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On the Method of Pure Trunation forApproximating Stationary ProbabilitiesG. W. StewartABSTRACTThis paper is onerned with approximating the leading omponents of thestationary vetor of a semi-in�nite disrete markov hain. The most widelytreated method extrats a leading prinipal submatrix from the matrix oftransition probabilities, adjusts its elements so that it beomes stohasti,and takes the stationary vetor of the result as the approximation. In thispaper, the onsequenes of taking the normalized Perron vetor of the unad-justed matrix as the approximation are explored. Error bounds are derived,and it is shown that the adjusted and unadjusted methods are approxima-tions to one another.1. IntrodutionThis paper is onerned with approximation the stationary vetor of an in�nite Markovhain. Spei�ally, let P be the transition matrix for a semi-in�nite disrete Markovhain having a stationary vetor �T. LetQ = I � P;so that �TQ = 0 and Qe = 0, where e is the vetor onsisting of all ones. Unless we andetermine the omponents of �T analytially, we must ompute a �nite subset of themnumerially. Without loss of generality, we an assume that the required omponentsour at the start of the vetor �. Thus we partition�T = (�Tn �T� );where �n has n omponents, and attempt to approximate some of the omponents of �n.In general, we shall have to take n larger than the number of omponents we atuallyrequire, sine the small omponents in the tail of �n will tend to be less aurate thantheir larger brethren [see (3.7) and (3.8) below℄.Most numerial methods begin by partitioning Q in the formQ = �Qnn Qn�Q�n Q��� ;where Qnn is of order n and attempt to determine an approximation to �Tn from Qnn.The most popular of these is what we will all the method of adjusted trunation.1



2 The Trunation Method GWS1. Adjust the elements of Qnn to obtain a matrix Q̂nn suh thatI � Q̂nn is stohasti and irreduible.2. Approximate �Tn by the left Perron vetor �̂Tn of I � Qnn,normalized so that �̂Tn = 1. (1.1)By the Perron vetor we mean the positive eigenvetor orresponding to the Perron rootof I � Q̂nn, in this ase 1. (For the theoretial bakground in nonnegative matries see[1, 5℄.)This method|or rather lass of methods|has been treated extensively in theliterature, and we will return to it later after we have analyzed the method to beproposed here. For now it is suÆient to note that it has two problems. First, theadjustment in step 2 an be performed in an in�nite number of ways, and it is not learwhih one will be most e�etive. Seond, if Qn� is substantial, as it often is in pratie,the adjustment will not be small, whih makes the hoie of adjustment all the moreritial.In this paper we will investigate the alternative of omitting step 1 in (1.1). Thisleads to the following algorithm1. Approximate �Tn by the left Perron vetor �̂Tn of I � Qnn,normalized so that �̂Tne = 1. (1.2)To insure that the Perron vetor exists and is unique we will assume here and in whatfollows that the matrix Qnn is irreduible.The vetor �̂Tn an also be haraterized as the normalized left eigenvetor orrespondingto the smallest eigenvalue of Qnn.We are goning to establish onditions under whih the approximation �̂n is auratein proportion as �� is small. We will do this by exhibiting a perturbation ~Qnn of Qnnsuh that 1: �Tn ~Q11 = 0;2: k ~Qnn �Qnnk2 � �k��k1for some � that depends on � but not on n. When �� is small, Qnn and ~Qnn are near,and we an use perturbation theory to bound the distane between �n and �̂n.There are three things to note about this approah. First, beause the omponentsof � sum to one, as n inreases �� must ultimately beome small. Although it is easyto onstrut hains in whih the derease in the omponents of � is slow, in manyhains the omponents of � rapidly approah zero. Seond, the analysis takes plae inthe �nite dimensional spae Rn . Only the size of the vetor �� must be inferred fromthe in�nite hain. Finally, although our bounds are useful in providing insight into thepure trunation method, they alone are not suÆient to establish the onvergene ofJune 16, 2003 Draft



GWS The Trunation Method 3the method as n ! 1. We will return to this point after we have established the ourmain results.This paper is organized as follows. In the next setion we will introdue the per-turbation of Qnn and estimate its size. In Setion 3 we will assess the auray of theapproximation �̂n and omment on the meaning of the quantities appearing in in ourerror bounds. We then give a simple example illustrating the pure trunation method.The paper onludes with a disussion of the relation between the methods of pure andadjusted trunation.In what follows, k � k1 and k � k2 will denote the vetor and matrix 1- and 2-norms.For more on these norms see [3, 6℄.2. The perturbationIn this setion we will onstrut a perturbed matrix~Qnn = Qnn +Esuh that �Tn ~Qnn = 0, and we will give bounds on the perturbing matrix E in terms of�T� . We begin by setting rT = �TnQnn:If we de�ne E by E = � �nrTk�nk22 ;then it is easily veri�ed that �Tn ~Qnn = 0.To bound kEk2, note that from the relation(�Tn �T� )�Qnn Qn�Q�n Q��� = (0 0);we get rT = �TnQnn = ��T�Q�n:Hene krk2 = k�T�Q�nk2 � kQT�n��k1 � kQT�nk1k��k1 � k��k1;the third inequality following from the fat that the absolute row sums of Q�n are notgreater than one. If we now set �n = k�nk1k�nk2 ;then �n def= kEk2 � �n k��k1k�nk1 = �n k��k11� k��k1 (2.1)Draft June 16, 2003



4 The Trunation Method GWSStritly speaking (2.1) does not insure that E beomes small as n inreases, sineit is possible that �n inreases as k��k1 dereases. In general, we an only say that�n � pn, and this bound an be attained (when �n = �e, for some � > 0). However,for �xed Q, we have limn!1 �n = 1k�nk2 � �1: (2.2)Hene in this ase �n is uniformly bounded for all n.We an even say more. We have�n � 1=k�nk2= 1=pk�k22 � k��k22= �1=p1� �21k��k22 ;so that �n � �1(1 +O(k��k22)) � �1(1 +O(k��k21)): (2.3)Thus �n is bounded by a quantity that approahes �1 as the square of k��k1.It is worth noting that we have in some sense imitated the adjusted trunationmethod in perturbing Qnn so that it has a null vetor. But in the adjusted trunationmethod the null vetor in question onsists of the �rst n omponents of the right nullvetor of Q|i.e., a vetor whose omponents are all one|and the perturbation is ex-pliitly omputed. In the pure method the null vetor onsists of the �rst n omponentsof the left null vetor of Q. Sine these omponents are unknown, we annot atuallyompute ~Qnn. But we an use our bound on kEk2 to bound the error in �̂n as anapproximation to �n.3. AurayIn assessing the auray of �̂1, it will be onvenient to work with the renormalizedvetors pn = �nk�nk2 and p̂n = �̂nk�̂nk2 :Let U = (p̂n V ) be orthogonal. We are going determine a vetor h suh thatpn = p̂n + V h+O(�2n);so that kpn � p̂nk2 �= khk2.June 16, 2003 Draft



GWS The Trunation Method 5Remembering that p̂TnQnn = �np̂Tn , we form the matrixT = UTQnnU=  p̂TnV T!Qnn(p̂n V )=  p̂TnQnnp̂n p̂TnQnnVV TQnnp̂n V TQnnV!=  �np̂Tn p̂n �np̂TVV TQnnp̂n V TQnnV!�  �n 0g Cn! :The number �n is by de�nition the smallest eigenvalue of Qnn. Beause T is bloktriangular, the matrix Cn ontains the remaining eigenvalues of Qnn.Now let F = UTEU = � p̂TEp̂ p̂TEVV TEp̂ V TEV� � �'11 fT12f21 F22� :and let ~T = UT ~QnnU = ��n + '11 fT12g + f21 Cn + F22�Note that beause k � k2 is invariant under orthogonal transformations we havej'11j; kf12k2; kf21k2; kF22k2 � �n;where �n is de�ned by (2.1).We are now in a position to prove our main result.Theorem 3.1. Assume that C is nonsingular and letÆn = kC�1n k�12 :If �n=Æn < 1;then Cn + F22 is nonsingular, and pn = p̂n + V hkp̂n + V hk2 ; (3.1)Draft June 16, 2003



6 The Trunation Method GWSwhere h = �(Cn + F22)�Tf12: (3.2)Moreover, �n = �hTg � '11 � hTf21: (3.3)Proof. To show that Cn+F22 is nonsingular, we use the well know fat that if kXk2 < 1,then I +X is nonsingular andkI +Xk2 � (1� kXk2)�1: (3.4)Now write Cn + F22 = Cn(I + C�1n F22):Then kC�1n F22k2 � kC�1n k2kF22k2 � �n=Æn < 1. Hene I + C�1n F22 is nonsingular, andso is Cn + F22.Now T is similar to ~Qnn and hene has a left null vetor, whih we will denote by(1 hT). Thus we have (1 hT)��n + '11 fT12g + f21 Cn + F22� = (0 0): (3.5)Evaluating the seond omponent of this relation, we �ndfT12 + hT(Cn + F22) = 0;so that h satis�es (3.2). Transforming bak, we �nd the the null vetor of QTnn is(p̂n V )�1h� = p̂n + V h:Hene (3.1) follows from the fat that pn is the normalized null vetor of QTnn.The expression (3.3) may be derived by evaluating the �rst omponent of (3.5) andsolving for �n.Turning now to quantitative bounds, we begin by bounding h. From (3.2), we havekhk2 � k(Cn + F22)�1k2kf12k2:Now k(Cn + F22)�1k2 = k(I + C�1n F22)�1C�1n k2� k(I + C�1n F22)�1k2kC�1n k2� (1� kC�1n k2kF22k)kC�1n k2 from (3.4)� (1� �n=Æn)�1Æ�1n= 1=(Æn � �n):June 16, 2003 Draft



GWS The Trunation Method 7Hene khk2 � �nÆn � �n = �nÆn +O(�2n):The unnormalized approximation to pn is p̂n+ V h. By the orthonormality of U , wehave kp̂n + V hk22 = (p̂n + V h)T(p̂n + V h) = p̂Tn p̂n + hTV TV h = 1 + khk22:Hene the normalization of p̂n + V h introdues only a seond order e�et, and we maywrite kp̂n � pnk2 = kV hk2 +O(�2n) = khk2 +O(�2n) � �nÆn +O(�2n)Finally, from (2.1), we have �n � �nk��k1 + O(k��k21). Moreover by (2.3), �n ��1 +O(k��k21). Thus we have the following orollary.Corollary 3.2. Under the hypotheses of Theorem 3.1,kp̂n � pnk2 � �1k��k1Æn +O(k��k21): (3.6)There are several omments to be made about Theorem 3.1 and its orollary.� The bound (3.6) is a normwise bound and does not guarantee that the individualomponents of p̂ are aurate. However, the bound does provide information about thelarger omponents. In fat, suppose thatkp̂n � pnk = � and jp(n)i j = �� (� > 0); (3.7)where p(n)i is the ith omponent of pn. Sine jp̂(n)i � p(n)i j � �, we must havejp̂(n)i � p(n)i jjp(n)i j � 1� : (3.8)Thus as � inreases the number of signi�ant �gures in p̂(n)i inreases proportionally. Itis worth noting that this result is true of any norm satisfying jxij � kxk.� The bound is diretly proportional to k��k1|i.e., to the sum of the sizes of theomponents of � not inluded in the trunation set. In many Markov hains, theomponents derease swiftly in magnitude, so that even for small n the size of k��k1an be made small.� The bound depends inversely on Æn = kC�1n k�12 , whih is the smallest singular valueof Cn. To get some idea of what this quantity means, let (; y) be an eigenpair ofCn with kyk2 = 1. Sine Cny = y, we have �1y = C�1n y. Taking norms, we getDraft June 16, 2003



8 The Trunation Method GWSjj�1 � kC�1n k2, or Æn � jj. Sine  is an arbitrary eigenvalue of Cn and the eigenvaluesof Cn are the eigenvalues of Qnn other than �n, we haveÆn � min2�(Qnn) 6=�n jj:� The bounds suggest what must be done to prove the onvergene of the method ofpure trunation as n ! 1. From (3.6) we see that the auray of p̂ depends on theratio of k��k1 to Æn. Thus we must show that as n!1, the quantity k��k1 dereasesfaster than Æn. In partiular, if Æn is bounded away from zero as n inreases, then themethod onverges. Whether or not this happens will depend on the properties of theMarkov hain in question.4. An exampleFor a numerial example of the above analysis, we onsider a simple birth-death proesswith arrival rate � = 0:4 and a departure rate of � = 0:45. The unnormalized stationaryvetor is given by (1 � �2 � � �);where � = �� �= 0:889:Sine we know the vetor �, we an alulate the quantities in our bounds.All omputations were performed in Matlab in IEEE double-preision oating-pointarithmeti. The eigenvetor p̂nn of Qnn was omputed by tow iterations of the inversepower method, starting with a pseudo-random vetor whose elements were uniformlydistributed in [0; 1℄. The results are summarized in the table in Figure 4.1.The �rst olumn in this table is the size of the trunated matrix. The seond olumnprints the �rst omponent to have a relative error greater than 0:5; i.e.,bad = min(i : jp̂(n)i � p(n)i jjp(n)i j � 0:5) :Figure 4.2 ontains a plot or the relative error for n = 500. It is seen that the �rstomponents are approximated to the highest possible auray|about 10�16, whihis the rounding unit for IEEE double preision arithmeti. The relative auray thendereases, but the method is still doing a �ne job of approximating very small ompo-nents.In this onnetion, it is worth noting that in the larger problems it was neessaryto do two iterations of the inverse power method to ompute the small omponents ofJune 16, 2003 Draft



GWS The Trunation Method 9
n pbad kfT12C�1k (3.6) �2(Q11)Æ25 3:9e�02 7:1e�02 1:5e+01 1:4e�02 1:3e�0250 2:3e�03 6:6e�03 3:0e+00 4:2e�03 3:4e�0375 1:2e�04 4:8e�04 3:2e�01 2:6e�03 1:7e�03100 6:3e�06 3:1e�05 2:6e�02 2:0e�03 1:1e�03125 3:3e�07 1:9e�06 1:8e�03 1:8e�03 8:2e�04150 1:8e�08 1:1e�07 1:2e�04 1:7e�03 6:5e�04175 9:2e�10 6:3e�09 7:6e�06 1:6e�03 5:4e�04200 4:9e�11 3:6e�10 4:7e�07 1:6e�03 4:6e�04225 2:6e�12 2:0e�11 2:8e�08 1:6e�03 4:0e�04250 1:3e�13 1:1e�12 1:7e�09 1:5e�03 3:5e�04275 7:1e�15 6:2e�14 9:9e�11 1:5e�03 3:2e�04300 3:7e�16 3:8e�15 5:7e�12 1:5e�03 2:9e�04325 2:0e�17 1:2e�15 3:3e�13 1:5e�03 2:6e�04350 1:0e�18 1:1e�15 1:9e�14 1:5e�03 2:4e�04375 5:4e�20 1:1e�15 1:1e�15 1:5e�03 2:3e�04400 2:9e�21 1:1e�15 6:0e�17 1:5e�03 2:1e�04425 1:5e�22 1:1e�15 3:4e�18 1:5e�03 2:0e�04450 7:9e�24 1:1e�15 1:9e�19 1:5e�03 1:9e�04475 4:2e�25 1:1e�15 1:1e�20 1:5e�03 1:8e�04500 2:2e�26 1:1e�15 5:8e�22 1:5e�03 1:7e�04Figure 4.1: Birth-death proess: � = :4, � = :45
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10 The Trunation Method GWS
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GWS The Trunation Method 11p̂ aurately. This fat illustrates an important di�erene between ordinary eigenvalueproblems, in whih the omponents of the desired eigenvetor need not vary greatly insize, and Morkov hains where ultimately they must. The analysis of the inverse powermethod [9, p.619 �.℄ [7, x1.1.2℄ shows that for these problems the inverse power methodshould onverge in a single iteration. However, this analysis is based on norms, and sayslittle about the smaller omponents. Hene the need for a seond iteration.The third olumn is a hek on our basi approah. In ontains the quantitykC�1n f12k2, whih up to seond order terms in �n is the norm of p̂n � pn. By (3.7)and (3.8), these numbers should be larger than pbad, but of roughly the same orderof magnitude. Note that these numbers stagnate at 10�15, owing to our inability toompute f12 aurately enough.The fourth olumn ontains the bound (3.6). Beause, we have used norm inequal-ities in deriving it, the bound is too large by several orders of magnitude, though ittraks to olumn one, as it should. As is usual in numerial appliations, the boundgives insight but annot be used pratially for determining onvergene.The �fth and sixth olumns onern the asymptoti behavior of the seond smallesteigenvalue of Qnn and Æn. The former seems to be approahing a nonzero limit. It isdiÆult to tell what the latter is doing; however, if it is not bounded away from zero,it seems to be approahing zero far more slowly than k�2k1. If this is true, then thetrunated method is onverging very swiftly to the initial segments of �T as n inreases.5. Relation to methods of adjusted trunationThe purpose of this setion is to point out an interesting relation between the method ofadjusted trunation and the method of pure trunation. Seneta [4, 5℄ gives a ompletetreatment of the subjet as of about 1980. See Tweedie [8℄ for a more reent bibliography.Here we will follow Seneta.The starting point is the following observation. Let b(k)n be de�ned byQTnnb(k)n = ek; (5.1)where ek is the vetor whose kth omponent is one and whose other omponent is zero.For ertain lasses of hains and ertain values of k (generally k = 1 or k = n) it anbe shown that b(k)neTb(k)n ! �: (5.2)Here e is the vetor onsisting of all ones, so that the left hand side of (5.2) is b(k)nnormalized so that it represents a probability distribution.Unfortunately, the system (3.2) an be shown to beome inreasingly ill-onditionedwith inreasing n, and the the vetor b(k)n will be omputed inaurately in �nite preisionDraft June 16, 2003



12 The Trunation Method GWSarithmeti. However, it an be shown that b(k)Tn is the left Perron vetor of the matrixobtained by adjusting the kth olumn of Qnn so that it beomes stohasti. Under someirumstanes the ondition of this system is better than that of Qnn, and this was theoriginal rationale for the method of adjusted trunation.A di�erent point of view emerges if we fous on what is atually being omputedby the method of adjusted trunation. The system (5.1) represents one iteration ofthe inverse power method for the left eigenvetor of Qnn orresponding to its smallesteigenvalue, i.e., for the vetor �̂Tn . When Qnn is suÆiently ill-onditioned, the methodtypially onverges to its limiting auray in one iteration and is una�eted by errorsintrodued by the ill-onditioning [7, x1.1.2℄ [9, p.619 �.℄. Thus the method of adjustedtrunation an be regarded as approximating the method of pure trunation and vieversa.1 However, to say they approximate one another, is not to say that they are thesame method. Although the method based on (5.1) is one step of the inverse powermethod with a speial starting vetor, there is no justi�ation for taking a seond step,whih we saw above is neessary to ompute the small omponents aurately.Both methods require speial justi�ation for individual lasses of problems. Butthe proof tehniques are di�erent. Examples for the method of adjusted trunationwill be found in the referenes ited above. For the method of pure trunation, thebehavior of the quantity Æn has plays a entral role our analysis. For numerial analystsand perturbation theorists this should ome as no surprise; its reiproal measures thesensitivity of �̂Tn to perturbations in Qnn and also the limiting auray of the inversepower method [7, x1.3.2℄. Sine it has now surfaed in the ontext of in�nite Markovhains, I believe an important problem for further researh is to plae it in a probabilistisetting.AknowledgementsI wish to thank Guy Latouhe for his omments on an earlier version of the paper andfor a useful list of referenes. Part of this work was done while I was a faulty appointeeat the Mathematial and Computational Sienes Division of the National Institute forStandards and Tehnology.Referenes[1℄ A. Berman and R. J. Plemmons. Nonnegative Matries in the Mathematial Sienes.Aademi Press, New York, 1979. Reprinted by SIAM, Philadelphia, 1994.1Seneta [4℄ points out the relation of the method of adjusted trunation to the inverse power method,but does not observe that this makes the two methods approximations of one another.June 16, 2003 Draft
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Draft June 16, 2003


