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Neutrinos are the most mysterious particles in the standard model. Many of their

fundamental properties such as their masses, lifetimes, and nature (Dirac or Majorana) are

yet to be pinned down by experiments. Currently, the strongest bound on neutrino masses

comes from cosmology. This bound is obtained by scrutinizing the gravitational effect of

the cosmic neutrinos on the evolution of structure in our universe. However, this bound

assumes that the neutrinos from the Big Bang have survived until the present day. In this

dissertation, the unstable neutrino scenario is studied in light of current and near-future

cosmological experiments. We show that the current cosmological bound on the neutrino

masses can be relaxed significantly in an unstable neutrino scenario. We further show that

near-future experiments offer the possibility of independently measuring both the masses

of the neutrinos and their lifetimes.

We consider an elusive scenario in which the cosmic neutrinos decay into invisible

radiation after becoming non-relativistic. The Boltzmann equations that govern the cosmological

evolution of density perturbations in the case of unstable neutrinos are derived and solved



numerically to determine the effects on the matter power spectrum and lensing of the

cosmic microwave background (CMB). A Markov-Chain Monte-Carlo (MCMC) analysis

is done on the current cosmological data and mock future data to obtain its sensitivity to

the neutrino masses and lifetimes. We show that the effect of the neutrino masses on

large scale structure is dampened by the decay of neutrinos, which leads to a parameter

degeneracy between the neutrino masses and lifetimes inferred from the cosmological

data. This degeneracy allows for a significant relaxation of the current cosmological

upper bound on the sum of neutrino masses from about 0.2 eV in the stable neutrino

case to 0.9 eV in the unstable neutrino scenario. This window is important for terrestrial

experiments such as KATRIN which are seeking to independently measure the neutrino

masses in the laboratory. We further show that near-future large scale structure measurements

from the Euclid satellite, when combined with cosmic microwave background data from

Planck, may allow an independent determination of both the lifetimes of the neutrinos and

the sum of their masses. These parameters can be independently determined because the

Euclid data will cover a range of redshifts, allowing the growth of structure over time to

be tracked. If neutrinos are stable on the timescale of the age of the universe, we show that

these observations can improve the lower limit on the lifetimes of the neutrinos by seven

orders of magnitude, from O(10) years to 2× 108 years(95%C.L.), without significantly

affecting the measurement of the neutrino masses. On the other hand, if neutrinos decay

after becoming non-relativistic but on timescales less than O(100) million years, these

observations may allow for, not just the first measurement of the sum of neutrino masses,

but also the determination of the neutrino lifetime from cosmology.
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Chapter 1: Introduction

Neutrinos are the most elusive particles in the SM. Their interactions with the rest

of the SM are only mediated through the weak interactions and gravity, which makes it

challenging to probe them in experiments. Their existence was first proposed by Wolfang

Pauli in 1930 to explain the observed continuous energy spectrum of the emitted beta

particle (electron or positron) in the nuclear beta decay process. It was then believed

that in the beta decay process, a neutron (proton) in a radioactive nucleus is converted

into a proton (neutron) along with the emission of an electron (positron). In this picture,

the laws of conservation of energy and momentum require that the emitted electron be

monochromatic. However, it was observed that the electron from the beta decay has

a continuous energy spectrum. To explain this, Pauli proposed that a new electrically

neutral particle that is either massless or very light is also emitted in the final state. Since

this new particle had escaped detection, it must also be very feebly interacting with the

matter. This three-body nature of the beta decay now admits enough additional degrees

of freedom in the form of neutrino kinematic parameters to allow the electron to have a

continuous range of energy while satisfying both energy and momentum conservation.

And thus, the neutrino was born.
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Figure 1.1: Normal and inverted ordering of neutrino masses

Since the 1930s, the number of observed elementary particles has greatly increased

leading to the current Sm of particle physics. SM of particle physics is a gauge theory

based on the symmetryGSM ≡ SU(3)C×SU(2)L×U(1)Y . Here, SU(3)C corresponds to

the strong interactions while SU(2)L×U(1)Y together give rise to weak and electromagnetic

interactions. At low energies, SU(2)L × U(1)Y is spontaneously broken via “ Higgs

Mechanism” to its residual subgroupU(1)Q which constitutes our familiar electromagnetic

and color gauge symmetries. This spontaneous symmetry breaking (SSB) is achieved

with a complex spin-0 Higgs field that transforms as a doublet of SU(2)L. After the SSB,

three out of four components of the complex doublet become part of the gauge bosons,

thus leaving behind a single neutral spin-0 particle called the Higgs boson. The spin-

1 gauge bosons, both massive and massless, constitute the force carriers in this model.

The massless gauge bosons corresponding to the exact electromagnetism U(1)Q and

color symmetry SU(3)C are the photon and the gluons that mediate the electromagnetic

force and the strong nuclear forces respectively. The gauge bosons corresponding to the
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spontaneously broken symmetry acquire a mass by “eating the Goldstone bosons” which

become the longitudinal polarization of these gauge bosons. These are the heavy gauge

bosons (W±, Z) that mediate the weak nuclear force.

In addition to these bosonic fields, the SM contains many spin-1/2 fermionic fields

which constitute the matter sector of the theory. These fermions transform under the SM

gauge group. These fermions (Ψ) are chiral in the sense that their left-handed and right-

handed components (ΨL and ΨR) transform differently under the SM gauge symmetry

GSM . These chiral fermions come in three generations with each generation having both

a quark branch consisting of an up-type quark and a down-type quark and a leptonic

branch consisting of a charged lepton and a neutrino. In particular, the charged lepton

(e, µ, τ) along with their respective neutrino (νe, νµ, ντ ) form the leptonic branches of

the first, second, and third generations (families) respectively. Each of the quarks also

come in three colors which leads to strong interaction among the quarks. The left-handed

up- and down-type quarks together transform as a fundamental doublet of the SU(2)L

and the right-handed quarks are SU(2)L singlets. Similarly, the charged lepton with its

corresponding neutrino also transform as an SU(2)L doublet. The right-handed charged

lepton transforms as an SU(2)L singlet as in the case of right-handed quarks. However,

unlike the quarks and the charged leptons, the SM does not contain a field corresponding

to the right-handed neutrino. As we shall see, this implies that in the SM, the neutrinos

are necessarily massless.

The feeble interaction of neutrinos posed challenges in the experimental detection

of neutrinos. The neutrino was directly detected for the first time in 1956 by Clyde

Cowan, Frederick Reines, Francis B. Harrison, Herald W. Kruse, and Austin D. McGuire
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in the process ν̄e + p+ → n0 + e+. In 1962, Leon M. Lederman, Melvin Schwartz and

Jack Steinberger detected the muon neutrino that was already hypothesised as the neutral

partner of muon. The direct detection of tau neutrinos had to wait until the 2000s when it

was observed by DONUT collaboration at Fermilab.

Neutrino oscillation experiments have established that the neutrinos have masses.

The explanation for neutrino masses requires physics Beyond the Standard Model (BSM).

In a relativistic quantum field theory (QFT), there are two possible Lorentz-invariant

bilinears for fermions that can be constructed. This is because the left- and right-handed

components of the Dirac spinor transform as independent, irreducible representations of

the Poincare group. This allows for two kinds of mass terms for fermions, namely Dirac

and Majorana mass :

L ⊃ −mΨRΨL + h.c. = −mΨΨ, where Ψ = ΨL, ΨR (Dirac) and (1.1)

L ⊃ −m1

2
ΨT
LC
−1ΨL + h.c. = −1

2
mΨΨ, where Ψ = ΨL, (ΨL)c (Majorana).

Here, C refers to the charge conjugation matrix. Physically, this means that the

fermion and anti-fermion are distinct particles if the fermions have a Dirac mass term,

while the fermions are their own anti-particles if they have a Majorana mass term. The

form of Majorana mass term in Eq. (1.1) can also be seen to violate any U(1) global

charge that these fermions might have. Since all the SM fermions except neutrinos are

electrically charged, this forbids them from having a Majorana mass term.

If the SM neutrinos are Dirac fermions, this would necessitate the addition of right-

handed neutrinos to the theory. However, their direct detection could pose a challenge.
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In the electroweak theory, parity is violated and only the left-handed fermions experience

the weak interactions. Since neutrinos only experience weak interactions, the interactions

of right-handed neutrinos with experimentalists are non-existent for massless neutrinos

and doubly suppressed by both the weak interaction coupling and the small neutrino mass

in the case of massive neutrinos.

To understand this better, let us look at the origin of fermion masses in the standard

model (SM). In the SM, the fermion masses are generated via the Higgs mechanism. The

left-handed fermions come in an SU(2)L doublet whereas the right-handed neutrinos are

SU(2)L singlets. Because of this chiral nature, it is not possible to write a vector-like

mass term for these SM fermions. The presence of the additional scalar Higgs doublet H

allows us to write a SU(2)L-invariant Yukawa interaction term for the leptons as

−LY ukawa,lep = Y l
ijL̄LiHlRj + h.c. or Y l

ijL̄LiH̃lRj + h.c. (1.2)

where LLi is the left-handed lepton doublet of the ith generation and lRj is the right-

handed SU(2)L singlet of the jth generation and H̃ ≡ iσ2H
∗. After the electroweak

symmetry breaking, the Higgs field takes a vacuum expectation value (VEV) which leads

to the mass term for charged lepton mass matrix

M l
ij = Y l

ij

v√
2
, (1.3)

where 〈H〉 ≡ v is the VEV of the SM Higgs. In the SM, the right handed neutrinos

are taken to be absent which also explained the vanishing neutrino masses. However,
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neutrinos are not considered to be massless anymore. This is due to the discovery of

flavor oscillations in the neutrino sector.

The standard picture of massless neutrinos faced its first major challenge in the

1960s with the Homestake experiment conducted by Raymond Davis Jr. and John N.

Bachall, which was designed to detect and count the number of electron neutrinos emitted

from the nuclear fusion process in the sun. In this experiment, a 100, 000 gallon tank of

dry cleaning fluid was placed underground deep enough to shield it from cosmic rays.

The electron neutrinos from the sun can penetrate the earth. Some neutrinos are captured

by the chlorine atoms in the fluid, which in this process gets converted to argon atoms.

These argon atoms can then be extracted and counted. This experiment consistently gave a

number that was one-third of the theoretical expectations from the standard solar model.

This deficit can be explained by the phenomenon of neutrino flavor oscillations which

can happen if a) neutrinos have masses, b) neutrino mass eigenstates are mixed in weak

interactions, and c) lepton flavor number is not conserved. This is a purely quantum

effect where the neutrinos are emitted and detected as flavor eigenstates but during the

journey from the source to the detector, they are in a quantum superposition of various

mass eigenstates. The phenomenon of particle oscillations had already been observed in

the case of neutral kaons in particle.

The theory of mass-induced oscillations among neutrinos can be understood as

follows. The flavor of a neutrino is determined by the charged lepton that it interacts

with via weak interactions. Below the electroweak scale, the mass term for neutrinos (
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whether Dirac or Majorana ) can couple neutrinos of different flavors as

L ⊃ g√
2

∑

α=e,µ,τ

lαγ
µPLναW

−
µ +

∑

α,β=e,µ,τ

ν̄αMDαβνβ + h.c. (Dirac) or (1.4)

⊃ g√
2

∑

α=e,µ,τ

lαγ
µPLναW

−
µ +

1

2

∑

α,β=e,µ,τ

ν̄αMMαβνβ + h.c. (Majorana),

where the Dirac mass matrix MD is , in general, a complex 3 × 3 matrix while the

Majorana mass matrix MM is a complex symmetric 3 × 3 matrix. This means that a

neutrino of definite flavor does not have a definite mass but is, instead, a superposition of

various mass eigenstates. We can go to the mass basis νi (i = 1, 2, 3) which is related to

the flavor basis να(α = e, µ, τ) via a unitary rotation,

να =
∑

i

Uαiνi where α = e, µ, τ and i = 1, 2, 3. (1.5)

In the mass basis, the Lagrangian becomes

L ⊃ g√
2

∑

α=e,µ,τ

∑

i=1,2,3

lαγ
µPLUαiνiW

−
µ +

∑

i=1,2,3

mνiν̄iνi + h.c. (Dirac) or (1.6)

⊃ g√
2

∑

α=e,µ,τ

∑

i=1,2,3

lαγ
µPLUαiνiW

−
µ +

1

2

∑

i=1,2,3

mνiν̄iνi + h.c. (Majorana).

Now, we can understand the oscillation phenomena in a simple quantum mechanical

framework. Consider a neutrino eigenstate νi of definite mass mi. After travelling a

distance L in time t ( t ∼ L/c for relativistic neutrinos), the wave function evolves via
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the Hamiltonian as

|νi(t)〉 = e−iEit|νi(0)〉 with Ei =
√
p2 +m2

i . (1.7)

If we instead consider a neutrino of definite flavor α that is produced at source ( for

example, neutrinos are produced in the sun with a pure electron flavor ), it is a superposition

of various mass eigenstates each of which evolves independently via Eq. (1.7). After

evolving for some time t, the wave packet is not a pure flavor eigenstate anymore but is

instead a combination of different flavor eigenstates. Now, the probability for a neutrino

of energy E produced of some flavor α to get converted to flavor β after travelling L

distance is given as

Pαβ = |〈νβ | να(t)〉|2 =

∣∣∣∣∣
3∑

i=1

3∑

j=1

U∗αiUβj 〈νj | νi(t)〉

∣∣∣∣∣

2

(1.8)

= δαβ − 4
n∑

i<j

Re
[
UαiU

∗
βiU

∗
αjUβj

]
sin2Xij + 2

n∑

i<j

Im
[
UαiU

∗
βiU

∗
αjUβj

]
sin 2Xij,

where

Xij =

(
m2
i −m2

j

)
L

4E
= 1.267

∆m2
ij

eV2

L/E

m/MeV
. (1.9)

We have used the fact that the neutrinos are relativistic (p >> mi) to make this

simplification. Now, note that all the neutrino oscillation effects are encoded in the two

mass-squared splittings (∆m2
21 ≡

(
m2

2 −m1
j

)
and ∆m2

31 ≡ (m2
3 −m2

1)) and the 3 × 3

unitary matrix U . This matrix is parameterized in terms of three mixing angles θ12, θ13,
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θ23 and a CP-violating Dirac phase δCP as

U =




c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23




(1.10)

where cij ≡ cos θij and sij ≡ sin θij. The value of these parameters as fit by the

current neutrino oscillation data is tabulated in Table1.1[1].

Table 1.1: Neutrino oscillation from a 2020 global analysis of neutrino oscillation data.
The 1σ, 2σ, 3σ ranges for both IO and NO are given.[1]

Parameter Best fit ±1σ 2σ range 3σ range

∆m2
21[10−5eV2] 7.50+0.22

−0.20 7.12–7.93 6.94–8.14
|∆m2

31|[10−3eV2] (NO) 2.55+0.02
−0.03 2.49–2.60 2.47–2.63

|∆m2
31|[10−3eV2] (IO) 2.45+0.02

−0.03 2.39–2.50 2.37–2.53

sin2 θ12/10−1 3.18± 0.16 2.86–3.52 2.71–3.69
θ12/ 34.3± 1.0 32.3–36.4 31.4–37.4

sin2 θ23/10−1 (NO) 5.74± 0.14 5.41–5.99 4.34–6.10
θ23/ (NO) 49.26± 0.79 47.37–50.71 41.20–51.33

sin2 θ23/10−1 (IO) 5.78+0.10
−0.17 5.41–5.98 4.33–6.08

θ23/ (IO) 49.46+0.60
−0.97 47.35–50.67 41.16–51.25

sin2 θ13/10−2 (NO) 2.200+0.069
−0.062 2.069–2.337 2.000–2.405

θ13/ (NO) 8.53+0.13
−0.12 8.27–8.79 8.13–8.92

sin2 θ13/10−2 (IO) 2.225+0.064
−0.070 2.086–2.356 2.018–2.424

θ13/ (IO) 8.58+0.12
−0.14 8.30–8.83 8.17–8.96

δ/π (NO) 1.08+0.13
−0.12 0.84–1.42 0.71–1.99

δ/ (NO) 194+24
−22 152–255 128–359

δ/π (IO) 1.58+0.15
−0.16 1.26–1.85 1.11–1.96

δ/ (IO) 284+26
−28 226–332 200–353

The neutrino oscillation parameters have a specific pattern that is worth elaborating

on. The two mass-squared differences have a large hierarchy between them with their
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ratio |∆m2
21/∆m

2
31| ∼ 10−2.Depending on the absolute scale of neutrino masses, this can

lead to a hierarchical or a quasi-degenerate mass pattern for the SM neutrinos. The mixing

angles in the neutrino sector are in sharp contrast with the analogous mixing angles in the

quark sector. While the quark mixing angles are very small, two of the neutrino mixing

angles θ12, and θ23 are large whereas the remaining angle θ13 is small. This peculiar

pattern has inspired many models based on non-Abelian discrete symmetries such as A4

which can approximately produce this pattern.

While the neutrino oscillation data has conclusively proven that the neutrinos are

indeed massive, there are questions about the neutrino masses that these neutrino oscillation

experiments cannot answer. Some of these important questions are

• Absolute scale of neutrino masses : As can be seen from Eq. (1.8), the neutrino

oscillation probabilities only depend on the mass-squared splittings and not on the

masses themselves. Since we have measured two non-vanishing mass splittings,

we know that at least two of the SM neutrinos must be massive. However, the

neutrino oscillation experiments cannot measure the mass of the lightest neutrino.

Therefore, the absolute scale of the neutrino masses is unknown. It is convenient to

parameterize this ignorance in terms of the sum of neutrino masses (
∑
mν).

• Neutrino mass ordering : The neutrino oscillation effects in the vacuum only depend

on the absolute value of the mass squared splittings |∆m2
ij|. We know that the sign

of the splitting ∆m2
21 > 0 because the matter effects in the Sun that affect the solar

neutrino data depend on this sign. However, the sign of the larger mass splitting

|∆m2
31| is unknown. This leads to two possibilities for neutrino mass ordering:
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normal ordering (no) and inverted ordering (io). In normal ordering, the small

mass splitting |∆m2
21| is between the two heavier neutrinos whereas in the inverted

ordering, the small mass splitting |∆m2
21| is between the two lighter neutrinos.

• Dirac/Majorana nature of SM neutrinos : As we discussed before, the fermion

masses in relativistic quantum field theory can be of the Dirac type or the Majorana

type. Both these choices are viable for the SM neutrinos and therefore, neutrinos

could be their anti-particles (Majorana) or not (Dirac). The current experimental

data are not sensitive to this difference. Since a Majorana mass for neutrinos will

violate lepton number by two units, the ongoing searches for the rare neutrinoless

double beta decay process (A, Z) → (A, Z + 2) + 2e− is the best opportunity to

answer this question.

Another fundamental question that is raised by the non-zero mass of neutrinos is

their lifetime. The case for neutrino decay is theoretically extremely well-motivated.

Neutrino decay is a characteristic feature of models in which neutrinos have masses. In

quantum mechanics, any process that is not explicitly forbidden by symmetry or phase

space considerations is expected to happen. For example, in the case of electrons, their

stability is guaranteed by the conservation of electric charge, while for protons, their

stability is owed to the conservation of the baryon number. In the SM, the baryon number

and lepton number are accidental symmetries that are expected to be violated by BSM

physics. This means that protons could be unstable in BSM models. In fact, one of the

striking predictions of the well-motivated grand unified theories (GUT) is the existence

of proton decay. Photons are stable, because being massless, their decay is forbidden by
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phase space considerations. This argument also ensures stability for massless neutrinos

in the SM. However, a massive neutrino has no such protection from decay. The flavor

lepton numbers can in principle guarantee the stability for neutrinos but we know that

the flavor lepton numbers are already broken in nature from the observation of flavor

oscillations. With this perspective, it is most likely that neutrinos are unstable and have a

finite lifetime. This makes the scenario of the decaying SM neutrino very well-motivated

in light of its non-vanishing mass. In fact, neutrino decay is a characteristic feature of any

model that is proposed to explain the light mass for neutrinos. The value of the neutrino

lifetime in these models depends on the new physics that is responsible for the small

neutrino mass.

Let us consider some explicit examples. Even in the minimal extensions of the SM

that incorporate Dirac neutrino masses by adding right-handed neutrinos, or Majorana

masses by including the non-renormalizable Weinberg operator, the heavier neutrinos

undergo two-body decays at one loop into a lighter neutrino and a photon [2, 3, 4, 5, 6],

(useful discussions may also be found in [7, 8]). In these scenarios, the lifetime of the

massive neutrino is given by τν ∼ 1050s (0.05 eV/mν)
5, assuming the daughter neutrino

mass is negligible. This is much longer than the age of the universe, and therefore these

minimal frameworks do not give rise to observable cosmological signals from neutrino

decay. However, in more general extensions of the SM that incorporate neutrino masses,

the neutrino lifetime can be much shorter. In particular, this includes theories in which

the generation of neutrino masses is associated with the spontaneous breaking of global

symmetries in the neutrino sector [9, 10, 11, 12, 13], (see also [14, 15]). The SSB of

these symmetries will result in (light) massless (pseudo-) Goldstone bosons that have off-
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diagonal couplings to neutrinos, such that it connects fermions of non-identical masses.

In this framework, the heavier neutrinos can decay into a lighter neutrino and one of

the Goldstone bosons associated with the spontaneous breaking of the global symmetry.

In this case, the strength of this ν̄injφ coupling is given by mν/f from dimensional

considerations where f is the scale at which SSB occurs. This factor could be small

enough to evade the current constraints from astrophysical sources but still be large

enough to have effects in cosmology. The neutrino lifetime in these models can be

shorter than or comparable to the age of the universe for a wide range of values of

scales f. In this framework, the heavier neutrinos can decay into a lighter neutrino and

one of the Goldstone bosons associated with the spontaneous breaking of the global

symmetry. The timescale for this process can be shorter than or comparable to the age of

the universe, giving rise to cosmological signals. In general, neutrinos that are unstable

on cosmological timescales remain an intriguing possibility due to the strong motivations

for new physics that explains the smallness of neutrino masses.

In the past, the decaying neutrino scenario has been explored as a solution to

the solar and atmospheric neutrino problems [16, 17, 18, 19]. However, the resulting

predictions for the energy spectrum of the solar neutrinos and the decay lengths required

for this proposal are now disfavored by the data [20, 21, 22]. There has also been earlier

work studying the impact of the decay of massive neutrinos on structure formation [23,

24]. However the range of parameter space that was considered is much above the current

limits on the masses of the neutrinos. More recently, radiative neutrino decays have been

proposed as an explanation of the 21 cm signal observed by the EDGES experiment [25].

The current limits on the neutrino lifetime are rather weak, except in the case of
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decays to final states involving photons. In this specific case, the absence of spectral

distortions in the cosmic microwave background (CMB) places strong bounds on radiative

decays from a heavier neutrino mass eigenstate to a lighter one, τν & 1019s for the

larger mass splitting and τν & 4 × 1021s for the smaller one [26]. There are also very

strong, albeit indirect, limits on radiative neutrino decays based on the tight laboratory and

astrophysical bounds on the neutrino dipole moment operators that induce this process [27,

28, 29, 30, 31].

In contrast, the decay of neutrinos into dark radiation that does not possess electromagnetic

interactions is only weakly constrained by current cosmological, astrophysical, and terrestrial

data. The most stringent bound on this scenario arises from CMB measurements. If

neutrino decay and inverse decay processes are effective during the CMB epoch, they

prevent the neutrinos from free streaming, leading to observable effects on the CMB [32,

33, 34]. Current measurements of the CMB power spectra require neutrinos to free stream

from redshifts z ≈ 8000 until recombination, z ≈ 1100 [35, 36, 37, 38].1 This can be

used to set a lower bound on the neutrino lifetime τν ≥ 4 × 108 s (mν/0.05 eV)3 for SM

neutrinos decaying into massless dark radiation [38]. Several astrophysical observations

have also been used to set limits on the neutrino lifetime. However, the resulting bounds

are much weaker. The observation that the neutrinos emitted by Supernova 1987A did

not decay prior to reaching the earth can be used to set a bound on the lifetime of the

electron-neutrino, τνe/mνe ≥ 5.7 × 105 s/eV [40]. Similarly, the detection of solar

neutrinos at the earth can be used to place a bound on the lifetime of the mass eigenstate

ν2, τν/mν & 10−4 s/eV [22, 41, 42]. Limits on the neutrino lifetime can also be obtained

1Also see the more recent discussion in [39] for the effects of interacting neutrinos on the CMB.
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from atmospheric neutrinos and long-baseline experiments, but the resulting constraints

are even weaker (see e.g. [43, 44, 45, 46]). Therefore, at present there is no evidence that

neutrinos are stable on cosmological timescales, and that the cosmic neutrino background

(CνB) has not decayed away into dark radiation.

At present, the strongest limit on the sum of neutrino masses,
∑
mν < 0.12 eV, is

from cosmological observations [47]. These measurements are sensitive to the neutrino

masses through the gravitational effects of the relic neutrinos left over from the Big Bang.

In determining the size of this effect [48, 49], (reviews with additional references may

be found in [50, 51, 52, 53]), it is assumed that the neutrinos are stable on timescales of

order the age of the universe.

In particular, if the neutrino lifetime is less than the age of the universe [54, 55], or if

the neutrinos have annihilated away into lighter states [56, 57], this bound on the neutrino

masses is no longer valid and must be reconsidered. In this dissertation, we explore the

cosmological signals that arise from a general framework in which the neutrinos decay

into dark radiation on timescales shorter than the age of the universe. We determine the

bound on the sum of neutrino masses and explore the prospects of measuring the neutrino

lifetime using cosmological datasets. Our focus is on the case in which neutrinos decay

after becoming non-relativistic. This dissertation is based on the papers [58, 59].

The impact of non-vanishing neutrino masses on cosmological structure formation

is well understood, (see [50, 51] for useful reviews).

• Sub-eV neutrinos constitute radiation at the time of matter-radiation equality. Therefore,

fluctuations about the background neutrino number density do not contribute significantly
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to the growth of structure until after neutrinos have become non-relativistic. Consequently,

perturbations on scales that enter the horizon prior to neutrinos becoming non-

relativistic evolve differently than scales that enter afterwards, thereby affecting

the matter power spectrum.

• After neutrinos become non-relativistic, their overall contribution to the energy

density redshifts away less slowly than that of a relativistic species of the same

abundance. This results in a larger Hubble expansion, reducing the time available

for structure formation. This leads to an overall suppression of Large Scale Structure

(LSS).

Then the leading effect of non-vanishing neutrino masses is to suppress the growth

of structure on scales that entered the horizon prior to the neutrinos becoming non-

relativistic. The extent of this suppression depends on the values of the neutrino masses.

Since heavier neutrinos become non-relativistic earlier and also contribute a greater fraction

of the total energy density after becoming non-relativistic, a larger neutrino mass leads to

a larger suppression of LSS. In the case of neutrinos that decay, this suppression now also

depends on the neutrino lifetime. After neutrinos have decayed, their contribution to the

energy density redshifts like that of massless neutrinos, resulting in a milder suppression

of structure as compared to stable neutrinos of the same mass. It follows that there

is a strong degeneracy between the neutrino mass and the lifetime inferred from the

matter power spectrum. The cosmological upper bound on the neutrino mass is therefore

lifetime-dependent, as was first discussed in [54, 55].

Neutrino masses also lead to observable effects on the CMB. Sub-eV neutrinos
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become non-relativistic after CMB decoupling. The main “primary” effect on the CMB

is through the early and late integrated-Sachs-Wolfe effects, as well as a modification

of the angular diameter distance to the last scattering surface. Because of their impact

on the growth of structure detailed above, neutrinos also affect the CMB through the

“secondary” effect of lensing. At the precision of Planck, the effects of lensing drive the

CMB constraints on the sum of neutrino masses. Since neutrino decay results in a milder

suppression of structure as compared to stable neutrinos of the same mass, the bounds on

∑
mν from CMB lensing are also lifetime dependent.

From the discussion above, we find the the cosmological sensitivity to neutrino

mass arises from the physics that happen after neutrinos have become non-relativistic.

The effect of massive neutrinos is to suppress all the modes that enter the horizon after

the neutrinos turn non-relativistic. In order for the neutrino decay to make an effect

on these signals, the decay should happen after the neutrinos turn non-relativstic. This

corresponds to the width Γν . 1 × 105(mν/0.1 eV)3/2 km/s/Mpc for each neutrino. In

this regime, we can also neglect the inverse-decay processes as this process is not efficient.

If neutrinos decayed, this suppression will be decreased leading to a degeneracy between

the neutrino lifetime and the neutrino mass. In order for the decay scenario to make

the maximum deviation from the massive and massless neutrino scenarios, we need the

daughter particles to be as light as possible. Our focus in this dissertation is on the decay

of neutrinos to dark radiation, since this framework has a greater impact on the bound

on
∑
mν than the decay of heavier neutrinos to lighter ones. In particular, at present the

cosmological limits on
∑
mν only constrain quasi-degenerate neutrino spectra, so that

decays of heavier neutrinos to lighter ones are not expected to alter the current bound
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significantly.

We have, therefore, two reasons to consider the unstable neutrino scenario in cosmology

especially the regime in which neutrinos decay into radiation after becoming non-relativistic.

Firstly, the cosmological neutrino mass bound is lifetime dependent. This bound can be

significantly relaxed, as we find if neutrinos are unstable thus opening up a range of

neutrino masses that is important for terrestrial experiments. Secondly, the lifetimes of

SM neutrinos are fundamental parameters of particle physics. Cosmology may be the

only avenue to detect this decay if neutrinos decay into dark radiation with a lifetime

comparable to the age of the universe.

We begin our analysis by deriving the Boltzmann equations that govern the cosmological

evolution of density perturbations in the case of unstable neutrinos. We then appropriately

modify the Boltzmann code CLASS2 [60] to calculate the CMB and matter power spectra

to accommodate this framework. We find that the results admit a simple analytic understanding.

We then perform a Monte Carlo analysis based on CMB and LSS data (Planck+BAO+Pantheon+LSS)

to determine the bounds on this scenario. We use the likelihood function from the Planck

2015 analysis [61]. We find that when the stable neutrino assumption is relaxed, the

limits on the neutrino masses from this data set become much weaker, with the bound on

∑
mν increasing from 0.25 eV to 0.9 eV. Importantly, this shows that the cosmological

bounds do not exclude the region of parameter space in which future experiments such

as KATRIN [62], KamLAND-ZEN (KLZ) [63] and the Enriched Xenon Observatory

(EXO) [64, 65] are sensitive to the neutrino masses.

In the coming decade, major improvements are expected in the precision of cosmological

2http://www.class-code.net
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observations, which would lead to great advances in neutrino physics. The Euclid satellite,

scheduled to be launched in 2022, is expected to measure both the galaxy and the cosmic

shear power spectra with unprecedented precision, achieving up to sub-percent accuracy

over the redshift range from z ∼ 0.5 − 2 [66]. In the more distant future, the CMB-

S4 experiment [67] will lead to major advances over current CMB observations. This

includes improvements in the measurement of CMB lensing, which is very sensitive to the

neutrino masses. Under the assumption that neutrinos are stable, these new measurements

will allow us to probe values of the neutrino masses smaller than the observed neutrino

mass splittings and thereby determine
∑
mν [68, 69]. However, if the neutrinos are

unstable on cosmological timescales, the question of whether
∑
mν can in fact be determined

remains unanswered. We show that in this case of non-relativistic decay of neutrinos

into dark radiation, near-future large scale structure (LSS) measurements from Euclid,

in combination with Planck data, may allow an independent determination of both the

lifetime of the neutrinos and the sum of their masses. The reason these parameters can

be independently determined is because Euclid takes measurements at multiple redshifts,

which allows us to track the growth of structure over time. In the case of stable neutrinos,

we find that these observations will be able to extend the lower bound on the lifetime by

at least seven orders of magnitude, from O(10) years to O(0.1− 10) Gyrs depending on

the neutrino mass, without significantly affecting the measurement of the sum of neutrino

masses. Furthermore, we show that if the neutrinos decay after becoming non-relativistic

but with a lifetime of less than O(108) years, these observations may allow the first

determination of not just the neutrino masses, but also the neutrino lifetime.

The outline of this dissertation is as follows. In the next chapter, we will discuss
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how to implement the non-relativistic neutrino decay in the framework of kinetic theory in

the expanding universe and understand its implications in light of the current cosmological

data. In section 2.1, we discuss the parameter space of the neutrino mass and lifetime,

outlining the current bounds. In section 2.2, we derive the Boltzmann equations that

dictate the cosmological evolution of perturbations in the phase-space distribution of

unstable neutrinos and their daughter radiation. While our focus is on the case in which

the decaying particles are neutrinos, the formalism is more general and can be applied to

the much larger class of models in which warm dark matter decays into dark radiation. In

section 2.3.1, we numerically compute the growth of perturbations in the case of unstable

neutrinos and determine the effects on the matter power spectrum and CMB lensing. To

obtain a physical understanding, in section 2.3.2 we derive analytical expressions for these

effects. In section 2.4, we perform a Monte Carlo scan of the parameter space and derive

constraints on the mass and lifetime of the neutrino from current data.

In chapter 3, we study the prospects of an independent detection of neutrino mass

and lifetime from future experiments such as Euclid and CMB S4. In section 3.1, we

discuss how the red-shift evolution of perturbations can be used to distinguish between

two (
∑
mν ,Γν) scenarios that are degenerate in the context of current data. In section

3.2, we do an MCMC analysis using mock Euclid and CMB S4 likelihoods to obtain

the region of parameter space where these experiments can independently measure the

neutrino mass and lifetime. Using this, we also obtain the prospective future bound on

the neutrino lifetime from these experiments if neutrinos are stable on timescales of order

of the age of the universe. For some (
∑
mν ,Γν) benchmark points, we also show the

prospective 95% and 68% C.L. intervals for (
∑
mν ,Γν) as expected to be measured by
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these experiments.

In appendix A we present an example of a simple model in which the neutrinos

decay into dark radiation on timescales of order the age of the universe. This model

is consistent with all current cosmological, astrophysical, and laboratory bounds, and

represents a concrete realization of the scenario we are considering. However, we stress

that the results presented in the body of the dissertation are not restricted to this specific

model, but apply to any theory in which the neutrinos decay to dark radiation after

becoming nonrelativistic.
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Chapter 2: Current Limits on Neutrino Mass and Lifetime from Cosmology

2.1 Parameter Space of the Unstable Neutrino

In this section we outline the constraints on the decay of neutrinos to dark radiation.

As explained in the introduction, these bounds only place limits on a combination of the

neutrino mass and the lifetime. Therefore, in this study we will map out the constraints

and the signals in the two-dimensional parameter space spanned by the sum of neutrino

masses (
∑
mν) and the neutrino decay width (Γν), as displayed in Fig. 2.1. In our

analysis we make the simplifying assumption that all three neutrinos are degenerate in

mass. As we shall see, the bounds on
∑
mν are always much larger than the observed

mass splittings, and so this is an excellent approximation in the relevant parameter space.

We further assume that all three neutrinos have the same decay width Γν . Since the mixing

angles in the neutrino sector are large, this is a good approximation in many simple models

of decaying neutrinos if the spectrum of neutrinos is quasi-degenerate. In particular, the

model presented in appendix A exhibits this feature.

There is a hard lower limit on the sum of neutrino masses from the atmospheric

and solar mass splittings which constrain
∑
mν ≥

√
∆m2

31 +
√

∆m2
21 = 0.06 eV in

the case of normal ordering and
∑
mν ≥ 2 ×

√
∆m2

31 = 0.1 eV in the case of inverted

ordering [70]. Therefore, we present the parameter space starting from
∑
mν = 0.06
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Figure 2.1: The plot shows the current constraints in the
∑
mν−Γν parameter

space. The colored regions are excluded by current data while the white
region is allowed. The orange dashed line separates the region of parameter
space in which neutrinos decay while still relativistic from that in which they
decay after becoming non-relativistic. Our study focuses on the region below
this line, corresponding to the latter scenario. The light grey regions show
current constraints on neutrino mass and lifetime coming from CMB free
streaming and the bound on stable neutrinos (labelled “CMB+LSS (stable
neutrino)”). Our analysis excludes the blue region labelled “CMB+LSS (this
work)” based on CMB and LSS data (Planck+BAO+Pantheon+LSS). The
dash-dotted line represents the approximate constraint obtained by simply
requiring that the matter power spectrum be consistent with observations in
the neighborhood of k = 0.1h/Mpc with fixed H0. This is seen to provide a
reasonable estimate to the constraints from all data. The vertical brown band
shows the projected KATRIN sensitivity and also the current KLZ sensitivity.
The vertical red line shows the projected KLZ-800 sensitivity in the case of a
normal hierarchy.
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eV. CMB observations can be used to obtain an upper bound on the sum of neutrino

masses. The current CMB data constrains the effective number of neutrinos, Neff , during

the epoch of acoustic oscillations to be 2.99 ± 0.17 [47], which is perfectly compatible

with the SM value of 3.046. Then, if neutrinos are stable on CMB timescales, we can

obtain an approximate upper bound on their masses by requiring that all three species

of neutrinos are relativistic at recombination. This translates into an approximate limit,

∑
mν . 3Trec ≈ 0.9 eV. A more precise bound can be obtained from a fit to the CMB

data.

The CMB can also be used to constrain the masses of neutrinos that decay prior

to recombination. As mentioned in the introduction, CMB data requires the species that

constitute Neff to be free streaming at redshifts below z ≈ 8000 until recombination,

z ≈ 1100. This can be used to place limits on processes such as neutrino decays and

inverse decays that prevent neutrinos from free streaming at late times. The resulting

bound depends on the neutrino mass, and is given by τν ≥ 4× 108 s (mν/0.05 eV)3 [38].

This bound excludes the grey region at the top of Fig. 2.1. Naively, one might expect the

CMB bounds from free streaming to rule out all theories in which the neutrino decays

before recombination, independent of the neutrino mass. However, in the case of an

ultrarelativistic mother particle, the decay process results in approximately collinear daughter

particles moving in the same direction as the mother. Similarly the inverse decay process

generally only involves collinear initial state particles, so that there is no significant

disruption in the flow of energy even if the decay and inverse decay processes are efficient [35].

The net constraint from CMB free streaming is therefore much weaker on the decays of

light neutrinos.
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As discussed in the introduction, massive neutrinos suppress the growth of matter

perturbations by reducing the time available for structure formation. In the case of stable

neutrinos, this has been used to set a constraint on the sum of neutrino masses,
∑
mν ≤

0.12 eV [47]. Unstable neutrinos that decay after becoming non-relativistic also lead

to a suppression in the growth of structure that now depends on the neutrino lifetime.

In this dissertation, we determine the resulting bound in the two dimensional parameter

space spanned by
∑
mν and the neutrino lifetime. Based on the Monte Carlo study

presented in Sec. 2.4, CMB and LSS data (Planck+BAO+Pantheon+LSS) exclude the

blue region labelled as “CMB+LSS (this work)” in Fig. 2.1. We have scanned the region

between 0 ≤ log10
Γν

km/s/Mpc ≤ 5.5. In Fig. 2.1, we simply extrapolate the bound at

log10
Γν

km/s/Mpc = 0 to Γν = 0, because the constraint on
∑
mν is independent of Γν

when Γν � H0. The existing constraint on the masses of stable neutrinos from this data

set forms the lower boundary of this region (labelled as “CMB+LSS (stable neutrino)”).

The dash-dotted line that approximately envelopes the blue shaded region represents

the constraint obtained by simply requiring that the matter power spectrum be consistent

with observations in the neighborhood of k = 0.1h/Mpc with fixedH0, where the current

LSS measurements have the best sensitivity. We see that it provides a good approximation

to the true bound, except in the region of
∑
mν & 0.9 eV, where the CMB limits on

Neff at recombination become important. The impact of neutrinos on the matter power

spectrum depends slightly on the mass ordering as the individual mass eigenstates become

non-relativistic at different times. However, since the current limits are only sensitive to

quasi-degenerate spectra, we are justified in neglecting this effect.

The orange dashed line (Γ = H(znr)) separates the region where neutrinos decay
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when non-relativistic from the region where they decay while still relativistic. Here znr,

the approximate redshift at which neutrinos become non-relativistic, is defined implicitly

from the relation 3Tν(znr) = mν . This definition is based on the fact that for relativistic

neutrinos at temperature Tν , the average energy per neutrino is approximately 3Tν . The

Hubble scale at znr is given by,

H(znr) = H0

√
Ωm

(∑mν

9T 0
ν

)3/2

(2.1)

' 7.5× 105km/s/Mpc
( H0

68km/s/Mpc

)(Ωm

0.3

)1/2(∑mν

1eV

)3/2(1.5× 10−4eV

T 0
ν

)3/2

.

Since our study assumes neutrinos decay after they become non-relativistic, we only

present the constraints below this orange dashed line.

The currently allowed parameter space is represented by the white regions in Fig. 2.1.

In the white region above the orange dashed line, even though neutrinos decay when

still relativistic, their small mass allows them to evade the current CMB free streaming

constraints. In this scenario their contribution to the energy density evolves in a manner

similar to that of massless neutrinos, and so the effects on LSS are similar in the two cases.

In the white region below the orange dashed line the neutrinos decay after becoming

non-relativistic, but because their masses are too small or their lifetimes too short, the

suppression of the matter power spectrum is too small to be detected with current data.

We see from this discussion that the unstable neutrino paradigm greatly expands

the range of neutrino masses allowed by current data. This has important implications

for current and future laboratory experiments designed to detect neutrino masses. Next

generation tritium decay experiments such as KATRIN [62] are expected to be sensitive
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to values of mνe as low as 0.2 eV, corresponding to
∑
mν of order 0.6 eV. A signal in

these experiments would conflict with the current cosmological bound,
∑
mν < 0.12

eV, for stable neutrinos. However, in the decaying neutrino paradigm, we have seen that

the current cosmological upper bound on the sum of neutrino masses is relaxed, with the

result that
∑
mν as high as 0.9 eV is still allowed. Therefore, a signal at KATRIN can

be accommodated if neutrinos are unstable on cosmological timescales. In Fig. 2.1, we

display a brown vertical line
∑
mν ≈ 0.6 eV that corresponds to the expected KATRIN

sensitivity.

In the case of Majorana neutrinos, current data from neutrinoless double-beta decay

experiments such as KLZ and EXO have already ruled out
∑
mν & 0.6 eV (brown

vertical line) [63, 65]. An updated version of KLZ, the KLZ-800, is currently probing

∑
mν as low as 0.17 eV [71] (red vertical line) in the case of the normal hierarchy and

the entire parameter space for the inverted hierarchy. If this experiment were to see a

signal, we cannot immediately conclude that hierarchy is inverted based on the current

cosmological bound of
∑
mν < 0.12 eV, since the decaying neutrino paradigm would

still admit a normal hierarchy.

2.2 Evolution of Perturbations in the Decay of Non-Relativistic Particles

into Radiation

In this section we derive the set of Boltzmann equations describing the evolution

of the phase-space density of massive particles decaying into massless daughter particles,

working to first order in the perturbations. In contrast to the case of cold dark matter
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(CDM) decay (see, e.g., [72, 73]), we cannot assume that the mother particles are at rest,

but must take into account their non-trivial momentum distribution, as in the studies [74,

75, 76]. This allows us to study the cosmological effects of a warm particle species,

such as neutrinos or warm dark matter, decaying into radiation. We implement these

new Boltzmann equations into the numerical code CLASS to generate the results in

sections 2.3.1 and 2.4.

The phase-space distribution of a particle species in the expanding universe is a

function of the position ~x, the comoving momentum ~q ≡ qn̂, and the comoving time τ .

The evolution of this distribution is determined by the Boltzmann equation,

df

dτ
=
∂f

∂τ
+
dxi

dτ

∂f

∂xi
+
dq

dτ

∂f

∂q
+
dn̂

dτ
.
∂f

∂n̂
= C[f ] , (2.2)

where C[f ] is the collision term that accounts for all processes involving the species.

We consider the case of a massive mother (with the subscript M for mother) of

mass M decaying into N daughters (Di=1,2...N ). For the sake of simplicity, we restrict

ourselves to the case where the mother particles decay after becoming non-relativistic,

but nevertheless keep track of their non-trivial momentum distribution. In this regime,

inverse-decay processes can be safely neglected. We also ignore any effects arising from

Pauli blocking and spontaneous emission since fM,Di � 1. The collision terms for the

mother and daughter particles are then given by,

CM = − a2

2εM

∫ ∏

i

d̄3~qi
2εDi
|M|2(2π)4δ(4)(~qM − Σi~qDi)fM(qM), (2.3)
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CDj = +
a2

2εDj

∫
d̄3~qM
2εM

∏

i 6=j

d̄3~qi
2εDi
|M|2(2π)4δ(4)(~qM − Σi~qDi)fM(qM). (2.4)

where εS ≡ (q2
S + m2

Sa
2)1/2 represents the comoving energy of the species S(≡ M,Di)

and d̄3~q ≡ d3~q/(2π)3. From the definition of the decay width, the collision term for the

mother particle can be simplified to

CM = −aΓ

γ
fM , (2.5)

where Γ denotes the decay width in the rest frame of the decaying particle, and the

relativistic boost factor γ ≡
√
q2
M +M2a2/(Ma) accounts for time-dilation in the cosmic

frame. To determine the evolution of inhomogeneities in our universe, we consider

perturbations about the homogeneous and isotropic background phase space distribution

functions,

fS(qS, n̂, ~x, τ) = f 0
S(qS, τ) + ∆fS(qS, n̂, ~x, τ), S = M,Di. (2.6)

2.2.1 Background: Zeroth Order

Treating ∆fM and fluctuations about the gravitational background as higher order

perturbations, the zeroth order Boltzmann equations for f 0
M arising from Eq. (2.2) take

the form,

∂f 0
M

∂τ
= −aΓ

γ
f 0
M . (2.7)
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The formal solution to f 0
M(q, τ) from the differential equations in Eq. (2.7) is given by,

f 0
M(q, τ) = fi(q)e

−Γ
∫ τ
τi

a
γ(a)

dτ ′
, (2.8)

where τi denotes the initial conformal time and fi(q) represents the initial momentum

distribution. We will focus on the case where the mother decays after becoming non-

relativistic. Using integration by parts, the exponent in Eq. (2.8) can be rewritten as,

Γ

∫ τ

τi

a dτ ′

γ(a)
=

Γt′

γ(a)

∣∣∣∣
t

ti

− Γ

∫ t

ti

dt′ t′
d

dt′

(
1

γ(a)

)
, (2.9)

where we have used adτ = dt. It is computationally demanding to solve the integral

for general a(τ). However, the behavior of the exponential factor is rather simple: the

exponential is close to 1 when τ is smaller than the mother lifetime ∼ γ/Γa, and fM no

longer contributes when τ is much larger than the mother lifetime. The only time that

the exponential factor exhibits a non-trivial a-dependence is when τ ∼ γ/Γa. Since our

focus is on decays in the non-relativistic regime, γ(a) is slowly varying at the time of

decay. Then the second term on the right-hand side of Eq. (2.9), which depends on the

time derivative of γ(a), can be neglected in favor of the first term. This allows us to

approximate the exponent as

Γ

∫ τ

τi

a dτ ′

γ(a)
≈ Γt

γ(a)
. (2.10)
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We have verified numerically that Eq. (2.10) is a good approximation to the full solution.

Therefore, the mother distribution we use in this dissertation is

f 0
M(q, τ) ≈ fi(q)e

− Γ
γ(a)

t. (2.11)

It is worth pointing out that the mother distribution described by Eq. (2.11) is a general

formula that can also be applied to the case of decaying CDM. This limiting case corresponds

to the distribution fi(qM) = δ(qM)NMi/(4πq
2
M), whereNMi represents the initial comoving

number density of mother particles. Since this distribution is localized entirely at qM = 0,

the boost factor γ(a) = 1. Then Eq. (2.11) reduces to the known result for decaying cold

dark matter [77, 78, 79]. Our analysis is, however, more general, because it accounts for

the fact that the contribution of warm dark matter to the background energy density scales

with the redshift in a more complicated manner than a−3. In addition, it takes into account

the fact that, in general, particles with larger momenta live longer as a consequence of

time dilation.

We now apply the above general formula to the decay of massive neutrinos. The SM

neutrinos decoupled from the photon bath when they were ultra-relativistic. Therefore,

their distribution prior to decay is of the Fermi-Dirac form. Therefore, fi = 1/(eq/Tν0 +1),

leading to

f 0
M =

1

eq/Tν0 + 1
exp(−Γ

γ
t). (2.12)

The collision terms for the daughter particles are more challenging. However, we can

simplify this set of equations by using the total integrated Boltzmann equations for the
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daughters. This is done by integrating the Boltzmann equations for the individual daughter

species with respect to d̄3~qDiεDi and adding them up. The resulting total integrated

collision term for the daughter species is given by,

∑

j

∫
d̄3~qDjεDjC

0
Dj = a2

∫
d̄3~qM
2εM

∏

i

d̄3~qDi
2εDi

(
∑

j

εDj)|M|2(2π)4δ(4)(~qM − Σi~qDi)f
0
M(qM),

= a2ΓM

∫
d̄3~qMf

0
M . (2.13)

The simplification in the last line follows from the covariant conservation of the energy-

momentum tensor, where we have used Eq. (2.3), Eq. (2.5), and εM/γ = Ma to obtain

this expression. In this work we focus on the case in which the mother neutrino decays

into massless daughter particles. The relation in Eq. (2.13) can be used to express the

Boltzmann equation for the daughters in terms of the total comoving energy density of

the daughters ED and the comoving number density of the mother NM

ED ≡
∑

i

∫
dqDiq

3
Di
fDi , NM ≡

∫
dqMq

2
M fM . (2.14)

Since the daughter particles constitute massless radiation, we can rewrite the expression

for the evolution of the daughter distribution in Eq. (2.2) in terms of the background

daughter energy density ρ̄D ≡ 4πa−4E0
D and the background mother number density

n̄M ≡ 4πa−3N0
M , where E0

D and N0
M are defined as in Eq. (2.14) after expanding out fM

and fDi as in Eq. (2.6),

∂ρ̄D
∂τ

+ 4aHρ̄D = aΓMn̄M . (2.15)
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The right-hand side of the Eq. (2.15) is exactly the same as in the case of cold dark matter

decay. While mother particles that have higher momentum have more energy, they also

decay more slowly due to time-dilation in the cosmic frame. This perfect cancellation

between relativistic energy and time-dilation is neatly encapsulated in the simplification

εM/γ = Ma that was used in obtaining Eq. (2.13).

2.2.2 Perturbations: First Order

In the synchronous gauge, the metric perturbations can be parametrized as,

ds2 = a(τ)2
[
−dτ 2 + (δij +Hij) dx

idxj
]
, (2.16)

where dτ = dt/a(τ) and the indices i and j run over the three spatial coordinates, (i, j =

1, 2, 3). It is convenient to work in Fourier space,

Hij(~k, τ) = k̂ik̂jh(~k, τ) +

(
k̂ik̂j −

1

3
δij

)
6η(~k, τ) , (2.17)

where ~k is conjugate to ~x and k̂ is the unit vector. In Fourier space the first order terms in

Eq. (2.2) for the mother particle can be collected as,

∆f ′M + i
qk

εM
P1(µ)∆fM + q

∂f 0
M

∂q
[−h

′

6
− P2(µ)

3
(h′ + 6η′)] = −a2 ΓM

εM
∆fM ,
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(2.18)

where µ ≡ k̂ · n̂ and Pl(µ) are the Legendre polynomials.

As usual, we can expand the angular dependence of the perturbations as a series in

Legendre polynomials,

X(..., ~k, n̂) =
∞∑

l=0

(−i)l(2l + 1)Xl(..., k)Pl(k̂ · n̂). (2.19)

Here X represents any of the perturbations ∆fM,Dj , ∆ED or ∆NM , which are defined as

in Eqs. (2.6) and (2.14). Exploiting the orthonormality of the Legendre polynomials, we

arrive at a Boltzmann hierarchy of moments in which any moment is related only to its

neighboring moments. The diminishing importance of the higher moments allows us to

cutoff the calculation at some l = lmax, where the choice of lmax depends on our desired

level of accuracy. We use the improved truncation scheme from Ref. [80], which has been

generalized to spatial curvature in Ref. [81].

The Boltzmann hierarchy for the perturbations of the mother particle becomes,

∆f ′M(0) = − qk
εM

∆fM(1) +
h′

6
q
∂f 0

M

∂q
− a2ΓM

εM
∆fM(0),

∆f ′M(1) =
qk

3εM
(∆fM(0) − 2∆fM(2))−

a2ΓM

εM
∆fM(1),

∆f ′M(2) =
qk

5εM
(2∆fM(1) − 3∆fM(3))− (

1

15
h′ +

2

5
η′)q

∂f 0
M

∂q
− a2ΓM

εM
∆fM(2),

∆f ′M(l) =
qk

(2l + 1)εM
[l∆fM(l−1) − (l + 1)∆fM(l+1)]−

a2ΓM

εM
∆fM(l), l ≥ 3.

(2.20)
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In the limit that the decay term is set to zero, these equations reduce to the standard

equations for massive neutrinos in the synchronous gauge [80], as expected.

For the Boltzmann hierarchy of daughter particles, we integrate with respect to

∫
d̄3~qDjqDjPl(µDj) on both sides of Eq. (2.2) for each daughter particle and add them up.

The collision term becomes

∑

l′

(−i)l
′

(2l
′
+ 1)a2

∫
d̄3~qM
2εM

∏

i

d̄3~qDi
2εDi

(
∑

j

εDj)(2π)4δ(4)(~qM −
∑

i

~qDi) (2.21)

∆fM(l′ )Pl(µDj)Pl′ (µM).

Again, our focus is on the case in which the mother particle decays after becoming

non-relativistic. Then, up to corrections of order qM/(Ma) arising from the motion of

the mother particle, the decay into daughters is isotropic, so that there is no correlation

between the directions of the mother and daughter momenta (n̂M,D). Given that the

perturbations of the daughter particles give only a small contribution to structure formation,

we can ignore this subleading correction in qM/(Ma) and assume that µM and µDj are

uncorrelated. In this case, the angular integrals over the Legendre polynomials can be

performed independently, so that

∑

l′

(−i)l
′

(2l
′
+ 1)

∫ 1

−1

dµDjPl(µDj)

∫ 1

−1

dµMPl′ (µM) = 0 (if l or l′ > 0) . (2.22)

This implies that in the daughter equations, only the zeroth moment of the source

term from the mother particle decay (∆fM(0)) survives in the limit of non-relativistic
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decay. The source term shows up in the equation for ∆f ′D(0). We can therefore take

l = l
′
= 0 and simplify the collision term to get a source term similar to that in Eq. (2.13),

but with f 0
M replaced by the perturbation ∆fM(0). Therefore, the Boltzmann hierarchy

for the daughter energy perturbations, ∆ED(l), in terms of the ∆NM(l) and the metric

perturbations h and η is given by,

∆E ′D(0) = −k∆ED(1) −
2

3
h′E0

D + a2MΓ∆NM(0),

∆E ′D(1) =
k

3
∆ED(0) −

2k

3
∆ED(2),

∆E ′D(2) =
2k

5
∆ED(1) −

3k

5
∆ED(3) +

4

15
E0
D(h′ + 6η′),

∆E ′D(l) =
k

2l + 1
[l∆ED(l−1) − (l + 1)∆ED(l+1)], l ≥ 3. (2.23)

Similar equations can also be found in [72, 73, 75, 78]. Again, we neglect the source

terms with ∆NM(l>0) due to the additional qM/(Ma) suppressions in these terms. Other

quantities such as the overdensity, perturbed pressure, energy flux/velocity-divergence,

and shear stress can be calculated from these moments in the usual manner, to be fed into

the perturbed Einstein field equations as detailed in [80].

2.3 Cosmological Signals of Neutrino Decay

In this section we determine the impact of decaying neutrinos on the matter power

spectrum and on CMB lensing. In Sec. 2.3.1, we solve the Boltzmann equations of the

previous section numerically using CLASS, and determine the matter power spectrum

and the CMB lensing potential Cφφ
` as a function of the neutrino mass and lifetime. This
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allows us to establish numerically that there is indeed a degeneracy in the matter power

spectrum between neutrino mass and lifetime. In Sec. 2.3.2, we determine the matter

power spectrum analytically, after making certain well-motivated approximations. We

show that the results closely reproduce those based on the numerical study, and admit a

physical interpretation of the effects of decaying neutrinos.

2.3.1 Numerical Results

To simplify the analysis, we assume that the three neutrinos have degenerate masses

and lifetimes. This extends the parameter space of the ΛCDM model to include two

additional parameters; the sum of neutrino masses,
∑
mν , and the logarithm of the decay

width, log10 Γν . In our analysis, we fix the following cosmological parameters to their

central values from the Planck 2015 TT, TE, EE+low-P data:{ωb = 0.022032, ωcdm =

0.12038, ln(1010As) = 3.052, ns = 0.96229, τreio = 0.0648}. The impact of neutrino

masses on the matter power spectrum looks different depending on whether θs or H0 is

kept fixed [68]. This is because, to keep θs fixed, H0 must be adjusted within CLASS,

leading to an overall shift of the matter power spectrum. While fixingH0 is more conventional,

fixing θs gives a better reflection of the constraining effects of a combined analysis of

CMB+LSS data, since CMB data pins θs down very precisely. In the following, we will

show results with either H0 = 67.56 km/s/Mpc or 100× θs = 1.043, explicitly stating in

each case what convention is chosen.

Since the galaxy power spectrum is known to trace the CDM and baryon overdensities,

37



we focus on the power spectrum

Pcb(k) =

〈
δρcb
ρ̄cb

δρcb
ρ̄cb

〉
, (2.24)

where ρ̄cb (δρcb) is the average (perturbation) of the sum of CDM and baryon energy

densities.1 In Fig. 2.2, we display the residuals of Pcb (left) and the CMB lensing potential

(right) with respect to the case of massless neutrinos for
∑
mν fixed at 0.25 eV, keeping

the value of H0 fixed. We compare three different values of Γν and the limiting case

of stable neutrinos. The curves run from top to bottom in order of decreasing Γν . The

analytic results are shown as dashed lines in the plot, and are seen to agree reasonably well

at large k or ` with the numerical results, shown as solid lines. These plots demonstrate

that the main effect of a non-zero decay rate of neutrinos is to reduce the power suppression

at large k arising from their mass. Moreover, they establish that the gravitational effects

of unstable relic neutrinos can indeed give rise to observable signals in LSS, provided that

the decays occur sufficiently long after the neutrinos have become non-relativistic.

Because of the effects of non-linearities at large k (small scales) and cosmic variance

at small k (large scales), current experiments are sensitive only to a narrow range of

k in the neighborhood of 0.1h/Mpc. We see from Fig. 2.2 that in this region there

are no qualitative features in Pcb|z=0 or Cφφ
` that would allow unstable neutrinos to be

distinguished from stable ones. Although Pcb|z=0 and Cφφ
` are more suppressed in the

stable case, as expected, this effect can be mimicked if the the neutrino masses in the

unstable scenario are suitably heavier. This results in a strong parameter degeneracy

1Note that this is different from the matter power spectrum conventionally defined as Pm =
〈[(δρcb + δρν)/(ρ̄cb + ρ̄ν)]

2〉, which differs from Pcb by an extra factor [ρ̄cb/(ρ̄cb + ρ̄ν)]2 .
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Figure 2.2: Plots of the fractional difference in the CDM+Baryon power
spectrum Pcb (top) and CMB-lensing potential Cφφ

` (bottom) for various
decaying (and stable) massive neutrino scenarios with respect to the case
of massless neutrinos. The solid lines show the results from numerical
simulations of the decaying neutrino scenario for three values of the decay
width, Γν= 104.0, 3.5, 3.0 (km/s/Mpc) (top to bottom), and also the stable
neutrino scenario, holding

∑
mν = 0.25 eV and H0 fixed. The dashed lines

represent the corresponding analytic estimates from Sec. 2.3.2.
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Figure 2.3: The fractional differences in the CMB-lensing potential Cφφ
`

(top), CDM+Baryon power spectrum Pcb (bottom) for an unstable (purple)
and a stable (blue) neutrino scenario with respect to the case of massless
neutrinos (black) at fixed H0. The grey regions show the 1σ uncertainties
from Planck and SDSS DR7 respectively.
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Figure 2.4: The fractional differences in the CMB-lensing potential Cφφ
`

(top left), CDM+Baryon power spectrum Pcb (top right), CTT
` (bottom left),

and CEE
` (bottom right) for an unstable (purple) and a stable (blue) neutrino

scenario with respect to the case of massless neutrinos (black) at fixed θs.
The grey regions show the 1σ uncertainties from Planck and SDSS DR7
respectively.
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between the neutrino lifetime and the sum of neutrino masses as determined from Pcb|z=0

and Cφφ
` .

In Fig. 2.3 we show an explicit example of the degeneracy between mass and

lifetime in the values of Pcb and Cφφ
` at fixed H0. We consider a model with stable

neutrinos of mass
∑
mν = 0.2 eV, and a different model with unstable neutrinos of

mass
∑
mν = 0.36 eV and width Γν = 104 km/s/Mpc. In the Pcb(z = 0) case, we

see from the figure that the blue (stable neutrino) and purple (unstable neutrino) curves

cannot be distinguished by measurements such as SDSS DR7 (used later in sec. 2.4),

whose sensitivity is shown in grey. However, we note that the lensing power spectrum can

potentially help in breaking the degeneracy, because it receives its dominant contribution

at higher z ≈ 3 [82]. We will explore the possibility of breaking the degeneracy by using

next generation measurements at different redshifts in future work.

Finally, we show in Figs. 2.4 the effects of neutrino masses and decay at fixed θs on

Pcb, C
φφ
` and CTT,EE

` . This fixes the peak locations in the CMB power spectra and only

generates negligible deviations away from the massless neutrino case in CTT,EE
` [68].

The same choices of parameters, however, do generate sizeable deviations in Cφφ
` and

Pcb away from the massless neutrino case that are close to the current sensitivities. This

demonstrates that as expected, for sub-eV
∑
mν , it is the CMB-lensing and matter power

spectrum measurements that provide the constraining power. Additionally, note that the

change in H0 required to keep θs fixed leads to an overall shift of Pcb. This makes the

BAO in the three models out of phase and leads to small oscillations at large k on top of

the power suppression.
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2.3.2 Analytic Understanding

In this section we provide an analytic derivation of the effects of neutrino decay

on CMB and LSS observables. We begin by showing how the results in the literature

for the effects of massive neutrinos on the matter power spectrum (Pcb(k)) and CMB

lensing (Cφφ
` ) can be reproduced analytically. We improve on the existing analytical

treatment of the cosmological effects of massive neutrinos by taking into account their

momentum distribution. We then build on this to derive an expression for the evolution

of overdensities in scenarios with unstable neutrinos.

Once neutrinos become non-relativistic, their contribution to the background energy

density leads to an increase the Hubble rate, leaving less time for structure formation as

compared to a universe with massless neutrinos. The net result is an overall suppression

of power at small scales in the matter power spectrum. The size of this effect can be

determined by studying the evolution of density perturbations. Consider δi = δρi/ρ̄i

for particle species i, for a mode that is already deep inside the horizon when neutrinos

become non-relativistic at z = znr. In the matter dominated era, the Einstein equation for

the density perturbation with wavenumber k can be approximated as

k2φ ≈ −4π Ga2(δcb ρ̄cb + δν ρ̄ν). (2.25)

Here φ is the metric perturbation in the conformal Newtonian gauge [80].2 We assume

baryons have already decoupled from photons. This allows us to combine the baryon

2We use the metric ds2 = a2(τ)[−(1 + 2ψ)dτ2 + (1 − 2φ)δijdx
idxj ] and approximate ψ = −φ,

ignoring the small correction arising from the presence of free streaming radiation.
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contribution to the matter density with that of CDM to simplify the discussion. Since

δν � δcb for perturbation modes that enter the horizon before znr, we can write,

k2φ ≈ −6

τ

(
1− ρ̄ν(τ)

ρ̄tot(τ)

)
δcb, (2.26)

where τ is the comoving time and ρ̄tot ≡ ρ̄cb + ρ̄ν . Inserting this expression into the

Boltzmann equation for CDM perturbations yields,

δ̈cb +
2

τ
δ̇cb −

6

τ 2
(1− fν(τ)) δcb = 0, fν(τ) =

ρ̄ν(τ)

ρ̄tot(τ)
. (2.27)

where the dots represent derivatives with respect to τ . Deep in the matter dominated

era, neutrinos only contribute up to a few percent of the total energy density. Therefore,

throughout this derivation, we work to leading order in fν (� 1). We look for a solution

of the form,

δcb = δcb,ih(τ)

(
τ

τi

)2

exp

[
−6

5

∫ τ

τi

dτ̂

τ̂
fν(τ̂)

]
(2.28)

where now the function h(τ) is to be determined. Inserting this expression into Eq. (2.27)

and dropping the term proportional to f 2
ν , we obtain the following differential equation

for h(τ).

τ ḧ+ 6ḣ− 6

5
h ḟ = 0 . (2.29)

Thus far we have not made any assumption about the redshift dependence of fν . For
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massless or ultrarelativistic neutrinos in the matter dominated era, we have

fν(τ) = fν,i

(τi
τ

)2

, (2.30)

In this case we can solve for the function h(τ) as,

h6mν (τ) = exp

[
k

∫ τ

τi

dτ̂ ḟ 6mνν (τ̂)

]
= exp

[
2

5

(
f 6mνν (τi)− f 6mνν (τ)

)]
. (2.31)

This leads to the following approximate solution for perturbations in the case of massless

or ultrarelativistic neutrinos,

δ 6mνcb (τ) = δcb,i

(
τ

τi

)2

exp

[
−6

5

∫ τ

τi

dτ̂

τ̂
f 6mνν (τ̂)

]
h6mν (τ). (2.32)

In the limit that neutrinos are non-relativistic, fν(τ) goes to a constant value. Then

Eq. (2.29) admits a solution where h(τ) is constant. This implies that in the case of

massive neutrinos, the h-function can be approximated as

hmν (τ) = exp

{
2

5

[
f 6mνν (τi)− f 6mνν (min(τ, τnr))

]}
. (2.33)

The result is almost identical to Eq. (2.31) since in both cases the exponent is dominated

by f 6mνν (τi) (and f 6mνν after τ > τnr is much smaller than the expansion parameter fmνν )

hmν (τ) ≈ h6mν (τ). (2.34)
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This means that the solution in the case of massive neutrinos can be approximated as,

δmνcb (τ) = δcb,i

(
τ

τi

)2

exp

[
−6

5

∫ τ

τi

dτ̂

τ̂
fmνν (τ̂)

]
h6mν (τ). (2.35)

Then the ratio of the perturbations in the two cases is given by,

δmνcb (τ)

δ 6mνcb (τ)
= exp

[
−6

5

∫ τ

τi

dτ̂

τ̂

(
fmνν (τ̂)− f 6mνν (τ̂)

)]
. (2.36)

This ratio can be expressed in terms of the scale factor as,

δmνcb (a)

δ 6mνcb (a)
≈ δmνcb (ai)

δ 6mνcb (ai)
exp

[
−3

5

∫ a

ai

da

a

ρ̂ν(a)

ρ̄tot(a)

]
, (2.37)

where ρ̂ν(a) ≡ ρ̄ν,mν (a) − ρ̄ν, 6mν (a) represents the difference in the neutrino energy

between the two scenarios. If all the neutrinos are stable and become non-relativistic

instantly at ai, ρ̂ν(a)/ρ̄tot(a) = ρ̄ν,mν/ρ̄tot is a constant, and Eq. (2.37) recovers the well-

known result for the ratio of perturbations in the massive and massless neutrino scenarios,

δmνcb (a)

δ 6mνcb (a)
∝
(
a

ai

)− 3
5

ρ̄ν,mν
ρ̄tot

. (2.38)

We can improve on this estimate by incorporating a more precise expression for the

neutrino energy in Eq. (2.37),

ρ̂ν(a) = 4πa−4

∫ ∞

0

dq q2
(√

q2 +m2
νa

2 − q
)
f(q) . (2.39)
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Here q = a pν denotes the neutrino’s conformal momentum, and f(q) =
[
eq/Tν0 + 1

]−1

represents the momentum distribution of neutrinos. ρ̂ν(a) exhibits non-trivial redshift

dependence since the neutrino energy goes from being radiation-like to being matter-like.

In fig. 2.5, we show the evolution of the ratio in Eq. (2.37) as a function of redshift (black

dashed curves) for two different values of the neutrino mass. We start our approximation

from ai = 2× 10−3 to make sure we are deep inside the matter dominated era so that the

assumptions leading to Eq. (2.37) are justified. We stress, however, that the result is quite

insensitive to O(1) changes in ai. As we can see, Eq. (2.37) is a good approximation to

the full numerical results (black solid curves), and describes the evolution of the δcb ratio

from the relativistic to the non-relativistic regime much better than the approximation

based on Eq. (2.38) (black dotted curves). Using this, we can estimate the ratio of the

power spectrum between the two scenarios,

Pcb,mν
Pcb, 6mν

≈

(
δmνcb (af )

δ 6mνcb (af )

)2

. (2.40)

The density perturbation grows much slower in the cosmological constant dominant era,

and we take the final scale factor to be at af = 0.7 for a good approximation to the power

spectrum ratio today3.

We now turn our attention to the effects of massive neutrinos on CMB lensing. The

difference in the density perturbation δρcb between the massive and massless neutrino

scenarios results in a change in the gravity perturbation φ. The photons are therefore

deflected differently in the CMB lensing process. The correlation function of the lensing

3We can also use af = a g(a) with the growth function g(a) for a reasonable approximation [51].
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�⌫ = 104 km/s/Mpc
<latexit sha1_base64="OI2AgrQQUaoEO1uQTSBCvdxCuuo=">AAACCnicbVDLSgMxFM3UV62vqks30SK4kHamLehGKLrQjVDBPqAzDpk0bUOTzJBkhDJ07cZfceNCEbd+gTv/xvQFaj1w4XDOvdx7TxAxqrRtf1mphcWl5ZX0amZtfWNzK7u9U1dhLDGp4ZCFshkgRRgVpKapZqQZSYJ4wEgj6F+M/MY9kYqG4lYPIuJx1BW0QzHSRvKz++4l4hz5iSvi4Zlj35Xd48SVHPZ5QRWuIzz0szk7b48BDSmVysUSdGbKjOTAFFU/++m2QxxzIjRmSKmWY0faS5DUFDMyzLixIhHCfdQlLUMF4kR5yfiVITw0Sht2QmlKaDhWf04kiCs14IHp5Ej31F9vJP7ntWLdOfUSKqJYE4EnizoxgzqEo1xgm0qCNRsYgrCk5laIe0girE16GRPC3MvzpF7MO07euSnnKufTONJgDxyAI+CAE1ABV6AKagCDB/AEXsCr9Wg9W2/W+6Q1ZU1ndsEvWB/fzHWZrw==</latexit><latexit sha1_base64="OI2AgrQQUaoEO1uQTSBCvdxCuuo=">AAACCnicbVDLSgMxFM3UV62vqks30SK4kHamLehGKLrQjVDBPqAzDpk0bUOTzJBkhDJ07cZfceNCEbd+gTv/xvQFaj1w4XDOvdx7TxAxqrRtf1mphcWl5ZX0amZtfWNzK7u9U1dhLDGp4ZCFshkgRRgVpKapZqQZSYJ4wEgj6F+M/MY9kYqG4lYPIuJx1BW0QzHSRvKz++4l4hz5iSvi4Zlj35Xd48SVHPZ5QRWuIzz0szk7b48BDSmVysUSdGbKjOTAFFU/++m2QxxzIjRmSKmWY0faS5DUFDMyzLixIhHCfdQlLUMF4kR5yfiVITw0Sht2QmlKaDhWf04kiCs14IHp5Ej31F9vJP7ntWLdOfUSKqJYE4EnizoxgzqEo1xgm0qCNRsYgrCk5laIe0girE16GRPC3MvzpF7MO07euSnnKufTONJgDxyAI+CAE1ABV6AKagCDB/AEXsCr9Wg9W2/W+6Q1ZU1ndsEvWB/fzHWZrw==</latexit><latexit sha1_base64="OI2AgrQQUaoEO1uQTSBCvdxCuuo=">AAACCnicbVDLSgMxFM3UV62vqks30SK4kHamLehGKLrQjVDBPqAzDpk0bUOTzJBkhDJ07cZfceNCEbd+gTv/xvQFaj1w4XDOvdx7TxAxqrRtf1mphcWl5ZX0amZtfWNzK7u9U1dhLDGp4ZCFshkgRRgVpKapZqQZSYJ4wEgj6F+M/MY9kYqG4lYPIuJx1BW0QzHSRvKz++4l4hz5iSvi4Zlj35Xd48SVHPZ5QRWuIzz0szk7b48BDSmVysUSdGbKjOTAFFU/++m2QxxzIjRmSKmWY0faS5DUFDMyzLixIhHCfdQlLUMF4kR5yfiVITw0Sht2QmlKaDhWf04kiCs14IHp5Ej31F9vJP7ntWLdOfUSKqJYE4EnizoxgzqEo1xgm0qCNRsYgrCk5laIe0girE16GRPC3MvzpF7MO07euSnnKufTONJgDxyAI+CAE1ABV6AKagCDB/AEXsCr9Wg9W2/W+6Q1ZU1ndsEvWB/fzHWZrw==</latexit><latexit sha1_base64="OI2AgrQQUaoEO1uQTSBCvdxCuuo=">AAACCnicbVDLSgMxFM3UV62vqks30SK4kHamLehGKLrQjVDBPqAzDpk0bUOTzJBkhDJ07cZfceNCEbd+gTv/xvQFaj1w4XDOvdx7TxAxqrRtf1mphcWl5ZX0amZtfWNzK7u9U1dhLDGp4ZCFshkgRRgVpKapZqQZSYJ4wEgj6F+M/MY9kYqG4lYPIuJx1BW0QzHSRvKz++4l4hz5iSvi4Zlj35Xd48SVHPZ5QRWuIzz0szk7b48BDSmVysUSdGbKjOTAFFU/++m2QxxzIjRmSKmWY0faS5DUFDMyzLixIhHCfdQlLUMF4kR5yfiVITw0Sht2QmlKaDhWf04kiCs14IHp5Ej31F9vJP7ntWLdOfUSKqJYE4EnizoxgzqEo1xgm0qCNRsYgrCk5laIe0girE16GRPC3MvzpF7MO07euSnnKufTONJgDxyAI+CAE1ABV6AKagCDB/AEXsCr9Wg9W2/W+6Q1ZU1ndsEvWB/fzHWZrw==</latexit>

�⌫ = 103 km/s/Mpc
<latexit sha1_base64="U860HIZm8+iwuHEZVh5ZDDukqFM="></latexit><latexit sha1_base64="U860HIZm8+iwuHEZVh5ZDDukqFM="></latexit><latexit sha1_base64="U860HIZm8+iwuHEZVh5ZDDukqFM=">AAACD3icdVBNSwMxEM3Wr1q/qh69BIviQbZZ12p7EEQPehEUbC10a8mmqYYm2SXJCmXpP/DiX/HiQRGvXr35b0xrBRV9MPB4b4aZeWHMmTYIvTuZsfGJyansdG5mdm5+Ib+4VNNRogitkohHqh5iTTmTtGqY4bQeK4pFyOlF2D0c+Bc3VGkWyXPTi2lT4CvJOoxgY6VWfj04wkLgVhrIpL/noUs/2EwDw2QvUAJ2RVEXT2LSb+ULyK1s+6XdMkSuj0q+X7EEeZUS2oGei4YogBFOW/m3oB2RRFBpCMdaNzwUm2aKlWGE034uSDSNMeniK9qwVGJBdTMd/tOHa1Zpw06kbEkDh+r3iRQLrXsitJ0Cm2v92xuIf3mNxHTKzZTJODFUks9FnYRDE8FBOLDNFCWG9yzBRDF7KyTXWGFibIQ5G8LXp/B/UttyPc/1zrYL+wejOLJgBayCDeCBXbAPjsEpqAICbsE9eARPzp3z4Dw7L5+tGWc0swx+wHn9AF3vnEA=</latexit><latexit sha1_base64="U860HIZm8+iwuHEZVh5ZDDukqFM="></latexit>

m⌫ = 60meV
<latexit sha1_base64="mb27FCgjf5+odz+kHhmg0zz/sWQ=">AAAB/nicbVDLSgNBEOyNrxhfq+LJy2AQPEjYFVEvQtCLxwjmAdklzE4myZCZ2WVmVgjLgr/ixYMiXv0Ob/6Nk8dBEwsaiqpuuruihDNtPO/bKSwtr6yuFddLG5tb2zvu7l5Dx6kitE5iHqtWhDXlTNK6YYbTVqIoFhGnzWh4O/abj1RpFssHM0poKHBfsh4j2Fip4x6IThbINL++8ILTLFACCdrIO27Zq3gToEXiz0gZZqh13K+gG5NUUGkIx1q3fS8xYYaVYYTTvBSkmiaYDHGfti2VWFAdZpPzc3RslS7qxcqWNGii/p7IsNB6JCLbKbAZ6HlvLP7ntVPTuwozJpPUUEmmi3opRyZG4yxQlylKDB9Zgoli9lZEBlhhYmxiJRuCP//yImmcVXy/4t+fl6s3sziKcAhHcAI+XEIV7qAGdSCQwTO8wpvz5Lw4787HtLXgzGb24Q+czx93NpUn</latexit><latexit sha1_base64="mb27FCgjf5+odz+kHhmg0zz/sWQ=">AAAB/nicbVDLSgNBEOyNrxhfq+LJy2AQPEjYFVEvQtCLxwjmAdklzE4myZCZ2WVmVgjLgr/ixYMiXv0Ob/6Nk8dBEwsaiqpuuruihDNtPO/bKSwtr6yuFddLG5tb2zvu7l5Dx6kitE5iHqtWhDXlTNK6YYbTVqIoFhGnzWh4O/abj1RpFssHM0poKHBfsh4j2Fip4x6IThbINL++8ILTLFACCdrIO27Zq3gToEXiz0gZZqh13K+gG5NUUGkIx1q3fS8xYYaVYYTTvBSkmiaYDHGfti2VWFAdZpPzc3RslS7qxcqWNGii/p7IsNB6JCLbKbAZ6HlvLP7ntVPTuwozJpPUUEmmi3opRyZG4yxQlylKDB9Zgoli9lZEBlhhYmxiJRuCP//yImmcVXy/4t+fl6s3sziKcAhHcAI+XEIV7qAGdSCQwTO8wpvz5Lw4787HtLXgzGb24Q+czx93NpUn</latexit><latexit sha1_base64="mb27FCgjf5+odz+kHhmg0zz/sWQ=">AAAB/nicbVDLSgNBEOyNrxhfq+LJy2AQPEjYFVEvQtCLxwjmAdklzE4myZCZ2WVmVgjLgr/ixYMiXv0Ob/6Nk8dBEwsaiqpuuruihDNtPO/bKSwtr6yuFddLG5tb2zvu7l5Dx6kitE5iHqtWhDXlTNK6YYbTVqIoFhGnzWh4O/abj1RpFssHM0poKHBfsh4j2Fip4x6IThbINL++8ILTLFACCdrIO27Zq3gToEXiz0gZZqh13K+gG5NUUGkIx1q3fS8xYYaVYYTTvBSkmiaYDHGfti2VWFAdZpPzc3RslS7qxcqWNGii/p7IsNB6JCLbKbAZ6HlvLP7ntVPTuwozJpPUUEmmi3opRyZG4yxQlylKDB9Zgoli9lZEBlhhYmxiJRuCP//yImmcVXy/4t+fl6s3sziKcAhHcAI+XEIV7qAGdSCQwTO8wpvz5Lw4787HtLXgzGb24Q+czx93NpUn</latexit><latexit sha1_base64="mb27FCgjf5+odz+kHhmg0zz/sWQ=">AAAB/nicbVDLSgNBEOyNrxhfq+LJy2AQPEjYFVEvQtCLxwjmAdklzE4myZCZ2WVmVgjLgr/ixYMiXv0Ob/6Nk8dBEwsaiqpuuruihDNtPO/bKSwtr6yuFddLG5tb2zvu7l5Dx6kitE5iHqtWhDXlTNK6YYbTVqIoFhGnzWh4O/abj1RpFssHM0poKHBfsh4j2Fip4x6IThbINL++8ILTLFACCdrIO27Zq3gToEXiz0gZZqh13K+gG5NUUGkIx1q3fS8xYYaVYYTTvBSkmiaYDHGfti2VWFAdZpPzc3RslS7qxcqWNGii/p7IsNB6JCLbKbAZ6HlvLP7ntVPTuwozJpPUUEmmi3opRyZG4yxQlylKDB9Zgoli9lZEBlhhYmxiJRuCP//yImmcVXy/4t+fl6s3sziKcAhHcAI+XEIV7qAGdSCQwTO8wpvz5Lw4787HtLXgzGb24Q+czx93NpUn</latexit>

�
⌫

=
H

<latexit sha1_base64="DF/0rTPcxAWRy9pA5bBJ9LPdYnM=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqey2Bb0IRQ/2WMHWQncts2nahibZJckqZen/8OJBEa/+F2/+G9MvUOuDgcd7M8zMC2POtHHdLyezsrq2vpHdzG1t7+zu5fcPmjpKFKENEvFItULQlDNJG4YZTluxoiBCTu/C4dXEv3ugSrNI3ppRTAMBfcl6jICx0r1/DUJAJ/VlMr6odfIFt+hOgS0plyulMvYWyoIU0Bz1Tv7T70YkEVQawkHrtufGJkhBGUY4Hef8RNMYyBD6tG2pBEF1kE6vHuMTq3RxL1K2pMFT9edECkLrkQhtpwAz0H+9ifif105M7zxImYwTQyWZLeolHJsITyLAXaYoMXxkCRDF7K2YDEABMTaonA1h6eVl0iwVPa/o3VQK1ct5HFl0hI7RKfLQGaqiGqqjBiJIoSf0gl6dR+fZeXPeZ60ZZz5ziH7B+fgGZ9eScQ==</latexit><latexit sha1_base64="DF/0rTPcxAWRy9pA5bBJ9LPdYnM=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqey2Bb0IRQ/2WMHWQncts2nahibZJckqZen/8OJBEa/+F2/+G9MvUOuDgcd7M8zMC2POtHHdLyezsrq2vpHdzG1t7+zu5fcPmjpKFKENEvFItULQlDNJG4YZTluxoiBCTu/C4dXEv3ugSrNI3ppRTAMBfcl6jICx0r1/DUJAJ/VlMr6odfIFt+hOgS0plyulMvYWyoIU0Bz1Tv7T70YkEVQawkHrtufGJkhBGUY4Hef8RNMYyBD6tG2pBEF1kE6vHuMTq3RxL1K2pMFT9edECkLrkQhtpwAz0H+9ifif105M7zxImYwTQyWZLeolHJsITyLAXaYoMXxkCRDF7K2YDEABMTaonA1h6eVl0iwVPa/o3VQK1ct5HFl0hI7RKfLQGaqiGqqjBiJIoSf0gl6dR+fZeXPeZ60ZZz5ziH7B+fgGZ9eScQ==</latexit><latexit sha1_base64="DF/0rTPcxAWRy9pA5bBJ9LPdYnM=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqey2Bb0IRQ/2WMHWQncts2nahibZJckqZen/8OJBEa/+F2/+G9MvUOuDgcd7M8zMC2POtHHdLyezsrq2vpHdzG1t7+zu5fcPmjpKFKENEvFItULQlDNJG4YZTluxoiBCTu/C4dXEv3ugSrNI3ppRTAMBfcl6jICx0r1/DUJAJ/VlMr6odfIFt+hOgS0plyulMvYWyoIU0Bz1Tv7T70YkEVQawkHrtufGJkhBGUY4Hef8RNMYyBD6tG2pBEF1kE6vHuMTq3RxL1K2pMFT9edECkLrkQhtpwAz0H+9ifif105M7zxImYwTQyWZLeolHJsITyLAXaYoMXxkCRDF7K2YDEABMTaonA1h6eVl0iwVPa/o3VQK1ct5HFl0hI7RKfLQGaqiGqqjBiJIoSf0gl6dR+fZeXPeZ60ZZz5ziH7B+fgGZ9eScQ==</latexit><latexit sha1_base64="DF/0rTPcxAWRy9pA5bBJ9LPdYnM=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqey2Bb0IRQ/2WMHWQncts2nahibZJckqZen/8OJBEa/+F2/+G9MvUOuDgcd7M8zMC2POtHHdLyezsrq2vpHdzG1t7+zu5fcPmjpKFKENEvFItULQlDNJG4YZTluxoiBCTu/C4dXEv3ugSrNI3ppRTAMBfcl6jICx0r1/DUJAJ/VlMr6odfIFt+hOgS0plyulMvYWyoIU0Bz1Tv7T70YkEVQawkHrtufGJkhBGUY4Hef8RNMYyBD6tG2pBEF1kE6vHuMTq3RxL1K2pMFT9edECkLrkQhtpwAz0H+9ifif105M7zxImYwTQyWZLeolHJsITyLAXaYoMXxkCRDF7K2YDEABMTaonA1h6eVl0iwVPa/o3VQK1ct5HFl0hI7RKfLQGaqiGqqjBiJIoSf0gl6dR+fZeXPeZ60ZZz5ziH7B+fgGZ9eScQ==</latexit> �
⌫

=
H

<latexit sha1_base64="WuyKyDAEwJ5Ubz702XZ+TLB2gvw=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4GjK2te1CKLqwywr2AZ1aMmlaQ5PMkGSUMvQ/3LhQxK3/4s6/MX0IKnrgwuGce7n3niDiTBuEPpzU0vLK6lp6PbOxubW9k93da+owVoQ2SMhD1Q6wppxJ2jDMcNqOFMUi4LQVjC6mfuuOKs1CeW3GEe0KPJRswAg2VrrxL7EQuJf4Mp6c1XrZHHIrhXyxVIbIzaNiPl+xBHmVIjqFnotmyIEF6r3su98PSSyoNIRjrTseikw3wcowwukk48eaRpiM8JB2LJVYUN1NZldP4JFV+nAQKlvSwJn6fSLBQuuxCGynwOZW//am4l9eJzaDcjdhMooNlWS+aBBzaEI4jQD2maLE8LElmChmb4XkFitMjA0qY0P4+hT+T5onrue53lUhVz1fxJEGB+AQHAMPlEAV1EAdNAABCjyAJ/Ds3DuPzovzOm9NOYuZffADztsnxOiSsQ==</latexit><latexit sha1_base64="WuyKyDAEwJ5Ubz702XZ+TLB2gvw=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4GjK2te1CKLqwywr2AZ1aMmlaQ5PMkGSUMvQ/3LhQxK3/4s6/MX0IKnrgwuGce7n3niDiTBuEPpzU0vLK6lp6PbOxubW9k93da+owVoQ2SMhD1Q6wppxJ2jDMcNqOFMUi4LQVjC6mfuuOKs1CeW3GEe0KPJRswAg2VrrxL7EQuJf4Mp6c1XrZHHIrhXyxVIbIzaNiPl+xBHmVIjqFnotmyIEF6r3su98PSSyoNIRjrTseikw3wcowwukk48eaRpiM8JB2LJVYUN1NZldP4JFV+nAQKlvSwJn6fSLBQuuxCGynwOZW//am4l9eJzaDcjdhMooNlWS+aBBzaEI4jQD2maLE8LElmChmb4XkFitMjA0qY0P4+hT+T5onrue53lUhVz1fxJEGB+AQHAMPlEAV1EAdNAABCjyAJ/Ds3DuPzovzOm9NOYuZffADztsnxOiSsQ==</latexit><latexit sha1_base64="WuyKyDAEwJ5Ubz702XZ+TLB2gvw=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4GjK2te1CKLqwywr2AZ1aMmlaQ5PMkGSUMvQ/3LhQxK3/4s6/MX0IKnrgwuGce7n3niDiTBuEPpzU0vLK6lp6PbOxubW9k93da+owVoQ2SMhD1Q6wppxJ2jDMcNqOFMUi4LQVjC6mfuuOKs1CeW3GEe0KPJRswAg2VrrxL7EQuJf4Mp6c1XrZHHIrhXyxVIbIzaNiPl+xBHmVIjqFnotmyIEF6r3su98PSSyoNIRjrTseikw3wcowwukk48eaRpiM8JB2LJVYUN1NZldP4JFV+nAQKlvSwJn6fSLBQuuxCGynwOZW//am4l9eJzaDcjdhMooNlWS+aBBzaEI4jQD2maLE8LElmChmb4XkFitMjA0qY0P4+hT+T5onrue53lUhVz1fxJEGB+AQHAMPlEAV1EAdNAABCjyAJ/Ds3DuPzovzOm9NOYuZffADztsnxOiSsQ==</latexit><latexit sha1_base64="WuyKyDAEwJ5Ubz702XZ+TLB2gvw=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4GjK2te1CKLqwywr2AZ1aMmlaQ5PMkGSUMvQ/3LhQxK3/4s6/MX0IKnrgwuGce7n3niDiTBuEPpzU0vLK6lp6PbOxubW9k93da+owVoQ2SMhD1Q6wppxJ2jDMcNqOFMUi4LQVjC6mfuuOKs1CeW3GEe0KPJRswAg2VrrxL7EQuJf4Mp6c1XrZHHIrhXyxVIbIzaNiPl+xBHmVIjqFnotmyIEF6r3su98PSSyoNIRjrTseikw3wcowwukk48eaRpiM8JB2LJVYUN1NZldP4JFV+nAQKlvSwJn6fSLBQuuxCGynwOZW//am4l9eJzaDcjdhMooNlWS+aBBzaEI4jQD2maLE8LElmChmb4XkFitMjA0qY0P4+hT+T5onrue53lUhVz1fxJEGB+AQHAMPlEAV1EAdNAABCjyAJ/Ds3DuPzovzOm9NOYuZffADztsnxOiSsQ==</latexit>

Solid: full numerical

stable neutrino

m
⌫

>
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(>
80

%
)

<latexit sha1_base64="MHZI5fUKaO77LrFcLE/11JmjuzQ=">AAACBXicbVDLSgMxFM3UV62vUZe6CJZCBSkzIthVKbpxWcE+oDMMmTRtQ5PMkGSEMnTjxl9x40IRt/6DO//GTDsLrZ4Q7uGce0nuCWNGlXacL6uwsrq2vlHcLG1t7+zu2fsHHRUlEpM2jlgkeyFShFFB2ppqRnqxJIiHjHTDyXXmd++JVDQSd3oaE5+jkaBDipE2UmAf8yD1RDJrxIvqnWWn2qg7XuU0sMtOzZkD/iVuTsogRyuwP71BhBNOhMYMKdV3nVj7KZKaYkZmJS9RJEZ4gkakb6hAnCg/nW8xgxWjDOAwkuYKDefqz4kUcaWmPDSdHOmxWvYy8T+vn+hh3U+piBNNBF48NEwY1BHMIoEDKgnWbGoIwpKav0I8RhJhbYIrmRDc5ZX/ks55zXVr7u1FuXmVx1EER+AEVIELLkET3IAWaAMMHsATeAGv1qP1bL1Z74vWgpXPHIJfsD6+AUqClxs=</latexit><latexit sha1_base64="MHZI5fUKaO77LrFcLE/11JmjuzQ=">AAACBXicbVDLSgMxFM3UV62vUZe6CJZCBSkzIthVKbpxWcE+oDMMmTRtQ5PMkGSEMnTjxl9x40IRt/6DO//GTDsLrZ4Q7uGce0nuCWNGlXacL6uwsrq2vlHcLG1t7+zu2fsHHRUlEpM2jlgkeyFShFFB2ppqRnqxJIiHjHTDyXXmd++JVDQSd3oaE5+jkaBDipE2UmAf8yD1RDJrxIvqnWWn2qg7XuU0sMtOzZkD/iVuTsogRyuwP71BhBNOhMYMKdV3nVj7KZKaYkZmJS9RJEZ4gkakb6hAnCg/nW8xgxWjDOAwkuYKDefqz4kUcaWmPDSdHOmxWvYy8T+vn+hh3U+piBNNBF48NEwY1BHMIoEDKgnWbGoIwpKav0I8RhJhbYIrmRDc5ZX/ks55zXVr7u1FuXmVx1EER+AEVIELLkET3IAWaAMMHsATeAGv1qP1bL1Z74vWgpXPHIJfsD6+AUqClxs=</latexit><latexit sha1_base64="MHZI5fUKaO77LrFcLE/11JmjuzQ=">AAACBXicbVDLSgMxFM3UV62vUZe6CJZCBSkzIthVKbpxWcE+oDMMmTRtQ5PMkGSEMnTjxl9x40IRt/6DO//GTDsLrZ4Q7uGce0nuCWNGlXacL6uwsrq2vlHcLG1t7+zu2fsHHRUlEpM2jlgkeyFShFFB2ppqRnqxJIiHjHTDyXXmd++JVDQSd3oaE5+jkaBDipE2UmAf8yD1RDJrxIvqnWWn2qg7XuU0sMtOzZkD/iVuTsogRyuwP71BhBNOhMYMKdV3nVj7KZKaYkZmJS9RJEZ4gkakb6hAnCg/nW8xgxWjDOAwkuYKDefqz4kUcaWmPDSdHOmxWvYy8T+vn+hh3U+piBNNBF48NEwY1BHMIoEDKgnWbGoIwpKav0I8RhJhbYIrmRDc5ZX/ks55zXVr7u1FuXmVx1EER+AEVIELLkET3IAWaAMMHsATeAGv1qP1bL1Z74vWgpXPHIJfsD6+AUqClxs=</latexit><latexit sha1_base64="MHZI5fUKaO77LrFcLE/11JmjuzQ=">AAACBXicbVDLSgMxFM3UV62vUZe6CJZCBSkzIthVKbpxWcE+oDMMmTRtQ5PMkGSEMnTjxl9x40IRt/6DO//GTDsLrZ4Q7uGce0nuCWNGlXacL6uwsrq2vlHcLG1t7+zu2fsHHRUlEpM2jlgkeyFShFFB2ppqRnqxJIiHjHTDyXXmd++JVDQSd3oaE5+jkaBDipE2UmAf8yD1RDJrxIvqnWWn2qg7XuU0sMtOzZkD/iVuTsogRyuwP71BhBNOhMYMKdV3nVj7KZKaYkZmJS9RJEZ4gkakb6hAnCg/nW8xgxWjDOAwkuYKDefqz4kUcaWmPDSdHOmxWvYy8T+vn+hh3U+piBNNBF48NEwY1BHMIoEDKgnWbGoIwpKav0I8RhJhbYIrmRDc5ZX/ks55zXVr7u1FuXmVx1EER+AEVIELLkET3IAWaAMMHsATeAGv1qP1bL1Z74vWgpXPHIJfsD6+AUqClxs=</latexit>

Dashed: our approx.
Dotted: naive approx.
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�⌫ = 104 km/s/Mpc
<latexit sha1_base64="OI2AgrQQUaoEO1uQTSBCvdxCuuo=">AAACCnicbVDLSgMxFM3UV62vqks30SK4kHamLehGKLrQjVDBPqAzDpk0bUOTzJBkhDJ07cZfceNCEbd+gTv/xvQFaj1w4XDOvdx7TxAxqrRtf1mphcWl5ZX0amZtfWNzK7u9U1dhLDGp4ZCFshkgRRgVpKapZqQZSYJ4wEgj6F+M/MY9kYqG4lYPIuJx1BW0QzHSRvKz++4l4hz5iSvi4Zlj35Xd48SVHPZ5QRWuIzz0szk7b48BDSmVysUSdGbKjOTAFFU/++m2QxxzIjRmSKmWY0faS5DUFDMyzLixIhHCfdQlLUMF4kR5yfiVITw0Sht2QmlKaDhWf04kiCs14IHp5Ej31F9vJP7ntWLdOfUSKqJYE4EnizoxgzqEo1xgm0qCNRsYgrCk5laIe0girE16GRPC3MvzpF7MO07euSnnKufTONJgDxyAI+CAE1ABV6AKagCDB/AEXsCr9Wg9W2/W+6Q1ZU1ndsEvWB/fzHWZrw==</latexit><latexit sha1_base64="OI2AgrQQUaoEO1uQTSBCvdxCuuo=">AAACCnicbVDLSgMxFM3UV62vqks30SK4kHamLehGKLrQjVDBPqAzDpk0bUOTzJBkhDJ07cZfceNCEbd+gTv/xvQFaj1w4XDOvdx7TxAxqrRtf1mphcWl5ZX0amZtfWNzK7u9U1dhLDGp4ZCFshkgRRgVpKapZqQZSYJ4wEgj6F+M/MY9kYqG4lYPIuJx1BW0QzHSRvKz++4l4hz5iSvi4Zlj35Xd48SVHPZ5QRWuIzz0szk7b48BDSmVysUSdGbKjOTAFFU/++m2QxxzIjRmSKmWY0faS5DUFDMyzLixIhHCfdQlLUMF4kR5yfiVITw0Sht2QmlKaDhWf04kiCs14IHp5Ej31F9vJP7ntWLdOfUSKqJYE4EnizoxgzqEo1xgm0qCNRsYgrCk5laIe0girE16GRPC3MvzpF7MO07euSnnKufTONJgDxyAI+CAE1ABV6AKagCDB/AEXsCr9Wg9W2/W+6Q1ZU1ndsEvWB/fzHWZrw==</latexit><latexit sha1_base64="OI2AgrQQUaoEO1uQTSBCvdxCuuo=">AAACCnicbVDLSgMxFM3UV62vqks30SK4kHamLehGKLrQjVDBPqAzDpk0bUOTzJBkhDJ07cZfceNCEbd+gTv/xvQFaj1w4XDOvdx7TxAxqrRtf1mphcWl5ZX0amZtfWNzK7u9U1dhLDGp4ZCFshkgRRgVpKapZqQZSYJ4wEgj6F+M/MY9kYqG4lYPIuJx1BW0QzHSRvKz++4l4hz5iSvi4Zlj35Xd48SVHPZ5QRWuIzz0szk7b48BDSmVysUSdGbKjOTAFFU/++m2QxxzIjRmSKmWY0faS5DUFDMyzLixIhHCfdQlLUMF4kR5yfiVITw0Sht2QmlKaDhWf04kiCs14IHp5Ej31F9vJP7ntWLdOfUSKqJYE4EnizoxgzqEo1xgm0qCNRsYgrCk5laIe0girE16GRPC3MvzpF7MO07euSnnKufTONJgDxyAI+CAE1ABV6AKagCDB/AEXsCr9Wg9W2/W+6Q1ZU1ndsEvWB/fzHWZrw==</latexit><latexit sha1_base64="OI2AgrQQUaoEO1uQTSBCvdxCuuo=">AAACCnicbVDLSgMxFM3UV62vqks30SK4kHamLehGKLrQjVDBPqAzDpk0bUOTzJBkhDJ07cZfceNCEbd+gTv/xvQFaj1w4XDOvdx7TxAxqrRtf1mphcWl5ZX0amZtfWNzK7u9U1dhLDGp4ZCFshkgRRgVpKapZqQZSYJ4wEgj6F+M/MY9kYqG4lYPIuJx1BW0QzHSRvKz++4l4hz5iSvi4Zlj35Xd48SVHPZ5QRWuIzz0szk7b48BDSmVysUSdGbKjOTAFFU/++m2QxxzIjRmSKmWY0faS5DUFDMyzLixIhHCfdQlLUMF4kR5yfiVITw0Sht2QmlKaDhWf04kiCs14IHp5Ej31F9vJP7ntWLdOfUSKqJYE4EnizoxgzqEo1xgm0qCNRsYgrCk5laIe0girE16GRPC3MvzpF7MO07euSnnKufTONJgDxyAI+CAE1ABV6AKagCDB/AEXsCr9Wg9W2/W+6Q1ZU1ndsEvWB/fzHWZrw==</latexit>

�⌫ = 103 km/s/Mpc
<latexit sha1_base64="U860HIZm8+iwuHEZVh5ZDDukqFM="></latexit><latexit sha1_base64="U860HIZm8+iwuHEZVh5ZDDukqFM="></latexit><latexit sha1_base64="U860HIZm8+iwuHEZVh5ZDDukqFM="></latexit><latexit sha1_base64="U860HIZm8+iwuHEZVh5ZDDukqFM="></latexit>

�
⌫

=
H

<latexit sha1_base64="DF/0rTPcxAWRy9pA5bBJ9LPdYnM=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqey2Bb0IRQ/2WMHWQncts2nahibZJckqZen/8OJBEa/+F2/+G9MvUOuDgcd7M8zMC2POtHHdLyezsrq2vpHdzG1t7+zu5fcPmjpKFKENEvFItULQlDNJG4YZTluxoiBCTu/C4dXEv3ugSrNI3ppRTAMBfcl6jICx0r1/DUJAJ/VlMr6odfIFt+hOgS0plyulMvYWyoIU0Bz1Tv7T70YkEVQawkHrtufGJkhBGUY4Hef8RNMYyBD6tG2pBEF1kE6vHuMTq3RxL1K2pMFT9edECkLrkQhtpwAz0H+9ifif105M7zxImYwTQyWZLeolHJsITyLAXaYoMXxkCRDF7K2YDEABMTaonA1h6eVl0iwVPa/o3VQK1ct5HFl0hI7RKfLQGaqiGqqjBiJIoSf0gl6dR+fZeXPeZ60ZZz5ziH7B+fgGZ9eScQ==</latexit><latexit sha1_base64="DF/0rTPcxAWRy9pA5bBJ9LPdYnM=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqey2Bb0IRQ/2WMHWQncts2nahibZJckqZen/8OJBEa/+F2/+G9MvUOuDgcd7M8zMC2POtHHdLyezsrq2vpHdzG1t7+zu5fcPmjpKFKENEvFItULQlDNJG4YZTluxoiBCTu/C4dXEv3ugSrNI3ppRTAMBfcl6jICx0r1/DUJAJ/VlMr6odfIFt+hOgS0plyulMvYWyoIU0Bz1Tv7T70YkEVQawkHrtufGJkhBGUY4Hef8RNMYyBD6tG2pBEF1kE6vHuMTq3RxL1K2pMFT9edECkLrkQhtpwAz0H+9ifif105M7zxImYwTQyWZLeolHJsITyLAXaYoMXxkCRDF7K2YDEABMTaonA1h6eVl0iwVPa/o3VQK1ct5HFl0hI7RKfLQGaqiGqqjBiJIoSf0gl6dR+fZeXPeZ60ZZz5ziH7B+fgGZ9eScQ==</latexit><latexit sha1_base64="DF/0rTPcxAWRy9pA5bBJ9LPdYnM=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqey2Bb0IRQ/2WMHWQncts2nahibZJckqZen/8OJBEa/+F2/+G9MvUOuDgcd7M8zMC2POtHHdLyezsrq2vpHdzG1t7+zu5fcPmjpKFKENEvFItULQlDNJG4YZTluxoiBCTu/C4dXEv3ugSrNI3ppRTAMBfcl6jICx0r1/DUJAJ/VlMr6odfIFt+hOgS0plyulMvYWyoIU0Bz1Tv7T70YkEVQawkHrtufGJkhBGUY4Hef8RNMYyBD6tG2pBEF1kE6vHuMTq3RxL1K2pMFT9edECkLrkQhtpwAz0H+9ifif105M7zxImYwTQyWZLeolHJsITyLAXaYoMXxkCRDF7K2YDEABMTaonA1h6eVl0iwVPa/o3VQK1ct5HFl0hI7RKfLQGaqiGqqjBiJIoSf0gl6dR+fZeXPeZ60ZZz5ziH7B+fgGZ9eScQ==</latexit><latexit sha1_base64="DF/0rTPcxAWRy9pA5bBJ9LPdYnM=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqey2Bb0IRQ/2WMHWQncts2nahibZJckqZen/8OJBEa/+F2/+G9MvUOuDgcd7M8zMC2POtHHdLyezsrq2vpHdzG1t7+zu5fcPmjpKFKENEvFItULQlDNJG4YZTluxoiBCTu/C4dXEv3ugSrNI3ppRTAMBfcl6jICx0r1/DUJAJ/VlMr6odfIFt+hOgS0plyulMvYWyoIU0Bz1Tv7T70YkEVQawkHrtufGJkhBGUY4Hef8RNMYyBD6tG2pBEF1kE6vHuMTq3RxL1K2pMFT9edECkLrkQhtpwAz0H+9ifif105M7zxImYwTQyWZLeolHJsITyLAXaYoMXxkCRDF7K2YDEABMTaonA1h6eVl0iwVPa/o3VQK1ct5HFl0hI7RKfLQGaqiGqqjBiJIoSf0gl6dR+fZeXPeZ60ZZz5ziH7B+fgGZ9eScQ==</latexit> �
⌫

=
H

<latexit sha1_base64="WuyKyDAEwJ5Ubz702XZ+TLB2gvw=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4GjK2te1CKLqwywr2AZ1aMmlaQ5PMkGSUMvQ/3LhQxK3/4s6/MX0IKnrgwuGce7n3niDiTBuEPpzU0vLK6lp6PbOxubW9k93da+owVoQ2SMhD1Q6wppxJ2jDMcNqOFMUi4LQVjC6mfuuOKs1CeW3GEe0KPJRswAg2VrrxL7EQuJf4Mp6c1XrZHHIrhXyxVIbIzaNiPl+xBHmVIjqFnotmyIEF6r3su98PSSyoNIRjrTseikw3wcowwukk48eaRpiM8JB2LJVYUN1NZldP4JFV+nAQKlvSwJn6fSLBQuuxCGynwOZW//am4l9eJzaDcjdhMooNlWS+aBBzaEI4jQD2maLE8LElmChmb4XkFitMjA0qY0P4+hT+T5onrue53lUhVz1fxJEGB+AQHAMPlEAV1EAdNAABCjyAJ/Ds3DuPzovzOm9NOYuZffADztsnxOiSsQ==</latexit><latexit sha1_base64="WuyKyDAEwJ5Ubz702XZ+TLB2gvw=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4GjK2te1CKLqwywr2AZ1aMmlaQ5PMkGSUMvQ/3LhQxK3/4s6/MX0IKnrgwuGce7n3niDiTBuEPpzU0vLK6lp6PbOxubW9k93da+owVoQ2SMhD1Q6wppxJ2jDMcNqOFMUi4LQVjC6mfuuOKs1CeW3GEe0KPJRswAg2VrrxL7EQuJf4Mp6c1XrZHHIrhXyxVIbIzaNiPl+xBHmVIjqFnotmyIEF6r3su98PSSyoNIRjrTseikw3wcowwukk48eaRpiM8JB2LJVYUN1NZldP4JFV+nAQKlvSwJn6fSLBQuuxCGynwOZW//am4l9eJzaDcjdhMooNlWS+aBBzaEI4jQD2maLE8LElmChmb4XkFitMjA0qY0P4+hT+T5onrue53lUhVz1fxJEGB+AQHAMPlEAV1EAdNAABCjyAJ/Ds3DuPzovzOm9NOYuZffADztsnxOiSsQ==</latexit><latexit sha1_base64="WuyKyDAEwJ5Ubz702XZ+TLB2gvw=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4GjK2te1CKLqwywr2AZ1aMmlaQ5PMkGSUMvQ/3LhQxK3/4s6/MX0IKnrgwuGce7n3niDiTBuEPpzU0vLK6lp6PbOxubW9k93da+owVoQ2SMhD1Q6wppxJ2jDMcNqOFMUi4LQVjC6mfuuOKs1CeW3GEe0KPJRswAg2VrrxL7EQuJf4Mp6c1XrZHHIrhXyxVIbIzaNiPl+xBHmVIjqFnotmyIEF6r3su98PSSyoNIRjrTseikw3wcowwukk48eaRpiM8JB2LJVYUN1NZldP4JFV+nAQKlvSwJn6fSLBQuuxCGynwOZW//am4l9eJzaDcjdhMooNlWS+aBBzaEI4jQD2maLE8LElmChmb4XkFitMjA0qY0P4+hT+T5onrue53lUhVz1fxJEGB+AQHAMPlEAV1EAdNAABCjyAJ/Ds3DuPzovzOm9NOYuZffADztsnxOiSsQ==</latexit><latexit sha1_base64="WuyKyDAEwJ5Ubz702XZ+TLB2gvw=">AAAB9XicdVDLSgMxFM3UV62vqks3wSK4GjK2te1CKLqwywr2AZ1aMmlaQ5PMkGSUMvQ/3LhQxK3/4s6/MX0IKnrgwuGce7n3niDiTBuEPpzU0vLK6lp6PbOxubW9k93da+owVoQ2SMhD1Q6wppxJ2jDMcNqOFMUi4LQVjC6mfuuOKs1CeW3GEe0KPJRswAg2VrrxL7EQuJf4Mp6c1XrZHHIrhXyxVIbIzaNiPl+xBHmVIjqFnotmyIEF6r3su98PSSyoNIRjrTseikw3wcowwukk48eaRpiM8JB2LJVYUN1NZldP4JFV+nAQKlvSwJn6fSLBQuuxCGynwOZW//am4l9eJzaDcjdhMooNlWS+aBBzaEI4jQD2maLE8LElmChmb4XkFitMjA0qY0P4+hT+T5onrue53lUhVz1fxJEGB+AQHAMPlEAV1EAdNAABCjyAJ/Ds3DuPzovzOm9NOYuZffADztsnxOiSsQ==</latexit>

Solid: full numerical
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<latexit sha1_base64="MHZI5fUKaO77LrFcLE/11JmjuzQ=">AAACBXicbVDLSgMxFM3UV62vUZe6CJZCBSkzIthVKbpxWcE+oDMMmTRtQ5PMkGSEMnTjxl9x40IRt/6DO//GTDsLrZ4Q7uGce0nuCWNGlXacL6uwsrq2vlHcLG1t7+zu2fsHHRUlEpM2jlgkeyFShFFB2ppqRnqxJIiHjHTDyXXmd++JVDQSd3oaE5+jkaBDipE2UmAf8yD1RDJrxIvqnWWn2qg7XuU0sMtOzZkD/iVuTsogRyuwP71BhBNOhMYMKdV3nVj7KZKaYkZmJS9RJEZ4gkakb6hAnCg/nW8xgxWjDOAwkuYKDefqz4kUcaWmPDSdHOmxWvYy8T+vn+hh3U+piBNNBF48NEwY1BHMIoEDKgnWbGoIwpKav0I8RhJhbYIrmRDc5ZX/ks55zXVr7u1FuXmVx1EER+AEVIELLkET3IAWaAMMHsATeAGv1qP1bL1Z74vWgpXPHIJfsD6+AUqClxs=</latexit><latexit sha1_base64="MHZI5fUKaO77LrFcLE/11JmjuzQ=">AAACBXicbVDLSgMxFM3UV62vUZe6CJZCBSkzIthVKbpxWcE+oDMMmTRtQ5PMkGSEMnTjxl9x40IRt/6DO//GTDsLrZ4Q7uGce0nuCWNGlXacL6uwsrq2vlHcLG1t7+zu2fsHHRUlEpM2jlgkeyFShFFB2ppqRnqxJIiHjHTDyXXmd++JVDQSd3oaE5+jkaBDipE2UmAf8yD1RDJrxIvqnWWn2qg7XuU0sMtOzZkD/iVuTsogRyuwP71BhBNOhMYMKdV3nVj7KZKaYkZmJS9RJEZ4gkakb6hAnCg/nW8xgxWjDOAwkuYKDefqz4kUcaWmPDSdHOmxWvYy8T+vn+hh3U+piBNNBF48NEwY1BHMIoEDKgnWbGoIwpKav0I8RhJhbYIrmRDc5ZX/ks55zXVr7u1FuXmVx1EER+AEVIELLkET3IAWaAMMHsATeAGv1qP1bL1Z74vWgpXPHIJfsD6+AUqClxs=</latexit><latexit sha1_base64="MHZI5fUKaO77LrFcLE/11JmjuzQ=">AAACBXicbVDLSgMxFM3UV62vUZe6CJZCBSkzIthVKbpxWcE+oDMMmTRtQ5PMkGSEMnTjxl9x40IRt/6DO//GTDsLrZ4Q7uGce0nuCWNGlXacL6uwsrq2vlHcLG1t7+zu2fsHHRUlEpM2jlgkeyFShFFB2ppqRnqxJIiHjHTDyXXmd++JVDQSd3oaE5+jkaBDipE2UmAf8yD1RDJrxIvqnWWn2qg7XuU0sMtOzZkD/iVuTsogRyuwP71BhBNOhMYMKdV3nVj7KZKaYkZmJS9RJEZ4gkakb6hAnCg/nW8xgxWjDOAwkuYKDefqz4kUcaWmPDSdHOmxWvYy8T+vn+hh3U+piBNNBF48NEwY1BHMIoEDKgnWbGoIwpKav0I8RhJhbYIrmRDc5ZX/ks55zXVr7u1FuXmVx1EER+AEVIELLkET3IAWaAMMHsATeAGv1qP1bL1Z74vWgpXPHIJfsD6+AUqClxs=</latexit><latexit sha1_base64="MHZI5fUKaO77LrFcLE/11JmjuzQ=">AAACBXicbVDLSgMxFM3UV62vUZe6CJZCBSkzIthVKbpxWcE+oDMMmTRtQ5PMkGSEMnTjxl9x40IRt/6DO//GTDsLrZ4Q7uGce0nuCWNGlXacL6uwsrq2vlHcLG1t7+zu2fsHHRUlEpM2jlgkeyFShFFB2ppqRnqxJIiHjHTDyXXmd++JVDQSd3oaE5+jkaBDipE2UmAf8yD1RDJrxIvqnWWn2qg7XuU0sMtOzZkD/iVuTsogRyuwP71BhBNOhMYMKdV3nVj7KZKaYkZmJS9RJEZ4gkakb6hAnCg/nW8xgxWjDOAwkuYKDefqz4kUcaWmPDSdHOmxWvYy8T+vn+hh3U+piBNNBF48NEwY1BHMIoEDKgnWbGoIwpKav0I8RhJhbYIrmRDc5ZX/ks55zXVr7u1FuXmVx1EER+AEVIELLkET3IAWaAMMHsATeAGv1qP1bL1Z74vWgpXPHIJfsD6+AUqClxs=</latexit>

Dashed: our approx.
Dotted: naive approx.

m⌫ = 80meV
<latexit sha1_base64="hdOFSJE/nY/OCG46HPmEcBk2DjA=">AAAB/nicbVBNSwMxEM3Wr1q/quLJS7AIHqTsimAvQtGLxwr2A7rLkk2nbWiSXZKsUJaCf8WLB0W8+ju8+W9M2z1o64OBx3szzMyLEs60cd1vp7Cyura+UdwsbW3v7O6V9w9aOk4VhSaNeaw6EdHAmYSmYYZDJ1FARMShHY1up377EZRmsXww4wQCQQaS9Rklxkph+UiEmS/TyXXN9c8zXwksoDUJyxW36s6Al4mXkwrK0QjLX34vpqkAaSgnWnc9NzFBRpRhlMOk5KcaEkJHZABdSyURoINsdv4En1qlh/uxsiUNnqm/JzIitB6LyHYKYoZ60ZuK/3nd1PRrQcZkkhqQdL6on3JsYjzNAveYAmr42BJCFbO3YjokilBjEyvZELzFl5dJ66LqeVXv/rJSv8njKKJjdILOkIeuUB3doQZqIooy9Ixe0Zvz5Lw4787HvLXg5DOH6A+czx96VpUp</latexit><latexit sha1_base64="hdOFSJE/nY/OCG46HPmEcBk2DjA=">AAAB/nicbVBNSwMxEM3Wr1q/quLJS7AIHqTsimAvQtGLxwr2A7rLkk2nbWiSXZKsUJaCf8WLB0W8+ju8+W9M2z1o64OBx3szzMyLEs60cd1vp7Cyura+UdwsbW3v7O6V9w9aOk4VhSaNeaw6EdHAmYSmYYZDJ1FARMShHY1up377EZRmsXww4wQCQQaS9Rklxkph+UiEmS/TyXXN9c8zXwksoDUJyxW36s6Al4mXkwrK0QjLX34vpqkAaSgnWnc9NzFBRpRhlMOk5KcaEkJHZABdSyURoINsdv4En1qlh/uxsiUNnqm/JzIitB6LyHYKYoZ60ZuK/3nd1PRrQcZkkhqQdL6on3JsYjzNAveYAmr42BJCFbO3YjokilBjEyvZELzFl5dJ66LqeVXv/rJSv8njKKJjdILOkIeuUB3doQZqIooy9Ixe0Zvz5Lw4787HvLXg5DOH6A+czx96VpUp</latexit><latexit sha1_base64="hdOFSJE/nY/OCG46HPmEcBk2DjA=">AAAB/nicbVBNSwMxEM3Wr1q/quLJS7AIHqTsimAvQtGLxwr2A7rLkk2nbWiSXZKsUJaCf8WLB0W8+ju8+W9M2z1o64OBx3szzMyLEs60cd1vp7Cyura+UdwsbW3v7O6V9w9aOk4VhSaNeaw6EdHAmYSmYYZDJ1FARMShHY1up377EZRmsXww4wQCQQaS9Rklxkph+UiEmS/TyXXN9c8zXwksoDUJyxW36s6Al4mXkwrK0QjLX34vpqkAaSgnWnc9NzFBRpRhlMOk5KcaEkJHZABdSyURoINsdv4En1qlh/uxsiUNnqm/JzIitB6LyHYKYoZ60ZuK/3nd1PRrQcZkkhqQdL6on3JsYjzNAveYAmr42BJCFbO3YjokilBjEyvZELzFl5dJ66LqeVXv/rJSv8njKKJjdILOkIeuUB3doQZqIooy9Ixe0Zvz5Lw4787HvLXg5DOH6A+czx96VpUp</latexit><latexit sha1_base64="hdOFSJE/nY/OCG46HPmEcBk2DjA=">AAAB/nicbVBNSwMxEM3Wr1q/quLJS7AIHqTsimAvQtGLxwr2A7rLkk2nbWiSXZKsUJaCf8WLB0W8+ju8+W9M2z1o64OBx3szzMyLEs60cd1vp7Cyura+UdwsbW3v7O6V9w9aOk4VhSaNeaw6EdHAmYSmYYZDJ1FARMShHY1up377EZRmsXww4wQCQQaS9Rklxkph+UiEmS/TyXXN9c8zXwksoDUJyxW36s6Al4mXkwrK0QjLX34vpqkAaSgnWnc9NzFBRpRhlMOk5KcaEkJHZABdSyURoINsdv4En1qlh/uxsiUNnqm/JzIitB6LyHYKYoZ60ZuK/3nd1PRrQcZkkhqQdL6on3JsYjzNAveYAmr42BJCFbO3YjokilBjEyvZELzFl5dJ66LqeVXv/rJSv8njKKJjdILOkIeuUB3doQZqIooy9Ixe0Zvz5Lw4787HvLXg5DOH6A+czx96VpUp</latexit>

Figure 2.5: Evolution of the ratio of the CDM+baryon density perturbation
with respect to the case of a massless neutrino, δmνcb /δ

6mν
cb . The results are

shown for the case of a single massive neutrino with mν = 60 meV. All
the solid curves are obtained from numerical calculations using the modified
CLASS code discussed in Sec. 2.2. The black curve is for the stable neutrino
scenario, and the blue (orange) curve is for the neutrino with decay rate Γν =
104 (103) km /s/Mpc. The dashed curves represent the first approximations
to the solid curves, based on the derivation in Eq. (2.37). The dotted curves
are based on the approximation method in Eq. (2.38), where we assume ai to
be the value when 80% of neutrinos have their momenta lower than mν and
af = adec. As we see, Eq. (2.37) provides a much better approximation to
the full numerical result. 48



potential, Cφφ
` ∼ 〈φφ〉, parameterizes the size of angular deflection of CMB photons. The

ratio of Cφφ
` in the massive neutrino case to that in the massless case can be approximated

using Limber’s formula [83, 84]

Cφφ
`,mν

Cφφ
`, 6mν

≈
χmν∗

∫ 1

0

dxφ2
mν

(
`

xmνχ∗

)
(1− x)2

χ6mν∗

∫ 1

0

dxφ2
6mν

(
`

x 6mνχ∗

)
(1− x)2

, x ≡ τf − τ
τf − τ∗

, χ∗ ≡ τf−τ∗ . (2.41)

Here τ∗ ≈ 2.8 × 102 Mpc is the conformal time at last scattering, while τf ≈ 1.4 × 104

Mpc is the conformal time today. The value of τf differs a bit between the massive

and massless neutrino scenarios, since the contribution of neutrinos to the total energy

density is different in the two cases. However, since the neutrino mass only results

in a significant difference in the contributions to the background energy in the short

period of time between the neutrinos becoming non-relativistic and the universe becoming

dominated by the cosmological constant, the difference in χ∗ between the two scenarios

can be neglected. Then, the difference between Cφφ
` in the two cases primarily arises from

differences in the evolution of φ.

According to the Einstein Eq. (2.25), the ratio of φ between the two scenarios for

large ` modes at a given value of the scale factor is,

φmν (a)

φ6mν (a)
≈ δmνcb (a)

δ 6mνcb (a)
. (2.42)

Since Cφφ
` receives its dominant contribution close to z ≈ 3 [82], we can estimate the

49



ratio of the Cφφ
` as,

Cφφ
`,mν

Cφφ
`, 6mν

≈

(
δmνcb
δ 6mνcb

)2 ∣∣∣∣
z=3

. (2.43)

Based on a very similar analysis, we can predict the suppression of Pcb(k) and Cφφ
`

for large k and ` in the unstable neutrino case. We consider a scenario with a single

massive neutrino species that becomes non-relativistic after last scattering and decays

into dark radiation. After the decay, the energy density of the daughter particles redshifts

more quickly than that of a stable neutrino of the same mass as the mother. We work in

the instantaneous decay approximation and assume that all neutrinos decay at the same

time, corresponding to a scale factor adec, which is implicitly determined by the equation,

Γν = H(adec). (2.44)

The difference in energy density ρ̂ν between an unstable neutrino and a massless neutrino

evolves in a more complicated way than in the case of a stable neutrino. The instantaneous

decay approximation allows us to separate the evolution into two parts. On timescales

shorter than the proper lifetime of the neutrino, the difference in energy density follows

the equation,

ρ̂ν(a) = 4πa−4

∫ ∞

0

dq q2
(√

q2 +m2
νa

2 − q
)
f(q) , a < adec . (2.45)

In the instantaneous decay approximation, the energy density in non-relativistic neutrinos

is immediately transferred into radiation energy at adec. It subsequently redshifts with an
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extra (adec/a) factor as compared to a non-relativistic neutrino, so that

ρ̂ν(a) = 4πa−4

∫ ∞

0

dq q2
[√

q2 +m2
νa

2
(adec

a

)
− q
]
f(q) , a ≥ adec . (2.46)

The ratio of CDM density perturbations in the case of unstable neutrinos can be obtained

by inserting the energy density ratios in Eqs. (2.45) and (2.46) into Eq. (2.37). Then the

ratios of P (k) and Cφφ
` in the limit of large k and ` can be obtained from Eqs. (2.40) and

(2.43)

In Fig. 2.5, we show the ratio of δcb from the numerical calculation described in

Sec. 2.2 for both the decaying (blue and orange) and stable (black) neutrinos. The plots

are for a single massive neutrino with mν = 60 meV (upper) and 80 meV (lower), and

a decay rate Γν = 104 (103) km /s/Mpc for the blue (orange) curves. In this scenario,

more than 80% of the neutrinos have momenta pν < mν after a > 0.012 (a > 0.0096)

for mν = 60 (80) meV neutrino. It is at this point, when most of the neutrinos have

become non-relativistic, that the major suppression of δcb begins. During this period the

δcb ratio drops with the power described in Eq. (2.38) (grey line). The blue (orange) dotted

lines give the value of the δcb-suppression if the later contributions of daughter particles

to the energy density shown in Eq. (2.46) are ignored. As we see, this underestimates

the suppression of δcb, showing that the contributions of daughter particles to the energy

density cannot be neglected. It is clear from the figures that Eqs. (2.45) and (2.46) provide

a good description of the δcb evolution in unstable neutrino scenarios (dashed blue and

orange), both before and after neutrino decay. This shows that the effects of neutrino

decay on the evolution of δcb on these length scales primarily arise from the contributions
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of the unstable neutrinos and their daughter particles to the background energy density,

and not from their perturbations.

2.4 Current Limits on the Neutrino Mass and Lifetime from Monte Carlo

Analysis

In this section we perform a Monte Carlo analysis to determine the current bounds

on the neutrino mass and lifetime.

2.4.1 The Data and Analysis Pipeline

Our analysis makes use of various combinations of the following datasets.

• CMB: We include Planck 2015 CMB high-` TT, TE, and EE and low-` TEB power

spectra [85], as well as the lensing reconstruction power spectrum [86].

• BAO: We use measurements of the volume distance from 6dFGS at z = 0.106 [87]

and the MGS galaxy sample of SDSS at z = 0.15 [88]. We include the anisotropic

measurements from the CMASS and LOWZ galaxy samples from the BOSS DR12

at z = 0.38, 0.51, and 0.61 [89].

• Growth Function: The BOSS DR12 measurements also include measurements of

the growth function f , defined by

fσ8 ≡

[
σ

(vd)
8 (z)

]2

σ
(dd)
8 (z)

, (2.47)
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where σ(vd)
8 measures the smoothed density-velocity correlation, analogous to σ8 ≡

σ
(dd)
8 that measures the smoothed density-density correlation.

• Pantheon: we use the Pantheon supernovae dataset [90], which includes measurements

of the luminosity distance of 1048 SNe Ia in the redshift range 0.01 < z < 2.3.

• LSS: We use the measurement of the halo power spectrum from the Luminous Red

Galaxies SDSS-DR7 [91]4 and the tomographic weak lensing power spectrum by

KiDS [92].

Our baseline analysis makes use of Planck+BAO+Growth Function+Pantheon data (i.e.

data that relies on background cosmology or perturbations in the linear regime mostly).

We then add LSS information to gauge the constraining power of such surveys.

Using the public code MONTEPYTHON-V35 [93, 94], we run Monte Carlo Markov

chain analyses using the Metropolis-Hastings algorithm assuming flat priors on all parameters.

Our ΛCDM parameters are, {ωcdm, ωb, θs, ln(1010As), ns, τreio} , to which we add the

sum of neutrino masses
∑
mν and the logarithm of the neutrino lifetime Log10Γν . In

our analysis we assume 3 degenerate, unstable neutrino species that decay into dark

radiation. Although not detailed for brevity, there are many nuisance parameters that we

analyze together with these cosmological parameters. To that end, we employ a Cholesky

decomposition to handle the large number of nuisance parameters [95], and use the default

priors that are provided by MONTEPYTHON-V3.

4More recent measurements are not yet available in MONTEPYTHON-V3. These could naturally make
the bounds presented here slightly stronger.

5https://github.com/brinckmann/montepython public
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2.4.2 Current Limits on the Neutrino Mass and Lifetime

In order to perform meaningful comparisons and to check the accuracy of our

modified version of CLASS, we begin by running the case of stable neutrinos. Our

baseline constraint on the neutrino mass, obtained with Planck+BAO+Growth Function+Pantheon,

is
∑
mν < 0.28 eV (95% C.L.). This is in good agreement with the result reported in [61].

The inclusion of SDSS DR7 and KiDS improves the constraint by ∼ 10%, bringing the

limit down to
∑
mν < 0.25 eV (95% C.L.). This constraint when LSS data is included is

also in good agreement with what is reported in Ref. [96].

In Fig. 2.6 we show the 1D and 2D marginalized posterior distribution of
∑
mν

and log10Γν for both datasets, cutting the parameter space between small decay rate

log10Γν/(km/s/Mpc) ∈ [0, 3] (left panel) and large decay rate log10Γν/(km/s/Mpc) ∈

[3, 5.5] (right panel) to accelerate convergence. Strikingly, once the neutrino lifetime is let

free to vary, the constraint on
∑
mν is driven by our prior on log10Γν . We recall that this

was chosen in order to ensure that neutrinos decay while non-relativistic. Interestingly, the

constraint stays quite stable for log10Γν/(km/s/Mpc) < 2.5, but relaxes to
∑
mν < 0.9

eV (with Planck+BAO+Growth Function+Pantheon) for higher values of the decay rate.

We note that the limit only marginally improves with the addition of current LSS data,

especially at high decay rates (right panel), for which the improvement is below numerical

noise.

Our study allows us to obtain a bound on the sum of neutrino masses as a function

of the neutrino lifetime. We see that
∑
mν can be as large as 0.90 eV for neutrinos

that decay close to recombination. However, given our restricted prior enforcing non-
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Figure 2.6: Posterior distributions of
∑
mν and log10Γν for each dataset.

Small decay rate log10Γν/(km/s/Mpc) ∈ [0, 3] are shown in the top panel,
while large decay rate log10Γν/(km/s/Mpc) ∈ [3, 5.5] are shown in the
bottom panel.
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relativistic decays, our analysis does not set a true upper bound on the neutrino mass. In

order to derive the true upper bound we would need to correctly incorporate relativistic

decays, taking into account inverse decay processes. A nice discussion of this regime

with inverse decays is given in Ref. [35, 38] for the interested reader. In the light of the

latest Planck results, a reanalysis of this regime will be very interesting.
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Chapter 3: Measuring Neutrino Lifetime from LSS Tomography

3.1 Lifting the Degeneracy Between Neutrino Mass and Lifetime

In the last chapter, we saw that the sensitivity of cosmological observables to the

neutrino masses arises from the fact that, after the neutrinos become non-relativistic,

their contribution to the energy density redshifts like matter, and is therefore greater

than that of a relativistic species of the same abundance. This leads to a faster Hubble

expansion, reducing the time available for structure formation. The net result is an

overall suppression of large scale structure [48, 49], (for reviews see [50, 51, 52, 53]).

A larger neutrino mass gives rise to greater suppression, since heavier neutrinos become

non-relativistic at earlier times, and also contribute more to the total energy density

after becoming non-relativistic. In the case of neutrinos that decay, the extent of the

suppression now also depends on the neutrino lifetime. The key idea, first discussed

in [54, 55], is that if the neutrinos decay into massless species after becoming non-

relativistic, the suppression in power is reduced. Depending on how late the decay kicks

in after the neutrinos have become non-relativistic, the magnitude of the suppression will

vary.

These features are illustrated in Fig. 3.1, where we show the evolution of the overdensity

of cold dark matter and baryons, δcb ≡ δρcb/ρ̄cb, for three cases, based on the analysis
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Table 3.1: Forecast constraints on the sum of neutrino masses (at 68% C.L.) and decay
width of the heaviest neutrino (at 95% C.L.) from Fig. 3.2

Normal ordering
Fiducial

∑
mν/eV 0.06 0.12 0.18 0.24 0.30∑

mν/eV < 0.085 0.125+0.020
−0.020 0.183+0.017

−0.017 0.243+0.016
−0.016 0.303+0.015

−0.015

Log10

[
Γν

km/s/Mpc

]
< 3.7 < 3.2 < 2.1 < 1.7 < 1.5

Inverted ordering
Fiducial

∑
mν/eV 0.10 0.15 0.20 0.25 0.30∑

mν/eV < 0.13 0.154+0.017
−0.017 0.205+0.015

−0.017 0.253+0.016
−0.016 0.304+0.015

−0.015

Log10

[
Γν

km/s/Mpc

]
< 2.7 < 2.2 < 1.8 < 1.5 < 1.3

in [59] and briefly described in the next section. The results are expressed in terms of

the ratio of (δcb)
2 for each case to its value in the scenario with massless neutrinos. The

black line corresponds to stable neutrinos with
∑
mν = 0.25 eV, while the blue line

corresponds to unstable neutrinos of the same mass. To simplify the discussion, in this

plot we have taken the lifetimes Γν of all the three neutrinos to be the same. We see that,

as compared to the stable neutrino scenario, unstable neutrinos of the same mass lead to

a smaller suppression of δcb at z = 0. The red line corresponds to unstable neutrinos

with
∑
mν = 0.30 eV, and their lifetime has been chosen to obtain the same result for

the overdensity at z = 0 as for stable neutrinos with
∑
mν = 0.25 eV. We see from

the black and red curves in Fig. 3.1 that the effects of a stable neutrino on the matter

density perturbations cannot be easily distinguished from those of a heavier neutrino that

is shorter-lived based only on measurements performed at z . 0.3. This is because the

growth of δcb is almost frozen in the region where the cosmological constant dominates

(z . 0.3). Therefore, there is a degeneracy between
∑
mν and τν that cannot be resolved

based only on measurements of the matter power spectrum at low redshifts. However, it is

58



clear from Fig. 3.1 that the evolution of the power suppression at earlier times is different

in the two cases. Consequently, the shapes of the power spectra as a function of z are

distinct. This would allow these two cases to be distinguished if measurements are made

at more than one redshift with sub-percent precision (e.g., black vs. red at z = 0.5 and

z = 2 in Fig. 3.1).

The near future Euclid experiment is expected to take measurements at multiple

redshifts between z ≈ 0.5 and z ≈ 2 at very high level of precision. Hence the combined

Euclid and Planck data has the potential to break the degeneracy between neutrino mass

and lifetime.

3.2 Prospects of Measuring Neutrino Lifetime from Near-future Euclid

and CMB-S4 Experiments

In order to calculate the effects of neutrino decay on cosmological observables,

we implement the Boltzmann equations corresponding to the decay of neutrinos into

dark radiation that were derived in [59] into the code CLASS [60]. We work under

the assumption that, after becoming non-relativistic, each SM neutrino decays with width

Γνi into two massless particles. Here the indices i label the neutrino mass eigenstates. For

concreteness, we assume that the decay widths of the three neutrinos satisfy the relation

Γνi ∝ m3
νi

. This assumption is motivated by models in which the generation of neutrino

masses is associated with the breaking of global symmetries. Since Goldstone bosons

are derivatively coupled, in these theories the matrix element for neutrino decay typically

scale as mν/f , where f corresponds to the scale at which the global symmetry is broken.
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Figure 3.1: Evolution of the ratio of the CDM+baryon density perturbations with respect
to the case of massless neutrinos. The blue (black) curve corresponds to the case of stable
(unstable) massive neutrinos with

∑
mν = 0.25 eV. Here zdecay, defined as the redshift

at which the neutrino width Γν becomes equal to the Hubble constant, corresponds to the
redshift at the time of neutrino decay. Similarly znr denotes the redshift at which 80% of
the neutrinos have become non-relativistic. Unstable heavier neutrinos with

∑
mν = 0.3

eV (red) can give the same density perturbation at low redshift as stable neutrinos of mass∑
mν = 0.25 eV. However, at z = 2, the perturbation in the heavier neutrino scenario

deviates at the O(0.1)% level from the stable neutrino scenario (purple arrow).

Then, after accounting for phase space, we typically have Γνi ∼ m3
νi

. Given the observed

mass splittings, this leaves only two remaining independent parameters. We choose to

present the results of our analysis in terms of the parameters (
∑
mν ,Γν), where Γν is

the decay width of the heaviest neutrino. With this definition, Γν ≡ Γν3 for the normal

ordering and Γν ≡ Γν2 for the inverted ordering. For the same values of
∑
mν and

Γν , the results for the normal and inverted ordering are different. This is because the

individual neutrino masses are different in the two cases. Therefore the neutrinos become

non-relativistic at different times and have different lifetimes. These differences become
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increasingly small for values of
∑
mν above 0.2 eV, since in this regime the neutrinos are

quasi-degenerate.

Table 3.2: Forecast constraints at 68% C.L. on the sum of neutrino masses and decay
width of the heaviest neutrino from Fig 3.3.

Fiducial (Log10

[
Γν

km/s/Mpc

]
,
∑
mν/eV) (3.7, 0.16) (3, 0.25)

∑
mν/eV 0.167+0.035

−0.076 0.261+0.042
−0.069

Log10

[
Γν

km/s/Mpc

]
3.59+0.65

−0.45 2.96+0.64
−0.46∑

mν/eV (stable) 0.10+0.02
−0.02 0.19+0.02

−0.02

We wish to determine the extent to which a combination of Planck data and future

Euclid data can help break the degeneracy between the neutrino mass and lifetime. To

that end, we make use of the mock likelihoods available publicly in MONTEPYTHON-

V3.1 and described in Refs. [94, 97]. We include Euclid galaxy and cosmic shear power

spectra in the “realistic” configuration, i.e., we include nonlinear scales and employ a

loose (redshift-independent) non-linear cut at comoving kNL = 2 h/Mpc in the galaxy

power spectrum and kNL = 10 h/Mpc in the cosmic shear power spectrum, together with

a nonlinear correction based on HaloFit [98, 99] and a theoretical error on the nonlinear

modeling (as described in Refs. [94, 97]). For a few cases, we employed an alternative

“conservative” prescription where we cut the data at comoving kNL = 0.2 h/Mpc in the

galaxy power spectrum and kNL = 0.5 h/Mpc in the cosmic shear power spectrum, and

verified that this leads to very similar results. This gives us confidence in the robustness

of our conclusions. In order to include Planck data in our forecast, we generate a mock

dataset with the fake likelihood FAKE PLANCK REALISTIC available in MONTEPYTHON-

V3.1. We analyze chains using the python package GETDIST [100].

61



1 2 3
Log10[°∫/(km/s/Mpc)]

0.15 0.25 0.35
Mtot

1

2

3

L
og

1
0
[°
∫
/(

k
m

/s
/M

p
c)

]

0.06 eV

0.12 eV

0.18 eV

0.24 eV

0.30 eV

1 2 3
Log10[°∫/(km/s/Mpc)]

0.15 0.25 0.35
Mtot

1

2

3

L
og

1
0
[°
∫
/(

k
m

/s
/M

p
c)

]

0.10 eV

0.15 eV

0.20 eV

0.25 eV

0.30 eV

Figure 3.2: Forecast of the 2D posterior of the sum of neutrino masses (at 68% C.L.)
and decay width of the heaviest neutrino (at 95% C.L.) reconstructed from a combination
of Planck+Euclid P (k)+Euclid Lensing. The fiducial model assumes that neutrinos are
stable and that they follow the normal ordering (top panel) or inverted ordering (bottom
panel).
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Figure 3.3: Same as Fig. 3.2, but the fiducial model now assumes decaying neutrinos with
(Log10[Γν/(km/s/Mpc)],

∑
mν/eV) = (3.7, 0.16) (top panel) and (3, 0.25) (bottom

panel) in the normal ordering. The stars and dashed lines indicate the fiducial values
of the corresponding parameters.

63



We first forecast the lower bound on the neutrino lifetime that can be reached in the

near future. We begin by generating mock data sets for the case of stable neutrinos, i.e.,

Γν = 0. Specifically, we generate a mock data set for the following values of
∑
mν /eV:

[0.06, 0.12, 0.18, 0.24, 0.30] for the case of normal ordering and [0.10, 0.15, 0.20, 0.25, 0.30]

for inverted ordering. This range covers the minimum
∑
mν allowed by the normal and

inverted mass spectra, and also the maximum
∑
mν consistent with the current bound

derived in [59]. We then run one MCMC scan per mock data set varying the ΛCDM

parameters {ωb, ωcdm, 100θs, As, ns, τreio} together with {
∑
mν/eV,Log10[Γν/(km/s/Mpc)]}.

As mentioned earlier, here Γν refers to the width of the heaviest neutrino. As our modifications

to CLASS have the effect of making the code much slower, we are forced to run a large

number of chains (∼ 100) to acquire enough points to obtain robust results. This penalizes

the use of the Gelman-Rubin criterion [101] as a convergence test. Nevertheless, all runs

satisfy the Gelman-Rubin criterion except for the cases with fiducial
∑
mν/eV = 0.06,

∑
mν/eV =0.10 and

∑
mν/eV =0.12. For these runs, we have at most (R − 1) ≈ 0.3,

(R − 1) ≈ 0.22 and (R − 1) ≈ 0.25 respectively. Therefore we primarily rely on visual

inspections, and on comparison between various chunks of chains, to assess convergence.

As a check, we have verified that for all scenarios, our constraints vary by less than 10%

when adapting the fraction of points removed with GETDIST from 0.1 to 0.5.

Our results are displayed in Fig. 3.2 for the normal- (top) and inverted- (bottom)

mass ordering cases, where we show the bounds on the decay rate Γν of the heaviest

neutrino as a function of
∑
mν . We summarize the bounds on the neutrino masses

and lifetime for both hierarchies in Table 3.1. Of utmost importance, we find that the

combination of Planck and Euclid can break the degeneracy between (
∑
mν ,Γν) and
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set an upper bound on the neutrino lifetime, Log10[Γν/(km/s/Mpc)] ≤ 3.7 (2σ), even

for the lowest possible neutrino mass. Moreover, we find that the sensitivity to
∑
mν

is not significantly degraded by the additional free parameter log10 Γν . As can be seen

from Table 3.1, the bounds on Γν in the normal and inverted ordering cases become

increasingly close above
∑
mν & 0.2 eV. This is because in this limit the neutrinos are

becoming quasi-degenerate. Nevertheless, even for
∑
mν = 0.3 eV, the values of the

two largest neutrino masses differ at the level of a few percent between the normal and

inverted hierarchies. Since Γν ∝ m3
ν , this accounts for the ∼ 10% difference between

the bounds on Γν in the two cases. Finally, we mention that we do not find any strong

correlation between the decay rate and the other cosmological parameters. Therefore, for

brevity we do not explicitly report the reconstructed ΛCDM parameters.

Given these constraints on Log10[Γν/(km/s/Mpc)], we anticipate that future cosmological

data will be able to determine that neutrinos are decaying if the width exceeds this limit.

To demonstrate this, we turn our attention to a scenario with unstable neutrinos and

generate two sets of mock data corresponding to (Log10[Γν/(km/s/Mpc)],
∑
mν/eV) =

(3.7, 0.16) and (3, 0.25) with a normal ordering. For each mock data set and fiducial

model we run two cases, one in which we leave Γν free to vary and another in which we

enforce the constraint Γν = 0. The purpose of the latter case is to allow us to estimate

the typical bias that would be introduced if this scenario was actually realized in nature

and neutrino decays were not accounted for. The results of both these runs satisfy the

Gelman-Rubin criterion.

Our results are shown in Fig. 3.3 and summarized in Table 3.2. We find, as expected,

that for both cases the combination of Planck and Euclid sets an upper limit on the
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neutrino lifetime, so that the decaying neutrino scenario can be distinguished from the

stable case at better than 3σ. Remarkably, in both cases we also obtain a lower limit on

the neutrino lifetime at 3σ, opening the door to the possibility of determining the neutrino

lifetime from cosmology.

Based on our limits, one might expect that the neutrino lifetime can be determined at

better than 2σ provided Log10[Γν/(km/s/Mpc)] > 3.7 for
∑
mν/eV > 0.06. However,

recall that the regime Log10[Γν/(km/s/Mpc)] & 5 is not treated in our formalism,

since neutrinos would be decaying while still relativistic. We defer a detailed study of

the parameter space for which next-generation experiments can determine the neutrino

lifetime to future work.

Interestingly, we find that in both the cases considered, the precision at which
∑
mν

can be detected is strongly degraded compared to the contours in Fig. 3.2. Indeed, in these

cases the uncertainty on
∑
mν is multiplied by ∼ 5 when Γ is let free to vary, and ∼ 1.5

when Γν = 0 is enforced. This is of great importance for next-generation experiments

which claim that a combination of datasets will be able to detect the sum of neutrino

masses “at 5σ”, even in the minimal mass case. Perhaps even more important, we find

that when Γν = 0 is enforced, a strong bias in the reconstructed neutrino mass away from

the true value can appear. For the specific cases studied here, we find a bias of roughly

−0.06 eV, i.e, a ∼ 3σ shift away from the “true” value.
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Chapter 4: Conclusion

The fact that the couplings of neutrinos to the other SM particles are so weak

makes it extremely difficult to study their properties. Even though it has been over six

decades since neutrinos were first directly observed in the laboratory, several of their

fundamental properties, including their masses and lifetimes, remain to be determined.

However, neutrinos are also among the most abundant particles in the universe, and their

gravitational pull has effects on cosmological observables. The universe is therefore an

excellent laboratory for studying the detailed properties of neutrinos.

In this dissertation, we have explored the cosmological signals arising from the

theoretically well-motivated scenario in which massive neutrinos decay into invisible

dark radiation on timescales less than the age of the universe. We have studied the

effects of neutrino decay on the evolution of density perturbations, both analytically

and numerically, and used these results to generalize the bound on the sum of neutrino

mass to the case when the lifetime of the neutrino is less than the age of the universe.

Our analytical results show that the signals of neutrino decay in LSS and CMB-lensing

primarily arise from the contributions of neutrinos and their daughters to the overall

energy density, and are quite insensitive to their contributions to the fluctuations about

the background. We find that the effect of increasing the neutrino-mass on CMB and LSS
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can be compensated by decreasing the lifetime. This leads to a parameter degeneracy

between the neutrino mass and neutrino lifetime inferred from the cosmological data.

Due to this parameter degeneracy, we show that the existing mass bound from

CMB and LSS measurements, which assumes that neutrinos are stable, gets weakened

if neutrinos decay, so that values of
∑
mν as large as 0.9 eV are still allowed by the data.

This provides strong motivation to continue the current efforts to measure the neutrino

masses directly in the lab, in spite of the limited reach of these experiments.

While the existing LSS data do not set independent constraints on the neutrino

mass and lifetime, we show that the next generation measurements of the matter power

spectrum at different redshifts can break this degeneracy and allow us to determine the

sum of neutrino masses and the neutrino lifetime independently. We find that near-future

measurements by the Euclid satellite can improve the lower limit on the neutrino lifetime

in this scenario from O(10) years to 200 million years. In the case of neutrinos that

decay on shorter timescales these measurements may allow the neutrino lifetime to be

determined from cosmology.

In our analysis we have focused on the decay of neutrinos to dark radiation, which is

easier to distinguish from the case of stable neutrinos than the decay of heavier neutrinos

to lighter ones. However, we expect that our results also give a good approximation to the

latter scenario in the limit that the lightest neutrino is massless. This applies to both the

normal and inverted hierarchies, and shows that future observations will have some level

of sensitivity to this interesting class of theories.
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Appendix A: A Model of Massive Neutrino Decay into Dark Radiation

In this appendix we present a simple, realistic model in which massive neutrinos

decay into invisible dark radiation on timescales of order the age of the universe. To

illustrate the main features of the model, we first consider a simplified version with just

a single flavor of SM neutrino, denoted by ν, and two singlet right-handed neutrinos,

labelled as n and n′. The model also contains two complex scalars, labelled as Φ and Φ′.

We introduce U(1)n × U(1)n′ global symmetries that act on the right-handed neutrinos.

While n and Φ carry equal and opposite charges under U(1)n, n′ and Φ′ are neutral under

this symmetry. Similarly, n′ and Φ′ carry equal and opposite charges under U(1)n′ , while

n and Φ are neutral. Then the part of the Lagrangian responsible for generating the

neutrino masses takes the form,

−L ⊃ y

Λ
L̄H̃nΦ +

y′

Λ
L̄H̃n′Φ′ + H.c. (A.1)

Here L represents the SM lepton doublet and H̃ = iσ2H
∗, where H denotes the SM

Higgs doublet. Λ is a UV mass scale while y and y′ are coupling constants. Although

this Lagrangian is nonrenormalizable, it can be interpreted as the low energy description

of a renormalizable theory after particles with masses of Λ have been integrated out. For
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example, consider the renormalizable Lagrangian,

−L = ỹL̄H̃N +MNNN
C + λ̃nN cΦ + ỹ′L̄H̃N ′+M ′

NN
′N c′+ λ̃′n′N c′Φ′+ H.c. (A.2)

Terms of the form shown in Eqn. (A.1) are obtained after the heavy fermions N , N c N ′

and N c′ have been integrated out.

Once the scalars Φ, Φ′ and the SM Higgs each acquire a vacuum expectation value

(VEV), we obtain Dirac masses for the SM neutrino,

−L ⊃ yfv

2Λ
ν̄n+

y′f ′v

2Λ
ν̄n′ + H.c. = mν̄nh + H.c.. (A.3)

Here f√
2
, f ′√

2
and v√

2
denote the VEVs of Φ, Φ′ and H respectively. The SM neutrino

acquires a massm =
√

(yf)2 + (y′f ′)2v/(2Λ). Its Dirac partner nh is one linear combination

of n and n′,




nh

nl


 =




cos θ sin θ

− sin θ cos θ







n

n′


 ; cos θ =

yf√
(yf)2 + (y′f ′)2

. (A.4)

It is clear from Eq. (A.3) that the spectrum contains one massive Dirac neutrino and one

massless singlet neutrino nl.

Below the spontaneous symmetry breaking scales f and f ′, the Goldstone bosons

can be parametrized as

Φ =
f√
2
eiφ/f , Φ′ =

f ′√
2
eiφ

′/f ′ , (A.5)

70



where φ and φ′ denote the Goldstone bosons from U(1)n and U(1)n′ respectively. The

couplings of the Goldstone bosons in the low energy effective theory are dictated by the

non-linearly realized global symmetries. To leading order in 1/f and 1/f ′, they are given

by,

−L ⊃ i
yfv

2Λ

φ

f
ν̄n+ i

yf ′v

2Λ

φ′

f ′
ν̄n+ H.c. (A.6)

In the mass basis these interactions take the form,

−L ⊃ imν̄

[(
φ

f
cos2 θ +

φ′

f ′
sin2 θ

)
nh +

(
φ′

f ′
− φ

f

)
sin θ cos θ nl

]
+ H.c. (A.7)

We see from this that the massive neutrino can decay into nl and either φ or φ′. Its partial

widths into these decay modes are given by,

Γ(ν → nlφ) =
m3

32πf̄ 2
, Γ(ν → nlφ

′) =
m3

32πf̄ ′2
, (A.8)

where f̄ ≡ f/(cos θ sin θ) and f̄ ′ ≡ f ′/(cos θ sin θ).

Now we move on to discuss the realistic case in which there are three flavors of SM

neutrinos να (α = e , µ , τ ). We also introduce three flavors of the sterile neutrinos nα

and n′α, as well as a new scalar field Σαβ . The global symmetry in the neutrino sector is

now extended to SU(3)L × SU(3)R × U(1)n × U(1)n′ . The charge assignments under

U(1)n × U(1)n′ are the same as before, but with all 3 flavors of nα and n′α now being

charged under U(1)n and U(1)n′ respectively. Under SU(3)L × SU(3)R, the various
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fields transform as

L→ UL L n→ UR n n′ → UR n
′ Σ→ ULΣU †R , (A.9)

where UL and UR are the rotation matrices of SU(3)L and SU(3)R respectively. The

neutrino masses now arise from terms in the Lagrangian of the form,

−L ⊃ y

Λ2
L̄αH̃ΣαβnβΦ +

y′

Λ2
L̄αH̃Σαβn

′
βΦ′ + H.c. (A.10)

Once the Σ field acquires a VEV, we can diagonalize its VEV 〈Σ〉 to obtain,

−L ⊃
∑

i

(
y

Λ2
L̄iH̃〈Σ〉iniΦ +

y′

Λ2
L̄iH̃〈Σ〉in′iΦ′

)
+ H.c. (A.11)

where the index i runs over i = 1, 2, 3 and 〈Σ〉i denotes the ith eigenvalue of 〈Σ〉.

The Lagrangian in Eq. (A.11) can be viewed as three copies of Eq. (A.1). After the

scalars Φ, Φ′ andH acquire VEVs, all three generations of (ni , n
′
i) can be simultaneously

transformed to the mass basis (nhi, nli) using the same orthogonal matrix,




nhi

nli


 =




cos θ sin θ

− sin θ cos θ







ni

n′i


 , (A.12)

where cos θ is exactly the same as in Eq. (A.4). Now the neutrino masses are given by,

mi =

√
(yf)2 + (y′f ′)2 〈Σ〉iv

2Λ2
. (A.13)
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Assuming that the Goldstone bosons from Σ are heavier than the massive neutrinos due

to some external source of explicit breaking, the dominant decay modes of the massive

neutrinos are to a massless sterile neutrino and either φ or φ′. Following the discussion

above, the total neutrino decay width is given by

Γνi = Γ(νi → nliφ) + Γ(νi → nliφ
′) =

m3
i

32πf̄ 2
+

m3
i

32πf̄ ′2
, (A.14)

where f̄ and f̄ ′ are as defined after Eq. (A.8). One characteristic feature of this model is

that the widths of the neutrinos scale as the cube of their masses, Γνi/Γνj = m3
i /m

3
j . In

the case of quasi-degenerate neutrinos, m1 ≈ m2 ≈ m3, it is clear that all neutrinos have

almost the same total width. Assuming f̄ = f̄ ′, we find that the total width is of order H0

for f̄ ∼ 105 and neutrino masses of order 0.1 eV,

Γνi
H0

≈ 1.3
( mi

0.1 eV

)3
(

105

f̄

)2

. (A.15)

The parameter space of this model is constrained by astrophysical, cosmological

and laboratory data. These limits are very similar to those on conventional Majoron

models, and can be expressed in terms of bounds on the decay constants f and f ′. In

the case of massless Goldstone bosons, the bounds from cosmology and astrophysics are

the most severe. A strong cosmological constraint arises from requiring consistency with

the observation that the cosmic neutrinos are free streaming at temperatures below an

eV [35, 36, 37, 38]. Neutrino-neutrino scattering mediated by Goldstone boson exchange

can prevent the neutrinos from free streaming, impacting the heights and locations of
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the CMB peaks. This translates into constraints on f and f ′ of order 100 keV [102].

A stronger although somewhat model-dependent constraint, f, f ′ & 100 MeV, may be

obtained by requiring that the Goldstone bosons and right-handed neutrinos not contribute

significantly to the energy density in radiation at the time of Big Bang nucleosynthesis

(BBN), or during the CMB epoch.

The strongest astrophysical bounds arise from the effects of Goldstone bosons on

supernovae. The large chemical potential for electron neutrinos inside the supernova

means that these particles can now decay into final states containing a Goldstone boson

and a right-handed neutrino. This has the effect of deleptonizing the core, preventing

the explosion from taking place. In addition, the free streaming of Goldstone bosons out

of the supernovae core can lead to overly rapid energy loss. The resulting constraints

are at the level of f, f ′ & 100 keV [103, 104, 105, 106, 107]. There are also bounds

on the couplings of neutrinos to Goldstone bosons from laboratory experiments, such

as neutrinoless double beta decay [108, 109], meson decays [103, 110], charged lepton

decays [111] and tritium decay [112]. These constraints arise from corrections to the

energy spectrum of the visible final states due to Goldstone boson emission. However,

in all these cases, the limits are weaker than astrophysical and cosmological bounds on

massless Goldstone bosons. Clearly, our benchmark values of f, f ′ ∼ 105 GeV are easily

consistent with all current bounds.
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