Cx(W4/L4)

Cint(W3/L3)
(2.12)

Cx represents the sum of the sensed, stray and standing capacitances at the sensing

node. The voltage at the sensing node rises to within one threshold voltage of the

power supply, after which Q3 is cut-off and the sensor output voltage evaluates to:

Vint =
Cx(W4/L4)

Cint(W3/L3)
(Vdd − |Vtp|) (2.13)

Vdd is the supply voltage and Vtp is the threshold voltage of the PMOS transistor.

The equation exhibits a linear relation between the sensor output voltage and the

sensed capacitance. Circuit simulation predicted a sensitivity of 42 mV/fF, with a

mirror gain of 10 and an integrating capacitor of 1.2 pF.
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Chapter 3

Cell Adhesion, Viability, Proliferation, Techniques &

Biophysics

Interaction with a substrate plays a crucial role in the lifecycle of a majority

of cell types. This is because most cells are anchorage-dependent, that is, they need

to be attached to a solid surface before they can grow and proliferate [46, 47]. The

mechanisms by which living cells adhere to substrates and their subsequent viability

and proliferation have been extensively studied in cell biology [46, 47]. In addition

to its physiological significance, understanding cell adhesion and growth has many

practical applications in the fields of medicine, bioengineering and environmental

sciences. For example, the formation of biofilms (complex aggregations of microor-

ganisms on solid surfaces) is important in a variety of applications in food and

water quality assessment and treatment [48]. Studying and enhancing cell adhesion

to body implants is extremely important for improving biocompatibility, reliability,

lubrication and self-regeneration of the adjacent tissues [49].

3.1 Characterizing cell adhesion

Living cells exhibit a variety of modes of attachment to substrates [50]. Cell

adhesion is a complex process that results from interplay between many molecular

and macro-molecular forces including receptor mediated forces, membrane elasticity
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and different kinds of interfacial forces including electrostatic, undulation, van der

Waals interaction and hydration forces [46]. The diversity of mechanisms underlying

cell adhesion ultimately enables cells to adapt to different kinds of surfaces and

living conditions. The factors influencing the interactions between cells and their

substrates can be characterized by quantifying cell adhesion.

In this direction, previous efforts employed techniques like centrifugation and

shear flow measurements [51], wherein cells cultured on a substrate are subjected

to centrifugal and flow forces respectively. The adhesion strength is related to the

fraction of cells that become detached from the surface during mechanical manipu-

lation. Such macroscopic measurements on entire cell populations provides limited

information regarding individual cell behavior and the statistical variations among

cells, and are inherently disruptive of the cell-substrate coupling. Bowen et al. used

atomic force microscopy to measure the adhesive force of a yeast cell by immobiliz-

ing it at the end of a cantilevered beam and making force-distance measurements

for cell retraction from the surface [52]. Barbee et al. developed a thickness shear

mode piezoelectric sensor for continuous measurement of interfacial processes be-

tween endothelial cells and gold electrodes [53]. Fan et al. studied the adhesion

and viability of central neural cells on silicon wafers with different surface roughness

conditions using scanning electron microscopy [54].
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3.2 Assessing cell viability

Quantification of cell viability has become an essential requirement for cell

based studies. Viability sensors may be useful for optimization of cell culture con-

ditions and also for a variety of commercial applications such as drug screening and

biocompatibility characterization of implants.

Cell viability can be measured either directly by counting the number of

healthy cells in a sample or indirectly by measuring an indicator of cell health and

proliferation. Most existing methods for estimation of cell viability can be classified

into two categories. The first class is based on quantifying the metabolic activity of

cells [55, 56]. This is accomplished by incubating cells along with an indicator dye

or a tetrazolium salt that is reduced to a colored compound only by metabolically

active cells. Color development is a function of the number of metabolically active

cells, and gives a measure of cell viability. Quantification is normally accomplished

using spectrophotometry. The other class of cell viability methods probe the cell

membrane integrity using dye-exclusion techniques [56]. This approach takes advan-

tage of the fact that healthy cells with well formed plasma membranes exclude dyes

such as trypan blue, whereas dead and unhealthy cells with compromised membranes

allow dyes to stain internal cellular components. Microscopic analysis is required in

order to count only healthy cells and reject unhealthy cells in the sample.
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3.3 Assessing cell proliferation

Quantifying cell growth is essential for many applications in cell biology and

biotechnology. It is required for optimizing cell culture conditions, for studying

substances that inhibit or promote cell growth, for studying cancer progression, for

drug screening, for cytotoxicity testing of anticancer agents, and also for engineering

biocompatible implants [57–59].

Assessment techniques for cell proliferation measure the number of actively

dividing cells in a sample. A majority of existing proliferation assays measure DNA

synthesis as a direct indicator of cell growth [60]. Assessment involves addition of a

labeled DNA precursor to the cell culture medium, followed by sample incubation

and then quantification of the labeled DNA precursor which has been incorporated

into genomic DNA during replication by means of spectrophotometry. Other indirect

techniques for proliferation assessment involve measuring the activity of molecules

that regulate the cell division cycle [61]. Most traditional proliferation assays are

label-based endpoint assays that require sample preparation and sophisticated lab

equipment. Time-lapse microscopy is an example of a well-established, alternative,

label-free technique that is currently being employed for automating cell proliferation

studies. This involves microscope translation, auto-focusing, optical filtering, image

acquisition and sophisticated image processing [62]. This can serve as a very useful

technique for validating the operation of the integrated sensors that are currently

under development for on-chip monitoring of different kinds of cell phenomena.
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3.4 Previous efforts towards characterizing cell-related properties us-

ing electronic sensing techniques

3.4.1 Electric cell-substrate impedance sensing (ECIS)

The most well established form of “whole cell” biosensing using electrical

means has been impedance-based measurements. The technique of electric cell-

substrate impedance sensing was first introduced by Keese and Giaver [9, 63]. It

involves small signal impedance measurement of gold detecting electrodes immersed

in the cell culture medium. When the cells attach and spread on the detecting

electrode, the measured electrical impedance changes. This is due to the insulating

nature of the cell membrane and the formation of adhesion contacts to the electrode,

both of which impedes current flow. Changing impedance reveals information re-

garding cell morphology and behavior which in turn depends upon coordination of

many biochemical reactions sensitive to parameters such as pH, temperature and

chemical compounds.

Fig. 3.1 illustrates the measurement setup. The gold detecting electrodes have

a diameter of 250 µm. The current returns through a larger area counter electrode

(area ≈ 100 mm2). A 1 V sinusoid of a particular frequency is applied to the sample

through a 1 MΩ resistance. Since the electrode resistance is a few kΩs, the current

flow is approximately constant. An external lock-in amplifier is used to measure

the magnitude and phase of the voltage across the sample. The in-phase voltage

is proportional to the series resistance and the out-of-phase voltage is proportional
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Figure 3.1: A schematic of the ECIS system.

to the series reactance of the sample. The measured impedance is formed by the

electrode/electrolyte interface [64] and the cell layer over the electrode. The resistive

component of the cell layer results from the ionic current under and between the

cells. The reactive component results from the capacitive current flow across the

cell membranes.

Giaver and Keese used impedance sensing to monitor cell proliferation, mor-

phology, and motility [9,63]. Since then there have been several reports of impedance

measurements addressing a variety of cell sensing applications. Ehret et al. mon-

itored impedance changes of cells cultured on interdigitated electrodes during cell

adhesion and growth [10]. Lin et al. used this technique to differentiate between

normal and abnormal cell types [12]. Xiao et al. used ECIS for on-line assessment

of cell cytotoxicity [65].
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3.4.2 Microfluidic capacitance cytometry

A recent effort towards measuring microscopic cellular capacitances employs

flow cytometry in a microfluidic channel. Sohn et al. detected capacitance changes

evoked by the passage of individual cells across a 1 kHz electric field in a microfluidic

channel [34]. The capacitive change has been attributed to the polarization response

of a cell as it passes through an electric field region. The authors also found an

interesting linear relation between the DNA content of eukaryotic cells and the

change in capacitance. Fig. 3.2 shows a schematic of the microfluidic system. It

comprises a pair of gold microelectrodes (50 µm wide) on a glass substrate separated

by a distance of 30 µm. The microfluidic channel was made of polydimethyl siloxane

(PDMS) and measured 30 µm in height. Capacitance measurements were performed

using a commercial capacitance bridge. Distinct capacitive peaks in the range of

3 fF - 12 fF were detected corresponding to flow of cells past the electrodes.

electrode 

fluid in

PDMS
channel 

fluid out

Figure 3.2: Schematic of the microfluidic device for capacitance cytometry.

3.5 Our approach using integrated capacitance sensing

All the traditional approaches mentioned in section 3.1 for characterizing cell

adhesion and section 3.2 for monitoring cell viability employ specialized techniques

31



and processes. In addition, most of them require sophisticated laboratory equip-

ment. Almost all of the cell viability assessment techniques involve an inherent

process of sampling which may not be feasible for samples with extremely small

volumes.

With reference to nontraditional electronic sensing techniques discussed in sec-

tion 3.4, although ECIS employs integrated electrodes for cell sensing, it still requires

external measurement instruments such as lock-in amplifiers and LCR-meters. The

measurements are also subject to electrochemical side-effects, since the electrodes

are directly exposed to the culture medium, an aqueous ionic solution. The elec-

trodes require custom fabrication for biocompatibility and electrochemical corrosion

resistance purposes. The integrated microfluidic capacitance cytometry approach,

although impressive in terms of its sensitivity, still uses an external capacitance

bridge for making measurements.

In contrast to the previous efforts, CMOS sensors can integrate passivated

electrodes with the capacitance measurement circuitry on the same substrate over-

coming the above mentioned limitations and also eliminating the need for exter-

nal instruments. This work has developed integrated capacitance sensors that can

be designed and fabricated using conventional CMOS technology, for inexpensive,

portable and reproducible characterization of cell adhesion and viability properties,

without the need for extensive laboratory infrastructure. The integrated cell sens-

ing approach presented here offers the unique advantage of long term continuous

cell monitoring in a standard culture environment without any modification, and

without the need for disruptive external forces or biochemical agents employed in
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the traditional techniques.

3.6 Biophysics of cell-substrate capacitance

In the presence of low frequency, low strength electric field excitations, living

cells behave as insulating structures embedded in an electrically conductive growth

medium which is an aqueous ionic solution [14]. Cell surfaces generally carry a

surface charge density, which can be positive or negative depending upon the cell

type [14]. The majority of cell surfaces are negatively charged. This induces a

counterionic cloud around the cells in the surrounding medium. When exposed to

an external electric field these counterions are displaced tangentially around the cell

surface giving rise to an induced dipole moment as illustrated in Fig. 3.3. Both

the insulating nature of cells at low excitation frequencies and the counterionic

polarization are responsible for the low frequency capacitive behavior of cells [14].

At low excitation frequencies, the plasma membrane shields out the cell interior,

and therefore all charges and dipoles present inside the cell have no influence on the

dielectric properties of cells [14].

insulating cell suspended in 

a conductive growth medium

cell surface charge

counterionic charge

cell 

growth medium 

induced polarization on

exposure to an electric field

 

induced cell dipole

electric field

counterionic polarization

cell 

Figure 3.3: Cellular counterionic polarization in the presence of external electric
fields.
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3.6.1 Correlating capacitance with cell-substrate interaction

Next we examine the behavior of a cell suspension when it comes into contact

with a solid biocompatible substrate. Upon contact with a solid substrate, proteins

in the growth medium spontaneously adsorb onto the substrate. The interaction be-

tween cells and substrate begins with the sedimentation phase when the suspended

cells gradually drift downwards and settle on the surface. This is followed by the

adhesion phase when cells anchor themselves to the surface through various mecha-

nisms at both molecular and cellular levels [46]. This is accompanied by a significant

change in cell morphology wherein the cells exhibit a spreading behavior. Under

favorable conditions there is a proliferation phase during which cells divide and pro-

liferate. In the presence of weak, low frequency electric fields all three phases can

be modeled as a process of cell dielectric layer formation as shown in Fig. 3.4.

The capacitance arising from this dielectric layer successively increases in the

phases described above. The capacitance between cells and substrate is lowest in the

sedimentation phase since the cells are far from the surface and the cellular dielectric

layer is not yet completely formed. The conductive growth medium screens out

the suspended cells from the electric fields. Once the cells completely settle on the

substrate and start attaching to the surface, they undergo polarization on account of

being exposed to the electric fields. This gives rise to the cell-substrate capacitance.

During the adhesion phase there is a remarkable decrease in the dielectric layer

thickness due to cell spreading and anchoring mechanisms. In addition, the effective

dielectric constant of the cell layer increases due to increasing cell membrane surface
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Figure 3.4: Cell dielectric layer formation in the presence of weak, low-frequency
electric fields: sedimentation phase (top), initiation of adhesion (middle), adhesion
and proliferation phases (bottom).

area and increasing cell dipole density. Both factors contribute to a steady increase

in the cell dielectric layer capacitance. Once the cells have adhered to the surface and

adjusted to the culture conditions, the proliferation phase begins and the measured

capacitance reflects ongoing cellular activity. In cases of adverse conditions, the

growth phases described above may be superseded by a cell death phase during which

the plasma membranes begin to disintegrate, causing a reduction in capacitance of

the cell dielectric layer.

The above discussion regarding correlating the sensed capacitance with the

cell-substrate interaction process provides an explanation for the observations made

during the experiments that were performed with actual biological cells cultured on

fabricated capacitance sensor chips. Several experiments involving three different
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cell types have been performed with the sensor chips and the results have been found

to be in agreement with the model presented here. These experimental results are

presented in the next chapter. This model is entirely based upon the low frequency

dielectric properties of living cells as discussed in [14].
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Chapter 4

First generation capacitance sensors for establishing proof

of concept

4.1 Single electrode capacitance sensor: design and operation

A custom CMOS capacitance sensor for the cell sensing application was de-

signed using the topology shown in Fig. 4.1 [20,66]. The first generation capacitance

sensor employed a single electrode configuration. The passivation layer of the CMOS

fabrication process was used for electrical insulation and biochemical isolation of the

sensing electrode from the aqueous ionic cell medium. The single electrode config-

uration provides maximum penetration depth for a given excitation field. Since the

already available passivation layer of the chip is used as the insulating cover for

the sensing electrode which is approximately 1 µm thick, penetration depth is an

important factor to consider in the sensor design. For a single electrode capacitance

sensor that functions as a proximity detector, output voltage is non-linearly related

to object proximity which results in an increase in sensitivity with proximity of the

sensed object to the chip surface [17]. This characteristic of the sensor makes it

appropriate for monitoring anchorage dependent cells that are directly coupled to

the chip surface.

The sensor operation is based upon the charge sharing principle. The sensor
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Figure 4.1: Cell-substrate capacitance sensor: design and operation.

circuit has two nodal parasitic capacitances CN1 and CN2 whose charging and dis-

charging are controlled by a set of three MOSFET switches M1, M2 and M3. The

sensor operates in two phases. In the reset phase, switches M1 and M3 are turned

on, charging node N1 to V dd and node N2 to V ss, while M2 is off. In the evaluation

phase, M2 is turned on, while M1 and M3 are off, redistributing the charges between

CN1 and CN2. The joint nodal voltage VN is a function of the sensed capacitance

Csensed as a result of the charge redistribution.

VN =
(CN1 + Csensed)V dd + CN2V ss

CN1 + CN2 + Csensed

(4.1)
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Here Csensed refers to the effective capacitance value of the capacitive network

as seen by the sensing electrode in Fig. 4.1. The topmost metal layer, metal3,

forms the sensing electrode. Sensitivity and dynamic range of the measurement

is maximized by minimizing the nodal parasitics. For this purpose, the substrate

coupling capacitance of the sensing electrode is shielded by means of a larger area

metal2 plate in the lower layer. The large capacitance Cm3m2 between the sensing

electrode and the shield is canceled by driving the metal2 shield with a potential

that tracks the sensing electrode potential using a unity-gain buffer. Sensor input

dynamic range improves with increasing sensing electrode area.

4.2 Sensed capacitance modeling

Several factors influence the capacitance measured at the sensing electrode by

the circuit.

4.2.1 Cell layer capacitance Ccell

As discussed in the previous chapter, after sedimentation the cells form a

complex dielectric layer at the growth medium-passivation layer interface. Ionic

conductances are neglected in the model since the cell environment is exposed to

weak electric fields with no conduction current flow (the sensing electrode is totally

insulated from the cell environment using the chip passivation layer, a very good

insulator). Thus the cell layer is regarded as purely capacitive. In reality, the cells

form a heterogeneous layer which exhibits both spatial and temporal variation of
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Figure 4.2: Models of sensed capacitance during the different phases of the interac-
tion process between cells and substrate: (a)pre-adhesion phase, (b)post-adhesion
phase.

dielectric properties. Results from capacitance cytometry experiments have previ-

ously reported capacitances on the order of a few fF’s on account of the polarization

response of the cells as they pass through an electric field across microelectrodes [34].

Therefore the cell layer capacitance is on the order of magnitude of 0.01 fF/µm2.

It is important to note that this capacitance is the whole cell capacitance which is
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different from the cell membrane capacitance which is on the order of magnitude of

10 fF/µm2 [67].

4.2.2 Passivation layer capacitance Cox

The passivation layer of the fabrication process electrically isolates the sensing

electrode from the cell environment. The chip passivation layer comprises silicon

dioxide (dielectric constant: 4) and silicon nitride (dielectric constant: 7.5). So the

effective dielectric constant of the passivation layer was assumed to be 6. For a

passivation layer with uniform thickness of 1 µm and a dielectric constant of 6, the

capacitance per unit area is approximately 0.05 fF/µm2. In the sensed capacitance

network Cox and Ccell appear in series, and their order of magnitudes are comparable.

Thus in order to increase the input dynamic range of the sensor, the insulation

layer above the sensing electrode should be as thin as possible. The value of Cox

can be increased, and overall dynamic range enhanced, by thinning the passivation

layer over the electrodes. However, this would require custom process development,

raising significant practical issues as well as associated cost, and would limit the

generality of the technique. The chip was fabricated in a commercially available

CMOS technology, so the sensor design was constrained by the limitations imposed

by the process technology.
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4.2.3 Interfacial capacitance Cint

The passivation layer (a solid surface) is in direct contact with the cell growth

medium (an aqueous ionic solution), resulting in a layered polarized interface accord-

ing to Gouy-Chapman-Stern theory [68]. The adhesion process of cells introduces

additional solid-liquid interfaces. In addition to the electrified interface there is

also a diffuse layer capacitance arising from the diffuse charge extending from the

interface to the liquid electrolyte bulk. The spatial extent of this space-charge re-

gion is characterized by the Debye length which, for a univalent electrolyte, can be

expressed as [68]:

LDE = (εekT/2n0q2)
1/2

(4.2)

where εe is the electrolyte permittivity and n0 is the ionic density. The Debye length

in the electrolyte is normally lesser than 10 Å for electrolytes with concentrations

greater 10−5 M [68]. Both the interfacial and the diffuse layer capacitances occur in

series and end up being on the order of 100 fF/µm2, 3-4 orders of magnitude larger

than the passivation layer capacitance [68].

4.2.4 Fringe capacitance Cf

The electric field originating from the sensing electrode can be resolved into

vertical and lateral components. The vertical component dominates at the electrode

center while the lateral component dominates at the electrode periphery. The lateral

coupling gives rise to fringe capacitances. The interlayer fringe capacitances inside

the chip (derived using the process parameters provided by the vendor) are on the
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order of 10 aF/µm. The fringe capacitances arising from the lateral coupling of the

sensing electrode with all the neighboring metal lines through the passivation layer,

cells and growth medium will be on the same order of magnitude and therefore their

effect cannot be ignored.

4.2.5 Growth medium capacitance Cgm

The growth medium, a strong electrolyte, produces an ionic screen that shields

its interior from the sensing field as shown in Fig. 4.2(a). Due to this, the sensor

responds to cell-related phenomena only after the cells are inside the ionic screen

and exposed to the sensing field as shown in Fig. 4.2(b). This happens when

they settle onto the surface and form physical contacts with it during adhesion

and proliferation. Under equilibrium conditions the bulk of the growth medium is

electrically neutral and is free of potential gradients, and can be considered as an

ideal ionic conductor. This conductor above the cell layer is capacitively coupled

to all the neighboring conductors (including metal lines for power, voltage biases

and a grounded metal case housing the sensor fixture) resting at DC potentials,

excluding the sensing electrodes. The sum total of all these capacitances evaluates

to Cgm. The self capacitance of the ionic conductor places a lower bound on Cgm

and is on the order of pF when the dimensions of the sensor well are in the cm range.

For example, the self-capacitance of a conducting sphere of radius R (capacitance

between the conducting sphere and another grounded hollow sphere of infinite radius

and centered on the conducting sphere) is given by C = 4πε0R. So in our case, the
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bulk of the growth medium is the ionic conductor which is capacitively coupled to

the grounded metallic case housing the sensor test fixture. This capacitance will be

greater than the self capacitance of the isolated growth medium bulk which is on

the order of pF.

Cgm is expected to vary for different configurations of the sensor well. As long

as the total volume of the growth medium is on the order of 100s of µLs (or higher),

as in the reported sensor configuration, Cgm is on the order of pF’s (or higher) and

will not influence sensor operation.

4.2.6 Baseline capacitance Cbase

The baseline capacitance represents the capacitance due to dielectric prop-

erties of residual materials on top of the passivation layer. These include surface

residues resulting from the polymer used for encapsulation of the bond wires and

from adsorption of materials from the growth medium onto the surface. The ini-

tial capacitance recording obtained from each of the sensors, at the start of every

experiment (when the sensor chip was tested with biological cells) as soon as the

sensor well was loaded with the cell culture suspension, is dominated by this baseline

capacitance. On compiling the data obtained from all the experiments, the initial

capacitance sensed by a 40×40 µm2 sensor was found to vary between sub-fF values

to approximately 10 fF (for a 30×30 µm2 sensor, between sub-fF values to approx-

imately 2 fF, and for a 20×20 µm2 sensor, between sub-fF values to approximately

1 fF). We attribute these variations in initial sensed capacitances to different values
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of Cbase at the start of different experiments. Cbase is sensitive to a variety of fac-

tors including surface residues on the passivation layer, microscopic air bubbles and

hydrodynamic disturbances.

4.2.7 Effective sensed capacitance Csensed

From the above discussion, the capacitance as seen by the sensing electrode

equates to the effective capacitance offered by the network of passivation layer,

cell layer, fringe parasitics and all interfacial capacitances between various liquid-

solid boundaries. The sensed capacitance must be modeled separately for the pre-

adhesion and the post-adhesion phases, since during the adhesion phase the interface

between the growth medium and the substrate undergoes a drastic change in its

structural and dielectric properties resulting in an appreciable variation in the sensed

capacitance. Both models of sensed capacitance are illustrated in Fig. 4.2.

During the pre-adhesion phase of Fig. 4.2(a), the growth medium produces an

ionic screen in response to the electric field originating from the sensing electrode.

The ionic screen at the boundary between the growth medium and the substrate

shields the interior of the solution including the suspended cells as a result of elec-

trostatic induction. The sensed capacitance network comprises the passivation layer

capacitance Cox and interfacial capacitances Cint in series with the baseline capaci-

tance Cbase and Cgm. The fringe capacitance Cf appears in parallel with Cbase (see

Fig. 4.2(a)).

The reference potential for the fringe capacitance originates from adjacent
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metal interconnects resting at DC potentials. Under equilibrium conditions the bulk

of the growth medium is electrically neutral and is free of potential gradients, and

can therefore be regarded as an ideal ionic conductor. The reference potential for the

capacitances associated with vertical electric field coupling originates from all nearby

conductors resting at DC potentials (mainly the grounded metallic case housing the

sensor test fixture) to which the bulk of the growth medium is capacitively coupled

to. When a ground electrode was introduced in the growth medium, we observed the

sensor outputs to saturate, which indicates the presence of a grounded conducting

plane on the chip surface. This can be explained by the grounding of the surface

conductances that are formed at the passivation layer-growth medium interface, that

effectively screen out all the components of the sensed capacitance network except

for the passivation layer capacitance. This way the sensed capacitance is limited to

just the passivation layer capacitance. In the absence of a ground electrode in the

growth medium, the surface conductances are floating which prevents the screening

of the sensed capacitance network.

The combined effect of all the different contributions towards the sensed ca-

pacitance can be visualized using the capacitance network shown in Fig. 4.2(a),

with the sensed capacitance expressed as:

1

Csensed

=
1

Cbase + Cf

+
1

Cox

+
1

Cint

+
1

Cgm

(4.3)

Considering the relative orders of magnitude of the various capacitances, the

effective value of pre-adhesion sensed capacitance can be modeled as:
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1

Csensed

∼= 1

Cbase + Cf

+
1

Cox

(4.4)

The cells do not influence the cell-substrate capacitance until they have set-

tled on the substrate below the ionic screen (that arises as a result of electrostatic

induction), and are exposed to the varying electric fields (see Fig. 4.2(b)). This

happens during the adhesion phase when the cellular dielectric layer begins to form

on the surface of the passivation layer. So the space between the ionic screen and

the solid surface can be viewed as being permeated with cellular dipoles enhancing

its dielectric constant. This effect is modeled by replacing Cbase with Ccell, as illus-

trated in Fig. 4.2(b). During this process Cf is also influenced by the cells present in

neighboring regions. This effect is incorporated into the model by replacing Cf with

Cf ′ . Again comparing the relative orders of magnitude of the various capacitances

in the sensed capacitance network, the effective value of post-adhesion phase sensed

capacitance can be modeled as:

1

Csensed

∼= 1

Ccell + Cf ′
+

1

Cox

(4.5)

It is important to note that Cbase, Ccell, Cf and Cf ′ represent lumped parameter

values of their corresponding capacitances which are actually distributed in nature

due to their heterogenous and time-varying characteristics. As mentioned previously,

the cell layer capacitance Ccell is a function of many factors influencing its structural

and dielectric properties [7, 8, 69]. These include membrane integrity, membrane

potential, cell morphology, adhesion strength, extra-cellular ionic distributions and
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also number and surface area coverage of cells above the sensing electrode.

The above discussed models for the pre-adhesion, adhesion and post-adhesion

phases have been developed to explain the observations made during the experiments

that were performed with actual biological cells cultured on fabricated capacitance

sensor chips. Several experiments involving three different cell types have been per-

formed with the sensor chips and the results have been found to be in agreement

with the models presented here. The experimental results are presented in the fol-

lowing sections. The models are based upon the low frequency dielectric properties

of living cells as discussed in [14].

4.3 Chip design, fabrication and bench testing

The capacitance sensor was designed using the Cadence Design Suite by em-

ploying the technology parameters for a commercially available 0.5 µm standard

CMOS process. The sensor circuit was designed for a 3 V supply and for an op-

erating frequency of 1 kHz. The design was simulated using the Cadence Spectre

Simulator by employing the parametric analysis feature for varying the input sensed

capacitance. The sensor chip layout was drawn using the Cadence Virtuoso Lay-

out software. The layout information was then submitted to the MOSIS service

for chip fabrication. The sensor chip measuring 1.5×1.5 mm2 was fabricated in a

commercially available 0.5 µm, 2-poly, 3-metal standard CMOS technology.

Sensor dynamic range improves with increasing sensing electrode area. For

studying the influence of this dependence on the sensor response to cells, three
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Figure 4.3: (a) Photomicrograph of the fabricated sensors showing the three sen-
sor groups with sensing electrode areas: 20×20 µm2, 30×30 µm2 and 40×40 µm2.
(b) Photograph of a biocompatibly packaged capacitance sensor chip. (c) Photomi-
crograph of MDA-MB-231 human breast cancer cells cultured in vitro on top of a
capacitance sensor chip.

sensor groups with electrode areas of 20×20 µm2, 30×30 µm2 and 40×40 µm2

were designed and tested. The chip comprised an array of 28 sensors (9 sensors of

size 20×20 µm2, 9 sensors of size 30×30 µm2 and 10 sensors of size 40×40 µm2)

confined within an area of 400×400 µm2. Fig. 4.3(a) shows a photomicrograph of

the fabricated sensors.

The chip was bench tested by calibrating the sensors as proximity detectors

[bench testing was performed along with J. Van Sickel]. Calibration was performed

by using an external metal electrode whose vertical positioning was controlled by

means of a piezoelectric micropositioner. The micropositioner was controlled by

means of a hand terminal that specified the vertical distance through which the
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Figure 4.4: Variation of the sensor voltages with electrode distance.

metal electrode was to be translated. The metal electrode was an insulated nee-

dle held by the translation stage comprising the micropositioner. The needle was

electrically floating and was not connected to any DC source or the ground. So

for the proximity detection application, the environment is employed as the return

path for the capacitive current [41]. Fig. 4.4 shows the test results superimposed on

the simulated sensor voltages. The symbols represent experimental values of sensor

voltage obtained by moving the micropositioned electrode in steps of 2 to 3 µm. The

output voltage ranges for the 20x20, 30x30 and 40x40 µm2 sensors were found to be

100 mV, 200 mV and 400 mV respectively. The solid curves are the sensor outputs

simulated using the charge sharing relation Eqn. 4.1 for the three sensor groups.

Upon knee-fitting the bench test results with the simulated curves using the least

squares technique, the nodal parasitic capacitances CN1 and CN2 were estimated

using least squares fits to be 20 fF and 18 fF respectively [17].
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In order to translate the sensor outputs to sensed capacitance values, the

output voltages during the evaluation phase are subtracted from their corresponding

voltages during the reset phase for offset cancelation. In some cases, this results in

negative values of sensed capacitances due to small voltage fluctuations. The inverse

relation for Csensed as a function of this voltage difference can be derived from (4.1)

as

Csensed =
(V dd− V ss)CN2 − Vdiff (CN1 + CN2)

Vdiff

(4.6)

where Vdiff = Vreset− Veval and Vreset = V dd. Here both Vreset and Veval refer to the

voltages before the readout buffer.

4.4 Sensor resolution analysis

For the single electrode capacitance sensor functioning as a proximity detector,

sensitivity is a function of object proximity. Sensor sensitivity increases with object

proximity to chip surface as can be seen from the simulated plots in Fig. 4.4. This

characteristic is appropriate for the present application, since the cells are directly

coupled to the chip surface. Due to the nonlinear relation between proximity and the

sensor output, the distance resolution varies with the object proximity. The distance

resolution R(di) at a distance d = di from the chip surface can be computed using

the relation:

R(di) =
σnoise

∂Vdiff

∂d
(di)

(4.7)

where σnoise is the sensor output noise level and
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Figure 4.5: Sensor distance resolution as a function of object proximity.

Vdiff = Vreset − Veval

= V dd−
[
(CN1 + Csensed)V dd + CN2V ss

CN1 + CN2 + Csensed

]

=
CN2(V dd− V ss)

CN1 + CN2 + Csensed

(4.8)

Distance resolution improves with increasing proximity to the surface, increasing

electrode area and decreasing noise level. So for a given sensor with a fixed sensing

electrode area, the best possible resolution is achieved when the object is in contact

with the chip surface. Fig. 4.5 shows a plot of distance resolution for the three sensor

groups with different electrode areas as a function of proximity, for a measured noise

level of 5 mV (standard deviation of the output voltage fluctuations). The sensors

exhibit a distance resolution of 3 nm when the sensed object is in contact with the

chip surface (R(di = 0 µm) = 3 nm in Fig. 4.5). The corresponding capacitance

resolution was evaluated to be 135 aF, with a maximum sensor gain of 37 mV/fF
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(this is the maximum sensor gain as was derived from the simulated plots shown in

Fig. 4.4).

4.5 In vitro experiments demonstrating sensor response to cell phe-

nomena

For the purpose of testing the sensors in vitro, the sensor chip in a DIP40

ceramic carrier was encapsulated using a biocompatible polymer for bond wire insu-

lation and isolation of cells from toxic materials of the DIP40 chip carrier [biocom-

patible chip packaging was performed by M. Urdaneta]. The encapsulation material

is a photopatternable polymer (Loctite 3340, Henkel) [70]. A well (diameter = 1.5

cm, height = 0.5 cm) was glued on top of the packaged chip for containing the cell

culture medium. Fig. 4.3(b) shows a photograph of the final test fixture.

Fresh unused chips possessing clean surfaces without any additional surface

modification or functionalization were used for all the experiments. Prior to cell

loading, the biocompatibly packaged chip was rinsed with deionized water, sterilized

using UV light, and then rinsed with the corresponding cell growth medium. The UV

light does not affect the capacitance characteristics of the chip (sensor outputs did

not change before and after exposure to UV light) and was used for sterilization only

before the sample is loaded. In every experiment, 500 µL of the cell suspension was

loaded into the sensor well using standard aseptic techniques. The sensor well was

sealed using either a cover slip or a gas permeable Breathe-Easy membrane (Fisher

Scientific). Fig. 4.3(c) shows a photomicrograph of MDA-MB-231 human breast

53



(a) (b)

Figure 4.6: (a)Photograph of a cell loaded chip mounted on the test board.
(b)Photograph of the data acquisition setup.

cancer cells cultured on a capacitance sensor chip. To date, the sensor chips have

been tested with three different cell types namely: bovine aortic smooth muscle

cells (BAOSMC), human breast cancer cells (MDA-MB-231) and human colonic

adenocarcinoma cells (Caco-2).

The sensor chip with cells loaded into the well was then mounted on a test

board with a data acquisition interface. The board was placed inside a grounded

metal case (functioning as a Faraday shield) and was powered using a regulated

supply. The chip was monitored using a laptop running LabVIEW 7.1 (National

Instruments) and interfaced to the test board using a PC-CARD-DAS16/16AO data

acquisition card (Measurement Computing). A shielded PCMCIA cable was used

to connect the data acquisition card to the test board. The test fixture containing

the sensor chip was maintained at 37◦C, 5% CO2 inside an incubator during the

monitoring period.

The above described procedure was common to all the experiments involving
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monitoring sensor responses to cells cultured on the chip surface. These experiments

are described in the following sections.

4.5.1 Tracking cell adhesion

4.5.1.1 Experiment 1: Averaged sensor response to cell adhesion

This experiment was performed with bovine aortic smooth muscle cells [bio-

compatible chip packaging and cell loading was performed by N.M. Nelson]. The

cells were cultured in a T25 flask in growth medium (pH 7.4 and buffered for CO2)

in a commercially prepared medium supplemented with serum, growth factors and

antibiotics (Cell Applications Inc.). The cells were allowed to grow in the flask un-

til they were confluent and were then detached by using a cell scraper. After cell

detachment a suspension with an approximate density of 1×106 cells/mL was pre-

pared. The sensor chip was first calibrated by adding the BAOSMC growth medium

alone without cells and measuring the capacitive coupling between the solution and

electrodes. The well was then loaded with the high density BAOSMC suspension so

that all the sensors in the test array were exposed to similar conditions. The sensor

outputs were monitored over a period of 24 hours. This experiment was conducted

before the above described data acquisition system was developed and therefore the

sensor measurements were recorded manually. In between measurements the fixture

was maintained inside an incubator at 37◦C, 5% CO2. Coupling of cells to every

sensor was confirmed through visual observation [visual observation was performed

along with N.M. Nelson].
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Figure 4.7: Averaged sensor response to cell adhesion. The data points show the
average output voltage differences and standard deviation values across the sensors
in each of the three groups. The horizontal lines plotted are the average sensor
recordings with the chip exposed to growth medium alone before the sensor well
was loaded with cells and have been plotted here across the time frame for com-
paring with the averaged sensed capacitances that were recorded in response to cell
adhesion.

The sensed capacitances were computed as discussed previously. Fig. 4.7

shows a plot of the average voltage differences for the three sensor groups. Error

bars indicate the standard deviation in response between all sensors of the same size.

The voltage differences for all three sensor groups decreased with time, tracking

the adhesion process as expected and indicating an increase in capacitive coupling

between the cells and the on-chip electrodes after they were allowed to settle on the

chip surface over a period of time. Based upon these measurements the computed

average sensed capacitances increased by 5.1 fF, 6.9 fF and 13.2 fF for the 20x20,
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Figure 4.8: Online tracking of cell adhesion process by six 40×40 µm2 sensors.

30x30 and 40x40 µm2 sensor groups respectively as shown in Fig. 4.7.

4.5.1.2 Experiment 2: Online tracking of cell adhesion

In this experiment the previously described data acquisition system was set

up for online monitoring of the sensor responses to BAOSMC loaded on top of

the chip surface and placed inside an incubator. BAOSMC loading and incubation

were performed using standard aseptic techniques [biocompatible chip packaging

was performed by M. Urdaneta]. The test fixture containing the sensor chip was

maintained at 37◦C, 5% CO2 inside an incubator during the monitoring period. The

sensor readings were recorded every 5 minutes with the cells exposed to electric field

excitations only during the short recording intervals.

Fig. 4.8 shows the sensed capacitances as recorded concurrently by six 40×40
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µm2 sensors during the first 8 hours of cell incubation. The capacitance plots are

indicative of the pre-adhesion and adhesion phases as discussed in the previous

chapter (experimental observation agrees with the proposed model). The cells took

around 2.5-4.75 hours to initiate adhesion after sedimentation and around 30 minutes

to 1.5 hours to adhere (pre-adhesion: 3.29±1.05 hours, adhesion: 1.08±0.34 hours).

The figure also shows phase delays in the initiation of cell adhesion as recorded by

sensors in different locations. The capacitance fluctuations observed throughout the

monitoring interval (predominantly in the post-adhesion phase) have been attributed

to interference noise coupling to the sensing node during the sensor evaluation phase.

This is discussed further in Section 4.5.5.

4.5.2 Monitoring cell viability

4.5.2.1 Experiment 1: Averaged sensor response to changes in cell

viability and sensor response validation using Neutral Red

This experiment with BAOSMC monitored the sensor response to changes in

cell viability. For this the procedure in section 4.5.1.1 was repeated but this time

with BAOSMC stained with Neutral Red in a colorless growth medium [biocompat-

ible chip packaging was performed by M. Urdaneta and cell loading was performed

by N.M. Nelson]. The sensors were monitored over a period of 48 hours. This ex-

periment too was conducted before the data acquisition system was developed and

therefore the sensor measurements were recorded manually. Cell viability was as-

sessed independently through visual inspection of the stained cells. Living healthy
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Figure 4.9: Averaged sensor response to changes in cell viability.

cells have the characteristic property of taking up and retaining Neutral Red stain

whereas non-viable cells do not retain the stain [47]. Fig. 4.9 shows the averaged

response of the three sensor groups over the 48 hour period. Over the first day

the cells were able to retain the stain (confirmed along with N.M. Nelson through

visual observation: colorless medium remained colorless) and the sensors showed an

increase in capacitive coupling between cells and sensor electrodes. On the second

day, however, it was observed that the cells no longer retained the stain and had

released the dye into the growth medium (visual confirmation was performed along

with N.M. Nelson), an indication of non-viability. Accordingly the sensors showed a

decrement in the measured capacitance values. The compromised cell viability was

attributed to the gas-impermeable cover slip that was used to seal the sensor well

after cell loading in order to maintain sterility.
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4.5.2.2 Experiment 2: Online monitoring of cell viability and sensor

response validation using Alamar Blue

In this experiment the data acquisition system was set up for online monitor-

ing of the sensor responses to changes in BAOSMC viability [biocompatible chip

packaging was performed by M. Urdaneta]. The sensor responses were continuously

acquired every 5 minutes for a period of 29 hours with BAOSMC incubated on top of

the chip surface. For validation purposes cell viability was confirmed using Alamar

Blue (obtained in aqueous form from Biosource International), a cell viability dye.

Alamar Blue is commercially available in an oxidized, blue, nonfluorescent form (re-

sazurin), which becomes gradually reduced to its pink fluorescent form (resorufin)

in a medium containing viable cells [56]. The dye molecules are reduced by a class of

enzymes called reductases found in mitochondrial membranes and the cytosol [71].

Reduction of Alamar Blue is directly correlated with the number of viable cells,

incubation time and temperature. The resazurin reduction test has increasingly

been used in cytotoxicity assays for high-throughput screening in pharmacological

applications [72] because it is nontoxic and nonterminal, that is, it does not require

that the cells in the sample be killed in order to make the measurement.

BAOSMC loading and incubation were performed as in the previous experi-

ments, with Alamar Blue mixed into the growth medium in a 1:10 ratio by volume.

The culture well has a sample capacity of approximately 500 µl. Fig. 4.10 shows the

sensed capacitances as recorded concurrently by three of the on-chip sensors, one

representative trace from each sensor group with different sensing electrode area.

60



0 5 10 15 20 25 30
0

10

20

30

40

0 5 10 15 20 25 30
0

5

10

15

20

0 5 10 15 20 25 30

0

5

10

15

Time (h)

Se
ns

ed
 C

ap
ac

it
an

ce
 (

fF
)

sample 0
     0%      

sample 1
  58.5% 

sample 2
  73.8% 

day 1
sample 0  
    0%    

replenished  growth medium

sample 1
 0.95%  

sample 2
  7.15% 

day 2

40x40 µm2  sensor      

30x30 µm2  sensor      

20x20 µm2  sensor      

Alamar blue % reduction values  

loaded cells

Figure 4.10: Online monitoring of cell viability with concurrent measurements using
Alamar Blue dye. Alamar Blue % reduction values obtained from spectrophotomet-
ric analysis are shown above the times corresponding to extraction of the microsam-
ple.

The fraction of Alamar Blue in reduced form was evaluated by measuring the ab-

sorbance of the growth medium at 570 nm and 600 nm. This was accomplished by

performing spectrophotometric analysis on 20 µL samples extracted from the sensor

well at instances during the monitoring period denoted by the vertical time lines in

Fig. 4.10.

The sensed capacitance values tracked the pre-adhesion and adhesion phases

as in the previous experiments. After adhesion the sensed capacitances remained
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high until the 9th hour of incubation, which is indicative of viability. Alamar Blue

was gradually reduced to its pink form during this 9 hour interval, confirming posi-

tive cell viability. According to spectrophotometric readings, the fraction of Alamar

Blue in reduced form was found to be 0%, 58.5% and 73.8% at 0, 4 and 9 hours,

respectively, with reference to the initial cell loading time. Over the next 15 hours,

however, the sensed capacitances began to fall gradually, which is indicative of com-

promised viability. This decrease is attributed to oxygen deprivation resulting from

the presence of a gas impermeable glass cover slip over the sensor well. The cover

slip served to maintain sterility of the sample well during the extended observation

period. In order to confirm the observed reduction in cell viability, the sensor well

was replenished at the beginning of the second day with a fresh solution of growth

medium and Alamar blue. As seen in Fig. 4.10, over the next 1 hour interval the

capacitances increased and stabilized, possibly due to the fresh oxygen and nutrient

supply. However, over the next few hours the capacitances decreased again, which

is indicative of compromised viability. This result is confirmed by the concurrent

Alamar Blue measurements: minimal color change was observed, in contrast to mea-

surements of the previous day. Alamar Blue % reduction values were found to be

0%, 0.95% and 7.15% at 0, 4 and 8 hours, respectively, with reference to the growth

medium replenishment time on the second day. The transient drops in the sensed

capacitance values at the microsample extraction times can be attributed to hydro-

dynamic disturbances created by introducing the micropipette tip inside the culture

well. Hydrodynamic effects have the potential to disturb the ionic equilibrium re-

sponsible for the biophysical origin of the cell-substrate capacitance. (The parasitic
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capacitances inside the circuit are fixed and are not influenced by disturbances in the

off-chip environment. Therefore they are not responsible for the observed transient

drops.)

In this experiment, good correlation was observed between on-chip measure-

ments of the capacitance between cells and substrate, and the Alamar Blue reduction

measurements of cellular metabolism.

4.5.2.3 Experiment 3: Long term monitoring of cell viability in a

closed undisturbed environment

In this experiment BAOSMC were continuously monitored in a closed, undis-

turbed environment on top of the sensor chip, without growth medium replenish-

ment for a period of four days [biocompatible chip packaging was performed by

M. Urdaneta]. This experiment was mainly performed to test the reliability of the

biocompatible package and also consistency in the experimental results in compar-

ison to the previous experiments with the bovine cells. This experiment was again

performed using the gas-impermeable cover slip for sealing the sensor well. Fig.

4.11 shows a four day plot of the sensed capacitance as recorded by a sensor with

a sensing electrode area of 40×40 µm2. As shown in the figure, the capacitance

tracked the initial pre-adhesion and adhesion phases over the first few hours. Then

the capacitance exhibited many fluctuations, indicating ongoing cell activity. Over

the last two days the time averaged value of the measured capacitance leveled out,

indicating compromised viability and inactivity due to starvation and lack of oxygen.
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Figure 4.11: Long term measurement of cell capacitance with cells monitored in a
closed undisturbed environment for a period of four days.

The above interpretation of the experimental results is entirely based on the

results obtained from previous experiments performed with BAOSMC wherein the

initial capacitance increase within the first 8 hours of incubation was attributed to

cell adhesion, sensed capacitances remaining high was attributed to good cell health

and a decrease in sensed capacitance was attributed to compromised viability. These

correlations between the time varying characteristics of the sensed capacitance, and

the adhesion and viability properties of cells have already been established through

visual observation and validation using Neutral Red and Alamar Blue dye tests

performed in the previous experiments.
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4.5.3 Tracking cell proliferation

4.5.3.1 Experiment and results

This experiment was performed with MDA-MB-231 human breast cancer cells

[cells acquired from Dr. H. Ghandehari and Dr. A. Nan] with the purpose of tracking

cancer cell proliferation using the integrated capacitance sensors. So for this, firstly

a low cell density suspension was employed (in comparison to a cell density of

1×106 cells/mL employed in the previous experiments) in order to ensure that all

the sensors do not get coupled to the cells during the adhesion phase. Secondly,

the gas-impermeable cover slip was replaced with a gas permeable Breathe-Easy

membrane (Fisher Scientific) allowing for gas exchange so that cell viability was

not compromised due to oxygen deprivation [employing Breathe-Easy membrane

was suggested by Dr. W.E. Bentley]. MDA-MB-231 human breast cancer cells are

actively dividing cells with a short doubling time of 26 hours.

MDA-MB-231 cells were cultured in a T25 flask in growth medium (pH 7.4 and

buffered for CO2) comprising 94.7% improved minimum essential medium (IMEM;

Invitrogen), 5.0% fetal bovine serum (Invitrogen), and 0.3% penicillin-streptomycin

(100x) (Invitrogen) by volume. The cells were allowed to grow in the flask until they

were well into their exponential growth phase, which requires around 48 hours for the

MDA-MB-231 cells. The cells were then detached by using 0.25% Trypsin/EDTA

(Invitrogen). After cell detachment a suspension with an approximate density of

1×105 cells/mL was prepared. Cell density was determined using a hemocytometer.

The sensor well was loaded with the cancer cell suspension using the procedure

65



stated at the beginning of this section. The sensor well was sealed using a gas

permeable Breathe-Easy membrane (Fisher Scientific) allowing for gas exchange.

Fig. 4.3(c) shows a photomicrograph of MDA-MB-231 cells cultured on the sensor

chip.

A total of 16 sensors (5 sensors of size 20×20 µm2, 5 sensors of size 30×30 µm2

and 6 sensors of size 40×40 µm2) were monitored over a period of 18 hours. Fig.

4.12 shows sample responses obtained from 4 of the monitored sensors. For those

sensors the time averaged value of the sensed capacitances remained low until the

6th hour of incubation which is indicative of the pre-adhesion phase during which

the cells settle onto the surface passively, but have not yet made any adhesion

contacts with the chip surface. The capacitance plots then showed increases during

the 6th, 7th and 8th hours with different phase delays in the capacitance increases at

the different sensor locations. The capacitance fluctuations observed throughout the

monitoring interval (predominantly in the post-adhesion phase) have been attributed

to interference noise coupling to the sensing node during the sensor evaluation phase.

This is discussed further in Section 4.5.5.

Table 4.1 displays the initiation time Ti, duration time Td, and overall change

∆C, for the capacitance increases as observed from recordings of the 16 monitored

sensors. For extracting Ti and Td values the sensor data was first smoothed using

an algorithm employing Hamming filtering with a window size of 10 samples. Ti

reflects the time at which the adhesion phase began and was quantified as the first

time point at which the sensed capacitance exceeded its starting value by more than

two standard deviations:
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Figure 4.12: Sample capacitance plots showing sensor response to MDA-MB-231
cell adhesion; sensors a and b have a sensing electrode area of 30×30 µm2; sensors
c and d have a sensing electrode area of 20×20 µm2.

Ti = tn ⇐⇒ C(tn)− µstart ≥ 2σstart for Tstart < tn < Tend (4.9)

where C(tn) is the sensed capacitance at time t = tn, Tstart and Tend are the beginning

and ending of the observation period, and µstart and σstart are the mean and standard

deviation of the capacitance during the time period t = 0 to Tstart. The gradients of

all the sensed capacitance measurements vs. time were consistently observed to first

rise, attain a peak value, and then fall over the periods during which the capacitances

increased. Td was chosen to be the time interval after which the gradient ∂C/∂t of

the sensed capacitance dropped to zero or below after having attained its peak at

t = tmax:

Td = tn − Ti ⇐⇒ ∂C(tn)

∂t
≤ 0 for tn > tmax, Tstart < tn < Tend (4.10)
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∆C values were computed from the difference in the means of 10 capacitance samples

acquired before and after the capacitance increase.

Table 4.1: Initiation time Ti, duration time Td, and overall change ∆C values
obtained from sensed capacitance plots for all 16 monitored sensors across the three
sensor groups. Cell loading performed at t = 0 hr.

20×20 µm2 sensors 30×30 µm2 sensors 40×40 µm2 sensors

Ti Td ∆C Ti Td ∆C Ti Td ∆C

(h) (min) (fF) (h) (min) (fF) (h) (min) (fF)

5.83 30 4.48 5.92 50 4.58 5.75 45 17.90

5.83 30 4.59 6.25 55 6.12 9.92 85 26.66

5.92 45 3.43 6.58 40 6.88 10.58 70 21.66

5.92 50 5.71 7.58 50 6.22 11.17 105 19.98

6.33 50 4.90 7.58 105 5.90 14.83 110 18.03

* * * * * * 16.17 110 22.59

All 5 of the 20×20 µm2 sensors, all 5 of the 30×30 µm2 sensors and just 1

of the 40×40 µm2 sensors recorded a capacitance increase around the 6th, 7th and

8th hours of incubation. The sensor response to cell adhesion was similar to those

recorded in previous experiments with BAOSMC. For example, in the experiment

reported in section 4.5.1.2 a cell suspension of higher concentration was employed

to ensure that all the sensors were covered with cells during adhesion, as a result

of which all sensors recorded an increase in capacitance within the first 5 hours of

incubation with a 3 hour spread in the Ti values

Fig. 4.13 shows sample responses as obtained from 4 of the 6 40×40 µm2

sensors that were monitored. The inset also shows relative positions of all the

40×40 µm2 sensors (both monitored and not monitored) that are distributed over
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an on-chip area measuring 120×400 µm2. The location corresponding to each of the

sensing electrodes where the capacitance increase was recorded has been indicated

by the shaded squares in the respective sensor panels. Electrode locations with

dashed outlines were not monitored during the experiment. As indicated from the

plots and the timing information in Table 4.1, the sensed capacitances as recorded

by sensors 2 to 6 of the 40×40 µm2 sensor group remained low during the first

10 hour interval while all the sensors in the other two groups and 1 of the 40×40

µm2 sensors (sensor 1) recorded a capacitance rise by the end of the 8th hour. This

indicates that no cells had adhered to locations above sensors 2 to 6, since the cell

density of the suspension was not high enough to cover the entire active area of the

chip with cells. Sensors 2 to 6 then recorded capacitance increases during the 10th,

11th, 12th, 15th and 17th hours of incubation with a wider distribution in Ti values

(spread over a period of 6.25 hours) which is suggestive of cell proliferation. This

agrees well with the fact that MDA-MB-231 breast cancer cells are actively dividing

cells with a short doubling time of approximately 26 hours [73]. As expected, the

cells began to proliferate once they adhered to the surface.

An interesting observation can be drawn from the sensed capacitance values

recorded by sensors 3, 5 and 6. These sensors are located adjacent to each other

on the chip. In Fig. 4.13 it can be seen that the sensed capacitance plots indicate

a proliferation wavefront traveling from sensors 3 and 5 towards 6, over a span of

6 hours. Such a progression in the responses of the sensors located in a very small

area over a relatively long duration is clearly suggestive of an underlying process of

cell proliferation in that area.
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Figure 4.13: Sample capacitance plots showing sensor response to MDA-MB-231 cell
proliferation. The 10 squares in each panel display the relative locations of the 10
40×40 µm2 sensors. The term “pre-proliferation phase” refers to the period before
cell proliferation during which the sensors were not coupled to any cells.

In this experiment, validation of the sensor response to cell proliferation was

carried out through microscopic analysis at the end of the 18 hour long monitoring

period. At that time it was found that all sensors were covered by well attached,

adherent cells. Due to technical constraints, this microscopic analysis was per-

formed only at the end of the monitoring because it imposed conditions which inter-

rupted the ongoing measurement. Microscopic imaging of cells on the chip requires

reflectance-mode optics. Fluid above the chip surface introduces optical distortion,

so it must be removed prior to imaging, thus disrupting the experimental continuity.

70



4.5.3.2 Estimating cell doubling time

Summarizing the experimental results, a total of 16 sensors (5 sensors of size

20×20 µm2, 5 sensors of size 30×30 µm2 and 6 sensors of size 40×40 µm2) were

monitored. Out of these 16 sensors, all 5 of the 20×20 µm2 sensors, all 5 of the

30×30 µm2 sensors and just 1 among the 40×40 µm2 sensors recorded capacitance

increases indicating cell adhesion. Later on, the remaining 5 of the 40×40 µm2

sensors (sensors labeled 2 to 6 in Fig. 4.13) recorded capacitance increases during

the 10th, 11th, 12th, 15th and 17th hours of incubation which are suggestive of cell

proliferation.

The Ti and Td values listed in Table 4.1 for the 40×40 µm2 sensors provide

an indirect measure of the cell proliferation rate and the sensed capacitance plots

provide temporal traces of the actual proliferation process. The narrow 1.83 hour

spread in the Ti values corresponding to the 20×20 µm2 sensors, the 30×30 µm2

sensors and sensor 1 in the 40×40 µm2 group suggests an underlying process of

cell adhesion occurring in those locations, while a wider 6.25 hour spread in the

Ti values corresponding to sensors 2 to 6 suggests an underlying process of cell

proliferation. Td values can be compared for sensors only within a group because

of varying dynamic ranges across the three groups.

The growth curve of the cells growing over the sensor region can be assessed

by monitoring the cumulative number of sensors that have recorded capacitance

increases with respect to incubation time, denoted by CS. Fig. 4.14 shows such

a plot as obtained using the 16 sensors monitored during the experiment. Note
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that the initial rise between hours 6 and 8 indicates adhesion, while only the later

changes during hours 10 to 18 can be attributed to proliferation. The total number of

sensors that record capacitance increase in response to cell adhesion (Na) is directly

proportional to the initial number of cells that were seeded into the sensor well. The

time required for the cumulative number of sensors that record capacitance increase

in response to cell proliferation (Np) to equal Na (or CS = 2Na), can be considered

to be an estimate for the cell doubling time. The following analysis assumes that

a homogeneous array of equally distributed sensors on the chip was exposed to a

homogeneous cell suspension. The statistical accuracy of the doubling time estimate

and the growth curve for the entire on-chip cell population improves with the total

number of sensors that are monitored (Nt).
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Figure 4.14: A plot of cumulative number of sensors that recorded capacitance
increase (CS) vs. incubation time. A total of 16 sensors were monitored.

In the current experiment, a total of 16 sensors (Nt = 16) with different

electrode sizes and inter-electrode distances were monitored. The 20×20 µm2, 30×30
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µm2 and 40×40 µm2 sensors have effective inter-electrode distances of 82 µm, 79

µm and 88 µm respectively. For simplicity, we approximate the set of 16 monitored

sensors to be a homogeneous array of equally distributed sensors with an average

inter-electrode distance of 83 µm and an average electrode area of 30×30 µm2. In

Fig. 4.14, the value of Na for this experiment was found to be 11 at the end of first

10 hours of incubation. At the end of the next 8 hours of incubation the remaining 5

sensors detected an increase in capacitance that was attributed to the proliferation

process (Np = 5). As a first order estimate, the rate of detecting capacitance increase

(R) during the proliferation phase can be evaluated to be 5/8 sensors/hour. Here R

is representative of the proliferation rate of the cells growing over the small on-chip

area that corresponds to the monitored sensor locations. Assuming homogeneous

proliferation, it would require another 9.6 hours for Np = Na = 11. This projects

a value of 27.6 hours for the cell doubling time as measured from the initial cell

loading time t = 0 hr.

In order to measure the cell doubling time experimentally, the total number

of sensors monitored (Nt) should be greater than or equal to twice the number of

sensors detecting cell adhesion (Na). If this condition is met, the time required for

the number of sensors detecting cell proliferation (Np) to equal Na reflects the actual

cell doubling time irrespective of whether the cells are undergoing symmetrical or

asymmetrical cell divisions. In the current analysis, the assumption of homogeneous

cell proliferation was used only to project a value for cell doubling time, since in

this experiment Nt (= 16) < 2Na (= 22). Often cells proliferate asymmetrically,

especially in the case of cancer cells which are not contact inhibited.
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It should be noted that the above analysis is specific only to the cells growing

over the monitored region confined to an area of 400×400 µm2 (just 0.1% of the

total sensor well area) where the sensors are located. The data obtained are not

representative of the entire cell population in the sensor well. This is because cells

growing at different locations in the sensor well (both on-chip and off-chip) might

be proliferating at different rates depending upon their local microenvironment and

their state in the cell division cycle. So the accuracy of this technique for quantifying

proliferation of the entire on-chip cell population and estimating parameters such

as cell doubling time can be significantly improved by increasing the number of

monitored sensors.

4.5.4 Detecting cell detachment

In continuation with the previous experiment with the MDA-MB-231 cells,

after the 18 hour monitoring period the cells were treated with 0.25% Trypsin/EDTA

and the sensor chip was monitored for the next 4 hours. It was found that all

the sensors recorded a decreased capacitance after treatment with trypsin which

indicates cell detachment from the chip surface. Fig. 4.15 shows sample capacitance

plots as recorded by 2 of the sensors before and after trypsinization. Table 4.2

displays the capacitance drop values as recorded by the 16 monitored sensors.

This further confirms the fact that cells were coupled to the chip surface at

all monitored sensor locations prior to trypsinization. From Table 4.2 it can be

seen that for some of the sensors, the capacitance drop values were greater than
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Figure 4.15: Sample capacitance plots showing sensor response to MDA-MB-231 cell
detachment upon trypsinization; sensors b and 5 correspond to the same 2 sensors
referred to in Figs. 4.12 and 4.13 respectively.

Table 4.2: Capacitance drop values ∆Cdrop recorded by the three sensor groups after
trypsinization

20×20 µm2 sensors 30×30 µm2 sensors 40×40 µm2 sensors

∆Cdrop (fF) ∆Cdrop (fF) ∆Cdrop (fF)

4.26 5.34 10.87

4.51 7.03 11.21

4.85 5.42 11.55

7.26 5.80 9.49

5.44 5.42 8.70

* * 8.47

the capacitance rise values in Table 4.1. This is because those sensors recorded a

gradual increase in the time averaged capacitance during the interval between the

capacitance rise and fall. Also, the sensed capacitances do not return to their initial

pre-adhesion levels after trypsinization. This could possibly be due to the residual
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Figure 4.16: Capacitance sensor response to adhesion of human colonic adenocar-
cinoma cells (Caco-2) on the chip surface. All sensors measure 30×30 µm2. Cell
density employed for the experiment ≈ 1×106 cells/mL.

materials that are deposited onto the chip surface by the cells.

4.5.5 Notes on experiments characterizing capacitance sensor response

to cell phenomena

4.5.5.1 Repeatability, reusability and control experiments

The proximity sensitivity of the capacitance sensors along with the shielding

effect of the growth medium produce responses to phenomena occurring only on the

chip surface. The sensor chip has been tested with bovine aortic smooth muscle

cells (BAOSMC) [17–20], human breast cancer cells [21] and human colonic adeno-

carcinoma cells (Caco-2) (see Fig. 4.16). The sensor response to adhesion of cells on

76



0 5 10 15 20
0

1

2

0 5 10 15 20
0

1

2

0 5 10 15 20
0

1

2

0 5 10 15 20
0

1

2

0 5 10 15 20
0

1

2

0 5 10 15 20
0

1

2

sensor 1 sensor 2 

sensor 3 sensor 4 

sensor 5 sensor 6 

S
en

se
d
 C

ap
ac

it
an

ce
 (

fF
) 

Time (h) 

Figure 4.17: Capacitance sensor response with sensor well loaded with growth
medium alone, without any cells. Sensors 1 and 2 measure 40×40 µm2, sensors
3 and 4 measure 30×30 µm2, sensors 5 and 6 measure 20×20 µm2.

the chip surface has been consistent among the different cell types. In control ex-

periments involving monitoring of chips without cells inside the incubator, with the

sensor well containing the growth medium alone, and in actual experiments wherein

it was found that there were no cells coupled to the chip surface, the sensors did

not show any capacitance increase. For example, Fig. 4.17 shows sample sensor re-

sponses from a control experiment in which the sensors were monitored with growth

medium alone for a period of 22 hours inside an incubator. As can be seen, the

sensed capacitance values remained below 1.5 fF throughout the monitoring period.

The sensor responses exhibiting distinct capacitance risings as is shown in Figs. 4.8,

4.10, 4.11, 4.12, 4.13, 4.16 are characteristic of only the experiments in which the

cells were present on the chip surface.
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Cell culture on the chip results in strongly attached surface residues which

greatly influence baseline capacitance readings. Chip reusability for integrated cell

capacitance sensing requires thorough cleaning of the chip surface and also a reli-

able biocompatible package. The packaging technique using the photopatternable

polymer that has been employed in this work has been found to be reliable for a

maximum period of only four days. Alternate packaging strategies [by Dr. E. Smela,

M.P. Dandin, M. Piyasena] for long-term reliability and chip surface cleaning solu-

tions [by Dr. P. Abshire] are currently being explored for enabling chip reusability.

4.5.5.2 Capacitance fluctuations

In most of the experiments described previously, the sensed capacitances ex-

hibited non-periodic fluctuations before and after the adhesion phase (see Figs. 4.8,

4.10, 4.11, 4.12, 4.13 and 4.15). These fluctuations were evaluated under different

conditions for the three sensor groups; Table 4.3 summarizes the standard devia-

tions (σ40, σ30 and σ20) as computed from measurements obtained in one of the

experiments. The fluctuations in response to cells after adhesion are 1-2 orders of

magnitude higher than when the sensors were exposed to just growth medium or

air. Such fluctuations were consistently observed in the presence of cells. This has

been attributed to increased capacitive crosstalk between the metal interconnects

and the sensing node (node in the sensor circuit to which the sensing electrode is

connected to in Fig. 4.1), due to increased dielectric constant of the passivation

layer surface after cell adhesion. The sensing node during the evaluation phase is a
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high impedance node and is therefore susceptible to interference noise coupling.

The origin of the interfering noise responsible for the non-periodic fluctuations

in the capacitance recordings was traced back to the data acquisition card that

was used to generate the clock signal for the sensor operation. This noise has

now been eliminated by employing a clean clock signal generated using a function

generator. Fig. 4.16 shows capacitance traces with significantly reduced noise that

were obtained in response to adhesion of Caco-2 cells on the chip surface.

Table 4.3: Standard deviations of capacitance fluctuations

Stimulus σ40 (fF) σ30 (fF) σ20 (fF)

air 0.067 0.085 0.091

growth medium without cells 0.164 0.361 0.314

cell culture (pre-adhesion) 0.344 0.798 0.745

cell culture (post-adhesion) 3.463 2.454 2.511

4.5.5.3 Influence of biocompatible chip package on baseline capaci-

tance

The baseline capacitance readings have always been sensitive to the employed

packaging technique and the packaging material. For example, the baseline capac-

itances recorded at the start of the experiments presented in sections 4.5.1.1 and

4.5.2.1 were much higher than in the remaining experiments. This is because the

material employed for packaging the chips in these experiments was not photopat-

ternable, so they had to be manually patterned which resulted in residues on the
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Figure 4.18: Photograph of the fabricated capacitance imager chip.

chip surface (see Figs. 4.7, 4.9). In the remaining experiments, chips packaged using

the photopatternable polymer were employed, which resulted in much cleaner chip

surfaces and low baseline capacitance readings (see Figs. 4.8, 4.10, 4.11, 4.12, 4.13

and 4.15).

4.6 A capacitance imager chip based on the first generation sensor

A capacitance imager test chip incorporating the first generation sensors in

an array format was designed and fabricated. Fig. 4.18 shows a photograph of

the fabricated chip. This is a tiny chip measuring an area of 1.5×1.5 mm2 and

comprising an array of 400 sensors with a sensing electrode area of 30×30 µm2.

In addition to the sensor array the chip also comprised row and column cyclic

shift registers for addressing the sensor pixels. All sensor pixels in a column are

multiplexed onto a common column line by incorporating a rowselect switch in the

sensor circuit output buffer. Below every sensor column is placed a CDS unit for

readout. Fig. 4.19(a) shows a schematic of the CDS unit [74]. The purpose of the

80



CsVin

sample

sample

phi_clamp

V_clamp

row_select

reset

phi_clamp

sample 

evaluation phase

(column select)

(a)

(b)

reset

Vout

Figure 4.19: (a) Schematic of the Correlated Double Sampling (CDS) unit shared
by a column of sensor pixels. (b) Timing diagram showing the control signals for
sensing and readout. The signals reset and reset are the same as shown in Fig. 4.1
that control the sensor operation.

CDS unit is to subtract the evaluated output voltage from reset output voltage so

that only the difference between the two is measured instead of the absolute value

of the evaluated signal. This cancels DC offset errors in the readout path and also

reduces low frequency correlated noise. The imager follows a row-wise select and a

column-wise readout architecture. Fig. 4.19(b) shows the timing relation between
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all the control signals responsible for the sensor operation and pixel readout.
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Figure 4.20: Imager output representing the capacitance profile of a metal probe
placed in contact with the chip surface.

The imager chip was bench tested by placing a metal electrode on the chip

surface using a piezoelectric micropositioner. All the timing signals were generated

using a SX microcontroller. Fig. 4.20 shows the imager output representing the

capacitance profile of the metal probe tip.

4.7 Summary

A first generation CMOS capacitance sensor chip was designed to measure

cell-substrate capacitance, a sensing modality that can be employed for on-chip

investigation of cell phenomena. Biophysical factors contributing to the sensed ca-

pacitance were identified and discussed. Three groups of sensors with electrodes

of different sizes were bench tested for calibration of the relationship between ca-
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pacitance and measured voltage. In vitro test results from experiments with bovine

heart muscle cells, human breast cancer cells and human intestinal cells showed that

the sensors are able to detect cell-substrate capacitive variations in the fF range,

with different sensing ranges for the three sensor groups. Results from the online

monitoring experiments showed that the sensors were effective in tracking cell adhe-

sion, variations in cell viability and cell growth. Sensor response to changes in cell

viability was validated by establishing good correlation between on-chip measure-

ments of cell-substrate capacitance and concurrent assessments involving Neutral

Red dye retention test and Alamar Blue dye reduction measurements.

The CMOS-based integrated cell capacitance sensing technique demonstrated

here offers an important monitoring capability for the development of cell-based

miniaturized systems [75, 76]. Such systems can be employed for a wide spectrum

of applications including medical diagnosis, cytotoxicity assessment, drug screening

and biocompatibility characterization.
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Chapter 5

Second generation fully differential rail-to-rail capacitance

sensors for improved performance

5.1 Motivation for a fully differential sensor

The performance of the first generation single-ended sensors for cell capaci-

tance measurement was limited by the parasitic effects resulting from the growth

environment and the sensor itself. The main contributors to such parasitics include

stray capacitances (Cstray) from the measurement circuit (this includes the parasitic

capacitances associated with the transistors and interconnects) and the standing

capacitances (Cstanding) of the sensing electrodes along with the cell environment.

In other words, sensor sensitivity and dynamic range (defined as the ratio of the

total signal swing to the noise resolution) were limited by the magnitude of the

nodal parasitic capacitances CN1 and CN2 shown in Fig. 4.1. Also as mentioned

in the previous chapter, the baseline capacitances were greatly influenced by the

residual packaging material on the chip surface which forms a part of the on-chip

cell environment. From a futuristic perspective, when this sensor will be incorpo-

rated in lab-on-chip (LOC) systems like cell clinics, the standing capacitances of

the microstructures will also contribute to the sensing node capacitance causing a

significant capacitive offset at the input [25], thereby further reducing the sensor
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Figure 5.1: Fully differential sensor block diagram and associated capacitances.

dynamic range.

The first generation single-ended capacitance sensor described in the previous

chapter is based on the charge sharing principle [20]. The sensing node (node N1

in Fig. 4.1) in the measurement circuit is held in a high impedance state during

readout (evaluation phase) which makes it susceptible to interference noise coupling.

In addition to this, the presence of an aqueous ionic medium above the chip surface

further increases capacitive crosstalk with the sensing node (see Section 4.5.5.2).

A fully differential sensor can resolve the above mentioned problems concerning

parasitic capacitance effects and interference noise coupling arising in single-ended

sensors. Fig. 5.1 shows a block diagram representation of the fully differential

sensor along with the associated capacitances. Ci− and Ci+ represent the input

nodal capacitances. The differential input capacitance is given by:

∆Ci = Ci+ − Ci− (5.1)

In this discussion the cell sensing electrode and hence the sensed capacitance (Csensed)

will always be connected to node Ci+. Thus the total capacitance at node Ci+ is
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the sum of Cstray, Cstanding and Csensed as shown in Fig. 5.1. The capacitance at

node Ci− depends upon the capacitance compensation scheme implemented by the

sensor as discussed below. Under ideally matched conditions, a linear differential

sensor eliminates effects of Cstray and Cstanding on the sensor response. Differential

readout further improves sensor resolution by suppressing correlated noise and also

increasing the output dynamic range.

5.2 Implementable capacitance compensation schemes

A differential capacitance sensor can be configured to follow different compen-

sation schemes depending upon the application. The success of these schemes relies

on matching between the various sensor components. In all the schemes discussed

below, the capacitance at node Ci+ is as shown in Fig. 5.1.

5.2.1 Stray capacitance compensation scheme

In this scheme node Ci− is left unconnected, compensating for Cstray alone [27].

Ci− = Cstray ⇒ ∆Ci = Cstanding + Csensed (5.2)

This reduces sensor dynamic range as Cstanding at node Ci+ results in a positive

capacitive offset at the input. This scheme can be employed in array-based applica-

tions for cell detection where sensor dynamic range is not a critical requirement.
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Figure 5.2: Implementable capacitance compensation schemes: (a) stray capaci-
tance compensation scheme, (b) standing capacitance compensation scheme and (c)
standing capacitance overcompensation scheme.

5.2.2 Standing capacitance compensation scheme

In this scheme identical sensing electrodes are attached to both Ci+ and Ci−

nodes [27].

Ci− = Cstray + Cstanding ⇒ ∆Ci = Csensed (5.3)

This compensates for both Cstray and Cstanding. Replication of microstructures in
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LOC systems along with the sensing electrodes also compensates for standing ca-

pacitances arising from them. In conjunction with a high gain measurement circuit,

this can enable very sensitive cellular measurements for applications like on-chip

cytometry. The sensor dynamic range is higher than in the previous case.

5.2.3 Standing capacitance overcompensation scheme

Instead of replicating sensing structures at both the input nodes, an offsetting

capacitor Cos can be attached to node Ci−. Cos > Cstanding results in a negative

capacitive offset at the input.

Ci− = Cstray + Cos ⇒ ∆Ci = Csensed + Cstanding − Cos (5.4)

The value of Cos should be chosen such that Cos−Cstanding is within the sensor input

range. Cos can be formed by one of the inter-layer capacitances that offers best pos-

sible matching in the low fF range. This scheme allows for an even higher dynamic

range compared to the previous two schemes. Also, by choosing an appropriate value

for Cos, the sensor can be made to operate in its mid-range where the sensor exhibits

maximum linearity. This can be useful for applications where dynamic range and

linearity requirements are critical. For example, cell viability monitoring requires

larger area sensing electrodes which offer a wider input capacitance range. In such

applications, capacitance variations can signal important cell-related responses.
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5.3 Fully differential rail-to-rail capacitance sensor: design and op-

eration

Over the last decade, the charge based capacitance measurement (CBCM)

technique has evolved as a popular sensing approach for measuring fF capacitances

with aF resolution. The CBCM approach was primarily developed for interconnect

capacitance characterization over a decade ago [45]. Since then it has been employed

in several other applications including measurement of MOS device C-V characteris-

tics [77], particle detection for industrial and biomedical purposes [24–27], and DNA

sensing [78].

This work presents a sensor design tailored for on-chip cell monitoring which

requires the circuit to measure capacitances over a few 10’s of fFs [20–22]. It extends

previously reported CBCM circuits with single-ended output configurations [24–27]

to a differential output architecture. The fully differential measurement circuit com-

pensates for parasitic capacitances associated with on-chip cell sensing, increases

sensor dynamic range, and suppresses correlated noise for improved assessment of

cell phenomena [22,23]. The sensor circuit presented here employs a 3-phase clocking

scheme that allows for gain tuning in accordance with the conditions in a partic-

ular cell sensing application. These conditions include sensing electrode areas and

configurations, and the dielectric parameters of the cell-substrate interface and the

growth medium.

Fig. 5.3 shows a schematic of the capacitance measurement circuit. It com-

prises a standard CBCM front-end (M1-M4), a pair of complementary current mir-
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Figure 5.3: Fully differential rail-to-rail capacitance measurement circuit design with
sensor configured for standing capacitance compensation.

rors (M5-M8 and M10-M13), current subtractors (M8-M9 and M13-M14), integra-

tion capacitors (Cint− and Cint+) and rail-to-rail readout buffer amplifiers (B1 and

B2).

The CBCM unit comprises two identical pairs of minimum size NMOS and

PMOS transistors (M1,M3) and (M2,M4), that are switched using two non-overlapping

clock signals reset and eval. The sensing operation proceeds in three phases: reset,

evaluation and sample. Fig. 5.4 shows the timing control signals corresponding

to the three phases and the sensor response waveforms. During reset, Ci− and

Ci+ are discharged to V ss through M1 and M2, and Cint− and Cint+ are reset

to the common-mode voltage Vcm. During evaluation, Ci− and Ci+ are charged to

V dd− |Vthp| through M3 and M4, where Vthp refers to the PMOS threshold voltage.

The average values of the charging currents Ic− and Ic+ can be expressed as:
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Figure 5.4: Timing diagram illustrating the relation between the clock phases and
sensor outputs.

Ic± = Ci± · Vstep · f (5.5)

where Vstep = V dd − V ss − |Vthp| and f = 1/T is the sensing cycle frequency. Ic−

and Ic+ are amplified by the current mirrors M5-M8 and M10-M13 with gain Ac and

then subtracted by the transistors M8-M9 and M13-M14 to yield complementary

difference currents ∆Io+ and ∆Io−, whose average values can be expressed as:

∆Io± = ±Ac ·∆Ci · Vstep · f + Ios± (5.6)

where Ios− and Ios+ are the offset currents in the current subtractors. Cint− and

Cint+ then integrate ∆Io− and ∆Io+ over a period Tint that is determined by the time

interval between the negative edges of eval and sample (see Fig. 5.4) to yield sensor

output voltages Vo− and Vo+. Here sample is a variable delay pulse that allows

91



for varying Tint. If the current pulses ∆Io± are approximated to be ideal pulses

of amplitudes ∆Io± and widths Tpw such that the total charge delivered/removed

to/from the integration capacitors remains the same, the sensor output voltages can

be expressed as:

Vo± =
1

Cint

·
∫ Tint

0

∆Io± dt + Vcm ≈ ±Ac · Vstep · Tint

Tpw

· ∆Ci

Cint

+ Vos± + Vcm (5.7)

where Tint ≤ Tpw, Cint is the value of the integration capacitance, and Vos− and Vos+

are the offset voltages from integration of Ios− and Ios+. The differential output

voltage ∆Vo is given by:

∆Vo = Vo+ − Vo− ≈ 2 · Ac · Vstep · Tint

Tpw

· ∆Ci

Cint

+ ∆Vos (5.8)

where ∆Vos = Vos+−Vos−. Under ideal conditions when both sides of the differential

sensor are perfectly matched ∆Vos = 0. In reality, ∆Vos 6= 0 due to device mismatch

effects. From (5.8), Tint being variable allows for gain tuning. The relation between

the sensor gain and Tint is actually nonlinear because ∆Io− and ∆Io+ are transient

current pulses and not ideal rectangular pulses as considered above. The sample

pulse also limits the sensor output voltage offsets by limiting the durations over

which Ios− and Ios+ are integrated. The sensor output is finally buffered by a pair

of rail-to-rail buffer amplifiers B1 and B2, the details of which are presented in the

later sections.
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5.4 Shielded current routing bus architectures for implementing dif-

ferential capacitance sensor arrays

In order to achieve high density, sensor arrays require a small on-chip footprint

for the measurement circuit. The area of the sensor circuit presented here can be

significant because of the large device sizes necessary for improved matching and for

incorporation of additional calibration circuitry. In order to realize differential sensor

arrays, we have developed a current routing bus architecture. Fig. 5.5 illustrates

a column parallel array architecture along side the pixel circuit and the timing

diagram.

In this architecture each sensor pixel comprises four minimum size digital

transistors (M1-M4). In Fig. 5.3 nodes N− and N+ connect the CBCM unit to the

rest of the circuit, referred to as the sensor evaluation module (SEM). In Fig. 5.5

nodes N− and N+ extend to form current bus lines that allow a column of CBCM

pixel units to share a common SEM comprising the complementary current mirrors,

subtractors, integration capacitors and output buffers. The timing diagram shown is

for a row-wise select and a column-wise readout addressing scheme. Here row select

and sample are active low, and reset is active high. All pixels are reset globally

in every clock cycle. In order to address a particular row of pixels for sensing, its

corresponding row select goes low enabling all sensors in the row for evaluation. The

sampling of the SEM output is triggered by the negative edge of the sample signal.

In a large sensor array implementing this architecture, the bus-to-substrate

capacitances of the current bus lines and the source-to-bulk junction capacitances
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Csb’s of transistors M3 and M4 in the sensor pixel contribute to the parasitic ca-

pacitances at the nodes N− and N+. All these capacitances can sum up to 100’s

of fF which degrades sensor evaluation speed. Also, the source-to-bulk junctions

contribute to leakage currents from the current bus. For this purpose a larger area

metal shield fabricated in a lower metal layer can be used for isolating the bus line

from the substrate as shown in Fig. 5.5. The effect of the bus-to-shield capacitance,

the Csb’s and the source-to-bulk junction leakage are canceled out by driving the

shield line and the N-wells of transistors M3 and M4 in each pixel with a potential

that tracks the bus line potential. This is achieved using the buffer amplifiers B3

and B4 as shown in Fig. 5.5. This requires transistors M3 and M4 to be placed

in individual N-wells. Such shielding also improves immunity of the current bus to

substrate noise. In technologies with many metal layers the bus lines can be shielded

from both top and bottom.
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It is important to note that the input capacitances of the buffer amplifiers B3

and B4 used to drive the shield lines of the current bus, add on to the nodes N−

and N+ in the capacitance measurement circuit. So the evaluation speed of a sensor

incorporated in an array employing a shielded current routing bus will always be

lower than that of an individual sensor. The advantages of the shielded current

routing bus in terms of conserving the sensor evaluation speed and guarding the

bus against leakage will be more prominent in a high density large sensor array,

wherein the summation of all the parasitic capacitances associated with the current

bus exceeds the value of the buffer input capacitance.

The column parallel array architecture although achieves a high spatial res-

olution of just four minimum sized digital transistors in every pixel, requires an

entire row of SEM modules to be calibrated. The column parallel architecture also

poses the challenge of pitch-matching the layout of the SEM module (along with

additional calibration circuitry if incorporated) with the layout of a very narrow

column of sensor pixels in a high density array scenario. An alternate solution to

the problem of incorporating the measurement circuit in a sensor array is to mul-

tiplex the entire two dimensional array of pixels onto a single SEM module. This

simplifies array calibration and eliminates the challenge of layout pitch-matching,

but at the cost of increasing the sensor pixel foot-print and decreasing the array

readout speed. Fig. 5.6 illustrates the single SEM sensor array architecture along

side the pixel circuit and the timing diagram.

In this architecture each sensor pixel comprises six minimum size digital tran-

sistors (M1-M4, M3’, M4’). In Fig. 5.6 nodes N− and N+ extend to form current
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bus lines that allow an entire array of CBCM pixel units to share a common SEM.

The timing diagram shown is for a row-wise select and a column-wise readout ad-

dressing scheme. Here row select, column select and sample are active low, and reset

is active high. All pixels are reset globally in every clock cycle. In order to address

a particular pixel for sensing, its corresponding row select first goes low followed

by the column select enabling the sensor for evaluation. The sampling of the SEM

output is triggered by the negative edge of the sample signal. The current bus is

shielded in the same way as described in the column parallel architecture case.

High density sensor arrays with reduced electrode areas will require thinning

of the chip passivation layer in order to improve input signal strength and dynamic

range. Capacitance sensor arrays can achieve fill factors (the fraction of surface

area covered with sensors) over 90% in advanced CMOS processes with more metal

layers since the active elements comprising the measurement circuit can be placed

directly underneath the sensing electrodes. Such high density capacitance imager

chips can generate a time sequence of capacitance “images” providing more insight

into the on-chip cell behavior. Such maps can be used to track the adhesion and

growth processes of cells cultured on-chip by 1) monitoring the time-varying signals

recorded from sensors that become covered as the cells adhere and show a spreading

behavior [20,21] and 2) tracking the cumulative number of sensors that are coupled

to cells over time [21].
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5.5 Test chip version 1: Individual sensor characterization

5.5.1 Sensor design and simulation

The sensor circuit as shown in Fig. 5.3 was designed in a 0.5 µm, 2-poly, 3-

metal standard CMOS technology for operation with a 3 V supply. The circuit was

designed and laid out with a mirror gain Ac = 8. A base transistor (M5 and M10 in

Fig. 5.3) size of width 1.75 µm and length 1.75 µm was chosen for the design. The

sensor output was buffered by a pair of rail-to-rail operational amplifiers connected

in voltage follower configuration. The custom rail-to-rail op-amp was designed using

the topology shown in Fig. 5.7. It consists of a rail-to-rail input stage, a summing

circuit, and a rail-to-rail output stage with feedforward class-AB control [79]. The

op-amp design and operation will be discussed in Chapter 7.
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Figure 5.7: The custom wide-swing op-amp used for buffering the sensor output.
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Figure 5.8: (a) Simulated transient response of the differential sensor for ∆Ci be-
tween 0 and 20 fF. (b) Simulated sensor static response curves with corresponding
calibration curves for Tint = 60 ns and 195 ns.

The extracted layout was simulated using Cadence Spectre for an input ca-

pacitance range of ±20 fF. Input standing capacitances were assumed to be 10 fF.

A sensing cycle period of 10 µs was used. The circuit employs 200 fF poly1-poly2

integration capacitors. The rail-to-rail buffer amplifiers were designed to drive off-

chip loads. The buffer op-amp circuit offers an input capacitance of ∼ 140 fF. This

results in an effective integration capacitance Cint ∼ 340 fF.

Fig. 5.8(a) shows the simulated transient response of the sensor after integra-

tion and buffering. ∆Ci was varied between 0 fF and 20 fF in steps of size 1 fF.

Fig. 5.8(b) shows the static response curves obtained from transient simulations of

the extracted layout for Tint = 60 ns and 195 ns. The mid-range sensitivities of the

sensor were estimated to be 90 mV/fF and 130 mV/fF for Tint = 60 ns and 195 ns,
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respectively, from the plots. The figure also shows corresponding linear calibration

curves, which were computed in order to estimate nonlinearity errors for the sensors.

The slope of the calibration curve α = βi, where βi is the slope of the static response

curve at the ith simulation point. An estimate of nonlinearity error [24] of the sensor

can be expressed as:

NLE =

√
(βi − α)2

α
· 100 (5.9)

The nonlinearity errors were estimated to be 9.8% and 12.1% for Tint = 60 ns and

195 ns respectively.

5.5.2 Chip fabrication and testing

The sensor test chip comprised test structures with the measurement circuit

connected to metal3 (top-most metal layer) plates configured according to the stray

capacitance compensation scheme [22]. Fig. 5.9(a) shows a photomicrograph of

one such test structure. The chip comprised 5 such test structures with the metal3

plates varying in dimensions such that the metal3-to-substrate capacitances varied

across the input range of 0 to 20 fF. Fig. 5.9(b) shows a test structure connected

to interdigitated electrodes. This structure compensates for stray capacitances and

overcompensates for standing capacitances such that the operation range of the

measurement circuit lies in the linear portion of the static response curve. This can

be useful for certain cell monitoring applications with critical linearity requirements

[22].

The chip also included 3-phase clock generation circuitry with the reset and
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Figure 5.9: Chip photomicrographs showing (a) a test structure with stray capaci-
tance compensation for measuring the standing capacitance of a metal3 electrode,
(b) a test structure overcompensating for the standing capacitance of an interdigi-
tated metal3 (top-most layer) electrode using an interdigitated metal1 (bottom-most
layer) electrode.

eval signals generated using a standard 2-phase nonoverlapping clock generator

[80]. The sample signal was generated by delaying the eval signal using a voltage

controlled variable delay element comprising a current-starved inverter chain. Five

of these chips were fabricated and tested.

Fig. 5.10 presents the test results showing the sensor output voltage distribu-

tions among the 5 test structures across the 5 chips for Tint = 60 ns and 195 ns. The

standing capacitance values of the metal3 plates were estimated using the process

run parameters provided by the vendor. The solid lines are the best fit curves for

the measured data points, the slopes of which were used to estimate the detection

sensitivity. The plots indicate successful sensor operation with mean sensitivities of

91 mV/fF and 126 mV/fF for Tint = 60 ns and 195 ns, respectively. The output
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Figure 5.10: Test results showing the mean and standard deviations of the measured
sensor output voltages in correspondence to the standing capacitances of metal3
electrodes for the 5 test structures across the 5 chips. The inset shows the ouput
noise levels as measured from one of the sensor chips.

voltage spread among identical test structures across the different chips can be at-

tributed to process mismatch. The proposed array architectures require individual

calibration for only the SEM components of every chip in order to compensate for

such mismatches.

The sensor output noise is expected to vary with ∆Ci. The inset located in

Fig. 5.10 shows the output noise levels recorded from one of the test chips for

different values of ∆Ci with Tint = 195 ns. The minimum and maximum noise levels

were measured to be 1.7 mV and 3.0 mV for ∆Ci values of 3.68 fF and 11.45 fF

respectively which translates to corresponding capacitance resolutions of 14 aF and

24 aF. With a differential output voltage swing of 5 V, the maximum achievable
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sensor output dynamic range evaluates to 69.4 dB.

5.6 Test chip version 2: Sensor array and shielded current bus testing

5.6.1 Chip design

A second version of the differential capacitance sensor chip was designed to

test the shielded current bus architecture for the sensor array. The column parallel

architecture shown in Fig. 5.5 was employed for this purpose. For this chip, the

core of the Sensor Evaluation Module (SEM) comprising the complementary current

mirrors, subtractors and the integration capacitors was retained as in the previous

version. But the buffer op-amps B1 and B2 in Fig. 5.3 were now replaced by smaller,

single-stage rail-to-rail amplifiers. The new buffer amplifier circuit is shown in Fig.

5.11.

Vdd

Vdd

Vss

VssVin Vout

Figure 5.11: A single stage rail-to-rail amplifier circuit comprising class-AB differ-
ential cells employed for buffering the sensor output.
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It is a single stage amplifier comprising two complementary class-AB differ-

ential cells along with current mirroring stages that drive the output node from

rail-to-rail [81]. The amplifier is appropriate for buffering the capacitance sensor

because it preserves rail-to-rail operation, has a small on-chip footprint and offers a

low input capacitance. This is important for conserving sensor sensitivity since the

input capacitances of B1 and B2 appear in parallel with the integration capacitors.

The buffer amplifier designed in the 0.5 µm technology offers an input capacitance

of 60 fF. This results in an effective integration capacitance Cint ∼ 260 fF in the

capacitance measurement circuit.

5.6.2 Chip fabrication and testing

test 
column

current 
bus

sensor 
evaluation
module

complementary 
current mirrors

integration 
capacitors

rail-to-rail 
buffer
amplifier

(a) (b)

200 μm 50 μm

Figure 5.12: (a) Photograph of the fabricated differential capacitance sensor test
array employing column parallel shielded current bus lines. (b) Photomicrograph of
a single Sensor Evaluation Module (SEM).

Fig. 5.12(a) shows a photograph of the fabricated differential capacitance

sensor test array. It follows a column parallel architecture (shown in Fig. 5.5) with
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Table 5.1: Summary of the differential input capacitances corresponding to the 16
test structures in every column.

Test Test Capacitance Calibration

structure capacitance compensation capacitance

No. type type ∆Ci (fF)

1 m3-sub a stray 0

2 m3-sub stray 5.07

3 m3-sub stray 10.31

4 m3-sub stray 15.38

5 m3-sub stray 20.19

6 m3-sub stray 25.31

7 m3-sub standing 0

8 m3-sub stray -5.07

9 m3-sub stray -10.31

10 m3-sub stray -15.38

11 m3-sub stray -20.19

12 m3-sub stray -25.31

13 2f-m3 b stray ∗
14 4f-m3 c stray ∗
15 2f-m3 (Ci+) d standing

2f-m1 (Ci−) e overcompensation ∗
16 4f-m3 (Ci+) f standing

4f-m1 (Ci−) g overcompensation ∗ h

am3-sub: metal3-substrate coupling capacitance at Ci+
b2f-m3: 2-finger metal3 interdigitated capacitance at Ci+
c4f-m3: 4-finger metal3 interdigitated capacitance at Ci+
d2f-m3 (Ci+): 2-finger metal3 interdigitated capacitance at Ci+
e2f-m1 (Ci−): 2-finger metal1 interdigitated capacitance at Ci−
f4f-m3 (Ci+): 4-finger metal3 interdigitated capacitance at Ci+
g4f-m1 (Ci−): 4-finger metal1 interdigitated capacitance at Ci−
h∗: ∆Ci values estimated from test results are listed in Table 5.2

8 test columns. Each column comprises 16 test structures sharing a common SEM

placed at the bottom. Each test structure comprises a 4-transistor CBCM front

106



end connected to a test capacitance. Table 5.1 provides details regarding the test

capacitances created in each of the 16 structures in every column.

Structures 1 to 6 and 8 to 12 were configured for stray capacitance compensa-

tion and were used for sensor calibration in which the differential input capacitances

varied between -25 fF and +25 fF, the target input range for the differential sen-

sor. These structures comprised single metal3 (top-most metal layer) electrodes of

varying sizes as can be seen in Fig. 5.12(a). The values of the single electrode

metal3-substrate calibration capacitances were estimated using the process run pa-

rameters provided by the vendor. Structures 13 and 14 were also configured for stray

capacitance compensation, but comprised 2-finger and 4-finger metal3 interdigitated

electrodes respectively. Structures 15 and 16 were configured for standing capac-

itance overcompensation. In structure 15, Ci+ node was connected to a 2-finger

metal3 interdigitated electrode and Ci− node was connected to a 2-finger metal1

(bottom-most metal layer) interdigitated electrode. In structure 16, Ci+ node was

connected to a 4-finger metal3 interdigitated electrode and Ci− node was connected

to a 4-finger metal1 interdigitated electrode. The ∆Ci values corresponding to struc-

tures 13 to 16 were estimated from test measurement results as will be described in

section 5.7.

The single stage rail-to-rail amplifier shown in Fig. 5.11, in addition to buffer-

ing the sensor output as B1 and B2, was also used as buffers B3 and B4 (shown

in Fig. 5.5) for driving the shield lines in the sensor test array. Therefore every

SEM block comprised 4 of these buffer amplifiers (B1-B4). Fig. 5.12(b) shows a

photomicrograph of a single SEM block.

107



0.5 1
−3

−2

−1

0

1

2

3

gain = 150 mV/fF

0.5 1
−3

−2

−1

0

1

2

3

Time (ms)

D
if

fe
re

n
ti

al
 O

u
tp

u
t 

V
o
lt

ag
e 

 Δ
V

o
 (

V
)

0.5 1
−3

−2

−1

0

1

2

3

gain = 200 mV/fFgain = 100 mV/fF

(1)

(2)

(3)

(4)

(5)

(6)

(8)

(9)

(10)

(11)

(12)

(1) (1)

(2)
(2)

(3)

(3)

(4) (4)

(5)
(5)

(8)
(8)

(9)

(9)
(10)

(10)(11)
(11)

Figure 5.13: Recorded transient responses from one of the fabricated capacitance
measurement circuits. The numbers in the parenthesis correspond to the test struc-
tures listed in Table 5.1.

In addition to the sensor test array, the chip also included 3-phase clock gen-

eration circuitry with the reset and eval signals generated using a standard 2-phase

nonoverlapping clock generator [80]. The sensors were operated at a clocking fre-

quency of 1 kHz, which is appropriate for monitoring the low frequency capacitive

behavior of cells, our current target application. The sample signal was generated

by delaying the eval signal using a voltage controlled variable delay element com-

prising a current-starved inverter chain. Five of these chips were fabricated and

tested.

Fig. 5.13 shows the transient responses as recorded from one of the capacitance

measurement circuits when the ∆Ci was varied between -25 fF and +25 fF, by
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Figure 5.14: Measured transfer functions corresponding to the 8 SEMs from one of
the test chips with sensor gain set to 200 mV/fF.

switching across the calibration structures 1 to 6 and 8 to 12. Sensor responses

were recorded for the 3 different sensor gains of 100, 150 and 200 mV/fF. The

sensor gains were varied by delaying the sample pulse by 14 µs, 38 µs and 112

µs respectively. The maximum achievable gain was measured to be 200 mV/fF.

Based upon noise measurements, the sensor circuit incorporated in the test array

employing the shielded current bus was able to achieve a resolution of 15 aF and an

output dynamic range of 65 dB.

Fig. 5.14 shows the sensor transfer curves as measured from one of the test

chips. The 8 curves correspond to the transfer functions of the 8 SEMs connected to

their respective test columns. The data points correspond to calibration structures
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Figure 5.15: Averaged transfer functions across all the SEMs across all the 5 fab-
ricated chips corresponding to sensor gains of 100, 150 and 200 mV/fF. The error
bars indicate the spread in the sensor outputs due to process and device mismatch
effects. The insets display the mean µ(∆Vo) and standard deviation σ(∆Vo) values
of the sensor outputs corresponding to test structure 7 (with ∆Ci = 0 fF) as listed
in Table 5.1. The dotted red lines are the linear calibration curves used to estimate
the sensor gain values.

1 to 6 and 8 to 12 as listed in Table 5.1. The curves were recorded with the sensor

configured to achieve a maximum gain of 200 mV/fF.

Fig. 5.15 shows the averaged transfer functions across all the SEMs in all

the 5 fabricated chips corresponding to sensor gains of 100, 150 and 200 mV/fF.

The error bars indicate the spread in the sensor outputs corresponding to the fixed

values of input calibration capacitances corresponding to test structures 1 to 6 and

8 to 12. As can be observed the sensor output spread increases with increasing gain.
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This is due to the integration of the sensor output offset currents Ios− and Ios+ over

longer durations for achieving higher gains. The inset located in each of the panels

in Fig. 5.15 displays the mean µ(∆Vo) and standard deviation σ(∆Vo) values of the

sensor outputs corresponding to test structure 7 which is configured for standing

capacitance compensation with ∆Ci = 0 fF. The µ(∆Vo) and σ(∆Vo) values can

be employed to estimate the average input capacitance offset and the average input

capacitance offset spread across all the fabricated sensors. For example, in the plot

corresponding to gain = 200 mV/fF in Fig. 5.15, the µ(∆Vo) and σ(∆Vo) values

for test structure 7 are 221 mV and 968 mV respectively. These translate into an

average input capacitance offset of 1.1 fF and an average input capacitance offset

spread of 4.84 fF respectively.

The output offset voltage spread across the different sensor modules tested

above can be unacceptable for applications where in the usable dynamic range of the

sensor circuits is critical. Such applications will require output offset cancelation for

optimizing sensor performance. We next present an approach to solve this problem

by incorporating floating gate transistors in the capacitance measurement circuit.

5.7 Test chip version 3: Capacitance sensor incorporating floating

gate trimming for mismatch compensation

Floating gate transistors have been previously employed for mismatch com-

pensation and offset cancelation in CMOS imagers [82], current sources [83–85],

autozero amplifiers [86, 87], adaptive comparators [88] and ADCs [89]. They can
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Figure 5.16: (a) Representing output offset current in a PMOS transistor as a gate
offset voltage. (b) Conceptual illustration of a floating gate transistor.

be employed as in-circuit trimming elements for either creating or canceling offsets.

Advantages of employing floating gate transistors for this purpose include program-

ming capability, long-term retention and standard CMOS fabrication. Fig. 5.16(a)

provides a conceptual representation of the offset cancelation scheme that can be

applied to the capacitance measurement circuit presented here. The PMOS transis-

tors M9 and M14 in the current subtractors of the sensor circuit (see Fig. 5.3) are

represented by the transistor M0 in Fig. 5.16(a). Ios represents the offset currents

Ios− and Ios+ flowing in the corresponding current subtractors. The offset current

Ios can be translated into the gate offset voltage Vosg as shown in Fig. 5.16(a). By

modifying M0 to be a floating gate transistor, Vosg and therefore the sensor output

offset currents Ios− and Ios+ can be canceled.

Fig. 5.16(b) provides a conceptual illustration of a floating gate transistor.

The gate of this transistor is completely isolated by SiO2, a high quality insulator.

This provides a non-volatile charge storage node at the transistor gate. In a 2-
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poly CMOS process, the poly1 layer is employed for the floating gate and poly2 is

employed for the control gate. The control and the floating gates together form the

capacitor Ccont. The capacitor Ctun shown in 5.16(b) is a PMOS-capacitor, with its

gate connected to the floating gate, and the drain, source and bulk connected to the

tunneling terminal Vtun.

The floating gate transistor can be programmed using two different mecha-

nisms:

• Impact Ionization Hot Electron Injection [86, 87]: In this mechanism a high

source-to-drain voltage is imposed on the transistor because of which electrons

are created at the drain edge of the drain-to-channel depletion region via hot-

hole impact ionization. These electrons in the presence of a high enough

vertical electric field, gain sufficient kinetic energy to cross the Si-SiO2 barrier

thereby getting injected onto the floating gate. This mechanism results in

a negative shift in the gate offset voltage Vosg. In Fig. 5.16(b) the rate of

injection can be controlled by the source-to-drain current Is. The injection

current Iinj is modeled using the empirical relation [90]:

Iinj = α · Is · exp

[
− β

(Vgd + δ)2 + λ(Vgd − Vgs)

]
(5.10)

where Is is the source-to-drain current, Vgd and Vgs are the gate-to-drain and

gate-to-source voltages, and α, β, λ and δ are fitting parameters.

• Fowler-Nordheim Tunneling [91]: In this mechanism a very high electric field
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is imposed on the PMOS-capacitor Ctun so that the effective width of the po-

tential barrier between the poly-Si gate and the Si below the gate oxide is

reduced to a few nanometers. This allows for the electrons in the conduction

band of the poly-Si gate to tunnel through the oxide bandgap to the Si con-

duction band on the other side of the oxide. This field-assisted tunneling is

called Fowler-Nordheim Tunneling. This mechanism results in a positive shift

in the gate offset voltage Vosg. The tunneling current Itun depends on the gate

oxide voltage and can be approximately expressed as [90]:

Itun = −Itun0 ·W · L · exp

[
− Vf

Vox

]
(5.11)

where Itun0 is a pre-exponential current, W and L are the width and length

of the PMOS tunneling capacitor, Vox is the gate oxide voltage and Vf is a

constant which varies with oxide thickness.

5.7.1 Sensor circuit design incorporating floating gate transistors

The capacitance measurement circuit employed in the version 2 chip was mod-

ified to incorporate the floating gate transistors M9 and M14 as shown in Fig. 5.17.

Each floating gate transistor is connected to a dedicated injection/tunneling (I/T)

structure that programs the sensor output offset by enabling and controlling the

injection or tunneling processes.
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The capacitance sensor circuit and the I/T structures employ separate supply

rails AV dd and IV dd respectively. During normal operation, both AV dd and IV dd

are set to 3 V. During programming, the sensor circuit supply AV dd is retained at

3 V, and IV dd is raised to a higher voltage.

Fig. 5.18 illustrates the design and operation of the I/T structure for perform-

ing floating gate trimming. The I/T structure employed here was previously devel-

oped for performing adaptation in a floating gate quantizer inside a flash ADC [89].

In Fig. 5.18, M9 is the floating gate PMOS transistor in the current subtractor of

the capacitance measurement circuit. As can be seen the floating gate is shared

by two other transistors Mi1 and Mt1 in the I/T structure. Mi1 is the injection

transistor and Mt1 is the tunneling transistor. Mi2 serves as a current source for

controlling the rate of injection in Mi1. The capacitor and diode pairs, (Ci, Di) and

(Ct, Dt) form charge pumps for generating the high voltages necessary for enabling

injection and tunneling. The (Ci, Di) pair forms a negative charge pump for gener-

ating a high source-to-drain voltage for Mi1 and the (Ct, Dt) pair forms a positive

charge pump for generating a high voltage across the gate oxide of Mt1. The termi-

nal Vbtun can be raised above the nominal supply voltage during tunneling. For the

test chip presented here the Vbtun pin in the padframe comprised ESD (Electrostatic

Discharge) protection diodes. So in order to prevent these diodes from turning on,

IV dd also had to be raised along with Vbtun while performing tunneling. In order

to further ensure that injection in transistor Mi1 was fully disabled when IV dd was

raised to 9 V, the current source transistor Mi2 was turned off whenever tunneling

was enabled.
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Figure 5.18: Schematic showing the design and operation of the injection/tunneling
(I/T) structure.

Charge injection and tunneling were performed in small steps in synchrony

with the sample phase of the sensing clock cycle. The sample signal served as the

control pulse for performing injection or tunneling. The control logic block shown

in Fig. 5.18 is responsible for enabling or disabling programming, and for selecting

between injection or tunneling. During programming the supply voltage IV dd is

raised to 5 V for performing injection and 9 V for performing tunneling. The logic

block drives the charge pumps by employing high voltage buffers that are powered

by IV dd. When injection is disabled (or during normal operation when IV dd = 3

V), node nic sits at 5 V (normal operation: 3 V) and node ni is at approximately

0.65 V (built-in potential of the diode Di). With this condition, the source-to-drain
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voltage across Mi1 is not sufficient to enable impact-ionized hot electron injection.

When injection is enabled, node nic goes to ground and ni is pulled to -5 V + 0.65 V.

This increases the source-to-drain voltage of Mi1 enabling a small amount of charge

to be injected onto the floating gate. The duration over which the node ni stays

at -5 V + 0.65 V depends upon the source-to-drain current set by Mi2, since this

current gets integrated over the junction capacitance of diode Di thereby continually

reducing the source-to-drain voltage of Mi1 until Di turns on. When tunneling is

disabled or during normal operation, node ntc sits at ground causing node nt to be

at Vbtun - 0.65 V. This does not impose a sufficient voltage across the gate oxide of

Mt1 for tunneling to happen. When tunneling is enabled, node Vbtun is set to 8 V,

ntc is pulled to 9 V causing nt to be pulled to 8 V - 0.65 V + 9 V. This creates

a high enough voltage across the gate oxide of Mt1 to induce tunneling. For the

0.5 µm CMOS technology employed here, tunneling requires a minimum voltage of

around 15 V across the gate oxide.

5.7.2 Chip fabrication and testing

The chip designed for testing the floating gate differential capacitance sensor

comprised the same test array as in version 2 but with 4 test columns instead of 8.

The chip was fabricated in a 0.5 µm, 2-poly, 3-metal standard CMOS process. Each

column comprised the same 16 test structures as described in Table 5.1, sharing a

common SEM incorporating the modified capacitance sensor with the floating gate

transistors and the I/T structures. Fig. 5.19 shows a photomicrograph of a modified
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Figure 5.19: Photomicrograph of the modified version of the Sensor Evaluation
Module incorporating the floating gate transistors and the I/T structures.

SEM block employed in this version of the chip. Five of these chips were fabricated

and tested.

The sensor output offset cancelation was performed with test structure 7 (con-

figured for standing capacitance compensation with ∆Ci = 0 fF, see Table 5.1) se-

lected. This was the test case which exhibited an unacceptable spread of 968 mV

across the sensor outputs in version 1 of the sensor chip. Before programming, all

the chips were exposed to UV radiations in order to erase all existing charges on the

floating gate. After this, for every chip, all the 4 SEMs were selected for program-

ming with the tunneling mode enabled. For the I/T structure fabricated in the 0.5

µm CMOS process appreciable amount of tunneling was observed when Vbtun was

set to 8 V and IV dd was raised to 9 V. Tunneling was continued until all the sensor

outputs Vo− and Vo+ settled to arbitrary voltages well below the common mode

voltage Vcm which was set to 1.5 V (mid-supply voltage). Vbtun was otherwise tied
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to ground during normal operation. Later on injection was enabled sequentially for

each of the outputs Vo− and Vo+ for every sensor. For this IV dd was set to 5 V and

Vbinj was adjusted to have a low rate of injection in order to visually observe the

progress of the output offset cancelation on an oscilloscope. Injection was enabled

until the output voltages Vo− and Vo+ settled close to Vcm resulting in ∆Vo ∼ 0 V.

For programming this version of the chip an off-chip strobe comparator (strobed

by sample signal) was employed to form the feedback control loop shown in Fig.

5.18 while performing injection. The output of the comparator was continuously

monitored by a data acquisition software in order to generate the PE± (program

enable) signal for the I/T control block.

To summarize the programming procedure, the tunneling mechanism was first

employed for an initial global course tuning of the output voltages Vo− and Vo+ to

arbitrary values below Vcm. This was followed by injection for fine tuning of Vo−

and Vo+ to voltages close to Vcm.

Fig. 5.20 shows the individual sensor transfer curves as measured from two

of the test chips after performing floating gate trimming at the operating point

corresponding to test structure 7. The 4 curves in each of the plots correspond to

the transfer functions of the 4 SEMs connected to their respective test columns. The

data points correspond to test structures 1 to 6 and 8 to 12 as listed in Table 5.1

that are configured for stray capacitance compensation, with ∆Ci values varying

between -25 fF and +25 fF. The curves were recorded with the gain set to 200

mV/fF. On comparing Fig. 5.20 with Fig. 5.14 it can be seen that there is an

appreciable degree of mismatch compensation over the entire operating range for all
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Figure 5.20: Measured transfer functions from two of the test chips after floating
gate trimming at the operating point corresponding to test structure 7.

the sensors. Also, linearity of the transfer functions has significantly improved after

performing floating gate trimming. The sensors in chip 1 exhibited a small degree

of gain mismatch in comparison to those in chip 4 due to process mismatch effects.

Fig. 5.21 shows the averaged transfer functions across the 4 SEMs for each

of the 5 fabricated chips after floating gate trimming. The error bars indicate the

spread in the sensor outputs corresponding to the fixed values of input calibration

capacitances corresponding to test structures 1 to 6 and 8 to 12. The insets shown

alongside the corresponding curves in Fig. 5.21 displays the mean µ(∆Vo) and stan-

dard deviation σ(∆Vo) values of the sensor outputs corresponding to test structure
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7 which is configured for standing capacitance compensation with ∆Ci = 0 fF. This

is the operating point at which the floating gate trimming was performed.

On evaluating the data from all the 5 chips, the average values of µ(∆Vo) and

σ(∆Vo) corresponding to the test structure 7 are 27 mV and 34 mV respectively.

Considering a maximum achievable sensor gain of 200 mV/fF, this translates into

an average input capacitance offset of 0.13 fF with an average input capacitance

offset spread of 0.17 fF. So the floating gate trimming of the differential capacitance

sensors resulted in an average reduction of 88% in µ(∆Vo) and 96.5% in σ(∆Vo) with

reference to the result obtained using the previous version of the measurement circuit

which did not incorporate floating gate trimming. The average µ(∆Vo) and σ(∆Vo)

values stated above are indicative of the accuracy and precision of the employed

floating gate trimming mechanism. These values can be significantly improved by

employing on-chip floating gate comparators with extremely low input offsets [88]

and on-chip generation of the I/T and PE± signals for feedback control during

programming.

The dotted red lines in each of the panels in Fig. 5.21 are the linear calibration

curves for the sensors in each of the test chips. These curves were used to estimate

the differential input capacitance ∆Ci values corresponding to test structures 13 to

16. These are listed in Table 5.2. Structures 13 and 14 were configured for stray

capacitance compensation, and comprised 2-finger (dimensions: length = 19.6 µm,

width = 9.8 µm, spacing = 11.2 µm) and 4-finger (dimensions: length = 19.6 µm,

width = 4.2 µm, spacing = 4.9 µm) metal3 interdigitated electrodes respectively.

Structures 15 and 16 were configured for standing capacitance overcompensation.
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Figure 5.21: Averaged transfer functions across the 4 SEMs in each of the 5 chips
after floating gate trimming. The error bars indicate the spread in the sensor outputs
after programming. The insets display the mean µ(∆Vo) and standard deviation
σ(∆Vo) values of the sensor outputs corresponding to test structure 7. The dotted
red lines are the linear calibration curves employed to estimate the ∆Ci values
corresponding to structures 13 to 16.
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Table 5.2: Differential input capacitance values corresponding to test structures 13
to 16 as estimated from measurement results.

Test chip 1 chip 2 chip 3 chip 4 chip 5

# ∆Ci (fF) ∆Ci (fF) ∆Ci (fF) ∆Ci (fF) ∆Ci (fF)

13 6.99 6.73 7.11 6.93 6.80

14 8.41 8.30 8.55 8.48 8.33

15 -9.65 -9.97 -9.94 -9.89 -9.76

16 -9.19 -9.60 -9.45 -9.42 -9.34

In structure 15, Ci+ node was connected to a 2-finger metal3 (top-most metal layer)

interdigitated electrode and Ci− node was connected to a 2-finger metal1 (bottom-

most metal layer) interdigitated electrode. In structure 16, Ci+ node was connected

to a 4-finger metal3 interdigitated electrode and Ci− node was connected to a 4-finger

metal1 interdigitated electrode.

5.8 Summary

A second generation of fully differential rail-to-rail CMOS capacitance sensors

were designed, fabricated and tested. The core sensor circuit employs the CBCM

technique for linearly mapping differential input capacitances to rail-to-rail differ-

ential output voltages. The differential sensor can compensate for all the stray

capacitances arising from the cell growth environment and the measurement circuit

itself that are responsible for degrading the performance of single-ended sensors.

The differential readout increases output dynamic range and suppresses correlated

noise, thereby improving sensor resolution.

The presented array architecture based on the shielded current routing bus en-
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ables the measurement circuit to be employed in high density sensor arrays without

compromising performance, and in addition it simplifies calibration and improves

immunity to noise and junction leakage. The sensor array architecture with on-chip

gain-tuning can provide the capability for readout of heterogeneous sensor arrays,

which is potentially useful for simultaneously studying different aspects of cell be-

havior on a single chip platform.

The sensor operation was demonstrated by measuring on-chip test capaci-

tances comprising single and interdigitated metal electrodes configured using dif-

ferent capacitance compensation schemes. The measurement circuit was tested

in individual sensor configuration and also in a test array employing the shielded

current routing bus. After successful demonstration of the sensor operation, the

measurement circuit was modified to include floating gate trimming for mismatch

compensation. The sensor output offset cancelation was performed using a com-

bination of impact ionized hot electron injection and Fowler Nordheim tunneling

mechanisms. The performance metrics of the sensor including the dynamic range,

sensitivity, resolution, post-trimming output voltage offset and offset spread that

were obtained from bench test results have been found to be appropriate for on-chip

cell monitoring applications.
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Chapter 6

Conclusions: Part I

On-chip capacitance sensing was demonstrated as a promising label-free tech-

nique for integrated cell sensing applications, specifically for, characterizing cell-

surface attachment, monitoring cell health and tracking cell growth. Several exper-

iments were conducted using the first generation capacitance sensors, with living

cells cultured on the sensor chips. The sensors were observed to consistently exhibit

a distinct response to the cultured cells as shown in the experiments described in

Chapter 4. A first attempt at providing a circuit-based model was made for explain-

ing the sensor responses to biological cells as was observed during the experiments.

The model was developed based on the low-frequency dielectric properties of cells

as discussed in the Biophysics literature.

The claims made with regard to the monitoring capabilities of the cell ca-

pacitance sensing approach were entirely based on validation results obtained from

either post-experiment visual inspection of cells on the sensor chips or standard cell

biology techniques (such as Neutral Red retention test and Alamar Blue reduction

test ) that were able to assess cell properties without interfering with the capac-

itance measurements. A more thorough validation of the cell capacitance sensing

technique will require performing time-lapse microscopy of the cells on the sensor

chips over long monitoring intervals. Microscopic imaging of cells on the chip re-
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quires specialized reflectance-mode optics. So a microscope with optics corrected

for intervening fluid needs to be assembled inside an incubator and suitable chip

package needs to be developed for allowing concurrent imaging of cells on top of the

chip surface along with sensor response monitoring.

In addition to providing encouraging experimental demonstrations, the first

generation single-ended sensors posed problems with regard to parasitic capacitance

effects and noise coupling. Also the sensor output range was limited to a few 100s

of mVs and the sensor spatial resolution was limited by 12 transistors, 4 of which

were digital switches and the remaining 8 performed analog operations.

In order to resolve the above issues, a second generation fully-differential rail-

to-rail capacitance measurement circuit was developed. In comparison to the first

generation single-ended sensor, the second generation differential sensor exhibits lin-

ear capacitance versus output voltage characteristic, offers higher sensitivity, higher

resolution, higher dynamic range and better immunity to interference noise cou-

pling. The nonlinear distance versus output voltage characteristic resulting from

the single electrode configuration (employed in the first generation sensor operating

as a proximity detector) was found to be appropriate for tracking surface attachment

of cells. The differential sensor presented here can also employ the single electrode

configuration to take advantage of this feature. (Employing interdigitated electrodes

for on-chip cell sensing will require passivation layer thinning in order to overcome

penetration depth limitations imposed by the passivation layer thickness in stan-

dard CMOS processes.) The flexibility of configuring the differential sensor using

different capacitance compensation schemes offers a more versatile solution for the
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cell sensing problem by allowing custom-tailoring according to the application re-

quirements. The shielded current routing-based sensor array architecture developed

in this work enables the measurement circuit to be employed in high density sensor

arrays without compromising performance. The sensor array architecture in combi-

nation with the on-chip gain-tuning feature can provide the capability for readout of

heterogeneous sensor arrays, which is potentially useful for simultaneously studying

different aspects of cell behavior on a single chip platform.

The differential sensor circuit was also modified to incorporate in-circuit float-

ing gate trimming in order to compensate for the device and process mismatch

effects in the fabricated sensors. The floating gate trimming further improves the

sensor performance by canceling output voltage offsets and linearizing the transfer

function characteristics.

The integrated cell capacitance sensing platform developed in this disserta-

tion can enable cell-based lab-on-a-chip (LOC) systems for high speed, automated

and real-time monitoring of biological cells. Such systems can be very useful for

performing interesting scientific investigations of cellular properties (related to ad-

hesion, viability and proliferation) at a microscopic level. The temporal information

present in the sensor responses can provide new insights with regard to individual

cell behavior. The demonstrated cell sensing approach can also be employed in sev-

eral industrial applications such as automated drug screening and biocompatibility

characterization of materials.
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Part II

A CMOS POTENTIOSTAT FOR CONTROL OF INTEGRATED MEMS

ACTUATORS
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Chapter 7

Research Background

7.1 First generation cell clinics

The first generation prototype of the cell clinics microsystem comprises an ar-

ray of lidded microvials for confining single cells or small cell groups at the sensing

sites corresponding to an array of CMOS bioamplifiers for amplifying weak extra-

cellular potentials from electrogenic cells [5]. The purpose of the lidded microvials is

to confine the living cells and isolate them within controllable microenvironments.

The bioamplifiers provide a means of monitoring the electrical activity of cells within

the controlled environment. Fig. 1.1 in Chapter 1 provides a conceptual illustration

of the microsystem. The microvial lids are opened and closed by actuator hinges

employing an electroactive polymer that changes volume due to electrochemical ox-

idation and reduction. At the macro-scale, such reactions are controlled using an

instrument known as a potentiostat. In the first generation of cell clinics these con-

trol signals were supplied by an external potentiostat instrument [5]. This research

enables system miniaturization of cell clinics by integrating the necessary driver

circuitry for in situ control of the microactuators right on top of the CMOS chip.
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7.1.1 Cell clinics microstructure: configuration and operation

The closing action of the microvial lids is accomplished by bending of the

hinge, as shown in Fig. 7.1 (a).

SU8 microvial

lid

gold

hinge

PPy

inner SU8 layer

outer gold layer

electrical

contact

layer
0V -1V

50 μm 50 μm

(a) (b)

Figure 7.1: (a) Schematic illustration of a lidded microvial with bilayer hinge. Dark
layer represents PPy [Illustration based on an original figure courtesy of Y. Liu
and Dr. E. Smela]. (b) Photomicrograph of the fabricated cell clinics microvials
[Photomicrographs courtesy of Dr. M. Christophersen and Dr. E. Smela].

The electroactive polymer employed in the cell clinics microactuators is polypyr-

role doped with dodecylbenzenesulfonate, PPy(DBS), a well-studied material whose

properties depend on the imposed potential and the resulting oxidation level [92,93].

The hinge’s upper layer is made of the conjugated polymer PPy(DBS). The lower

layer is made of gold. The gold layer acts as both a structural layer and an electrical

contact to the PPy. It serves as an inert electrode to electrochemically address the

electroactive polymer. When immersed in an electrolyte (in our case 0.1 M NaDBS),

PPy changes volume according to the applied potential, while the gold does not.

Reducing the polymer draws hydrated Na+ cations into the polymer matrix, in-

creasing the volume of the film, whereas oxidizing it expels the ions, decreasing the

volume [94]. Also associated with the change in the electronic state of the polymer
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(change in oxidation level) is a change in color [92]. The potentiostat controls the

direction and extent of the electrochemical reaction, which in turn determines the

degree of expansion or contraction of the polymer film. The out-of-plane expansion

of thin films in aqueous Na+-containing electrolytes is substantial, approximately

30% between the fully oxidized and reduced states, as established with techniques

such as AFM and mechanical profilometry [92,94–96]. The bilayered actuator struc-

tures can be miniaturized using standard microfabrication techniques [5,94,97–99].

The volume changing property of electroactive polymers has also been exploited to

realize microfluidic valves [100].

The closing and opening of the microvial lids in the cell clinics microsystem re-

quires a control voltage operating between 0 V and −1 V with respect to a Ag/AgCl

reference potential [101]. The polymer is in the reduced state at −1 V and becomes

oxidized at 0 V vs. Ag/AgCl [94, 97]. Fig. 7.1 (b) shows photomicrographs of two

fabricated microvials with their lids in the opened and closed positions correspond-

ing to the two electrochemical states of the polymer. The electrochemical reaction

requires a maximum current density on the order of 10 pA/µm2 for actuation.

7.1.2 Prototype testing

The first generation cell clinics prototype comprised a CMOS chip with an

array of bioamplifiers connected to on-chip cell sensing electrodes and an array

of MEMS structures comprising lidded microvials. The amplifiers were tested by

recording the extracellular electrical potentials from bovine aortic smooth mus-
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Figure 7.2: Prototype microstructures fabricated on a custom CMOS bioamplifier
chip [Photographs courtesy of Y. Liu and Dr. E. Smela].

cle cells on a packaged bioamplifier chip (without any MEMS structures) [5, 19].

The MEMS structures were tested by fabricating prototype microstructures on the

bioamplifier chip. The function of the bilayer actuators was demonstrated by placing

the chip in an electrolyte solution, making electrical connection to the chip surface

through a micromanipulator probe, and applying voltages between 0 and −1 V vs.

Ag/AgCl using an external potentiostat. Fig. 7.2 shows the resulting actuation

of the microvial lid [fabrication and testing was performed by Y. Liu]. A vial is

positioned around a gold-plated sensing electrode, visible as a small square. The

PPy/Au bilayer hinge was successfully actuated, as shown by the different positions

of the lid in these images.

7.2 Potentiostat basics

7.2.1 Electrochemical cell

An electrochemical cell [64] comprises a set of electrodes immersed in an

electrolyte. An electric current resulting from a net movement of charged species

through the cell gives rise to an electrochemical reaction. Electrons are the charge
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carriers in the electrodes and ions constitute the charge carriers in the electrolyte.

An electrochemical cell typically comprises a set of three electrodes:

• Working electrode (WE) [64]: This provides the surface on which the elec-

trochemical reaction occurs. It is made of an inert material such as gold or

platinum.

• Reference electrode (RE) [64]: This is the electrode with reference to which a

control potential is applied to the WE for the electrochemical reaction to occur.

It is to be connected to a high impedance node allowing no current to flow

through it. Saturated Calomel Electrode (SCE) and Silver/Silver Chloride

(Ag/AgCl) electrodes [64] are the standard REs used in laboratory applica-

tions. Field applications normally employ pseudo REs made of inert materials.

• Counter electrode (CE) [64]: The current that enters the electrolyte through

the WE exits through the CE or vice versa. Laboratory applications employ

inert conductors such as platinum or graphite as CEs. Field applications

employ another piece of WE as the CE.

In the cell clinics microsystem the on-chip PPy/Au microactuator behaves as the

WE in the electrochemical cell. For the first generation prototype testing, the

PPy/Au bilayer was actuated by employing an off-chip Ag/AgCl RE and an off-

chip Ag CE, in 0.1 M NaDBS electrolyte.

134



WE CERE

Potentiostat

VWR

electrolyte

electrochemical cell

control voltage measured current

Figure 7.3: An illustration showing an electrochemical cell connected to a potentio-
stat instrument.

7.2.2 Potentiostat instrument

A potentiostat is an electronic instrument used to control the reaction in an

electrochemical cell [102]. It controls the current between the WE and CE, so that

the potential VWR of the WE relative to the RE follows a required control voltage.

At any instant the potential applied to the WE is maintained at the control voltage,

irrespective of the ongoing electrochemical reaction. Fig. 7.3 shows the connection

between an electrochemical cell in a typical three electrode configuration and a

potentiostat.
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Chapter 8

Integrated Potentiostat Design

Previous reports on integrated potentiostats have demonstrated their utility

in electrochemical sensors for detecting minute concentrations of biochemical an-

alytes [103–108]. The potentiostats primarily served as current measurement in-

struments for precise low-level current detection (nA to pA) with low noise. In

recent years a new class of applications have emerged that employ electrochemi-

cal actuators for capturing, manipulating, and positioning of objects in the micro-

regime [109, 110]. The control of such microactuators requires a modified design

for the potentiostat, giving it the ability to robustly drive relatively high currents

(µA to mA) with accurate voltage control and low output distortion. This work

demonstrates such a CMOS potentiostat and its use for in situ control of the elec-

trochemical oxidation level, and thus the volume, of an electroactive polymer film.

The integrated control technique can enable complete miniaturization of a variety

of electrochemical microsystems for micromanipulation [98,110], cell clinics [5,6,99],

drug delivery [111], and combinatorial electrodeposition of materials [112]. For the

cell clinics application the potentiostat serves to drive the PPy/Au bilayer microac-

tuators. Lid actuation requires the application of a control voltage, which was

provided by an external potentiostat instrument in the first generation of cell clin-

ics. In order to reduce system complexity, this research contributes a custom VLSI
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potentiostat for control of, and integration with the MEMS structures.

8.1 Implemented potentiostat architecture

All potentiostats follow a common control architecture, but with various con-

straints or additional circuit elements depending on the application. A potentiostat

mainly comprises two functional units: (i) a core control unit that maintains a set

desired potential difference between the working and reference electrodes by sourcing

or sinking a current through the counter electrode, the value of which is regulated

by a feedback mechanism, and (ii) a current-sensing unit that measures the current

flowing through the cell for electrochemical analysis or detection [102]. Microac-

tuator control requires a control unit that exhibits good accuracy, robust driving,

and stability, while current-measurement requirements are less demanding, since the

currents are relatively large. One of the key constraints on the potentiostat for our

target cell clinics is minimal footprint on the chip, since the chip must carry out

many other functions as well. In order to minimize area and power requirements,

we have elected to integrate a single, compact driver for controlling an array of ac-

tuators, rather than a separate driver for each actuator. The control circuit follows

the architecture of a single-ended amperometric potentiostat [29,30,102] Fig. 8.1(b)

illustrates the working (WE), reference (RE) and counter (CE) electrodes, and the

associated circuitry. The circuit architecture implemented is that of a traditional

single-ended amperometric potentiostat [113]. Fig. 8.1(b) illustrates the connection

between the electrodes and the associated control circuitry.
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Figure 8.1: (a)A model for the interelectrode impedance. (b) Potentiostat circuit
for integration with the microactuators.

The control circuitry comprises three operational amplifiers:

• OP1 buffers the electrochemical reference potential in the feedback control

loop. It provides a high input impedance to the RE, keeping the reference

chemical reaction at equilibrium and allowing no current to flow through it.

• OP2 sources/sinks the current specified by the control voltage to/from the

counter electrode to enable the reduction/oxidation reaction.

• OP3, along with the off-chip feedback resistance Rmeas, operates as a current-

to-voltage converter for measuring the current flowing through the electro-

chemical cell, and also provides a virtual ground potential at the WE. Current

measurement using Rmeas is required to determine the voltage range for actu-

ation from oxidation and reduction peaks obtained using cyclic voltammetry.

The value of Rmeas is determined by the range of currents to be measured.
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ZC denotes the impedance between CE and RE, and ZW denotes the impedance

between WE and RE. The electrical impedances ZC and ZW are formed by a series

combination of the solution resistance Rsoln and the electrode impedance Ze−c that

arises from charging of the double layer capacitance (modeled by Ce−c) and electron

transfer resistance (modeled by Re−c) at the electrode-electrolyte interface. This is

illustrated in Fig. 8.1 (a).

The transfer function from the source control voltage Vcontrol to the electro-

chemical cell potential VWR can be written as:

VWR

Vcontrol

=
A2ZW

A2ZW + 2(ZC + ZW )
(8.1)

where A2 is the gain of op-amp OP2. The circuit ensures that the electrochemical cell

voltage VWR tracks the source control voltage Vcontrol, provided A2 is high enough.

8.2 Wide swing op-amp design for microactuator control

The potentiostat implementation requires an op-amp that satisfies the follow-

ing specifications for driving electrochemical actuators:

• High gain (>50 dB) to maintain the desired electrochemical cell potential.

• Phase margin > 60◦ for stable operation.

• Rail-to-rail inputs and outputs to maximize the range of the electrochemical

potentials that can be applied.

• High current handling capability for parallel driving and control of actuator
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arrays. For example, the PPy(DBS)-based electrochemical reaction requires

peak current densities on the order of 10 pA/µm2 for actuation. In this case

the op-amp could be required to source or sink currents up to 1 mA while

driving an array of PPy(DBS)/Au actuators [94].

• Low output distortion for accurate voltage tracking during electrochemical

control.

A custom wide-swing op-amp has been designed using the topology shown in

Fig. 8.2. It consists of a rail-to-rail input stage, a summing circuit, and a rail-to-rail

output stage with feedforward class-AB control [79]. The NMOS input pair M1-M2

and the PMOS input pair M3-M4 together constitute the rail-to-rail input stage.

In the low common-mode input voltage range the PMOS input pair is active, in

the intermediate common-mode input voltage range both NMOS and PMOS input

pairs are active and in the high common-mode input voltage range the NMOS input

pair is active. In order to preserve the rail-to-rail capability, the complementary

input pairs are loaded with folded cascodes formed by transistors M14-M17 and

M18-M21. The diode-connected transistors M5 and M6 in the input stage provide

a constant voltage source across the complementary input transistor pairs in order

to reduce transconductance variation across the input common mode voltage range.

This is required for optimal frequency compensation and reduced signal distortion.

The output stage is biased in the class-AB mode by maintaining a constant voltage

difference between the gates of the output transistors M29 and M33. The biasing

is provided by a feedforward class-AB control circuit formed by transistors M28
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and M32. The class-AB control is combined with the summing circuit formed by

transistors M14-M17 and M18-M21. Transistors M24-M25 form a floating current

source. The class-AB control sets up two translinear loops, M26-M29 and M30-M33

which fix the voltage between the gates of M29 and M33. The rail-to-rail output

stage with feedforward class-AB control provides a good compromise between power

efficiency and output signal cross-over distortion for a given supply power [79]. The

output transistors M29 and M33 are suitably sized for supporting high current drives

of up to 1 mA.
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Figure 8.2: Rail-to-rail operational amplifier constituting the potentiostat.

The op-amp circuit was designed and fabricated in a commercially available

0.5 µm, 2-poly, 3-metal standard CMOS technology for a supply voltage of ±1.5 V.

Table 8.1 summarizes the performance metrics [80] for the op-amp obtained from

bench testing.
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Table 8.1: Performance metrics of the operational amplifier

Parameter Value Unit

On-chip area 0.021 mm2

Open loop gain 66 dB

3 dB bandwidth 3.5 kHz

Phase margin 85 ◦

Unity gain frequency 2 MHz

CMRR 110 dB

Slew rate (RL=1 MΩ, CL=95 pF) 7.5 V/µs

8.3 Potentiostat test chip

The potentiostat chip implements the control circuit of Fig. 8.1(b) connected

to on-chip microelectrodes: 6 WEs measuring 100×100 µm2 each (for a total area

of 6×104 µm2, a CE measuring 400×800 µm2, and a RE measuring 50×800 µm2.

Fig. 8.3(a) shows a photomicrograph of the fabricated chip.

counter 
electrode

reference 
electrode

working 
electrodes

potentiostat
module

200 µm 

potentiostat 
chip

polymer patterned for
bond wire insulation

DIP40 
package

well for containing 
electrolyte

(a) (b)

Figure 8.3: (a) Photomicrograph of the fabricated chip comprising the potentiostat
module integrated with the microelectrodes constituting the electrochemical cell.
(b) Photograph of a fully packaged potentiostat test fixture after postprocessing.
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The RE is placed close to the WEs in order to minimize the voltage drop

across the RE/WE electrolyte resistances. The CE area has been maximized in

order to allow sufficient current flow during actuation. The WEs mimic the actuator

array that will be employed in the cell clinics; after post-processing of the chip they

comprise the same materials and have the same areas as the cell clinic actuators. The

chip, measuring 1.5×1.5 mm2, was fabricated in a commercially-available 0.5 µm, 2-

poly, 3-metal CMOS process. The on-chip area of the potentiostat circuit is 7.07×104

µm2 (6% of the active chip area). The electrodes were fabricated using the top metal

layer in the CMOS process, with the aluminum exposed using glass cuts, or openings

in the passivation layer which are commonly used to create bond pads for external

connections via bonding wires. In addition to the internal connections shown in Fig.

8.3(a), the electrodes are connected to bond pads that permit external connections

to be made during electrodeposition of polymer films.

The driver circuit can be employed to control the actuators either in parallel for

all actuators or sequentially for individual actuators. Sequential control requires the

working electrodes to be addressed through a switching network that is controlled by

a decoder circuit. Since the potentiostat can also be employed for electrodeposition,

sequential control can enable on-chip combinatorial electrochemistry.
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Chapter 9

CMOS/MEMS Integration & Testing

9.1 Validating potentiostat operation by cycling an off-chip PPy(DBS)

film in a standard electrochemical cell

The potentiostat chip was tested for actuation of an off-chip PPy(DBS) film

of area 2 cm2 with thickness 2000 Å on a gold-covered silicon substrate in 0.1 M

NaDBS solution [PPy(DBS) sample was prepared by M. Urdaneta. Electrochemical

cell was set up by M. Urdaneta]. PPy(DBS) is electrochromic, so it changes color

during oxidation and reduction [92]. The cycling test was performed by connecting

the working electrode pin of the on-chip potentiostat to an exposed gold region of

the PPy(DBS) sample, the reference electrode pin to an external Ag/AgCl electrode,

and the counter electrode pin to an external graphite electrode [Chip testing was

performed along with M. Urdaneta]. A signal generator was used to ramp the control

potential linearly at 100 mV/sec between 0 and −1 V.

As shown by the photographs in Fig. 9.1, in every cycling period the film was

observed to change from salmon color (oxidation at 0 V vs. Ag/AgCl), to transpar-

ent (reduction at −1 V vs. Ag/AgCl), confirming the electrochemical reaction of

the film [Color changes were observed along with M. Urdaneta]. The color observed

at 0 V is due to optical interference, and is thus a function of the PPy film thickness.

144



applied potential: 

0 V vs. Ag/AgCl

applied potential: 

-1 V vs. Ag/AgCl

exposed

gold spot

(a reference

for color

comparison)

PPy(DBS)

Figure 9.1: Color change observed during cycling of the PPy(DBS) film using the
on-chip potentiostat [Photographs were captured along with M. Urdaneta].

PPy itself is brown in the oxidized state, appearing darker with increasing thick-

ness. Fig. 9.2 shows the cyclic voltammogram (CV, a plot of current vs. voltage)

obtained. The CV shows current peaks at −0.6 V and −0.4 V (vs. Ag/AgCl),

which are typically observed during the reduction and oxidation of PPy(DBS). To

validate the operation of the potentiostat chip, the cycling experiment was repeated

using an external potentiostat (EcoChemie pgstat30) [Validation experiment was

performed along with M. Urdaneta]. The CV obtained using the external potentio-

stat has been superimposed upon the CV obtained using the on-chip potentiostat

in Fig. 9.2. There is good agreement between the CVs obtained from the external

and on-chip potentiostats. The reason for the 2 plots to be not exactly identical to

each other could be the disturbance in the electrode positions when the connections

were changed from the on-chip potentiostat to the external potentiostat instrument.
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Figure 9.2: Cyclic voltammograms obtained during electrochemical cycling at 100
mV/sec of a PPy(DBS) film using the on-chip potentiostat and an external po-
tentiostat (EcoChemie pgstat30) [Cyclic voltammograms were recorded along with
M. Urdaneta].

9.2 Potentiostat testing for control of an off-chip array of PPy(DBS)/Au

lidded microactuators in a standard electrochemical cell

The on-chip potentiostat was further tested for the actuation of PPy/Au bi-

layer microactuators with lids comprising a top SU8 layer and a bottom gold layer

[Microactuators were fabricated by Dr. M. Christophersen]. The fabrication and

characterization of these microactuators is described in [5, 94, 97]. The actuation

test was performed on an array of 416 microactuators with varying hinge lengths

ranging from 20 µm to 800 µm. All microactuators had a PPy thickness of 3000 Å

and a gold thickness of 1000 Å. The array samples were placed face-up and flat in

a custom-fabricated electrochemical cell. A graphite plate was used as the counter
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Figure 9.3: Photomicrographs of a portion of the actuated array of actuators [Pho-
tomicrographs and videos were captured by Dr. M. Christophersen]. Top, lids open
(at −1 V vs. Ag/AgCl) and bottom, lids closed (at 0 V vs. Ag/AgCl).

electrode along with an external Ag/AgCl reference electrode [Electrochemical cell

was set up by Dr. M. Christophersen]. Actuators were viewed from directly overhead

using a Leica Z16 APO stereomicroscope.

Actuation of the microactuator samples was performed using the on-chip po-

tentiostat by applying a cyclic control potential between 0 and −1 V (vs. Ag/AgCl)

at 0.25 Hz (500 mV/sec) in 0.1 M NaDBS [Chip testing was performed along with

Dr. M. Christophersen]. The actuators rotated the lids from 90◦ (open position) to

180◦ (closed position) during the cycling. Fig. 9.3 shows a photomicrograph of part

of the array of actuators with a bilayer hinge length of 600 µm. When the cycling

was performed at a lower frequency of 0.01 Hz (20 mV/sec), the actuators rotated

the lids from 0◦ (open position) to 180◦ (closed position).
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9.3 Demonstrating in situ control of on-chip PPy(DBS)/Au lidless

microactuators

9.3.1 Chip postprocessing

To enable deposition of PPy(DBS) and to avoid corrosion, all the aluminum

electrodes on the potentiostat chip (described in the previous chapter) were electro-

lessly plated with gold [Electroless gold-plating of on-chip electrodes was performed

by M. Urdaneta]. Another purpose for the gold-plating is to make the on-chip elec-

trodes biocompatible for the cell clinics application. The chip was immersed in a

series of solutions for surface treatment (TAS 3Z, Technic Inc., Cranston, RI, USA),

nickel deposition (EN 2600 A and B, Technic Inc., Cranston, RI, USA), and gold

deposition (Oromerse SO, Technic Inc., Cranston, RI, USA). Approximately 1.5 µm

of nickel was deposited to prepare the surface for the subsequent 1 µm of gold. All

solutions were prepared and used according to the manufacturer’s instructions.

Since the electrochemical reaction occurs in an aqueous ionic environment,

the chip bond wires needed to be insulated from each other and the conducting

electrolyte. The wirebonds were encapsulated using a photopatternable polymer

(Loctite 3340, Henkel, Rocky Hill, CT, USA) such that the active chip surface was

exposed, as described by Delille et al. [70] [Chip encapsulation was performed by

M. Urdaneta]. Using epoxy, a well was placed over the encapsulation for containing

∼ 500 µL of electrolyte. Fig. 8.3(b) in the previous chapter shows a photograph of

a fully packaged potentiostat chip.
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PPy(DBS) films were deposited using an external potentiostat instrument

(EcoChemie pgstat30, Autolab, Westbury, NY, USA). PPy(DBS) was electrode-

posited in an aqueous 0.1 M NaDBS, 0.1 M pyrrole solution as described in [93,94]

[PPy(DBS) films were deposited by M. Urdaneta]. When using the external po-

tentiostat, deposition was performed at a voltage of 0.48 V (vs. Ag/AgCl), and

PPy(DBS) was deposited on both the WEs and the CE. The WEs here mimic the

actuator array that will be employed in cell clinics. They comprise the same mate-

rials and have the same areas as the cell clinic actuators, the only difference being

that they are lidless. Indicators of actuation in this experiment were instead color

change and out-of-plane thickness change in the polymer films. The purpose of de-

positing PPy(DBS) on the CE was to provide a known electrochemical reaction with

sufficient charge-delivery capability, rather than requiring pH-changing hydrolysis

to supply the necessary current. PPy(DBS) on CE provides better charge transfer

and also better control over the electrochemical reaction. Furthermore, PPy(DBS)

has a large internal surface area due to its lamella structure [94,114]. This helps to

prevent the electrochemical reaction to be limited by the size ratio of WE and CE.

The chip employed a gold quasi-reference electrode (Au quasi-RE) because thin

film Ag/AgCl REs have been found to be unstable for long-term applications [105].

It is well known that using a quasi-RE in an electrochemical cell can result in shifting

of the oxidation and reduction peaks, and scaling of the cyclic voltammogram (CV),

when compared to CVs obtained employing an Ag/AgCl RE [98]. So the control

potential range for the actuation of PPy(DBS) had to be determined experimentally.
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9.3.2 Test setup

The potentiostat chip was mounted on a test-board interfaced to a data acqui-

sition system (National Instruments DAQCard-6036E interfaced to a laptop running

Labview 7.1). An Agilent 33220A arbitrary waveform generator was used to gener-

ate control potential signals. An off-chip resistance of 21.58 kΩ was used for current

measurement. The chip was viewed from above using a Leica Z16 APO stereomicro-

scope. The electrolyte well was filled with 500 µL of 0.1 M NaDBS solution. Images

were recorded with a digital camera (Nikon Coolpix 995).

9.3.3 In situ PPy(DBS) actuation

The CMOS potentiostat was tested for actuating PPy(DBS) films on the 6

WEs that had been deposited using the external potentiostat instrument [Testing

was performed along with M. Urdaneta and Dr. M. Christophersen]. Chip operation

was demonstrated by performing cyclic voltammetry at a scan rate of 40 mV/sec

while monitoring the color of the films on the WEs and recording CVs. The applied

voltage range was successively incremented until distinct electrochromic changes, as

shown in Fig. 9.4, were observed [Instructions for application of control voltages were

provided by Dr. M. Christophersen, Color changes observed along with M. Urdaneta

and Dr. M. Christophersen]. The final voltage range for complete electrochemical

cycling was between +200 mV (oxidized, dark brown color) and −200 mV (reduced,

light orange color). Thus, the chip was able to actuate the polymer films in situ.

Fig. 9.5 shows the CVs, which were recorded over 135 cycles at a sampling rate
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Figure 9.4: In situ cycling of PPy(DBS) films on gold-plated WEs using the on-chip
potentiostat connected to an external waveform generator [Photomicrographs were
captured along with M. Urdaneta and Dr. M. Christophersen]. Left, PPy(DBS) in
the oxidized state. Right, PPy(DBS) in the reduced state.

of 50 Hz. The data were time-averaged over every 5 points, and across every 3 cycles,

to produce the 45 traces in the figure. There are distinct oxidation and reduction

current peaks at +40 mV and −85 mV (vs. Au) respectively. However, as expected,

due to the quasi-RE, the oxidation/reduction peaks were shifted; vs. Ag/AgCl they

typically appear at −0.4 V (oxidation) and −0.6 V (reduction). Mean oxidation

and reduction peak currents of 1.0 µA and 2.5 µA were recorded during the cycling.

These currents correspond to current densities of 16.7 pA/µm2 and 41.7 pA/µm2,

which are comparable to those observed in standard macroscale setups. Peak cur-

rents on the order of 1 mA were recorded in the previous experiment when the

potentiostat was used to drive an array of PPy(DBS)/Au microactuators fabricated

on an off-chip substrate [29]. The shape of the CVs also resemble those obtained

from measurements of PPy samples using external potentiostat instruments.
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Figure 9.5: Cyclic voltammograms recorded during in situ oxidation and reduction
of PPy(DBS) films [Cyclic voltammograms were recorded along with M. Urdaneta
and Dr. M. Christophersen].

9.3.4 In situ PPy(DBS) deposition

Cycling was also performed on PPy(DBS) films deposited in situ using the

potentiostat chip [Experiment was performed along with M. Urdaneta]. In this

experiment, the CE was not covered with PPy(DBS) since it is unfeasible to do

that using the on-chip circuitry. Electrodeposition was performed potentiostatically

at +250 mV (vs. Au) for 20 minutes. Polymer deposition on the WEs was observed

visually. The polymer films were then cycled, and the typical current peaks and

electrochromic changes were observed.
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9.4 Summary

A CMOS potentiostat chip was designed for driving in situ electrochemistry,

for applications such as the deposition and control of electroactive polymer films.

This was the first demonstration of such an integrated system. The potentiostat

module was tested and validated for off-chip actuation of PPy(DBS) films and

PPy/Au bilayer microactuators. The control circuit was then tested for both the

deposition and actuation of PPy(DBS) films in situ on the CMOS chip, as confirmed

by the distinct electrochromic changes observed during electrochemical cycling and

the recorded CVs. The data confirmed that the chip met its design goals for the

required current drive together with accurate voltage control.
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Chapter 10

Conclusions: Part II

A CMOS potentiostat chip was designed for in situ driving of electrochemical

actuation reactions. The operational amplifier constituting the potentiostat was

custom-designed according to the specifications for the electrochemical control of

PPy(DBS), an electroactive polymer. The employed circuit architecture enables

rail-to-rail operation and robust current driving in addition to providing a good

compromise between power efficiency and output signal cross-over distortion. The

potentiostat module was tested for control of both off-chip lidded and on-chip lidless

PPy/Au bilayer microactuators. An estimate for the maximum microactuator array

size that the potentiostat will be able to drive in parallel is approximately 1000. The

operational amplifier currently consumes 660 µW of power, with the output driving

stage consuming 72% of the total power. The power consumption the operational

amplifier output stage can be scaled according to the microactuator array size in

future designs.

Control of on-chip actuators was demonstrated by employing a Au-plated

quasi-reference electrode. This simplified post-processing, but required experimen-

tal determination of the control voltage range for achieving optimal actuation. Since

the control voltage range is expected to change over time in the presence of a quasi-

reference electrode, this step needs to be automated. This can be accomplished
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by incorporating peak detection circuitry [115] along with the potentiostat module.

This way, the current peaks in the cyclic voltammograms can be detected and com-

pared on-chip, and the appropriate control voltage range can be set automatically.

The current target application for the integrated potentiostat demonstrated

here is to drive and control PPy(DBS)/Au-based lidded actuators in the cell clinics

microsystem. Another potential application of the integrated electrochemical reac-

tor is drug delivery, wherein drug dosage can be regulated by electrochemical control

of electroactive polymers within which the drug molecules are stored [111]. Because

of their electrochromic behavior, conjugated polymers are used in display applica-

tions [116, 117]; therefore the potentiostat and electroactive polymer film system

presented here can also be considered as a fully integrated demonstration of elec-

troactive polymer display technology. In situ fabrication capability using the on-chip

potentiostat may also enable novel applications such as combinatorial electrochem-

ical deposition [118], automated postprocessing [119] after CMOS fabrication, and

reconfigurable implants [120].
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