ROBUST SPEECH RECOGNITION BY
TOPOLOGY PRESERVING ADAPTATION

by

M. Kemal Sonmez

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1998

Advisory Committee:

Professor John S. Baras, Chairman/Advisor
Professor Prakash Narayan

Professor Benjamin Kedem

Associate Professor Adrian Papamarcou
Associate Professor Shihab Shamma,



© Copyright by

M. Kemal Sonmez

1998



ABSTRACT

Title of Dissertation: ROBUST SPEECH RECOGNITION BY
TOPOLOGY PRESERVING ADAPTATION

M. Kemal S6nmez, Doctor of Philosophy, 1998

Dissertation directed by: Professor John S. Baras
Electrical Engineering Department

The performance degradation as a result of acoustical environment mismatch
remains an important practical problem in speech recognition. The problem car-
ries a greater significance in applications over telecommunication channels, es-
pecially with the wider use of personal communications systems such as cellular
phones which invariably present challenging acoustical conditions. Such condi-
tions are difficult to model analytically for a general speech representation, and
most existing data-driven models require simultaneous (“stereo”) recordings of
training and testing environments, impractical to collect in most cases of interest.
In this dissertation, we propose an invariance principle for non-parametric speech
representations in acoustical environments. We stipulate that the topology of
the codevectors in a vector quantization (VQ) codebook as defined in terms of

class posterior distributions will be preserved in a certain information-theoretic



sense, and make this invariance principle our basis in deriving normalization al-
gorithms that correct for the acoustical mismatch between environments. We de-
velop topology preserving algorithms in two frameworks, constrained distortion
minimization (VQ with a topology preservation constraint) and information ge-
ometry (alternating minimization with a topology preservation constraint) and
show their equivalence. Finally, we report results on the Wall Street Journal
data, the Spoken Speed Dial corpus and the TI Cellular Corpus. The algorithm
is shown to improve performance significantly in all three tasks, most notably
in the more difficult problem of cellular hands free microphone speech where
the technique decreases the word error for continuous ten digit recognition from

23.8% to 13.6% and the speaker dependent voice calling sentence error from

16.5% to 10.6%.



Dedication

Anneme

ii



Table of Contents

List of Tables

List of Figures

1 Introduction

1.1
1.2
1.3
14

OVEIVIEW . . . o o o e e e e e e e

2 Problem of Robust Speech Recognition

21
2.2

2.3
24
2.5

Introduction . . . . . . . ...
Review of Speech Recognition . . . . . .. ... ... . ......
2.2.1 Signal Processing for the Speech Feature Vectors. . . . . .
2.2.2 Hidden Markov Models . . . . ... ... ... .......
Robust Speech Recognition . . . ... ... ... .........
Cepstral Mean Normalization and RASTA . . ... ... .....

Model-based Compensation Methods . . . .. ... ... ... ..

iii

vi

vil



2.5.1 Codeword Dependent Cepstral Normalization

(CDCN) . . . 13

2.5.2 Parallel Model Combination (PMC) . . . . . ... ... .. 14
2.5.3 Vector Taylor Series (VTS) . ... ... .......... 14

2.6 Data-driven Compensation Methods . . . . . ... ... ..... 14

2.6.1 Fixed Codeword Dependent Cepstral Normalization (FCDCN) 15
2.6.2 Probabilistic Optimum Filtering (POF) . . . . . ... ... 15

2.7 Maximum Likelihood Linear Regression

(MLLR) . . . . . o e 16
2.8 The Proposed Algorithm and Related Prior Work . . . . . . ... 16
Topology Preserving Adaptive Vector Quantization 18
3.1 Imtroduction . . ... ... ... ... ... .. 18
3.2 A Distortion Model for the Feature Space . . .. ... ... ... 20
3.2.1 The Feature Space . . . .. .. ... ... ... ...... 21
3.2.2 Smooth class dependent translation distortion model . . . 21

3.2.3 Class dependent normalization with labeled
(“stereo”) data . . . ... ... ... L 24
3.3 A Probabilistic Description of Topology . . . . . . . ... ... .. 26

3.4 Topology Preserving Class Dependent Translation Model for Dis-

tortion . . . . ... L. e e 29
3.5 Topology Preserving Adaptive Vector Quantization . . . ... .. 31
3.6 Extension to Multiple Environments . . . .. ... ... ..... 36
Information Geometry of Topology Preserving Adaptation 40
4.1 Introduction . . . . . . . . . . . . ... 40

iv



4.2 Information Divergence Geometry of Probability Distributions . . 43

4.3 Alternating Minimization and Generalized EM Algorithms . . . . 46
4.4 Information Geometry of Topology Preservation . . .. ... ... 50
4.4.1 Pythagorean Theorem of Topology Preservation . . . . . . 52
4.4.2 Topology Preserving Alternating Minimization . . . . . . . 53
4.5 Incremental Alternating Minimization Algorithms, TPAVQ . . . . 57
Robust Speech Recognition Experiments with TPAVQ 60
5.1 Cepstral Normalization on the CSR corpus . . . . . ... ... .. 61
5.1.1 Description of the Corpus . . . . .. ... ... ...... 61
51.2 TaskandResults . . ... ... .. ... .......... 61

5.2 Normalization of Acoustic Enrollment on the Spoken Speed Dial

COrpUS © . v v v e e e e e e e e 67
5.2.1 The Spoken Speed Dial Corpus . . ... ... ....... 67
5.2.2 Acoustic Enrollment . . . .. ... ... ..., ..., 67
523 Results . ... ... ... ... ... 68
5.3 Normalization of Cellular Telephone Speech . . .. ... ... .. 70
5.3.1 Description of the Corpus . . . ... ... .. ....... 70
5.3.2 Speaker-independent Digit Recognition . . . . . . ... .. 71
5.3.3 Speaker-dependent Voice Calling . ... ... ....... 72
Conclusion and Future Work 74
6.1 Summaryof Results . ... ... ...... ... ........ 74
6.2 Contributions . . . . . ... ... L 75
6.3 Future Work . . . . . . ... ... ... ... ... 76



5.1
5.2
5.3
5.4
5.5
5.6
5.7

List of Tables

Adjusted deviation ratios for the CSR corpus . . . ... ... .. 62
Baseline system performance for acoustic enrollment . . . . . . . . 69
RASTA system performance for acoustic enrollment . . . . . . . . 70
TPAVQ system performance for acoustic enrollment . . . . . . . . 71

Speakers 1-8, TPAVQ system performance for acoustic enrollment 72
Results of the speaker independent digit recognition experiment. . 72

Results of the speaker dependent voice calling experiment. . . .. 73

vi



3.1

3.2

3.3

3.4

3.5

4.1
4.2
4.3
4.4

4.5

List of Figures

Non-parametric, class dependent translation model for the mis-
match between two acoustical environments . . . ... ... ...
The difference vector field between two acoustical environments
A(o) and © (*)in a 2D feature space. . . .. ... ... ......
Model spaces smoothed by o: co > 09 > 01 >0 > --- > op > 0

Mo={(%,...,2)}cM,,CM,, CM,;; C---C M, CNP =

Off-line topology preserving VQ codebook adaptation for a set of
representative environments. . . . . . ... ... oL oL L
Compensation with both a priori information about likely envi-

ronments and on-line adaptation. . . ... ... .. ... .....

Pythagorean equation in a PD simplex . . . . ... ... ... ..
EM algorithm in information geometry. . . . . . . . .. ... ...
Pythagorean theorem in alternating minimization . . . . . . . ..
Information geometry of topology preserving alternating mini-
mization . . . . . .. L.
Topology preserving alternating minimization with multiple local

MInImMa . . . . . ot e e e e e e e e e e e e e e e e e e e

vii



5.1
5.2
5.3
5.4

Scattergram, baseline . . . ... ... ... ... ... ..., 63

Scattergram, RASTA . ... ... ... ... .. ... ..... 64
Scattergram, CMN . . . .. ... ... ... ... ......... 65
Scattergram, TPAVQ . . . . . .. ... .. ... .. ... ... 66

viil



ROBUST SPEECH RECOGNITION BY
TOPOLOGY PRESERVING ADAPTATION

M. Kemal Sénmez
December 3, 1998

This comment page is not part of the dissertation.

Typeset by BTEX using the dissertation class by Pablo A. Straub, University of

Maryland.



Chapter 1

Introduction

1.1 Overview

Automatic Speech Recognition (ASR) technology has established itself as a vi-
able research discipline in the last twenty years, and with the relatively more
recent developments in Hidden Markov Model (HMM) based technology, is com-
ing to the forefront to take its place in the information technology revolution.
Systems with the capability to recognize speaker independent continuous speech
of up to 60,000 words exist. However, these state-of-the-art recognizers exhibit
a marked sensitivity to mismatches in training and testing acoustical environ-
ments. This sensitivity degrades performance in many speech recognition tasks
in which a high-quality microphone and wide-band, high sampling-rate recording
are not available. This includes the majority of present and potential applica-
tions of speech recognition such as information retrieval, command and digit
recognition, voice dialing over telephone, and is currently one of the most im-
portant practical problems in speech recognition. It carries a greater significance

in applications over telecommunication channels, especially with the wider use



of personal communications systems such as cellular phones which invariably
present challenging acoustical conditions.

This phenomenon has stimulated growing interest in robust speech recogni-
tion making it an active research field in the last decade. There have been many
recent significant advances towards rendering the speech recognition systems less
vulnerable to noise and distortion in the general direction of uniformly error-free
recognition over a wide range of environments (see e.g. [20], [16]). The studied
approaches range from microphone arrays [12, 37] and auditory-based represen-
tations of speech features [15, 35] to approaches based on filtering of features
[3, 18]. Some of the most successful approaches to environmental compensation
have been based on modifying the feature vectors that form the core of the speech
representation for the speech recognition system. These modifications may be
based on empirical comparisons of high-quality and degraded speech data or on
analytical models of the degradation [2].

In this dissertation, we propose an invariance principle for non-parametric
speech representations in acoustical environments. We stipulate that the topol-
ogy of the codevectors in a vector quantization (VQ) codebook as defined in
terms of class posterior distributions will be preserved in a certain information-
theoretic sense. We make this invariance principle our basis in deriving nor-
malization algorithms that correct for the acoustical mismatch between environ-
ments.

We develop algorithms in two frameworks, constrained distortion minimiza-
tion (VQ with a topology preservation constraint) and information geometry
(alternating minimization with a topology preservation constraint). The derived

stochastic gradient algorithms turn out to be the same for both approaches,



although the two different frameworks shed light on different aspects of the al-
gorithm’s properties.

We report robust speech recognition results for the Topology Preserving
Adaptive VQ (TPAVQ) algorithm in three different tasks that include cepstrum
reconstruction, speech and speaker recognition with data from a variety of envi-
ronments such as different microphones, telephone lines, and cellular telephones.

The algorithm is shown to be affective in all the tasks.

1.2 Goals

Our goals in the dissertation can be summarized as follows:

e Development of a non-parametric, feature independent formulation of the

acoustical environment robustness problem.

e Development of a distortion model for a generic feature space in which the

invariance principle of topology preservation can explicitly be enforced.

e Derivation of normalization algorithms for the developed distortion model
without imposing impractical requirements such as availability of stereo

data.

e Development of analytical tools for the study of the algorithm to demon-

strate convergence and to gain understanding of critical parameters.

¢ Extensive experimental demonstration of the performance of the algorithm

with various types of environments and recognition tasks.

In fulfilling these goals, we introduce an environment adaptation technique

based on adaptive VQ by topology preserving transformations. It uses a priori



information about likely acoustical environments in the form of environment
codebooks derived off-line from the reference environment codebook, and may
adapt on-line to the test environment to improve recognition. The technique
requires neither simultaneously recorded speech from the training and the testing
environments nor EM-type batch iterations during testing. Instead of using
stereo recorded data, the integrity of the updated VQ codebooks with respect to
acoustical classes is maintained by endowing the codebooks with a topology and

using transformations which preserve the topology of the reference environment.

1.3 Contributions

We may sum up the major contributions of this dissertation as follows:

e We propose using the topology of the distribution of the feature vectors as
an invariant for the distortion model transformation and develop a frame-

work which incorporates the preservation of topology in a workable manner.

e We demonstrate how the topology preservation can be included as a con-
straint in distortion minimization in VQ and how the minimization can be

carried out with a stochastic approximation algorithm.

e We introduce an information geometry framework for topology preserva-
tion where the class posteriors of the testing environment are constrained
to be within € I-divergence proximity of the class posteriors of the reference

environment.

e In the information geometry framework, we develop a constrained alternat-

ing minimization algorithm which preserves topology. We prove its local



convergence and study the relation of its global convergence to the rate
at which the smoothing parameter is updated in the stochastic gradient

optimization.

e We demonstrate empirically in an extensive manner the effectiveness of
the approach in three different tasks which incorporate different acoustical
conditions. The most notable turns out to be how the algorithm performs

with cellular telephone speech which presents the most ardous challenge.

1.4 Organization

The organization of the dissertation is as follows:

In Chapter 2, we review the HMM speech recognition paradigm and existing
approaches to robust recognition, detailing the VQ-class dependent compensa-
tion/adaptation techniques in the literature.

Modeling of distortion as a topology preserving transformation and the in-
troduction of Topology Preserving AVQ (TPAVQ) are the key topics in Chapter
3. We use topology constrained distortion minimization as the basis for TPAVQ
and describe shrinking of the neighborhoods during minimization to preserve the
global order initially and to learn the local statistics as data accumulate.

In Chapter 4, we introduce an information geometry framework for topology
preservation, the central result of which is a Phytagorean-like theorem for proba-
bility distributions on manifolds defined by the model family and observed data.
We develop a constrained alternating minimization algorithm. We prove its con-
vergence and show its equivalence to the constrained distortion minimization

algorithm in Chapter 3.



Extensive experimental studies on three different tasks and environment mis-
matches are reported in Chapter 5. The corpora used are the Wall Street Jour-
nal, the Spoken Speed Dial and the TI Cellular Corpus. For example, the voice
calling experiment on the TI Cellular Corpus shows TPAVQ decreases the word
error for continuous ten digit recognition of cellular hands free microphone speech
with land line trained models from 23.8% to 13.6% and the speaker dependent

voice calling sentence error from 16.5% to 10.6%.



Chapter 2

Problem of Robust Speech Recognition

2.1 Introduction

In this chapter, to introduce the problem of robust speech recognition, we first
review the basics of the current state-of-the-art speech recognizers. They are
based on Hidden Markov Models (HMMs) which model feature vectors that in-
clude short-term spectral information as well as energy and their derivatives.
The robustness of speech recognition systems to the noise and distortion intro-
duced either by the acoustical environment or the transducer/telephone channel
is fundamentally determined by the robustness of the features used. The al-
gorithms developed in this dissertation operate on the feature space to make
it a more robust representation for speech, and are largely independent of the
particular temporal modeling, such as a specific type of HMMs. Therefore, the
results should apply to a large class of speech recognition and speaker identifi-
cation/verification systems.

The chapter is organized as follows: We review two basic aspects of speech

recognition: (i) the front-end signal processing and (ii) HMM generation in Sec-



tion 2.2. The robustness problem is introduced in Section 2.3 followed in the
remaining sections by a review of existing approaches to the solution of the ro-
bustness problem, grouping them as simple filtering methods, model-based meth-
ods, and data-driven methods. Finally, we compare and contrast the proposed
algorithms in this thesis with other approaches and discuss their advantages and

drawbacks.

2.2 Review of Speech Recognition

2.2.1 Signal Processing for the Speech Feature Vectors

Speech waveform by itself has an enormous amount of information which, for
most computational approaches rule out the possibility of using it directly for
classification. Speech recognition systems use a parametric representation to
generate a feature vector space and pose speech recognition as a dynamic pat-
tern recognition problem in the feature space. The most common features which
have empirically proven to be most discriminative are based on short-term enve-
lope of the spectrum. Log-spectra or cepstra obtained through either the discrete
Fourier transform (DFT) or by estimating a linear prediction coefficients (LPC)
model constitute the main feature vector in the majority of state-of-the-art rec-
ognizers. These feature vectors are augmented by their differenced versions to
capture short-term dynamics in the speech waveform. Power or pitch informa-
tion may also be included to generate a concatenated vector of speech features.

Below, we give an overview of the front-end processing used in the speech

recognition experiments in this work.



Front-end Signal Processing

It involved the following steps:

10.

Sampling of the speech waveform at 8 KHz.

Pre-emphasis filtering, H(z) = 1 — 0.9627!, to emphasize the spectral

features with respect to the effect of the glottus.

Hamming windowing using a 30 ms window at 20 ms intervals (10 ms

overlap), 240 samples per frame.
Estimation of 14 LPC coefficients by Levinson-Durbin recursion.

Sampling of the log-spectra of the estimated LPC model at mel-frequency

intervals.

Computation of the differenced features as a filtered difference between the

next and the previous frames.

Estimation of the auxiliary features such as power, voicing, and speech

effort.

Concatenation of the 14 log-spectra, 14 derivatives and the auxiliary fea-

tures to generate a 34-dimensional feature vector.

Karhunen-Loeve transform of the 34-dimensional space to reduce the di-
mensionality to 16 by selecting axes along which the variation is maximal

after the whitening transform.

Modeling of the 16-dimensional feature stream by HMMs.



2.2.2 Hidden Markov Models

HMMs have become the most effective and widely-used statistical tool to model
the temporal characteristics of the speech feature vectors. HMMSs provide a
reliable and intuitive way to recognize speech for a variety of applications. They
also merge well with language models, an indispensable knowledge source for
speech recognition. HMMs have been detailed in many sources [19, 32|, therefore
we only give a brief overview in this section.

Hidden Markov Models are a doubly stochastic process in which a hidden
process is observed through random functions of its states. These states are
assumed to be representing the states of the process that generates the speech.

The model is fully specified by two sets of parameters:

1. Transition probabilities, which describe the temporal structure of state

transitions.

2. Output probabily density functions, which describe the probability of ob-
serving speech features given the model is in a certain state. For the
recognizer in this work, the output probability functions are multivariate

normal densities.

Recognition with an HMM corresponds to identifying a sequence of hid-
den states which, through the output probabily density functions, produced the
observed feature vector sequence. There are three problems related to this ap-

proach:

1. Scoring problem: Given a HMM and a sequence of observed feature vectors,
what is the likelihood that the HMM produced the observations ? The

algorithm that solves this problem is the forward-backward algorithm [32].

10



2. Decoding problem: Given a HMM and a sequence of observed feature
vectors, what is the most likely sequence of hidden states in the model
that generated the observed feature vector sequence ? The solution is

provided by the Viterbi algorithm [38].

3. Estimation problem: Given a HMM and a sequence of observed feature
vectors, what set of parameters has the maximum likelihood of producing
the observations ? Baum-Welch algorithm [4] (or the forward-backward

algorithm) addresses this problem.

2.3 Robust Speech Recognition

The HMM modeling of log-spectra has proved to be a very successful approach
to recognition of speech when the training and the testing environments are iden-
tical. However, drastic performance degradations result when the speech data
to be recognized come from an acoustical environment different from the one in
which the training of the HMMs was carried out. This difference may be due to
ambient noise, different microphone characteristics, most notably the wide range
of non-linear effects in carbon-button handsets as opposed to higher-quality char-
acteristics of electret handsets, or the distorting effects of a telecommunication
channel. The approaches to rectify the robustness problem most closely related
to the framework in this thesis are reviewed in this section. We start by a
look at simple feature vector filtering techniques CMN and RASTA. We review
normalization algorithms in two groups; model-based techniques in which an
analytical model of the environment parameterizes the normalization algorithm,

and data-driven algorithms where the corrections are general enough to correct

11



for a wide-range of distortions, but estimation is more costly (by requiring stereo
data) due to the non-parametric nature of the approaches. Finally, we put the

algorithms developed in this thesis in the context of the existing algorithms.

2.4 Cepstral Mean Normalization and RASTA

Cepstral Mean Normalization (CMN) [2] is a simple algorithm that consists of
subtracting the mean of the entire stream of N feature vectors during both
training and testing from each of the vectors z, to generate the normalized

stream vyy,.

Yn = Tp — Nan (2.1)
In this way, wherever the feature vector distribution has been translated in
the acoustical space due to a global shift (as a result of linear filtering by the
channel, for example), it is translated back to the origin. Thus, the variability
among the acoustical environments in reduced. RASTA [17], effectively achieves
the same goal by applying a high-pass filter to the log-spectra stream. The
SRI DECIPHER system, for example, uses the high-pass filter described by the
difference equation

Yn = T — Tnot + 0.97n 1. (2.2)

CMN and RASTA are routinely used in most of the speech recognition sys-
tems in addition to other compensation algorithms. Their main advantage are
their simplicity and uniform gain, but when the distortion is more complex than
that of a single global shift in the feature space, they arenot as affective and
there is considerable room for improvement. This fact is demonstrated by the

results of our speech recognition experiments with the algorithms developed in

12



this thesis.

2.5 Model-based Compensation Methods

One way of compensating for the effects of acoustical mismatch is explicit mod-
eling of the environments and the form of the distortion function, usually in the
form of linear filtering and additive noise. In this section, we review Codeword
Dependent Cepstral Normalization (CDCN) [1], Parallel Model Combination
(PMC)[14], and Vector Taylor Series (VTS) [29].

2.5.1 Codeword Dependent Cepstral Normalization
(CDCN)

CDCNJ1] attempts to model the distortion imposed on cepstrum coefficients
caused by an environment mismatch, by linear filtering, and additive noise. It is
also assumed that the “clean” cepstral vectors are distributed with a Gaussian
mixture in a reference environment and the secondary environments’ cepstral
vectors are distorted versions of the clean cepstral vectors. In the first stage of
the algorithm, parameters of the distorting function are estimated via maximum
likelihood using an EM-algorithm. Once these parameters are known, they are
used to obtain a Minimum Mean Square Estimate of the clean cepstral vectors.

CDCN is an affective algorithm at relatively higher Signal to Noise Ratios
(SNR). It is computationally expensive due to the batch EM iterations needed to
run during testing as well as training. Also it does not apply to a general set of

feature vectors since it is the cepstra alone that are targeted in its development.

13



2.5.2 Parallel Model Combination (PMC)

PMC [14] starts from a similar assumption about the environment to that of
CDCN. Previous knowledge of noise and channel vectors are assumed; these need
to be estimated in advance via various approximations. The goal is to transform
the mean vectors and covariance matrices of the acoustical distributions of the
Hidden Markov Models (HMMs) of clean speech so that they fit the noisy feature
vector stream at hand solving the mismatch problem. Estimation of channel and
noise vectors beforehand is a serious limitation for PMC, as its effectivity relies

heavily on the availability of sufficient amount of isolated noise samples.

2.5.3 Vector Taylor Series (VTS)

VTS [29] uses a detailed analytical model of the environment and iteratively
learns the parameters of the environment and the correction factors which trans-
form the noisy cepstral sequence so that it fits the distribution of the reference
environment better. It can work with very small amounts of data due to the
detailed characterization of the cepstral space. It suffers from what all the de-
tailed model-based approaches suffer from, a high bias when the distortion is

more involved or qualitatively different than that of the model.

2.6 Data-driven Compensation Methods

Data-driven techniques take the view that the complex distortions brought about
by environment mismatches can be learned from exemplars of feature vectors
transformed by the transducer/channel effects. Additive correction factors are

usually sufficient to model the effects of such mismatches on log-spectra and cep-

14



stra. There is a fundamental drawback to the existing data-driven techniques in
that they require “stereo” data to estimate their parameters, that is, they require
speech recorded from the same source simultaneously in both the training and
the testing environments. For most practical situations, this is an unacceptable
limitation, since it is costly and often times simply impractical to collect stereo
data from all environments of interest in an application.

In this section, we review, two representative techniques: CMU’s Fixed Code-
word Dependent Cepstral Normalization (FCDCN) [1] and SRI’s Probabilistic
Optimum Filtering (POF) [30].

2.6.1 Fixed Codeword Dependent Cepstral Normaliza-
tion (FCDCN)

FCDCN [1] uses a VQ codebook to represent the reference cepstrum distribu-
tion and computes codeword dependent corrections for cepstral vectors based on
stereo data. Its main limitation is its reliance on stereo data for every environ-

ment that can be encountered in testing.

2.6.2 Probabilistic Optimum Filtering (POF)

POF [30] starts from a similar approach, but the codeword-dependent corrections
are not additive but consist of multi-dimensional transversal filters. This way, it
is not limited to static corrections as in FCDCN but can actually model temporal
correlations in the environments. It learns the filter parameters by minimizing
the norm of the difference between the training environment feature vectors and

the testing environment feature vectors on a stereo database. It also suffers from

15



the stereo database requirement. Both of the data-driven techniques impose very
little structure on the mismatch, therefore pay the price in needing a very specific

set of data for estimation.

2.7 Maximum Likelihood Linear Regression
(MLLR)

It is hard to classify MLLR [22] as either model-based or data-driven, because
while it does assume a model of distortion for the reference environment HMM
model in terms of the model’s means and covariance matrices, the model simply
consists of a generic Affine transformation independent of the underlying feature
vectors and/or the specific type of channel characteristics. The parameters of
the Affine transform are estimated by maximizing likelihood. It was originally
introduced as a speaker adaptation technique, although it has proven effective

in combating environment mismatches as well [39].

2.8 The Proposed Algorithm and Related Prior

Work

In this thesis, we take a data-driven, non-parametric approach to the modeling of
feature vectors in the acoustical space. In this regard, the developed normaliza-
tion algorithm, Topology Preserving Adaptive Vector Quantization (TPAVQ)
uses codeword dependent corrections similar to techniques FCDCN and POF
discussed in this chapter. It was pointed out that FCDCN and POF required

stereo recordings of speech from both the training and testing environments,

16



since they made very little assumptions about the distortion in the acoustical
environment. TPAVQ, on the other hand, is based on an invariance principle
that stipulates that the neighborhood relations in the codebook must be pre-
served in all the acoustical environments. The way this principle is enforced is;
the topology of the training environment is determined first by computation of
the class posteriors, and this topology is imposed as an optimization constraint
during the estimation of the VQ codebooks for the testing environments. The
codebooks estimated this way correspond to each other on a per codevector ba-
sis, and therefore class integrity can be preserved during the estimation of the
codeword dependent corrections without stereo data. This allows the technique
to be used in a variety of environments where non-stereo recorded data are easily
available, but stereo data are costly or impractical to collect, such as speech over

cellular telephone channels.

17



Chapter 3

Topology Preserving Adaptive Vector

Quantization

3.1 Introduction

There is one underlying observation about the nature of speech representations
which has lead to the development of normalization techniques in this thesis:
In any class-based representation of speech there is a structure of classes in
the feature space which is invariant to acoustical variations in the environment
in which it was produced, such as the vocal tract or prosodic characteristics
of the speaker and the spectral distortion and noise present in the medium.
More specifically, with respect to the metric on the representation feature space,
there are clusters of classes with similar characteristics. For example, at the
phone level, one would expect classes representing vowels to be closer to each
other than those that represent fricatives. Moreover, the degree to which human
understanding of speech is robust suggests that this structure is invariant to the
characteristics of the speaker or the recording/transmission apparatus used.

Short-term stationary modeling of speech features with tools such as Gaus-

18



sian mixture models (GMM) or vector quantization (VQ) representations do not
readily provide the means to express or use to advantage this invariance. In this
chapter, we introduce a way to express the topology of a VQ codebook (or a
GMM) in terms of a posterior probability mass function defined over the classes.
We also show how to quantify the preservation of this topological structure in
order to use the invariance described above as a constraint in estimation of mod-
els. The starting point for the framework is the introduction of a class-dependent
transformation model for feature space distortion with an additional topology
preservation constraint. The topology preservation constraint is expressed in
terms of the posterior class probability mass functions. The class biases are not
free parameters but as a set have to ensure that the posterior class probabili-
ties of the testing environment have to be in ¢ proximity of the posterior class
probabilities of the reference environment with respect to the Kullback-Leibler
divergence. Estimation under such a constraint is proposed as a solution to
the class labelling problem of non-stereo data and allows derivation of practical
normalization algorithms.

The chapter is organized as follows: First, we review the feature space for
our speech representation, then the unconstrained class-dependent bias model
for distortion with its easy estimation in the presence of stereo data and the
estimation problem with non-stereo data. Next, we introduce our probabilis-
tic description of the topology of a VQ codebook via Bennett-style ! high-rate
assumptions. Once we have the mathematical tool to express the topologies,
we re-introduce the class-dependent bias model with the topology preservation

constraint between the reference and the secondary environments. This model

1The adjective was coined by Gersho and Gray in [13].
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allows for estimation with unlabeled channel (non-stereo) data. Then follows the
constrained optimization which results in an adaptive vector quantization algo-
rithm reminiscent of the Self-Organizing Feature Map [21] in which the topol-
ogy matrix is not an arbitrary lower-dimensional mesh but specified through
Kullback-Leibler divergences between the high-rate posterior class pmfs. The
smoothing parameter associated with the probabilistic topology description is
linked to a model complexity framework in the final section which informally
suggests the connection between topology preservation and correct model com-
plexity selection as data accumulate. This allows us to come up with a “cooling
schedule” for the smoothing parameter via an optimal trade-off between bias

and variance in a kernel density estimation framework.

3.2 A Distortion Model for the Feature Space

Our goal is to develop a general model of distortion applicable to a broad range
of feature spaces. Accordingly, we develop distortion models on IRP without
explicit reference to the individual dimensions which may include spectral infor-
mation such as cepstral coefficients, voicing estimates or their derivatives. This
is a decision of simplicity for the sake of generality over using more domain
knowledge for a specific feature vector. Using a specific degradation model for a
specific feature suffers from the limitations of model-based approaches, namely
the bias associated with the limited complexity model far outweighs the gain
in variance during estimation. In the next section, we outline one such feature

vector, specifically the one used for the experiments in this thesis.
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3.2.1 The Feature Space

The output space of the discrete-time models in speech recognition is typically a
vector space whose components are short-term stationary speech attributes. In
the front-end of the HMM speech recognizer used in this work, a broad range of
features such as frame energy, voicing, spectra and their derivatives are concate-
nated to form a 34-dimensional feature vector. Principal component analysis is
applied to this vector space to reduce dimensionality to 16 by selecting a subset
of axes along which statistical variation is maximal. We denote the resulting
principal component vector space by F. Vector quantization is applied to F,
therefore, members in a class are related by both static and dynamic features

which determine the way they are affected by the environment.

3.2.2 Smooth class dependent translation distortion model

Let us start by considering a VQ based density estimation technique for the

reference environment. Given a training set Z from the reference environment
Z={21,2,...,2y)} € FV, (3.1)

we estimate a vector quantizer ()5, which is a mapping from F to a finite set of

reproduction vectors (code vectors) A = {Ay,..., Ak} € FX, i.e.
Qn:F — {M,..., Ak} C F (3.2)
QA(2) = Ay, V2 EF (3.3)
where
wp(z) = arg ke{rg'iEK}d(z, Ak)- (3.4)
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The codebook A is estimated by minimizing the the distortion

D = E[d(Z,Qx(2))] (3.5)

which, in practice, is replaced by the long-term sample average, in our case, the
mean-squared error (MSE) over the training set
1 N

N
Zd Zi, )‘wA(Z) N - Z |Z )“'UA(Z )| (3'6)

1=1 i=1

J:l

The quantizer Q5 partitions F into Voronoi cells R}
={z € F:Qn(z) = M} (3.7)

Model 1 Let A and © be the codebooks for the reference and the secondary en-

vironments, respectively. Then, the codevectors are related through a translation

and the overall tranformation, T(-) is given by

- b02(12 — M) v |
o3 () - wer 69

where a Gaussian smoothing of the membership function is introduced by placing

multivariate Gaussians

bolr) = s exp (—2’"722) . (3.10)

at the codevectors with o determining the smoothness of the transformation.
Note that, as we shall soon see, this is equivalent to assuming an underlying

kernel density for the VQ codevectors with o as the smoothing parameter.
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Figure 3.1: Non-parametric, class dependent translation model for the mismatch

between two acoustical environments

251

15

TN

0.5

4

/

[

'
*

o !
r ot
r 7

” 7

0 A A XXt

WM N TN Y N N VT T

~

~

’
!
!

/

AR A

APV A A 2P B

N e
brpprr s
PP APV AV A A

NMNNNMNNNNSe -t

~

~

A

\o\\\\t/f*
\\\*\\///-

NS NSNN Y

N
%
\

1

—

N

- ///'/'//*\

¥ .

B G g QP Q. e A A |

”,

-

-

T T W W W o e o ek e e e e = -

P . e

-
*

P” =% ~ o e e ca . e mm v e . e

!

0 0.5

Figure 3.2: The difference vector field between two acoustical environments A(o)

1

1.5

and © (x)in a 2D feature space.

w

23

[ S 2 2 P P

AT AT T v e e e e . O

N i i e e e T
Nle -~ .~
e e e e e e e e




3.2.3 Class dependent normalization with labeled

(“stereo”) data

First, let us review the case of labeled data from multiple acoustical environments
for which an easy normalization technique exists and has been extensively used
in literature. Assume we are given the following training set of mutually labeled,

“stereo”, training vectors from the reference and secondary environments:
(Z,X) = {(Z1,X1),(Z2,X3) ..., (Zn, Xn))} € (F x F)¥, (3.11)

that is,
X, =T(Z;), Vi=1,...,N. (3.12)

Consider the VQ mapping, Q4 of 3.2 which partitions F into Voronoi cells
Ry
RAM={z€ F:Qu(2) = M} (3.13)

Observe that due to 3.12, we have a decomposition for the secondary environment

as the direct images of the reference partition under 7"
RY = T(R}) (3.14)
This need not be a partition since it does not necessarily hold that
RSNRY =0 Vj+#k. (3.15)

Still, this decomposition lends itself to estimation of secondary class codevectors

via the VQ class optimality condition:

0; = E[z|z € R®] = E[z|T"(z) € R} (3.16)
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i 1

0; ~ —— > z (3.17)

DA
1B (e oye@moizern)

In accordance with the distortion model of 1, we have thus estimated param-

eters for the following normalization technique:

Normalization 1 Let A and © be the codebooks for the reference and the sec-
ondary environments, respectively. Then, the codevectors are normalized through

class-dependent translations:
bi=6,—XN, i=1,....K (3.18)

which result in the overall normalization transformation

ooy $or(lz=0) Y5 .
T*(z) =12 ;(Z{.ilaﬁaz(lz—fhl))&” Vz € F (3.19)

Labeled data are costly and in many important cases impractical to collect,
e.g. via a cellular connection in a moving vehicle. This fact limits the usefulness
of the simple estimation in 3.17 for Normalization 1. What are widely and much
more cheaply available are unlabeled data, that is, independent recordings from
various environments. The lost information in the unlabeled case makes the
estimation problem an incomplete observation problem. Therefore, for a stable
solution we have to augment the problem with additional information, that is,
constraints on the solution. That is exactly what we do in the next section in the
form of putting constraints on the neighborhood relations of the codevectors via
a probabilistic description of topology which are preserved between the reference

and the secondary environments.
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3.3 A Probabilistic Description of Topology

We need a constraint on the allowable solutions for the secondary environment
codebook to augment the ill-defined problem which results from unlabeled data.
The new proposal in this section is to capture the neighborhood relations between
codevectors in a form which can be used to solve the incomplete observation
problem. Our main goal is to quantify the neighborhood relations between the
codevectors. The VQ codebook as introduced above does not provide a ready
apparatus for accomplishing this goal. To that end, we introduce the following

estimator for the density of Z:

K
Z 2(|z—N|), VzeF (3.20)

where

bunlr) = s xp (—g) | (3:21)

This is a classical Gaussian kernel estimator of the density of quantized Z with
smoothing parameter o2. [36] In using the codevectors only, rather than Z, with
equal weighting of all the Voronoi cells, we have implicitly made the following

“high-rate” (large K) assumption:

Assumption 1
1
P(zeRQ)zf, k=1,...,K, (3.22)

that is, the Voronoi cells have the same probability mass and edge effects or

2

“overload noise” * can be neglected for K large.

2Qverload noise is the distortion due to the quantization of data outside the coverage of

the finite number of code vectors.
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With f,‘{2 as a model for the density, now we may consider posterior class proba-
bilities. Note that f,‘{2 is a Gaussian mixture model with K equally likely classes
and a common variance o2. The reason we chose not to introduce it as such is
that o2 will truly be used as a smoothing parameter in the following development
rather than a variance.

Now, let us introduce the classes as an unobserved random vector augmenting

the data Z:
(Z,C) = {(21,C1),(Z2,C), ..., (Zn,Cn)} € (F x {1,...,K})Y,  (3.23)
and define the class mapping as
c(Z2)=0C, V(Z,C)e Fx{1,...,K}. (3.24)

Then, the posterior class probabilities are given as

¢02(|Z — /\kl)
iIil ¢02(|z - /\zl)

These posterior class probabilities are the first step towards a useful description

pi (kl2) = P(c(2) = k|Z = 2) =

ke{l,...,K} (3.25)

of topology. Given a data point z, we can deduce how close the classes ¢ and j are
are by looking at probabilities p%’ (i|2) and pg (j|z). Yet, the posteriors in 3.25
are in terms of the data Z. The next development will use an approximation to
make them viable topological descriptions.

At this point, we introduce a Bennett-style high-rate approximation for Qx:

Assumption 2 Given € and o2, one can select K large enough so that
f(2) - fM <e, VZERE, k=1,.. K, (3.26)

where f > 0, that is, the Voronoi cells are small enough so that the smoothed

density on a given cell is approzimately constant.
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With the high-rate assumption, Assumption 2, the following result immediately

follows:
Lemma 1

P} (klz) = p§ (KIQa(2)) (3.27)
as K — oo.

Proof: Write the posteriors in terms of FX2:

P (k|2) = X (Z|C£2z()z)= k)L
X

Now, Qa(2) = Aw,(z), therefore z € R A(z)- Then, by the high-rate approxima-

(3.28)

tion Assumption 2, as K — 00,

0.2
F(2) = fae (3.29)
But, Ay,(z) € R}, () as well:
0.2
X Q@) = Fun (3.30)

as K — oo, which immediately imply

¢02(|)‘WA(Z) — )‘kl) )
Z{il ¢02(|)‘w1\(2) - ’\l|)

Lemma 1 provides us with a framework in which we can define a convenient

Py (klz) = P (Kl Aus (2)) = (3.31)

form of code vector neigborhood (topology) preservation between a reference
environment and a secondary environment. This is accomplished through 3.31,
in which the approximation posterior pmf, which we shall use as a probabilistic
description of the topology from now on, is shown to be dependent on the data
only through the code vector indices. Our goal in the next section is to introduce
topology preservation as the invariance of the class posterior as approximated

by Lemma 1.
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3.4 Topology Preserving Class Dependent Trans-
lation Model for Distortion

Let
©={0,...,0k} e FK (3.32)
be the set of code vectors to be estimated for the secondary environment. Ac-
cording to our model,
;=Xi+e, 1=1,...,K (3.33)
Therefore, we need to estimate ¢;, or equivalently 6; by using a training set from

the secondary environment
X ={X,X,...,Xn)} € FV, (3.34)

in a manner similar to that of 3.6. In this case, however, vector quantization of
X must be carried out in a way that ensures the integrity of the ordering of the
indices is preserved. Without ordered indices of the reference and the secondary
environments, a normalization of the sort 1 is not possible..

The unconstrained distortion model of 1 offers no assistance in the satisfac-
tion of this requirement. In this section, we introduce topology preservation as
an invariance between reference and secondary environments, which allows us to
estimate © while keeping the integrity of the cross class labels intact.

First, let us define the sets of class posterior probabilities for the codebooks

A and ©, P¢" and PZ’, respectively.
PL = ok (1k).k=1,..., K} (3.35)

where the pmfs p%’ (-|k) are

o2 (1A¢) = M)
iz1 602 (|A¢) = Adl)

5 (1k) = p (1M) = k=1,...,K (3.36)
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and similarly for ©.

Finally, we have arrived at a description of code vector neighborhood by
means of which we can express the topology invariance. In the presence of dis-
tortion and noise, the code vectors will be transformed in the feature space, but
the transformation will leave neighborhood relationships essentially the same.

To this end, we require,

Py =Pg (3.37)

With (3.37) as the constraint of topology preservation between environment
codebooks A and ©, we can now state the Topology Preserving Class-dependent

Translation Model (TPCDTM):

Model 2 Let A and © be the codebooks for the reference and the secondary en-

vironments, respectively. Then, the codevectors are related through a translation
b;=M\+6, i=1,...,K (3.38)

subject to

Pt = pg (3.39)

and the overall tranformation, T(-) is given by

)=z b2 (|2 — Akl) . .
+Z( 1¢az(|z—/\|)>[0’ A, VzeF (3.40)

where € > 0.

In the next section, we will see how the additional constraint enters the

distortion minimization to obtain a normalization algorithm.
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3.5 Topology Preserving Adaptive Vector Quan-
tization

In this section, we will see how the distortion model TPCDTM, Model 2, de-
veloped in the previous section can be used to solve the index integrity problem
and derive normalization algorithms for the unlabeled (“mono”) data case.

For the constrained optimization, consider the minimization problem

*f 2\ : _ 2
©*(c*) = @rgg,{ El||lz — Oco @[] (3.41)

subject to
PR =l 1=1,...,K

Note that the objective function is a o?-smoothed version of the distortion in 3.5
which converges to D as 02 — 0. At the limit, the membership function becomes
a step function whence the first term tends to D and the topology constraint
disappears as the effective neighborhood radius shrinks to zero. Therefore, the

solution we are interested in is

©*(0) = lim ©*(c?) (3.42)

020

Equation 3.41 can be re-written via the double expectation formula as

0"(c*) = min E[E[|z - 0, [we ()] (3.43)

subject to

Py =05 () 1=1,...,K
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or equivalently

6"(0?) = gnin, B[S p8 (klwo(z)lle - 6’ (3.44)

subject to
i (k) =pg (k1) 1=1,...,K.

Upon substitution of the reference measure in place of the secondary environment

measure in the minimization as required by the constraint, this leads to

©*(¢*) = min E[Zk:p}'\z (klwe(z))llz — Oxl1?]. (3.45)

OCRRX

Given the training set X, we can estimate ©*(0?) by
6*(0?) = min —ZZ (k|we (X:))||Xi — 6| (3.46)

Note that the cost function 3.46 is an augmentation of distortion by contribu-
tions from all the codevectors in proportion to their topological relation to the
winning codevector in the reference environment as reflected in the class poste-
rior. Minimization of the final expression 3.46 is accompished by a stochastic

gradient descent algorithm. The incremental update is given by

el =00 — n(t) ZPA O (klwe (2)) |z — kI (3.47)

90

which can be written with respect to the individual 6; as

ETR ZPA (Klwe (z))||z — 0k|[* = 2p% (jlwe())(z — 6;). (3.48)
J k=1

This results in the following algorithm:

Algorithm 1 Topology Preserving Adaptive VQ:
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0. Set the initial codebook to that of the reference environment.

00 = A (3.49)

1. Update with the stochastic gradient at the current smoothness o(t)

a? .
0+ = 00 — 5(t)py  (jlwe (X)) (X — 0). (3.50)

2. Repeat 1 until convergence as o%(t) = 0 and n(t) — 0

Minimization of the final expression via a stochastic gradient descent results
in our estimation algorithm which is described in this section.

In the optimization algorithm, the limiting and gradient descent minimiza-
tion are carried out together in such a way as to adapt instantaneous model
complexity to adjust bias and variance so as to minimize instantaneous mean
squared error. |

This may be understood more easily in terms of the notion of an effective
number of parameters. In the TPAVQ algorithm, the parameters are tied to each
other by the class posterior pmf which effectively decides which codevectors will
be updated depending on which index belongs to the winner. At the initialization
and early stages of the algorithm when o is very large, o — 0o, the class posterior
is a uniform distribution. This results in all the codevectors being updated
towards the data point X, regardless of who the winner is, that is, the parameters,
the class means, are not free. In fact, when ¢ — oo the distribution of the
acoustic feature vectors tends to a uniform distribution for which one parameter
(the overall mean, for example) suffices to describe. As o — 0 slowly, the
codevectors become more and more independent of each other as the updates

will now depend strongly on who the winner is. One can therefore speak of an
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effective number of parameters, K g(t), which starts from 1 and converges to K,

the number of codevectors as o is decreased slowly from a very large value.

1< Keff(O'(t)) <K (3.51)

oo > o(t) >0

Corresponding to the sequence of K,s(t) is a sequence of model spaces, M,

Moo={(%,---,—llg)}cMaocMal CM, C--CMe CMy  (352)

depicted in Fig. 3.3. M, consists of the uniform distribution and M, is the
models allowed by the set of VQ codevectors with the hard decision. Then, we
can think of the distribution as a Gaussian kernel estimator of the quantized
X with K,ff number of points (kernels) with o as the smoothing parameter.
Therefore, by quantizing the acoustic feature vectors we have reduced the prob-

lem of choice of 02(t) to one of optimal smoothing parameter selection depending
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on the number of data points, a well-worked problem in kernel density estima-

tion [36]. Let K denote the multi-variate kernel,

/]RP K(x)dx =1, (3.53)

which, in our case, is a multi-variate normal

K(x) = ceT TN X, (3.54)
2

(2ma?)

Let us define the following two variables [36]
a= /t%K(x)dx (3.55)

and
8= / K (x)%dx. (3.56)
The bias of a density estimator, f can be written via a vector Taylor series

expansion [36]

biasf(x) ~ %azaV2f(x). (3.57)

Also, the variance of the same estimator is given by

—B5() (3.58)

| et

varf(x,t) ~

Now, taking mean integrated square error (MISE) as our complexity optimizer

via bias-variance trade-off,
MISE, (f)(t) ~ / ([biasfﬁ(x)]2 + varf(x, t)) dx (3.59)

we can write MISE as

MISE, (/)(t) = 30*a? [ (V£(0) dx + 3 =6 (3.60)



which needs to be minimized with respect to o
Oopt(t) = arg min MISE, (£)(2). (3.61)

Minimization of the mean integrated square error, which is the combination of

bias and variance terms, results in:

Gopi(t) = (;ﬁ‘i) & (%) i (3.62)

This suggestion for a cooling schedule relies on a high-rate approximation,
and produces a very slow rate for o to shrink. This theoretical rate cannot be
tolerated in practice, and generally much faster schemes are used. Interesting
things to note are: As the dimensionality of the space, p, increases, the rate must
further decrease. This makes intuitive sense; with large dimensional feature vec-
tors topological variations to avoid during optimization increase exponentially,

therefore o must shrink much slower.

3.6 Extension to Multiple Environments

The off-line codebook adaptation described in the previous section is carried
out for a set of representative environments as shown in Figure 3.4. Once the
codebooks are available, they are simply used as a basis in which to express the
data from an unknown environment. For a discrete density HMM, the technique
may be regarded as codebook adaptation, for a continuous density HMM, such as
the one used in this work, it is necessary to put it in the form of a compensation
algorithm as follows. Let the incoming speech feature vector(¢-th frame of the

utterance) from the unknown test environment be denoted as x(¢). Then, the
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compensated feature vector, X(t) is computed as

x(t) = x(t) + Xh: Py Zk:pﬁ (B = xk(2)] (3.63)

where the probability that the ¢-th frame belongs to Voronoi region & in the
codebook h, pl(t), and the probability that the utterance belongs to environment

h, P, are estimated as
e~ B () —x(t))?

h —
) = oo (3.64)

o=@ 2, (b (1) —x(1)?
- T, €~ 2n (b (0 -x()*

Py (3.65)

The initial codebook selection is a fast adaptation using a priori knowledge
about likely representative environments. A new testing environment may not
always fit the available codebooks to give a satisfactory performance. In such
cases, on-line adaptation to the new environment may be accomplished by utiliz-
ing the testing environment’s data during compensation via the same topology
preserving minimization algorithm. This is shown in the block diagram of the
compensation in Figure 3.5. In this way, even if the initial match between the

environments is not as good, it gets better as the codebooks get updated.

37



Reference Environment | _ ___ Environment
Environment 1 H
Collect speech Collectspeech] =-=-====-=. Collect speech

Compute : Compute | _ _______. Compute
feature vectors Train HMM feature vectors feature vectors

Design VQ
codebook V
Dedace | | pP— ______ -
topology Adapt VQ Adapt VQ
codebook codebook
Codebooks

AT N

¢

¢

X 1 Topology of the reference XH

environment is preserved

Figure 3.4: Off-line topology preserving VQ codebook adaptation for a set of

representative environments.
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Chapter 4

Information Geometry of Topology

Preserving Adaptation

4.1 Introduction

In the preceding chapter, we started with the motivating problem of estimat-
ing a transformation for robust speech recognition and developed TPAVQ as
a constrained vector quantization algorithm that enforced a novel definition of
a specific type of topological invariance between acoustical environments. The
preservation of topology was realized by using the conditional class posterior
probabilities of the reference environment a prior: in the parameter estimation
of the secondary environment. The VQ/kernel density estimation framework
proved useful in deriving a stochastic gradient descent algorithm which mini-
mized the distortion plus a penalty for topology discrepancy expressed in terms
of the Kullback-Leibler divergences between the class posteriors of the reference
and testing environments.

In this chapter, we show that we can pose topology preservation in a new

framework. We cast our discussion in terms of information and likelihood which
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allows us to derive a constrained alternating minimization algorithm closely re-
lated to the TPAVQ. The alternating minimization framework lets us study the
convergence properties of topology preservation. Specifically, we present a geo-
metrical view by developing tools which allow us to introduce projections and
Pythagorean theorems of information divergences in similar ways to those in
Euclidean spaces.

The goals of the chapter are; posing topology preservation in an alternating
minimization framework, developing a topology preserving alternating minimiza-
tion algorithm, and investigating its relationship with TPAV(Q developed in the
previous chapter. The theoretical development in the chapter is as follows: Three
fundamental results of Csiszar [10] form the basis of the information divergence
geometry, the framework in which we study the convergence properties of topol-
ogy preservation. In Section (4.2), we re-introduce information divergence for
abstract measures, present and comment on three basic theorems of information
geometry that determine the conditions under which information projections ex-
ist and divergence can be used in a way similar to the use of Euclidean distance
in Euclidean spaces to generate Pythagorean-like theorems. In Section (4.3),
we review the Csiszar-Tusnddy alternating minimization framework of which
(Generalized) Expectation Maximization algorithm ((G)EM) can be derived as
a special case. In the sequel, this derivation of the EM algorithm as an iterative
projection algorithm between two manifolds of probability distributions serves
as the framework in which we develop our convergence argument for topology
preserving adaptation. Section (4.4) introduces topology preservation in an al-
ternating minimization setting. We develop a GEM-like algorithm, and analyse

the convergence characteristics of topology preserving adaptation. The setting
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can be described via two probability manifolds: (i) the set of probability distri-
butions realizable by the model family parameterized by ©, M: and (ii) the set
of probability distributions that are consistent with the observed data, D:

There are two aspects of topology preservation via alternating minimization:
local and global. First question (local) is whether the topology preserving alter-
nating projections converge to a local minimum of the I-divergence. For proving
the convergence of topology preserving alternating minimization, we use results
from the first two sections to note that the Pythagorean equation holds for the
“triangle” formed by the distribution in the model manifold M, its I-projection
on the data manifold D and the topology preserving adaptation distribution
since D is a linear family.

The completion of the result can be sketched as follows: The topology preser-
vation assumption allows one to bound the divergences in the iterations of the
EM and the topology preserving adaptation. This results in a decreasing se-
quence of topology preserving adaptation iterations that follows EM iterations
for topology preservation with small enough €.

The second question (global) in topology preservation involves whether the
local minimum the algorithm converges to, preserves the topology between the
reference and the testing environments. This is precisely the goal of topology
preservation, and we demonstrate how this works depending on how fast the
smoothing parameter is varied.

Finally, in Section (4.5), we show how alternating minimization allows deriva-
tion of incremental algorithms for alternating minimization, and how this results
in stochastic gradient algorithms equivalent to TPAVQ. We summarize our de-

velopment and findings in Section (4.6).
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4.2 Information Divergence Geometry of Prob-
ability Distributions

In this section, we introduce the information divergence geometry of probability
distributions developed by Csiszdr in [10]. In particular, we reproduce three of
his main results which led to the development of the alternating minimization
framework. Information geometry of alternating minimization has been used in
neural network theory [5, 8, 7] and in Bolzmann machine learning in particu-
lar [6]. Some special cases of this framework relating to the EM algorithm were
later re-discovered in other contexts such as “free enegy” in statistical mechan-
ics [31].

Let us describe the main setting. Let P, @, R be probability distributions
(PDs) on a measurable space (2, B,-), and let £ be the manifold of all such
PDs. In the discussion that follows, we will not refer to the space specifically,
Q will either be finite or the Euclidean space with the Borel o-algebra. Also,
we assume the existence of the Radon-Nikodym derivatives or the appropriate
absolute continuity conditions as the case requires.

Let us start with an abstract measure definition of divergence:

1 dP if P
p(PlQ) = { T1EPIIF TP <Q 1)
+o0 if P& Q

In particular, it can be written in the familiar form below when the pdf exists

D(PIIQ) = [ p(z) o ;%dx. (4.2)

The divergence is non-negative [44]

D(P||@) 20, D(P|lQ)=0 <= P=Q. (4.3)
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Yet, it is not a metric and the e-balls
S(R,e) ={P|D(P||R) < e} (4.4)

do not even define a basis for a topology.

In order to generate a geometry in which I-divergence plays a role similar to
that in Euclidean spaces, we will use the following development due to csiszar[10].
First, let us define a projection with respect to the I-divergence in a similar way
to that in Euclidean spaces. Let P,Q, R be PDsin £. Q is called the I-projection
of Pon € if

D(QIIR) = in D(P||R). (4.5)

The first result concerns the existence of I-divergence:

Theorem 1 [10] If the convex set £ of PDs is closed in the topology of the
variation distance, |P — Q| = [ |pr — qr|dR, then each R with S(R,00)NE # 0

has an I-projection on &.

The closure with respect to the variation distance will suffice for establishing
the existence of I-projection for our problem. The next lemma shows how one

can use analogs of connected line segments in a PD simplex.

Lemma 2 [10] If D(P||Q) and D(Q||R) are finite, the “segment joining P
and Q7 does not intersect the I-sphere S(R,€) with radius ¢ = D(Q||R), i.e.,
D(P,||R) > D(Q||R) for each P,

Po,=oP+(1-a)Q, 0<a<l, (4.6)

[10gardP > D(QIIR). (4.7)
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If

Q=aoP+(1-a)P, (4.8)
then D(Q||R) < oo implies D(P||R) < oo and the segment joining P and P'
does not intersect S(R,€) (with e = D(Q||R)) iff

[ 10g4rdP = D(QIIR). (4.9)
The equation (4.8) defines an algebraic inner point of £:

Definition 1 Q is an algebraic inner point of £ if for all P € £, there exists

0<a<1and P €& such that
Q=aP+(1-a)P. (4.10)

The notion of an algebraic inner point will be used in the conditions for the main
theorem.

With a formal definition of a connecting line segment, we are ready to state
the main result of the information geometric development, a “Pythagorean”
theorem where I-divergence plays the role of squared Euclidean distance. By
establishing the conditions under which the Pythagorean relation holds for PDs,
Theorem 2 will allow us to bound the I-divergences of I-projections by virtue of

the fact that “the hypotenuse is greater than either of the perpendicular sides”.

Theorem 2 [10] A PD Q € £ENS(R,00) is the I-projection of R on the convex
set & of PDs iff every P € £N S(R,00) satisfies (4.7) or, equivalently, iff

D(P||R) =z D(P||Q) + D(Q||R) VPe€. (4.11)

If the I-projection @ is an algebraic inner point of £ then £ C S(R,00) and (4.7)
and (4.11) hold with the equality.

45



E Q

Figure 4.1: Pythagorean equation in a PD simplex

Theorem 2 defines the extent of geometrical results we will need for the topol-
ogy preservation problem. Specifically, it provides us with a condition defined
in terms of the notion of an algebraic inner point for PDs so that the following

Pythagorean equation holds:
D(P||R) = D(P||Q) + D(Q||R), VPe€&. (4.12)

See Figure 4.1. The ability to work with projections on probability manifolds
and to compare I-divergences as if they were Euclidean distances allows the
development of a framework in which we can analyse topology preservation in

its relation to alternating minimization algorithms.

4.3 Alternating Minimization and Generalized

EM Algorithms

The classical setting of maximum likelihood from partial observations leads to

the iterative EM-algorithm [11]. In this section, we derive EM-like generalized
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iterative minimization algorithms by using the geometry of information diver-
gences developed in the previous section.

Let S be the manifold of probability distributions on two random variables X
and C; S = {P(X,C)}. Let us start by defining two sub-manifolds of S. First
manifold is the set of probability distributions realizable by the model family
parameterized by ©:

M ={Qe € S|© C R?} (4.13)

The second manifold is the set of probability distributions that are consistent

with the observed data:
D={P€S|ZP(X,C=C)=6(X—3¢)} (4.14)

The maximum likelihood problem of inferring C' and © from observed X
can equivalently be posed as finding the pair of distributions from two mani-
folds which are closest in terms of information divergence. A global solution to
this optimization problem is usually intractable, however there exists a subop-
timal iteration in the form of alternating projections back and forth between
the two manifolds which will produce a sequence of non-increasing information
divergences. Since the divergence is bounded from below, convergence to a local
minimum (which, in practice, usually corresponds to a useful parameter setting)
is guaranteed. It has been shown that in this framework EM algorithm corre-
sponds to two projections: (i) projection from the model manifold to the data
manifold (Expectation step), (ii) projection from the data manifold to the model
manifold (Maximization step).

Thus, the search for the most likely parameter and missing values is reduced
to a search for distributions in M and D which are closest in information diver-

gence:
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Figure 4.2: EM algorithm in information geometry.

D(D||M) = min min D(P||Qe). (4.15)

et

Since this optimization usually proves to be intractable, a suboptimal iterative
procedure described in the sequel is used. In particular, the usefulness of a given
model Qg is measured in terms of its distance to the data manifold, D. This is

determined by the following minimization which also defines the I-projection of
Qg on D:
D(D[|Qe) = min D(P[|Qe)- (4.16)

Definition 2 P* is the I-projection of Q on D if
P :argglelgD(PHQ). (4.17)

Thus, the alternating minimization search can be described in terms of the fol-

lowing two steps:

Algorithm 2 Alternating Minimization
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0. Pick an initial model from M with parameter O, Qom. Seti=1.

1. I-project Qg onto D to find P®) via
D(PY]|Qew) = min D(P||Qow)- (4.18)
2. Find the optimum model for P®), Qgu+1y in M via
D(PY|| Qo) = min D(PY||Qe). (4.19)

3. Check convergence, i.e., if D(P®||Qgu+n) < €. If not, set i =i+ 1, goto
1.

This procedure is proved in [9] to produce sequences of distributions for which

D(D||Qeu+n) < D(D||Qow) (4.20)

hold, i.e., a sequence of continuously improved models. It is also proved in [9]
that this algorithm is equivalent to the EM-algorithm with (4.18) forming the
E-step and (4.19) forming the M-step.

In the alternating minimization algorithm, convergence is still guaranteed

under the following relaxation of step (2):

Algorithm 3 Generalized Alternating Minimization
0. Pick an initial model from M with parameter OV, Qgay. Set i = 1.

1. I-project Qo onto D to find P®) via

D(PY||Qe0) = min D(P||Qew). (4.21)
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2. Find an improved model Qgi+1) in M via

D(PY|Qew+n) < D(PY]|Qow) (4.22)

3. Check convergence, i.e., if D(P®||Qgu+n) < €. If not, set i =i+ 1, goto
1.

Therefore, full M-step minimization (maximization in EM) need not be car-
ried out, and an improved parameter setting will suffice for convergence. Such
algorithms include the EM algorithm as a special case and are called Generalized

EM (GEM) algorithms [27].

4.4 Information Geometry of Topology Preser-
vation

Let us now recall the missing information problem introduced in Section (3.3).
The data for the reference environment and the data for the secondary environ-
ment are unlabeled, therefore a “stereo”, class to class matching is not possible.
The unobserved class identities for correct transformation constitute the missing
information. EM completes this missing information for the secondary environ-
ment in an arbitrary manner, converging to the closest fixed point defined by
the secondary environment data regardless of the class structure of the reference
environment. In order to estimate the correct transformation, in the previous
chapter we resorted to constraining the VQ estimation with the topology of
the reference environment. Similarly, in the information geometry framework,
topology preservation constraint supplements the EM algorithm with informa-

tion about the structure of the posterior class distribution. The goal is to restrain
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the optimization towards a region of the probability manifold where the local
minima are closer to the desired transformation. In this section, we show how,
under the assumption of topology preservation, convergence to the correct (as
defined by the topology preserving model assumption) PD can be achieved. We
will make use of the information geometry tools developed in the preceding sec-
tion, particularly a version of the Pythagorean theorem which will form the basis
of our argument.

First, recall from the previous chapter how we defined the data manifold:
K
D = {P(X,0) = p(CIX)5(X - 2)| Y. p(k|c) = 1} (4.23)
k=1

The posterior pmf, p(C|X), as in the previous chapter, will be our primary
tool for enforcing the topology preservation constraint. In its current form, it
is dependent directly on the data, therefore we invoke Lemma 1 again to get
the same probabilistic description of the topology in which the approximation
posterior pmf is dependent on the data only through the code vector indices.
Recall that the topology of the reference environment is captured in the

posterior class pmfs:

¢(|)\(-) — A|)
ik;l ¢(|)‘(-) - Ail)

PAC1R) = pal-Ihe) = k=1.. K (420)

And, same as in Chapter 3, the assumption of topology preservation can be

written as

D(po(-|k),pa(-lk)) <e Vk=1,...,K, €>0. (4.25)

That is, given the codebook index of the closest vector, I-divergences of the class
posteriors of the reference and the secondary environments are assumed to be

within e-divergence proximity.
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Figure 4.3: Pythagorean theorem in alternating minimization

The Pythagorean theorem we need to establish involves the model PD @)y in
M, P, the I-projection of Qg on D, and the topology preserving PD P’ in D as
shown in Figure 4.3. The right triangle thus formed with Qg P and PP’ as the
perpendicular sides and Qo P’ as the hypotenuse will serve as the basic picture
in the development. Next, we observe that such a Pythagorean theorem holds
for the VQ/kernel density framework for the robust transformation estimation
problem and it can be used to introduce topology preservation in information

geometry.

4.4.1 Pythagorean Theorem of Topology Preservation

First, note that D is the manifold of pmfs on K points, data determining the

observed variable, X, and it is a linear family.

K
D= {P(X,0) =p(C1X =2)| Y plk) = 1) (4.26)

Therefore, the set of algebraic inner points of the set of pmfs D = {(py,...,px)| X pi =
1,p; > 0} is D* = {(p1,...,px)| X pi = 1,p; > 0}. The set of algebraic points of
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the manifold of finite probability mass functions are those pmfs with all nonzero
masses. Since D is a linear family, the I-projection of the model manifold distri-
bution M on D is in D*, i.e., that a pmf with at least one zero mass can never
be the I-projection. Therefore, The Pythagorean equation holds for P, Q¢ and

any algebraic inner point P’ € D.

D(P||Qe) = D(P||P) + D(P'||Qe) VP’ € D" (4.27)

4.4.2 Topology Preserving Alternating Minimization

Now that we have a right triangle to work with, we are ready to introduce the
optimization algorithm. The main idea is to bound the sequence of I-divergences
in the alternating minimization algorithm by the sequence of I-divergences be-
tween the topology preserving data PD’s and model PD’s using the Pythagorean
theorem. Let P* and Q% be the PD’s which minimize the I-divergence between

D and M as shown in Figure 4.4:
D(D||M) = D(P*(|Qs) = min min D(P[|Qe) (4.28)
and let P’ be the data manifold PD required by topology preservation,
D(P'||P*) <, (4.29)
where € > 0. Now, we can write the Pythagorean equation for these three PDs,

D(P*[|@s) + D(P'||P*) = D(P'||Qb), (4.30)

which implies

D(P*[|@s) — D(P'|Q8) < e. (4.31)
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D

Figure 4.4: Information geometry of topology preserving alternating minimiza-

tion

Consider the i-th step of the (generalized) alternating minimization algo-

rithm. Let the I-projection of Qg) on D be P):
D(PY||Qew) = min D(P||Qow)- (4.32)

By the Pythagorean theorem, the following holds for all I-projections of the

alternating minimization estimates

D(PD)|QY) + D(P'||PD) = D(P')|QY). (4.33)
Therefore, for all 7,
D(P9(|Q¥)) < D(P'||Q¥). (4.34)

Simply put, hypotenuse is longer than the perpendicular sides. With such a
bound on the I-projection divergences, we have, thus, proven the convergence of

the following algorithm:

Algorithm 4 Topology Preserving Alternating Minimization
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0. Pick an initial model from M with parameter ), Qguy. Seti=1.

1. Use the topology preserving PD P' to compute the bound on Qg ’s diver-

gence from D

D(P'|QY) > D(PY||QY) (4.35)
2. Find an improved model, Qgi+1y in M via

D(P'|Q5™) < D(P'|Q¥) (4.36)

which is a bound for the I-projection from Qg+1):

D(P'[|QE™) 2 D(PH||Qee+n) (4.37)

3. Check convergence, i.e., if D(P'||Qgu+n) < 6. If not, seti =i+ 1, goto 1.

Theorem 3 Algorithm 4 produces the non-increasing sequence { D (P’ ||Qg+1))}
which bounds the alternating minimization sequence {D(P%Y||Qgu+1))}, and

converges to within € of the minimum I-divergence D(P*||Qg).

By using the Pythagorean identity and the topology preservation assump-
tion, we have obtained a topology-preserving alternating minimization algorithm
which produces sequences of PDs in M and D with decreasing information-
divergences and that converge to a local minimum of the I-divergence.

In the argument above, we proved that under the topology preservation as-
sumption, minimization of the I-divergence between the topology preserving class
posterior distribution and the model manifold resulted in an algorithm which
converges to a local minimum of the I-divergence between the model manifold
and the data manifold. Under the assumptions on the environment distribu-

tions, it is easy to see that there will be K! permutations of the class indices and
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Figure 4.5: Topology preserving alternating minimization with multiple local
minima
therefore that many local minima of the I-divergence between the two manifolds
each corresponding to a re-naming of the codevector indices. Only one of the K!
labelings will provide the exact desired transformation and the fewer deviations
from this permutation, the closer the topology of the secondary environment will
be to the topology of the reference environment. The goal of topology preserva-
tion is to capture, as an invariant of both environments’ data, the neighborhood
structure of the classes and enforce that structure to drive the normally local
algorithm to the desired local minimum, or a close neighbor.

The avoidance of spurious local minima and convergence to a more desirable
local minimum is accomplished by varying the ¢ during optimization (See Fig-

ure 4.5). Recall that o is fixed parameter of the VQ/Gaussian kernel density.
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Therefore, changing o corresponds to having a set of model families changing in
complexity.

During topology preserving alternating minimization, we start with a model
manifold which essentially only includes the uniform class pmf. As the optimiza-
tion progresses, o is reduced and the parameter updates occur by projections to
families of models increasing in complexity. The parameters are globally posi-
tioned in the vicinity of topology preserving PDs early in the optimization while
the I-divergence is close to a convex function, and fine tuning occurs later as
local statistics are used for updates. This is a version of simulated annealing
for the I-divergences on probability manifolds. Future work involves using ideas
from coding to describe the complexity of the model families to match them to
minimum description lengths warranted by the data to come up with o variation

schedules similar to the one derived in Chapter 3 via bias-variance trade-off.

4.5 Incremental Alternating Minimization Al-

gorithms, TPAVQ

Alternating minimization of information divergences extends GEM in a way that
allows optimization by any available means, opening the possibility of incremen-
tal optimization techniques. In this section, we develop those ideas to generate
incremental, (“on-line”) optimization algorithms that allow us to connect the in-
formation divergence-based view elaborated in this chapter with the constrained
distortion minimization view of the preceding chapter. The result is that the in-
cremental stochastic gradient descent algorithms for both optimization criteria

turn out to be identical.
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We will now give a sketch of how incremental EM-algorithms can be derived
from the alternating minimization framework.

Let us reproduce Equation (??) from the proof of Lemma ??

_vp P(k|X)
D(PIIQe) = X2 P(kX) 108 5 5 o (4.38)
and note that it can be decomposed into
D(P||Qe) = —Epllog Qe (k, X = z)] — H(P) (4.39)

where the first term is the negative of likelihood and the second term is the
entropy of the class distribution. Neal and Hinton have re-introduced (4.39) as
their objective function in analogy with the “free energy” function in statistical
physics [31].

From (4.39), it is readily observed that the minimization is with respect to
the two variables, P and ©, corresponding to the E and M steps, respectively,
and that the minimization with respect to © (M step) is not affected by the
entropy of P.

Thus, we can simply look at incremental stochastic gradient algorithms which,
during the M-step, maximize (EM) or improve (GEM) the likelihood integrated

by the class posterior. The topology preservation requires that
B(jiIx) = p} 9 (ilwe(X)), Vi=1,...,K. (4.40)

where we(X) is the index of the codevector in © closest to X as in Chapter 3.

Therefore,
mgn(—E,s[logQ@(k,Xt =m)]) = maXZPA (klwe(z¢)) log Qe(k, X; = x¢)

— maxzp *®) klwe(o:t))log( -G )
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~ max— 3 pL O (Huo(e) E P @)

202

The stochastic gradient is given by:

o (~Epllog Qo (h X, = 2))) = -7 O (Hwo(z) P20 (1ap
resulting in the algorithm:
Algorithm 5 Topology Preserving Alternating Minimization:
0. Set the initial codebook to that of the reference environment.
00 = A (4.43)
1. Update with the stochastic gradient at the current smoothness o(t)
00+ = 6 — (0} (jlwe(X0) (X, - 6)). (4.44)

2. Repeat 1 until convergence as o(t) — 0 and n(t) — 0

But this is equivalent to the Algorithm 1. Therefore, we have established the
equivalence of stochastic gradient descent algorithms with topology preserving
adaptive VQ and topology preserving alternating minimization. The two frame-
works produce similar algorithms for topology preservation yet each provides
a distinct look which leads to a convergence proof in the case of alternating

minimization.
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Chapter 5

Robust Speech Recognition
Experiments with TPAVQ

In this chapter, we describe three spech recognition experiments with telephone
speech. Firstly, let us make a brief review of speech recognition over telephone
lines. We need to distinguish between land-line and wireless speech. In land-line
speech, handset is the most important factor due to still wide-spread use of car-
bon button handsets which tend to have sharply varying non-linear responses.
Electret handsets tend to resemble clean, studio speech and generally work well
with models trained with clean speech. Carbon button handset speech, on the
other hand, degrade the performance of speech recognizers immensely with mod-
els trained with clean speech.

We report results on three tasks on three different corpora: Continuous
Speech Recognition Corpus (CSR, a stereo database, part of the Wall Street
Journal), the Spoken Speed Dial (SSD) Corpus and the TI Cellular Corpus.
On the CSR corpus, we investigate the capstral match after normalization for
a variety of techniques. The task on the SSD corpus is ten-digit recognition.

In addition, we run two tasks on TI Cellular Corpus speaker independent digit
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recognition and speaker dependent name recognition.

5.1 Cepstral Normalization on the CSR corpus

5.1.1 Description of the Corpus

The Continuous Speech Recognition (CSR) database is a subset of the Wall
Street Journal (WSJ) database, and consists of stereo recordings of read speech
from WSJ. It is made up of 10 sentences from 30 speakers, half female, half male,
recorded simultaneously (stereo) with the Sennheiser HMD-414, a high-quality,
head-mounted, close-talking microphone (CLSTLK) and the Crown PZMG6FS,
an omnidirectional, desktop microphone (PZM6FS). The training data consists
of 20 speakers, in stereo form for algorithms that require stereo data. The
testing data are divided into two; first part consisting of 5 speakers is used to
adjust algorithm parameters as a development set, and the second part as the
final evaluation set, on the basis of which all the algorithms are compared. The
stereo form of the testing data is used to generate the scattergrams and compute

the scattergram-based deviation ratios.

5.1.2 Task and Results

The task of cepstral normalization can best be understood from Figure 5.1 where
the second cepstral coeflicients computed from speech recorded by the CLSTLK
microphone and by the PZM6FS microphone are plotted frame by frame as a
scattergram. The second cepstral coefficient has been shown to be the dimension
with the most discriminating power, therefore affects recognition the most. If the

two microphones had recorded identical speech, the second cepstral coefficients
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would have aligned on the y = x line. Note that there is a significant offset from
the y = z line, resulting in very different locations in the acoustical space for
the plotted frames. A HMM trained with the data recorded by the CLSTLK
microphone will lose performance considerably when tested with data recorded
by the PZM6FS microphone.

In Figures 5.2 and 5.3, we show the improvement in cepstral alignment by
RASTA and CMN, respectively. Even though, the global offset has been taken
out, note that the slope of the line deviates from 1 and therefore many frames
at the margins cannot be aligned properly. Contrast this with the results of
the TPAVQ algorithm shown in Figure 5.4 in which the data line is observed
to be aligned with y = z. TPAVQ can translate and rotate the feature vectors,
therefore is able to correct in a much more affective manner.

The ratio of the sum of differences of points from the line y = z for a given al-
gorithm to the identical sum for the baseline defines the adjusted deviation ratio,
a numerical description of the scattergrams. In the table 5.1.2, we show ad-
justed deviation ratios for the three algorithms on the second and third cepstral

coefficients. The ability of TPAVQ to align the cepstra is easily observable.

Technique || DR(cp) | DR(cs3)

Baseline 1.0 1.0

RASTA 0.92 0.13

CMN 0.99 0.11

TPAVQ 0.59 0.07

Table 5.1: Adjusted deviation ratios for the CSR corpus
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5.2 Normalization of Acoustic Enrollment on

the Spoken Speed Dial Corpus

5.2.1 The Spoken Speed Dial Corpus

The Spoken Speed Dial (SSD) corpus consists of names uttered by 10 speakers
(5 male and 5 female) from name lists which contain 25 names for each speaker.
20 of the names in each list are unique to each speaker and 5 names are common

to all lists. The recordings have been made with four different kinds of handsets:
1. Electret handset
2. Carbon button handset
3. Cordless telephone (electret handset)

4. Speakerphone

5.2.2 Acoustic Enrollment

In acoustic enrollment, speakers are asked to utter each name in their list three
times:

filel: Jerry Junkins

file2: Jerry Junkins

file3: Jerry Junkins
The task is to use these three files to train a model for name recognition

which will be tested with test utterances of the form:

file: Call Jerry Junkins .
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The enrollment files are used to generate an HMM for the name for the

particular speaker in the following way:
1. Mark the speech frames in filel
2. Compute the feature vectors for the marked frames

3. Generate an HMM using the duration and the acoustic feature vectors in
filel: left-to-right HMM with one state per frame, transition probabilities

fixed, and mean vectors of the states set to feture vectors of the frame.

4. Update the acoustic feature vector parameters in the HMM using the re-

maining file2 and file3 by forward-backward.

Once the models for all the names in the list for a particular speaker has been
trained, the most likely name according to the HMM scores for the test sequences

is declared as the recognized name (and dialed in the real-world application).

5.2.3 Results

Due to its small vocabulary and the abundance of sufficiently distinct names,
this task is not too difficult for most speakers under matched training and test-
ing conditions. We show the baseline results in Table 5.2.3. The performance
varies greatly depending on the speaker. In particular, S09 tried to confuse the
recognizer by varying the duration of the utterances during enrollment and test.
S10 is a very soft spoken speaker.

In Table 5.2.3, we show the results obtained with RASTA. RASTA does not
seem to improve the performance although the increase in overall error rate from

5.1% to 5.8% may not be statistically significant. In Table 5.2.3, we show the

68



Spkr. | ¢/c | c/e | c/cl | efc | efe | efcl|cl/c | clfe |cl/fcl || x/x

S01 1.3 11309131313 |49 |58 | 09 | 2.1

S02 03 13|13 |10 |27 |47 |123| 84 | 73 || 44

S03 || 0.4 | 27 | 6.0 | 09 | 3.3 | 47 | 2.2 | 80 | 4.7 || 3.6

S04 || 00 | 1.3 {00 [00] 10|00 |37 |43} 27 || 1.6

S05 1.3 (36 (33|50 )04 |127 |37 (09| 20 || 34

So06 || 00 (07 | 07 |44 (37|33 |04 (10|07 | 1.7

So7 || 04 {07 | 1336|0018 |13 00{ 13 | 11

S08 || 0.0 | 0.0 | 09 ]00)]00]|49 |27 13| 09 || 1.2

S09 | 11.0 {17.3 | 26.7|22.3 | 10.2 | 28.7 | 32.0 | 20.4 | 17.3 || 20.4

S10 || 2.7 | 44 | 26.7| 3.6 | 1.8 |23.1|10.7| 9.3 | 34.2 || 12.9

all 19 (3169|4524 |84 |80 (56| 76 | 5.1

Table 5.2: Baseline system performance for acoustic enrollment

results for TPAVQ. There are drastic improvements in some speakers, and the
overall error rate improves by 24%, from 5.1% to 3.9%.

Table 5.2.3 shows the results for TPAVQ for the 8 speakers who are more
representative of the average in terms of speech effort, and who did not try to
confuse the recognizer. The improvement is more striking in this case; 46%

improvement from an error rate of 2.4% down to 1.3%.
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Spkr. || ¢c/c | cfe | c/cl | efc | efe |e/cl|cl/c|clfe|cl/cl || x/x

So1 || 22 | 31}104 |27 (22)00]49 62| 04 || 2.5

S02 || 0.7 | 1.8 120 |20 |13 |13 |143 (116 | 7.3 | 4.9

S03 || 0020|6009 37|40 71|77 | 40 || 3.9

S04 | 0.0 | 1.0 | 00| 03| 10| 00|57 |33 27 | 1.7

S05 | 23 (09 | 27 |140| 04 | 6.7 | 147 | 04 | 2.0 || 5.6

So6 || 00 {07 |07 |36 |13 |13 |04 |07 |07 ] 1.0

S07 || 04 | 00|13 |58 |00]|22)|36|03] 13 1.5

S08 || 00 | 00}{09(00|00]| 2214004 ]| 09 | 09

S09 || 14.7 | 12.9 [ 21.3 | 23.0 | 11.6 | 26.7 | 39.7 | 24.4 | 23.3 || 22.2

S10 || 44 | 76 [ 324 44 | 1.8 | 25.3|12.0| 8.9 | 30.7 || 14.2

all 27 (27|71 162 |22 |71 (116 6.0 | 7.5 | 5.8

Table 5.3: RASTA system performance for acoustic enrollment

5.3 Normalization of Cellular Telephone Speech

5.3.1 Description of the Corpus

Results are presented on continuous digit recognition and voice dialing in the TI
Cellular Corpus. The corpus consists of data collected over cellular channels by
using two types of microphones: a hand-held, close talking microphone and a
hands-free, visor mounted microphone together with land-line collected speech
data. The land-line and hand-held microphone parts of the corpus are mostly
clean telephone speech comparable in quality to VAA corpus. The hands-free

microphone part of the corpus, however, is significantly noisier than the rest.
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Spkr. || ¢/c | c/e | c/cl | e/c |efe|e/cl|cl/c|cl/e|cl/cl| x/x
S01 1.3 10904131309 22|18 04 1.2
S02 0711311303 |13]|40]| 30|18 | 00 1.6
S03 04 (23|47 |04 27|40 18 | 20 | 4.0 2.5
S04 03 (17100001000 ]|00¢{f20]| 00 05
S05 1.0 { 27 | 47 | 1.7 104 (100 | 2.7 | 0.9 | 2.7 || 3.0
S06 0007070010707 ]001{107{ 07| 05
S07 0410009310018 ]09]|00]| 13 0.9
S08 00 (00|09 |00 (00|40 27 |00/ 09 0.9
S09 | 11.0(16.026.0{21.0|9.8|28.0|31.7({19.1|17.3 | 20.0
S10 4.0 { 3.1 100 3.1 |18 | 6.0 |116| 6.2 [ 22.0 || 7.5
all 1.9 129 |50 |30 (19|59 57|35 ]| 49 | 3.9

Table 5.4: TPAVQ system performance for acoustic enrollment

5.3.2 Speaker-independent Digit Recognition

The first experiment investigates the effectiveness of the compensation algorithm
in normalizing the TT cellular speaker independent digit recognition data to im-
prove recognition using models trained on the VAA1 corpus. The codebooks
were trained on data sets in the TI cellular and VAA corpora disjoint from the
model training and testing sets for which the recognition results were obtained.
The results in Table 5.3.2 indicate that the normalization does not disturb the
reference environment (VAA) appreciably, nor the land line and hand held en-

vironments which are close to the VAA. There is a 43% decrease in the error of

the hands free microphone.
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Spkr. || c/c | c/e|c/cl|efc|efe|efcl|cl/c|cl/e|cl/cl| x/x
1-8 1051518 |19 15|42 |39 |37 ]| 26 | 24
1-8 05111717109 (09|31}16 |11 ] 12 | 1.3

Table 5.5: Speakers 1-8, TPAVQ system performance for acoustic enrollment

no. of | error error error
environment | utt.’s | baseline | w/ CMN | w/ TPAVQ
VAA2 1390 4.1 4.1 4.2
land line 282 4.5 4.4 4.7
hand held 283 6.0 6.0 6.1
hands free 246 23.8 17.8 13.6

Table 5.6: Results of the speaker independent digit recognition experiment.

5.3.3 Speaker-dependent Voice Calling

A similar experiment was carried out on the speaker dependent portion of the
TT cellular database. Table 5.3.3 summarizes the average results for 30 speakers
each uttering 10 names in a voice calling application in which the land-line is
the reference environment. The reference and clean environments are again not
disturbed appreciably and there is a 36% decrease in the error of the hands free
microphone.

TPAVQ decreases the word error for continuous ten digit recognition of cel-
lular hands free microphone speech with land line trained models from 23.8%
to 13.6% and the speaker dependent voice calling sentence error from 16.5% to

10.6% in the TI cellular corpus.
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no. Of error error error

environment | utt.’s | baseline | w/ CMN | w/ TPAVQ

land line 696 3.4 3.4 3.7
hand held 688 4.7 4.8 5.4
hands free 650 16.5 13.4 10.6

Table 5.7: Results of the speaker dependent voice calling experiment.

In all three experiments, TPAVQ has outperformed feature vector filtering
via RASTA and CMN decisively. It is important to remember unlike other
codeword dependent methods that are superior to filtering, TPAVQ (similar to
RASTA or CMN) does not require stereo data.

73



Chapter 6

Conclusion and Future Work

This dissertation addresses the problem of environmental robustness in current
speech recognition technology. Starting with a non-parametric model of the ef-
fects of the environment on speech distributions, we proposed a mathematical
framework based on adaptive vector quantization or, as we have shown, equiva-
lently on the alternating minimization algorithm for environment compensation.
Specifically, the TPAVQ algorithm was proposed as a means of preserving the
global topology of the speech distributions under distortion.

In this chapter, we summarize our conclusions and findings based on exper-
iments with various tasks. We also review the major contributions of the work

and present several suggestions for future work.

6.1 Summary of Results

The most basic result of the dissertation is the viability of the topology preserva-
tion hypothesis. In addition to making intuitive sense, we showed that it can be
exploited to derive algorithms which do not need stereo data from the secondary

environments and which normalize the noisy and distorted speech successfully.
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We also demonstrated that topology preservation lends itself to statistical anal-
ysis when formulated in terms of preserving the conditional class distributions
in an information geometry. Posed in this way, its convergence was shown in
relation to an associated alternating minimization algorithm.

Our experimental results demonstrate that the TPAVQ technique proposed
in this thesis produces significant improvements in recognition accuracy. As
predicted, the improvements are much higher than those produced by simple
filtering of the features such as mean normalization or RASTA. This is due
to the finer local compensation of the feature space which, as experimentally
demonstrated, is distorted in ways which are hard to describe in a parametric

manner.

6.2 Contributions

We may sum up the major contributions of this dissertation as follows:

e We have proposed using the topology of the distribution of the feature
vectors as an invariant under the distortion model transformation and de-
veloped a framework which incorporates the preservation of toplogy in a

convenient manner.

e We have demonstrated how the topology preservation can be included as
a constraint in distortion minimization in VQ and how the minimization

can be carried out with a stochastic approximation algorithm.

e We have introduced an information geometry framework for topology preser-

vation where the class posteriors of the testing environment are constrained
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to be within ¢ I-divergence proximity of the class posteriors of the reference

environment.

e In the information geometry framework, we have developed a constrained
alternating minimization algorithm which preserves topology. We have

proved its local convergence and commented on its global convergence.

e We have empirically demonstrated the effectiveness of the approach in
three different tasks which incorporate different acoustical conditions. The
most notable was how the algorithm performed with cellular telephone

speech which presented the most ardous challenge.

6.3 Future Work

One thing that is missing from the topology preservation discussion is a true
measure of how global order is preserved. The mathematical frameworks we have
introduced describe the topology preservation as constrained minimization or
class probability distribution invariance, however they stop short of quantifying
how good the preservation has been accomplished. This seems like a difficult
problem right now, as the notion of order in high dimensional spaces is hard to
quantify mathematically. It is conceivable that a more sophisticated measure
then I-divergence of class posteriors, proposed in this thesis, can be derived.

In this thesis, we have presented the TPAVQ algorithm as capable of using
both a priori information about likely environments and adaptation to fit new
environments as more data become available during testing. There are many
issues about adaptation in a real-world application such as the minimum duration

of the speech transaction which whould make adaptation useful, intialization of
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the neighborhood function before adaptation which may be made more peaked
than in the off-line case due to the existence of a good starting point in terms
of available environment codebooks, and overcoming problems such as extended
periods of silences which may bias the codebook towards a better representation
of the noise components of the environment. These problems are also left for
future study both experimentally for real-world applications, and in theory for
studying the viability of adaptation not just for environment compensation but

also for applications such as speaker adaptation.

77



REFERENCES

[1] A. Acero, Acoustical and Environmental Robustness in Automatic Speech
Recognition, Ph.D. Thesis, Dept. of Electrical and Computer Engineering,
CMU, Sept. 1990

[2] A. Acero, Acoustical and Environmental Robustness in Automatic Speech

Recognition, Kluwer Academic Publishers, Boston, MA, 1993.

[3] K. Aikawa, H. Singer, H. Kahawara, Y. Tohkura, “A dynamic cepstrum
incorporating time-frequency masking and its application to continuous

speech recognition”, ICASSP-93, May 1993.

[4] L. Baum, “An Inequality and Associated Maximization Technique in Sta-
tistical Estimation of Probabilistic Functions of Markov Processes”, In-

equalities 3:1-8, 1972.

[5] S. Amari, Differential Geometrical Method in Statistics, Springer Lecture

Note in Statistics, 28, Springer, 1985.

[6] W. Byrne, “Alternating minimization and Boltzmann machine learning,”

IEEFE Trans. Neural Networks, vol. 3, no. 4, pp. 612-620, 1992.

[7] S. Amari, “Information Geometry of the EM and em Algorithms for Neural
Networks,” Neural Networks, vol. 8, No. 9, pp. 1379-1408, 1995.

[8] S. Amari, “The EM Algorithms and Information Geometry in Neural Net-

work Learning,” Neural Computation, vol. 7, pp. 13-18, 1994.

[9] I. Csiszar and G. Tusnady, “Information geometry and alternating min-

imization procedures,” in Statistics and decisions, Supplementary issue,

78



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

No. 1, (E. Dedewicz et. al.,eds.), pp. 205-237, Munich, Oldenburg Verlag,
1984.

I. Csiszar, “I-divergence geometry of probability distributions and mini-

mization problems,” Annals of Probability, vol. 3, no. 1, pp. 146-157, 1975.

A.P. Dempster, N.M. Laird, D.B. Rubin, “Maximum likelihood from in-
complete data via the EM algorithm (with discussion)”, Jour. of the Royal
Statistical Society B, vol. 39, pp.1-38, 1977.

J. Flanagan, J. Johston, R. Zahn, G. Elko, “Computer-steered Microphone
Arrays for Sound Transduction in Large Rooms”,JASA, vol. 78, pp.1508-
1518, Nov. 1985.

A. Gersho, R. Gray, “Vector Quantization and Signal Compression”,

Kluwer, 1992.

M.F. Gales, “Model-Based Techniques for Noise Robust Speech Recogni-
tion”, Ph.D. Thesis, Engineering Department, Cambridge University, Sept.
1995.

O. Ghitza, “Auditory Nerve Representaion as a Front-end for Speech
Recognition in a Noisy Environment”, Computer, Speech and language

vol. 1, pp.109-130, 1986.

Y. Gong, “Speech recognition in noisy environments: A survey,” Speech

Communication, 16, 1995 pp. 261-291.

H. Hermansky, N. Morgan, A. Bayya, P. Kohn, “COmpensation for the Ef-

fect of teh Communication Channel in Auditory-Like Analysis of Speech”,

79



Proc. of the Second European Conf. on Speech Comm. and Tech., Sept.
1991.

[18] H. Hermansky, N. Morgan, H. Hirsch, “Recognition of Speech in Additive
and Convolutional Noise Based on RASTA Spectral Processing”, ICASSP-
93, pp. 11-83-86, April 1993.

[19] F. Jelinek, “Continuous Speech Recognition by Statistical Methods”, Pro-
ceedings of the IEEFE, 64(4): pp. 532-556, April 1976.

[20] B. Juang, “Speech Recognition in Adverse Environments,” Computer

Speech and Language, Vol. 5, pp. 275-294, 1991

[21] T. Kohonen, Self-Organizing Maps, Springer Series in Information Sci-
ences, Springer-Verlag, Berlin 1995

[22] C.J. Leggeter, P.C. Woodland, “Maximum Likelihood Linear Regression
for Speaker Adaptation of Continuous Density Hidden Markov Models,”

Computer, Speech and Language, vol.9, pp.171-185.

[23] Y. Linde, A. Buzo, R.M. Gray,“An Algorithm for Vector Quantizer De-
sign,” IEEE Trans. Commun., vol. COM-28, pp. 84-95, January 1980.

[24] F.H. Liu, A. Acero, R.H. Stern, “Efficient Joint Compensation of Speech
for the Effects of Additive Noise and Linear Filtering,” ICASSP-92, pp.
[-257-260, March 1992

[25] F.H. Liu, R.H. Stern, A. Acero, P.J. Moreno, “Environment Normaliza-
tion for Robust Speech Recognition using Direct Cepstral Comparison,”

ICASSP-9/4, pp. 61-64, April 1994

80



[26] F.H. Liu, “Environmental Adaptation for Robust Speech Recognition,”
Ph. D. Thesis, ECE Department, CMU, July 1994

[27] X.L. Meng, D.B. Rubin, “Recent extensions of the EM algorithm (with
discussion)”, inJ.M. Bernardo, J.O. Berger, A.P. Dawid, A.F.M. Smith

(editors), Bayesian Statistics 4, Oxford, Clarendon Press, 1992

[28] P.J. Moreno, B. Raj, E. Gouvéa, R.M. Stern, “Multivariate Gaussian
Based Cepstral Normalization”, ICASSP-95

[29] P.J. Moreno, “Speech Recognition in Noisy Environments”, Ph.D. Thesis,
Dept. of Electrical and Computer Engineering, CMU, April 1996

[30] L. Neumeyer, M. Weintraub, “Probabilitic Optimum Filtering for Robust
Speech Recognition”, ICASSP-94, pp. 1-417-420, May 1994.

[31] R. M. Neal and G. E. Hinton, “A new view of the EM algorithm that

justifies incremental and other variants”, submitted to Biometrika, 1993.

[32] L. Rabiner, B. Juang, “An Introduction to Hidden Markov Models”, IEEE
ASSP Magazine, 3(1) pp. 4-16, Jan. 1986.

[33] J. Rissanen, Stochastic complezity in statistical inquiry, World Scientific,

Teaneck, N.J. 1989.

[34] R. Schwartz, T. Anastakos, F. Kubala, J. Makhoul, L. Nguyen, G.
Zavaliagkos, “Comparative Experiments on Large Vocabulary Speech
Recognition,” Proc. ARPA Human Language Technology Workshop,
Plainsboro, New Jersey, March 1993.

81



[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

S. Seneff, “A Joint Synchrony/Mean-Rate Model of Auditory Speech Pro-

cessing”, Journal of Phonetics, vol. 16, pp.55-76, January 1988.

B.W. Silverman, Density Estimation for Statistics and Data Analysis,

Chapman & Hall, 1986.

T. Sullivan, R. Stern, “Multi-Microphone Correlation-Based Processing for

Robust Speech Recogntion”, ICASSP-98, April 1993.

A. Viterbi, “Error Bounds for Convolutional codes and an Asymptotically
Optimum Decoding Algorithm”, IEEE Trans. on Info. Theory, vol. IT-13,
pp- 260-269, 1967.

P.C. Woodland, M.J.F. Gales, D. Dye, V. Valtchev, “The HTK Large
Vocabulary Recognition System for the 1995 ARPA H3 Task”, Proc. of
the 1996 ARPA Speech Recognition Workshop, Feb. 1996.

T. Adal, X. Liu, and M. K. S6nmez, “Conditional distribution learning
with neural networks and its application to channel equalization,” IEEFE

Trans. Signal Processing, vol. 45, no. 4, pp. 1051-1064, Apr. 1997.

D. M. Titterington, “Comments on ‘application of the conditional
population-mixture model to image segmentation’,” IEEE Trans. Pattern

Anal. Machine Intell., Vol. 6, No. 5, pp. 656-658, September 1984.

J. Rissanen, “Minimax entropy estimation of models for vector processes,”

System Identification, pp. 97-119, 1987.

D. M. Titterington, A. F. M. Smith, and U. E. Markov, Statistical analysis

of finite mizture distributions. New York: John Wiley, 1985.

82



[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

T. M. Cover and J. A. Thomas, Elements of Information Theory, John
Wiley & Sons, Inc. 1991.

S. Haykin, Neural Networks: A Comprehensive Foundation. New York:

Macmillan College Publishing Company, 1994.

J. L. Marroquin and F. Girosi, “Some extensions of the K-means algorithm
for image segmentation and pattern classification,” Technical Report, MIT

Artificial Intelligence Laboratory, Jan. 1993.

T. Adalh, M. K. Sonmez, and K. Patel, “On the dynamics of the LRE
Algorithm: A distribution learning approach to adaptive equalization,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Detroit, MI,
1995, pp. 929-932.

H. Akaike, “A New Look at the Statistical Model Identification,” IEEFE

Transactions on Automatic Control, Vol. 19, No. 6, December 1974.

J. Rissanen, “A Universal Prior for Integers and Estimation by Minimum

Description Length,” The Annals of Statistics, Vol. 11, No. 2, 1983.

S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the

bias/variance dilemma,” Neural Computation, 4, pp. 1-52, 1992.

E. T. Jaynes, “Information theory and statistical mechanics,” Physical

Review, Vol. 108, No. 2, pp. 620-630/171-190, May 1957.

H. V. Poor, An Introduction to Signal Detection and Estimation, Springer-

Verlay, 1988.

83



[63] L. Xu and M. L. Jordan, “On convergence properties of the EM algorithm

[54]

[55]

[56]

[57]

[58]

[59]

[60]

for Gaussian mixture,” Technical Report, MIT Artificial Intelligence Lab-

oratory, Jan. 1995.

E. Weinstein, M. Feder, and A. V. Oppenheim, “Sequential algorithms for
parameter estimation based on the Kullback-Leibler information measure,”
IEFEE Trans. Acou. Speech, and Signal Processing, Vol. 38, No. 9, pp. 1652-
1654, 1990.

R. A. Redner and N. M. Walker, “Mixture densities, maximum likelihood

and the EM algorithm,” STAM Rev. , Vol. 26, pp.195-239, 1984.

H. Gish, “A probabilistic approach to the understanding and training of
neural network classifiers,” in Proc. IEEE Intl. Conf. Acoust., Speech, and

Signal Processing, pp. 1361-1364, 1990.

J. L. Marroquin, “Measure fields for function approximation,” IEEE Trans.

Neural Nets., Vol. 6, No. 5, pp. 1081-1090, 1995.

M. Wax and T. Kailath, “Detection of Signals by Information Theoretic
Criteria,” IEEE Trans. Acoust. Speech, Signal Processing, Vol. 33, No. 2,
April 1985.

L. Kullback, and R. A. Leibler, “On information and sufficiency,” Annals
of Mathematical Statistics 22, pp. 79-86, 1951.

J. S. Bridle, “Probabilistic interpretation of feedforward classification net-
work outputs, with relationships to statistical pattern recognition,” NATO

ASI Series, vol. F68, Neurocomputing, pp. 227-236.

84



