University of Maryland College Park

Institute for Advanced Computer Studies TR-2003-65
Department of Computer Science TR-4496

On the Method of Pure Truncation for
Approximating Stationary Probabilities*

G. W. Stewart!
June, 2003

ABSTRACT

This paper is concerned with approximating the leading components of the
stationary vector of a semi-infinite discrete markov chain. The most widely
treated method extracts a leading principal submatrix from the matrix of
transition probabilities, adjusts its elements so that it becomes stochastic,
and takes the stationary vector of the result as the approximation. In this
paper, the consequences of taking the normalized Perron vector of the unad-
justed matrix as the approximation are explored. Error bounds are derived,
and it is shown that the adjusted and unadjusted methods are approxima-
tions to one another.

*This report is available by anonymous ftp from thales.cs.umd.edu in the directory pub/reports
or on the web at http://www.cs.umd.edu/~stewart/.

tDepartment of Computer Science and Institute for Advanced Computer Studies, University of Mary-
land, College Park, MD 20742 (stewart@cs.umd.edu). This work was supported in part by the National
Science Foundation under Grant CCR0204084.






On the Method of Pure Truncation for
Approximating Stationary Probabilities
G. W. Stewart

ABSTRACT

This paper is concerned with approximating the leading components of the
stationary vector of a semi-infinite discrete markov chain. The most widely
treated method extracts a leading principal submatrix from the matrix of
transition probabilities, adjusts its elements so that it becomes stochastic,
and takes the stationary vector of the result as the approximation. In this
paper, the consequences of taking the normalized Perron vector of the unad-
justed matrix as the approximation are explored. Error bounds are derived,
and it is shown that the adjusted and unadjusted methods are approxima-
tions to one another.

1. Introduction

This paper is concerned with approximation the stationary vector of an infinite Markov
chain. Specifically, let P be the transition matrix for a semi-infinite discrete Markov
chain having a stationary vector 7'. Let

Q:I_P7

so that 77'Q = 0 and Qe = 0, where e is the vector consisting of all ones. Unless we can
determine the components of 7% analytically, we must compute a finite subset of them
numerically. Without loss of generality, we can assume that the required components
occur at the start of the vector w. Thus we partition

w = (7, 7)),

where 7, has n components, and attempt to approximate some of the components of 7,,.
In general, we shall have to take n larger than the number of components we actually
require, since the small components in the tail of 7r,, will tend to be less accurate than
their larger brethren [see (3.7) and (3.8) below].

Most numerical methods begin by partitioning () in the form

Q — (an Qn0> ,
Qon Qoo
where 0, is of order n and attempt to determine an approximation to 772 from Q-
The most popular of these is what we will call the method of adjusted truncation.
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1. Adjust the elements of (),,,, to obtain a matrix an such that
I — @, is stochastic and irreducible. (1.1)

2. Approximate 7} by the left Perron vector frg of I — Qun,
normalized so that #, = 1.

By the Perron vector we mean the positive eigenvector corresponding to the Perron root
of I — Qpp, in this case 1. (For the theoretical background in nonnegative matrices see
1, 5).)

This method —or rather class of methods—has been treated extensively in the
literature, and we will return to it later after we have analyzed the method to be
proposed here. For now it is sufficient to note that it has two problems. First, the
adjustment in step 2 can be performed in an infinite number of ways, and it is not clear
which one will be most effective. Second, if (), is substantial, as it often is in practice,
the adjustment will not be small, which makes the choice of adjustment all the more
critical.

In this paper we will investigate the alternative of omitting step 1 in (1.1). This
leads to the following algorithm

1. Approximate ! by the left Perron vector #,. of I — Qun,

. N 1.2
normalized so that #le = 1. (12)

To insure that the Perron vector exists and is unique we will assume here and in what
follows that

the matrix Q) is irreducible.

The vector frg can also be characterized as the normalized left eigenvector corresponding
to the smallest eigenvalue of Q).

We are goning to establish conditions under which the approximation 7, is accurate
in proportion as 7, is small. We will do this by exhibiting a perturbation Qnn of Qun
such that ~

L 7, Qu =0,
2. |Qun — Quallz < 0]|mel1

for some 0 that depends on 7 but not on n. When , is small, Qy,, and Q,,,, are near,
and we can use perturbation theory to bound the distance between 7, and 7.

There are three things to note about this approach. First, because the components
of 7w sum to one, as n increases m, must ultimately become small. Although it is easy
to construct chains in which the decrease in the components of 7 is slow, in many
chains the components of 7 rapidly approach zero. Second, the analysis takes place in
the finite dimensional space R". Onunly the size of the vector m, must be inferred from
the infinite chain. Finally, although our bounds are useful in providing insight into the
pure truncation method, they alone are not sufficient to establish the convergence of
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the method as n — co. We will return to this point after we have established the our
main results.

This paper is organized as follows. In the next section we will introduce the per-
turbation of @), and estimate its size. In Section 3 we will assess the accuracy of the
approximation 7, and comment on the meaning of the quantities appearing in in our
error bounds. We then give a simple example illustrating the pure truncation method.
The paper concludes with a discussion of the relation between the methods of pure and
adjusted truncation.

In what follows, || - ||; and || - ||2 will denote the vector and matrix 1- and 2-norms.
For more on these norms see [3, 6].

2. The perturbation

In this section we will construct a perturbed matrix

such that wEQm = 0, and we will give bounds on the perturbing matrix £ in terms of
wl. We begin by setting
= TI'Ean

If we define E by

"

lenll3”

then it is easily verified that wEan = 0.
To bound || E||2, note that from the relation

mt ) (G @) =00

we get
TT = ﬂ'Ean = _WoTQon-
Hence
Irll2 = ll7s Qenllz < Quumells < Qullillmelly < [l7vells,

the third inequality following from the fact that the absolute row sums of s, are not
greater than one. If we now set

il
"= Tl
then
st - -
= ||Ello < 6 =0 2.1
en = Il < Oyt = 0T (2.1)
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Strictly speaking (2.1) does not insure that E becomes small as n increases, since
it is possible that 6, increases as ||me||; decreases. In general, we can only say that
0, < /n, and this bound can be attained (when m, = ae, for some « > 0). However,
for fixed (), we have

=fl. (2.2)

Hence in this case 6,, is uniformly bounded for all n.
We can even say more. We have

On <1/ll7nll2
=1//l=l3 = lImell3
= Ooo/\/1 = 0% ||mo]I3

so that
On < 0o (1 + O([|7e]3)) < O (1 + O([|7e 7). (2.3)

Thus 6,, is bounded by a quantity that approaches 0, as the square of ||mwe]|;.

It is worth noting that we have in some sense imitated the adjusted truncation
method in perturbing @), so that it has a null vector. But in the adjusted truncation
method the null vector in question consists of the first n components of the right null
vector of () —1i.e., a vector whose components are all one —and the perturbation is ex-
plicitly computed. In the pure method the null vector consists of the first n components
of the left null vector of (). Since these components are unknown, we cannot actually
compute Q,,. But we can use our bound on ||E||; to bound the error in #, as an
approximation to m,.

3. Accuracy

In assessing the accuracy of 7y, it will be convenient to work with the renormalized
vectors
T

Al

Tn A
Pn = and Py,
|70 l2

Let U = (p, V') be orthogonal. We are going determine a vector h such that
Pn =D +Vh+O0(ep),
so that [|pn — pnll2 = [|h]l2-
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Remembering that ;. Q.. = v,p., we form the matrix

T=U%Q,,U

AT

Py Qunbn Dy QuaV

_ Vnﬁgﬁn VinV
VTanﬁn vt QunV

:yno
=\, o/

The number v, is by definition the smallest eigenvalue of @,,. Because T is block
triangular, the matrix C), contains the remaining eigenvalues of Q.

Now let . . .
" Ep p EV e f
F=U"EU=(? = 12)
v <VTEﬁ VTEV> (le Fy
and let .
~ ~ +oen f
T=UTQuU =" 12 )
O ( g+ fa Cn+ Fa
Note that because || - ||2 is invariant under orthogonal transformations we have

lowl, fizlles [[foll2, (|Fezll2 < €ns

where ¢, is defined by (2.1).

We are now in a position to prove our main result.

Theorem 3.1. Assume that C' is nonsingular and let

0 =[G I3
If
€n/on <1,
then C, + Fyo is nonsingular, and
Pn+Vh
=" 3.1
Pn = Tl + VI, (3.1)
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6 The Truncation Method GWS

where

h=—(Cn+ Fa)~ " fr2. (3.2)
Moreover,
_ T T
vp=—h"g—pu —h fa. (3.3)
Proof. To show that Cj,+ Fyo is nonsingular, we use the well know fact that if || X||2 < 1,
then I + X is nonsingular and
11+ Xl2 < (1= [1X]12) (3.4)
Now write
Cn+ Fyy = Cy(1 + C, ' Fa).

Then ||C;  Eylle < |IC 2l Fozll2 < €n/dn < 1. Hence I + C;; ' Fyy is nonsingular, and
so is O, + Fys.

Now T is similar to Q,, and hence has a left null vector, which we will denote by
(1 AT). Thus we have

Un + @11 fT _
(45 (9 + fa Cy -I{2F22> =00 (3:5)

Evaluating the second component of this relation, we find
fia + WY (Cn + Fag) =0,

so that h satisfies (3.2). Transforming back, we find the the null vector of Q. is
. 1 .
(Pn V) (h> =pn + Vh.

Hence (3.1) follows from the fact that p,, is the normalized null vector of Q..
The expression (3.3) may be derived by evaluating the first component of (3.5) and
solving for v,,. m

Turning now to quantitative bounds, we begin by bounding h. From (3.2), we have

[1R]l2 < (Cr + Fo2) M2l frzll2-
Now
[(Cr + Fa2) 2 = (I 4 C, 1 Faz) 1C, M2
< NI+ CptFoz) H21CL 2
< (L= IC 2 FalNIC M2 from (3.4)
< (1 - 6n/(sn)_lén_1
=1/(0p, — €p)-
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Hence
€n

_ & 2
577, — €y - 577, +O(6n)

[1h]l2 <
The unnormalized approximation to p, is p, + Vh. By the orthonormality of U, we

have
Ipn + VEI2Z = (pn + V) (o + V) = plpn + BEVIVE = 1+ ||h) 2

Hence the normalization of p, + V h introduces only a second order effect, and we may
write

. €
1 = pullz = [[VA]2 + O(eR) = [Ibla + O(e) < 5+ O(€])
n
Finally, from (2.1), we have €, < 6,/|me1 + O(||we||?). Moreover by (2.3), 6, <
oo + O(||me||?). Thus we have the following corollary.

Corollary 3.2. Under the hypotheses of Theorem 3.1,

7ol

5, T+ O(llme17)- (3.6)

Hﬁn —anZ < O

There are several comments to be made about Theorem 3.1 and its corollary.

e The bound (3.6) is a normwise bound and does not guarantee that the individual
components of p are accurate. However, the bound does provide information about the
larger components. In fact, suppose that

[0 =pall =0 and [p{"| =7n (= > 0), (3.7)
where pz(-n) is the ith component of p,. Since |ﬁ§n) — pl(n)| < n, we must have
~(n) _ (n)
16 —pi”’| < (3.8)
P T

Thus as 7 increases the number of significant figures in ﬁgn) increases proportionally. It

is worth noting that this result is true of any norm satisfying |z;| < ||z]|.

e The bound is directly proportional to ||me||; —i.e., to the sum of the sizes of the
components of w not included in the truncation set. In many Markov chains, the
components decrease swiftly in magnitude, so that even for small n the size of |||
can be made small.

® The bound depends inversely on d,, = ||C;![|y*, which is the smallest singular value
of Cp,. To get some idea of what this quantity means, let (y,y) be an eigenpair of
C,, with ||y|l2 = 1. Since C,y = vy, we have y~ly = C'y. Taking norms, we get
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Iv|= < IC; Y2, or 0, < |y|. Since 7 is an arbitrary eigenvalue of C,, and the eigenvalues
of C,, are the eigenvalues of (), other than v, we have

0, < mi .
L ]
Y#vn

e The bounds suggest what must be done to prove the convergence of the method of
pure truncation as n — oo. From (3.6) we see that the accuracy of p depends on the
ratio of ||me|; to d,. Thus we must show that as n — oo, the quantity ||7,||; decreases
faster than ¢,. In particular, if §,, is bounded away from zero as n increases, then the
method converges. Whether or not this happens will depend on the properties of the
Markov chain in question.

4. An example

For a numerical example of the above analysis, we consider a simple birth-death process
with arrival rate A = 0.4 and a departure rate of p = 0.45. The unnormalized stationary
vector is given by

(1pp®-),
where
A
p=— =0.889.
7

Since we know the vector 7w, we can calculate the quantities in our bounds.

All computations were performed in Matlab in IEEE double-precision floating-point
arithmetic. The eigenvector Py, of Qn, was computed by tow iterations of the inverse
power method, starting with a pseudo-random vector whose elements were uniformly
distributed in [0, 1]. The results are summarized in the table in Figure 4.1.

The first column in this table is the size of the truncated matrix. The second column
prints the first component to have a relative error greater than 0.5; i.e.,

s(n) _ (n)
bad = min< ¢: w >0.5;.
"]

Figure 4.2 contains a plot or the relative error for n = 500. It is seen that the first
components are approximated to the highest possible accuracy —about 107'¢, which
is the rounding unit for IEEE double precision arithmetic. The relative accuracy then
decreases, but the method is still doing a fine job of approximating very small compo-
nents.

In this connection, it is worth noting that in the larger problems it was necessary
to do two iterations of the inverse power method to compute the small components of
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25

50

75
100
125
150
175
200
225
250
275
300
325
350
375
400
425
450
475
500

Pbad

)
3.9e—02
2.3e—03
1.2e—04
6.3e—06
3.3e—07
1.8e—08
9.2e—10
4.9e—11
2.6e—12
1.3e—13
7.1le—15
3.7e—16
2.0e—17
1.0e—18
5.4e—20
2.9e—21
1.5e—22
7.9e—24
4.2e—25
2.2e—26

1£5C 1l

7.1e—02
6.6e—03
4.8e—04
3.1e—05
1.9e—06
1.1e—07
6.3e—09
3.6e—10
2.0e—11
1.1e—12
6.2e—14
3.8e—15
1.2e—15
1.1e—15
1.1e—15
1.1e—15
1.1e—15
1.1e—15
1.1e—15
1.1e—15

(3.6)

1.5e+01
3.0e+00
3.2e—01
2.6e—02
1.8e—03
1.2e—04
7.6e—06
4.7e—07
2.8e—08
1.7e—09
9.9e—11
5.7e—12
3.3e—13
1.9e—14
1.1e—15
6.0e—17
3.4e—18
1.9e—19
1.1e—20
5.8e—22

The Truncation Method

v2(Q11)

1.4e—02
4.2e—03
2.6e—03
2.0e—03
1.8e—03
1.7e—03
1.6e—03
1.6e—03
1.6e—03
1.5e—03
1.5e—03
1.5e—03
1.5e—03
1.5e—03
1.5e—03
1.5e—03
1.5e—03
1.5e—03
1.5e—03
1.5e—03

1.3e—02
3.4e—03
1.7e—03
1.1e—03
8.2e—04
6.5e—04
5.4e—04
4.6e—04
4.0e—04
3.5e—04
3.2e—04
2.9e—04
2.6e—04
2.4e—04
2.3e—04
2.1e—04
2.0e—04
1.9¢e—04
1.8e—04
1.7e—04

Figure 4.1: Birth-death process: A = .4, u = .45
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log relative error in p.

1071 I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500
i

. P —p%)|
Figure 4.2: log W
(2
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p accurately. This fact illustrates an important difference between ordinary eigenvalue
problems, in which the components of the desired eigenvector need not vary greatly in
size, and Morkov chains where ultimately they must. The analysis of the inverse power
method [9, p.619ff] [7, §1.1.2] shows that for these problems the inverse power method
should converge in a single iteration. However, this analysis is based on norms, and says
little about the smaller components. Hence the need for a second iteration.

The third column is a check on our basic approach. In contains the quantity
|Ct fi2ll2, which up to second order terms in €, is the norm of p, — p,. By (3.7)
and (3.8), these numbers should be larger than pp,q, but of roughly the same order
of magnitude. Note that these numbers stagnate at 107'°, owing to our inability to
compute fi2 accurately enough.

The fourth column contains the bound (3.6). Because, we have used norm inequal-
ities in deriving it, the bound is too large by several orders of magnitude, though it
tracks to column one, as it should. As is usual in numerical applications, the bound
gives insight but cannot be used practically for determining convergence.

The fifth and sixth columns concern the asymptotic behavior of the second smallest
eigenvalue of @), and d,,. The former seems to be approaching a nonzero limit. It is
difficult to tell what the latter is doing; however, if it is not bounded away from zero,
it seems to be approaching zero far more slowly than ||mws|;. If this is true, then the
truncated method is converging very swiftly to the initial segments of w1 as n increases.

5. Relation to methods of adjusted truncation

The purpose of this section is to point out an interesting relation between the method of
adjusted truncation and the method of pure truncation. Seneta [4, 5] gives a complete
treatment of the subject as of about 1980. See Tweedie [8] for a more recent bibliography.
Here we will follow Seneta.

The starting point is the following observation. Let bgﬁ) be defined by

where e, is the vector whose kth component is one and whose other component is zero.
For certain classes of chains and certain values of k (generally k = 1 or kK = n) it can
be shown that
(k)
n

Here e is the vector consisting of all ones, so that the left hand side of (5.2) is b%k)
normalized so that it represents a probability distribution.
Unfortunately, the system (3.2) can be shown to become increasingly ill-conditioned

with increasing n, and the the vector bgﬁ) will be computed inaccurately in finite precision
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arithmetic. However, it can be shown that bglk)T is the left Perron vector of the matrix

obtained by adjusting the kth column of Q,,,, so that it becomes stochastic. Under some
circumstances the condition of this system is better than that of @),,,, and this was the
original rationale for the method of adjusted truncation.

A different point of view emerges if we focus on what is actually being computed
by the method of adjusted truncation. The system (5.1) represents one iteration of
the inverse power method for the left eigenvector of @, corresponding to its smallest
eigenvalue, i.e., for the vector frE. When @Q,,, is sufficiently ill-conditioned, the method
typically converges to its limiting accuracy in one iteration and is unaffected by errors
introduced by the ill-conditioning [7, §1.1.2] [9, p.619 ff.]. Thus the method of adjusted
truncation can be regarded as approximating the method of pure truncation and vice
versa.! However, to say they approximate one another, is not to say that they are the
same method. Although the method based on (5.1) is one step of the inverse power
method with a special starting vector, there is no justification for taking a second step,
which we saw above is necessary to compute the small components accurately.

Both methods require special justification for individual classes of problems. But
the proof techniques are different. Examples for the method of adjusted truncation
will be found in the references cited above. For the method of pure truncation, the
behavior of the quantity J,, has plays a central role our analysis. For numerical analysts
and perturbation theorists this should come as no surprise; its reciprocal measures the
sensitivity of frE to perturbations in @)y, and also the limiting accuracy of the inverse
power method [7, §1.3.2]. Since it has now surfaced in the context of infinite Markov
chains, I believe an important problem for further research is to place it in a probabilistic
setting.
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