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We present a two-field model that generalizes Natural Inflation, in which the

inflaton is the pseudo-Goldstone boson of an approximate symmetry that is spon-

taneously broken, and the radial mode is dynamical. Within this model, which

we designate as “Generalized Natural Inflation”, we analyze how the dynamics

fundamentally depends on the mass of the radial mode and determine the size of

the non-Gaussianities arising from such a scenario.

We also motivate ongoing research within the coset construction formalism,

that aims to clarify how the spontaneous symmetry breaking pattern of spacetime,

gauge, and internal symmetries may allow us to get a deeper understanding, and

an actual algebraic classification in the spirit of the so-called “zoology of con-

densed matter”, of different possible “cosmic states”, some of which may be quite

relevant for model-independent statements about different phases in the evolution

of our universe. The outcome of these investigations will be reported elsewhere.
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Chapter 1

Introduction

1.1 Some Lucubrations...

1 The question of “Why is there anything at all?”, or, “Why is there some-

thing rather than nothing?” 2 has been raised by many great philosophers,

including Gottfried Wilhelm Leibniz [2], Martin Heidegger [3, 4] and Ludwig

Wittgenstein [5]. It is of such importance, that Heidegger himself called it the

fundamental question of metaphysics. For those of us who often forget what the

word metaphysics is supposed to mean, the encyclopedia of our era, Wikipedia,

may enlighten us:

“Metaphysics is a branch of philosophy that explores the nature of being, exis-

tence, and reality. Metaphysics seeks to answer, in a ‘suitably abstract and fully

general manner’, the questions:

1. What is there?

2. And what is it like?

Topics of metaphysical investigation include existence, objects and their proper-

ties, space and time, cause and effect, and possibility.”

It is reasonable to feel somehow overwhelmed when faced to all these highbrow

concepts. Our natural instinct of looking for some firm ground compels us to drop

the prefix “meta” and consider the definition of physics itself:

1Warning: the reader who is mainly interested in getting a quick glimpse on what this

dissertation is about, may want to skip these “lucubrations” altogether, and jump directly to
section 1.2.

2A little more “down to earth” but in the same vein kind of question has been addressed
lately by Nima Arkani-Hamed and others, namely “Why is there a macroscopic universe?” [1].
Watch also this.
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“Physics is the natural science that studies matter and its motion and behavior

through space and time and that studies the related entities of energy and force.

Physics is one of the most fundamental scientific disciplines, and its main goal is

to understand how the universe behaves.”

You see, we could spend our whole lives arguing about the deep meaning and

“fundamentality” of each of the words entering in both definitions, which surely

are definitions themselves, and to be honest, we do not know if there is ever an

ending to such an endeavor. In some sense, this task seems analogous to the in-

sipid discussion of how “pure” a field is compared to others, as the little cartoon

in Figure 1.1 tries to suggest.

Figure 1.1: The purity of fields.

We are not interested (or, for that matter, trained to) delve ourselves into the deep

waters of Leibniz, Heidegger, Wittgenstein, and many others. Let us just make

an act of faith and trust that Sean Carroll is doing a good job “defending the flag

of physics” in that trench [6]. However, one thing we would like to emphasize, is

how the word why and why the word how make their appearence in each of the

contexts we just revisited. To make things more interesting, let us introduce two

old friends, the “pragmatic” and the “romantic”, which happen to be well-trained

professional physicists, and have one or two things to say about all this.

My take on this subject is quite simple - the pragmatic declares - in order to

discriminate the essence of a question do as follows: in any place you have a

question of the form “Why does...” you try to substitute it with “How does...”
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instead. Any portion of “Why does...” not answered by “How does...” is the

philosophical/non-scientific part of the question. For example, “Why does 1 + 2

= 3?” may be substituted with “How does 1 + 2 = 3?” and answered adequately.

Depending on how deep and technical you may want to get, the answer may delve

into the definition of addition, various axioms, Giuseppe Peano’s arithmetic, and

so on. If, after all of that, you still have a question about “why”, then your

question is of a philosophical nature. By the same token, physics, which is firmly

rooted in the scientific method, mathematics, and experiment, simply cannot an-

swer the philosophical portions of questions. Nevertheless - the pragmatic keeps

arguing - sometimes why questions, within the realm of physics, do find good

answers, up to a point. If a layperson asks

-“Why is the sky blue?”

We may reply

-“Because of John William Strutt’s so-called Rayleigh scattering, that is, because

a law of physics describes this behavior.”

However, the layperson is not satisfied

-“Then, why does Rayleigh scattering work?”

-“Well, you may actually derive it from James Clerk Maxwell’s equations. In other

words, this law is a consequence of a more fundamental law”.

The layperson, out of genuine curiosity or just because she is a smart aleck (it

really does not matter), hits with a tough one

-“Why do Maxwell’s equations work?”

We have reached the point where you cannot answer 3. You can just point to ex-

3The expert will say, “Well, there is a remnant U(1) gauge symmetry after spontaneous
symmetry breaking within electro-weak theory, which itself is embedded in the fabulous Standard
Model (SM) of particle physics”. Then Mr.Wise-guy may ask “Why does the SM has the very
specific gauge symmetry group SU(3) × SU(2) × U(1)?, Why are there three generations of
leptons and quarks?, Why...?”. Although some of these questions are non-trivial, insightful,
and may be actually pushing forward modern theoretical advances developed by brilliant minds
around the globe, we hope you see our point. It is probable that Sarah would not.
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perimental evidence. These are fundamental laws from which we start, the same

way mathematicians start from axioms and derive theorems. Or perhaps, these

are the most fundamental laws we have worked so far.

This is indeed an interesting point of view. We still have to learn what the ro-

mantic has to say though.

Frankly, it is not that difficult to defend the role of “why”, the romantic firmly

states. Historically, plenty of sound scientific questions have begun with “why”.

Michael Faraday wondered why current deflects a compass needle, and why the

galvanometer attached to a circuit jumped whenever he closed the switch of an-

other circuit. Many scientists of the early XX century asked why beta decay

appeared to violate otherwise sacrosanct conservation laws. Isaac Newton asked

why Johannes Kepler’s laws were so accurate. None of these questions can be

adequately rephrased as “how” questions because they all arise precisely from a

deep and thorough understanding of “how”, an understanding left frustrated by

inadequate explanation. For this reason, the questions of curiosity that challenge

the limits of our theories and guess at what might lie beyond, are exactly those

which allow science to grow and flourish. As Thomas Kuhn might put it [7]:

“How” is status quo science, “journeyman” science, science “as usual”; “why” is

fringe science, confrontational science, paradigm shift.

The pragmatic remains in silence for a few of seconds that feel like forever. He

is quite proud, and the romantic does have several good points. However, he still

wants to convey some ideas himself.

Let us start from scratch, the pragmatic insists. Physics is a science that has a

large body of observations, and a limited number of mathematical models/theories

that aim to organize and explain those observations and, very importantly, get

validated by predicting the behavior of new observations. Mathematical theories

start with axioms and some tools that develop theorems from those axioms and
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then various setups may be examined. For example, Euclidean geometry starts

with axioms and ends with being able to predict and design complicated geomet-

rical shapes. One may start asking why the sum of angles in a triangle is 180◦,

and one may prove it using the tools. If one goes further up in the why ques-

tions, one ends up with the axioms. One could as well ask “how” one gets 180◦

for the sum of the angles of the triangle, and then the “why” goes to “why start

with these axioms”. Physical theories, in addition to the mathematical construct,

have equivalent to axioms; the so-called postulates. These have been postulated

because of the need for the mathematical model to agree with measurements and

data in general. For example, Werner Heisenberg’s uncertainty principle, which

is at the heart of quantum phenomena, may be derived using the axioms of quan-

tum mechanics, such as Max Born’s “rule” 4. Therefore, in a similar manner as

in the above mathematical example, all the “why” questions in physics are really

answered as “how” one goes from the axioms and postulates to the specific obser-

vational data or predictions. The “why” questions end up on the axioms for the

mathematics, and postulates for physics, and the answer then is “because” these

basic assumptions/postulates are necessary to fit our mathematical model to the

existing data, and give us confidence in predictions for new observations. The

only answer to “why” is this “because”, data says so. I see you frowning romantic

friend, but let me add one last thing before I yield the floor to you again. Once

one has a theory, and physics is really, as I stated before, a mathematical the-

ory that organizes known data in order to be able to predict future unmeasured

ones, the “how” question gives a causal path in our understanding of how the

final data/observations happened and how the predicted ones will appear. Why

questions address the existential state. When we have no theory and have an ob-

4Within the so-called “Copenhagen interpretation of quantum mechanics”, Born rule is a
postulate. There is a whole community of researchers, too many to cite, that try to derive it
from more primitive principles, within other interpretations.
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servation we start with “Why...”, because the observation exists. When a theory

“forms” then it is the causal path that is sought and “why” goes up the mathe-

matical ladder by “how mathematically this happens” transferring the existential

question to the axioms and postulates.

The romantic is impressed, as he has never associated pragmatism, in the collo-

quial sense, with deep thoughts like these 5; I have been prejudiced he thinks to

himself. After taking a deep breath, he replies.

The truth is that it is disingenuous to sacrifice “why” on the altar of “how”.

Forcing our language into some tightly defined pen where only “how” is allowed

is simply a false dichotomy born of a mistaken appreciation of natural language.

“Why” questions challenge theories or speculate about possibilities. They allow us

to address the most difficult issues of science when we run up against the bound-

aries of our knowledge. Furthermore, they are useful when the problem at hand is

characterized by hidden information or unknown parameters which are strongly

affecting the experiment. For instance, in the beta decay example, it was not pos-

sible to ask “How do neutrinos affect beta decay?”, because the idea of neutrinos

had not been invented yet; in fact “neutrinos” is precisely the answer to the ques-

tion “Why does beta decay seem to violate conservation of momentum?”. But,

of course, neutrinos could only be postulated because so many scientists asked

the questions “How does beta decay behave under these conditions?” or “How

does it behave under those conditions?”. By accruing data, which are the answers

to “how” questions, they were able to identify discrepancies between observation

and expectation which required new theories and creative thinking to adequately

explain.

5The reader should be warned here; our pragmatic and romantic friends were dubbed this
way just due to a lack of imagination, and in order to express their different views on the
subject. Pragmatism is a real philosophical tradition that still lives on, while Romanticism was
an artistic, literary, musical, and intellectual movement that peaked in the second half of the
XIX century. Despite several coincidences, our characters are not tied to historical backgrounds.
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“How” questions generally are more tightly focused and lend themselves to be-

ing phrased as implicit hypotheses which can be tested, but they necessarily live

within the context of a theory and, therefore, presuppose some foreknowledge.

“Why” questions, on the other hand, generally strike at the heart of a scientific

issue by identifying defects or peculiarities in a theory which might lead to a new

science. By doing so, “why” questions need no theory and may pursue an expla-

nation of observation without reference to pre-established groundwork.

“How” questions are extremely important in the actual practice and study of sci-

ence, but “Why” questions embody the ever-striving, almost combative quality

that peer-reviewed science takes on when theories compete with one another for

acceptance and dominance. “How” may be the wheels on the road, but “why” is

the engine of the car. We need them both to move forward.

Before the romantic gets the chance to do anything, we suddendly jump into the

conversation: Ok my friends, let us call it a night. You may now go back into the

void, after all, you were just us, thinking out loud.

Now that we are alone, let us try to draw some lessons before we put out the can-

dle for good. It seems there is an infinite dialectic between “whys” and “hows” in

direct connection to how theory and experiment have been intimately intertwined

during the development of modern physics 6. The experimentalist, for example,

will measure that some physical quantity is conserved; the theorist will call it

charge and unveil a symmetry of the dynamics. They will write down all possible

ways the relevant physical degrees of freedom, respecting such a symmetry, may

show up in the lab. Some expected behavior will not occur, some unexpected

6The situation today is much more subtle; we will not try to say something insightful about
the state of affairs of fundamental physics. An illustration of the generalized confusion within the
field, a clear by-product of not finding anything but the Higgs particle [8, 9] at the Large Hadron
Collider (LHC), is that noted phenomenologists are actually having imaginary conversations with
late friends in order to clarify their own ideas [10]. An alternative naive hope, besides the still
mythical “Nimatron” [11, 12], is that the cosmos, being the ultimate collider [13], will eventually
have something to say on all these matters, and at a much lower cost, for the taxpayers’ benefit.

7
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behavior will. They might get confused, maybe they will need to check their as-

sumptions. And there they go again, ad infinitum. Another possibility is that

the enlightened theorist leads the way; after long, tedious calculations he may be

able to tell the experimentalist “look that way” or “look this other way”. Maybe

they find something, maybe they do not. It is not important, as scientists are

known for their stubbornness; they will keep insisting. At the end of the day the

invariant lesson seems to be the same; “good” physics should always be driven by

data.

It is quite remarkable that cosmology, the study of the origin, evolution, and

eventual fate of the universe, has become data-driven science. It is time to get

real then, and talk about some facts regarding the current understanding of our

cosmos.

1.2 ... And Some Facts

The past two decades of advances in observational cosmology have brought

about a revolution in our understanding of the universe, transforming cosmology

from a largely speculative science, into a predictive science with precise agreement

between theory and observation. These advances include observations of type

Ia supernovæ [14, 15], measurements of temperature fluctuations in the cosmic

microwave background (CMB) [16–28], and maps of the distribution of large-scale

structure (LSS) [29], which have established a standard model of cosmology, the

so-called ΛCDM model. This is a universe filled with ∼ 69% “dark energy”,

∼ 25% “dark matter”, and only ∼ 5% ordinary atoms, as seen in Figure 1.2.

8
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Figure 1.2: Pie chart of our universe. Figure taken from [30].

Many noted researchers have referred to modern times as the “golden age of

cosmology”. Moreover, there is decisive evidence that large-scale structures were

formed via gravitational instability of primordial density fluctuations, and that

these initial perturbations originated from quantum fluctuations [31–35], stretched

to cosmic scales during a period of inflationary expansion [36–38] (an artist’s

impression of the evolution of the universe is shown in Figure 1.3).

Figure 1.3: Our best theory so far.
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However, it is fair to say that “the microphysical origin of inflation remains a

mystery, and it will require a synergy of theory and observations to unlock it”

[39].

In this thesis, we present our past and ongoing collaboration to both the “hows”

and the “whys” within the cosmic inflation paradigm.

In chapter 2 we introduce the concept of inflation from scratch. Following a

historical perspective, special emphasis is made on the most physically urgent

short-coming of Big Bang cosmology, namely the horizon problem.

In chapter 3 we present the modern understanding of inflation as a symmetry

breaking phenomenon [40, 41]. The effective field theory built upon this crucial

insight, is quite successful in encapsulating large classes (almost all) of single-field

inflation models, and drawing model-independent conclusions and predictions, by

careful consideration of the symmetry breaking pattern. We go through this con-

struction, not only because by now is “mandatory” background knowledge for

any theoretical cosmologist candidate, but also because we will actually use it in

subsequent chapters.

In chapter 4 we discuss “how” a well-motivated two-field model, which we have

dubbed “Generalized Natural Inflation” [42], may (or may not) predict sizable

new signals for future experiments in different regimes of its possible dynamics 7.

The reason behind our initial interest in this kind of model, in short, stemmed

from the fact that there is a non-trivial possibility that new physics, in the form of

(for example) interactions between the almost-free, very weakly-coupled “inflaton”

fluctuations and other not-so-massive degrees of freedom, may leave measurable

7“Unfortunately” for us, but fortunately for science, during the writing process of this dis-
sertation, Planck’s latest release [28] has basically ruled out the background model over which
we based our own, namely the seminal Natural Inflation model [43, 44]. These are the cons,
but also the pros, of working in phenomenological models that lie at the frontier of experimen-
tal science, if you ask us. Even though this is a “2σ” result, things do not look good for the
so-called “large-field models” class. Somewhat unexpectedly, the most popular models among
string theorists, namely axion monodromy models [45–48], are not in good shape these days.
Interesting times indeed. Falsifiability works, science works!
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imprints in the relevant cosmological correlation functions. This new program, in

which the cosmos itself is being understood as the ultimate “collider” [13], has its

roots in the so-called “quasi-single-field inflation” models [13, 49–61] (which are

quite interesting by themselves), and has opened several new venues of exploration

8 in the quest of observing new physics in the sky.

In chapter 5 we present the main framework and ideas (in their embryonic, heuris-

tic form) of ongoing research [64], associated with the fundamental nature of the

symmetry breaking patterns that inflation and general cosmological setups may

show, in the hope of understanding “why” the universe picked these particular,

subtle ways of evolving and becoming what it is today. In this sense, it is natural

to anticipate the development of an analogous program to that introduced in [65],

where the authors proposed a classification of all of condensed matter systems as

specific states that spontaneously break spacetime, gauge, and internal symme-

tries.

Finally, chapter 6 presents some concluding remarks, leaving some technical de-

tails for appendices A, B, and C.

Fear not, dear reader, if you get the feeling that this section is not self-contained

(even unintelligible) and many words and/or concepts are just alien to you at this

point. As we walk through the chapters of this dissertation, we will do our best

in carefully introducing and defining all the necessary ingredients, to make sense

of it all. Let us invite you then, on a journey that starts by understanding “why”

and “how” inflation was indeed, an unavoidable state of the primordial universe.

8See, for instance, [62, 63] and references therein.
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Chapter 2

The Inflationary Paradigm

In this chapter we discuss the historical events that led to the understanding

that “non-standard” physics, besides the naive Big Bang cosmology paradigm,

must have governed the very early universe evolution, in order to explain current

cosmological data. We then introduce one possible solution; cosmic inflation [36–

38].

2.1 Why Do We Need Cosmic Inflation? A Quick Roadmap

The groundbreaking work of Albert Einstein between 1907 and 1915 can be

summarized in a highly profound statement about the workings of nature. Ac-

cording to general relativity (GR), the observed gravitational attraction between

masses results from the warping of space and time by those masses. In the words

of John Wheeler “spacetime tells matter how to move; matter tells space how to

curve” [66]. The reason for the development of GR was that the preference of in-

ertial motions within special relativity (SR) was unsatisfactory [67]. In the article

“On the Relativity Principle and the Conclusions Drawn from it” [68], Einstein

argued that free fall is really inertial motion, and that for a free-falling observer

the rules of special relativity must apply. This is nothing but an incarnation of the

equivalence principle which itself is any of several related concepts dealing with

the equivalence of gravitational and inertial mass, and to the observation that

the gravitational “force” as experienced locally while standing on a massive body

(such as the Earth) is the same as the pseudo-force experienced by an observer in

a non-inertial (accelerated) frame of reference.
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In 1917, Einstein applied GR to the universe as a whole. He discovered that

his own field equations predicted a universe that was dynamic, either contracting

or expanding. However, observational evidence for a dynamic universe was not

known at the time, leading Einstein to introduce a “cosmological constant” term

to his field equations, to allow the theory to predict a static universe of closed cur-

vature, in accordance with his understanding of Mach’s principle 1. After Edwin

Hubble discovered in 1929 the recession of nebulae, Einstein abandoned his static

model of the universe. In the dynamic models that he proposed later [70, 71], he

discarded the cosmological constant as it was “in any case theoretically unsatisfac-

tory”. Even though these models turned out not to be good, complete descriptions

of the true dynamics of the cosmos, they are of historical significance as Einstein

importantly embraced the dynamic cosmology of Alexander Friedmann in their

development.

Between 1922 and 1924, Friedmann derived the main results of the so-called

Friedmann-Lemâıtre-Robertson-Walker (FLRW) model, which describes a homo-

geneous, isotropic, expanding or contracting universe [72, 73]. However, his work

remained relatively unnoticed by his contemporaries. In 1927, two years after

Friedmann died, Georges Lemâıtre arrived independently at results similar to

those of Friedmann, and in the face of the observational evidence for the expan-

sion of the universe obtained by Hubble [74], his results were noticed in particular

by the influential astrophysicist Arthur Eddington. In 1930-31 Lemâıtre’s paper

was translated into english and published [75]. The problem was further explored

during the 1930s by Howard P. Robertson and Arthur Geoffrey Walker, who rigor-

ously proved that the FLRW metric is the only one on a spacetime that is spatially

homogeneous and isotropic [76–79]. This is a geometric result that is actually not

tied to the equations of GR.

1A very general statement of Mach’s principle is “local physical laws are determined by the
large-scale structure of the universe” [69].
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In 1927 Lemâıtre already had proposed that the inferred recession of the nebulae

was due to the expansion of the universe [75]. In 1931 he went further and sug-

gested that the evident expansion of the universe, if projected back in time, meant

that the further in the past the smaller the universe was, until at some finite time

in the past all the mass of the universe was concentrated into a single point, a

“primeval atom” where and when the fabric of time and space came into existence

[80]. However during those years, almost every major cosmologist preferred the

eternal steady state universe [81, 82], where the density of matter in the expand-

ing universe remains unchanged due to a continuous creation of matter, adhering

to a “perfect” cosmological principle which asserts that the observable universe

is basically the same at any time as well as at any place 2. After World War

II Lemâıtre’s so-called Big Bang theory was advocated and developed by George

Gamow, who introduced big bang nucleosynthesis, the production process of nu-

clei other than those of the lightest isotope of hydrogen during the early phases of

the universe [83]. Contiguously, Ralph Alpher and Robert Herman predicted the

cosmic microwave background (CMB), remnant electromagnetic radiation from an

early stage of the universe in Big Bang cosmology [84]. For a while, support was

split between the steady state and the Big Bang models. The discovery and con-

firmation of the CMB in 1964 by Arno A. Penzias and Robert W. Wilson settled

the dispute in favor of the Big Bang theory [85]. Furthermore, in 1968 and 1970,

Roger Penrose, Stephen Hawking, and George F.R. Ellis showed that mathemat-

ical singularities were an inevitable initial condition of general relativistic models

of the Big Bang [86, 87]. Between the 1970s to the 1990s, cosmologists worked

on characterizing the features of the Big Bang universe and resolving outstanding

problems. In particular, in 1981 Alan Guth made a breakthrough in theoretical

work for resolving some of the shortcomings of the Big Bang cosmology with the

2The cosmological principle is the notion that the spatial distribution of matter in the universe
is homogeneous and isotropic when viewed on a large enough scale.
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introduction of an epoch of rapid expansion in the early universe; “inflation” [36].

The usual problems that cosmological inflation is able to address are the magnetic

monopoles, flatness, and horizon problems. Let us briefly state the former two as

the latter will be thoroughly discussed in the next subsection 3.

The magnetic monopoles objection was raised in the late 1970s when Grand Uni-

fied Theories predicted topological defects in space that would manifest as mag-

netic monopoles. These theories predicted an efficient production of such objects

in the hot early universe resulting in a density much higher than is consistent with

observations as no magnetic monopoles have never been found. This problem is

resolved by cosmic inflation, since it removes all point defects from the observable

universe.

The flatness problem is an observational problem associated with a FLRW met-

ric. Basically, the universe may have positive, negative, or zero spatial curvature,

depending on its total energy density. Curvature is negative or positive if the

energy density is less or greater than the so-called critical density, respectively.

The universe is flat if the density is exactly critical. The crucial point is that any

small departure from the critical density grows with time and yet the universe

today is highly close to flat. For instance one can calculate that at the relatively

late age of a few minutes, which is the time of nucleosynthesis, the density of the

universe must have been within one part in 1014 of its critical value or it would

not exist as it does today. Inflation drives the geometry to flatness, solving this

cosmological “fine-tuning” problem. Let us now pay more attention to a somehow

more fundamental issue of FLRW cosmology, the so-called horizon problem.

3For a comprehensive account of all these topics, see, e.g., [88].
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2.1.1 The Horizon Problem

As we have already discussed, it is an historical, empirical fact that our

universe, at large scales, is well-described by the spatially flat FLRW metric

ds2 = −dt2 + a2(t)dx2. (2.1)

To discuss the causal structure of this spacetime it is useful to introduce so-called

conformal time τ , defined through dt = a(τ)dτ , so that (2.1) becomes

ds2 = a2(τ)
[
−dτ 2 + dx2

]
. (2.2)

We see that for any a(τ), the maximum comoving distance |∆x| that a particle

can travel between τ1 and τ2 = τ1 + ∆τ is just |∆x| = ∆τ . In the usual Big

Bang cosmology, as the energy density of radiation ρr goes like ρr ∼ a−4, it

dominates the expansion at early times, and by tracing the evolution backwards,

it is inevitable to find a singularity a → 0. Choosing coordinates such that this

singularity happens at t = 0, the maximum comoving distance a particle can have

traversed since then is given by

|∆x| = ∆τ =

∫ t

0

dt′

a(t′)
=

∫ ln a(t)

−∞

d ln a

aH
, where H ≡ ȧ

a
. (2.3)

It can be shown that during the standard Big Bang evolution, ä < 0 ⇐⇒
d
dt

(
1
aH

)
> 0, so the integral in (2.3) is dominated by the contributions from late

times. Thus, the amount of conformal time that elapses between the singularity

and the formation of the CMB, the so-called recombination event, is much smaller

than the conformal time between recombination and today. Then we realize that

points in the CMB that are separated by more than one degree were never in

causal contact, according to the standard cosmology, as their past last cones never
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intersect before the spacetime terminates at the initial singularity. However, their

temperatures are observed to be the same, to one part in 104. Not only that, but

the observed temperature fluctuations are actually correlated on what seem to be

acausal scales. A picture is worth a thousand words, so let us consider Figure 2.1.

Figure 2.1: Spacetime diagram illustrating the horizon problem in comoving coordinates (figure
taken from [39], which itself is an adaptation from [89]).

Here we see a spacetime diagram illustrating the horizon problem in comoving

coordinates. The dotted vertical lines correspond to the worldlines of comoving

objects and “we” are the central worldlines. On each worldline the current red-

shifts of the comoving galaxies are labelled. Everything we currently observe lies

on our past light cone and the intersection of our past light cone with the CMB

spacelike slice corresponds to two opposite point on the CMB surface of last-

scattering. The past light cones of these two points, which are shaded gray, do

not intersect, so they appear to never have been in contact before the inevitable

doom of reaching the singularity.

2.1.2 Cosmic Inflation

To address the horizon problem, we may postulate that the so-called comov-

ing Hubble radius (aH)−1 was actually decreasing in the early universe, meaning
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d
dt

(
1
aH

)
< 0 ⇐⇒ ä > 0, so the integral in (2.3) is dominated by the contribu-

tions from early times. Consequently there is an additional range of conformal

time between the singularity and recombination. Actually, conformal time now

extends to negative values 4, so if the period of decreasing comoving Hubble radius

is prolonged enough, all points in the CMB do originate from a causally connected

patch of space, and so the observed correlations result from ordinary causal pro-

cesses at early times. Again, a picture is quite useful to get an understanding of

the physics.

Figure 2.2: Inflationary solution to the horizon problem (figure taken from [39], which itself is
an adaptation from [89]).

In Figure 2.2 we see that the so-called comoving Hubble sphere shrinks during

inflation and expands during the conventional Big Bang evolution, at least until

dark energy dominates. What used to be the spacelike singularity is replaced

by the so-called reheating surface, and τ = 0 does not mark the beginning of

4For example, in a de Sitter spacetime, where a = eHt = − 1
Hτ with H = constant, it is easy

to check that t
∣∣∞
0
→ τ

∣∣0
−∞, so conformal time is negative during inflation.
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spacetime but the end of inflation and the transition to the standard Big Bang

cosmology. We can explicitly see that all points in the CMB do have intersecting

past light cones and so can indeed originate from a causally connected region of

space. Quantitatively speaking, in an expanding universe a shrinking comoving

Hubble sphere implies

d

dt

(
1

aH

)
= −1

a

[
Ḣ

H2
+ 1

]
< 0 ⇐⇒ ε ≡ − Ḣ

H2
< 1, (2.4)

where we have defined the usual so-called first slow-roll parameter ε. We can

actually take the slow evolution of the Hubble parameter as the definition of

inflation. We see that the de Sitter limit is reached formally when ε → 0, so

inflation is usually said to correspond to “quasi”-de Sitter expansion. The exact

de Sitter limit obviously implies that

Ḣ = 0⇒ a(t) = eHt with H = constant. (2.5)

Within the slow-roll approximation the universe expands quasi-exponentially

a(t) ∝ exp

(∫
Hdt

)
≡ e−N (2.6)

where it is conventional to define the number of e-folds N with the sign convention

dN ≡ −Hdt, (2.7)

so that N is large in the far past and decreases as we go forward in time and as

the scale factor a increases. It can be shown that in order to solve the horizon

problem, we need inflation to last for a sufficiently long time, usually at least

N ∼ [50, 60] e-folds. To achieve this requires ε to remain small for a sufficiently
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large number of Hubble times. This condition is measured by a second parameter

η ≡ ε̇

ε H
. (2.8)

For |η| < 1, the fractional change of ε per Hubble time is small and inflation

persists.

Einstein’s equations in a spatially flat FLRW spacetime with a perfect fluid as

matter content lead to Friedmann equations,

3M2
PlH

2 = ρ and 6M2
Pl

(
Ḣ +H2

)
= − (ρ+ 3P ) , (2.9)

where ρ and P stand for the energy density and pressure of the fluid. These two

equations can be straightforwardly combined in the form

Ḣ = − 1

2M2
Pl

(ρ+ P ) , (2.10)

and then it is easy to reexpress ε as

ε =
3

2

(
1 +

P

ρ

)
, (2.11)

so that ε < 1 ⇒ P < −1
3
ρ. This is a violation of the so-called strong energy

condition (SEC), which requires that for every future-pointing timelike vector

field Xµ,

(
Tµν −

1

2
T ρρ gµν

)
XµXν ≥ 0, (2.12)

where T µν is the energy-momentum tensor of the matter sector. Since for a

perfect fluid, T µν = diag (ρ, P, P, P ), the SEC is equivalent to ρ + P ≥ 0 and

ρ + 3P ≥ 0. The historical reasons for wanting such a condition is that, via
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Einstein’s equations, the SEC implies the so-called Ricci convergence condition,

RµνX
µXν ≥ 0, with Rµν the usual Ricci tensor. This last condition is used

to prove that nearby timelike geodesics are always focussed towards each other,

a first critical step in proving singularity theorems and the like. However, it is

not too hard to find simple physical systems that violate the SEC: A scalar field

with negligible kinetic energy and positive potential 5. These are basically the

(now old) “new inflation” (or just “slow-roll”) models of Andrei Linde [37], and

Andreas Albrecht and Paul Steinhardt [38]. As the world is ultimately quantum

mechanical in essence, it is crucial to appreciate the non-trivial implications of

the classical inflationary background we have just discussed.

2.1.3 Cosmological “Free Lunch”: Primordial Perturbations

It is quite remarkable that the inflationary paradigm not only explains the

homogeneity of our universe, but also provides a mechanism to create the pri-

mordial inhomogeneities required for structure formation. This is an “automatic”

consequence of quantum mechanics around the inflationary quasi-de Sitter phase

of the universe 6. The theory of fluctuations was first calculated by russian physi-

cists Viatcheslav Mukhanov and Gennady Chibisov when analyzing Starobinsky’s

similar model [31, 92] 7. In the context of inflation, they were independently calcu-

lated in 1982 by four groups: Stephen Hawking [33]; Alexei Starobinsky [34]; Alan

Guth and So-Young Pi [32]; and James M. Bardeen, Paul Steinhardt and Michael

5Nowadays, it is the so-called averaged null enery condition
∫
C
Tµν k

µkνdλ, where kµ is any
future-pointing null vector field and C is any flowline (integral curve) of kµ, the one that has
been proven (on Minkowski spacetime) to be satisfied even within proper quantum mechanical
regimes, such as the Casimir effect.

6It has been stated that Paul Dirac somehow “prophesied” this fact as early as 1939 (see
[90]). However, it seems that this is a 1931 Lemâıtre’s original idea and Dirac almost surely got
it from him (see [91]).

7As early as 1979, Alexei Starobinsky noted that quantum corrections to GR should be impor-
tant for the early universe, and that such corrections generically lead to curvature-squared cor-
rections to the Einstein-Hilbert action. The solution to the modified Einstein’s equations, when
the curvatures are large, leads to an effective cosmological constant. Consequently, Starobinsky
proposed that the early universe went through an inflationary de Sitter era [93].
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Turner [35]. The rough idea is that the exponential growth of the scale factor

during inflation caused these primordial quantum fluctuations of the inflaton field

to be stretched to macroscopic scales while “freezing” upon leaving the horizon

8. During the later stages of radiation and matter domination, these fluctuations

supposedly re-enter the horizon, setting the initial conditions for structure forma-

tion.

In chapter 3 we will explicitly construct a well motivated two-field inflationary

model [42], with the aim of setting not only a theoretically controlled, fine-tuning

free inflationary background, but also a phenomenologically attractive quantum

theory of fluctuations. Before we introduce our specific two-field inflationary

model, it will prove quite useful to discuss the modern understanding of infla-

tion as a symmetry breaking phenomenon [40, 41].

8It is understandable that “hardcore” general relativists like our dear professor Ted Jacobson
may not like this terminology due to the fact that the concept of horizon in black hole physics
is quite different. However, in the cosmology community it is quite common to talk in these
terms, and things will not change as far as we can see. See Wikipedia to appreciate this fact.
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Chapter 3

The Effective Field Theory of Inflation

In this chapter we discuss the construction of the effective field theory of

inflation, which embodies the seminal idea that cosmic inflation occurs as a con-

sequence of the spontaneous symmetry breaking of time translational invariance

[40, 41] in the early universe.

3.1 Spontaneous Symmetry Breaking

In thermodynamics, a spontaneous process is the time-evolution of a system

in which it releases free energy and it moves to a lower, more thermodynamically

stable energy state. On the other hand, symmetry breaking is a phenomenon

in which infinitesimally small fluctuations acting on a system crossing a critical

point decide the system’s fate, by determining which branch of a bifurcation is

taken. Spontaneous symmetry breaking (SSB) is a spontaneous process of sym-

metry breaking, by which a physical system in a symmetric state ends up in an

asymmetric state. Technically speaking, the Lagrangian and the equations of mo-

tion still respect the symmetry but the lowest-energy vacuum solutions do not.

Our aim is to revisit the seminal idea of understanding cosmic inflation as an ex-

ample of SSB and discuss the associated Goldstone dynamics [40, 41]. In writing

this chapter, in some parts, we closely follow [39, 94].

3.1.1 SSB of Global Symmetries

For completeness, we review the familiar cases of SSB or global and (spin

1) gauge symmetries. Needless to say, everything here is, in some way or another,
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much more well covered in masterpieces such as [95]. Let us start by considering

a set of real scalar fields φi, i = 1, . . . , N , whose dynamics is determined by an

action that is invariant under some global symmetry group transformation

φi → φ′i = Uij φj, where U = eiθ
aGa , (3.1)

where the Ga are the generators of the group G, and the θa are spacetime-

independent parameters. If such fields acquire a vacuum expectation value (VEV),

meaning 〈φi〉 = vi, then the symmetry G is said to be spontaneously broken to

the subgroup H that leaves the vi invariant, meaning (TA)ij vj = 0, where the TA

are the generators of H. In contrast, the transformations in the coset G/H act

nontrivially on the vi’s, meaning (Xα)ij vj 6= 0, where the Xα are the “broken”

generators (generators of the broken symmetries). Now within SSB, spacetime-

independent transformations along the directions of broken symmetry connect

different vacua with the same energy and, as a result, for each broken generator

there is one “flat” direction in the space of field configurations 1. Fluctuations

along the flat directions are the famous Goldstone bosons. Goldstone’s theorem

asserts the existence of one massless Goldstone boson πα for every broken gen-

erator [97] 2. The usual way of introducing the Goldstone bosons is to act on

the vacuum configuration with the broken symmetry, but replacing the constant

1In short, we know since the seminal work of Emmy Noether, that every continuous symmetry
of the action of a physical system has a corresponding conservation law [96], i.e., there exists a
Noether current Jµ(x) such that ∂µJ

µ = 0. In the quantum theory, the conserved charge Q =∫
d3J0(x) is the operator that generates the symmetry transformation, and since it is conserved,

it commutes with the Hamiltonian, i.e. [H,Q] = 0. The operator Q corresponds to a conserved
charge no matter what vacuum we expand around. SSB occurs, by definition, if the symmetric
vacuum, with Q |Ω〉sym = 0, is unstable and the true, stable vacuum is charged Q |Ω〉 6= 0. If the
vacuum has energy E0, meaning H |Ω〉 = E0 |Ω〉, then HQ |Ω〉 = [H,Q] |Ω〉+QH |Ω〉 = E0Q |Ω〉
and therefore the state Q |Ω〉 is degenerate with the ground state.

2Using J0(x) and E0 as defined in footnote 1, we can construct states of 3-momentum p
from the vacuum as |π(p)〉 = − 2i

f

∫
d3x eip·x J0(x) |Ω〉 which have energy E(p) + E0. Here,

f is a constant of mass dimension 1 and the prefactor is just conventional. We see that since
|π(0)〉 = − 2i

f Q |Ω〉 has energy E0 we may conclude that E(p)→ 0 as p→ 0, so the Goldstones
are gapless. Note that this reasoning has not required us to assume a Lorentz-invariant dispersion
relation.
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transformation parameters θα with spacetime-dependent parameters πα(x), that

is

φ′i =
(
eiπ

α(x)Xα
)
ij
vj. (3.2)

One crucial fact is that, generically, the remaining directions in field space are

not flat, while the πα(x) parametrize massless excitations. Thus, the “massive”

directions decouple from the Goldstone dynamics, making the latter the natural

degrees of freedom of the low-energy effective field theory (EFT). The EFT is

determined by the symmetry-breaking pattern to a large degree, and is such that

the symmetries in H are linearly realized while those in G/H are nonlinearly

realized. To construct the EFT, one introduces the field

U(x) = eiπ(x)·X , where π(x) ·X ≡ πα(x)Xα. (3.3)

Then at lowest order in the derivative expansion, the unique G-invariant La-

grangian is given by

L (0)
eff = −f

2
π

4
Tr ∂µU

†∂µU, (3.4)

where fπ is a mass dimension 1 parameter. It is clear that there can be no

terms without derivatives as TrU †U = constant. Let us specialize to the case

G/H = SU(2), so that Xα = 1
2
τα where τα are the usual Pauli matrices, in order

to expand (3.4). In such a case we can think of the πα as the triplet of pions of

quantum chromodynamics (QCD). Using the normalization πc ≡ fπ π,

L (0)
eff = −1

2
∂µπc · ∂µπc −

1

6f 2
π

{
(πc · ∂µπc)2 − π2

c (∂µπc · ∂µπc)
}

+ . . . , (3.5)
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where use has been made of the “Killing form” 2 TrXαXβ = δαβ . We see the

appearance of an infinite series of non-renormalizable interactions. The symmetry

breaking pattern dictates relations among all these operators, with all couplings

determined by the single parameter fπ. This is the so-called “universal” part of

the action.

At higher order in the derivative expansion there exist additional non-universal

operators involving only single derivatives

L (0)
eff = −f

2
π

4
Tr ∂µU

†∂µU + c1

(
Tr ∂µU

†∂µU
)2

+ c2

(
Tr ∂µU

†∂µU Tr ∂νU
†∂νU

)
+ . . . ,

(3.6)

where c1 and c2 are model-dependent dimensionless constants. Expanding the

previous expression in terms of πc we would find new structures where individual

operators are related by the non-linearly realized symmetry. If we know a so-called

“UV-completion”, coefficients like c1 and c2 can be calculated in terms of the

parameters of the completion after integrating out the heavy modes of the high-

energy theory. When UV-completions are not known, the effective action provides

a model-independent description of the low-energy dynamics and coefficients like

c1 and c2 are, in principle, fixed (mostly bounded) by experiments.

The symmetry-breaking scale can be read off from the state

|π(p)〉 = −2i

f

∫
d3x eip·x J0(x) |Ω〉 , (3.7)

which is gapless, as proven in footnote 2. Taking the inner product with 〈πc(q)|

and integrating over
∫
d3p e−ip·y, one finds that

〈πc(q)| J0(t,y) |Ω〉 = iE(q)fe−iq·y, (3.8)
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where we have used the relativistic normalization 〈πc(q)|πc(p)〉 = 2E(q)(2π)3δ(q−

p). The current interpolates between the vacuum state |Ω〉 and the Goldstone bo-

son state |πc〉, with a strength set by the scale f . In other words, f is the “order

parameter” of the symmetry breaking, i.e., symmetry breaking occurs around

f . Now the current associated with the effective Lagrangian (3.5) is given by

Jµ = −fπ ∂µπc + . . ., so if |πc〉 is the state created by acting with the operator πc

on the vacuum state |Ω〉, then

〈πc(q)| Jµ(y) |Ω〉 = iqµf(q2)eiqy, (3.9)

where f(q2) = fπ + . . ., is the Lorentz-invariant version of (3.8), and fπ plays the

role of f . The symmetry is restored when the right-hand side of the above equation

vanishes, and this happens when higher-order corrections cancel the leading term

in f(q2), i.e., at energies of order fπ. Below fπ, weakly-coupled Goldstone bosons is

an appropriate description of the physics, while above fπ other degrees of freedom

become relevant. A fairly reliable method for identifying the cutoff of the effective

theory is to determine the so-called strong coupling scale, Λ. At this scale the

perturbative expansion breaks down. More formally, we may define the strong

coupling scale as the energy scale at which the loop expansion breaks down or

perturbative unitarity of Goldstone boson scattering is violated. One can then

derive that Λ = 4πfπ [95], as long as the non-universal interactions do not have

large coefficients cn � 1; otherwise Λ . 4πfπ. Let us now consider the case of

broken gauge symmetries.

3.1.2 SSB of Gauge Symmetries

It is usually stated that the term gauge symmetry is something of a mis-

nomer, as it is actually related to a redundancy of description which is introduced
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to have a local (Lagrangian) description of the physics, and not to a true phys-

ical symmetry with an associated conserved charge. Therefore, one may ask the

legitimate question of what does it mean to break a gauge symmetry. Roughly

speaking, we can always split the set of gauge transformations G intro those that

approach the identity at spatial infinity, G?, and those that do not, “G/G?”
3. We

call the latter the global part of the gauge transformation and it is only this part

that spontaneously breaks. Therefore, when we speak about the SSB of gauge

symmetries, it should be understood that G? is not broken as it still represents

the gauge redundancy of the system, while G/G? is a physical symmetry with a

corresponding non-trivial Noether current.

Now let us recall that the usual recipe to gauge a global symmetry is to replace

all partial derivatives with covariant derivatives,

Dµ ≡ ∂µ + igYMAµ, (3.10)

when acting on charged fields. Here Aµ = AαµXα are the gauge fields and gYM the

gauge coupling 4. As usual, the gauge fields transform as a connection

Aµ(x)→ U(x)

(
Aµ(x)− i

gYM

∂µ

)
U †(x). (3.11)

The low-energy effective theory is now given by

Leff = −1

4
TrFµν F

µν − f 2
π

4
TrDµU

†DµU + . . . (3.12)

or

Leff = −1

4
TrFµν F

µν − 1

2
∂µπc · ∂µπc −

1

2
m2Aµ · Aµ +m∂µπc · Aµ + . . . , (3.13)

3Here, G/G? is not a quotient group, but our abuse of notation does no harm as we only use
it in this paragraph in order to make a point.

4We use gYM (Yang-Mills) instead of the usual g to avoid confusion with the determinant of
the spacetime metric, namely g.

28



where m2 ≡ f 2
π g

2
YM. Even though the gauge fields have a mass, the Lagrangian

in (3.13) still possesses a gauge symmetry that relates physically equivalent con-

figurations
{
π′, A′µ

}
∼ {π,Aµ}. As usual, this redundancy of description can be

removed by fixing the gauge. There exists a gauge called the unitary gauge, where

π ≡ 0, so the theory is described in terms of massive vector bosons Aµ. The re-

verse process of introducing the Goldstones and the associated gauge redundancy

into the theory of massive vector bosons is usually known as the Stueckelberg trick

[98]. The advantage of describing the physics in terms of the Goldstone bosons

is that it makes the high-energy behavior of the theory manifest. In particular,

at high energies the scattering of the longitudinal modes of the gauge fields is

well described by the scattering of the Goldstone bosons; this is the essence of

the so-called Goldstone boson equivalence theorem [99] (see, e.g. [100], for a nice

discussion about the equivalence theorem). Indeed, since the mixing operator

∂µπc ·Aµ has one less derivative than the kinetic operator (∂µπc)
2, it is expectable

that the mixing becomes irrelevant at sufficiently high energies. One easy way of

explicitly seeing this is by taking the so-called decoupling limit,

gYM → 0, m→ 0, for fπ =
m

gYM

= constant, (3.14)

in which there is no mixing between π and Aµ, so the Goldstone boson part of the

action (3.13) becomes just (3.4). In the decoupling limit, what was a local (gauge)

symmetry effectively becomes a global one, and for energies above E > Emix = m,

the Goldstone bosons are the simplest way to describe the scattering of the massive

vector fields. If we were to restore finite g andm, corrections ofO
(
m
E
, g2

YM

)
become

perturbatively important.
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3.2 Symmetry Breaking in Cosmology

3.2.1 Broken Time Translations

Einstein’s GR can be thought of as a gauge theory, with general covariance,

that is invariance under space-time diffeomorphisms (diffs) xµ → x′µ = x′µ(xν),

as the gauge symmetry. In this setting, we may think that the metric tensor gµν

plays the role of the gauge fields sector of the theory 5. In cosmology, one is

primarily interested in looking at time reparametrizations, t → t′ = t′(xν). As

we have argued in the introductory paragraph of subsection 3.1.2 above, a gauge

symmetry is spontaneously broken if its “global part” is. It is well-known that any

time-like Killing vector defines a global symmetry. For example, time-translations

is a global symmetry of Minkowski space, which is generated by the time-like

Killing vector ξ = ∂t. In general, as we are interested in local dynamics, it does

not mater that such a vector is defined globally or not. For example, let us think

about de Sitter space, with the line element

ds2 = −dt2 + e2Htdx2. (3.15)

In spite of its appearence, this spacetime does not break time-translation symme-

try as the dilation isometry 6

t→ t+ λ, x→ e−Hλ x, (3.16)

5Attempts to quantizing gravity in exact analogy with Yang-Mills gauge theory are well-
known to be doomed to fail. Here we will deal with a quantum field theory on a classical
gravitational background, and thinking in analogy with gauge theory is quite helpful to build
intuition.

6Recall that by definition the isometries of a spacetime endowed with a metric gµν are
generated by Killing vector fields that satisfy Killing’s equation £ξ gµν = ∇µξν + ∇νξµ = 0,
where £ξ is the Lie derivative along the flow of ξµ, and ∇µ is the spacetime covariant derivative.
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implies the existence of a time-like Killing vector, at least in a patch of size H−1.

In this sense, a patch of perfect de Sitter spacetime has no preferred “time slice”,

as all slices are related by gauge transformations. In other words, de Sitter space

is “a state of gravity with unbroken time-translations” [94].

The de Sitter example is relevant as it represents the limiting case of most in-

flationary models. The expansion during inflation is of a quasi-de Sitter nature

because of the empirical evidence of a red tilt in the primordial power spectrum

[24] and because we need to exit the accelerating phase at some point, and it is

quite natural to think about this transition happening smoothly. Therefore, an

order parameter, or “clock”, measuring how much inflationary expansion remains,

needs to be present in the dynamics. One example could be the expansion rate

H as it is a monotonically decreasing function during inflation, Ḣ < 0. However

it proves to be more convenient to consider time-dependent expectation value(s)

ψm(t) of some matter field(s) ψm, such as an inflaton field φ or the inflationary

vacuum energy density ρ. Such expectation value(s) ψm(t) defines a 7 preferred

time slicing, and different time slices are defined and labeled by distinct values of

ψm, breaking the time-translation symmetry (3.16). This implies that a transfor-

mation of the form

t→ t+ π(t,x), (3.17)

is not a symmetry of the relevant action anymore 8. Hence, following the gauge

theory analogy, we should expect a Goldstone excitation, corresponding to a

7This assumption is necessary in order to describe so-called “single-clock” cosmologies.
8In other words, as we realize that inflation cannot be understood as a perfect de Sitter

background, there should be a Goldstone excitation upon application of the Stueckelberg trick.
This is actually a pragmatic way of realizing SSB for gauge symmetries; the gauge symmetry
is spontaneously broken if by applying the Stueckelberg trick to the action written in unitary
gauge, interacting Goldstone bosons are produced. Since a quasi-de Sitter spacetime does not
have a time-like Killing vector, such a transformation does not leave the action invariant and
therefore we expect Goldstone bosons in the spectrum of the theory.
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spacetime-dependent transformation along the broken generator, meaning

U(t,x) = t+ π(t,x). (3.18)

In chapter 5 we revisit the well-known fact that in the case of SSB of spacetime

symmetries, the counting of degrees of freedom is subtle in the sense that the

number of Goldstone bosons #, does not have to match the number of broken

symmetry generators, i.e. # 6= dim (G/H) in general. In the de Sitter case, even

though four isometries are being broken (one dilation and three so-called special

conformal transformations), there is only one Goldstone boson, namely π(x) as

introduced in (3.18).

3.2.2 Intermission I: Adiabatic Fluctuations

Before we show the construction of the EFT in unitary gauge, it is important

to stop for a second and understand the link between the Goldstone boson of SSB

of time-translations and the so-called adiabatic fluctuations of time-dependent

FLRW backgrounds. By definition, an adiabatic fluctuation is a specific type of

perturbation induced by a local, common shift in time of the homogeneous fields

δψm(t,x) ≡ ψm(t+ π(t,x))− ψm(t). (3.19)

We see that, at linear order, adiabatic fluctuations are proportional to the Gold-

stone π, δψm = ψ̇m π. The crucial fact that observations do not show any signs of

departures from purely adiabatic initial conditions, allows us to use the Goldstone

language to describe the data. In spatially flat gauge, gij ≡ a2(t) δij , all metric

perturbations are related to the Goldstone mode through Einstein’s equations.

For purely adiabatic fluctuations, we can perform a time shift t→ t− π(t,x), to

remove all matter fluctuations, δψm → δψm ≡ 0. This transformation induces an
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isotropic perturbation to the spatial part of the metric, δgij = a2(t) e2R(t,x) δij ,

where R = −Hπ + . . . and the ellipsis denotes terms that are higher order in

π. In other words, the so-called curvature perturbation in comoving gauge R is

proportional to the Goldstone boson π in spatially flat gauge, so for nearly con-

stant H we can think of R and π interchangeably. Crucially, R is a massless field,

which implies that it is conserved on superhorizon scales 9 [101]. In short, the free

action for R reads

S
(2)
R = M2

Pl

∫
d4x a3 ε

c2
s

{
Ṙ2 − c2

s

a2
(∇R)2

}
, (3.20)

which leads to the so-called Mukhanov-Sasaki equation, which in momentum space

is given by

v̈k + 3Hv̇k +
c2
s k

2

a2
vk = 0, (3.21)

where v ≡
√

2M2
Plε

c2s
R is a canonically normalized field. Here, cs is the so-called

speed of sound of the primordial perturbations that, in principle, may differ from

unity cs 6= 1, since Lorentz symmetry is broken by the time-dependence of the

background. The Mukhanov-Sasaki equation (3.21) is the equation of a simple

harmonic oscillator with a friction term provided by the expanding background.

The oscillation frequency depends on the physical momentum and is therefore

time-dependent,

ωk(t) ≡
cs k

a(t)
. (3.22)

9The Fourier modes of this field are the frozen primordial perturbations that play the role of
initial conditions for the subsequent Big Bang evolution, as mentioned by the end of subsection
2.1.3.
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At early times (small a), ω � H for all modes of interest. In this limit, the Hubble

friction is irrelevant and the modes oscillate as in Minkowski space. However, due

to the quasi-de Sitter expansion during inflation, the frequency of any given mode

drops exponentially, and at late times (large a), the dynamics is dominated by

friction, and the amplitude of the mode is constant. Then we say that the mode

“freezes at horizon crossing”, i.e. when ωk(t?) = H or cs k = aH(t?). Again, a

picture is quite useful here.

Figure 3.1: The evolution of curvature perturbations during and after inflation (Figure taken
from an updated version of [102]).

In Figure 3.1 we see that the comoving horizon (aH)−1 shrinks during inflation

and grows in the subsequent FLRW evolution, implying that the comoving scales

(cs k)−1 exit the horizon at early times and re-enter the horizon at late times. In

physical coordinates, the Hubble radius H−1 is constant and the physical wave-

length grows exponentially, λ ∝ a(t) ∝ eHt. For adiabatic fluctuations, the curva-

ture perturbations R = −Hπ = −H δφ

φ̇0
, do not evolve outside of the horizon, so

the power spectrum PR(k) at horizon exit during inflation can be related directly

to CMB observables at late times.
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3.2.3 Exploring the EFT of Inflation

After this intermission, and to get some intuition, we will quickly and not

systematically explore the EFT of the Goldstone mode. Let us come back to the

transformation function U(x) = t + π(x). This is the building block of the EFT,

and it should be a scalar under time-diffs. Therefore, under a time-diff we impose

t→ t+ ξ(x), π(x)→ π(x)− ξ(x) such that U(x)→ U(x). (3.23)

Now we should write the most general Lorentz-invariant action for the field U(x)

10, meaning

Sπ =

∫
d4x
√
−gL

[
U, (∂µU)2,�U, . . .

]
. (3.24)

The low-energy expansion should unify all known single-field models of inflation

and allow a systematic classification of interactions. Let us consider, for example,

the theory with the minimal set of operators

Ls.r. = Λ4(U)− f 4(U)gµν∂µU∂νU, (3.25)

where Λ(U) and f(U) are a priori free functions of the “invariant time” U = t+π

11. Considering such a system as the matter content coupled to dynamical Einstein

gravity, Friedmann’s equations on a flat FLRW spacetime demand that

Λ4(U) = −M2
Pl(3H

2(U) + Ḣ(U)) and f 4(U) = −M2
PlḢ(U). (3.26)

10Given that the background breaks Lorentz invariance, there is no reason why the EFT
should respect such a symmetry. However, this “quick and dirty” way of deriving the EFT does
work and it is good enough for entering the problem.

11Dear reader, please allow me not to explicitly write spacetime-dependence where obvious.

35



It can be shown that these equations can also be reached by demanding tadpole

cancellation for the Goldstone perturbation, i.e. 〈Ω| π(x) |Ω〉 = 0, so that the

action starts quadratic in π. Thus, at leading order the coefficients of the action are

therefore completely fixed by the FLRW background, so that (3.25) is necessarily

given by

Ls.r. = M2
PlḢ(U)gµν∂µU∂νU −M2

Pl(3H
2(U) + Ḣ(U)). (3.27)

Moreover, in unitary gauge, which can always be reached, U = t and we see that

Ls.r. = M2
PlḢg

00 −M2
Pl(3H

2 + Ḣ)→ −1

2
φ̇2

0(t) g00 − V (φ0(t))→ −1

2
gµν∂µφ∂νφ− V (φ),

(3.28)

where we have assumed a homogeneous field configuration φ = φ0(t) in a flat

FLRW background and we have used Friedmann’s equations in the form

Ḣ = − 1

2M2
Pl

φ̇2
0(t) and M2

Pl(3H
2 + Ḣ) = V (φ0(t)). (3.29)

In other words, we realize that the theory defined by (3.27) is nothing but slow-

roll inflation in disguise, hence the s.r. subscript in Ls.r..

This is a good place to note something rather generic. The slow-roll theory (3.27)

couples metric fluctuations δgµν with the Goldstone π. This is analogous to the

couplings between π and Aµ in the gauge theory example of subsection 3.1.2.

Moreover, just like in the gauge theory case, we may find a limit in which π alone

controls the dynamics, i.e., we may define a decoupling limit

MPl →∞, Ḣ → 0, for M2
PlḢ = constant, (3.30)
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which is formally the same limit as in (3.14) once we make the identifications

gYM ⇔ M−1
Pl and m2 ⇔ Ḣ. Indeed, considering the leading mixing operator

M2
PlḢπ̇ δg

00, which after canonical normalization of the fields πc ≡
√
M2

Pl|Ḣ|π

and δg00
c ≡MPlδg

00 becomes |Ḣ|1/2 π̇c δg00
c , we see that gravitational perturbations

decouple from the Goldstone mode for frequencies above ωmix ∼ ε1/2H, recalling

the definition ε ≡ |Ḣ|H−2. Therefore, for frequencies ω2 � |Ḣ| we can evaluate

the action for the Goldstone in the unperturbed de Sitter background gµν , so e.g.,

gµν∂µU∂νU → gµν∂µ(t+ π)∂ν(t+ π) = −1− 2π̇ + (∂µπ)2, with (∂µπ)2 ≡ gµν∂µπ∂νπ.

(3.31)

As we basically care about correlation functions evaluated at freeze-out, where

ω ∼ H, the decoupled Lagrangian for π will give accurate answers up to fractional

corrections ofO
(
H2

M2
Pl
, |Ḣ|
H2 = ε

)
12. In the decoupling limit, the EFT given by (3.27)

defines a massless, perfectly Gaussian theory for the fluctuations

L (2)
s.r.π = M2

PlḢ(∂µπ)2. (3.32)

Had we kept the mixing with gravity, and by using one of Einstein’s constraint

equations, whose solution is [103]

δg00 = 2εHπ, (3.33)

we would find a small mass term for the Goldstone boson so that the Lagrangian

is instead given by

L (2)
s.r.π = M2

PlḢ
{

(∂µπ)2 + 3εH2π2
}
, (3.34)

12Actually, since the characteristic energy scale is ω ∼ H, then ω2 � |Ḣ| ⇔ ε� 1, so in the
context of inflation, the decoupling limit is a very good approximation.
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where we are keeping next-to-leading order in slow-roll parameters. Crucially, such

a mass term is exactly what is needed to get, by using the relation R = −Hπ, the

free massless action (3.20) with cs = 1. Let us emphasize that the masslessness

of R, which implies its conservation outside the horizon, is an exact result even

though (3.34) involves a slow-roll approximation.

The near-perfect Gaussianity is not maintained once we consider higher orders

in the derivative expansion. For example we can add the next-to-leading order

single-derivative operator

LM2 =
1

2
M4

2 {gµν∂µU∂νU + 1}2 . (3.35)

Here, “-1” is substracted to cancel the tadpole and ensure that such a contribution

starts quadratic in π, and we assume a slow-roll condition, |Ṁ2| � HM2, for the

a priori time-dependent coefficient M2(t) 13. In the decoupling limit this operator

becomes

LM2 = M4
2

{
π̇2 − π̇(∂µπ)2

}
+O(π4). (3.36)

We appreciate that the non-linearly realized symmetry relates dispersion to inter-

actions, as the size of the kinetic operator π̇2 and the strength of the interaction

operator π̇(∂µπ)2 are related to the same EFT coefficient M2 [40]. We may add

13Indeed, as we are interested in quasi-de Sitter spacetimes, it is natural to assume that the
fractional change per Hubble time is small, not only for H and Ḣ, but for all the couplings of
the EFT. Assuming that all coefficients vary slowly implies that the action for the fluctuations
is approximately time-translation invariant. This additional global symmetry should not be
confused with the broken time-translation symmetry of the background. More to the point, in
the unitary gauge, and by assuming monotonicity, the authors of [40] claim that one can always
perform a field redefinition such that φ0(t) = t, so invariance under time-translation is implied
by the approximate shift symmetry φ→ φ+ constant. This symmetry and the time-translation
symmetry of the φ Lagrangian are broken down to the diagonal subgroup by the background.
This residual symmetry is the approximate time shift symmetry in the unitary gauge Lagrangian.
We will have more to say about all this in the coset approach discussed in chapter 5.
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now (3.32) and (3.36) to get

L (2)
s.r.π + LM2 =

−M2
PlḢ

c2
s

{
π̇2 − c2

s

(∇π)2

a2
− (1− c2

s)π̇(∂µπ)2

}
, (3.37)

where we have defined the speed of sound as

1

c2
s

≡ 1− 2M4
2

M2
PlḢ

. (3.38)

We see that as Ḣ < 0 during inflation, we need that M4
2 > 0 to avoid superlu-

minal propagation for the fluctuations. We can arrive to the same condition by

noting that even before defining cs, the time-kinetic operator would have a coef-

ficient given by the combination −M2
PlḢ + 2M4

2 which should be positive (> 0)

in order to avoid instabilities, and again, since Ḣ < 0 during inflation, we are

led to demand M4
2 > 0. This single condition then ensures that our Goldstone

π is neither a tachyon nor a ghost. The non-trivial relation between dispersion

and interactions is explicit in (3.37), where we see that if c2
s � 1 we have large

interactions, and this is related to the size of M4
2 , since M4

2 �M2
Pl|Ḣ| ⇔ c2

s � 1.

In chapter 4 we will extensively discuss a two-field model from which we will be

able to explicitly calculate a non-trivial speed of sound for the adiabatic pertur-

bations in terms of the couplings of such a UV-completion.

Let us end this heuristic exploration by noting that adding higher powers of

(gµν∂µU∂νU + 1) reproduces the so-called P (X)-theories [104, 105], where the in-

flaton Lagrangian is a functional of the inflaton kinetic operator X ≡ −1
2
(∂µφ)2,

meaning

LP (X) = P (X,φ). (3.39)
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Going to unitary gauge, where φ = φ0(t), we find

LP (X) = P

(
−1

2
φ̇2

0 g
00, φ0

)
= M2

PlḢg
00 −M2

Pl(3H
2 + Ḣ) +

∞∑
n=2

M4
n(t)

n!

(
δg00

)n
,

(3.40)

where

M4
n(t) ≡

(
−1

2
φ̇2

0

)n
∂nP

∂Xn
. (3.41)

Let us now go through the systematic, geometrical approach, for the construction

of the EFT of inflation.

3.2.4 EFT Construction in the Unitary Gauge

Instead of following the usual construction for the EFT that we have been

discussing so far, i.e. equation (3.24), we will now uncover the EFT from a

geometrical perspective [40, 41]. The goal is to write the most general EFT for

the metric perturbations around a FLRW background. We have already discussed

that for purely adiabatic fluctuations, we can remove any matter perturbations

δψm by a local time shift that takes us to the unitary gauge π = 0; the scalar

degree of freedom is “eaten” by the metric gµν
14. Logically, after we fix the gauge,

the action needs only be invariant under spatial diffs xi → xi + ξi(x). We can still

14Here, and in many places, analogies with usual gauge theory break down. For instance, in
electroweak theory (EW), by “eating” the Goldstones the EW gauge bosons actually get mass,
which is what one explictly sees in unitary gauge, as in the little picture in Figure 3.2 below.

Figure 3.2: Three poor little Goldstones get eaten by bottomless gauge bosons while a lucky
Higgs lives to tell the tale.
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write down operators that are invariant under all diffs, like curvature invariants

R,RµνρσRµνρσ and the like 15, but the reduced symmetry allows us now to write

several new terms in the effective action. As we have discussed in subsection 3.2.1,

the time-dependence of the background fields ψm(t) picks a preferred foliation of

the spacetime into a series of spacelike hypersurfaces Σt. Metric perturbations

on Σt then describe adiabatic fluctuations. It is natural to introduce a unit four-

vector nµ orthogonal to Σt. A natural candidate for such a normal would be given

by

nµ ≡ −
∂µψm(t)√

−gνρ∂νψm(t)∂ρψm(t)
, (3.42)

where the overall minus sign is convention and we are explicitly normalizing the

vector. Assuming monotonicity, one can always use a field redefinition to set

ψm(t) = t, so that

nµ = −
δ0
µ√
−g00

. (3.43)

Therefore, by contracting covariant tensors with nµ we will produce objects with

uncontracted upper “0” indices, such as g00 and R00. Actually, the latter are

scalars under spatial diffs 16 so functions of such objects are allowed in the EFT

This is not what happens in the gravitational case, since the scalar degree of freedom cannot
be understood as corresponding to a mass term for the graviton (in 4d a massive spin 2 particle
has 5 degrees of freedom, 3 more than the massless case). The usual lore is that “gravity cannot
be Higgsed”.

15Dear reader, please excuse me for using such a cumbersome notation for the Ricci scalar,
the Riemann tensor, and so on. I am explicitly saving the familiar letter “R” for later use in
the manuscript.

16For an arbitrary tensor field, say X µν(x), its transformation rule under a diff implies

X µ
′ν′(x′) =

∂x′
µ

∂xρ
∂x′

ν

∂xσ
X ρσ ⇒ X 0′0′(x′) =

∂x′
0

∂xρ
∂x′

0

∂xσ
X ρσ(x)

= X 00(x) + ∂µξ
0(x)X µ0(x) + ∂µξ

0(x)X 0µ(x)

+ ∂µξ
0(x)∂νξ

0(x)X µν(x), (3.44)

so X 00(x) is indeed a scalar under spatial diffs t→ t, xi → xi + ξi(x).
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action. More generally, products or any four-dimensional covariant tensors with

free upper 0 indices, but with all spatial indices contracted, are allowed operators.

Finally, we may have three-dimensional quantities describing the geometry of the

hypersurfaces Σt, such as the induced metric,

hµν ≡ gµν + nµnν , (3.45)

the extrinsic curvature,

Kµν = h ρ
µ ∇ρnν , (3.46)

and the Riemann curvature R̂µνρσ of the induced metric, i.e. the Riemann curva-

ture on Σt. Note however, that using R̂µνρσ is redundant as it can be rewritten

using the well-known Gauss-Codazzi relation (see, e.g., [106])

R̂αβγδ = h µ
α h ν

β h
ρ
γ h

σ
δ Rµνρσ −KαγKβδ +KαδKβγ . (3.47)

Thus, we can forget about the 3d Riemann tensor altogether. Also, we may avoid

using the induced metric explicitly, as through (3.45), it can be expressed in terms

of the normal and the 4d metric. Furthermore, we may avoid the use of covariant

derivatives with respect to the induced metric as the 3d covariant derivative of a

projected tensor may be obtained as the projection of the 4d covariant derivative.

Finally, the determinant of the induced metric h is related to the one of the full

metric 4d metric by h = g00g and the completely antisymmetric 3d tensor can be

rewritten in terms of the 4d one as
(√

h
)−1

εijk = (
√
−g)

−1
(√
−g00

)−1

ε0ijk. We

conclude then, that the most general action in unitary gauge is given by

S =

∫
d4x
√
−gL

[
Rµνρσ , g

00, Kµν ,∇µ; t
]
, (3.48)
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where all the free indices inside L must be upper 0’s and spacetime indices are

contracted with the 4d metric gµν .

3.2.4.1 Universal Part of the Action

A flat FLRW spacetime has the following associated background quantities:

g00 = −1, R ≡ R
µ

µ = 12H2 + 6Ḣ, K ≡ K
µ

µ = 3H. (3.49)

Expanding (3.48) around this background leads to

S =

∫
d4x
√
−g
{

Λ0(t) + c1(t)
(
g00 − g00

)
+ c2(t)

(
K −K

)
+ c3(t)

(
R −R

)
+ . . .

}
,

(3.50)

where we have only explicitly written operators that are linear in the pertur-

bations. The breaking of time-diff invariance allows us to put arbitrary time-

dependence in the coefficients of the EFT. It is easy to convince ourselves that

we can always absorb most time-dependent pieces into the zeroth-order operator

Λ0(t) and, through a conformal transformation of the metric, get rid of the c3(t)

coefficient in front of the Ricci scalar, effectively picking the so-called “Einstein

frame”. Furthermore, the term linear in K can be traded for a function of g00 17.

Therefore we can rewrite our action in the form

S =

∫
d4x
√
−g
{
M2

Pl

2
R − Λ(t)− c(t)g00

}
+ ∆S, (3.51)

17Indeed, under the integrated volume-form
∫
d4x
√
−g, we see that f(t)Kµ

µ = f(t)∇µnµ =

−nµ∂µf(t) = +
√
−g00ḟ(t). If you are missing the possible allowed term R00, consider the geo-

metrical identity [106] (−g00)R00 = Rµνn
µnν = K2−KµνK

µν −∇µ(nµ∇νnν) +∇ν(nµ∇µnν).
The last two terms, under the integrated volume-form give, respectively, f(t)∇µ(nµ∇νnν) =
−∂µf(t)nµKν

ν and f(t)∇ν(nµ∇µnν) = −∂νf(t)nµ∇µnν = 0, where in the last equality use has
been made of ∂νf(t) ∝ nν .
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where ∆S denotes terms of quadratic order and higher and we have set the correct

normalization of the good old Einstein-Hilbert term. The functions Λ(t) and c(t)

are determined by the FLRW background which we have expanded around. As

previously emphasized, by expanding around the correct background solution we

automatically take care of the annoying tadpoles, i.e., terms linear in fluctuations

vanish. Varying the linear terms in (3.51) with respect to the metric gives the

Friedmann equations

3M2
PlH

2 = c(t) + Λ(t) and 3M2
Pl(Ḣ +H2) = Λ(t)− 2c(t), (3.52)

or

Λ(t) = M2
Pl(3H

2 + Ḣ) and c(t) = −M2
PlḢ. (3.53)

This way, we set once and for all the “universal” part of the total action, which

now reads

S =

∫
d4x
√
−g
{
M2

Pl

2
R −M2

Pl(3H
2 + Ḣ) +M2

PlḢg
00

}
+ ∆S. (3.54)

3.2.4.2 Higher-Order Terms

It is wise to write ∆L , where ∆S ≡
∫
d4x
√
−g∆L , as an expansion in

powers of fluctuations, i.e.,

∆L =
1

2!
M4

2 (t)
(
δg00

)2
+

1

3!
M4

3 (t)
(
δg00

)3
+

1

4!
M4

4 (t)
(
δg00

)4
+ . . .

− 1

2
M̄3

1 (t)δg00δK − 1

2
M̄2

2 (t)(δK)2 − 1

2
M̄2

3 (t)δKµ
ν δK

ν
µ + . . . , (3.55)

where δg00 ≡ g00 + 1 and δKµν ≡ Kµν − a2Hhµν .

In principle, this approach also encodes high energy effects for gravity, specifically

in operators containing perturbations in the Riemann tensor δRµνρσ . However,
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as these corrections are of higher order in derivatives, they are not usually taken

into account.

3.2.4.3 Stueckelberg Trick for the EFT of Inflation

The unitary gauge action in (3.54) describes three degrees of freedom, namely,

the two graviton helicities and a scalar mode. We will now make use of the

Stueckelberg trick; we perform a broken time-diff so that the Goldstone degree of

freedom becomes manifest. Moreover, through such a procedure, the Goldstone π

actually restores the gauge-invariance of the theory. Concretely, we perform the

spacetime-dependent time reparametrization

t→ t′ = t+ π(x), xi → x′i = xi. (3.56)

Under this transformations, good old quantities like the four-dimensional Ricci

scalar R and the volume form d4x
√
−g are invariant under general four-dimensional

diffs, so they are invariant under (3.56), thus making no contribution to the Gold-

stone action. On the other hand, a generic function of time f(t) transforms as

f(t)→ f(t+ π) = f(t) + ḟπ +
1

2
f̈π2 + . . . , (3.57)

i.e., we just “Taylor-expand” in powers of π around t. This implies that, e.g.,

δR ≡ R −R transforms as

δR → δR − Ṙπ + . . . . (3.58)
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Furthermore, contravariant and covariant tensor components transform as

X µν → ∂x′µ

∂xρ
∂x′ν

∂xσ
X ρσ =

(
δµρ + δµ0∂ρπ

)
(δνσ + δν0∂σπ)X ρσ, (3.59)

Xµν →
∂xρ

∂x′µ
∂xσ

∂x′ν
Xρσ =

(
δρµ + δρ0∂µπ

)−1
(δσν + δσ0∂νπ)−1Xρσ . (3.60)

Therefore, for the contravariant components of the metric we find that

g00 → g00 + 2∂µπ g
0µ + ∂µπ ∂νπ g

µν , (3.61)

g0i → g0i + ∂µπ g
µi, (3.62)

gij → gij, (3.63)

while covariant components can be written as an expansion in π.

Finally, when dealing with three-dimensional quantities characteristic of the t =

constant surface, such as the extrinsic and intrinsic curvatures Kµν and R̂µν , it is

important to note that under a change of coordinates, they do not just transform

covariantly, as the surface Σt relative to which they are defined changes too. The

spatial components of the extrinsic curvature orthogonal to the constant time

hypersurface are given by

Kij =
1

2

√
−g00

(
∂0gij − ∂ig0j − ∂jgi0

)
, (3.64)

which, by using (3.60) for the metric gµν , transform to linear order as

Kij (x
µ)→ K ′ij(x

′µ) =
1

2

√
−g00 (1 + π̇)

[
(1− π̇) ∂0gij − ∂i

(
g0j + ∂iπ

)
− ∂j (gi0 + ∂iπ)

]
= Kij − ∂i∂jπ, (3.65)
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where the Kij in the last line is the extrinsic curvature orthogonal to the constant

t hypersurfaces of the new coordinates 18. A similar agument holds for R̂ij .

Now, even if we just consider, for simplicity, the terms coming from powers of g00,

the Goldstone action is quite complicated

S =

∫
d4x
√
−g
{
M2

Pl

2
R −M2

Pl

(
3H2(t+ π) + Ḣ(t+ π)

)
+M2

PlḢ(t+ π)
(
g00 + 2∂µπg

0µ + ∂µπ∂νπg
µν
)

+
∞∑
n=2

M4
n(t+ π)

n!
(1 + g00 + 2∂µπg

0µ + ∂µπ∂νπg
µν)n

}
. (3.67)

Here, the Goldstone mixes with the metric perturbations in a highly non-trivial

way so one may wonder: What have we gained by using the Stueckelberg trick

to get out of the unitary gauge? This is when we remember the good old equiv-

alence theorem for the Goldstone of time-translations that we already discussed

in subsection 3.2.3. To repeat, under the decoupling limit, MPl →∞ and Ḣ → 0

with M2
PlḢ = constant, gravitational fluctuations decouple from the Goldstone

mode for frequencies above ω2
mix = |Ḣ|. Therefore, for frequencies ω > ωmix, we

can evaluate (3.67) in the unperturbed spacetime gµν to get

S =

∫
d4x
√
−g
{
M2

Pl

2
R −M2

Pl

(
3H2(t+ π) + Ḣ(t+ π)

)
+M2

PlḢ(t+ π)
(
−1− 2π̇ + (∂µπ)2

)
+
∞∑
n=2

M4
n(t+ π)

n!
(−2π̇ + (∂µπ)2)n

}
,

(3.68)

18A somewhat more formal approach [39] would be to first write Kµν in terms of the four-
dimensional metric

Kµν =
δ0
ν∂µg

00

2 (−g00)
3/2

+
δ0
µδ

0
νg

0σ∂σg
00

2 (−g00)
5/2

−
g0σ

(
∂µgσν + ∂νgσµ − ∂σgµν

)
2 (−g00)

1/2
, (3.66)

and now use the transformation of the metric to determine how Kµν transforms. Of course,
using this prescription, K ′ij(x

′µ) coincides with (3.65) at linear order in π.
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which is good up to errors of O
(
ω2

mix

ω2

)
.

In the EFT we have constructed so far, all the coefficients may have, a priori,

generic time-dependence, but we will assume slow-roll conditions on them, i.e.

|Ṁ |M−1 � H for a generic coefficient M (see footnote 13). With this assumption

the Lagrangian is approximately time-translation invariant so the time dependence

is suppressed in a “technically natural” way 19. This last fact is quite important

because the rapid time dependence may win against the Hubble friction, so that

inflation may cease to be a dynamical attractor, which is necessary to solve the

homogeneity problem of standard FLRW cosmology 20. In this limit, the action

for the relevant degrees of freedom dramatically simplifies to

S =

∫
d4x
√
−g
{
M2

Pl

2
R −M2

PlḢ

(
π̇2 − (∇π)2

a2

)
+ 2M4

2

(
π̇2 + π̇3 − π̇ (∇π)2

a2

)
− 4

3
M4

3 π̇
3 + . . .

}
. (3.69)

With this action one is able to compute all the observables which are not domi-

nated by the mixing with gravity. Recalling that R = −Hπ is conserved outside

the horizon, the problem of computing predictions for present cosmological obser-

vations is reduced to calculating correlation functions just after horizon crossing,

meaning we are interested in studying the theory with an IR cut-off of O(H). If

the decoupling scale ωmix is smaller than H, the action (3.69) gives correct predic-

tions up to terms suppresed by ωmix

H
. When the mixing with gravity is important,

the full action (3.54) does contain everything we need to calculate accurate pre-

dictions.

By the way, we could also “explore” several limits of the general theory (3.54)

19In words of Matthew Schwartz [100], “It is technically natural for a parameter to be small
if quantum corrections to the parameter are proportional to the parameter itself. This happens
if the theory has an enhanced symmetry when the parameter is zero”. The notion of technical
naturalness was introduced by Gerard ’t Hooft in [107].

20“Ultra slow-roll” inflation seems to be a counter-example to this statement. See [108] and
references therein.
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as we did in subsection 3.2.3, but we would arrive basically to the same findings,

e.g.:

• The background operators recover the slow-roll inflation “class”.

• If we keep the mixing with gravity we find a small mass term for the Gold-

stone, exactly such that R is massless, therefore conserved after horizon-

crossing.

• Having a non-vanishing M2 coefficient is equivalent to the existence of a

non-trivial speed of sound given by c2
s =

M2
Pl|Ḣ|

M2
Pl|Ḣ|+2M4

2

. In order to avoid

superluminal propagation for the fluctuations, we must impose M4
2 > 0.

Furthermore, the nonlinearly-realized time-translation symmetry relates a

small sound speed to large interactions.

• The theory defined by
∑∞

n=2
M4
n(t)
n!

(δg00)
n

is equivalent to a P (X) theory.

Let us just mention, for completeness, that operators involving the extrinsic cur-

vature fluctuation in (3.55) are relevant in dealing with more exotic models such

as ghost inflation [109] and Galileon inflation [110], and the phenomenology of

these contributions to the Goldstone dynamics was worked out in [111] and [112],

respectively. For us, the action given in (3.69) will be more than enough. In the

next chapter we will motivate and introduce our own two-field model of inflation,

dubbed “Generalized Natural inflation”.
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Chapter 4

Generalized Natural Inflation

4.1 Motivation

As we have discussed so far, inflation is a well established framework that

resolves several puzzles in big bang cosmology. The well known flatness, hori-

zon and monopole problems can successfully be tackled by demanding a period

of quasi-exponential expansion of the early universe [36–38]. While this classical

picture is quite nice by itself, the quantum implications of this idea are also far

reaching. Roughly speaking, all the structure in the universe can be understood as

arising from primordial quantum fluctuations of the inflaton field [31]. To success-

fully match the percent-level deviation from perfect scale-invariance of the power

spectrum of gauge-invariant primordial curvature perturbations that current ob-

servations demand, a considerable exponential growth of the scale factor a(t) of

the flat FLRW geometry is required, which is translated into several “slow-roll”

conditions over the potential for the inflaton field. Many models that realize this

slow-roll inflation scenario have been proposed over the years [113, 114].

The power spectrum contains all the information about the primordial per-

turbations if the initial conditions are drawn from a Gaussian distribution func-

tion. However, higher-order correlations may encode a significant amount of new

information, as they are sensitive to non-linear interactions, while the power spec-

trum only probes the free theory. In the early 2000s, Maldacena proved that so-

called non-Gaussianities for primordial scalar fluctuations in the simplest 1 infla-

tionary models are generically suppressed by slow-roll parameters [115], meaning

1By simplest we mean single scalar field slow-roll inflation with a canonical kinetic term plus
Einstein gravity using the so-called Bunch-Davies vacuum.
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fNL ∼ O(ε, η), where the non-linear parameter fNL is a measure of the amplitude

of non-Gaussianities, ε ≡ − Ḣ
H2 and η ≡ ε̇

εH
are the usual slow-roll parameters of

inflation 2. Consequently, since slow-roll conditions demand {ε, η} � 1, we should

abandon the possibility of observing such features if Nature really picked up this

single-field slow-roll scenario as it is highly unlikely that we will ever be able to

disentangle these “quantum” non-Gaussianities from “classical” ones that arise

from CMB evolution [118] and from LSS [119] (due to the non-linear gravitational

evolution or the galaxy bias), with fNL ∼ O(1) as the natural size of these effects.

One way out of this “no-go” situation is to consider the so-called P (X) theo-

ries [104, 105], where X ≡ −1
2
(∂µϕ)2 and ϕ denotes the inflaton field. These theo-

ries may produce large non-Gaussianities without disrupting the inflationary back-

ground solution by respecting a mildly broken shift symmetry ϕ→ ϕ+ constant,

though it is important to keep in mind that it is a challenge to find a radiatively

stable P (X) scenario 3. It has been found that P (X) theories generically predict

that fNL ∼ c−2
s , where cs is the “speed of sound” of adiabatic fluctuations. Con-

sequently, in principle, a non-trivial (small) speed of sound can lead to observable

non-Gaussianities.

Another logical possibility is to consider additional fields during inflation.

One crucial property of these fields is their mass, collectively denoted as m, com-

pared to the Hubble scale H. There is an extensive literature regarding the case

when these extra fields are light or even massless so that m2 � H2 (see [122, 123]

for a review). This range of masses implies that non-Gaussianities will be effec-

tively generated from non-linearities after horizon crossing, when all modes have

become classical. At the other end, in the very massive case, meaning m2 � H2,

we can always “integrate out” the heavy fields, leading to a simplified theory by

2It is now understood that in the local subcase, f local
NL = 0, for all single-field inflation models

[116, 117]. See appendix A for an exact definition of f local
NL .

3One example of a radiatively stable UV-completion, where the form of the action is protected
by a “higher-dimensional boost symmetry” is the case of DBI inflation [120, 121].
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producing new (non-slow-roll) operators in the effective field theory (EFT) for

the inflaton. The so-called Quasi-Single-Field (QSF) inflation models [13, 49–61]

explore the third relevant regime, m2 ∼ H2, where the new particles can in prin-

ciple be produced by quantum fluctuations during the inflationary stage and then

decay into inflatons, leaving a statistical imprint on the spectrum of primordial

fluctuations. Importantly, the production of these particles gives rise to non-local

effects which cannot be captured by a single-field EFT and can potentially give

rise to observable non-Gaussianities.

There are several arguments for why it is reasonable to expect that the inflationary

paradigm should naturally incorporate particles with such masses 4 and how they

may show up in the “cosmological experiment”, as has been recently emphasized

in [13].

In this chapter, we will introduce and explore a two-field model that we

unimaginatively dub “Generalized Natural Inflation” (GNI), a well-motivated gen-

eralization or “UV-completion” of the influential Natural Inflation (NI) scenario

[43, 44]. Let us recall that single-field NI originally conceived the seminal idea

that the inflaton is a pseudo-Nambu-Goldstone boson (pNGB) so it naturally has

an exceptionally flat potential, which is a slow-roll requirement. In our model the

inflaton plays the role of the phase θ of a complex scalar field χ ∼ σ eiθ, and the

radial mode σ is taken to be dynamical, with a mass mσ determined by the spon-

taneous breaking of a global U(1) symmetry. To give a small mass to the would-be

Goldstone (inflaton) field, so slow-roll conditions are satisfied, we softly break the

U(1) symmetry by a relevant operator. We will consider the cases m2
σ � H2 and

4For example, consider the case when supersymmetry (SUSY) is invoked to tame the quantum
corrections to the inflationary potential. Under the assumption that SUSY is not broken at
energies higher than the inflationary scale H, the vacuum energy during inflation will surely
break it as there is no supersymmetric theory in de Sitter space. This implies that additional
fields which are not protected by global symmetries will inherit Hubble scale masses from SUSY
breaking (this is related to the so-called “eta problem” of supergravity inflation models [124]).
See [51] for details.

52



m2
σ ∼ H2 and find estimates for the non-Gaussianities that may arise in these

scenarios 5. The latter QSF regime is specially interesting, as we are effectively

able to constrain an a priori arbitrary potential for the so-called “isocurvature”

mode of the original (vanilla) QSF model of Chen and Wang [49, 50].

This chapter is structured as follows. In section 4.2 we introduce our model

and go through the analysis of its associated inflationary background solution. We

discuss how suitable initial conditions can lead to observable non-Gaussianities by

dynamically decreasing the speed of sound of adiabatic fluctuations. We calculate

the observables of the inflationary model and discuss its current viability given up-

dated bounds coming from Planck 2015 [24] and Planck/Bicep [125] missions. In

section 4.3 we discuss the theory of inflationary perturbations. First, we analyze

the case when the radial field is very massive so it can be naively integrated out.

We contrast the predictions for non-Gaussianities of our model when neglecting

[126], as opossed to taking into account [55], the self-interactions of the heavy

field. Then we address the QSF regime and obtain quantitative estimates for the

size of non-Gaussianities. We find that, contrary to naive expectations, due to the

tight observational constraints on the parameters of the model, non-Gaussianities

are unobservably small.

5We briefly consider the case m2
σ � H2 in subsection 4.3.2.3, where we demonstrate why

this case is rather uninteresting for our particular model.
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4.2 The Inflationary Background

4.2.1 Multifield Inflation

Let a “multifield” theory 6 be described by the following action [128]

S[g, φ] =

∫
d4x
√
−g
{
M2

Pl

2
R − 1

2
γab(φ)gµν∂µφa∂νφb − V (φ)

}
, (4.1)

where γ(φ) is a “field metric”, φa is a “vector” in field space, and V (φ) is some

potential for the scalar fields. From γ(φ) we can construct a Christoffel symbol

Γabc =
1

2
γad (∂bγcd + ∂cγbd − ∂dγbc) , (4.2)

and a corresponding curvature tensor

Ra
bcd = ∂cΓ

a
bd − ∂dΓabc + ΓaceΓ

e
db − ΓadeΓ

e
cb. (4.3)

Varying (4.1) with respect to φa we get the field equations

�φa + Γabc g
µν∂µφ

b∂νφ
c = V a, (4.4)

where V a ≡ γab ∂bV . It is amusing to note the resemblance of this set of equations

with the geodesic equation of motion of a relativistic particle in a non-trivial

spacetime background under the influence of external (non-gravitational) forces.

Now if we assume that φa = φa(t) and ds2 = −dt2 + a2(t)dx2, the field equations

6Usually the so-called multifield inflation scenario is understood to be one equipped with a
shift symmetry, i.e., σi → σi + constant for the non-adiabatic (isocurvature) directions σi, so
they remain light [127]. We do not assume such a constraint in the present multifield formalism.
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for φa along with Einstein’s equation for the spacetime metric read

D

dt
φ̇a + 3Hφ̇a + V a = 0, (4.5)

H2 − 1

3M2
Pl

(
1

2
φ̇2 + V

)
= 0, (4.6)

Ḣ +
φ̇2

2M2
Pl

= 0, (4.7)

where DXa ≡ dXa + ΓabcX
b dφc is a field space covariant derivative and φ̇2 ≡

γab φ̇
aφ̇b is the squared norm of φ̇a. It is easy to show that (4.7) is not independent

but can actually be derived from (4.5) and (4.6).

4.2.2 The Model

The model we want to introduce is motivated by the idea that the inflaton

field can be identified as the pseudo-Goldstone boson associated with the spon-

taneous breaking of an approximate symmetry. Thus, we are led to choose the

following potential for a complex scalar field χ,

V
(
χ†, χ

)
= λ

(
|χ|2 − v2

)2 −M2
(
χ†χ† + χχ

)
+ C, (4.8)

where λ, v, M and C are constants of mass dimension 0, 1, 1 and 4, respec-

tively. The first term in (4.8) spontaneously breaks a global U(1) symmetry while

the second one is a soft explicit breaking 7. Denoting as ψ̂ the vacuum expecta-

tion value (VEV) of any field ψ, the extrema of the potential, defined through

Vχ†
∣∣
(χ†=χ̂†, χ=χ̂) = Vχ

∣∣
(χ†=χ̂†, χ=χ̂) = 0, are such that |χ̂|2 = v2 ± M2

λ
. We will

parametrize the complex scalar χ in the polar form so the (broken) symmetry is

7In principle one should also consider the lower-dimensional symmetry breaking operator
Υ(χ†+χ). However, if we impose a Z2 symmetry such that χ→ −χ leaves the action invariant,
Υ = 0 naturally. In this work we are choosing this latter option.
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manifest, meaning

χ ≡ 1√
2

(
R̃ + σ

)
eiθ, (4.9)

where R̃ is a constant of mass dimension 1. In the effective theory, after inte-

grating the radial field σ, we want to recover a chaotic (concave) potential for the

“inflaton” field θ. The minimum is then taken to be

|χ̂|2 = v2 +
M2

λ
=

1

2
(R̃ + σ̂)2 ≡ 1

2
R2, θ̂ = 0. (4.10)

Now we fix C by demanding a vanishing “cosmological constant” at the minimum

V
(
χ̂†, χ̂

)
= −M2

(
2 v2 +

M2

λ

)
+ C = 0. (4.11)

The potential V
(
χ†, χ

)
can then be written as

V (σ, θ) = µ4


1−

(
R̃ + σ√

2 v

)2
2

− β

(
R̃ + σ√

2 v

)2

cos(2θ) + β

(
1 +

β

4

) ,

(4.12)

where

µ4 ≡ λ v4 and β ≡ 2M2

λ v2
. (4.13)

Note that this potential is “non-separable”, meaning V (σ, θ) 6= V (σ)+V (θ). Since

µ4 is an overall constant that is fixed by the amplitude of the 2-point function

of the inflaton fluctuation, β and v are the only parameters that determine the

dynamics of the theory. It is easy to see that in the limit β → 0, the “masses”

of the radial and angular fields (evaluated at the minimum of the potential) are
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4λ v2 and 0, respectively. At O(β) we find that they are given by 4λ v2−2M2 and

4M2. From now on we will pick coordinates such that, without loss of generality,

σ̂ = 0→ R̃ = R =

√
2 v2 +

2M2

λ
=
√

2 + β v. (4.14)

Finally we can rewrite (4.12) as

V (σ, θ) = µ4


1−

(√
1 +

β

2
+

σ√
2 v

)2
2

− β

(√
1 +

β

2
+

σ√
2 v

)2

cos(2θ) + β

(
1 +

β

4

) .

(4.15)

In Figure 4.1 we plot the potential V (σ, θ) for a suitable choice of couplings. We

see that it can be thought of as a “deformed” Mexican Hat.

(a) Front and aerial views of V (σ, θ).
We see that the brim of the hat has sinusoidal be-
havior due to the explicit symmetry breaking.

R

(b) Top view of V (σ, θ).
We see that the contour
lines are ellipses and there
are different extrema with
different radii.

Figure 4.1: Deformed Mexican Hat.

The canonical Lagrangian for the χ field is given by

L = −∂µχ†∂µχ− V
(
χ†, χ

)
, (4.16)
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which, when written in the polar coordinates (4.9), takes the following form 8

L = −1

2
gµν∂µσ∂νσ −

1

2
(R + σ)2gµν∂µθ∂νθ − V (σ, θ). (4.17)

Defining φa(t) = (σ(t), θ(t))T and γab(φ) = diag (1, (R + σ)2) we may cast this

class of models in the geometric language of multifield inflation. The non-vanishing

Levi-Civita connection components are then given by Γσθθ = −(R+σ) and Γθθσ =

(R+σ)−1, and since this is a polar coordinatization of a plane, Ra
bcd = 0 trivially.

Consequently the field equations (4.5) become

σ̈ + 3Hσ̇ − (R + σ) θ̇2 + Vσ = 0, (4.18)

(R + σ)2 θ̈ + 2(R + σ) σ̇ θ̇ + 3H(R + σ)2 θ̇ + Vθ = 0, (4.19)

where, given the potential in (4.15),

Vθ = 2M2(R + σ)2 sin(2θ) and Vσ = (R + σ)
[
λ {(R + σ)2 − 2 v2} − 2M2 cos(2θ)

]
.

(4.20)

From (4.17) and (4.15) we see that when naively setting σ to its VEV, σ̂ = 0, we

are left with an effective NI theory [43, 44] for the canonically normalized field

ϕ ≡ Rθ, whose Lagrangian is given by

Leffϕ = −1

2
∂µϕ∂

µϕ− Ṽ
(

1− cos

(
ϕ

f

))
, (4.21)

8Let us note that the original QSF model [49, 50] is indeed determined by a two-field system
with a Lagrangian seemingly identical to the one given in (4.17) but with V (σ, θ) = V (σ)+Vsr(θ),
i.e., the potential is assumed to be “separable”. Moreover, V (σ) is a potential that traps the
“isocurvaton” at some σ = σ̂ but remains otherwise arbitrary while Vsr(θ) is an unspecified slow-
roll potential. Our model instead, has a very specific non-separable potential given by (4.15).
The motivation behind the original QSF model was the fact that when the inflaton trajectory
moves along an arc, the action can be conveniently written in terms of polar coordinates of a
circle with radius R̃.
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where Ṽ ≡ m2
ϕ f

2, mϕ ≡ 2M and f ≡ R
2

9. It may be argued that this procedure

is rather incomplete, as care must be taken of the remnant equation of motion

for σ, which now becomes a constraint equation. To prove that the single-field

EFT of the inflationary background is indeed, to a very good approximation NI, we

proceed as follows. As we neglect the dynamics of the radial field, σ becomes a La-

grange multiplier, so we can solve algebraically its own equation of motion (which

is now a constraint equation) to give σ = σ(θ, θ̇). Neglecting time-derivatives of

σ in (4.18) we find that

(R + σ) θ̇2 = Vσ = (R + σ)
[
λ {(R + σ)2 − 2 v2} − 2M2 cos(2θ)

]
, (4.22)

where we have used (4.20). Recalling that R ≡ +
√

2 v2 + 2M2

λ
, it is clear that

σ = −R is not a sensible solution, so (4.22) can be solved for σ to give

σ(θ, θ̇) = −R +

(
2 v2 +

2M2

λ
cos(2θ) +

θ̇2

λ

)1/2

. (4.23)

Now we plug this back into the single-field Lagrangian

Leff θ = −1

2
(R + σ(θ, θ̇))2gµν∂µθ∂νθ − V (σ(θ, θ̇), θ), (4.24)

9NI, at least before Planck’s 2018 latest release [28], could be succesfully fit to data. In

particular for Ne-folds > 50 and ns ≈ 0.96 one finds that f & 10MPl ≈ 2.43×1019 GeV and Ṽ &
(10−2MPl)

4 ≈ (2.43× 1016 GeV)4. Saturating these bounds implies that mϕ ≈ 2.43× 1013 GeV
and H ≈ 1.4×1014 GeV during the slow-roll regime, so indeed m2

ϕ � H2, which is a requirement
of the slow-roll approximation.
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with V (σ, θ) as given in (4.15). After straightforward algebra one finds that

Leffϕ =
1

2
ϕ̇2 − Ṽ

(
1− cos

(
ϕ

f

))
+

β

8(2 + β)

ϕ̇4

Ṽ
− β

2(2 + β)
ϕ̇2

(
1− cos

(
ϕ

f

))
+

2β

(2 + β)
Ṽ sin4

(
ϕ

2f

)
.

(4.25)

The first line in (4.25) reproduces NI as given in (4.21). Since β → 0 as m2
σ

H2 →∞,

where m2
σ ≡ 4λ v2 is the “mass” of the radial mode that is being integrated out, it

is clear that the second line in (4.25) contains operators that are highly suppressed

compared to this background theory, so they can be safely neglected, justifying

the naive conclusion that the single-field effective background theory is NI to a

very good approximation.

4.2.3 EFT for the Slowly-Rolling Field θ

Consider the set of equations (4.6), (4.18) and (4.19). Let us study the

regime in which time derivatives of σ can be neglected. This would naively imply

that the background trajectory is a circle in field space. We then impose that

{σ̈, 3Hσ̇} � {(R + σ) θ̇2, Vσ} and 2(R + σ) σ̇ θ̇ � {(R + σ)2 θ̈, 3H(R + σ)2 θ̇, Vθ}.

(4.26)

It has been argued [129] that the kinetic coupling L 3 −1
2
(R+σ)2(∂µθ)

2 manifests

itself through the fact that the radial field will have a minimum at σ̄ 6= σ̂ where

σ̂ is a solution to (4.10) (and σ̂ = 0 is our “good choice of coordinates”). The
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inequalities in (4.26) imply that 10

1

(R + σ̄)

dσ̄

dθ
� 1. (4.27)

During the slow-roll regime, meaning (R + σ)2 θ̈ � {3H(R + σ)2 θ̇, Vθ} as usual,

the independent equations of motion become

3H(R + σ)2 θ̇ + Vθ = 0, (4.28)

(R + σ) θ̇2 = Vσ, (4.29)

3M2
PlH

2 = V. (4.30)

If σ = constant, (4.28) and (4.30) are the well-known equations that govern the

slow-roll regime of a genuine single-field theory, whereas (4.29) can be thought

of as a remnant “constraint”, after ignoring the isocurvature field dynamics, that

enforces “centripetal equilibrium” during an almost constant angular speed turn

in field space. In appendix C we discuss the self-consistency of the above slow-roll

approximation.

Using the set of equations (4.28), (4.29) and (4.30) it is easy to show that the

algebraic relation,

(R + σ)3 Vσ V =
M2

Pl

3
V 2
θ , (4.31)

is a consistency requirement that should hold during the slow-roll evolution. We

will define σ̄ 6= 0 as the time-dependent “solution” to this equation. It will be

useful to state that, without making any assumptions about the “displaced” value

10Recall that the single field description is possible provided the kinetic energy is dominated

by the angular field, or more specifically that σ̇2 + (R + σ)2 θ̇2 =
((

dσ
dθ

)2
+ (R+ σ)2

)
θ̇2 ∼

(R+ σ)2 θ̇2, which is indeed equivalent to demand 1
(R+σ)

dσ
dθ � 1.
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of σ, (4.20) and (4.14) imply that (4.29) becomes

θ̇2 = λ
[
β (1− cos(2θ)) v2 + 2

√
2 + β v σ + σ2

]
(4.32)

≈ λ

[
2
√

2 v σ + σ2 + β

(
(1− cos(2θ)) v2 +

√
2

2
v σ

)]
to O(β).

Let us consider now two limiting cases for the displaced value of σ.

4.2.3.1 Small Radial Displacement

If we assume that σ̄(θ) = σ1(θ), where σ1 is a “small” departure from the

naive VEV, the solution to (4.31) after linearizing with respect to σ is found to

be given by

σ1(θ) ≈ β

6
√

2

[M2
Pl − 3 v2 + (M2

Pl + 3 v2) cos(2θ)]

v
to O (β) . (4.33)

In principle we can plug this solution back in the potential and find a canonical

variable so that we have a single-field effective potential. However, in situations

in which the solution σ̄(θ) is a complicated function of θ, it may be too difficult

to follow this procedure, the main reason being that we need to find a canonical

variable φ such that (R + σ̄) θ̇ = φ̇. However, the system can still be solved

“semi-analytically” as was argued in [129].

4.2.3.2 Big Radial Displacement

As we will see in section (4.3), if we consider the perturbations around

the background model in a regime where the dynamics of the fluctuation δσ is

negligible in comparison with its effective mass Meff, the so-called M2
eff � H2

regime, the EFT for the inflaton perturbation δθ develops a non-trivial speed of
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sound cs given by

c−2
s = 1 + 4

θ̇2
0

M2
eff

where M2
eff ≡ Vσσ(σ0, θ0)− θ̇2

0, (4.34)

and ψ0 denotes the background value of any field ψ [128, 130, 131]. When the

potential V (σ, θ) is given by (4.12) we find that

Vσσ(σ0, θ0) = 3λ (R + σ0)2 − 2(λ v2 +M2 cos(2θ0)). (4.35)

Using (4.34), (4.35), (4.14) and (4.32) the effective mass is given by

M2
eff = 2λ

[
(2 + β) v2 + 2

√
2 + β v σ + σ2

]
(4.36)

≈ λ
[
4 v2 + 4

√
2 v σ + 2σ2 + β

(
2 v2 +

√
2 v σ

)]
to O(β).

Looking at (4.34) we see that c2
s � 1 ⇐⇒ 4 θ̇2

M2
eff
� 1. This condition, using

(4.32) and (4.36), is equivalent to

c2
s � 1 ⇐⇒ σ2 + 2

√
2 + β v σ + [β(1− 2 cos(2θ))− 2] v2 � 0, (4.37)

which is satisfied whenever

σ �
[√

4 + 2β cos(2θ)−
√

2 + β
]
v ≈
√

2
(√

2− 1
)
v +

β

2

(
cos(2θ)−

√
2

2

)
v to O(β).

(4.38)

Neglecting O(β) terms we see that when the radial field is considerably displaced

from its trivial minimum, i.e., σ �
√

2
(√

2− 1
)
v ≈ 0.585 v > σ̂ = 0, it is

possible, “dynamically”, to get c2
s � 1. This fact has been previously understood

and emphasized [132]. Though interesting, we will not consider this big radial field

displacement scenario any further. Additional developments along these lines can
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be found in [129].

4.2.4 Intermission II: Vacuum Fluctuations, Curvature Perturba-

tions, Gravitational Waves

To compare the predictions of the model with data in a self-contained way,

we need to digress a little bit again and introduce some definitions [39]. Recall from

(3.21) that v ≡
√

2M2
Plε

c2s
R, the so-called Mukhanov-Sasaki variable, is the field to

be quantized in the classical inflationary background. As usual, one promotes the

Fourier modes to quantum operators

v̂k = vk(t)âk + h.c. (4.39)

At sufficiently early times, all modes of cosmological interest were deep inside

the Hubble radius and behave as ordinary harmonic oscillators. The annihilation

operators âk define the vacuum |Ω〉 through âk |Ω〉 = 0, and the “zero-point

fluctuations” of the oscillation amplitude are the same as those of an oscillator in

flat space, meaning

〈Ω| v̂kv̂k′ |Ω〉 = (2π)3|vk|2δ(k + k′) where |vk|2 =
1

a3

1

2ωk
. (4.40)

As long as the physical wavelength of the mode is smaller than the Hubble radius,

the ground state evolves adiabatically, so (4.40) holds through time. Once a given

mode gets stretched outside the Hubble radius, adiabaticity breaks down and the

fluctuation amplitude freezes at

|vk|2 =
1

2a3
?

1(
csk
a?

) =
1

2

H2

(csk)3 (4.41)
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where a? is the value of the scale factor at horizon crossing csk
a?
≡ H.

Using the relation between v and R, we find the power spectrum of primordial

perturbations

PR ≡ |Rk|2 =
1

4

H4

M2
PlḢcs

1

k3
. (4.42)

The variance in real space is 〈R2〉 =
∫
d ln k∆2

R(k), where we have defined the

dimensionless power spectrum

∆2
R(k) ≡ k3

2π2
PR(k) =

1

8π2

H4

M2
Pl|Ḣ|cs

. (4.43)

Any time dependence of H and cs translates into a scale dependence of the power

spectrum because the right-hand side of (4.43) is supposed to be evaluated at

horizon crossing, csk = aH. By definition, scale-invariant fluctuations correspond

to ∆2
R(k) = constant, and deviations from scale invariance are quantified by the

so-called spectral tilt

ns − 1 ≡ d ln ∆2
R

d ln k
= −2 ε− η − s, (4.44)

where we have defined a new expansion parameter

s ≡ ċs
csH

. (4.45)

Inflationary backgrounds typically satisfy {ε, η, s} � 1 and so predict ns ≈ 1.

However, inflation would not end if the slow-roll parameters vanished, so we do

expect a finite deviation from perfect scale invariance, ns 6= 1.

It may be argued that the cleanest prediction of inflation is a spectrum of primor-
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dial gravitational waves as these are tensor perturbations to the spatial metric,

gij = a2(t)
(
δij + hij

)
, (4.46)

where hij is transverse and traceless. Expanding the Einstein-Hilbert action leads

to the quadratic action for the tensor fluctuations

S
(2)
h =

M2
Pl

8

∫
d4x a3

{
ḣij

2 −
(
∇hij

)2

a2

}
(4.47)

The structure of the action is identical to that of the scalar fluctuations (3.20),

except that tensors do not have a non-trivial speed of sound and the canonically

normalized field does not have an ε-dependence since at linear order tensors do not

“feel” the symmetry breaking due to the background evolution. The quantization

of tensor fluctuations then proceeds exactly as for the scalar fluctuations case,

with a Mukhanov-Sasaki variable for each polarization mode of the gravitational

field. Adding the power spectra of the two polarization modes Starobinsky found

[93]

∆2
h(h) ≡ k3

2π2
Ph(k) =

2

π2

H2

M2
Pl

, (4.48)

where the right-hand side is evaluated at horizon crossing, k = aH. We see

that the power spectrum of tensor fluctuations is only a function of the de Sitter

expansion rate H, in contrast with the scalar fluctuations case in (4.43), where

there is dependence on H, Ḣ and cs. Tensor fluctuations are therefore said to

be a direct probe of the energy scale at which inflation took place. The scale

dependence of the tensor modes is determined by the time dependence of H,
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parametrized through 11

nt ≡
d ln ∆2

h

d ln k
= −2 ε. (4.49)

Observational constraints on tensor modes are usually expressed in terms of the

tensor-to-scalar ratio,

r ≡ ∆2
h

∆2
R

= 16 ε cs. (4.50)

As the amplitude of scalar fluctuations has been measured, the tensor-to-scalar

ratio quantifies the size of the tensor fluctuations, and by using (4.48) one can

write

H

Mpl

= π∆R(k?)

√
r

2
⇒ H ≈ 3× 10−5

( r

0.1

)1/2

MPl, (4.51)

when using that ∆2
R(k?) = 2.14×10−9 at the pivot scale k? = 0.05 Mpc−1 [24]. De-

tecting inflationary tensor perturbations at the level of r ∼ 0.1 would imply then

that the expansion rate during inflation was about 10−5MPl. This is sometimes

expressed in terms of the “energy scale of inflation”,

Einf ≡
(
3H2M2

Pl

)1/4
= 8× 10−3

( r

0.1

)1/4

MPl. (4.52)

From this last expression we see that reducing r by four orders of magnitude

reduces Einf by only one order of magnitude. As of now, gravitational waves from

inflation are only observable if inflation occurred near the grand unified theory

(GUT) scale, Einf ∼ 10−2MPl ∼ 1016 GeV.

11The absence of the “-1” in the definition of the tensor spectral tilt nt, cf. equation (4.44),
seems to be due to untraceable historical reasons.
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4.2.5 Semi-analytical Approach

After this necessary intermission, let us come back to our GNI model. There

is a semi-analytical way of dealing with the system of equations (4.28)-(4.30) [129].

Recalling the usual definitions of slow-roll parameters ε ≡ − Ḣ
H2 and η ≡ ε̇

εH
, and

defining

δ ≡
˙̄σ

(R + σ̄)H
=

1

(R + σ̄)

(
d σ̄

d θ

)(
θ̇

H

)
≈ − MPl

(R + σ̄)2

(
d σ̄

d θ

)√
2 ε, (4.53)

it is straightforward to show that

ε ≈ M2
Pl

2(R + σ̄)2

(
Vθ
V

)2

, (4.54)

η ≈ − 2M2
Pl

(R + σ̄)2

(
Vθθ
V

)
− 2M2

Pl

(R + σ̄)2

(
d σ̄

d θ

)(
Vθσ
V

)
+ 4 ε− 2 δ. (4.55)

Finally, recalling that dN ≡ −Hdt, we get that the number of e-folds before the

end of inflation is given by

N =
1

M2
Pl

∫
(R + σ̄)2

(
V

Vθ

)
dθ, (4.56)

stressing again that σ̄ is defined as the solution to (4.31). The deviations from

NI are due to the implicit time dependence of σ̄ = σ̄(θ(t)). We see that even if

the reduced equations of motion demand δ � 1, δ may still be O(ε, η). Thus,

even if we can neglect the derivatives of σ at the level of the equations of motion,

they may still play an important role in determining the observables of the model.

Using (4.53), (4.54) and (4.55) with σ̄(θ) = σ1(θ) as given by (4.33) and the

potential given by (4.15), we find that

ε ≡ − Ḣ
H2 ≈

M2
Pl cot2(θ)

v2

{
1− β

72

[3M4
Pl−3M2

Pl v
2+18 v4+2(2M4

Pl−9 v4) cos(2θ)+M2
Pl(M

2
Pl+3 v2) cos(4θ)] csc2(θ)

v4

}
,

(4.57)
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η ≡ ε̇
εH
≈ 2M2

Pl csc2(θ)

v2

{
1− β

18

[(M2
Pl+3 v2)(6M2

Pl−3 v2+M2
Pl cos(2θ)) sin2(θ)−8M4

Pl−12M2
Pl v

2+9 v4+3M4
Pl csc2(θ)]

v4

}
.

(4.58)

We see that to O(β0), {ε, η} ∼ M2
Pl

v2 which implies that in order to have {ε, η} � 1

we need v2 � M2
Pl, as is usually the case for NI. In our model {σ̇ ≈ 0 ⇒ θ̇ ≈

constant} =⇒ {cs ≈ constant⇒ s ≈ 0} to O(β0). We pick parameter values λ, v

and M so they are compatible with the set of relations

Ṽ ≈ 3 π2

2
r∆2

RM
4
Pl, v ≈

√
16 cs
r

MPl, M ≈

√
Ṽ

2 v2
, (4.59)

H ≈

√
Ṽ

3
M−1

Pl , λ ≡ α̃ (1 + 3 c2
s)H

2

16 v2
, θ̇ ≈

√
4λ v2 (1− c2

s)

1 + 3 c2
s

,

where Ṽ 1/4 is the energy scale of inflation, α̃ ≡ M̃2
eff

H2 is the ratio between the

“Hamiltonian effective mass squared” M̃2
eff ≡M2

eff c
−2
s and H2 and we are neglect-

ing O(β) terms 12. Indeed, β ≡ 2M2

λ v2 ≈ 3
1+3 c2s

r
α̃ cs
≈ 48

1+3 c2s

ε
α̃

within the above

approximations, so β is always a very small number due to slow-roll. Then, we

saturate the current constraint r < 0.07 [125] in (4.59) to build up Figure 4.2

and Table 4.1. Note that when α̃ ∼ O(1) the EFT for a single-field theory is not

really justified since M̃2
eff ∼ H2. Nevertheless, it is illuminating to “extrapolate”

our results since, in particular, the value of θ̇
H

is quite important for the theory of

fluctuations exactly in this limit, as we will see in the next section.

12In subsection 4.3.2.1 and appendix B the introduction of the more “physical” effective
mass M̃eff is justified. M̃eff has been also referred to as the “entropy mass” [133] and it really
corresponds to the mass of a particle belonging to the spectrum of the theory, which is not the
case for Meff.
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Figure 4.2: The (ns, r) plane for the “Natural” potential, when the mass of the heavy field is

given by M̃2
eff = 100H2. The blue regions are the 1-σ and 2-σ allowed regions from Left: Planck

2015 (Planck TT+lowP) [24] and Right: Planck/Bicep (Planck TT+lowP+BKP+lensing+ext)
[125].
We plot the predictions for N = [50, 60] when cs = 0.999 (•), cs = 0.9 (�), cs = 0.75 (N) and
cs = 0.47 (F).

λ100 θ̇100 (GeV) (θ̇/H)100 λ10 θ̇10 (GeV) (θ̇/H)10 λ1 θ̇1 (GeV) (θ̇/H)1

cs = 0.999 8.081× 10−11 1.477× 1013 0.224 8.081× 10−12 4.671× 1012 0.071 8.081× 10−13 1.477× 1012 0.022

cs = 0.9 7.704× 10−11 1.440× 1014 2.179 7.704× 10−12 4.553× 1013 0.689 7.704× 10−13 1.440× 1013 0.218

cs = 0.75 7.243× 10−11 2.185× 1014 3.307 7.243× 10−12 6.910× 1013 1.046 7.243× 10−13 2.185× 1013 0.331

cs = 0.47 7.151× 10−11 2.916× 1014 4.413 7.151× 10−12 9.221× 1013 1.396 7.151× 10−13 2.916× 1013 0.441

Table 4.1: λα̃, θ̇α̃ and
(
θ̇
H

)
α̃

, where Xα̃ ≡ X(α̃), with α̃ ≡ M̃2
eff

H2 = {100, 10, 1} for different

values of cs.

Looking at Figure 4.2 we see that for N = 60, this model is alive and well,

meaning the current constraint r < 0.07 is satisfied [125], when cs = 0.75. The

only parameter of the model which depends upon α̃ is λ, which only influences the

slow-roll parameters (therefore the predictions for the observables) at a negligible

order way beyond the current experimental sensitivity. In other words, taking

α̃ = {100, 10, 1} gives the same predictions depicted in Figure 4.2. However it is

interesting to note from Table 4.1 that for fixed cs, as α̃ decreases, θ̇
H

decreases too,

since θ̇
H
≈ 1

2
α̃1/2 (1− c2

s)
1/2

according to (4.59). This feature is doubly reassuring:

1. It is consistent with the fact that according to the EFT analysis it has been

understood that θ̇2 � H2 is not a restriction for the EFT to be valid as
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some authors initially argued in the literature 13.

2. When the heavy field is not super heavy, like in the QSF scenario, θ̇
H

plays

the role of a time-dependent coupling between the adiabatic and isocurvature

perturbations, so θ̇2 � H2 is a standard perturbative condition one needs

to impose to do perturbative physics. Even if the limit α̃ → 1 is ill-defined

from the single-field EFT point of view, we believe this extrapolation sheds

some light on the perturbative limitations that the theory of fluctuations

has in the two-field regime (see 4.3.2.1 below). Let us now study the theory

of fluctuations.

4.3 Inflationary Perturbations in the GNI Model

In this section we will study the theory of fluctuations of the GNI model

in order to calculate the non-Gaussianities that arise due to the presence of the

isocurvature mode. We will address the regimes M2
eff � H2 and M2

eff ∼ H2

separately, as the physics is quite different.

To study the inflationary perturbations defined as δφa(t,x) ≡ φa(t,x) − φa0(t) it

is useful to consider vectors tangent and normal to the trajectory φa0(t) given by

T a ≡ φ̇a0
φ̇0

, Na ≡ −Dt T
a

|Dt T |
. (4.60)

The fluctuations along the direction T a define the curvature perturbations as

R ≡ −H
φ̇0
Ta δφ

a whereas the fluctuations along Na correspond to the isocurvature

perturbations [133, 135]. The introduction of T a and Na allows us to define Ω,

13In [134] the “adiabaticity” condition |θ̈| � Meff |θ̇| has been identified as a requirement for
the heavy field to not become excited during the turn.
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the angular velocity with which the inflationary trajectory bends, via

Dt T
a ≡ −ΩNa. (4.61)

Comparing (4.60) with (4.61) we see that Ω = |Dt T | is positive definite by con-

struction. It is clear that in the two-field case {T a, Na} is an orthonormal basis

that spans the vector space, implying that Va = Vφ Ta + VNNa, where Vφ ≡ T aVa

and VN ≡ NaVa. The equation resulting from projecting (4.5) along T a is

φ̈0 + 3Hφ̇0 + Vφ = 0, (4.62)

resembling the equation of motion of a single scalar field in a FLRW spacetime.

On the other hand, the equation obtained from projecting (4.5) along Na is given

by

Ω =
VN

φ̇0

. (4.63)

Whenever the trajectory is subjected to a bend, it moves up towards the outer wall

of the potential. The angular velocity Ω plays a crucial role in the dynamics of

fluctuations, as it couples together curvature and isocurvature modes. From (4.60)

we see that the normal vector is constructed such that TaN
a = 0 and NaN

a = 1.

In the two-field case it can be taken as Na = (det γ)1/2 εab T
b, where εab is the

two-dimensional Levi-Civita symbol with ε11 = ε22 = 0 and ε12 = −ε21 = 1. Then

for our model we get that [136]

T a =
(σ̇0, θ̇0)[

(R + σ0)2 θ̇2
0 + σ̇2

0

]1/2
, Na =

(R + σ0)(θ̇0, −(R + σ0)−2σ̇0)[
(R + σ0)2 θ̇2

0 + σ̇2
0

]1/2
. (4.64)
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Considering (4.63) we see that since VN ≡ Ω φ̇0 = NσVσ +N θVθ, Ω is given by

Ω =
1[

(R + σ0)2 θ̇2
0 + σ̇2

0

]{(R + σ0) θ̇0

(
−σ̈0 − 3Hσ̇0 + (R + σ0) θ̇2

0

)
− (R + σ0)−1σ̇0

(
−(R + σ0)2 θ̈0 − 2(R + σ) σ̇0 θ̇0 − 3H(R + σ0)2 θ̇0

)}
,

(4.65)

where use has been made of (4.18) and (4.19). Thus,

if σ0 = constant, meaning σ̇0 = 0, then Ω = θ̇0, (4.66)

without assuming slow-roll conditions on θ0.

The theory of fluctuations of the polar fields is determined by the expansion 14

S[g0, φ0, δφ] = S(0)[g0, φ0] + S(2)[g0, φ0, δφ] + S(3)[g0, φ0, δφ] + . . . , (4.67)

S(0)[g0, φ0] =

∫
d4x a3

{
1

2
(R + σ0)2 θ̇2

0 +
1

2
σ̇2

0 − V (σ0, θ0)

}
, (4.68)

S(2)[g0, φ0, δφ] =

∫
d4x a3

{
− 1

2
(R + σ0)2gµν∂µδθ∂νδθ −

1

2
Vθθ(σ0, θ0)(δθ)2

+ 2(R + σ0) θ̇0δθ̇δσ − Vθσ(σ0, θ0)δθδσ − 1

2
gµν∂µδσ∂νδσ −

1

2
M2

eff(δσ)2

}
,

(4.69)

S(3)[g0, φ0, δφ] =

∫
d4x a3

{
− (R + σ0)(gµν∂µδθ∂νδθ)δσ + θ̇0δθ̇(δσ)2 − 1

6
Vθθθ(σ0, θ0)(δθ)3

− 1

2
Vθσσ(σ0, θ0)δθ(δσ)2 − 1

2
Vθθσ(σ0, θ0)(δθ)2δσ − 1

6
Vσσσ(σ0, θ0)(δσ)3

}
,

(4.70)

where M2
eff ≡ Vσσ(σ0, θ0)− θ̇2

0 as in (4.34) and the . . . in (4.67) stem from higher

order terms in the expansion. Let us now consider the M2
eff � H2 scenario.

14As usual, the S(1)[g0, φ0, δφ] term in this expansion vanishes due to the background equations
of motion (4.18) and (4.19).
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4.3.1 M 2
eff � H2 Regime

4.3.1.1 Effective Theory for the Adiabatic (Inflaton) Fluctuation

In this subsection we will show how the naive expectation, that when the

mass of the isocurvature mode is very heavy we can integrate it out to obtain

an effective single-field description with non-trivial coefficients for non-slow-roll

operators, is realized. We will match our findings with the general parametrization

introduced in the so-called EFT of inflation developed by Cheung et al. [40],

that we thoroughly reviewed in chapter 3, and for which the relations between

coefficients of the EFT and the amplitudes of non-Gaussianities are well-known.

Following Gong et al. [55] we vary (4.69) and (4.70) with respect to δσ to obtain

δσ̈ + 3Hδσ̇−
(
∇2

a2
−M2

eff + 2θ̇0 δθ̇ − Vθσσδθ
)
δσ +

Vσσσ
2

(δσ)2

= 2(R + σ0) θ̇0 δθ̇ − Vθσ δθ + (R + σ0)

(
(δθ̇)2 − (∇δθ)2

a2

)
− Vθθσ

2
(δθ)2.

(4.71)

Assuming that the effective mass of δσ is very large (so the term M2
eff δσ dominates

in the above equation) and neglecting its dynamics, we can find a perturbative

solution given by 15

δσ ≈ 2R θ̇0

M2
eff

δθ̇ +

(
R

M2
eff

− 2R2 θ̇2
0

M2
eff

Vσσσ
M4

eff

)
(δθ̇)2, (4.72)

where we have taken σ0 = σ̂ = 0.

Plugging (4.72) back into (4.69) and (4.70), and keeping only the leading order

15Here we have neglected both time derivatives and gradients of δσ. In principle, one can
keep the gradients to obtain an effective theory that captures the regime of non-linear dispersion
relations [137, 138], the so-called “new physics window” dubbed by Baumann and Green [139]
(see appendix B to get a quick understanding of how non-linear dispersion relations generically
arise when integrating out a heavy field). In (4.72) we are also neglecting terms proportional to
M2 since M2 �M2

eff.
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terms in slow-roll parameters, we find the effective single field fluctuation action

S
(2)
eff δθ[g0, θ0, δθ] =

∫
d4x a3

{
1

2
R2(δθ̇)2

(
1 + 4

θ̇2
0

M2
eff

)
− 1

2
R2 (∇δθ)2

a2

}
, (4.73)

S
(3)
eff δθ[g0, θ0, δθ] =

∫
d4x a3

{(
R2 θ̇0

M2
eff

+
R2 θ̇0

M2
eff

(
1 + 4

θ̇2
0

M2
eff

)
− 4

3

R3 θ̇3
0

M6
eff

Vσσσ

)
(δθ̇)3

− 2R2 θ̇0

a2M2
eff

δθ̇(∇δθ)2

}
. (4.74)

Indeed we see that if we define the speed of sound cs through (4.34), the quadratic

action is equivalent to that of general single-field inflation. To evaluate the ob-

servable quantities, we have to transfer this action into that of the curvature

perturbation. It is well known that the curvature perturbation on the comov-

ing slices R is given in terms of the field fluctuation on the flat slices along the

trajectory δθ as

R = −H
θ̇0

δθ. (4.75)

A straightforward calculation shows that

S
(2)
effR[g0, θ0,R] = M2

Pl

∫
d4x a3 ε

c2
s

{
Ṙ2 − c2

s

(∇R)2

a2

}
(4.76)

S
(3)
effR[g0, θ0,R] = M2

Pl

∫
d4x a3

{
− H2ε

c2
s

[
c2
s

2

(
1

c4
s

− 1

)
− c2

s

RVσσσ
6M2

eff

(
1

c2
s

− 1

)2
]
Ṙ3

H3

+ ε

(
1

c2
s

− 1

)
Ṙ
H

(∇R)2

a2

}
, (4.77)

where ε ≡ − Ḣ
H2 =

R2 θ̇2
0

2M2
PlH

2 . We see that R is indeed massless which implies that

Ṙ ≈ 0 at super-sound-horizon crossing scales, k cs � aH [101].

Now, from equation (3.69) of chapter 3, the EFT for the Goldstone boson π of
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gravity in a de Sitter background reads

Sπ =

∫
d4x a3

{
−M2

PlḢ

(
π̇2 − (∇π)2

a2

)
+ 2M4

2

(
π̇2 + π̇3 − π̇ (∇π)2

a2

)
− 4

3
M4

3 π̇
3 + . . .

}
,

(4.78)

where M2(t) and M3(t) are (a priori) undetermined time-dependent coefficients of

mass dimension 1. From (4.78) we see that the speed of sound of π fluctuations

is given by

(cπs )−2 = 1− 2M4
2

M2
PlḢ

, (4.79)

so the Goldstone action can be rewritten at cubic order as

Sπ =

∫
d4x a3

{
− M2

PlḢ

(cπs )2

(
π̇2 − (cπs )2 (∇π)2

a2

)
+M2

PlḢ

(
1− 1

(cπs )2

)(
π̇3 − π̇ (∇π)2

a2

)
− 4

3
M4

3 π̇
3 + . . .

}
.

(4.80)

Using the fact that R = −Hπ+O(π2) and identifying cπs = cs, we find, comparing

(4.77) with (4.80) that

M4
2 =

1

2
εM2

PlH
2

(
1

c2
s

− 1

)
, (4.81)

M4
3 =

3

4
εM2

PlH
2

(
1

c2
s

− 1

)2 [
R

6M2
eff

Vσσσ −
1

2

]
. (4.82)

It can be shown that in the limit when self-interactions of the heavy field σ are

ignored while “solving” its own (constraint) equation of motion, the sound speed
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cs and the couplings M4
n are uniquely related by [126]

M4
n = (−1)n n!|Ḣ|M2

Pl

(
c−2
s − 1

4

)n−1

. (4.83)

Indeed, we see from (4.81) and (4.82) that if the Vσσσ term is dropped we agree

with this result. Comparing the coefficient M4
3 ∼M−4

eff coming from (4.83) to the

one calculated in (4.82), which has an additional ∼M−6
eff behavior, we realize that

M4
3 reflects the non-linear self-interaction of the heavy field during inflation as was

stressed in [55]. This is based on the fact that the Vσσσ term actually dominates

M3 even if it is naively further suppressed by one more power of M2
eff . We provide

a proof of this last statement by the end of appendix A. Let us now estimate and

calculate non-Gaussianities arising in this particular limit or our model.

4.3.1.2 Non-Gaussianities

In subsection 4.2.4 we computed the two-point function of primordial cur-

vature perturbations,

〈Ω| R̂k1R̂k2 |Ω〉 = (2π)3PR(k1)δ3(k1 + k2). (4.84)

In principle, there is more information in the VEV of higher-order n-point func-

tions. Schematically, we can write these as the path integral

〈Ω| R̂k1 . . . R̂kn |Ω〉 ∝
∫

[DR]Rk1 . . .Rkn e
iS[R]. (4.85)

For a free field theory, the action is a quadratic functional S(2) and the eiS weight-

ing of the path integral is a Gaussian after Wick rotating to Euclidean time. As

such, all correlation functions with n odd vanish, while those with n even are

completely determined by the two-point function (4.84). Nonetheless, if we in-
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clude non-trivial interactions in the action, meaning Sint = S(3) +S(4) + . . ., makes

the weighting of the path integral non-Gaussian. This allows non-trivial n-point

functions for all n.

The primary diagnostic for primordial non-Gaussianities is the three-point func-

tion or bispectrum which is defined as 16

〈Rp1Rp2Rp3〉 ≡ (2π)7δ 3(p1 + p2 + p3) (∆2
R(p?))

2 S(p1, p2, p3)

(p1 p2 p3)2
, (4.86)

where p? is a fiducial momentum scale, ∆2
R(k) is the dimensionless power spectrum

given by

〈RkRk′〉 ≡ (2π)5δ 3(k + k′)
1

2k3
∆2
R(k) (4.87)

and S(p1, p2, p3) is the so-called “shape function”. The Dirac delta-function in

(4.87) is a consequence of statistical homogeneity; it enforces that the three-

momentum vectors form a closed triangle. The momentum dependence of the

bispectrum determines the amount of non-Gaussianity associated with triangles

of different shapes. A useful measure of the size of the non-Gaussianity is the

parameter fNL, defined as

fNL ≡
10

9
S(p1 = p2 = p3). (4.88)

There are several shapes that authors have studied thoroughly over the years.

One first historical example is the so-called local shape, which is defined through

S local(p1, p2, p3) ≡ 3

10
f loc

NL

(
p2

1

p2 p3

+ 2 perm.

)
(4.89)

16As usual, Rk ≡
∫
d3xR(x) eik·x.
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and follows from an ansatz (in real space) of the form

R(x) = Rg(x) +
3

5
f local

NL

[
R2
g(x)− 〈R2

g〉
]
, (4.90)

where Rg(x) is a Gaussian random field [140–142]. In momentum space, the

signal peaks for squeezed triangles, k1 � k2 ∼ k3. The local shape arises in

models of multifield inflation. On the other hand, in single-field inflation the

signal vanishes in the squeezed limit. This is the famous Maldacena’s consistency

condition [115, 143] which reads

lim
k3→0
〈Rk1Rk2Rk3〉 = (2π)3δ 3(k1 + k2 + k3)(1− ns)PR(k1)PR(k3), (4.91)

where PR(k) ≡ 2π2

k3 ∆2
R(k). In other words, for single-field inflation, the squeezed

limit of the three-point function is suppressed by (1−ns) ∼ O(ε, η), so a detection

of non-Gaussianities in the squeezed limit can therefore rule out all models of

single-field inflation.

In order to first estimate the non-Gaussianities associated with the effective action

for π it is convenient to absorb the sound speed into a redefinition of the spatial

coordinates xi → x̃i ≡ c−1
s xi so that “fake” Lorentz invariance is restored [39, 139].

Then the effective theory Lagrangian L̃π ≡ c3
s Lπ can be casted like

L̃π = −1

2
(∂̃µπc)

2 − 1

2 Λ2

(
π̇c

(∇̃πc)2

a2
+A π̇3

c

)
, (4.92)
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where ∂̃µ ≡ (∂t, cs ∂i), πc ≡ f 2
π π is a canonically normalized field and

f 4
π ≡ 2M2

Pl|Ḣ|cs, (4.93)

Λ4 ≡ c4
s

(1− c2
s)

2
f 4
π =

2M2
Pl|Ḣ|c5

s

(1− c2
s)

2
, (4.94)

A
c2
s

≡ −1 +
2

3

M4
3

M4
2

. (4.95)

Here, f 4
π and Λ4 are the so-called “symmetry breaking” and “strong coupling” 17

scales respectively. A simple “back-of-the-envelope” estimate for the amplitude

of the non-Gaussianity can be found by comparing the non-linear (cubic) terms

with the quadratic terms in the Lagrangian, around freezing time ω ∼ H. This

is because the interaction operators have derivatives acting on the fluctuations

so they effectively are shut down after freezing. Using our fake Lorentz-invariant

Lagrangian we find that

f
π̇(∇π)2

NL R ≡ L̃ π̇(∇π)2

3

L̃2

∣∣∣∣
ω∼H
∼ 1

2 Λ2

π̇c (∂̃ πc)
2

(∂̃ πc)2
∼
(
fπ
Λ

)2

R ∼
(

1− c2
s

c2
s

)
R, (4.96)

f π̇
3

NLR ≡
L̃ π̇3

3

L̃2

∣∣∣∣
ω∼H
∼ A

2 Λ2

π̇3
c

(∂̃ πc)2
∼ A

(
fπ
Λ

)2

R ∼ A
(

1− c2
s

c2
s

)
R. (4.97)

Then it is easy to estimate non-Gaussianities once the matching between a par-

ticular model and the EFT of inflation has been made. With M2 and M3 as given

by (4.81) and (4.82) respectively, we find that 18

A ≡ −c2
s +

2

3

M4
3

M4
2

c2
s = −c2

s + c2
s

(
1

c2
s

− 1

)[
R

6M2
eff

Vσσσ −
1

2

]
. (4.98)

17It can be shown that the breakdown of perturbative unitarity of Goldstone boson scattering
occurs when ω4 > 24π

5 (1 − c2s)Λ4 ≡ Λ4
u [139, 144] . Λu is referred to as the “unitarity bound”.

These definitions rely on the linear dispersion relation that we have assumed throughout this
work.

18If the Vσσσ term is neglected, A = − 1
2 (1 + c2s)→ f π̇

3

NL ∼ − 1
2

(1−c4s)
c2s

. Some authors [111, 145]

argue that in order not to have an unnatural hierarchy between the scales associated with the
two distinct operators π̇c (∂̃iπc)

2 and π̇3
c , one must require A ∼ O(1).
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Using the minimum given by (4.10) and the definition M̃2
eff ≡ M2

eff c
−2
s we find

through (4.34) and (4.98) that

c2
s '

4λ v2 − θ̇2
0

4λ v2 + 3 θ̇2
0

u
M2

eff

M̃2
eff

, (4.99)

A ' θ̇4
0 + 8λ v2 θ̇2

0 − 16λ2 v4

(4λ v2 − θ̇2
0)(4λ v2 + 3 θ̇2

0)
u
M2

eff M̃
2
eff − 4(2

√
2λ v2 − θ̇2

0)(2
√

2λ v2 + θ̇2
0)

M2
eff M̃

2
eff

.

(4.100)

Then, using (4.99) and (4.100) in (4.96) and (4.97), we find the following estimates

for the amplitude of non-Gaussianities

f
π̇(∇π)2

NL ∼ 4 θ̇2
0

4λ v2 − θ̇2
0

∼ 4
θ̇2

0

M2
eff

, (4.101)

f π̇
3

NL ∼
4 θ̇2

0 (θ̇4
0 + 8λ v2 θ̇2

0 − 16λ2 v4)

(4λ v2 − θ̇2
0)2(4λ v2 + 3 θ̇2

0)
∼ 4 θ̇2

0

M4
eff M̃

2
eff

[
M2

eff M̃
2
eff − 4(2

√
2λ v2 − θ̇2

0)(2
√

2λ v2 + θ̇2
0)
]
.

(4.102)

The precise analysis using the so-called “in-in” formalism 19 gives the numerical

coefficients we are missing for the exact prediction. With fπ and Λ defined through

(4.93) and (4.94) respectively, it can be shown that (see appendix A)

f
π̇(∇π)2

NL = − 85

324

(
fπ
Λ

)2

= −85

81

θ̇2
0

M2
eff

= − 85

324

(
1

c2
s

− 1

)
, (4.103)

f π̇
3

NL = +
5A
81

(
fπ
Λ

)2

=
20

81

θ̇2
0

M4
eff M̃

2
eff

[
M2

eff M̃
2
eff − 4(2

√
2λ v2 − θ̇2

0)(2
√

2λ v2 + θ̇2
0)
]

=
5

81

[
−5

8
+

1

8 c4
s

− 3

8 c2
s

+
7 c2

s

8

]
, (4.104)

19See appendix A and [146]. For a highly improved covariant prescription to calculate cosmo-
logical correlators see the Schwinger-Keldysh formalism recently presented in [61].
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where, in order to get the last line in (4.104), use has been made of the expression

for θ̇2
0 as given in (4.59), which also implies

M2
eff ≈

16λ v2 c2
s

1 + 3 c2
s

, M̃2
eff ≈

16λ v2

1 + 3 c2
s

and A = −1

4
+

1

8 c2
s

− 7 c2
s

8
. (4.105)

We should compare the last expression in (4.104) with the naive prediction that

one gets when using (4.83) in (4.95) instead,

f π̇
3

NL (naive) ≡ f π̇
3

NL

∣∣
Vσσσ=0

= +
5A
81

(
fπ
Λ

)2 ∣∣∣∣
Vσσσ=0

=
5

81

[
− 1

2 c2
s

+
c2
s

2

]
, (4.106)

which is clearly negative when cs < 1 and tends to −∞ as cs decreases. The

behavior of f π̇
3

NL, on the other hand, is quite different as can be anticipated by

looking at (4.104). Indeed, it possesses a zero-crossing point around cs ≈ 0.51,

a global minimum around cs ≈ 0.67 (where f π̇
3

NL ≈ −2.76 × 10−2) and tends to

zero as cs approaches 1, as it should. Also, due to the presence of the positive c−4
s

term, f π̇
3

NL tends to +∞ as cs approaches zero. All this can be seen in Figure 4.3

where we plot f π̇
3

NL, f π̇
3

NL (naive), f
π̇(∇π)2

NL and A vs. cs.
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Figure 4.3: f π̇
3

NL, f π̇
3

NL (naive), f
π̇(∇π)2

NL and A vs. cs.

Let us just comment that the scaling fNL ∼ c−4
s is not usual for non-canonical

models like DBI [120, 121] or k-inflation [104, 105], where it is a familiar result that

fNL ∼ c−2
s [147]. This peculiar scaling does arise in Galileon models of inflation

[110] based on the so-called “Galilean symmetry” introduced in [148] 20.

Planck 2015 [26] puts bounds on two specific linear combinations of f
π̇(∇π)2

NL and

f π̇
3

NL, namely the “equilateral” f equil
NL and the “orthogonal” f ortho

NL
21. The mean

values of the estimators for f equil
NL and f ortho

NL are given by

f equil
NL =

[
−11

40
+

39

500
A
](

fπ
Λ

)2

=
181

800
+

39

4000 c4
s

− 1217

4000 c2
s

+
273 c2

s

4000
, (4.107)

f ortho
NL =

[
159

10000
+

167

10000
A
](

fπ
Λ

)2

= − 2107

80000
+

167

80000 c4
s

+
771

80000 c2
s

+
1169 c2

s

80000
,

(4.108)

20In [110] the c−4
s behavior appears since, due to symmetry, the dimension seven operator

(after canonical normalization) ∂2π(∂π)2 is naturally of comparable “size” with the usual π̇(∂π)2

and, only for the latter, the non-linearly realized Lorentz invariance “requires” fNL ∼ c−2
s .

21f equil
NL and fortho

NL are “defined” as the result of projecting the shapes associated with f
π̇(∇π)2

NL

and f π̇
3

NL into the equilateral and orthogonal templates using the shape inner product introduced
in [149]. For details see [111].
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where we have used A as given in (4.105). These are the “physical” constrained

amplitudes of interest.
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-1
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1

2

3
fNL

fNL
equil

fNL
equil naive

fNL
ortho

fNL
ortho naive

Figure 4.4: f equil
NL , f equil

NL (naive), f
ortho
NL and fortho

NL (naive) vs. cs.

In Figure 4.4 we plot f equil
NL and f ortho

NL vs. cs using the last expressions in (4.107)

and (4.108) along with the naive result of using Anaive = −1
2
(1 + c2

s) instead of A.

We observe again that, due to the presence of the c−4
s term, the behavior of the

fNL’s is quite different from the naive expectation when ignoring the non-linear

self-interactions of the heavy field. In particular, we see that since

f equil
NL (naive) ≡ f equil

NL

∣∣
Vσσσ=0

=

[
−11

40
+

39

500
A
](

fπ
Λ

)2 ∣∣∣∣
Vσσσ=0

=
11

40
− 157

500 c2
s

+
39 c2

s

1000
,

(4.109)

f ortho
NL (naive) ≡ f ortho

NL

∣∣
Vσσσ=0

=

[
159

10000
+

167

10000
A
](

fπ
Λ

)2 ∣∣∣∣
Vσσσ=0

= − 159

10000
+

151

20000 c2
s

+
167 c2

s

20000
,

(4.110)

f equil
NL (naive) (f ortho

NL (naive)) tends to −∞ (+∞) as cs decreases. f equil
NL (naive) does not have a

global minimum while f equil
NL does have one around cs ≈ 0.25 (where f equil

NL ≈ −2.14)
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and tends to +∞ as cs decreases with a zero-crossing point around cs ≈ 0.18. f ortho
NL

(f ortho
NL (naive)) tends to +∞ as c−4

s (c−2
s ) for small cs but otherwise stays very close to

zero all the way up to cs = 1, having a zero-crossing point around cs ≈ 0.98 (cs ≈

0.95) and a global minimum at cs ≈ 0.99 (cs ≈ 0.98) where f ortho
NL ≈ −9.79× 10−6

(f ortho
NL (naive) ≈ −2.01 × 10−5). We summarize the values of the different fNL’s (for

the same cs’s that we considered in Figure 4.2 and Table 4.1) in Table 4.2.

f equil
NL f equil

NL (naive) f ortho
NL f ortho

NL (naive)

cs = 0.999 −7.067× 10−4 −7.069× 10−4 −1.536× 10−6 −1.569× 10−6

cs = 0.9 −7.922× 10−2 −8.106× 10−2 5.785× 10−4 1.845× 10−4

cs = 0.75 −2.454× 10−1 −2.613× 10−1 5.613× 10−3 2.219× 10−3

cs = 0.47 −9.362× 10−1 −1.138 6.330× 10−2 2.012× 10−2

Table 4.2: f equil
NL , f equil

NL (naive), f
ortho
NL and fortho

NL (naive) for different values of cs.

The current Planck constraints at 2σ are [26]

−156 < f equil
NL < 124, −100 < f ortho

NL < 32 (temperature data only),

−90 < f equil
NL < 82, −68 < f ortho

NL < 16 (temperature + polarization data).

(4.111)

Looking at Table 4.2 we see that current observations are not sensitive enough to

rule out the equilateral and orthogonal non-Gaussianities of our model. Needless

to say, probing non-Gaussianities down to fNL ∼ O(1) or smaller is an important

target for future experiments.

For completeness, let us mention that the local shape with size f local
NL is much more

well constrained. At 2σ Planck found that [26]

−8.9 < f local
NL < 13.9, (temperature data only),

−9.2 < f local
NL < 10.8, (temperature + polarization data). (4.112)
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In [126] the EFT for single-field inflationary models descending from a “parent

theory” containing several scalar fields was derived. Besides the cubic operators

π̇3 and π̇(∇π)2 that we have found within our approximations, the following two

terms were found in the decoupling limit

Sπ 3
∫
d4x a3M2

PlḢ

{
2
ċs
c3
s

π π̇2 + 2Hη‖ π

(
π̇2

c2
s

− (∇π)2

a2

)}
, (4.113)

where η‖ ≡ − ϕ̈0

Hϕ̇0
and ϕ0 ≡ Rθ0. These two operators lead to non-Gaussianities

that satisfy the so-called Maldacena’s consistency relation [115] in the sense that

f local
NL ∼ O(ε, η), confirming the fact that the M2

eff � H2 limit is indeed a single-

field scenario. In other words, even if the constraints in the local subcase are

tighter, local non-Gaussianities are negligible in the M2
eff � H2 limit, in agreement

with the equivalence principle (see [143] for a general discussion of these points).

Now we will consider the M2
eff ∼ H2 case, which is quite different from the M2

eff �

H2 one as the heavy field cannot be integrated out anymore.
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4.3.2 M 2
eff ∼ H2 Regime

4.3.2.1 The Single-Field EFT Breaks Down

Let us come back to (4.69) and (4.70). In our specific model, taking σ0 =

σ̂ = 0 so R is determined by the naive VEV given by (4.10), we have

S(2)[g0, φ0, δφ] =

∫
d4x a3

{
− 1

2
gµν∂µϕ∂νϕ− 2M2 cos

(
2ϕ0

R

)
ϕ2 +

2

R
ϕ̇0 ϕ̇F

− 4M2 sin

(
2ϕ0

R

)
ϕF − 1

2
gµν∂µF∂νF −

1

2
M2

effF2

}
, (4.114)

S(3)[g0, φ0, δφ] =

∫
d4x a3

{
− 1

R
(gµν∂µϕ∂νϕ)F +

1

R2
ϕ̇0 ϕ̇F2 +

4

3R
M2 sin

(
2ϕ0

R

)
ϕ3

− 2M2

R
sin

(
2ϕ0

R

)
ϕF2 − 4M2

R
cos

(
2ϕ0

R

)
ϕ2F − λRF3

}
,

(4.115)

where ϕ0 ≡ Rθ0, ϕ ≡ Rδθ and we have used the definition F ≡ Naδφa = δσ

which holds as long as σ̇0 = 0 22. In appendix B we review, for completeness, the

general conditions under which we can integrate out the high frequency degrees of

freedom to get an effective single field theory [132]. It is clear though that when

Meff ∼ H integrating out the heavy mode is not justified as the cosmological

experiment actually probes exactly this energy scale regime. We then need to

consider the dynamics of the isocurvature perturbation F and its influence on

the correlation functions of the adiabatic mode ϕ. Thus, we are interested in the

22The change in “notation” δσ → F makes contact with the literature and also aims for
notational clarity.

87



action

S(0)[g0, φ0, δφ] ≡
∫
d4x a3

{
−1

2
gµν∂µϕ∂νϕ−

1

2
gµν∂µF∂νF −

1

2
M2

effF2

}
,

(4.116)

S int[g0, φ0, δφ] ≡
∫
d4x a3

{
2 θ̇0 ϕ̇F −

√
2λ vF3 − 1

4
λF4

}
, (4.117)

where we have neglected O(β) terms since we are dealing with the theory of

fluctuations, we have taken R ≈
√

2 v and we have included the fourth-order

term L int ⊃ − 1
4!
Vσσσσ(σ0, θ0)(δσ)4 which is also not suppressed by any slow-

roll conditions. Note that among the rest of the interaction terms in (4.115) we

have also neglected the “irrelevant” operators (∂ ϕ)2F and ϕ̇0 ϕ̇F2 as they are

suppressed by
(
H
v

)
and

(
H
v

)2
, respectively, while keeping the “relevant” operator

F3. This is consistent with the analysis made in the original “vanilla” QSF model

where it has been emphasized that the only operator that may (in principle)

make fNL � 1 is exactly the cubic term F3 (see Tables 1 and 2 of [50] and the

discussion therein). Note also that the operator θ̇0 ϕ̇F in (4.117) is second order

in field fluctuations but still we treat it as an interaction (mixing) term. This is

crucial for the perturbative Hamiltonian analysis that we now briefly review.

Starting from the full action S[g0, φ0, δφ] we define the canonical momenta πδφ ≡
δS
δδφ̇

as usual. Then we construct the Hamiltonian as H =
∑

δφ πδφδφ̇−L where

the δφ̇ are expressed in terms of the πδφ and the δφ. We now divide H into a

free-field H (0) and an interacting part H int and replace the πδφ by πIδφ, satisfying

Hamilton’s equations of the free-field Hamiltonian, meaning δφ̇I = δH (0)

δπδφ

∣∣
πδφ=πIδφ

.

We finally use this last definition to get rid of the πIδφ in terms of the δφ and δφ̇

(see [146, 150] for more details). In the case at hand, the free and interaction
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Hamiltonian densities H (0) and H int are then respectively given by

H (0) ≡ a3

2

{
ϕ̇I

2 +
(∇ϕI)2

a2
+ Ḟ2

I +
(∇FI)2

a2
+ M̃2

effF2
I

}
, (4.118)

H int ≡H I
2 + H I

3 = a3

{
−2 θ̇0 ϕ̇I FI +

√
2λ vF3

I +
1

4
λF4

I

}
, (4.119)

where the “I” subscript highlights the fact that we now deal with interaction

picture fields and

M̃2
eff ≡ Vσσ + 3 θ̇2

0 = M2
eff c
−2
s , (4.120)

where use has been made of (4.34). It is interesting to note that M̃2
eff is nothing

but the low-energy effective theory cut-off discussed in appendix B, cf. equation

(B.11). In Figure 4.5 below, we draw the “Feynman rules” associated with the

interaction Hamiltonian (4.119).

δθ δσ

δσ δσ

δσ

δσ

δσ

δσ

δσ

(a) (b) (c)

Figure 4.5: “Feynman rules” for the interaction Hamiltonian H int. (a) is the so-called “trans-
fer function” between adiabatic and isocurvature modes while (b) and (c) represent the three
and four-point self-interaction terms of the isocurvature mode.

89



In order to rely on perturbation theory using H int we will demand that 23

θ̇2
0

H2
� 1 (4.121)

and

|Vσσσ|H3 � 3VσσH
2. (4.122)

Condition (4.121) is necessary since the correction to the leading power spectrum

is suppressed by the factor
θ̇2
0

H2 as we will see in (4.134) below. Condition (4.122)

reflects the fact that, in the potential, the quadratic term should dominate over the

cubic one when F . H. In the QSF scenario, corresponding to M̃2
eff = Vσσ+3 θ̇2

0 ≡

α̃ H2 with α̃ ∼ O(1), condition (4.122) is equivalent to

|Vσσσ|
H

� 3 α̃ (4.123)

as long as (4.121) simultaneously holds [50]. Within our model Vσσσ = 6λR ≈

6
√

2λ v, so using a “benchmark point” compatible with (4.59), where we pick

v ≈ 15.1MPl ≈ 3.67× 1019 GeV and H ≈ 6.6× 1013 GeV, (4.124)

condition (4.123) implies that λ � (6.35 × 10−7) α̃. This last constraint on λ is

trivially satisfied since

λ ≈ α̃ H2

4 v2
≈ (8.08× 10−13) α̃, (4.125)

23Let us emphasize that this perturbativity condition is not tied to the Hamiltonian analysis.
Within the SK formalism, the generating functional Z[J ] is put into useful form by splitting
the classical Lagrangian into free and interacting parts L [φ] = L0[φ] + Lint[φ], such that
Z[J ] ∼ exp

(
i
∫

Lint

[
δ
iδJ

])
Z0[J ] where Z0[J ] ∼

∫
Dφ exp

(
i
∫
{L0[φ] + Jφ}

)
. Since Z0[J ] is

a Gaussian integral, it can be carried out explicitly. Then the interaction piece is expanded
perturbatively to get the desired correlators. Barring unimportant subtleties, this is not different
than good old QFT à la Feynman. See [61] for a modern review of SK, its applicability on QSF
inflation and original references.
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in agreement with the hierarchy θ̇2
0 � H2 � v2.

Hamilton’s equations deriving from the free Hamitonian (4.118) read

ϕ′′I + 2Hϕ′I + k2ϕI = 0, (4.126)

F ′′I + 2HF ′I + k2FI + a2M̃2
effFI = 0, (4.127)

recalling that f ′ ≡ ∂τf and conformal time τ is defined through the relation dt =

a dτ , so in particular H ≡ a′

a
. Working in the de Sitter approximation (Ḣ = 0) for

simplicity 24 one finds that H = − 1
τ

and a = − 1
H τ . It is straightforward to show

that if we define uk ≡ aϕI and vk ≡ aFI , the equations of motion (4.126)-(4.127)

can be put in the form

y′′k +

(
k2 −

ν2
y − 1

4

τ 2

)
yk = 0, ν2

y ≡
9

4
−
m2
y

H2
, (4.128)

where my stands for the mass of the modes yk = {uk, vk}. In the massless case,

meaning νu = 3
2
, the solutions to (4.128) are the Bunch-Davies mode functions

which are given by [151]

uk(τ) =
H√
2k3

(1 + ikτ) e−ikτ . (4.129)

For mv ≡ M̃eff 6= 0 the more general solutions to (4.128) need to be considered.

24This is equivalent to neglect slow roll corrections to the Mukhanov-Sasaki equation (4.128).
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These are given by 25

vk(τ) =


−i ei(ν+ 1

2)π2
√
π

2
H(−τ)

3
2H(1)

ν (−kτ), for
M̃2

eff

H2 ≤ 9
4
,

−i e−π2 µ+iπ
4

√
π

2
H(−τ)

3
2H(1)

iµ (−kτ), for
M̃2

eff

H2 > 9
4
,

(4.132)

where H(1)
ν is the Hankel function of the first kind and µ ≡

√
M̃2

eff

H2 − 9
4
. The nor-

malization of the mode functions are chosen so that when the physical momentum

k
a

is much larger than the Hubble parameter H and the mass my, we get back

the Bunch-Davies vacuum, i.e., uk as given in (4.129) and vk ≈ i H√
2k
τe−ikτ . We

see from (4.130) that when 0 ≤ M̃eff ≤ 3
2
H the amplitude of the mode vk decays

as (−τ)
3
2
−ν after horizon exit, so the lighter the isocurvaton is, the slower it de-

cays. In the limit M̃eff → 0
(
ν → 3

2

)
the amplitude is frozen. On the other hand,

when M̃eff > 3
2
H, we see from (4.131) that vk not only contains a decay factor

(−τ)
3
2 but an oscillation factor τ±iµ as well. While this oscillation is marginal for

M̃eff ∼ H, it causes cancellations in the integrals of the correlation functions and

is equivalent to factors of Boltzmann-like suppression ∼ e−
M̃eff
H in the M̃eff � H

limit 26. This is the reason behind the fact that most authors originally considered

25It is worth considering the behavior of the mode functions after horizon exit, namely, as
kτ → 0.

When
M̃2

eff

H2 ≤ 9
4

vk(τ)→

{
−ei(ν+ 1

2 )π2 2ν−1
√
π

Γ(ν) Hkν (−τ)−ν+ 3
2 , for 0 < ν ≤ 3

2 ,

ei
π
4

1√
π
H(−τ)

3
2 ln(−kτ), for ν = 0.

(4.130)

When
M̃2

eff

H2 > 9
4

vk(τ)→ −ie−π2 µ+iπ4

√
π

2
H(−τ)

3
2

[
1

Γ(iµ+ 1)

(
−kτ

2

)iµ
− iΓ(iµ)

π

(
−kτ

2

)−iµ]
, (4.131)

where µ ≡
√

M̃2
eff

H2 − 9
4 .

26In analogy to thermal field theory, the contributions of massive states to correlation func-
tions are exponentially suppressed by a Boltzmann factor if the mass is much higher than the
temperature. In de Sitter space there is a “Gibbons-Hawking” temperature given by TGH = H

2π

[152] and hence the corresponding Boltzmann factor reads e
− M̃eff
TGH = e−

2πM̃eff
H .
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the 0 ≤ ν ≤ 3
2

regime only. However it has been recently understood that the

regime M̃eff & 3
2
H has very peculiar features in the so-called “squeezed limit” that

however, realistically, will only be disentangled after finding some first evidence of

non-Gaussianities [13, 153] 27. We are interested in the perturbative corrections

to the 2, 3 and 4-point functions of the adiabatic fluctuation. In Figure 4.6 we

draw the (tree-level) correlators along with the perturbative corrections due to

the presence of the isocurvature mode.

(a) (b)

(c) (d)

(e) (f) (g)

Figure 4.6: Leading (tree-level) diagrams for the 2, 3 and 4-point functions of the curvature
perturbation in QSF inflation models. (a), (c) and (e) represent the naive (tree-level) correlators
while (b), (d), (f) and (g) are the leading corrections through isocurvature (tree-level) mediation.

The standard tool to calculate cosmological correlators is the in-in formalism, as

reviewed in appendix A. The master formula of in-in applied to the two-point

function of ϕ is given by

〈ϕ2〉 =

〈
0

∣∣∣∣ [T exp

(
i

∫ t

−∞−
dt′′HI(t

′′)

)]
ϕ2
I(t)

[
T exp

(
−i
∫ t

−∞+

dt′HI(t
′)

)] ∣∣∣∣0〉,
(4.133)

where HI =
∫
d3xH I

2 , T is the anti-time-ordering symbol and ∞± ≡ ∞(1± i ε).

Then, recalling that R ≈ − H
ϕ̇0
ϕ, the dimensionless power spectrum of curvature

27The regime M̃eff � H is not trivial. The time-dependent inflationary background implies
that integrating out a heavy mode leaves an imprint in the speed of sound of adiabatic fluctua-
tions, as we have discussed thoroughly in subsection 4.3.1.1 and (in some generality) appendix
B. See [132] and references therein.
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fluctuations ∆2
R as defined in (4.87) and the scalar tilt, defined as ns ≡ 1+

d ln ∆2
R

d ln k
,

are given by 28

∆2
R =

H4

4π2ϕ̇2
0

1 + C(ν)

(
θ̇0

H

)2
 , ns − 1 = −2 ε− η + η C(ν)

(
θ̇0

H

)2

.

(4.134)

The explicit analytic calculation of C(ν) for arbitrary M̃eff can be found in [53]

and it is not enlightening (see [61] for a “quick” derivation). The result in (4.134)

justifies the necessity of the first perturbative condition in (4.121) 29.

4.3.2.2 Non-Gaussianities

As for the bispectrum it can be shown [50] that in the squeezed limit p3 �

p1 ' p2, when ν 6= 0
(

0 ≤ M̃eff <
3
2
H
)

, the curvature scalar bispectrum that

one gets through the Vσσσ interaction of the isocurvature mode has a momentum

dependence that scales as

〈Rp1Rp2Rp3〉 ∼
1

p3
1 p

3
3

(
p3

p1

) 3
2
−ν

when p3 � p1 ' p2 and ν 6= 0. (4.135)

Looking at (4.130) we can understand this momentum dependence by recalling

that under Bunch-Davies initial conditions a correlation between long and short

28In [53, 154] it was proven that, in the large effective mass limit, C(µ) ≈ 2
µ2 with µ2 ≡

M̃2
eff

H2 − 9
4 ≈

M̃2
eff

H2 . Using this in (4.134) we get that ∆2
R ≈ ∆̊2

R

(
1 + 2

θ̇20
M̃2

eff

)
, where ∆̊2

R stands

for the single field (cs = 1) power spectrum. This should be compared with the effective single

field (cs 6= 1) prediction which in this case is given by ∆2
R ≈ ∆̊2

R c
−1
s ≈ ∆̊2

R

(
1 + 2

θ̇20
M2

eff

)
=

∆̊2
R

(
1 + 2

θ̇20
M̃2

eff

c−2
s

)
, so both predictions coincide to O

(
θ̇20
M̃2

eff

)
.

29Strictly speaking, the perturbative condition one needs to impose is C(ν) θ̇2
0 � H2. C(ν)

is a very slowly growing function that stays O(1) until it diverges as ν → 3
2 , as can be seen

in FIG.6 of reference [50] and equation (3.15) of reference [52]. The divergence represents the

massless limit, and since we want to focus in the regime where M̃2
eff & H2, we can safely take

C(ν) ∼ O(1) for all our purposes.
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wavelengths can only be generated once the short wavelength modes approach

horizon scales. The amplitude of the long wavelength will have decayed according

to the factor
(
τ1
τ3

) 3
2
−ν

=
(
p3

p1

) 3
2
−ν

by that time, explaining the behavior in (4.135).

The shape function (4.135) has been dubbed “intermediate” [49] since it interpo-

lates between local and equilateral shapes as ν →
{

3
2
, 0
}

, respectively (cf. (4.89)

and (A.34); see [150] for standard definitions). Indeed, the more massive the

isocurvature mode is, the faster it decays on super-horizon scales, so the largest

contribution to non-Gaussianities is generated around horizon-crossing scales, i.e.

in the equilateral configuration. On the other hand, if the isocurvature mode is

lighter, the super-horizon isocurvature fluctuations survive longer and can con-

tribute to correlations between long and short modes, i.e. in the so-called local

configuration.

We can estimate the size of non-Gaussianities, i.e. the order of magnitude of

fNL, by realizing that the dimensionless coupling constants for the cubic isocurva-

ture interaction and the transfer vertex go like
(
Vσσσ
H

)
and

(
θ̇0
H

)
, respectively [50].

Thus, since R ∼
√

∆2
R, we find through inspection of diagram (d) in Figure4.6

that

〈
R3
〉
∼
(
Vσσσ
H

)(
θ̇0

H

)3

(∆2
R)3/2 ∼ fNL (∆2

R)2 → fNL ∼
1√
∆2
R

(
Vσσσ
H

)(
θ̇0

H

)3

.

(4.136)

In our model, Vσσσ = 6λR ≈ 6
√

2λ v and λ ≈ α̃H2

4 v2 thus Vσσσ
H
≈ 3

√
2 α̃
2

H
v
≈

(3.81 × 10−6) α̃, where we have used the benchmark point defined in (4.124).

Taking
√

∆2
R ≈ 4.63× 10−5 (from observations)

fNL ∼
(
8.23× 10−2

)
α̃

(
θ̇0

H

)3

. (4.137)
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If we assume a non-conservative value θ̇0
H
≈ 1√

10
(so we get an O(10−1) correction

to the power spectrum in (4.134)) we find using (4.137) that

fNL ∼
(
2.6× 10−3

)
α̃. (4.138)

The estimation above lacks a numerical factor (and a sign) that Chen and Wang

originally obtained. Quoting their result,

fNL ≈
ϑ(ν)√

∆2
R

(
−Vσσσ
H

)(
θ̇0

H

)3

, (4.139)

where ϑ(ν) is a positive numerical coefficient which is expected to be O(1) 30.

Then our estimation (4.137) is slightly modified to finally give

fNL ≈ −
(
2.6× 10−3

)
α̃ ϑ(ν) . O (ε, η) , (α̃, ϑ(ν) ∼ O(1) numbers) (4.140)

which is (still) unobservably small.

Finally, we can estimate the trispectra τNL (4-point function) by considering dia-

grams (f) and (g) in Figure4.6. We get that

τNL ∼ max

τSE
NL
∼=

1

∆2
R

(
θ̇0

H

)4(
Vσσσ
H

)2

, τCI
NL
∼=

1

∆2
R

(
θ̇0

H

)4

Vσσσσ

 , (4.141)

30It can be numerically shown that ϑ(ν) blows up as ν → 3
2 (M̃eff → 0). The divergence

occurs because we use the constant turn assumption. However when M̃eff = 0, a δσ fluctuation
never decays at super-horizon so the transfer from isocurvaton to curvaton lasts forever. As
[50] points out, if the horizon crossing time of a perturbation mode is Nf e-folds before the end
of inflation (or the time when the inflaton trajectory becomes straight), one needs to impose a
cut-off in the conformal time integrals of the exact in-in formula for 〈R3〉. All in all we could
naively conclude that the integrals are dominated by a N4

f behavior. However, we need to

realize that in this limit, C(ν) in (4.134) scales as N2
f for the same reason. For large Nf , the

perturbativity condition becomes N2
f

(
θ̇20
H2

)
� 1 instead. Thus, in the perturbative regime, the

effective “enchancement” factor is only Nf (which in principle can be as large as 60). Since we
are not interested in the “multifield” inflation limit [127], ϑ(ν) is O(1) for our purposes.
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where, following [50], SE and CI in τSE
NL and τCI

NL stand for “scalar-exchange” and

“contact-interaction”, respectively. Recalling that in our model, Vσσσσ = 6λ ≈
3
2
α̃
(
H
v

)2
, we find that

τNL ∼ max

τSE
NL ∼ 6.78× 10−3 α̃2

(
θ̇0

H

)4

, τCI
NL ∼ 2.27× 10−3 α̃

(
θ̇0

H

)4
 .

(4.142)

Assuming again that θ̇0
H
≈ 1√

10
this becomes

τNL ∼ max
{
τSE

NL ∼ 6.78× 10−5 α̃2, τCI
NL ∼ 2.27× 10−5 α̃

}
. (4.143)

Considering (4.136) and (4.141) we see that

τSE
NL ∼

(
H

θ̇0

)2

f 2
NL and τCI

NL ∼
(
H

θ̇0

)2(
VσσσσH

2

Vσσσ
2

)
f 2

NL. (4.144)

As as consequence of perturbativity, we find that

τSE
NL �

(
6

5
fNL

)2

, (4.145)

so that the so-called “Suyama-Yamaguchi bound” [155] is satisfied as expected in

the QSF scenario [52] 31. We also see that for our specific model (4.144) implies

31The Suyama-Yamaguchi bound reads

τSE
NL ≥

(
6

5
fNL

)2

. (4.146)

The inequality is saturated for single-field inflation while multifield inflation satisfies (4.146).

The case for QSF is in principle distinguishable as τSE
NL �

(
6
5fNL

)2
is expected to hold instead.

See [52] for a discussion.
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that

τCI
NL ∼

(
H

θ̇0

)2(
1

3 α̃

)
f 2

NL → τSE
NL > τCI

NL when α̃ ∼ O(1), (4.147)

which is the case in (4.142). Interestingly, this “hierarchy” reverses when α̃ ≤
1
3
. This fact could, in principle, be used to pin down the mass range of the

isocurvatons of the QSF scenario once the “cosmological collider physics” program

is up and running [13][153]. Needless to say, measuring the trispectra of primordial

density perturbations is way beyond our current experimental expectations.

4.3.2.3 Comments on the M 2
eff � H2 Regime

As has been previously stressed, when approaching the isocurvaton light

mass limit, the squeezed limit of the bispectrum in the QSF scenario is of “quasi-

local” type, and the fluctuations decay much slower than in the heavy mass case.

This situation has been originally discussed in [50], where the following two in-

stances have been distinguished:

• If Vσσσ is still “large”, the QSF analysis does apply, so we can use (4.139)

to estimate the size of non-Gaussianities, but with an infrared e-folds cutoff

as discussed in footnote 30.

• It is possible that in this limit the isocurvature background solution slow-

rolls as well as the inflationary one, implying through slow-roll conditions

that the coupling
(
Vσσσ
H

)
sr

is ∼ O
(
ε3/2
)

H
MPl

. As is well known [156], this

scenario does not produce sizable non-Gaussianities.

Let us then analyze the isocurvaton light mass limit of our model to see into which

of the above cases it falls. The light mass condition, M̃2
eff ≈ 4λ v2 + 3 θ̇2

0 � H2,

amounts to λ � H2

4 v2 , as
θ̇2
0

H2 � 1 due to perturbativity. Using the benchmark
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point (4.124), which is required by the background NI theory, this implies that

λ � 8.08 × 10−13. Since Vσσσ = 6
√

2λ v, we find that Vσσσ
H
� 3.81 × 10−6. On

the other hand, assuming ε ∼ 10−2, we see that this last constraint on Vσσσ
H

takes

us quite close to the slow-roll regime as
(
Vσσσ
H

)
sr
∼ ε3/2 H

MPl
∼ 2.72 × 10−8. We

then realize that due to the tight symmetry constraints on the parameters of our

model, non-Gaussianities are much more suppressed in the isocurvaton light mass

scenario when compared to the QSF regime ones, which are already quite small.

For this reason we do not further discuss this particular limit.

4.4 Discussion and Conclusions

We have considered a generalization of Natural Inflation [43, 44] where the

dynamics of the radial mode σ is included. To this end we have carried out an edu-

cated field-theoretic construction of a “UV-complete” two-field model undergoing

spontaneous as well as explicit symmetry breaking of a global U(1) symmetry.

The (soft) explicit symmetry breaking operators of our model give the (inflaton)

pseudo-Goldstone field θ a naturally small mass in accordance with slow-roll re-

quirements and makes the potential for the two-field system V (σ, θ) non-separable.

We analyzed the dynamics of the background solution assuming an almost con-

stant angular speed circular motion in (flat) field space. As for the theory of

fluctuations, the results depend crucially on whether the effective mass squared of

the radial field M2
eff is very heavy (�) or not (∼) with respect to the cosmological

collider experiment energy scale squared, H2.

We have found that effective single-field Natural Inflation (M2
eff � H2) has

a better fit to current bounds in the (ns, r) plane [25] if the speed of sound of

adiabatic fluctuations cs is mildly smaller than one 32. However the amplitudes

of non-Gaussianities, collectively denoted as fNL, are negligible unless c2
s � 1.

32See [129] for previous developments along these lines.
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In particular, we have noticed that the assumptions on the relative “weight” of

the heavy field operators when neglecting its dynamics changes the behavior of

fNL as a function of cs, especially in the small cs regime. Indeed, keeping the

Vσσσ contribution in the constraint equation for δσ changes the predictions of the

model quite dramatically, as was argued in [55]. This “free parameter” (from the

single-field EFT of inflation [40] point of view) is constrained by the symmetry

or our model and feeds into the functional dependence of fNL = fNL(cs) leaving

a characteristic behavior 33, that in the small cs regime, scales like fNL ∼ c−4
s

instead of the usual fNL ∼ c−2
s scaling that is naively expected in this class of

models [26, 147] (the fNL ∼ c−4
s scaling does arise, for example, in Galileon mod-

els of infation [110] 34). In our model, to get small cs such that the fNL’s get any

chance of being observable, requires a bit of tuning of initial conditions which is

obviously unappealing from the theoretical point of view.

The other possibility that we have analyzed is the M2
eff ∼ H2 scenario, i.e.

the Quasi-Single-Field regime [49, 50]. A quick estimate shows that fNL becomes

unobservably small given the observational constraints on the parameters of the

model; in short, the Natural Inflation background requires super-Planckian values

of the VEV v, which entails that in order to have M2
eff ≈ 4λ v2 ∼ H2 we need λ to

be quite small, implying that Vσσσ
H
≈ 6

√
2λ v
H
∼ 3

√
2

2
H
v

is just too small to produce

sizable non-Gaussianities through the use of (4.139). This somehow “negative”

result is at odds with the original naive expectations that through a (δσ)3 interac-

tion, non-Gaussianities for the adiabatic mode can become large. Although this

conclusion is also based on the perturbative assumption that the mixing coupling

θ̇0
H

is small in the QSF regime, we have seen from the single-field EFT point of

33Indeed our model is quite peculiar in the sense that in (4.98), all terms are related by
symmetry in such a way that R

6M2
eff
Vσσσ ≈ 3

8 + 1
8c
−2
s , so fNL = fNL(cs) ultimately. This kind of

simplification does not occur in a generic model.
34It would be interesting to clarify the connection between such a scenario and the case

where we integrate out the radial mode of a pseudo-Goldstone model without neglecting its
self-interactions. This, however, lied beyond the scope of our work.
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view that this is indeed the case as we lower down M2
eff. Even if the single-field

EFT does not make sense in the QSF limit, this might shed some light on the

real limitations of this particular perturbative condition. Recently there has been

renewed interest in non-perturbative (strongly-coupled) QSF models [157–159].

It would be interesting to see if, through these new developments, we could find

less supressed signatures of our model. Another avenue worth exploring would be

to introduce a new scale in the problem, like for example, a non-trivial curvature

tensor in field space Ra
bcd. One way of naturally doing this would be to extend

the symmetry group of our model to a non-abelian one, say SU(2) for definiteness

35. All these ideas will be investigated elsewhere.

35As manifolds, SU(2) and the 3-sphere S3 are diffeomorphic, implying that the spectrum of
this non-abelian model would consist of three angular (Goldstone) directions plus a radial one.
It is not easy to anticipate the phenomenology of such a “Multi-Quasi-Single-Field” model.
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Chapter 5

Cosmological Cosets

In this chapter we will revisit the seminal work of Curtis Callan, Sidney

Coleman, Julius Wess, and Bruno Zumino (CCWZ) on the rigorous construction

of phenomenological Lagrangians, the so-called “coset construction” [160, 161].

For the whole review of SSB of internal symmetries we will closely follow [162].

Subsequently, we will learn how to generalize such a construction to the case of

local gauge and spacetime symmetries, following the approach of [163]. Finally

we will derive (some limit of) the EFT of inflation using these formal algebraic,

geometric tools, and we will discuss several subtle points that arise on the way.

5.1 Phenomenological Lagrangians:

SSB of Internal Global Symmetries as a Warm-Up

5.1.1 Generalities

To be concrete, let us consider again the example that we introduced in the

SSB of global symmetries section of chapter 3. We have a set of scalar fields φi,

i = 1, . . . , N , whose kinetic term is invariant under some global symmetry group,

e.g. the orthogonal group in N dimensions O(N), defined by elements O that

satisfy OTO = 1. The minimal non-trivial Lagrangian for such a system would

be

L = −1

2
∂µφ

T∂µφ− V (φ), (5.1)
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where φ is a column vector and we are omitting its vector indices for simplicity of

notation. The potential V (φ) need not be invariant under O(N) but may only pre-

serve some subgroup of these, G ⊂ O(N), meaning, if g ∈ G, then V (gφ) = V (φ).

Within the semiclassical approximation, if the potential is minimized by some

field configuration φ = v 6= 0, then the symmetry group G may be spontaneously

broken to some subgroup, H ⊂ G, which is defined by

hv = v, ∀ h ∈ H. (5.2)

As usual, we assume that any group element g ∈ G may be written as the expo-

nential of parameters times generators of the corresponding Lie algebra g,

g = exp (i θaGa) . (5.3)

We now split the generators Ga into Ga = {TA, Xα}, where the TA’s generate the

Lie algebra of H, denoted by h. In particular, (5.2) implies that TA v = 0. Closure

of H under group multiplication implies that

[TA, TB] = i cABC TC , (5.4)

so in particular cABα = 0.

The Xα’s do not lie in h, and so satisfy Xα v 6= 0. Furthermore, they are said to

generate the space of cosets, denoted by G/H. In short, a coset is an equivalence

class which is defined to contain all of the elements of G that are related by the

multiplication by an element of H. Physically, the Xα’s represent the generators

of the symmetry group which are spontaneously broken. For a compact group,

the structure constants cabc can be shown to be completely antisymmetric, so that
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cABα = 0⇒ cAαB = 0, i.e.,

[TA, Xα] = i cAαβXβ. (5.5)

This last commutator implies that the Xα’s fall into a representation of H, mean-

ing that the exponentiation of the above commutator is equivalent to the state-

ment

hXα h
−1 = L β

α Xβ, (5.6)

for any h and some coefficients L β
α . For completeness, let us state that in contrast,

the commutator of the Xα’s among themselves does not have a simple form, since

[Xα, Xβ] = i cαβγ Xγ + i cαβA TA, (5.7)

and cαβA 6= 0, otherwise the Xα’s would form a subgroup as well. Moreover, when

cαβγ = 0 the coset G/H corresponds, in math parlance, to a “symmetric space”.

As we have thoroughly reviewed in chapter 3, Goldstone’s theorem implies the

existence of one massless scalar for each broken symmetry generator. Intuitively,

Goldstone modes are obtained by performing symmetry transformations on the

ground state. Since an infinitesimal symmetry transformation on the ground state

corresponds to the directions Xα v in field space, we expect that the components

of φ in this direction, vT Xα φ, to be the Goldstone bosons. In order to make

the low-energy decoupling of the Goldstone modes manifest we require that they

do not appear at all in the scalar potential. It is therefore convenient to make a

change of variables φ(x)→ {U(θ(x)), χ(x)} such that

φ = U(θ)χ, U(θ) = exp (i θαXα) . (5.8)
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Indeed, U(θ) can be thought as a spacetime-dependent symmetry transformation

in the direction of the broken generators Xα. χ is taken to be perpendicular, in

field space, to the Goldstone directions, Xα v, meaning 1

vT Xα χ = 0. (5.9)

This last fact, together with the antisymmetry of the generators 2, which implies

that vT Xα v = 0, precisely ensures the vanishing of the “cross terms” ∼ ∂µθ ∂
µδχ

in the kinetic sector when expanding around the ground state configuration χ =

v + δχ. As G-invariance requires the potential to satisfy V (Uχ) = V (χ), the

variable θ is guaranteed to drop out of the scalar potential, so that all terms in

L involving the Goldstones θα vanish when ∂µθ
α = 0.

5.1.2 The Non-linear Realization

The field φ transforms linearly under G, meaning φ : φ → φ̃ = g φ, where

g = ei α
aGa . After performing the change of variables from φ(x) = {φi} to χ(x) =

{χn} and θ(x) = {θα}, we would like to find the transformation rules for the new

variables θ → θ̃ and χ→ χ̃. The natural guess φ̃ = U(θ̃) χ̃ implies then that

g U(θ)χ = U(θ̃) χ̃. (5.10)

Equation (5.10) can be rewritten as χ̃ = γ χ, with γ ≡ Ũ−1 g U . It can be shown

that this condition implies that γ must lie within the subgroup H of unbroken

transformations, and as such, may be written in the form γ = ei u
A TA , for some

functions uA = uA(θ, g). Therefore the transformation laws θα → θ̃α(θ, g) and

1It can be shown that condition (5.9) can always be satisfied starting from any field config-
uration. See [162].

2The generators Ga are necessarily antisymmetric after demanding unitarity and reality of
the group elements g.
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χ→ χ̃(θ, g, χ) are given by

g ei θ
αXα = ei θ̃

αXα ei u
A TA , (5.11)

χ̃ = ei u
A TA χ. (5.12)

Equation (5.11) defines the non-linear functions θ̃α(θ, g) and uA(θ, g). In other

words, we find the element g ei θ·X ∈ G, and then decompose the matrix into the

product of a factor ei θ̃·X ∈ G/H, times an element ei u·T ∈ H. Then (5.12) defines

the transformation rule for the non-Goldstone fields χ.

There is a interesting special case that can be explicitly worked out for γ and Ũ ;

when g = h ∈ H. It is easily seen that in this case γ = h and Ũ = hU h−1, in

other words both χ and θ transform linearly under the unbroken subgroup H,

θαXα → θ̃αXα = h θαXα h
−1, (5.13)

χ→ χ̃ = hχ, (5.14)

∀ h ∈ H.

For the broken symmetries, g ∈ G/H, things are not so simple, but we can

specialize to infinitesimal transformations by taking g = 1+ i ωαXα+ . . ., γ = 1+

i uA(θ, ω)TA + . . ., and U(θ̃) = U(θ) [1 + i∆α(θ, ω)Xα + . . .], where ωα, uA(θ, ω),

and ∆(θ, ω) are infinitesimal quantities. Using the Killing form (inner product)

that satisies Tr(XαXβ) = δαβ , Tr(TATB) = δAB and Tr(TAXα) = δAα = 0 we find

that

∆α = Tr
[
Xα e

−i θ·X (ω ·X) ei θ·X
]
≈ ωα − cαβγ ωβθγ +O(θ2), (5.15)

uA = Tr
[
tA e

−i θ·X (ω ·X) ei θ·X
]
≈ −cAαβ ωαθβ +O(θ2). (5.16)
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It can be shown [162] that there exists a linear relation between ∆α and Ξα(θ, ω) ≡

θ̃α−θα, i.e., ∆α = Mαβ (θ) Ξβ, where Mαβ =
∫ 1

0
dsTr

[
Xα e

−i s θ·X Xβ e
i s θ·X] 3 such

that

δθα = ωα − cαβγ ωβθγ +O(θ2). (5.18)

We see that the transformation rule for the θα’s under elements of G/H is inho-

mogeneous, and it is this property which enforces the decoupling of the Goldstone

bosons at low energies. Moreover, for the non-abelian case (cabc 6= 0), the sym-

metries act non-linearly on the fields θα. The fact that the transformation of θα

and χn are both field dependent implies that the action of these symmetries are

spacetime-dependent. So, for example, even if the transformation parameters ωα

are constants, as G is a global symmetry, the transformation matrix γ = ei u·T

is not a constant, ∂µγ 6= 0. This fact makes the construction of invariant La-

grangians quite non-trivial. Happily for us, smart people like CCWZ realized how

to proceed.

5.1.3 Invariant Lagrangians

It does not seem easy to unravel how to construct invariant Lagrangians

which can describe the low-energy interaction of the Goldstone bosons, given

the complicated spacetime-dependent transformation laws (5.11) and (5.12). A

heuristic way to proceed is the following. Consider the kinetic term of our toy

model ∂µφ
T∂µφ, which is manifestly G-invariant. Now perform the change of

variables from φ to θ and χ. This trivial operation cannot change the physics, so

3To arrive to this result one uses the matrix identity

e−i Aei(A+B) = 1+ i

∫ 1

0

ds e−i sAB ei s(A+B) = 1+ i

∫ 1

0

ds e−i sAB ei sA +O(B2), (5.17)

taking A = θ ·X and B = Ξ ·X.
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the new kinetic sector needs to be G-invariant as well. So, how does this happen

specifically?

Consider the derivative of φ under the change of variables ∂µφ → ∂µ (Uχ) =

U (∂µχ+ (U−1∂µU)χ). Our experience with gauge theories and gravity leads us

to define a covariant derivative acting on χ

Dµχ ≡ ∂µχ+
(
U−1∂µU

)
χ. (5.19)

We do this because equation (5.11) may be rewritten as Ũ = g U γ−1, which

implies that U−1∂µU transforms as a connection

U−1∂µU → Ũ−1∂µŨ = γ U−1 g−1 ∂µ (g U γ) = γ
(
U−1∂µU

)
γ−1 − (∂µγ) γ−1,

(5.20)

where we have used the fact that g is a spacetime-independent group element

and γ ∂µγ
−1 = − (∂µγ) γ−1. Moreover, it is wise to separate out the parts of the

so-called “Maurer-Cartan one-form” U−1∂µU which are proportional to Xα from

those which are proportional to TA. That is, defining

U−1∂µU = −iAAµ TA + i eαµXα, (5.21)

the transformation law in (5.20) implies that

−iAAµ (θ)TA → −iAAµ (θ̃)TA = γ
(
−iAAµ (θ)TA

)
γ−1 − ∂µγ γ−1, (5.22)

i eαµ(θ)Xα → i eαµ(θ̃)Xα = γ
(
i eαµ(θ)Xα

)
γ−1, (5.23)

under G transformations. We see that AAµ transforms like a gauge potential, while

eαµ transforms covariantly. Using the infinitesimal version of g and γ(θ, g) one can
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derive the infinitesimal transformation laws

δAAµ (θ) = ∂µu
A(θ, ω)− cABC uB(θ, ω)ACµ (θ), (5.24)

δeαµ(θ) = −cαAβ uA(θ, ω) eβµ(θ). (5.25)

It is natural to “extract” the overall factor ∂µθ
α in δAAµ and δeαµ(θ), so that

AAµ (θ) = AAα (θ)∂µθ
α ⇒ AAα (θ) = −

∫ 1

0

Tr
[
TA e

−i s θ·X Xα e
i s θ·X] ≈ 1

2
cAαβ θ

β +O(θ2),

(5.26)

eαµ(θ) = eαβ(θ)∂µθ
β ⇒ eαβ(θ) =

∫ 1

0

Tr
[
Xα e

−i s θ·X Xβ e
i s θ·X] ≈ δαβ −

1

2
cαβγ θ

γ +O(θ2),

(5.27)

where to get the first equalities (after the arrows) one follows analogous reasoning

and identities that one uses to get the expression for Mαβ right above equation

(5.18).

We are ready to build G-invariant couplings among the θα, and between the θα’s

and other fields, such as the χ field from the scalar fields example. As “building

blocks” for the construction of G-invariant operators for the EFT Lagrangian we

have found that:

• We may combine the covariant quantity eαµ = eαβ ∂µθ
β in all possible H-

invariant ways. This is of course quite simple as they transform homoge-

neously under G, namely G : eµ ·X → γ eµ ·X γ−1.

• We may also combine covariant derivatives of eαµ, (Dµeν)α ≡ ∂µe
α
ν+cαAβ AAµ eβν ,

in H-invariant ways since they transform as they should, i.e. in the same

way as does eαµ, G : (Dµeν) ·X → γ (Dµeν) ·X γ−1.

The Lagrangian L [eµ,Dµeν , . . .], where the ellipses denote terms that involve

higher covariant derivatives, is “automatically” globally G-invariant provided it is
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H-invariant

L
[
h eµ h

−1, hDµeν h−1, . . .
]

= L [eµ,Dµeν , . . .] . (5.28)

For Poincaré-invariant systems, the first term in the derivative expansion is given

by

L = −1

2
fαβ η

µνeαµ e
β
ν + higher-derivative operators, (5.29)

where positivity of the kinetic energy demands the matrix fαβ to be positive

definite, while G-invariance demands that it also satisfies fγβ c
γ
Aα + fαγ c

γ
Aβ = 0.

Moreover, from equation (5.25) we realize that the matrices Xα furnish a represen-

tation R of the unbroken group H with representation matrices given by (TA)αβ =

cαAβ, and in terms of these matrices G-invariance requires [TA, f ] = 0, ∀ TA. If the

representation R is irreducible, then by Schur’s lemma, fαβ = F 2δαβ . If R is re-

ducible into n irreducible diagonal blocks, then fαβ = diag (F 2
1 1, F

2
2 1, . . . , F

2
n 1),

for n independent constants, F 2
n . Therefore, the lowest-dimension operators in the

most general low-energy Goldstone boson self-coupling Lagrangian is parametriz-

able in terms of these n constants.

Finally, if other fields, that we collectively denote by χ, also appear in the low-

energy theory, we ensure G-invariance by assigning the transformation rule χ →

γ χ, where γ = γ(θ, g) ∈ H is the field-dependent H matrix which is defined

through the non-linear realization, equations (5.11) and (5.12), and use covari-

ant derivatives Dµ χ = ∂µχ − iAAµ TA χ as they also transform nicely under G,

Dµ χ→ γDµ χ.

The final general Lagrangian is therefore given by L [eµ, χ,Dµ eν ,Dµ χ, . . .] where
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G-invariance is guaranteed as long as it is globally H-invariant, meaning

L
[
h eµ h

−1, h χ, hDµeν h−1, hDµ χ, . . .
]

= L [eµ, χ,Dµeν ,Dµ χ, . . .] . (5.30)

It is remarkable that such construction can be proven to be unique [162].

5.2 The General Case:

Local (Gauge) Internal and Spacetime Symmetries

We would like to discuss now the general case of local gauge symmetries,

and even more generally, spacetime symmetries. It is crucial to realize that un-

like internal symmetries which may or may not be gauged and/or spontaneously

broken, spacetime symmetries are always gauged by gravity and moreover, any

conceivable physical system other than the vacuum is bound to break at least some

of them. We will see that in order to couple gravity with the Goldstone fields that

non-linearly realize the spontaneous breaking of space-time symmetries we need

to weakly gauge the Poincaré group in the context of the coset construction.

5.2.1 Review of a Generalized Coset Construction

The coset construction was extended to the case of SSB of spacetime symme-

tries by Dmitri Volkov, Victor Ogievetsky and Evgeny Ivanov [164–166]. Several

subtleties, some of them seeds of ongoing active research areas, arise in such a

context: the number of Goldstone modes does not need to equal that of broken

symmetries [166, 167]; Goldstone excitations do not need to be either massless nor

stable [168–171]; UV completions may occur in non-standard ways [172]; the issue

of superluminality may become devious [173–176]. The SSB of spacetime sym-

metries is not only an academic endeavor, as any state of matter other than the

vacuum must break at least some of them. Consider the example of a state with
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a single point particle at rest. It certainly breaks boosts by selecting a preferred

reference frame. In contrast, if said particle is charged under a U(1) symmetry,

the corresponding state is an eigenstate of the charge and does not break U(1).

The point is that even if we may consider states that spontaneously break any

internal symmetry, we are not forced to do so. In some sense, we realize that while

Nature has provided us with both global and gauge internal symmetries, there is

no such ambiguity when it comes to spacetime symmetries, as they are gauged by

gravity.

Consider the symmetry group G which now includes Poincaré as a subgroup and

assume that the ground state spontaneously breaks it down to a subgroup H. We

subdivide the generators of G into three groups:

Xα = broken generators, P̄a = unbroken translations, TA =other unbroken generators.

Both theXα’s and the TA’s do in general contain some spacetime and some internal

generators. Even though the effective action for the Goldstone bosons must be

invariant under the whole symmetry group G, the broken symmetries generated

by the Xα’s and the unbroken translations P̄a’s will be non-linearly realized on

the Goldstone fields.

We define a “local parametrization” of the coset G/H0, where H0 is the subgroup

of H generated by the TA’s, given by

Ω(y, π) ≡ exp
(
i ya(x) P̄a

)
exp (i πα(x)Xα) . (5.31)

Ω can be thought of as the most general group element generated by the Xα’s and

the P̄a’s using coordinate-dependent parameters. The transformation properties
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of the Goldstones under a generic element g ∈ G is derived from the relation

gΩ(y, π) = Ω(y′, π′)h(y, π, g), (5.32)

where h(y, π, g) ∈ H0 depends on the Goldstones and the coordinates in such a way

that it guarantees that the “form” of Ω in (5.31) is preserved under the action of g.

The Goldstones π will usually transform non-linearly, while the y’s transform like

cartesian coordinates under unbroken Poincaré transformations. Indeed, say g is

an unbroken translation, meaning g = ei ε
a P̄a for some constant parameters εa, then

from (5.31) one can derive that y′(x) = y(x) + ε, π′(x) = π(x) and h(y, π, g) = 1.

In a Minkowski background one can trivially take ya(x) ≡ xa everywhere. On

a curved background, however, the y’s need to be thought of as locally inertial

coordinates at some point within the patch described by the x coordinates, and

such a trivial picking may not be possible. We now introduce the Maurer-Cartan

(MC) one-form Ω−1dΩ, whose components are calculated explicitly using only the

Lie algebra g associated with the Lie group G. By the group property, the MC

form may be expressed a linear combination of all the generators

Ω−1∂µΩ = Ea
µ

(
P̄a +∇aπ

αXα + ABa TB
)
. (5.33)

Let us summarize the properties of the different objects appearing in the expres-

sion above:

• It can be shown [165] that the object Ea
µ plays the role of a vielbein as

it defines a “volume form” (or integration measure) ddx detE, which is a

scalar under all symmetries and is covariant under arbitrary x-coordinate

transformations, ensuring the fact that the coset construction can be carried

out in an arbitrary coordinate system. When all Xα’s are internal and we

take the x’s to be Cartesian coordinates, the “coset vielbein” Ea
µ is trivial,
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i.e. Ea
µ = δaµ.

• On the other hand, the objects ∇aπ
α should be thought of as covariant

derivatives for the Goldstone fields, as they transform covariantly under all

symmetries, meaning

∇aπ
α(x)

g−→ ∇aπ
′α(x) = h b

a (y, π, g)h α
β (y, π, g)∇bπ

β(x), (5.34)

where the h b
a and h α

β matrices are some representations of the group ele-

ment h(y, π, g) ∈ H0. Thus, the covariant derivatives ∇aπ
α transform ac-

cording to a field-and coordinate-dependent representation of the unbroken

subgroup H0.

• Finally, the coefficients ABa transform like a connection and may be used to

define covariant derivatives

∇H
a ≡ Eµ

a ∂µ + i ABa TB, (5.35)

acting on the Goldstone fields and additional matter fields transforming in

some linear representation of the unbroken subgroup H0. Here Eµ
a is defined

through Eµ
aE

b
µ = δba and Eµ

aE
a
ν = δµν .

The most general G-invariant x-coordinates independent Lagrangian density L is

then constructed by simply contracting all covariant derivatives, e.g. ∇aπ
α,∇H

a ∇bπ
α, . . .,

that are manifestly H0-invariant.
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5.2.2 Gauging Some Symmetries: The General Case and GR as an

Example

If a subgroup G′ ⊆ G with generators VI is gauged, we simply replace the

partial derivative in the definition of the MC form with a covariant derivative

Ω−1∂µΩ→ Ω−1DµΩ ≡ Ω−1
(
∂µ + iÃIµVI

)
Ω. (5.36)

Such a modified MC form may also be decomposed as in equation (5.33).

Ω→ g(x)Ω, Ãµ → g(x)Ãµg
−1(x)− ig(x)∂µg

−1(x), where g(x) ∈ G′. (5.37)

Crucially, if the gauged generators VI contain some of the broken generators Xα,

we may always perform a gauge transformation and set to zero some of the Gold-

stones πα, which amounts to be working in the unitary gauge.

We will use the procedure outlined in (5.36) to introduce dynamical gravity into

systems of interest by gauging the Poincaré group. Actually, armed with all these

tools, let us review how GR may be derived from a coset construction by gaug-

ing the Poincaré group ISO(3, 1) with non-linearly realized translations [177]. In

other words, we are interested in the coset G/H = ISO(3, 1)/SO(3, 1), which is

parametrized by

Ω = exp (i ya(x)Pa) . (5.38)

115



Now we introduce the gauge connections for translations ẽaµ and Lorentz transfor-

mations ωabµ so that the MC form is given by

Ω−1DµΩ ≡ e−i y
a(x)Pa

(
∂µ + i ẽaµPa +

i

2
ωabµ Jab

)
ei y

a(x)Pa = i eaµPa +
i

2
ωabµ Jab ,

(5.39)

where we have defined

eaµ ≡ ẽaµ + ∂µy
a + ωabµ yb. (5.40)

According to the previous discussion, the fields eaµ are a coset vielbein from which

we may construct volume form ddx det e. Moreover, they also define the spacetime

metric through the usual identity gµν = eaµ e
b
ν ηab, so eaµ is indeed the usual vielbein

field of the tetrad formalism. Now we understand why the covariant derivative

acting on matter fields such as fermions “only” carries the “spin connection” for

the local Lorentz group, i.e.

∇L
a ≡ eµa

(
∂µ +

i

2
ωbcµ Jbc

)
. (5.41)

The vielbein and the spin connection are the only necessary building blocks to de-

scribe the non-linear realization of translations and the local action of the Poincaré

group. If we do not consider additional matter fields, the most general Poincaré

and diff-invariant theory is defined with an action of the form

S =

∫
d4x det eL

[
∇L
a

]
, (5.42)

where, as always, indices of covariant derivatives must appear in suitable con-

tracted ways. We now proceed as usual, recalling that, in analogy with gauge

theories, the “field strengths” from which we define gauge invariant kinetic op-
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erators for the gauge fields are defined through the commutators of covariant

derivatives, which acting on a test vector V a gives

[
∇L
a ,∇L

b

]
V c = Rc

dabV
d − T d

ab ∇L
dV

c, (5.43)

where Rc
dab = Rc

dab(ω) and T d
ab = T d

ab (e, ω) are the components of the usual

Riemann curvature and torsion tensors, respectively. Finally, at lowest order in

the derivative expansion the effective action reads

S =
1

16πG

∫
d4x e

{
R + b1R

2 + b2 RµνR
µν + . . .

+ c1T c
ab T abc + c2Tabc T acb + c3T b

ab T acc + . . .
}
, (5.44)

where {G, b1, b2, . . . , c1, c2, c3, . . .} are constants, while the ellipses in (5.44) stand

for higher-order terms in the derivative expansion 4.

It may be argued that the action in (5.44) is not GR; e.g., it does not represent

the degrees of freedom of gravity, and the Ricci scalar operator is a function of

the connection only. However, the equations of motion for ωabµ to lowest order

in derivatives are such that the solution is trivially ω = ω(e), meaning ω is the

torsion-free “Levi-Civita” connection compatible with metricity. Moreover, even

in the presence of additional matter fields, the equation of motion for the spin

connection may still be solved algebraically at lowest order in the derivative ex-

pansion, and even if the solution differs from the naive Levi-Civita combination,

upon plugging such solution into the effective action we would obtain a torsion-

free theory with shifted coefficients in the matter effective action. Therefore, in

this context, treating the spin connection ω as an independent variable is anyway

equivalent to imposing the torsion-free condition. One may also take the prag-

matical view-point that it is simply consistent with all the symmetries to enforce

4There is no need of a RµνρσRµνρσ operator due to the Chern-Gauss-Bonnet identity in 4-d.
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the torsion tensor to be zero, T c
ab = 0, and the solution to this “constraint”

is that the connection is the Levi-Civita one. Actually, there is people that do

the opposite consistent picking of setting the good old Riemann tensor to zero,

Ra
bcd = 0, obtaining so-called “teleparallel theories of gravity” [178, 179], but

we will not do such heresy 5 here. Assuming then that the torsion-free condition

holds, (5.44) collapses to the good old Einstein-Hilbert action at lowest order in

derivatives, and comparison with experiments would reveal that G is nothing but

Isaac Newton’s gravitational constant GN.

Before we move on and use the coset construction to study some relevant examples

involving the SSB of spacetime symmetries, we need to introduce the concept of

so-called “inverse Higgs contraints” which arise as a consequence of the possible

mismatch between the number of broken generators and the actual number of

Goldstone degrees of freedom belonging to the spectrum of the theory.

5.2.3 Inverse Higgs Constraints

We have naively assigned one Goldstone field to each broken symmetry gen-

erator Xα. However, it is well known that when spacetime symmetries are spon-

taneously broken, the usual Goldstone theorem does not apply, meaning that the

number of Goldstones denoted by # is not given by the dimension of the coset

space, i.e. # 6= dim (G/H0) in the general case. The possible mismatch follows

from what is known as the inverse Higgs mechanism [166].

We may summarize the inverse Higgs mechanism as follows:

5All jokes aside, there is good compelling “bottom-up” arguments involving Stueckelberg
tricks and the like that, roughly speaking, show that “. . . the Lagrangian for general relativity is
given uniquely as the only Lagrangian that can couple a massless spin 2 particle to matter. . . ”
(see section 8.7 - “Higher-spin fields” of chapter 8 - “Spin 1 and gauge invariance” in Schwartz’s
book [100]).
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If

1. the commutator between an unbroken translation P̄ and a broken generator

X contains another broken generator X ′, in other words
[
P̄ , X

]
⊃ X ′, and

2. X and X ′ do not belong to the same multiplet under H0,

then we may set to zero the covariant derivative of the Goldstone of X ′ in the

direction of P̄ , denoted as ∇̄π′, an solve such a condition, which is known as an

inverse Higgs constraint (IHC), to eliminate the Goldstones of X from the low-

energy spectrum of excitations in a way that is consistent with all the symmetries.

We may understand, from a UV perspective, that when provided with an explicit

order parameter Φ, it may happen that the Goldstones associated with the broken

generators do not describe independent degrees of freedom. Namely, it may occur

that

(πX + π′X ′) 〈Φ〉 = 0, (5.45)

where 〈Φ〉 is the VEV of the order parameter [167]. Imposing the IHC is then, in

some way or another, analogous to the action of “fixing a gauge” which effectively

eliminates redundant degrees of freedom [171]. However it has been understood

that such an interpretation is not always quite accurate as these additional degrees

of freedom need not be redundant in the general case [172]. It seems that the

state of the art interpretation is that there is not really an overcounting of degrees

of freedom going on, and the IHC may arise in a dynamical way in the low-

energy limit. More to the point, the covariant derivative of the Goldstone of

X ′ contains a term linear in π and with no derivatives, implying that a generic

action contains a mass term for π, i.e. π is gapped, receiving the inventive name

“gapped Goldstone”. At energies below this gap we may integrate out π and

obtain an EFT for the remaining Goldstones. The IHC may be interpreted as
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coming from the equation of motion for π, even though such an equation of motion

may be much more complicated that the condition ∇̄π′ = 0 [166]. The EFT does

not care about such subtleties though; once the derivative expansion is correctly

implemented, the difference between imposing some kind of generalized IHC or

just the simplest version, which we have discussed, amounts to redefinitions of the

coupling constants of the EFT. Hence, there is no loss of generality in working

with the simplest possible IHC. Let us now scrutinize a couple of relevant examples

exhibiting SSB of spacetime symmetries.

5.2.4 Some Relevant Examples

5.2.4.1 Membranes

The effective action for a (d− 1)-brane embedded in (d+ 1)-dimensions was

derived by Raman Sundrum in [180]. Let us now use the coset construction to

rederive it [163]. We will use notation that has become standard in the literature

on extra-dimensions:

• A,B,C,D, . . . and M,N,P,Q, . . . denote Lorentz and spacetime indices

in d+ 1 dimensions, respectively.

• α, β, γ, δ, . . . and µ, ν, ρ, σ, . . . denote Lorentz and spacetime indices in d

dimensions, respectively.

The symmetry breaking pattern associated with a (d − 1)-brane in (d + 1)-

dimensions is determined by the following classification of the Poincaré generators:

Unbroken =


Pα

Jαβ

, Broken =


Pd

Jαd

, (5.46)
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where the subscript d denotes the spatial direction which is broken by the brane.

The coset element reads

Ω = ei y
α(x)Pαei π(x)Pdei ξ

α(x)Jαd ≡ ei Y
A(x)PAei ξ

α(x)Jαd , (5.47)

where Y A(x) ≡ (yα(x), π(x)).

The MC form of the full spacetime is then given by

Ω−1DM Ω ≡ Ω−1

(
∂M + i ẽAMPA +

i

2
ωABM JAB

)
Ω, (5.48)

where, as previously discussed, we are gauging the Poincaré algebra to include

dynamical gravity. Using the Poincaré algebra one can show that

Ω−1DM Ω = e−i ξ
αJαd

(
∂M + i eAMPA +

i

2
ωABM JAB

)
ei ξ

αJαd ,

= i eAM Λ B
A PB +

i

2

{(
Λ−1∂MΛ

)AB
+ ωCDM Λ A

C Λ B
D

}
JAB , (5.49)

where

eAM ≡ ẽAM + ∂MY
A + ωABM YB, (5.50)

as in (5.40), and

ΛA
B (ξ) ≡ (ei ξ

αJαd )AB. (5.51)

It is crucial to realize that the position of the brane in the local Lorentz frame

Y A(x) and in the “global” spacetime Y M(x) need to be differentiated when dealing

with curved spacetime. The “induced” (or “projected”) MC form, which is the
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relevant object of study for this system, is then given by

Ω−1Dµ Ω ≡ ∂µY
M Ω−1DM Ω ≡ iEα

µ

(
Pα +∇απ Pd +∇αξ

βJβd +
1

2
JβγA

βγ
α

)
,

(5.52)

and so we find, using (5.49), that

Eα
µ = ∂µY

MeAM Λ α
A , (5.53)

∇απ = Eµ
α ∂µY

MeAM Λ d
A , (5.54)

∇αξ
β = Eµ

α (Λ−1)
β

C

(
ηCD∂µ + ∂µY

MωCDM
)

Λ d
D , (5.55)

Aβγα = Eµ
α (Λ−1)

β

C

(
ηCD∂µ + ∂µY

MωCDM
)

Λ γ
D , (5.56)

where Eµ
α is the inverse of Eα

µ such that Eα
µE

ν
α = δνµ and Eα

µE
µ
β = δαβ .

Now we notice that

[
Pα, Jβd

]
= −iPd ηαβ , (5.57)

so there is redundancy within the Goldstone modes and a IHC must be imposed.

The simplest IHC that one comes up with is

∇απ = Eµ
α ∂µY

MeAM Λ d
A ≡ Eµ

α ∂µY
MeAM nA = 0 −→ ∂µY

MeAM nA = 0, (5.58)

where we have defined nA ≡ Λ d
A (ξ), the “unit vector” perpendicular to the

brane in the local Lorentz frame 6. Now solving the IHC allows us to express the

Goldstones ξβ in terms of derivatives of π, so the covariant derivative ∇αξ
β enters

the action only at higher order in the derivative expansion.

6Since Λ B
A is a Lorentz transformation it satisfies (Λ−1)

A
C η

CDΛ B
D = ηAB so that

Λ d
A ΛAd = ηdd = 1, i.e., Λ d

A indeed has unit norm.
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At lowest order in derivatives, the effective action for the brane is given by

S = −T
∫
ddx detE = −T

∫
ddx
√
− det (EET ) det (η)

= −T
∫
ddx
√
− det (∂µY MeAM Λ α

A ∂νY NeBN ΛBα) = −T
∫
ddx
√
− dethµν ,

(5.59)

where T is the “brane tension” with physical units of
[

energy
area

]
and we have used

the fact that, as long as (5.58) holds,

∂µY
MeAM Λ α

A ∂νY
NeBN ΛBα

IHC
= ∂µY

MeAM Λ C
A ∂νY

NeBN ΛBC ,

= ∂µY
MeAM ∂νY

NeBN Λ D
A ηDC (Λ−1)

C

B

= eAMe
B
N ηAB ∂µY

M∂νY
N ≡ gMN ∂µY

M∂νY
N ≡ hµν ,

(5.60)

where we have introduced the so-called induced metric hµν . Moreover, defining

the covariant derivative

[Dµ]CD ≡ ηCD∂µ + ∂µY
MωCDM , (5.61)

equation (5.55) reads

∇αξβ = Eµ
α (Λ−1)

C

β [Dµ] D
C nD. (5.62)
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Using (5.53) and the IHC it is easy to verify that (Λ−1)
A
α = Eµ

α ∂µY
MeAM , and

therefore

∇αξβ = Eµ
α E

ν
β ∂νY

MeCM [Dµ] D
C nD

= Eµ
α E

ν
β ∂µY

MeAM ∂νY
NeBN [DA] C

B nC

= Eµ
α E

ν
β ∂µY

MeAM ∂νY
NeBN ∇A nB

≡ Eµ
α E

ν
β Kµν , (5.63)

where we have made the identifications [DA] C
B nC = ∇A nB and

Kµν ≡ ∂µY
MeAM ∂νY

NeBN ∇A nB. (5.64)

We thus effectively see that the higher derivative covariant objects ∇αξβ are pro-

portional to the extrinsic curvature Kµν .

Finally, the covariant derivative of matter fields living on the brane is of the form

∇αψ = Eµ
α

(
∂µψ +

i

2

{
(Λ−1)

β

C

(
ηCD∂µ + ∂µY

MωCDM
)

Λ γ
D

}
Jβγψ

)
= Eµ

α

(
∂µψ +

i

2

{
(Λ−1)

β

C [Dµ]CD Λ γ
D

}
Jβγψ

)
= Eµ

α ∂µψ +
i

2
Aβγα Jβγψ. (5.65)

It is possible to show that the combination Eα
µA

βγ
α ≡ $βγ

µ is indeed the spin

connection associated with the induced metric.

To gain some insight within the construction we have just gone through, and for

simplicity, let us consider the gravityless case, which amounts to setting ẽ and ω

to zero, effectively “undoing” the gauging of the Poincaré symmetry. In such a

limit, gMN → ηAB , and by picking yα(x) = xα, ∂µY
M → ∂µY

A =
(
δαµ , ∂µπ

)
, so

124



that (5.60) yields

hµν = ηAB∂µY
A∂νY

B = ηµν + ∂µπ ∂νπ, (5.66)

which is a familiar result. Moreover, let us recall that the IHC implies that Λ d
B is

a unit normal to the brane. For a codimension-1 brane there is only one unit vector

nB which is perpendicular to all the ∂µY
A, namely nB ∼ εA1...AdB

εµ1...µd ∂µ1Y
A1 . . . ∂µdY

Ad =

δdB − δ
µ
B∂µπ. Therefore, upon normalization one finds that

Λ d
A (ξ) ≡ nA =

δdA − δ
µ
A∂µπ√

1 + (∂π)2
. (5.67)

With such a normal, the extrinsic curvature defined in (5.64) is then given by

Kµν = ∂µY
A∂νY

B∂AnB = − ∂µ∂νπ√
1 + (∂π)2

+ . . . , (5.68)

which is clearly of higher order in the derivative expansion compared to the in-

duced metric.

Let us now consider another relevant example of a system that shows a peculiar

pattern of SSB of spacetime and internal symmetries: the perfect superfluid.

5.2.4.2 Perfect Superfluid

A zero-temperature perfect superfluid is a system with a finite density of a

spontaneously broken U(1) charge Q which embodies a very interesting example

of the interplay between spontaneously broken internal and spacetime symmetries.

The low-energy description of a perfect superfluid was worked out by Dam Thanh

Son in [181]. The gravityless coset construction derivation was performed in [182],

while the case with non-trivial gravitational interactions was introduced in [163].
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In short, the ground state of a perfect superfluid breaks local boosts, time trans-

lations and the global U(1) symmetry, but remains invariant under the action of

a “diagonal” combination 7

P̄0 ≡ P0 + µQ, (5.69)

where µ is the so-called chemical potential [181, 183]. To proceed, let us first set

some notation:

• 4d and 3d Lorentz indices will be denoted by a, b, . . . and m,n, . . ., respec-

tively.

• 4d and 3d spacetime indices will be denoted by µ, ν, . . . and i, j, . . ., re-

spectively.

• The time-like Lorentz and spacetime index will be denoted by 0 and t,

respectively.

The symmetry breaking pattern of the superfluid is then given by

Unbroken =


P̄0 ≡ P0 + µQ (time translations)

P̄m ≡ Pm (spatial translations)

Jmn (spatial rotations)

(5.70)

Broken =


Km ≡ J0m (boosts)

Q (shift symmetry)

(5.71)

7The situation when a state spontaneously breaks both an internal symmetry and time-
translation invariance in such a way that time-evolution moves the system along the symmetry
direction has been dubbed by Alberto Nicolis and Federico Piazza the “spontaneous symmetry
probing” (SSP) scenario [183].
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For such a symmetry breaking pattern the coset element reads

Ω = ei y
a(x)P̄aei π(x)Qei η

m(x)Km . (5.72)

Consequently, the MC form is given by

Ω−1DµΩ ≡ e−i η
m(x)Kme−i π(x)Qe−i y

a(x)P̄a

(
∂µ + i ẽaµPa +

i

2
ωabµ Jab

)
ei y

a(x)P̄aei π(x)Qei η
m(x)Km

= i eaµ Λ b
a P̄b + i

(
∂µψ − µ eaµ Λ 0

a

)
Q+

i

2
Jab

{(
Λ−1∂µΛ

)ab
+ ωcdµ Λ a

c Λ b
d

}
≡ iEa

µ

(
P̄a +∇aπ Q+∇aη

mKm +
1

2
Amna Jmn

)
, (5.73)

where in order to get the second line we have used the Poincaré algebra plus the

fact that Q belongs to the “center” of the Lie algebra g, i.e. [Q,A ] = 0 ∀ A ∈ g,

the third line is a definition, and we have introduced

eaµ ≡ ẽaµ + ∂µy
a + ωabµ yb, (5.74)

ψ ≡ µ y0 + π, (5.75)

and

Λa
b(η) ≡ (eiη

mKm)ab. (5.76)

Comparing the second and third lines in (5.73) we arrive to the following expres-

sions

Ea
µ = ebµ Λ a

b , (5.77)

∇aπ = eµb Λb
a∂µψ − δ0

a µ, (5.78)

∇aη
m = eµb Λb

a

{(
Λ−1∂µΛ

)0m
+ ωcdµ Λ 0

c Λ m
d

}
, (5.79)

Amna = eµb Λb
a

{(
Λ−1∂µΛ

)mn
+ ωcdµ Λ m

c Λ n
d

}
. (5.80)
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Now we notice that

[
P̄m, Kn

]
= [Pm, Kn] = iP0 δmn = i

(
P̄0 − µQ

)
δmn ⇒ [Pm, Kn] ⊃ Q, (5.81)

so there is redundancy within the Goldstone modes and an IHC may be imposed.

The simplest IHC that one comes up with is

∇mπ = eµb Λb
m ∂µψ = ηab Λa

m e
b
µ ∂

µψ = 0. (5.82)

As is the case in many other examples, including the membrane case discussed in

5.2.4.1, this IHC may be understood as a statement of orthogonality. Indeed, the

very definition of Lorentz transformations ηab Λa
c Λb

d = ηcd implies that there are

three orthonormal vectors Λm satisfying Λm · Λn ≡ ηab Λa
m Λb

n = δmn, which in

turn by acknowledging (5.82), are orthogonal to the direction eµb ∂µψ, naturally

leading us to the definition of a time-like unit normal vector given by

na ≡ −
eaµ∂

µψ
√
−∂νψ∂νψ

. (5.83)

Let us now introduce the velocity vector

βm ≡
ηm
η

tanh η, (5.84)

where η ≡
√
ηmηnδmn is the so-called “rapidity angle” in the relativistic jargon.

With such a parametrization the Lorentz factor is given by

γ ≡ 1√
1− β2

= −
e0
µ ∂

µψ
√
−∂νψ∂νψ

. (5.85)
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Moreover, since high-school we are supposed to know that a boost matrix may

then be decomposed as

Λ0
0 = γ, Λ0

m = γ βm, Λm
0 = γ βm, Λm

n = δmn + (γ − 1)
βmβn
β2

. (5.86)

Consequently one can show that (5.82) implies that

βm ≈ −
eµm∂µψ

eν0∂νψ
, (5.87)

which together with (5.85) amount to the conclusion that

na = Λa
0, n · Λm = na Λa

m = 0, and Λm · Λn ≡ ηab Λa
m Λb

n = δmn. (5.88)

This solution of the IHC allows us to isolate the building block of the EFT for

the relevant degree of freedom π,

∇0π = eµb Λb
0 ∂µψ − µ =

√
−gµν∂µψ∂νψ − µ, (5.89)

where the usual identification of the spacetime metric gµν = eµa e
ν
b η

ab has been

used. The coset vielbein determinant detE = det
√
−g defines an invariant mea-

sure to build the effective action, which then reads

S =

∫
d4x detE

{
a0 + a1∇0π + a2 (∇0π)2 + . . .

}
=

∫
d4x
√
−gF

(√
−gµν∂µψ∂νψ

)
,

(5.90)

where F is a function such that F(n)(µ) = an.

One of the main advantages of going through the coset construction relies on the

fact that it yields a systematic derivative expansion. In particular, the first higher

derivative corrections to the low-energy EFT given by (5.90) are ∇0∇0π and ∇iη
i.
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It can be shown [163] that such operators may be written in terms of ψ and its

derivatives,

∇0∇0π =
∂µψ∂

µ∂ρψ∂
ρψ

2∂λψ∂λψ
, ∇iη

i = −
(
∂ρψ∂

ρψ�ψ + 1
2
∂µ∂ρψ∂

ρψ∂µψ
)

(−∂λψ∂λψ)3/2
, (5.91)

and these expressions are indeed just particular linear combinations of the ex-

pected additional higher derivative terms discussed in [181].

After this enlightening review of relevant examples of the coset construction in

the presence of gravity, let us come back to our main interest, which is cosmic

inflation.

5.3 Coset Construction of the EFT of Inflation

Relativistic fluids coupled to gravity have been used in the past to generate

inflation [109] or to modify the large distance behavior of gravitational interac-

tions [184]. In reference [163] the interest of the authors in perfect superfluids

stems from the fact that they may be the simplest systems in which a combina-

tion of spacetime and internal symmetries is broken down to a diagonal subgroup.

Very recently, in the context of addressing the inclusion of light particles with

spin during inflation, the authors of [63] have argued that as the induced foliation

breaks the local Lorentz symmetry down to the rotation subgroup, it is natural

to use the CCWZ approach. Moreover, they claim that the coset construction

of single-clock inflation in the presence of an “approximate” 8 shift symmetry of

the inflaton coincides exactly with the gravitating perfect superfluid introduced

in [163]. We independently worked out the exact mapping between these two

8The right wording, in our opinion, should be “... in the presence of an exact spontaneously
broken shift symmetry...”, because in the coset construction, as we know it, there is no room
for approximate symmetries, but this is not what they say.
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seemingly different systems before [63] hit the arXiv 9, and we shall go through

it, for completeness, and to motivate current ongoing research [64].

Our job is to make the connection between (5.90) and the EFT of inflation. To

do so let us notice that if we set y0(x) = t and µ = 1 10, we get that

∇0π =
√
−gµν∂µ(t+ π)∂ν(t+ π)− 1 ≡

√
−g̃tt(x̃(x))− 1, (5.93)

where the tilde is associated with an active diffeomorphism t → t̃ = t − π̃(x̃),

so we see that our building block is already “Stueckelberged”. In the decou-

pling limit, where we neglect metric fluctuations,
√
−gµν∂µ(t+ π)∂ν(t+ π) →√

1 + 2π̇ − (∂π)2, and therefore the action will generically contain a “cosmologi-

cal constant” and a linear term in π that should be absent after demanding tadpole

cancellation, which is equivalent to imposing the correct background evolution.

Thus, we find that the gtt dependence in the usual EFT of inflation is accounted

for by the building block ∇0π within the coset construction.

What about the extrinsic curvature?

We observe that the “tensor” part of (5.79) can be casted as

∇nηm = Eµ
nE

ν
me

b
ν [Dµ] cb nc, (5.94)

9It is not fair to say that they “scooped” us, as we were informed, through private commu-
nication, that they were working on this before already.

10Note that, in this context, µ is expected to be the time-derivative of an “order parameter”
of the SSB of the shift symmetry [181, 183], implying the identification µ = φ̇0(t) = constant.
Therefore, using a trivial field redefinition, it is easy to see that we may always set µ = 1. If we
do not identify µ in this way, we may still get a expression similar to (5.93) by going to unitary
gauge, namely

∇0π = µ
(√
−gtt − 1

)
, (5.92)

which, up to a sign (clearly a typo), coincides with equation (15) in [63].
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where [Dµ]bc ≡ ηbc∂µ + ωbcµ and na ≡ −Λ 0
a = (−γ, γ βm).

To prove that (5.94) corresponds to the extrinsic curvature, which is usually de-

fined as

Kµν ≡ h ρ
µ ∇ρnν = h ρ

µ h
σ
ν ∇ρnσ, (5.95)

where hµν is the induced metric and nµ = − ∂µφ√
−gµν∂µφ∂νφ

is a normal to the folia-

tion, we proceed as follows. Using the fact that by definition eµc = Eµ
a (Λ−1)ac and

ηab is invariant under boosts we find that

gµν = eµc e
ν
d η

cd = Eµ
a (Λ−1)acE

ν
b (Λ−1)bd η

cd = Eµ
aE

ν
b (Λ−1)ac η

cdΛ b
d = Eµ

aE
ν
b η

ab.

(5.96)

Therefore

gµν = −Eµ
0E

ν
0 + Eµ

mE
ν
n δ

mn = −nµnν + Eµ
mE

ν
n δ

mn, (5.97)

where we have identified Eµ
0 = eµb Λb

0 = eµb n
b ≡ nµ, and consequently the defini-

tion

hµν ≡ Eµ
mE

ν
n δ

mn (5.98)

is quite natural. With this in mind, the correspondence between Kµν as given by

(5.95) and ∇nηm is now complete as it is straightforward to show that (5.94) can

132



be rewritten as

∇mηn = Eρ
mE

σ
nh

µ
ρ h

ν
σ e

b
ν [Dµ] cb nc

= Eρ
mE

σ
nh

µ
ρ h

ν
σ ∇µnν

≡ Eρ
mE

σ
nKρσ , (5.99)

where we have made the identification ebν [Dµ] cb nc = ∇µnν , a geometric relation

that clearly holds on a torsionless spacetime, and we have used the definition in

(5.95).

What about ∇0ηm?

It can be shown that the “vector” part of (5.79) can be written as

∇0ηm = Eµ
0E

ν
me

b
ν [Dµ] cb nc = nµEν

me
b
ν [Dµ] cb nc = Eν

m n
µ∇µnν . (5.100)

The structure above indeed contains the so-called “acceleration” vector

Aµ ≡ nν∇νn
µ, (5.101)

which obviously satisfies Aµnµ = 0, implying it really corresponds to a 3-vector

living in the hypersurface whose normal is nµ. Noncrucially, this building block

was not considered in the original EFT of inflation [40] but its effects have been

discussed subsequently (see, e.g., [185, 186]). This exhausts the list of building
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blocks for the EFT that we obtain from the coset construction 11. If additional

matter fields were to be included, the algorithm should be familiar by now; they

must enter the action in suitable SO(3)-invariant combinations using the connec-

tion defined in (5.80).

Several comments are in order:

• As of today it seems that nobody knows how to proceed with the coset

construction of systems which undergo SSB of time-translations with no

diagonal unbroken time-translation generator. Indeed, in several references

12 it is stated that the generalized CCWZ construction was developed by

Volkov, Ogievetsky, and Ivanov (VOI), for situations where translational

invariance is not spontaneously broken, and how nice it would be to find a

“generalized” VOI approach that can in principle deal with this situation.

• On the other hand, as discussed thoroughly in 5.2.4.1, a consistent “analo-

gous” system, the membrane, is an example of SSB of a spatial translation

with no diagonal unbroken combination, that admits a sensible dynamical

theory with Goldstones that only propagate in the unbroken spacetime di-

rections within the brane. The authors of [167] actually suggest, providing

no formal proof though, that the non-propagation of Goldstones in broken

spatial directions is a rather obvious feature of Goldstone theory. Their

reasoning is that as Goldstones have a gapless dispersion relation, meaning

E(k) → 0 as k → 0, and k is only defined in the translationally invariant

11For completeness, let us just state that the building blocks ∇0ηm and ∇mηn, in the unitary
gauge, may be put in the form

∇0ηm ≈ −eµm∂µ ln
√
−gtt and ∇mηn ≈ eµmeνmKµν , (5.102)

once one makes the approximation that βm ≈ 0 ⇒ {γ ≈ 1,Λab ≈ δab }, thus coinciding with

equations (16) and (17) in [63], respectively. In the unitary gauge βm = − e
t
m

et0
, so that βm ≈

0⇔ etm ≈ 0.
12See, for instance, [187, 188].
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directions, they may only propagate in these unbroken spatial directions.

The Goldstone in the brane example does indeed satisfy this condition.

Ultimately, it all boils down to the fact that the brane has an intrinsic

ISO(d − 1, 1) preserved symmetry, which in particular contains unbroken

spacetime translation generators, the latter being the fundamental required

structure for the VOI prescription to work.

• A Goldstone associated with the breaking ot time-translational invariance

like the one appearing in the EFT of inflation, from this perspective, is quite

different in nature, as π = π(t,x) obviously does progagate in time, and in

principle, does not have a gapless dispersion relation, as we learned in the

EFT construction of chapter 3 (see equation (3.34)).

• Within the geometrical construction of the EFT of inflation [40], the au-

thors assume the existence of an implicit approximate shift symmetry on

the inflaton φ, such that upon the SSB of time-diffs, there remains a diago-

nal approximate time-translation invariance governing the dynamics of the

π fluctuations, effectively implying that the a priori time-dependent coef-

ficients of the EFT are slow-roll suppressed. From this point of view, the

perfect superfluid interpretation stemming from the coset construction is

necessarily only a well-motivated limiting case. At the risk of being pedan-

tic, let us summarize these last arguments in an explicit way:

– In the heuristic approach, within the unitary gauge where π = 0, we

have, e.g., that L ⊃ M4
n(t) (δg00)

n
, and the M4

n(t) coefficients are a

priori, arbitrary time-dependent objects. However, according to [40],

by assuming that φ0(t) is a monotonic function of time, a field redefi-

nition may always set φ0(t) = t 13, which in the unitary gauge implies

13This is of course equivalent to taking φ̇0 = constant, which through the use of Ḣ = − 1
2
φ̇2
0

M2
Pl

,
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that φ(t,x) = t. Crucially, assuming an approximate shift symmetry

φ(t,x)→ φ(t,x)+c, in the unitary gauge is quite clear that it is natural

to find a diagonal combination of broken time-diffs and broken approx-

imate shift symmetry which ultimately implies an approximate time-

translation invariance of the π Lagrangian. This remnant approximate

symmetry implies slow-roll conditions of the form Ṁn(t) � Mn(t)H,

which as discussed in chapter 3, in most scenarios, is a required feature

to solve the homogeneity problem of standard FLRW cosmology.

– In the coset construction of the perfect superfluid time-translation in-

variance and an exact shift symmetry are broken down to an exact

time-translation invariance. In other words, in such a construction

there is no room for approximate symmetries. In [188] the authors

have explored the EFT of “shift-symmetric cosmologies”, where as-

suming exact shift symmetry, they derived model-independent conse-

quences for single-clock cosmologies. Importantly they realize, at least

in the “flat limit”, which can be thought of as the decoupling limit

MPl → ∞ around a Minkowski background , that still assuming a

monotonic time-dependent order parameter associated with the SSB

of shift symmetry, there are several possibilities for its exact time-

dependence, and only in the case when it is linear, meaning φ0(t) = t,

the Goldstone associated with shift symmetry and the Goldstone as-

sociated with time-translation invariance coincide. This is the case of

the perfect superfluid 14, thoroughly discussed in 5.2.4.2, which having

implies that Ḣ = constant. This last condition may be argued to be a very good approximation

for a quasi -de Sitter background, but still as ε ≡ − Ḣ
H2 , it is a nontrivial condition on the

hierarchy of slow-roll parameteres, starting with η ≡ ε̇
εH . While the assumption of monotonicity

is quite natural, linearity is a further extra condition.
14As opposed to the cases of imperfect (or “braided”) and driven superfluids where φ0(t) 6= t

generically.
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a diagonal preserved Hamiltonian, is a SSP system that admits a coset

construction, and has been proposed [63] as the right framework to

describe the EFT of inflation in the CCWZ/VOI approach. However,

for the perfect superfluid in the flat limit, due to exact shift symmetry

invariance, the authors of [188] show that the coefficients of the EFT

are necessarily time-independent. On the other hand, in [63] the au-

thors have not discussed this fact. Even if in the context of spacetime

symmetries the coset construction of VOI, with the restriction of hav-

ing unbroken spacetime translational invariance, has not been proven

to yield the most general EFT with all the symmetries 15, this is a clear

hint that the perfect superfluid cannot reproduce the EFT of inflation

in the general case.

In practical calculations, the time-dependence of the coefficients in the EFT of

inflation are usually neglected, so this whole discussion may seem redundant for

some authors, and indeed it may be so, phenomenologically speaking. However,

these arguments may shed some light to a very interesting program that may be

developed in direct analogy with the so-called “zoology of condensed matter” [65],

where the authors classify condensed matter systems in terms of the spacetime

symmetries they spontaneously break. In that spirit, imposing an exact shift

symmetry is only the simplest case of symmetry breaking patters that one could

consider. The generalized case, involving additional internal, gauge, and spacetime

symmetries, should lead to different “states of cosmology”, unveiling a “zoology of

cosmology”. For instance, in the zoology classification of [65] the so-called “type-I

framid”, which is a static, homogeneous, and isotropic scenario that spontaneously

breaks only boost symmetry not requiring any additional symmetry beyond the

Poincaré group, upon coupling to gravity gives rise to a very well known Lorentz-

15As opposed to the good old CCWZ construction case. See [189].
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violating modification of GR introduced by Ted Jacobson and David Mattingly;

the so-called Einstein-æther theory [190]. Another interesting example is the case

when one promotes the U(1) shift symmetry of the “type-I superfluid” (for us,

the perfect superfluid) to internal monotonic diffeomorphisms of the form ψ →

f(ψ). Naively, imposing such a symmetry implies the existence of infinitely many

Goldstone modes in the spectrum of the theory, and however this is not the case as

there is still just one Goldstone mode. A field enjoying such an internal symmetry

arises for instance in the infrared limit of Horǎva-Lifshitz gravity [191, 192] and

has been dubbed “khronon” in the gravity/cosmology literature [185].

Finally, let us point out that exact global symmetries are an idealization and

are argued to no exist in consistent quantum gravitational theories [193–195].

Moreover, in inflation theory, we do not really expect an exact shift symmetry to

be realistic, not only due to these theoretical considerations but also because it

leads to an scenario which is in tension with slow-roll backgrounds, at least in the

simplest shift-symmetric models [188]. It is quite important then to understand

how to incorporate “soft” symmetry breaking effects into the game, analogous to

the pseudo-Goldstone boson analysis of QCD, in which the squared pion masses

are linked to the symmetry-breaking quark mass terms. In principle, one could

expect to get an interpretation of cosmological observables in terms of the scale

characterizing the breaking of the shift symmetry, which is distinct from the scale

associated to the breaking of time-translation invariance [196]. Needless to say,

it would be quite enlightening to generalize the CCWZ/VOI coset construction

to the case of broken time-translational invariance. Some (if not all) of these

questions are being investigated and will be reported elsewhere [64].
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Chapter 6

Concluding Remarks

As mentioned in the the introductory chapter, during the writing process of

this dissertation, Planck’s latest release [28] has basically ruled out the Natural

Inflation model, which we picked as the single-field EFT background on which

to build upon our two-field model. This is disappointing, among other reasons,

because we have learned that the sizes of non-Gaussianites we estimated for the

QSF regime, may not be as small as we initially thought, in light of futuristic

so-called “21-cm cosmology” [153] 1. Furthermore, the crucial ns vs. r plot that

we see in Figure 6.1, shows that all so-called large-field models of inflation are in

pretty bad shape. In particular, Linde’s φ2 “Chaotic Inflation” [197] is plain dead,

while axion monodromy models (φ4/3, φ, φ2/3) [45–48] are just marginally alive.

Figure 6.1: ns vs. r plot from Planck’s 2018 release [28].

Starobinsky’s R2 model [198] is still the best fit, while so-called “α-attractors”

[199, 200] and the “quartic hilltop” model [200] span a good compatible portion of

1We thank Soubhik Kumar for a conversation.
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parameter space. As we thoroughly discussed in chapter 4, a subluminal inflaton

speed of sound due to a non-standard kinetic term [105], may lower the prediction

for the tensor-to-scalar ratio r of the GNI model, and of any single-field model for

that matter, as this conclusion is based on the robust prediction that r ≈ 16 ε cs.

However, we also realized that such a scenario requires finely-tuned initial con-

ditions, which is quite unappealing. Other mechanisms that can “do the trick”,

meaning lowering the predictions for r within any single-field model include, for

example, introducing a non-minimal coupling to gravity [201–204], or adding a

damping term for the inflaton due to dissipation in other degrees of freedom, as

in “warm inflation” [205, 206].

If you had asked us a couple of months ago, we would have said that such avenues

of exploration are quite interesting, and the pains involved in going through com-

plicated calculations are totally worth it. However, we are not who we used to

be; we have grown to feel that any model that smells of contrivance is, in some

way or another, doomed to fail. You may say we are getting very narrow-minded

in this sense, and maybe you are right. Probably it has to do with the dialectics

of the “hows” and “whys” within oneself. A safe approach will always be to try

to make model-independent statements. This last point leads to the second topic

we presented in this dissertation.

By the end of chapter 5 we have discussed at length about the subtleties related

to trying to make sense, within the coset construction, of systems that sponta-

neously break time translations with no unbroken diagonal combination. We may

only speculate at this point, since it is really a subject of ongoing research. For

example, one naive possibility is that the construction may be carried by anal-

ogy with the membrane case analyzed in 5.2.4.1. Such a setting is reminiscent

of the so-called “initial value problem” of GR 2 (see, e.g. chapter 10 in [106]).

2In short, one is given initial data on a 3d manifold Σ, in the form (hab,Kab ), where hab is the
induced metric and Kab the extrinsic curvature, and attemp to construct a globally hyperbolic
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Without entering into details, let us just say that this approach, as of now, is

far from being satisfactory. Other approaches are under investigation and should

be reported elsewhere [64]. In the meantime, the authors of [63] have claimed

that the EFT of inflation is simply represented by a perfect superfluid. While

this may be a very good approximation, it is clearly not the general case, as for

example, the a priori time-dependent coefficients, when assuming an exact shift

symmetry, are necessarily constants [188]. Moreover, the very necessity of internal

shift symmetries is “worrisome”, in light of theoretical arguments that imply their

non-compatibility with consistent quantum gravity [193–195]. We expect that by

thinking hard about these puzzles, we will eventually have something sensible to

say about them.

spacetime (M , gab), where M is a 4d manifold endowed with a metric gab , and for which Σ is
a “Cauchy surface” on which the initial data are induced. When the initial data is subject to
certain initial value contraints, on may prove that the spacetime (M , gab) satisfies Einstein’s
equations.
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Appendix A

In-In Formalism and Equilateral Bispectra

In a quantum field theory in an asymptotically Minkowski spacetime one is

usually interested in calculating the so-called S-matrix describing the transition

probability for a state |in〉 in the far past to become some state |out〉 in the far

future. This is the standard tool to determine the relevant correlation functions

of the theory. The scattering particles are taken to be non-interacting at very

early and very late times, when they are far from the interaction region, and the

asymptotic states can be taken to be the vacuum states of the free Hamiltonian

H0.

In cosmology instead, we are interested in calculating expectation values of (prod-

ucts of) operators Q̂k at a fixed time. For example, Q̂ could be the product of n

copies of the Goldstone boson, i.e. Q̂ = π̂k1 π̂k2 . . . π̂kn so that

〈Q̂〉 ≡ 〈Ωint| Q̂(τ) |Ωint〉 (A.1)

is the n-point function of π, where |Ωint〉 is the interacting vacuum at some moment

τ0 in the far past, and τ > τ0 is some later time, such as horizon crossing or the

end of inflation. We only impose boundary conditions at very early times, where

the wavelengths of all relevant modes are much smaller than the horizon. In this

limit, by the equivalence principle, the interaction picture fields have the same

form as in Minkowski space. This defines the Bunch-Davies vacuum. Let us now

review the Schwinger-Keldysh or in-in (for short) formalism.

In the Heisenberg picture, the time evolution of the operators is determined by
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Heisenberg’s equations

dπ̂

dτ
= i[Ĥ, π̂],

dp̂π
dτ

= i[Ĥ, p̂π], (A.2)

where Ĥ = Ĥ0 + Ĥint is the perturbed Hamiltonian. In order to deal with the

complicated non-linear equations that arise from the interacting part of Ĥ one

introduces the interaction picture in which the leading time-dependence of the

fields is determined by the free (quadratic) Hamiltonian, so that

π̂′I = i[Ĥ0, π̂I ], p̂′π,I = i[Ĥ0, p̂π,I ], (A.3)

are linear equations with initial conditions π̂I(τ0) = π̂(τ0) and p̂π,I(τ0) = p̂π(τ0).

The solution to these equations can be written as

π̂Ik(τ) = πIk(τ)âk + h.c., (A.4)

where πIk(τ) is the solution to the free-field equation of motion (say the Mukhanov-

Sasaki equation), and the operators âk define the free-field vacuum |Ω〉 through

âk |Ω〉 = 0. Heisenberg’s equations (A.2) can be rewritten as

π̂(τ) = U−1(τ, τ0)π̂(τ0)U(τ, τ0), p̂π(τ) = U−1(τ, τ0)p̂π(τ0)U(τ, τ0), (A.5)

where U(τ, τ0) is defined by the differential equation

d

dτ
U(τ, τ0) = −iĤU(τ, τ0), U(τ0, τ0) = 1. (A.6)

Analogously, we can re-write (A.3)

π̂I(τ) = U−1
0 (τ, τ0)π̂I(τ0)U0(τ, τ0), p̂π,I(τ) = U−1

0 (τ, τ0)p̂π,I(τ0)U0(τ, τ0), (A.7)
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where U0(τ, τ0) is defined by the differential equation

d

dτ
U0(τ, τ0) = −iĤ0U0(τ, τ0), U0(τ0, τ0) = 1. (A.8)

Using (A.6) and (A.8) we get that

d

dτ

[
U−1

0 (τ, τ0)U(τ, τ0)
]

= −iU−1
0 (τ, τ0)ĤintU(τ, τ0), (A.9)

and using (A.3), this implies that

U(τ, τ0) = U0(τ, τ0)F (τ, τ0), (A.10)

where

d

dτ
F (τ, τ0) = −iĤint,IF (τ, τ0), F (τ0, τ0) = 1, (A.11)

and Ĥint,I is the interaction Hamiltonian in the interaction picture,

Ĥint,I(τ) = U0(τ, τ0)ĤI(τ0)U−1
0 (τ, τ0). (A.12)

The solution of (A.11) is given by

F (τ, τ0) = T exp

(
−i
∫ τ

τ0

Ĥint,I(τ
′′)dτ ′′

)
. (A.13)

Therefore, we find that an operator in the Heisenberg picture in terms of operators

in the interaction picture is written as

Q̂(τ) = F−1(τ, τ0)Q̂I(τ)F (τ, τ0). (A.14)
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We may think of F (τ, τ0) as an operator evolving quantum states in the interaction

picture,

|Ωint(τ)〉 = F (τ, τ0) |Ωint(τ0)〉 , (A.15)

where |Ωint(τ0)〉 ≡ |Ωint〉. We would now like to relate the vacuum of the inter-

acting theory, |Ωint〉, to the vacuum of the free theory, |Ω〉. To do so we insert a

complete set of energy eigenstates {|Ωint〉 , |n〉} of the full theory, where |n〉 are

the excited states, in order to cast |Ω〉 as

|Ω〉 = |Ωint〉 〈Ωint|Ω〉+
∑
n

|n〉 〈n|Ω〉 . (A.16)

Correspondingly, we see that

e−iĤ(τ−τ0) |Ω〉 = e−iĤ(τ−τ0) |Ωint〉 〈Ωint|Ω〉+
∑
n

e−iEn(τ−τ0) |n〉 〈n|Ω〉 . (A.17)

Now we add a small imaginary part to the initial time, τ0 → −∞ (1− iε) ≡ −∞−

so the excited states get projected out, e−iEn(τ−τ0) → e−∞×εEn (. . .) → 0. With

this iε prescription we then find that

F (τ,−∞−) |Ωint〉 =
F (τ,−∞− |Ω〉
〈Ωint|Ω〉

, (A.18)

so we effectively turn off the interaction in the far past and project the interacting

vacuum Ωint onto the free vacuum |Ω〉. Setting |〈Ωint|Ω〉| → 1, we arrive to the

in-in master formula

〈Q̂(τ)〉 =

〈
Ω

∣∣∣∣ [T exp

(
i

∫ τ

−∞+

dτ ′′ ĤI(τ
′′)

)]
Q̂I(τ)

[
T exp

(
−i
∫ τ

−∞−
dτ ′′′ ĤI(τ

′′′)

)] ∣∣∣∣ Ω

〉
,

(A.19)
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where T is the anti-time-ordering symbol and ∞± ≡ ∞ (1± iε). By the ex-

panding the exponentials in (A.19), we may compute the correlation function

perturbatively in Ĥint. At leading order, i.e. tree-level, we find

〈Q̂(τ)〉 = −i
∫ τ

−∞−
dτ ′′ 〈Ω| [Q̂I(τ), ĤI

int(τ
′′)] |Ω〉 . (A.20)

Let us re-write the interacting Goldstone Lagrangian from (4.80)

Lπ = −M
2
PlḢ

c2
s

{(
π̇2 − c2

s

(∇π)2

a2

)
−
(
1− c2

s

)(
π̇

(∇π)2

a2
+
A
c2
s

π̇3

)}
, (A.21)

as our goal is now to compute the non-Gaussianities stemming from the operators

π̇3 and π̇(∇π)2. Using the definition

〈π̂k1 π̂k2 π̂k3〉 ≡ (2π)3 δ 3(k1 + k2 + k3)Bπ(k1, k2, k3), (A.22)

we are interested in calculating the bispectrum of Goldstone fluctuations after

horizon crossing,

Bπ(k1, k2, k3) ≡ lim
τ→0
〈π̂k1(τ)π̂k2(τ)π̂k3(τ)〉′, (A.23)

where the prime indicates that an overall delta-function, (2π)3 δ 3(k1 + k2 + k3),

has been omitted. Using (A.20) we find that

Bπ(k1, k2, k3) = −i
∫ 0

−∞−
dτ 〈[π̂k1(0) π̂k2(0) π̂k3(0), Ĥint(τ)]〉, (A.24)

where we have suppressed the index I on the interaction picture operators to avoid

the clutter. At leading order, Hint = −
∫
d3x a4L (3)

π , where L (3)
π is given by the

cubic part of (A.21). To keep moving forward we note that, as we are interested

in the limit of large non-Gaussianity, we may ignore slow-roll corrections to the
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mode functions and use the solution for de Sitter space of the Mukhanov-Sasaki

equation associated with the quadratic sector in (A.21). Therefore, we insert the

Bunch-Davies mode functions

πk(τ) = π
(0)
k (1 + ics kτ) e−ics kτ , π

(0)
k ≡

i

2MPl
√
ε cs

1

k3/2
, (A.25)

in (A.24) and perform the appropriate Wick contractions 1 to get

Bπ(k1, k2, k3) = M2
Pl|Ḣ|

(
1

c2
s

− 1

)
Re
[
π

(0)
k1
π

(0)
k2
π

(0)
k3
I(k1, k2, k3)

]
+ perms., (A.26)

where I ≡ Iπ̇(∇π)2 + Iπ̇3 , with

Iπ̇(∇π)2 ≡
∫ 0

−∞−

dτ

Hτ

(
π∗k1

)′
π∗k2

π∗k3
(k1 · k2) , (A.27)

Iπ̇3 ≡ A
c2
s

∫ 0

−∞−

dτ

Hτ

(
π∗k1

)′ (
π∗k2

)′ (
π∗k3

)′
. (A.28)

To perform analytically the above integrals, e.g. by using Mathematica, one can

formally deform the contour by a Wick rotation τ → iτ , since there are no poles

in the complex τ plane.

We may obtain the bispectrum for the curvature pertubationR by a simple rescal-

ing BR(k1, k2, k3) = −H3Bπ(k1, k2, k3). Moreover, we may the express the bispec-

trum BR(k1, k2, k3) in terms of the amplitude fNL, and the “normalized” shape

function S̃(k1, k2, k3),

(k1k2k3)2

(2π)4 ∆4
R(k?)

BR(k1, k2, k3) =
9

10
fNL S̃(k1, k2, k3), (A.29)

1See [150] for details.
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where S̃(k1, k2, k3) ≡ 1
fNL

10
9
S(k1, k2, k3) with S̃(k, k, k) = 1 2. The normalized

shape functions are then given by

S̃Ṙ(∇R)2 =
k̂2

1 − k̂2
2 − k̂2

3

k̂1k̂2k̂3

(
−1 +

∑
i>j

k̂ik̂j
9

+
k̂1k̂2k̂3

27

)
+ perms., (A.30)

S̃Ṙ3 = k̂1k̂2k̂3, (A.31)

where k̂i ≡ ki
K and K ≡ 1

3
(k1 + k2 + k3). Finally, the amplitudes associated with

these two shapes are

f
Ṙ(∇R)2

NL = − 85

324

(
1

c2
s

− 1

)
, (A.32)

f Ṙ
3

NL =
5A
81

(
1

c2
s

− 1

)
. (A.33)

The non-Gaussianities associated with a perturbative action like the one in (4.77)

are then well known [147, 150]. In the limit Meff → ∞ the bispectrum is of

equilateral shape and the contribution from the Ṙ3 term has the shape

Sπ̇3(p1, p2, p3) = −6
θ̇2

0

M2
eff

[
1− 2

θ̇2
0

M2
eff

c2
s

(
1 +

R

3M2
eff

Vσσσ

)]
p1 p2 p3

(p1 + p2 + p3)3
,

(A.34)

with an associated non-linear parameter given by

f π̇
3

NL = −20

81

θ̇2
0

M2
eff

+
40

81
c2
s

θ̇4
0

M4
eff

+
40

243

R

M2
eff

Vσσσ c
2
s

θ̇4
0

M4
eff

, (A.35)

which is just another way of writing (4.104). Let us estimate how big may the

last term in (A.35) be, since at first glance it just looks further suppressed by an

additional M2
eff factor. First of all, we rely in perturbativity, so convergence of the

2In explicitly “extracting” fNL in the definition of S̃(k1, k2, k3), we have implicitly assumed
a scale-invariant bispectra.
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perturbative series should imply that

Vσσσ δσ

3Vσσ
=

Vσσσ δσ

3
(
M2

eff + θ̇2
0

) ≤ 1. (A.36)

Using (4.72) to first order along with ε =
R2 θ̇2

0

2M2
PlH

2 , we can write

δσ = 2
√

2 ε
HMPl

M2
eff

δθ̇. (A.37)

Furthermore, considering the expression R = −Hδθ
θ̇0

and the conservation of R on

large scales, Ṙ ≈ 0, one can prove that

δθ̇ =
Hη

2
δθ ∼ H2η

4πR c
1/2
s

=⇒ δσ ∼
√

2 ε cs η
H3MPl

2πM2
effR

. (A.38)

Finally, using (A.36) and (A.38) it is straightforward to show that the last term

in (A.35) satisfies

R

3M2
eff

Vσσσ c
2
s

θ̇4
0

M4
eff

.
1

η (∆2
R)1/2

(
θ̇2

0

M2
eff

)
, (A.39)

so it dominates in a “natural” model where
(

θ̇2
0

M2
eff

)
is required to be small, having

the chance of giving a non-negligible contribution to fNL due to the (η (∆2
R)1/2)−1

prefactor.
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Appendix B

Effective Single-Field Theory Regime

Neglecting O(β) terms as we are dealing with the theory of fluctuations, we

can rewrite action (4.114) as

S(2)[g0, φ0, δφ] =
1

2

∫
d4x a3

{(
ϕ̇2

0

H2

)(
Ṙ2 − (∇R)2

a2

)
+ Ḟ2 − (∇F)2

a2

−M2
effF2 − 4θ̇0

(
ϕ̇0

H

)
ṘF

}
, (B.1)

where we have used the fact that R ≈ −H
φ̇0
Ta δφ

a = −H
θ̇0
δθ = − H

ϕ̇0
ϕ which holds

as long as σ̇0 = 0 and we have taken R ≈
√

2 v. Now varying the quadratic action

(B.1) we get the equations of motion for R and F after Fourier transforming

spatial coordinates

R̈+ (3 + 2 ε− 2 η‖)H Ṙ+
k2

a2
R = 2θ̇0

(
H

ϕ̇0

){
Ḟ +

(
3− η‖ + ε+

θ̈0

Hθ̇0

)
H F

}
,

(B.2)

F̈ + 3H Ḟ +
k2

a2
F +M2

effF = −2θ̇0

(
ϕ̇0

H

)
Ṙ, (B.3)

where ε ≡ − Ḣ
H2 and η‖ ≡ − ϕ̈0

Hϕ̇0
. As it has been emphasized before R = constant

and F = 0 are non-trivial solutions to these equations due to the background

isometries [126]. Given that F is heavy, F → 0 shortly after horizon exit while

R → constant as in single-field inflation theory. If we consider the short wave-

length limit we can neglect the “Hubble friction” terms and take ϕ̇0

H
= constant.

We also take the physical wave number p ≡ k
a

to be a constant in this regime. In
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this approximation

R̈c + p2Rc = 2θ̇0 Ḟ , (B.4)

F̈ + p2F +M2
effF = −2θ̇0 Ṙc, (B.5)

where Rc ≡
(
ϕ̇0

H

)
R. The solutions of this system are given by

Rc = R+ e
iω+t +R− eiω−t, (B.6)

Fc = F+ e
iω+t + F− eiω−t, (B.7)

where the frequencies ω± read [132]

ω2
± =

M2
eff

2 c2
s

+ p2 ± M2
eff

2 c2
s

√
1 +

4 p2 (1− c2
s)

M2
eff c
−2
s

. (B.8)

Here (R−,F−) and (R+,F+) represent the amplitudes of low and high frequency

modes respectively and satisfy

F− =
−2 i θ̇0 ω−

M2
eff + p2 − ω2

−
R−, (B.9)

R+ =
−2 i θ̇0 ω+

ω2
+ − p2

F+. (B.10)

We see that the fields in each pair oscillate coherently.

Demanding that the high frequency degrees of freedom do not participate in the

dynamics of the adiabatic modes, is only justified in the presence of a hierarchy

of the form ω2
− � ω2

+, which is equivalent to demand that p2 � M2
eff c
−2
s by the
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use of (B.8). Under these circumstances we get that

ω2
+ ≈M2

eff c
−2
s ≈M2

eff + 4 θ̇2
0, (B.11)

ω2
− ≈ p2c2

s + (1− c2
s)

2 p4

M2
eff c
−2
s

. (B.12)

As far as low energy frequencies are concerned, the condition p2 � M2
eff c
−2
s is

equivalent to ω2
− �M2

eff c
−2
s so ω2

+ ≈M2
eff c
−2
s behaves as the cut-off of the low en-

ergy effective theory regime. In this approximation F is completely determined by

Rc through the relation F = −2 θ̇0 Ṙc
M2

eff+p2−ω2
−

. When linear perturbations evolve, their

physical wave number p ≡ k
a

decreases and the modes enter the long wavelength

regime p2c2
s . H2, where they become strongly influenced by the background and

no longer have a simple oscillatory behavior. However, the low energy contribu-

tions to F satisfy Ḟ ∼ HF and since we assume H2 �M2
eff, we can neglect time

derivatives in (B.3) so we can solve F in terms of R as

F = −
(
ϕ̇0

H

)
2 θ̇0 Ṙ

k2

a2 +M2
eff

. (B.13)

Plugging this algebraic relation back into the action (B.1) , we get an effective

(tree-level) action for the curvature perturbation which at quadratic order reads

1

S
(2)
eff [g0, ϕ0,R] =

1

2

∫
dt d̄3k a3

(
ϕ̇2

0

H2

){
Ṙ2

c2
s(k)

+
k2R2

a2

}
, (B.14)

1Here d̄3k ≡ d3k
(2π)3 .
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where c−2
s (k) = 1 + 4

(
θ̇2
0

k2

a2 +M2
eff

)
is a k-dependent speed of sound.

Appendix C

Slow-Roll Approximation Consistency

We start by reviewing the slow-roll approximation consistency for single-field

inflation. The field equations for single-field inflation are given by

φ̈+ 3Hφ̇+ Vφ = 0, (C.1)

3M2
PlH

2 =
1

2
φ̇2 + V. (C.2)

The slow-roll approximation consists, at this level, in neglecting φ̈ and 1
2
φ̇2 in

(C.1) and (C.2), respectively. Therefore, we are led to the system

3Hφ̇+ Vφ = 0, (C.3)

3M2
PlH

2 = V. (C.4)

From (C.3) we may express φ̇ = − Vφ
3H

, and using the chain rule V̇φ = Vφφ φ̇, we

get that

φ̈ = −

(
3HV̇φ − 3ḢVφ

)
9H2

= −Vφφ
3H

φ̇+
Ḣ

3H2
Vφ = −

m2
φ

3H
φ̇− 1

3
ε Vφ, (C.5)

where Vφφ ≡ m2
φ and ε ≡ − Ḣ

H2 . Moreover, within the same approximation

φ̇2 =
V 2
φ

9H2
. (C.6)
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Plugging (C.5) and (C.6) into (C.1) and (C.2), respectively, yields

−
m2
φ

3H2
φ̇− 1

3
ε
Vφ
H

+ 3 φ̇+
Vφ
H

= 0, (C.7)

3M2
PlH

2 =
1

2

(
V 2
φ

9H2

)
+ V ' 1

6
M2

Pl

(
Vφ
V

)2

V + V =
1

3
εV V + V. (C.8)

As m2
φ � H2 ⇐⇒

{
ηV ≡M2

Pl
Vφφ
V

}
� 1, ε � 1, and

{
εV ≡

M2
Pl

2

(
Vφ
V

)2
}
�

1, we see, comparing (C.7) and (C.8) with (C.3) and (C.4), that the slow-roll

approximation is self-consistent, as within such a limit, the neglected terms in the

equations of motion become very suppressed “corrections” to the approximate

equations.

Let us now consider the two-field system of chapter 4, whose equations of motion

are given by

σ̈ + 3Hσ̇ − (R + σ) θ̇2 + Vσ = 0, (C.9)

(R + σ)2 θ̈ + 2(R + σ) σ̇ θ̇ + 3H(R + σ)2 θ̇ + Vθ = 0, (C.10)

3M2
PlH

2 =
1

2
(R + σ)2θ̇2 +

1

2
σ̇2 + V.

(C.11)

In this case the slow-roll approximation we consider is determined by

{σ̈, 3Hσ̇} �
{

(R + σ) θ̇2, Vσ

}
, (C.12){

2(R + σ) σ̇ θ̇, (R + σ)2 θ̈
}
�
{

3H(R + σ)2 θ̇, Vθ

}
, (C.13){

1

2
(R + σ)2θ̇2,

1

2
σ̇2

}
� V. (C.14)
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More to the point, we are interested in the case when σ ' constant and θ̇ '

constant. Therefore we are led to the system

−(R + σ) θ̇2 + Vσ = 0, (C.15)

3H(R + σ)2 θ̇ + Vθ = 0, (C.16)

3M2
PlH

2 = V. (C.17)

Equations (C.12) and (C.13) imply, respectively, that

1

(R + σ)

σ̇

θ̇
� θ̇

3H
and

1

(R + σ)

σ̇

θ̇
� 3H

2θ̇
, (C.18)

which together demand that

ς ≡ 1

(R + σ)

dσ

dθ
� 1. (C.19)

Equation (C.19) is a consequence of the slow-roll approximation, and in this sense,

it is also an slow-roll requirement. Moreover, the natural slow-roll parameter

δ ≡ σ̇
(R+σ)H

� 1 may be written as

δ =
σ̇

(R + σ)H
=

1

(R + σ)

σ̇

θ̇

θ̇

H
=

1

(R + σ)

dσ

dθ

θ̇

H
= ς

θ̇

H
� 1, (C.20)

so we see that the ratio θ̇
H

is not slow-roll suppressed as one could naively guess,

and may actually be O(1) , as long as ς � 1. Now using (C.16) we get that
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θ̇ = − Vθ
3H(R+σ)2 . Therefore

(R + σ)2θ̈ = −

(
3H(R + σ)2V̇θ − 3Vθ

(
Ḣ(R + σ)2 +H ˙(R + σ)2

))
9H2(R + σ)2

= −

(
Vθθ θ̇ + Vθσ σ̇

)
3H

+
Vθ
3

Ḣ

H2
+

2Vθ
3H

σ̇

(R + σ)

= −Vθθ
3

θ̇

H
− Vθσ(R + σ)

3
δ − Vθ

3
ε+

2Vθ
3
δ. (C.21)

To find σ̇ we take an implicit time-derivative of (C.15), which yields

σ̇ =
2

M2
eff

θ̇

(R + σ)
(R + σ)2θ̈ − Vσθ

θ̇

M2
eff

, (C.22)

where M2
eff ≡ Vσσ − θ̇2. Using (C.21) in (C.22) we find that (C.10) reads

(
−Vθθ

3

θ̇

H
− Vθσ(R + σ)

3
δ − Vθ

3
ε+

2Vθ
3

)
1

c2
s

− 2(R + σ)Vσθ
θ̇2

M2
eff

+ 3H(R + σ)2θ̇ + Vθ = 0,

(C.23)

where c−2
s ≡ 1 + 4 θ̇2

M2
eff

. Moreover, inserting (C.22) in (C.9) we find

6

M2
eff

θ̇H

(R + σ)

(
−Vθθ

3

θ̇

H
− Vθσ(R + σ)

3
δ − Vθ

3
ε+

2Vθ
3

)
− 3Vσθ

θ̇H

M2
eff

− (R + σ)θ̇2 + Vσ = 0.

(C.24)

Finally, (C.11) becomes

3M2
PlH

2 =
1

3
εV V +

1

2

[
2

M2
eff

θ̇

(R + σ)

(
−Vθθ

3

θ̇

H
− Vθσ(R + σ)

3
δ − Vθ

3
ε+

2Vθ
3
δ

)
− Vσθ

θ̇

M2
eff

]2

+ V,

(C.25)
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where εV , in this context, is defined as εV ≡
M2

Pl

2(R+σ)2

(
Vθ
V

)2
. As θ is a pseudo-

Goldstone field, terms involving Vθ (and higher derivatives such Vθθ, Vθσ, and so on)

are proportional to the small explicit symmetry breaking parameter. Moreover,

Meff, the “effective mass” of the heavy field, is taken to be at least & H. All

in all, it is clear, by comparing (C.23), (C.24), and (C.25) with (C.16), (C.15),

and (C.17), respectively, that the slow-roll approximation in the two-field system

is self-consistent, as within such a limit, the neglected terms in the equations of

motion become very suppressed “corrections” to the approximate equations.
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[91] G. LEMAÎTRE. The beginning of the world from the point of view of
quantum theory. Nature, 127:706 EP –, 05 1931. URL http://dx.doi.

org/10.1038/127706b0.

164

https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s2-42.1.90
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s2-42.1.90
http://dx.doi.org/10.1038/128704a0
http://dx.doi.org/10.1038/128704a0
http://dx.doi.org/10.1038/162774b0
https://global.oup.com/academic/product/cosmology-9780198526827
https://global.oup.com/academic/product/cosmology-9780198526827
http://dx.doi.org/10.1038/127706b0
http://dx.doi.org/10.1038/127706b0


[92] Viatcheslav F. Mukhanov and G. V. Chibisov. The Vacuum energy and
large scale structure of the universe. Sov. Phys. JETP, 56:258–265, 1982.
[Zh. Eksp. Teor. Fiz.83,475(1982)].

[93] Alexei A. Starobinsky. Spectrum of relict gravitational radiation and the
early state of the universe. JETP Lett., 30:682–685, 1979. [,767(1979)].

[94] Federico Piazza and Filippo Vernizzi. Effective Field Theory of Cos-
mological Perturbations. Class. Quant. Grav., 30:214007, 2013. doi:
10.1088/0264-9381/30/21/214007.

[95] Steven Weinberg. The quantum theory of fields. Vol. 2: Modern applications.
Cambridge University Press, 2013. ISBN 9781139632478, 9780521670548,
9780521550024.

[96] Emmy Noether. Invariant Variation Problems. Gott. Nachr., 1918:235–
257, 1918. doi: 10.1080/00411457108231446. [Transp. Theory Statist.
Phys.1,186(1971)].

[97] Jeffrey Goldstone, Abdus Salam, and Steven Weinberg. Broken Symmetries.
Phys. Rev., 127:965–970, 1962. doi: 10.1103/PhysRev.127.965.

[98] E. C. G. Stueckelberg. Interaction forces in electrodynamics and in the field
theory of nuclear forces. Helv. Phys. Acta, 11:299–328, 1938.

[99] John M. Cornwall, David N. Levin, and George Tiktopoulos. Derivation
of Gauge Invariance from High-Energy Unitarity Bounds on the s Ma-
trix. Phys. Rev., D10:1145, 1974. doi: 10.1103/PhysRevD.10.1145,10.1103/
PhysRevD.11.972. [Erratum: Phys. Rev.D11,972(1975)].

[100] Matthew D. Schwartz. Quantum Field Theory and the Standard
Model. Cambridge University Press, 2014. ISBN 1107034736,
9781107034730. URL http://www.cambridge.org/us/academic/

subjects/physics/theoretical-physics-and-mathematical-physics/

quantum-field-theory-and-standard-model.

[101] Steven Weinberg. Adiabatic modes in cosmology. Phys. Rev., D67:123504,
2003. doi: 10.1103/PhysRevD.67.123504.

[102] Daniel Baumann. Inflation. In Physics of the large and the small, TASI
09, proceedings of the Theoretical Advanced Study Institute in Elementary
Particle Physics, Boulder, Colorado, USA, 1-26 June 2009, pages 523–686,
2011. doi: 10.1142/9789814327183 0010. URL https://inspirehep.net/

record/827549/files/arXiv:0907.5424.pdf.

[103] Clifford Cheung, A. Liam Fitzpatrick, Jared Kaplan, and Leonardo Sen-
atore. On the consistency relation of the 3-point function in single field
inflation. JCAP, 0802:021, 2008. doi: 10.1088/1475-7516/2008/02/021.

165

http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-field-theory-and-standard-model
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-field-theory-and-standard-model
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-field-theory-and-standard-model
https://inspirehep.net/record/827549/files/arXiv:0907.5424.pdf
https://inspirehep.net/record/827549/files/arXiv:0907.5424.pdf


[104] C. Armendariz-Picon, T. Damour, and Viatcheslav F. Mukhanov. k - infla-
tion. Phys. Lett., B458:209–218, 1999. doi: 10.1016/S0370-2693(99)00603-6.

[105] Jaume Garriga and Viatcheslav F. Mukhanov. Perturbations in k-inflation.
Phys. Lett., B458:219–225, 1999. doi: 10.1016/S0370-2693(99)00602-4.

[106] Robert M. Wald. General Relativity. Chicago Univ. Pr., Chicago, USA,
1984. doi: 10.7208/chicago/9780226870373.001.0001.

[107] Gerard ’t Hooft. Naturalness, chiral symmetry, and spontaneous chi-
ral symmetry breaking. NATO Sci. Ser. B, 59:135–157, 1980. doi:
10.1007/978-1-4684-7571-5 9.

[108] Konstantinos Dimopoulos. Ultra slow-roll inflation demystified. Phys. Lett.,
B775:262–265, 2017. doi: 10.1016/j.physletb.2017.10.066.

[109] Nima Arkani-Hamed, Paolo Creminelli, Shinji Mukohyama, and Matias Zal-
darriaga. Ghost inflation. JCAP, 0404:001, 2004. doi: 10.1088/1475-7516/
2004/04/001.

[110] Clare Burrage, Claudia de Rham, David Seery, and Andrew J. Tolley.
Galileon inflation. JCAP, 1101:014, 2011. doi: 10.1088/1475-7516/2011/
01/014.

[111] Leonardo Senatore, Kendrick M. Smith, and Matias Zaldarriaga. Non-
Gaussianities in Single Field Inflation and their Optimal Limits from the
WMAP 5-year Data. JCAP, 1001:028, 2010. doi: 10.1088/1475-7516/2010/
01/028.

[112] Paolo Creminelli, Guido D’Amico, Marcello Musso, Jorge Norena, and En-
rico Trincherini. Galilean symmetry in the effective theory of inflation: new
shapes of non-Gaussianity. JCAP, 1102:006, 2011. doi: 10.1088/1475-7516/
2011/02/006.

[113] Jerome Martin, Christophe Ringeval, and Vincent Vennin. Encyclopædia
Inflationaris. Phys. Dark Univ., 5-6:75–235, 2014. doi: 10.1016/j.dark.2014.
01.003.

[114] David H. Lyth and Andrew R. Liddle. The primordial den-
sity perturbation: Cosmology, inflation and the origin of struc-
ture. 2009. URL http://www.cambridge.org/us/academic/

subjects/physics/cosmology-relativity-and-gravitation/

primordial-density-perturbation-cosmology-inflation-and-origin-structure?

format=HB#PhPk4vODctWCWpxD.97.

[115] Juan Martin Maldacena. Non-Gaussian features of primordial fluctu-
ations in single field inflationary models. JHEP, 05:013, 2003. doi:
10.1088/1126-6708/2003/05/013.

166

http://www.cambridge.org/us/academic/subjects/physics/cosmology-relativity-and-gravitation/primordial-density-perturbation-cosmology-inflation-and-origin-structure?format=HB#PhPk4vODctWCWpxD.97
http://www.cambridge.org/us/academic/subjects/physics/cosmology-relativity-and-gravitation/primordial-density-perturbation-cosmology-inflation-and-origin-structure?format=HB#PhPk4vODctWCWpxD.97
http://www.cambridge.org/us/academic/subjects/physics/cosmology-relativity-and-gravitation/primordial-density-perturbation-cosmology-inflation-and-origin-structure?format=HB#PhPk4vODctWCWpxD.97
http://www.cambridge.org/us/academic/subjects/physics/cosmology-relativity-and-gravitation/primordial-density-perturbation-cosmology-inflation-and-origin-structure?format=HB#PhPk4vODctWCWpxD.97


[116] Takahiro Tanaka and Yuko Urakawa. Dominance of gauge artifact in the
consistency relation for the primordial bispectrum. JCAP, 1105:014, 2011.
doi: 10.1088/1475-7516/2011/05/014.

[117] Enrico Pajer, Fabian Schmidt, and Matias Zaldarriaga. The Observed
Squeezed Limit of Cosmological Three-Point Functions. Phys. Rev., D88
(8):083502, 2013. doi: 10.1103/PhysRevD.88.083502.

[118] N. Bartolo, S. Matarrese, and A. Riotto. Non-Gaussianity and the Cosmic
Microwave Background Anisotropies. Adv. Astron., 2010:157079, 2010. doi:
10.1155/2010/157079.

[119] M. Liguori, E. Sefusatti, J. R. Fergusson, and E. P. S. Shellard. Primor-
dial Non-Gaussianity and Bispectrum Measurements in the Cosmic Mi-
crowave Background and Large-Scale Structure. Advances in Astronomy,
2010:980523, 2010. doi: 10.1155/2010/980523.

[120] Eva Silverstein and David Tong. Scalar speed limits and cosmology:
Acceleration from D-cceleration. Phys. Rev., D70:103505, 2004. doi:
10.1103/PhysRevD.70.103505.

[121] Mohsen Alishahiha, Eva Silverstein, and David Tong. DBI in the sky. Phys.
Rev., D70:123505, 2004. doi: 10.1103/PhysRevD.70.123505.

[122] David Wands. Multiple field inflation. Lect. Notes Phys., 738:275–304, 2008.
doi: 10.1007/978-3-540-74353-8 8.

[123] David Langlois. Non-Gaussianities from isocurvature modes. J. Phys. Conf.
Ser., 405:012003, 2012. doi: 10.1088/1742-6596/405/1/012003.

[124] Edmund J. Copeland, Andrew R. Liddle, David H. Lyth, Ewan D. Stewart,
and David Wands. False vacuum inflation with Einstein gravity. Phys. Rev.,
D49:6410–6433, 1994. doi: 10.1103/PhysRevD.49.6410.

[125] P. A. R. Ade et al. Improved Constraints on Cosmology and Foregrounds
from BICEP2 and Keck Array Cosmic Microwave Background Data with
Inclusion of 95 GHz Band. Phys. Rev. Lett., 116:031302, 2016. doi: 10.
1103/PhysRevLett.116.031302.

[126] Ana Achucarro, Jinn-Ouk Gong, Sjoerd Hardeman, Gonzalo A. Palma, and
Subodh P. Patil. Effective theories of single field inflation when heavy fields
matter. JHEP, 05:066, 2012. doi: 10.1007/JHEP05(2012)066.

[127] Leonardo Senatore and Matias Zaldarriaga. The Effective Field Theory of
Multifield Inflation. JHEP, 04:024, 2012. doi: 10.1007/JHEP04(2012)024.

[128] Ana Achúcarro, Jinn-Ouk Gong, Sjoerd Hardeman, Gonzalo A. Palma, and
Subodh P. Patil. Features of heavy physics in the CMB power spectrum.
JCAP, 1101:030, 2011. doi: 10.1088/1475-7516/2011/01/030.

167
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