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On the Method of Pure Trun
ation forApproximating Stationary ProbabilitiesG. W. StewartABSTRACTThis paper is 
on
erned with approximating the leading 
omponents of thestationary ve
tor of a semi-in�nite dis
rete markov 
hain. The most widelytreated method extra
ts a leading prin
ipal submatrix from the matrix oftransition probabilities, adjusts its elements so that it be
omes sto
hasti
,and takes the stationary ve
tor of the result as the approximation. In thispaper, the 
onsequen
es of taking the normalized Perron ve
tor of the unad-justed matrix as the approximation are explored. Error bounds are derived,and it is shown that the adjusted and unadjusted methods are approxima-tions to one another.1. Introdu
tionThis paper is 
on
erned with approximation the stationary ve
tor of an in�nite Markov
hain. Spe
i�
ally, let P be the transition matrix for a semi-in�nite dis
rete Markov
hain having a stationary ve
tor �T. LetQ = I � P;so that �TQ = 0 and Qe = 0, where e is the ve
tor 
onsisting of all ones. Unless we 
andetermine the 
omponents of �T analyti
ally, we must 
ompute a �nite subset of themnumeri
ally. Without loss of generality, we 
an assume that the required 
omponentso

ur at the start of the ve
tor �. Thus we partition�T = (�Tn �T� );where �n has n 
omponents, and attempt to approximate some of the 
omponents of �n.In general, we shall have to take n larger than the number of 
omponents we a
tuallyrequire, sin
e the small 
omponents in the tail of �n will tend to be less a

urate thantheir larger brethren [see (3.7) and (3.8) below℄.Most numeri
al methods begin by partitioning Q in the formQ = �Qnn Qn�Q�n Q��� ;where Qnn is of order n and attempt to determine an approximation to �Tn from Qnn.The most popular of these is what we will 
all the method of adjusted trun
ation.1



2 The Trun
ation Method GWS1. Adjust the elements of Qnn to obtain a matrix Q̂nn su
h thatI � Q̂nn is sto
hasti
 and irredu
ible.2. Approximate �Tn by the left Perron ve
tor �̂Tn of I � Qnn,normalized so that �̂Tn = 1. (1.1)By the Perron ve
tor we mean the positive eigenve
tor 
orresponding to the Perron rootof I � Q̂nn, in this 
ase 1. (For the theoreti
al ba
kground in nonnegative matri
es see[1, 5℄.)This method|or rather 
lass of methods|has been treated extensively in theliterature, and we will return to it later after we have analyzed the method to beproposed here. For now it is suÆ
ient to note that it has two problems. First, theadjustment in step 2 
an be performed in an in�nite number of ways, and it is not 
learwhi
h one will be most e�e
tive. Se
ond, if Qn� is substantial, as it often is in pra
ti
e,the adjustment will not be small, whi
h makes the 
hoi
e of adjustment all the more
riti
al.In this paper we will investigate the alternative of omitting step 1 in (1.1). Thisleads to the following algorithm1. Approximate �Tn by the left Perron ve
tor �̂Tn of I � Qnn,normalized so that �̂Tne = 1. (1.2)To insure that the Perron ve
tor exists and is unique we will assume here and in whatfollows that the matrix Qnn is irredu
ible.The ve
tor �̂Tn 
an also be 
hara
terized as the normalized left eigenve
tor 
orrespondingto the smallest eigenvalue of Qnn.We are goning to establish 
onditions under whi
h the approximation �̂n is a

uratein proportion as �� is small. We will do this by exhibiting a perturbation ~Qnn of Qnnsu
h that 1: �Tn ~Q11 = 0;2: k ~Qnn �Qnnk2 � �k��k1for some � that depends on � but not on n. When �� is small, Qnn and ~Qnn are near,and we 
an use perturbation theory to bound the distan
e between �n and �̂n.There are three things to note about this approa
h. First, be
ause the 
omponentsof � sum to one, as n in
reases �� must ultimately be
ome small. Although it is easyto 
onstru
t 
hains in whi
h the de
rease in the 
omponents of � is slow, in many
hains the 
omponents of � rapidly approa
h zero. Se
ond, the analysis takes pla
e inthe �nite dimensional spa
e Rn . Only the size of the ve
tor �� must be inferred fromthe in�nite 
hain. Finally, although our bounds are useful in providing insight into thepure trun
ation method, they alone are not suÆ
ient to establish the 
onvergen
e ofJune 16, 2003 Draft



GWS The Trun
ation Method 3the method as n ! 1. We will return to this point after we have established the ourmain results.This paper is organized as follows. In the next se
tion we will introdu
e the per-turbation of Qnn and estimate its size. In Se
tion 3 we will assess the a

ura
y of theapproximation �̂n and 
omment on the meaning of the quantities appearing in in ourerror bounds. We then give a simple example illustrating the pure trun
ation method.The paper 
on
ludes with a dis
ussion of the relation between the methods of pure andadjusted trun
ation.In what follows, k � k1 and k � k2 will denote the ve
tor and matrix 1- and 2-norms.For more on these norms see [3, 6℄.2. The perturbationIn this se
tion we will 
onstru
t a perturbed matrix~Qnn = Qnn +Esu
h that �Tn ~Qnn = 0, and we will give bounds on the perturbing matrix E in terms of�T� . We begin by setting rT = �TnQnn:If we de�ne E by E = � �nrTk�nk22 ;then it is easily veri�ed that �Tn ~Qnn = 0.To bound kEk2, note that from the relation(�Tn �T� )�Qnn Qn�Q�n Q��� = (0 0);we get rT = �TnQnn = ��T�Q�n:Hen
e krk2 = k�T�Q�nk2 � kQT�n��k1 � kQT�nk1k��k1 � k��k1;the third inequality following from the fa
t that the absolute row sums of Q�n are notgreater than one. If we now set �n = k�nk1k�nk2 ;then �n def= kEk2 � �n k��k1k�nk1 = �n k��k11� k��k1 (2.1)Draft June 16, 2003



4 The Trun
ation Method GWSStri
tly speaking (2.1) does not insure that E be
omes small as n in
reases, sin
eit is possible that �n in
reases as k��k1 de
reases. In general, we 
an only say that�n � pn, and this bound 
an be attained (when �n = �e, for some � > 0). However,for �xed Q, we have limn!1 �n = 1k�nk2 � �1: (2.2)Hen
e in this 
ase �n is uniformly bounded for all n.We 
an even say more. We have�n � 1=k�nk2= 1=pk�k22 � k��k22= �1=p1� �21k��k22 ;so that �n � �1(1 +O(k��k22)) � �1(1 +O(k��k21)): (2.3)Thus �n is bounded by a quantity that approa
hes �1 as the square of k��k1.It is worth noting that we have in some sense imitated the adjusted trun
ationmethod in perturbing Qnn so that it has a null ve
tor. But in the adjusted trun
ationmethod the null ve
tor in question 
onsists of the �rst n 
omponents of the right nullve
tor of Q|i.e., a ve
tor whose 
omponents are all one|and the perturbation is ex-pli
itly 
omputed. In the pure method the null ve
tor 
onsists of the �rst n 
omponentsof the left null ve
tor of Q. Sin
e these 
omponents are unknown, we 
annot a
tually
ompute ~Qnn. But we 
an use our bound on kEk2 to bound the error in �̂n as anapproximation to �n.3. A

ura
yIn assessing the a

ura
y of �̂1, it will be 
onvenient to work with the renormalizedve
tors pn = �nk�nk2 and p̂n = �̂nk�̂nk2 :Let U = (p̂n V ) be orthogonal. We are going determine a ve
tor h su
h thatpn = p̂n + V h+O(�2n);so that kpn � p̂nk2 �= khk2.June 16, 2003 Draft



GWS The Trun
ation Method 5Remembering that p̂TnQnn = �np̂Tn , we form the matrixT = UTQnnU=  p̂TnV T!Qnn(p̂n V )=  p̂TnQnnp̂n p̂TnQnnVV TQnnp̂n V TQnnV!=  �np̂Tn p̂n �np̂TVV TQnnp̂n V TQnnV!�  �n 0g Cn! :The number �n is by de�nition the smallest eigenvalue of Qnn. Be
ause T is blo
ktriangular, the matrix Cn 
ontains the remaining eigenvalues of Qnn.Now let F = UTEU = � p̂TEp̂ p̂TEVV TEp̂ V TEV� � �'11 fT12f21 F22� :and let ~T = UT ~QnnU = ��n + '11 fT12g + f21 Cn + F22�Note that be
ause k � k2 is invariant under orthogonal transformations we havej'11j; kf12k2; kf21k2; kF22k2 � �n;where �n is de�ned by (2.1).We are now in a position to prove our main result.Theorem 3.1. Assume that C is nonsingular and letÆn = kC�1n k�12 :If �n=Æn < 1;then Cn + F22 is nonsingular, and pn = p̂n + V hkp̂n + V hk2 ; (3.1)Draft June 16, 2003



6 The Trun
ation Method GWSwhere h = �(Cn + F22)�Tf12: (3.2)Moreover, �n = �hTg � '11 � hTf21: (3.3)Proof. To show that Cn+F22 is nonsingular, we use the well know fa
t that if kXk2 < 1,then I +X is nonsingular andkI +Xk2 � (1� kXk2)�1: (3.4)Now write Cn + F22 = Cn(I + C�1n F22):Then kC�1n F22k2 � kC�1n k2kF22k2 � �n=Æn < 1. Hen
e I + C�1n F22 is nonsingular, andso is Cn + F22.Now T is similar to ~Qnn and hen
e has a left null ve
tor, whi
h we will denote by(1 hT). Thus we have (1 hT)��n + '11 fT12g + f21 Cn + F22� = (0 0): (3.5)Evaluating the se
ond 
omponent of this relation, we �ndfT12 + hT(Cn + F22) = 0;so that h satis�es (3.2). Transforming ba
k, we �nd the the null ve
tor of QTnn is(p̂n V )�1h� = p̂n + V h:Hen
e (3.1) follows from the fa
t that pn is the normalized null ve
tor of QTnn.The expression (3.3) may be derived by evaluating the �rst 
omponent of (3.5) andsolving for �n.Turning now to quantitative bounds, we begin by bounding h. From (3.2), we havekhk2 � k(Cn + F22)�1k2kf12k2:Now k(Cn + F22)�1k2 = k(I + C�1n F22)�1C�1n k2� k(I + C�1n F22)�1k2kC�1n k2� (1� kC�1n k2kF22k)kC�1n k2 from (3.4)� (1� �n=Æn)�1Æ�1n= 1=(Æn � �n):June 16, 2003 Draft



GWS The Trun
ation Method 7Hen
e khk2 � �nÆn � �n = �nÆn +O(�2n):The unnormalized approximation to pn is p̂n+ V h. By the orthonormality of U , wehave kp̂n + V hk22 = (p̂n + V h)T(p̂n + V h) = p̂Tn p̂n + hTV TV h = 1 + khk22:Hen
e the normalization of p̂n + V h introdu
es only a se
ond order e�e
t, and we maywrite kp̂n � pnk2 = kV hk2 +O(�2n) = khk2 +O(�2n) � �nÆn +O(�2n)Finally, from (2.1), we have �n � �nk��k1 + O(k��k21). Moreover by (2.3), �n ��1 +O(k��k21). Thus we have the following 
orollary.Corollary 3.2. Under the hypotheses of Theorem 3.1,kp̂n � pnk2 � �1k��k1Æn +O(k��k21): (3.6)There are several 
omments to be made about Theorem 3.1 and its 
orollary.� The bound (3.6) is a normwise bound and does not guarantee that the individual
omponents of p̂ are a

urate. However, the bound does provide information about thelarger 
omponents. In fa
t, suppose thatkp̂n � pnk = � and jp(n)i j = �� (� > 0); (3.7)where p(n)i is the ith 
omponent of pn. Sin
e jp̂(n)i � p(n)i j � �, we must havejp̂(n)i � p(n)i jjp(n)i j � 1� : (3.8)Thus as � in
reases the number of signi�
ant �gures in p̂(n)i in
reases proportionally. Itis worth noting that this result is true of any norm satisfying jxij � kxk.� The bound is dire
tly proportional to k��k1|i.e., to the sum of the sizes of the
omponents of � not in
luded in the trun
ation set. In many Markov 
hains, the
omponents de
rease swiftly in magnitude, so that even for small n the size of k��k1
an be made small.� The bound depends inversely on Æn = kC�1n k�12 , whi
h is the smallest singular valueof Cn. To get some idea of what this quantity means, let (
; y) be an eigenpair ofCn with kyk2 = 1. Sin
e Cny = 
y, we have 
�1y = C�1n y. Taking norms, we getDraft June 16, 2003



8 The Trun
ation Method GWSj
j�1 � kC�1n k2, or Æn � j
j. Sin
e 
 is an arbitrary eigenvalue of Cn and the eigenvaluesof Cn are the eigenvalues of Qnn other than �n, we haveÆn � min
2�(Qnn)
 6=�n j
j:� The bounds suggest what must be done to prove the 
onvergen
e of the method ofpure trun
ation as n ! 1. From (3.6) we see that the a

ura
y of p̂ depends on theratio of k��k1 to Æn. Thus we must show that as n!1, the quantity k��k1 de
reasesfaster than Æn. In parti
ular, if Æn is bounded away from zero as n in
reases, then themethod 
onverges. Whether or not this happens will depend on the properties of theMarkov 
hain in question.4. An exampleFor a numeri
al example of the above analysis, we 
onsider a simple birth-death pro
esswith arrival rate � = 0:4 and a departure rate of � = 0:45. The unnormalized stationaryve
tor is given by (1 � �2 � � �);where � = �� �= 0:889:Sin
e we know the ve
tor �, we 
an 
al
ulate the quantities in our bounds.All 
omputations were performed in Matlab in IEEE double-pre
ision 
oating-pointarithmeti
. The eigenve
tor p̂nn of Qnn was 
omputed by tow iterations of the inversepower method, starting with a pseudo-random ve
tor whose elements were uniformlydistributed in [0; 1℄. The results are summarized in the table in Figure 4.1.The �rst 
olumn in this table is the size of the trun
ated matrix. The se
ond 
olumnprints the �rst 
omponent to have a relative error greater than 0:5; i.e.,bad = min(i : jp̂(n)i � p(n)i jjp(n)i j � 0:5) :Figure 4.2 
ontains a plot or the relative error for n = 500. It is seen that the �rst
omponents are approximated to the highest possible a

ura
y|about 10�16, whi
his the rounding unit for IEEE double pre
ision arithmeti
. The relative a

ura
y thende
reases, but the method is still doing a �ne job of approximating very small 
ompo-nents.In this 
onne
tion, it is worth noting that in the larger problems it was ne
essaryto do two iterations of the inverse power method to 
ompute the small 
omponents ofJune 16, 2003 Draft



GWS The Trun
ation Method 9
n pbad kfT12C�1k (3.6) �2(Q11)Æ25 3:9e�02 7:1e�02 1:5e+01 1:4e�02 1:3e�0250 2:3e�03 6:6e�03 3:0e+00 4:2e�03 3:4e�0375 1:2e�04 4:8e�04 3:2e�01 2:6e�03 1:7e�03100 6:3e�06 3:1e�05 2:6e�02 2:0e�03 1:1e�03125 3:3e�07 1:9e�06 1:8e�03 1:8e�03 8:2e�04150 1:8e�08 1:1e�07 1:2e�04 1:7e�03 6:5e�04175 9:2e�10 6:3e�09 7:6e�06 1:6e�03 5:4e�04200 4:9e�11 3:6e�10 4:7e�07 1:6e�03 4:6e�04225 2:6e�12 2:0e�11 2:8e�08 1:6e�03 4:0e�04250 1:3e�13 1:1e�12 1:7e�09 1:5e�03 3:5e�04275 7:1e�15 6:2e�14 9:9e�11 1:5e�03 3:2e�04300 3:7e�16 3:8e�15 5:7e�12 1:5e�03 2:9e�04325 2:0e�17 1:2e�15 3:3e�13 1:5e�03 2:6e�04350 1:0e�18 1:1e�15 1:9e�14 1:5e�03 2:4e�04375 5:4e�20 1:1e�15 1:1e�15 1:5e�03 2:3e�04400 2:9e�21 1:1e�15 6:0e�17 1:5e�03 2:1e�04425 1:5e�22 1:1e�15 3:4e�18 1:5e�03 2:0e�04450 7:9e�24 1:1e�15 1:9e�19 1:5e�03 1:9e�04475 4:2e�25 1:1e�15 1:1e�20 1:5e�03 1:8e�04500 2:2e�26 1:1e�15 5:8e�22 1:5e�03 1:7e�04Figure 4.1: Birth-death pro
ess: � = :4, � = :45

Draft June 16, 2003
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GWS The Trun
ation Method 11p̂ a

urately. This fa
t illustrates an important di�eren
e between ordinary eigenvalueproblems, in whi
h the 
omponents of the desired eigenve
tor need not vary greatly insize, and Morkov 
hains where ultimately they must. The analysis of the inverse powermethod [9, p.619 �.℄ [7, x1.1.2℄ shows that for these problems the inverse power methodshould 
onverge in a single iteration. However, this analysis is based on norms, and sayslittle about the smaller 
omponents. Hen
e the need for a se
ond iteration.The third 
olumn is a 
he
k on our basi
 approa
h. In 
ontains the quantitykC�1n f12k2, whi
h up to se
ond order terms in �n is the norm of p̂n � pn. By (3.7)and (3.8), these numbers should be larger than pbad, but of roughly the same orderof magnitude. Note that these numbers stagnate at 10�15, owing to our inability to
ompute f12 a

urately enough.The fourth 
olumn 
ontains the bound (3.6). Be
ause, we have used norm inequal-ities in deriving it, the bound is too large by several orders of magnitude, though ittra
ks to 
olumn one, as it should. As is usual in numeri
al appli
ations, the boundgives insight but 
annot be used pra
ti
ally for determining 
onvergen
e.The �fth and sixth 
olumns 
on
ern the asymptoti
 behavior of the se
ond smallesteigenvalue of Qnn and Æn. The former seems to be approa
hing a nonzero limit. It isdiÆ
ult to tell what the latter is doing; however, if it is not bounded away from zero,it seems to be approa
hing zero far more slowly than k�2k1. If this is true, then thetrun
ated method is 
onverging very swiftly to the initial segments of �T as n in
reases.5. Relation to methods of adjusted trun
ationThe purpose of this se
tion is to point out an interesting relation between the method ofadjusted trun
ation and the method of pure trun
ation. Seneta [4, 5℄ gives a 
ompletetreatment of the subje
t as of about 1980. See Tweedie [8℄ for a more re
ent bibliography.Here we will follow Seneta.The starting point is the following observation. Let b(k)n be de�ned byQTnnb(k)n = ek; (5.1)where ek is the ve
tor whose kth 
omponent is one and whose other 
omponent is zero.For 
ertain 
lasses of 
hains and 
ertain values of k (generally k = 1 or k = n) it 
anbe shown that b(k)neTb(k)n ! �: (5.2)Here e is the ve
tor 
onsisting of all ones, so that the left hand side of (5.2) is b(k)nnormalized so that it represents a probability distribution.Unfortunately, the system (3.2) 
an be shown to be
ome in
reasingly ill-
onditionedwith in
reasing n, and the the ve
tor b(k)n will be 
omputed ina

urately in �nite pre
isionDraft June 16, 2003



12 The Trun
ation Method GWSarithmeti
. However, it 
an be shown that b(k)Tn is the left Perron ve
tor of the matrixobtained by adjusting the kth 
olumn of Qnn so that it be
omes sto
hasti
. Under some
ir
umstan
es the 
ondition of this system is better than that of Qnn, and this was theoriginal rationale for the method of adjusted trun
ation.A di�erent point of view emerges if we fo
us on what is a
tually being 
omputedby the method of adjusted trun
ation. The system (5.1) represents one iteration ofthe inverse power method for the left eigenve
tor of Qnn 
orresponding to its smallesteigenvalue, i.e., for the ve
tor �̂Tn . When Qnn is suÆ
iently ill-
onditioned, the methodtypi
ally 
onverges to its limiting a

ura
y in one iteration and is una�e
ted by errorsintrodu
ed by the ill-
onditioning [7, x1.1.2℄ [9, p.619 �.℄. Thus the method of adjustedtrun
ation 
an be regarded as approximating the method of pure trun
ation and vi
eversa.1 However, to say they approximate one another, is not to say that they are thesame method. Although the method based on (5.1) is one step of the inverse powermethod with a spe
ial starting ve
tor, there is no justi�
ation for taking a se
ond step,whi
h we saw above is ne
essary to 
ompute the small 
omponents a

urately.Both methods require spe
ial justi�
ation for individual 
lasses of problems. Butthe proof te
hniques are di�erent. Examples for the method of adjusted trun
ationwill be found in the referen
es 
ited above. For the method of pure trun
ation, thebehavior of the quantity Æn has plays a 
entral role our analysis. For numeri
al analystsand perturbation theorists this should 
ome as no surprise; its re
ipro
al measures thesensitivity of �̂Tn to perturbations in Qnn and also the limiting a

ura
y of the inversepower method [7, x1.3.2℄. Sin
e it has now surfa
ed in the 
ontext of in�nite Markov
hains, I believe an important problem for further resear
h is to pla
e it in a probabilisti
setting.A
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